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Abstract

Intrinsic mesh matching for near-isometric deformations using double-order affinities

by

Ioannis Koutsoumpas

Master of Research in Game and Media Technology

University of Utrecht

Shape matching is among the most basic research fields in digital geometry processing,
with applications ranging from industrial design to three-dimensional medical image analysis.
Our focus is restricted to triangle meshes undergoing deformations that can be described by
intrinsic isometries, that is, near-isometric changes. In this thesis, we propose a shape match-
ing algorithm comprised by a feature detection and feature matching phase. Specifically, a
shape descriptor is introduced, called the vicinity area descriptor, based on the surface area
around each vertex bounded by an isoring for a given geodesic radius. We improve the
distinctiveness of the local signature by extending it from a scalar to a vector descriptor
referring to arbitrary number of areas defined by inner isorings. The most descriptive points
are then extracted using non-maximum suppression. By also considering the preservation
of geodesic distances among the corresponding pairs of features, we compute a double-order
affinity matrix. This combinatorial affinity matrix encodes the pointwise and pairwise rela-
tions of features regarding the two meshes. This matrix is then fed to the spectral matching
algorithm, a graph matching method, in order to establish correspondences between the two
surfaces. Experiments include benchmarks under various conditions regarding internal vari-
ables and state-of-the-art methods comparisons. It is showed that the proposed framework
is robust over near-isometric deformations and keeps well against modern algorithms.
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Chapter 1

Introduction

Over the last decade, three-dimensional shape processing became popular in the research
areas of geometric processing, medical imaging and three-dimensional modeling. One of its
keystone tasks is the establishment of correspondences among two shapes [39][2][21][23][48].
Correspondence detection is of utmost importance for surface completion, statistical shape
modeling, deformable surface tracking, symmetry analysis, shape matching and shape cal-
culus [4].

We restrict our attention to automatic non-rigid shape matching, an interesting yet com-
plex task. The majority of shape matching applications involve input meshes representing
objects in a variety of poses and deformations. For instance, input meshes could present
deformations of cloth, faces, brains surfaces or other anatomical organs. Although a sim-
ple parametrization exists in rigid matching for all possible deformations (i.e. translation,
rotation and reflection), non-rigid mesh deformations are high dimensional and arbitrarily
complex (see Fig. 1.1).

Fortunately, in practice, non-rigid deformations tend to follow certain rules (e.g. a piece
of cloth that can be stretched up to a point but not teared), thus implying various solu-
tion approaches. In this work, we perform non-rigid shape matching by taking advantage
of certain surface properties that are invariant under isometric deformations. In particular,
isometric deformations imply that, all points of the surface prior and after the deformation
preserve their intrinsic geodesic distances up to minor error (near-isometric deformations).
Generally, geodesic distance between two points on a surface, can be described as the length
of the shortest path connecting them. For a detailed description, refer to Section 2.1. Specif-
ically, intrinsic isometry can be formally described as:

Definition 1 Consider two shapes M and N represented as compact Riemannian manifolds
without boundary. A surjective map T : M → N is called an intrinsic isometry such that, for
all pairs of points (x, y) ∈M it holds that dMg (x, y) = dNg (T (x), T (y)), where dMg (., .), dNg (., .)
are the geodesic distances defined on M and N in respect.

Worth noting that, in the rest of the thesis, three-dimensional shapes represented by compact,
connected Riemannian manifolds are approximated by triangular meshes.
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(a) Two shapes related by a rigid transfor-
mation (translation in 3D).

(b) Two shapes related by a non-rigid trans-
formation (near-isometric deformation).

Figure 1.1: Non-rigid shape deformations are highly dimensional.

In our framework, we employ two types of surface properties: pointwise surface descrip-
tors and distances among pairs of points on the surface. In addition, we employ a graph
matching method in order to incorporate tolerance for both descriptors and finally compute
the minimal dissimilarity correspondence.

1.1 Motivation

First, our key motivation was the proposal of a local surface shape descriptor that is isometry
invariant yet is straightforward and relatively simple to implement. Second, despite the
variety of surface descriptors, no local region signatures are proposed based on the vicinity
surface area. Third, most shape matching algorithms sample points on the mesh in order
to reduce the complexity of the problem with risk of ignoring important information. We
present a method that computes feature points by initially analyzing specific properties on
the entire shape without increasing the dimensionality of the problem.

1.2 Method

At first, we build the distance map, an array containing all geodesic distances for every pair
of vertices on the mesh using the fast marching method [28]. Distance map is thoroughly
used for both pointwise and pairwise descriptors computations as well as during the matching
process.

We define the pointwise surface descriptor as the local signature containing the area
magnitude bounded by the isocurve (or isoring) centered at a vertex given a geodesic radius
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(also referred as base radius). Isocurve can be conceived as a circle of a radius defined
over a geodesic metric on a surface. The isoring radius is alternatively called maximum
propagation, since it indicates the distance limits of propagation of the distance function
(fast marching method in our case). Scalar surface descriptor is then extended to a vector
descriptor such that arbitrary inner isorings can be defined and exponentially distributed
(w.r.t. largest geodesic radius), yielding multiple area values. Thus, surface properties are
captured in more detail. Having calculated the area descriptor for all vertices, we extract
the most distinctive points. This is done by employing non-maximum suppression, a local
maximum search scheme, for the given base radius. These characteristic points represent
the feature points on the current mesh. In addition, we denote the pairwise descriptor as
the geodesic distance between two detected features. Feature point detection is applied on
both source and target meshes producing two lists including the feature vertices along with
their respective score vectors.

By considering the aforementioned feature lists, the second phase starts with the com-
position of the combinatorial affinity matrix. This array combines the comparison results of
pointwise and pairwise descriptors along with the corresponding given standard deviations.
Throughout this thesis, descriptor relations are denoted as (1st and (2nd-order affinities in
respect. A scheme using both these affinities is characterized as a double-order affinity
method. The combinatorial affinity matrix is computed in a manner suitable for processing
by the spectral matching algorithm [29], a graph matching scheme. By employing spectral
matching, we take advantage of the spectral properties (eigenvalues and eigenvectors) of
the weighted adjacency matrix and compute the correspondence vector. This binary vector
indicates the valid correspondences between the features of the two shapes thus denoting
the optimal matching. Finally, matching error is calculated as the deviation of the resulted
matching from the ground truth.

Experiments prove the robustness of the proposed matching framework regarding near-
isometric deformations and provide comparisons to state-of-the-art algorithms. We analyze
the behaviour of the matching scheme under various conditions (e.g. different base radii,
number of isorings per descriptor, single order versus double-order affinities) and compare
the results for different distance functions. In addition, spectral matching results are in-
vestigated for both Greedy and Hungarian methods (internal spectral matching functions).
Furthermore, comparison between Blended Intrinsic Maps and Möbius Voting [30] schemes
indicate the efficiency of the proposed method.

The algorithms of Planned Landmark Sampling [54] and Geodesic Fans [64] inspired the
proposal of of the area descriptor on the base of iteratively applying a sampling structure
(similar to isocurves and spokes respectively) in order to gain the maximum possible infor-
mation. Furthermore, we gather local topology information from the vicinity of a point,
similarly to [54][64][19]. In contrast to geodesic fans which use a finite number of spokes to
gather curvature information, we apply our descriptor to the entire vicinity. Thus, surface
information acquirement is independent of sampling density. Regarding the extraction of
feature points, we avoid sampling techniques (used in [55]) for the same reason. That is,
each feature point is a result of a process involving all vertices of the mesh.
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1.3 Contribution

First, vicinity area descriptor is a novel signature that efficiently captures geometry charac-
teristics among deformed meshes and proves robust against near-isometric changes. Specifi-
cally:

· It is scalable, thus describing neighborhoods of various sizes. To wit, it allows for
control over how coarsely information is gained and expresses different types of shape
properties.

· Scale is easily controlled. Vicinities are indicated by the center and geodesic radius of
the isoring.

· It corresponds to curvature perceptivity. The proposed local signature denotes the rate
of non-planarity of the surrounding region.

Second, the presented descriptor extends to a vector of arbitrary dimensions through the
use of multiple isorings. In particular:

· It enhances the accuracy of the results.

· Adapts on the triangulation complexity.

· Allows for control of sensitivity regarding noise and differences in surface tessellation.

Third, the control over the number and type of feature points in combination with the
graph matching incorporation, balances the cost of correspondence guesses with the proper
exploitation of acquired information.

1.4 Structure

In Chapter 2 we provide an overview on previous research concerning discrete geodesics and
three-dimensional shape matching. Background knowledge regarding the methods employed
throughout the shape matching framework are described in Chapter 3. The main method
consists of two sections: Chapter 4 presents the local descriptors and the methods behind
feature extraction. The phase of matching process is analyzed in Chapter 5. In addition,
Section 6 describes the experiments and analyzes the results. In Epilogue (see Section 7), we
draw conclusions about our algorithm and propose future improvements. Implementation
notes are presented in Section 8.
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Chapter 2

Related Literature

A survey of the literature on the fields relevant to our research topic follows.

2.1 Discrete Geodesics on Triangular Meshes

We employ discrete geodesics during the computation of first and second-order affinities as
well as spectral matching. Although Euclidean shortest path computation is NP-hard [6],
finding the geodesic shortest path may be a problem of polynomial time. The majority of
geodesic distance computation algorithms use front propagation, an alternation of Dijkstra’s
algorithm [17]. In their work, Mitchell et al. [38] presented the continuous Dijkstra method.
They simulate the continuous propagation of a wavefront of points equidistant from the
source across the surface, by updating the wavefront at discrete events. Given a source
vertex, this data structure computes the actual shortest path to any point on the mesh
in time O(k + logm), where k is the number of faces crossed by the path and m is the
number of surface edges. This algorithm requires O(m2) space and runs in O(m2 logm) time.
The algorithm of Kapoor [26] adopts wave front propagation approach and by efficiently
treating wavefront arc-edge crossing, achieves O(n log2 n), where n is the number of mesh
vertices. On the other hand, the method of Chen and Han [8] does not track the wave
front propagation. That is, they employ a data structure based on surface unfolding, thus
improving the time complexity to O(n2) with O(n) space. Kimmel and Sethian [28] employ
fast marching method [50] in order to define a distance function from a source vertex to the
entire surface. They then integrate back a differential equation to extract the geodesic path.
The entire process has time complexity O(n log n).

The last method presented by Kimmel and Sethian is adopted in our framework. Al-
though it defines an approximation algorithm (in section 4.1 we show how we improve ac-
curacy), it is the fastest, something that proves to be the most efficient scheme for our
method.
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2.2 Shape Matching

Local Signature

In their work, Shum et al. [51] propose a local measure that employs the Lp distance among
local curvature functions. These functions are mapped to a semi-regular triangulation of the
unit sphere. However, this algorithm is limited to consider only closed surfaces which are
topologically spherical. Several shape segmentation algorithms use isosurfaces and extreme
curvatures [62], the sign of the curvature [35][63] or watersheds of a curvature function [33]
[32] [47]. Watershed methods are sensitive to the user-specified watershed depth threshold
and noise. Surface segmentation approaches still do not provide detailed information about
small dissimilarities among local regions. To wit, changes on the mesh (e.g. near-isometric
deformations) are likely to have strong influence on the segmentation form.

Several methods proposed for the computation of local features. Shape contexts [40]
use a point on the object in order to represent its shape. Specifically, they employ a two-
dimensional histogram including the relative coordinates of other points sampled from the
mesh. In their method, Planitz et al. [45] define a feature signature by considering a local
region around specific points. However, the criteria of angles and distances among normals
in a local support region prove to be sensitive to point distributions. Worth mentioning that,
the aforementioned schemes are sufficient for shape discrimination in the context of shape
retrieval but in general, offer limited shape matching among similar meshes.

Zhang et al. [65] and Tung and Matsuyama [59] define sparsely sampled landmarks
using the extremal points of a geodesic function. Nevertheless, in general situations, these
landmarks are not capable of describing a unique diffeomorphism. Lipman and Funkhouser
present a matching scheme based on Möbius voting [30]. They observe that, for genus-zero
surfaces, the isometry group is a subgroup of the Möbius group, parametrized by three
distinct correspondences. In relation to the shape parametrization of [30], Ovsjanikov et
al. introduce Heat-Kernel Signature [53], a multi-scale point signature based on the heat
diffusion process. They prove that a single point is sufficient to define an isometry under
certain conditions [44]. Another scheme based on local signatures called Blended Intrinsic
Maps [27], was proposed by Kim et al.. Specifically, they consider weighted combinations of
intrinsic maps in order to define a map between the two meshes.

Tevs et al. [54] present a sampling-based shape matching that detects optimized landmark
points. To wit, they employ an entropy-based planning scheme in order to select important
matches and reduce sampling cost. A local descriptor called geodeisc fan is presented in [64].
In particular, a geodesic fan consists of a set of spokes with multiple samples per spoke that
capture surface properties. In our framework, we propose a local surface area descriptor in
the spirit of the work of Tevs et al. [54] and geodesic fans [64]. That is, we consider multiple
neighborhoods around a central vertex, similar to [64][54] and expand the isocurves concept
[54] to the entire vicinity surface area.
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Feature Distinctiveness

Various approaches used in order to answer how characteristic a feature points is. A sta-
tistical measurement of the frequency-inverse document frequency is employed in [3]. This
technique quantifies the importance of a feature point by checking the rate of occurrence in
other shapes. On the contrary, our method considers features in a single shape. In their
algorithm, Schmid et al. [49] as well as in [54], incorporate entropy in order to measure the
saliency of feature points. In our framework, we compute candidate feature distinctiveness
by employing Non-maximum Suppression (NMS) (an example of its use can be found in
[5][31][37][60]) as a local maximum search algorithm consisting of two nested loops. This
approach is simple to implement and versatile due to the adaptive search radius.

Feature Matching

Fischler and Bolles [18] introduce a matching algorithm called RANSAC (random sampling
consensus). This method samples correspondences selected from two images (a problem
similar to shape matching) and estimates the parameters of a geometric consistency model
through an iterative scheme. However, the process contains several parameters (some of
them are empirically determined) whose values have to be chosen properly in advance. These
parameters have to be carefully selected, since they strongly affect the performance and ro-
bustness of the algorithm. A variant of RANSAC named PROSAC (progressive sampling
consensus) was proposed by Chum and Matas [9]. By smartly sampling the high qual-
ity data first and then progressively sampling the rest of the dataset, they achieve better
performance (in the worst case, it degenerates to RANSAC). Worth noting that, both these
sample consensus methods do not efficiently respond to images with repetitive patterns (simi-
lar to repetitive triangulation patterns) because of too many outliers. REINF (reinforcement
matching) [15] incorporates global context information into local feature matching. To wit,
it extends circular bin techniques by using affine-invariant log-polar elliptical bins. Further-
more, relaxation method [52] introduces a probabilistic matching framework which iteratively
updates initial probabilities based on a compatibility function.

In order to make the correspondence estimation more robust, we adopt spectral matching
method introduced by Leordeanu and Hebert [29]. At first, they represent correspondences
between two feature sets by a properly constructed graph. They then form a compatibility
matrix that encodes point-wise and pairwise affinities among features. Finally, they detect
correct assignments by computing the principal eigenvector of the aforementioned matrix
and applying specific mapping constraints (in our case, one-to-one correspondences).
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Chapter 3

Prerequisites

In this chapter we provide the description of concepts employed in the proposed algorithm
as well as in various benchmarks.

3.1 Geodesic

Geodesic curve (also called as geodesic) is the generalized concept of straight line for smooth
surfaces, that is, the shortest path joining two points over a surface. Equivalently, a geodesic
is a locally length-minimizing curve. In general, geodesics in space depend on the Riemannian
metric [25] which affects the notion of distance and acceleration. The basic intrinsic metric
defined over a surface M is called geodesic metric. To wit, it measures the lengths of the
shortest paths on M such that

dM(x, x′) = inf
γ∈Γ(x,x′)

l(γ) (3.1)

where Γ(x, x′) is the set of all admissible paths between the points x and x′ on M and l(γ)
the length of a path γ.

In the proposed framework we use geodesics on discrete surfaces in three dimensions in
both first and second affinity computations. In the following two paragraphs we provide a
brief description of geodesics in continuous as well as discrete space.

Let a smooth surface in R3 be parametrically defined by x = x(u, ν), y = y(u, ν), z =
z(u, ν), where u, ν are parameters from a subset A ⊂ R2. The continuous geodesic can be
found by minimizing the arc length

I =

∫
ds =

∫ √
dx2 + dy2 + dz2 (3.2)

For details on minimization of Equation 3.2, see [7].
The generalization of geodesic curves to a discrete surface S, are called discrete geodesics.

Aleksandrov and Zalgaller [1] define quasi-geodesics as the limit curves of geodesics on a
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family of converging smooth surfaces. In addition, they describe shortest discrete geodesics
as critical points of the length functional over polyhedral surfaces. Furthermore, Polthier
and Schmies [46] introduce discrete geodesic curvature based on the definition of geodesic
curvature (geodesic curvature generalizes the notion of curvature of a plane curve to surfaces
[7]). In addition, they propose straightest geodesics, as the polygonal curves over S with zero
geodesic curvature everywhere.

3.2 Fast Marching Method

The Fast Marching algorithm is a numerical method introduced by Sethian [50] and employed
by Kimmel et al. [11] in order to compute 2D paths. A similar method was also proposed
by Tsitsiklis in [58]. In addition, fast marching was applied for path extraction in 3D images
[16][10] for medical image analysis. In our framework, we adopt the extension of Kimmel and
Sethian [28] that allows to find the geodesic distance among vertices on a manifold. Worth
noting that, the farst matching method is similar to Dijkstra algorithm [17] in the sense of
front propagation from the source to all vertices in the domain.

We briefly describe the process of geodesic path computation using the fast marching
method. Consider a metric P (g)dg > 0 on a manifold M . The weighted geodesic distance
among xS, xT ∈M is defined as

d(xT , xS) := min
γ

(∫ 1

0

‖γ′(t))‖P (γ(t))dt
)

(3.3)

where γ is a piecewise regular curve such that γ(0) = xS and γ(1) = xT . For P = 1, the
integral in Eq. 3.3 denotes the length of the curve γ and d is the geodesic distance. In order
to efficiently calculate the distance function U(x) := d(xS, x), the following formulation is
employed. Let Ct := {x \ U(x) = t} be the level set curve that propagates according to the

evolution equation dCt(x)
dt

= 1
P (x)

~nx, where ~nx is the exterior unit vector normal to the curve
at x and the function U satisfies the nonlinear Eikonal equation

‖∇U(x)‖ = P (x). (3.4)

By taking the inverse fraction of function P , the function F = 1/P > 0 represents the
propagation speed of the front Ct.

In order to calculate the value u of U at a point xi,j on a grid, fast marching algorithm
uses the following upwind finite difference scheme:

max(u− U(xi−1,j), u− U(xi+1,j), 0)2

+ max(u− U(xi,j−1), u− U(xi,j+1), 0)2 = P (xi,j)
2.

(3.5)

A method to solve the aforementioned second order equation (see Eq. 3.5) is described
in [12]. Hence, an optimal ordering of the grid points is computed such that the complexity
of the procedure takes O(N log(N)), where N is the number of points.
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The algorithm in [28] generalizes fast marching to arbitrary triangulations thus allowing
for fast front-propagation on a mesh. Furthermore, they propose a scheme in order to
overcome the numerical instabilities arising from triangulations containing obtuse angles.

3.3 Spectral Matching

In their work, Leordeanu et al.[29] proposed a spectral technique for acquiring consistent
correspondences among two sets of features.

Let bipartite graph be a graph consisting of vertices decomposed into two disjoint sets
such that, no two graph vertices within the same set are adjacent. Consider the bipartite
graph matching problem as the matching comprised by the subset of edges such that, no two
edges share an endpoint. The weighted adjacency matrix of a graph, stores the weights of a
graph whose nodes represent the potential assignments and whose weights are the agreements
among pairs of candidate assignments. Spectral matching method steps on the spectral prop-
erties of the weighted adjacency matrix of the graph and efficiently solves the correspondence
problem by avoiding the rapid increase of complexity due to the combinatorial nature of the
process.

Let P and Q be two sets containing nP and nQ data features respectively. A corre-
spondence mapping is defined as a set C of assignments (i, a), where i ∈ P and a ∈ Q.
Depending on the problem, various mapping constraints can be applied on C. For instance,
a data feature in P is allowed to pair with at most one feature from Q (one-to-one cor-
respondence) or with many features from Q (one-to-many correspondence). The matching
measure for a correspondece (i, a) is called affinity. Furthermore, an additional pairwise
affinity is defined that measures the compatibility between two pairs of features (i, j) and
(a, b). Having acquired a list L of n candidate matches, affinities of each matching (i, a) ∈ L
and pairwise affinities of each matching (i, a), (j, b) ∈ L are stored in a symmetric matrix
M ∈ RnPnQ×nPnQ

+ . Specifically:

1. Mia,ia represents the affinity of individual matches (i, a) ∈ L.

2. Mia,jb measures the affinity of the pairwise relationship between the pairs of features
(i, j) ∈ P and (a, b) ∈ Q.

The correspondence problem can be described as the computation of cluster C of corre-
spondences (i, a) that maximizes the inter-cluster score S =

∑
ia,jb∈CMia,jb respecting the

mapping constraints. The cluster C can be represented by a binary vector x such that
xia = 1 if (i, a) ∈ C and xia = 0 if (i, a) /∈ C. Thus, the inter-cluster score is written as

S =
∑

ia,jb∈C

Mia,jb = xTMx (3.6)

Hence, the optimal binary vector x∗ is defined as:

x∗ = arg max
x

xTMx (3.7)
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Specifically, x∗ is acquired by applying Rayleigh quotient [22] such that w∗ = arg maxxR(M,x).
Thus, we have:

x∗ = arg max
x

xTMx

xTx
, x ∈ RnPnQ (3.8)

where x∗ is the principal eigenvector of M that maximizes the inter-cluster score xTMx.
In Section 5.3 we present two post-processing methods we employed in order to discretize

the resulting vector according to the desired mapping constraints (one-to-one correspon-
dence).
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Chapter 4

Feature Points for Shape
Corspondence

This chapter describes the proposed surface descriptor and feature detection process.

4.1 Distance Map

In the first step of the framework we compute the distance map, an array of all pairs of
geodesic distances between the vertices of the mesh. This array is used whenever geodesic
distance retrieval is required that is, in both first and second order affinity calculations as
well as during matching error (see Sec. 5.4).

Thus, we construct the distance map defined by the matrix D ∈ Rn×n+ , where n is the
number of vertices, such that Di,j = dg(i, j). For this purpose, we employ fast marching
framework [50] implemented in [56], which approximates geodesic distances on 2-manifolds
in R3. The process consists of repeating n times the fast marching algorithm in order to
compute the geodesic distances from each of the n vertices to all others. The process of
computing the geodesic distance from one vertex to all others is called geodesic propagation
and the vertex at the origin of a propagation is called source point. Specifically, in each step
s ∈ [0, 1, . . . , n−1] we calculate a column-wise vector vs = dg(s, .) of n elements containing all
distances from source s. By merging these vectors vertically the distance map is constructed
(see Fig. 4.1b). The complexity of the procedure is O(nm), with m being the complexity of
the geodesic propagation. Using fast marching scheme the complexity of the entire process
becomes O(n log(n)).

Given the geodesic distance definition, it is expected for the distance map to be sym-
metric. However, this is not the case since the fast marching algorithm does not compute
exact distances thus introducing an approximation error. In order to make the geodesic
distance retrieval more accurate, we introduce the mean geodesic distance defined as Di,j =
1
2
(Di,j +Dj,i).
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(a) Cat model in neutral pose.
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(b) Distance map.

Figure 4.1: Depiction of a mesh and the corresponding distance map. Horizontal and vertical
axes represent the endpoint vertices of a discrete geodesic path on the mesh.

4.2 Vicinity Area Descriptor Definition

The measurement of polygonal area around a point reflects the formation of the triangles.
Our approach uses the area in the vicinity of a vertex, which is an intrinsic property of
the surface, as a base metric. In contrast to point metrics (e.g. curvature), our descriptor
accumulates shape information from a region around a vertex. The basic idea behind the
vicinity area descriptor is that, area deformation follows any infinitesimal changes of edge
lengths during near-isometric deformations. The presented descriptor is designed to be multi-
scale. Strictly speaking, it is capable of characterizing regions of varying size and exposing
the degree of non-planarity.

Initially, consider the intrinsic isocurve or isoring CM(xo, ρ) on manifold M around a
point xo ∈ M as defined by Tevs et al.[54]. That is, CM(xo, ρ) = {y ∈ M | dM(xo, y) = ρ},
where ρ is a scalar value and dM is the geodesic distance function onM as defined in Section
3.1. In addition, ρ is interpreted as the geodesic radius of the isoring CM(xo, ρ).

We denote PCM(xo, ρ) the set of points in the vicinity of central point xo ∈ M bounded
by the isocurve CM(xo, ρ). That is, PCM(xo, ρ) = {y ∈M | dM(xo, y) ≤ ρ}.

Considering M as a mesh S and xo as a vertex vo ∈ S, the vicinity area descriptor is
described as the sum of the areas of the triangles τ included in PCS (vo, ρ). Thus, let T be
the set of the triangles inside the vicinity such that T = {τ | Dvo,v1 ≤ ρ,Dvo,v2 ≤ ρ,Dvo,v3 ≤
ρ, τ ∈ S}, where v1, v2, v3 are the vertices of a triangle τ and D is the mean geodesic (see
Sec. 4.1). Hence, the vicinity area descriptor is described as:

ATS (vo, ρ) =
∑
i

α(τi) (4.1)
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where τi ∈ T and α(τ) is the polygon area function.

Extension to Multiple Vicinities

We extend the area single vicinity descriptor to arbitrary number of areas around the central
vertex, bounded by exponentially distributed isocurves. Hence, the descriptor is transformed
from a scalar value to a vector. Moreover, it better corresponds to intuitions about curvature
and captures the degree of anisotropy. This extension is implemented in spirit of the use
of multiple isocurves in Landmark-based descriptors [54] and heat equation in Heat kernel
signature [53]. Multiple regions are defined based on the outer isoring CM(xo, ρB) and the
central vertex (see Fig. 4.2).

Geodesic radii of each isoring follow a geometric sequence {ak}, k ∈ {1, 2, . . . } such that
ak = rk where r is the common ratio. Specifically, given the total number of isorings R and
the geodesic radius of the base ring ρB, geodesic radius of every ring is given by:

ρd =
[

exp(
log ρB
R

)
]d

(4.2)

where d is the index of each isoring such that d ∈ {R, . . . , 1} and ρR = ρB. Base radius ρB
is alternatively called maximum propagation distance since it also denotes the distance limit
of the propagation algorithm of the geodesic function. The selection of number of vicinity
areas R is of prime importance and adapts to the experiment requirements (e.g. complexity
of the mesh, results accuracy, running costs).

This extension intends to capture intrinsic properties of the shape in more detail and
make the descriptor more distinctive. For instance, exponential distribution of isorings is
more likely to capture the uniqueness of triangles formation that comprise the tip of a nail on
a cat mesh (see Fig. 4.2). This occurs because triangulation tends to become more complex
as geodesic radius decreases (getting closer to the tip). Hence, for parts of the shape with
growing complexity, it is more efficient to decrease the distance between consecutive sam-
plings (in our case, distance between isorings). It is more efficient to accumulate sampling in
more complex triangulations since we better capture the smaller deviations of the descriptor.
In case we employed linear distribution of samplings, big steps between successive isorings
radii would probably overlook small yet significant triangulation alterations. In Figure 4.2
we present both distributions of multiple vicinities. Worth mentioning that base isorings
CM(xo, ρB) are identical since they define the basis of the outer (base) vicinity discretiza-
tion. A depiction of linear and exponential isoring distribution can also be found in Figure
6.4.

Experiments on varying number of radii and comparison results on exponential over linear
isoring distribution are presented in Section 6.1 and Section 6.2 in respect.
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Figure 4.2: Linear (a) and exponential (b) vicinity discretization.

4.3 Descriptor Score

The quantification of the feature descriptor is not comprised by a scalar but from multiple
values depending on the number of vicinity areas around the central vertex. Hence, each
score in source mesh is compared to its corresponding score on the target mesh. Worth
noting that we normalize each score by dividing by πρ2, which is the expected area of flat
piece of surface. To wit, for central vertex vo and k different radii, feature score is denoted
by the vector:

Ivo = (
1

πρ2
1

ATS (vo, ρ1),
1

πρ2
2

ATS (vo, ρ2), . . . ,
1

πρ2
k

ATS (vo, ρk)) (4.3)

where ρ1...k are the radii in ascending order. Following the normalization step, all com-
ponents of vector descriptor Ivo are inside the range [0, 1]. High number of isorings do not
always guarantee better results since the process can fall into local minima. For instance, for
simple parts of the mesh, same score can be repeated along several isorings (no changes in
area) or yield zero score after reaching a certain point (isorings fall inside a single triangle).

Three-dimensional polygonal area computation

Score computation involves three-dimensional polygonal area calculations. Since the polygon
is not planar, we compute its area by summing the areas of its structural elements on which
a surface normal can be defined (three-dimensional triangles). Thus, we express the area
of the triangle by the magnitude of the cross-product of two edge vectors [20]. Consider
the definition of magnitude of the cross product: |ν × w| = |ν||w||sin(θ)|, where θ is the
angle among the two vectors ν and w. For a three-dimensional triangle τv0,v1,v2 with vertices
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v0, v1, v2, we set ν = v1− v0 and w = v2− v0. The polygon area function α(τv0,v1,v2) (see Eq.
4.1) is thus defined as:

α(τv0,v1,v2) =
1

2
|ν × w| = 1

2
|(v1 − v0)× (v2 − v0)|

= (x1 − x0)(y2 − y0)− (x2 − x0)(y1 − y0),
(4.4)

where vi = (xi, yi, 0) are triangle vertices.
Worth noting that, the aforementioned formula is computationally efficient, since it does

not involve calculations of trigonometric functions or roots.

4.4 Feature Extraction

During feature extraction, we search for the most descriptive features on the mesh , since
this decreases correspondence error during the matching phase. For this reason, we apply
non-maximum suppression on the vicinity defined by CM(xo, ρB).

NMS is interpreted as local maximum search. That is, the solution relies on detecting a
local maximum that is greater than all others in a given neighborhood. It is widely applied
on computer vision algorithms for the extraction of salient points throughout an image, or
even the whole scale space [31][37][60].

Regarding the proposed framework, the neighborhood is determined by the isocurve
CS(vo, ρk) where vo is the central vertex and ρk is the largest of the geodesic radii (i.e. ρB)
k ∈ [1, 2, . . . , k]. We define the vertex with the largest score to be the dominant vertex
denoted by v∗o . The vertices of which the scores are compared for maximality belong to
the set PCS (vo, ρ). Worth noting that, the input base radius ρB in NMS has to be carefully
selected, since it has linear relation with the number of the extracted feature points. To wit,
in extreme cases, matching will consider a single vertex or all vertices (dense map) as feature
point(s).

Worth mentioning that, small ρB does not necessarily implies denser located features (if,
for instance, examine the results for ρB with small difference). This is because, besides the
current vicinity, candidate feature rejection will possibly repeat several times since a points
with higher score will get detected in each vicinity. This will cause the next feature to result
far enough from the previous one (in greater distance than the initial vicinity radius).

In order to accelerate feature extraction process, we added an exclusion algorithm re-
garding NMS. That is, each time a v∗o is detected, all vertices in the vicinity set PCS (v∗o , ρ)
are excluded from the remaining feature extraction process. This extension is crucial for
experiments with complex meshes and large ρB, since a large number of vertices is excluded
from the feature search.

In Figure 4.3 we represent detected feature points along with their scores (interpreted by
the color of each sphere). A detailed comparison is presented in Figure 6.3 in Section 6.1.
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Figure 4.3: Human model in neutral pose along with 45 detected features (colored spheres)
for ρB = 8.580805. Warmer colors indicate higher scores.

feature vertex1 isoring scorek1 isoring scorek−1
1 . . . isoring score1

1

feature vertex2 isoring scorek2 isoring scorek−1
2 . . . isoring score2

1
...

...
...

...
...

feature vertexn isoring scorekn isoring scorek−1
n . . . isoring score1

n

Figure 4.4: Feature list representation along with the corresponding isoring scores. Where
n is the number of extracted features and k is the total number of isorings.

4.5 Feature Computation Algorithm

This section provides the algorithmic representation of feature extraction and multiple-ring
score computation (see Alg. 1). For a depiction of the result Lvica , refer to Figure 4.4.
This involves the first part of the proposed framework since it does not include any of the
subsequent matching procedures (see Chap. 5).
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Algorithm 1: Feature Extraction and Multiple-Ring Score Computation

Input: mesh mv,f where v vertices and f faces ∈ mv,f ,
max propagation distance dmax,
number of isorings R
Output: list of feature vertices with the corresponding ring scores Lfeatν,arng

1 mapmv,f
←MapV erticesToFaces(mv,f )

2 Lvicν , Lvica ← ComputeDescriptorScore(L
mv,f
ν , dmax)

/* entering NMS */

3 foreach vcurr ∈ mv,f do
4 isfeature← true
5 foreach vvic ∈ Lvicν (vcurr) do
6 if Lvica (vvic) > Lvica (vcurr) then
7 isfeature← false

8 if isfeature = true then
/* exclude vertices in Lvicν (vcurr) from NMS search */

9 ExcludeNms(Lvicν (vcurr))
/* list including feature points and ring scores (base ring for

now) */

10 Lfeatν,ar ←< ucurr, Lvica (vcurr) >
/* compute scores for inner rings */

11 for r = R + 1 to 1 do
12 ρr ← InnerRingGeodesicRadius(r, dmax)
13 ar ← ComputeDescriptorScore(Lvicν (vcurr), ρr)

14 Lfeatν,arng ← ar

15 return Lfeatν,arng

/* input arguments:a list of vertices and a propagation distance */

1 Function ComputeDescriptorScore(Lv, d)
2 foreach v ∈ Lv do

/* store vetrices in the list Lvicν (v) */

3 Lvicν (v)← StoreV erticesInV icinity(v, d)
4 Lvicf (v)← StoreFacesInV icinity(mapmv,f

, Lvicν (v))

5 area← SumArea(Lvicf (v))

/* list including vicinity area for all vertices of the mesh */

6 Lvica (v)← Normalize(area)

7 return Lvicν , Lvica
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Chapter 5

Isometry-Invariant Matching

In this chapter we present the method of incorporating spectral matching [29] introduced
in Chapter 3.3 in order to facilitate the near-isometric mesh matching framework (first
eigenvector computation through iterative power method and double stochastic conversion
step implementation can be found in [13]). Since spectral matching can be used for point
registration in Rd, we employ it in order to match two set of points defined on a pair of 2-
manifolds. That is, we represent the points as graph nodes and their distances as graph edges.
Thus, feature correspondence problem is reduced to solving the bipartite graph matching
problem.

Let two sets of points S = {xi}n1

i=1 and T = {yi}n2

i=1′ in R3 be the sets of extracted feature
points from source and target meshes in respect. The solution to the assignment problem
relies on acquiring the set of assignments described as

C := {ci,i′}ni=1 = {xi, yi′}ni=1, (5.1)

where n ≤ min(n1, n2). The correspondences (candidate assignments) are represented by
the binary vector z ∈ {0, 1}n1n2 which is the row-wise reformation of the assignment matrix
Z ∈ {0, 1}n1×n2 such that Zii′ = 1 iff xi corresponds to yi′ and Zii′ = 0 iff xi does not match
with any yi′ .

Worth noting that, candidate assignments are a superset of the solution assignments C.
Hence, we define the set of candidate assignments Cc and we extend the range of occurrences
such that Cc ⊇ C and

Cc = {ci,i′}n1n2

i=1 (5.2)

Considering the sets S and T , we denote the m-order affinity measure Ωm, as the measure
that quantifies the matching of m pairs of points. To wit:

Ωm = Ωm(ci1 , . . . , cim) = Ωm(i1, . . . , im) = Ωm({xi1 , yi′1}, . . . , {xim , yi′m}) (5.3)

where is ∈ {i1, i2, . . . , im−1, im} is the index of each pair of points (equivalently symbolized
by consecutive lowercase letters similar to {i, j, k, . . . }). By incorporating spectral matching,
we combine first-order affinities Ω1 (vertex-to-vertex) and second-order affinities Ω2(vertex
pair-to-vertex pair) into a single solution.
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5.1 Linear Assignment Affinity

Linear assignment affinity matrix describes the matching affinity among features of the two
shapes. That is, for extracted feature points xi ∈ S and y′i ∈ T equipped with arbitrary
number of rings, affinity is expressed as the sum of squared differences (SSD) for each ring
in a Gaussian function such that

Ω1(xi, yi′) = exp
(
− 1

2σ1
2

R∑
k

(Ixi(k)− Iyi′ (k))2
)

(5.4)

where k denotes the index of each ring, R the total number of rings and Ivo(k) the score of
the k-th ring corresponding to the feature defined on vertex vo (see Eq. 4.3). Furthermore,
σ1 denotes the standard deviation (sd1) and is interpreted as the tolerance referring to the
difference of feature point scores.

Hence, the Gaussian weighted affinity matrix is defined as

Ali,i′ = Ω1(xi, yi′) = Ω1(ci,i′), ci,i′ ∈ Cc (5.5)

The optimal linear assignment is given by

z∗ = arg max
z

(zTa), z∗ ∈ {0, 1}

s.t. Z∗1 ≤ 1 and (Z∗)T1 ≤ 1
(5.6)

where 1 is the all-ones vector, a ∈ Rn1n2 a row-wise reformation of Al and Z∗ ∈ {0, 1} ∈
Rn1×n2 a row-wise reformation of z∗.

The constraints condition in Equation 5.6 suggests that in case a row of Z∗ includes
more than a single binary one, the binary vector z∗ would include values larger than 1. This
implies that, only a point xi ∈ S can be matched with a point y′i ∈ T or not matched at all.

The solution to Equation 5.6 can be computed using the Hungarian algorithm in polyno-
mial time [41], binary linear programming [42] or approximated by Dynamic Programming
[14].

5.2 Pairwise Affinity

Pairwise affinities Ω2 measure the simultaneous matching of two assignments ci,i′ and cj,j′ .
An important property is that they can capture local isometry of the shape. Hence, second-
order affinities are expressed by the Gaussian function:

Ω2({xi, yi′}, {xj, yj′}) = exp
(
− 1

2σ2
2
(Dxi,xj −Dyi′ ,yj′

)
2
)

(5.7)

where Dij is the geodesic distance among (i, j) (see Sec. 4.1) and σ2 the standard deviation
(sd2) expressing the tolerance regarding the difference among the two geodesic distances.
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Similarly to Equation 5.5, the Gaussian weighted second order affinity matrix is given by

Ap(i(n2 − 1) + i′, j(n2 − 1) + j′) = Ω2(ci,i′ , cj,j′) (5.8)

In addition, the solution is given by the assignment that maximizes the sum of the corre-
sponding pairwise affinities

C∗ = arg max
C

∑
C

Ω2(ci,i′ , cj,j′), cj,j′ , ci,i′ ∈ Cc (5.9)

This, implies the following optimization problem:

z∗ = arg max
z

(zTApz), z∗ ∈ {0, 1}n1n2

s.t. Z∗1 ≤ 1 and (Z∗)T1 ≤ 1
(5.10)

where z is the binary row-wise vector and Z the indicator matrix (see Eq. 5.6) and Ap ∈
Rn1n2×n1n2 .

5.3 Combinatorial Affinity Matrix

Motivated from the adjacency matrix Leordeanu and Hebert presented [29], we combine
linear assignment and pairwise affinities introduced previously into a signle matrix. We
define the combinatorial affinity matrix Ac based on Al and Ap such that Ac ∈ Rn1n2×n1n2 .

Given two candidate assignments of model features ci = {xi, yi′}, cj = {xj, yj′}, Ac rep-
resents the affinity level of individual assignments if ci = cj and the affinity level of pairwise
correspondences if ci 6= cj. Since pairwise affinity for identical pairs can be interpreted as
point-wise affinity, diag(Ap) is replaced by a ∈ Rn1n2 (vectorized form of Al) in order to
construct Ac. Specifically

Aci,j|i′,j′ =

{
Ali,i′ = Ω1(ci,i′) if Aci,j|i′,j′ ∈ diag(Aci,j|i′,j′)

Api,j|i′,j′ = Ω2(ci,i′ , cj,j′) if Aci,j|i′,j′ /∈ diag(Aci,j|i′,j′)
(5.11)

Similarly to Section 3.3 and 5.2, the acquired binary vector solution z∗ is represented as

z∗ = arg max
z

(zTAcz) (5.12)

Since our framework demands one-to-one feature correspondences, solution z∗ must follow
a post-processing quantization that imposes these mapping constraints (see end of Sec. 3.3).

The first solution implies the use of Hungarian algorithm [41] as implemented in [24].
That is, it calculates the discrete solution z∗ that maximizes the dot product with the
eigenvetor ν, where ν is the principal eigenvector of Ac (see Eq. 5.12). That is:

z∗ = arg max
z

(zTν) (5.13)

Concerning the second solution, we follow the Greedy algorithm Leordeanu et al pro-
posed, summarized in the following steps:
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Ac =



Ω1(c1,1) Ω2(c1,1, c1,2) · · · Ω2(c1,1, cn1,n2)
Ω2(c1,2, c1,1) Ω1(c1,2) · · · Ω2(c1,2, cn1,n2)

...
...

...
...

Ω2(c1,n2 , c1,1) Ω2(c1,n2 , c1,2) · · · Ω2(c1,n2 , cn1,n2)
Ω2(cn1,1, c1,1) Ω2(cn1,1, c1,2) · · · Ω2(cn1,1, cn1,n2)

...
...

...
...

Ω2(cn1,n2 , c1,1) Ω2(cn1,n2 , c1,2) · · · Ω1(cn1,n2)


Figure 5.1: Depiction of the combinatorial affinity matrix Ac including first-order Ω1 and
second-order Ω2 affinities.

1. Let z∗ be the leading eigenvector of Ac. Initialize the solution vector z with n1n2 × 1
zero vector. Initialize a set L as the set of all candidate correspondences (i, i′).

2. Compute (i, i′)∗ = arg maxi,i′∈L z
∗
i,i′ . If z∗i,i′ = 0, stop and return the solution z. Other-

wise set zi,i′ = 1 and remove (i, i′)∗ from L.

3. Remove all candidate correspondences in conflict with (i, i′)∗.

4. If L is empty return z as solution. Otherwise go to step 3.

Both algorithms were applied in our framework and the results are presented in Chapter 6.
Considering the definition of Cc (see Eq. 5.2), a representation of the combinatorial

affinity matrix Ac can be found in Figure 5.1.

5.4 Correspondence Vector and Matching Error

The resulting binary vector from Section 5.3 is reformed to the fundamental solution repre-
sentation, called correspondence vector. Correspondence vector is a |c| × 2 vector indicating
the derived pairs of corresponding vertices from source to target shape, where |c| is the
number of correspondences. This vector is not only employed during the matching error
calculation but also for the depiction of the result.

We define matching error e as the sum of deviations of matches from ground truth,
divided by the number of correspondences. Match deviation is considered as the geodesic
distance of the vertex i′ from the exemplar vertex i′G on the target shape (see Fig. 5.2).
Specifically:

e =
1

|c|
∑
i

eii′ =
1

|c|
∑
i

dg(i
′, i′G) (5.14)

Worth noting that, e ∈ [0, LTmax], where LTmax is the longest geodesic path on target shape.
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eii′
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i′G

S T
Figure 5.2: Representation of matching error calculation for a single correspondence between
source and target shape.

5.5 Matching Computation Algorithm

The following algorithm describes the second phase of the matching framework. To wit,
having computed feature descriptors for both shapes, it calculates the correspondence vector
and matching error and depicts the result.

Algorithm 2: Correspondence vector computation

Input: source mesh m,
target mesh m′,
m feature vertices with the corresponding ring scores, Lfeatν,arng ,

m′ feature vertices with the corresponding ring scores, Lfeatν,arng

′
,

comparison tolerance of feature descriptor scores σ1,
comparison tolerance among geodesic distances σ2

Output: correspondence vector Hungarian corrvh,
correspondence vector Greedy corrvg,
correspondence error Hungarian errh,
correspondence error Greedy errg
/* geodesic distances among feature points */

1 A2 ← ComputeSecondOrderAffinityArray()
/* combinatorial affinity matrix */

2 Ac ← ComputeCombinatorialAffinityArray(Lfeatν,arng , L
feat
ν,arng

′
, σ1, σ2, A

2)
/* entering spectral matching, binary vector */

3 binvh, binvg ← SpectralHandler(Ac, Lfeatν,arng , L
feat
ν,arng

′
)

4 corrvh, corrvg ← CorrespondencesF irstSecondOrder(binvh, binvg, L
feat
ν,arng , L

feat
ν,arng

′
)

5 errh, errg ← CalculateError(corrvh, corrvg)
6 V isualizeCorrespondences(m,m′, corrvh, corrvg)
7 return corrvh, corrvg, errh, errg
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Chapter 6

Results and Analysis

Experiments include a variety of benchmark models involving feature point extraction,
matching error and performance measurements. To wit, we test the behaviour of the pro-
posed framework for multiple variable combinations as well as additional special features.
We proceed with the comparison to existing internal functions (processes focused to solve
a specific part of the algorithm) and state-of-the-art shape matching methods. Framework
evaluations were held using meshes from the standard TOSCA [57] data set. The data set
includes synthetic triangle meshes of approximately 50,000 vertices. Matching experiments
refer to pairs of meshes purposely selected to represent intense deformations with each pair
falling into a single model class (i.e. no tests between cats and dogs). Furthermore, we
simplify the input meshes using Quadric Edge Collapse Decimation [61] filter for efficiency
reasons. That is, both source and target meshes have a minimum point spacing of 0.8 . . . 0.1%
of the longest bounding box size. Platform specifications are Intel i7-2630QM 2,00 GHz and
6 GB DDR3 RAM. Implementation involves C++ (with extensive use of C++11 features) and
MATLAB 8.1 R2013a (for details refer to Sec. 8).

We firstly deal with benchmarks concerning the proposed local descriptor and then the
shape matching part follows. A separate subsection is dedicated on each experiment. We
initially provide statements of observations, including statistics, tables and graphs. Then,
the interpretation of the outcome follows, pointing out the relationships, trends and gener-
alizations among the results.

6.1 Local Signature

This section describes the benchmarks and examines the results regarding the proposed
descriptor.
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Descriptor Score Distribution

This benchmark presents the behaviour of the proposed area descriptor regarding different
base radii. Figure 6.2 depicts how local signature scores (1-isoring case) spread over the
shape or accumulate to specific locations.

Smaller base radii ρB imply scores scattered around various values. To wit, they indicate
a great number of locations that present higher scores (comparing to the rest of scores on
the current mesh). This is expressed by the large variety of colors over the mesh (see Fig.
6.2(a)). Hence, the framework is responsive to salient points with small deviations from
other scores on the shape. The descriptor exposes more details but feature detection is
intolerant to imperfect isometries. Performance issues have to be also considered, since, as
ρB decreases, number of feature points increase along with candidate correspondences. This
implies unmanageable affinity matrices (size complexity equals to n1n2 × n1n2, where n1, n2

are the extracted feature points on source and target shape) that can be only be handled by
high-end systems.

On the contrary, larger ρB produce scores gathered around certain values. Use of large
ρB makes the method tolerant to the error that near-isometric changes present, because
infinitesimal alternations are “flattened” during descriptor quantification. Hence, salient
points are sorted out from minor changes of the triangulation. Worth mentioning that,
because of the “smoothing” nature of the proposed descriptor for large base radii, surface
properties substantial for establishing a successful matching, are likely to be ignored.

The fact that the area descriptor is not a point descriptor, makes it a signature of multiple
purposes. To wit, as showed in Figure 6.2, it “mutates” depending on the circumstances (i.e.
base radius), thus exposing different surface properties.

Plots in Figure 6.1 demonstrate the dispersion of the descriptor scores for the basic case
of single-isoring descriptor. The term max propagation refers to the geodesic radius of the
outer isoring, CM(xo, ρB). It denotes the propagation limit of the geodesic function (starting
from a central vertex). The graph shows that variety of scores increases with the increase
of max propagation. In order to increase the validity of statistical dispersion measurements,
we apply interquartile range or interdecile range (iqr). In contrast to variance, standard
deviation and mean absolute deviation, iqr is robust to outliers (for details refer to [36]).
Generally, score dispersion demonstrates an increasing monotony, as expected. Any observed
dispersion decrease is due to triangulation abnormalities and low triangulation density in
specific regions of the surface.

In conclusion, optimal base radius depends on multiple factors some of which are curva-
ture, triangulation density and hardware limitations. In Section 6.2 we investigate matching
error for varying ρB in combination with several framework variables. It can be seen that area
accumulation differs from other intrinsic point properties (e.g. Gaussian curvature). One of
the main reasons is that the proposed local signature is not a point but an adjustable-vicinity
descriptor. Worth noting that, mesh coloring refers to each of the three shapes individu-
ally, thus meaning that same colors do not necessarily indicate identical scores (among two
meshes). That is, they denote intra-shape and not inter-shape variations.
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Figure 6.1: Dispersion of feature scores (interquartile range) to maximum propagation (ρB)
for human (a), cat (b), dog (c) and centaur (d) models.

Non Maximum Suppression and Detected Features

This benchmark analyzes the placements and descriptor scores of features for different base
radii (see Fig. 6.3). It can bee seen that, due to NMS, while base radius ρB grows larger,
the number of detected features decreases and they generally become more sparsely located.
In addition, along with the increase of ρB, feature scores increase since candidate features
enclose larger regions of the mesh. Although higher feature scores reveal high concentration
of triangles around a vertex, this does not necessarily enhances the subsequent matching.
To wit, it declares the local distinctiveness of the descriptor regarding its vicinity. Worth
mentioning that, as features get more sparse, pairwise feature distance tolerance contributes
more to the final matching. This is because it decreases ambiguities during correspondences
establishment. Besides the fact that the demonstrated monotonic relation applies in general
(no specific value dependence), in this case, selected max propagation range is the same
applied in matching benchmarks (thoroughly justified in Section 6.2).
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(a) ρB = 8.4468 (b) ρB = 10.0894 (c) ρB = 15.0171

Figure 6.2: Color descriptor score representation for three different ρB. Warmer colors
indicate higher scores. Descriptor scores become more evenly distributed as ρB decreases.

Exponential Isoring Distribution

In this paragraph, we explain the advantages of using exponential over linear isoring distribu-
tion when employing vector descriptor. Outcome witnesses that it is more efficient to place
the borders of area vicinities around the central vertex according to exponential decrease of
geodesic radius.

Figure 6.4 shows the covered vicinity area for each of the isorings for both linear and
exponential isoring distribution. Geodesic radius reduction starts based on the radius of
the outer isoring (note the identical ρB in Figure 6.4(a)(b)). Specifically, it is observed
that captured details between the smallest and the subsequent isoring (i.e. CM(xo, ρ1) and
CM(xo, ρ2)) regarding the elephant’s eye, are lost in linear radius increase case. In addition, it
is showed that, the majority of inner vicinities in Figure 6.4(a) cover areas with no significant
changes among them. thus almost “repeating” the captured information. On the other hand,
in figure 6.4(b) inner vicinities consider areas with noticeable shape alternations. Hence, the
uniqueness of the descriptor is enhanced. In this example (see Fig. 6.4), base radius is
enlarged for demonstration reasons.

In Section 6.2 we provide matching error comparison data for linear and exponential
multiple inner isorings distribution. We furthermore examine vector descriptor behaviour
for different number of inner isorings.
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(a) (b) (c)

(d) (e) (f)

(g) Scores: low (dark blue) to high (dark red).

Figure 6.3: Detected features f for different base radii ρB on human model. Front and back
captures for f = 45, ρB = 8.580805 (a)(d), f = 34, ρB = 9.871207 (b)(e) and f = 19, ρB =
11.16161 (c)(f). As sphere color gets warmer, descriptor score increases.
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(a) linear decrease of base radius.

(b) exponential decrease of base radius.

Figure 6.4: Vector descriptor propagation areas for linear (a) and exponential (b) decrease
of ρB (6-element descriptor).
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6.2 Shape Matching

Along this section we analyze the experiments referring to shape matching and provide
comparisons to existing methods.

4D Scatterplots

The main synthetic benchmark, includes pairs of four-dimensional scatterplot for each pair
of meshes (see Fig. 6.5). Each of the three dimensions, max propagation, sd1 and sd2 denote
the selected base radius ρB, the standard deviation for the descriptor score and the standard
deviation among the pairwise geodesic distances. Strictly speaking, the two standard devia-
tions represent the tolerance of the first and second-order affinities in respect. Color, denotes
the fourth dimension and expresses the matching error. We choose to represent matching
error not as a dimension in space, in order to emphasize the goal of the experiment. Pairs
of plots visualize the results for the two primary internal spectral matching models, that is,
Hungarian and Greedy. Every plot includes 93 = 729 matchings induced by 9 consecutive
values of each variable. During the tests we consider the basic case of 1-isoring descriptor
(scalar descriptor). We analyze multi-isoring descriptor results based on the best scatterplot
matchings in Section 6.2. Base radius limits are selected in order to extract an adequate
number of feature points while respecting hardware capabilities. Let lmax be the average
longest edge for source and target shape and Lmax the average longest path on the mesh
(referring to same-class mesh pair). Using base radii among lmax and 2× lmax, we keep the
number of detected feature points among ∼ 20 and ∼ 44 (resulting correspondences are
equal to the minimum number of feature points from the two shapes). Keeping in mind that
70 × 75 candidate correspondences can produce a ∼ 3.5 GB affinity matrix file, we avoid
gigabytes-sized combinatorial affinity matrices. Tolerance of area descriptor magnitude is
restricted inside [0.1, 0.9] in contrast to the expected [0, 1]. Furthermore, standard deviation
among pairwise geodesic distances, ranges from lmax to Lmax/8 contrary to the generalized
[0, Lmax]. Range and discretization of values is selected in order to, not only focus on the
most interesting spectrum of the experiment but to deliver an adequate collection of match-
ings. This four-dimensional scatterplot enhances our macroscopic view on the inter-relations
of the matching error and the fundamental framework variables. The best match is selected
for each model pair and used as the exemplary variable combination for the subsequent
experiments. Matching error is measured as in Section 5.4.

It can be argued that smallest errors occur during the use of small max propagation
values since many feature points yield larger number of candidate correspondences. On the
other hand, optimal matchings can emerge for large ρB. This is because fewer feature points
are more stable (explicitly located), thus improving matching success. It is observed that,
regarding max propagation, optimal results are detected for values of 5 . . . 6% of the average
longest geodesic path Lmax.

In addition, for fixed max propagation and sd2, changes of sd1 have small influence on
the resulting error. To wit, results (over z-axis) remain nearly unchanged regardless the
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value of sd1. A conjecture on this observation is that descriptor score differences present
smaller variance comparing to the pairwise geodesic distance differences (see Fig. 6.1). It is
possible that if we change the scope of sd1 to 0 . . . 0.1 and decrease ρB enough to produce
dense correspondences, different results will emerge. On the other hand, changes in pairwise
geodesic distance of features sd2 (over y-axis) have a strong influence on the outcome. This
witnesses the significant contribution of second-order affinities. This significance is also
enhanced by the fact that, for different max propagation ρB, feature points are located on
slightly altered locations on source and target shape and not on “corresponding” placements
as expected (corresponding vicinities change due to imperfect isometry preservation). Thus,
relations among pairwise geodesic distances are vital for the proposed framework.

In Table 6.1 we demonstrate the optimal combination of matching parameters along
with the minimum achieved matching error. Furthermore we provide the number of fea-
ture points on shape pairs as well as performance data. Tests on multiple isorings were
held having interim conclusion regarding the optimal ρB, sd1 and sd2. Worth mentioning
that, computation costs are almost dedicated to feature extraction rather than matching
procedure. Although Hungarian spectral matching is expected to prevail as a combinatorial
optimization algorithm, Greedy scheme suits better to dog and centaur experiments.

Three-dimensional model illustrations of top matches for the considered 4 shape classes
can be found at the end of the chapter (see Fig. 6.9).

model ρB |r| sd1 sd2 |fS| |fT | eH eG tf tm

human 10.5164 9 0.1 25.326 25 23 33.036 50.991 225.31 3.12
cat 10.6839 1 0.1 6.8824 33 29 33.973 34.862 256.15 3.48
dog 9.13885 1 0.8 10.43 35 33 36.962 36.031 175.02 2.25

centaur 17.3755 1 0.1 10.187 23 20 39.644 38.964 515.49 3.55

Table 6.1: Summarized optimal matching parameters and statistics for different model pairs.
Base radius is indicated by ρB and |fS|, |fT | are the detected feature points for the source
and target shape respectively. eH and eG denote matching error for Hungarian and Greedy
spectral matching scheme and tf , tm are execution times (seconds) of features extraction and
matching processes in respect.
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(a) Michael - Hungarian matching (b) Michael - Greedy matching

(c) Cat - Hungarian matching (d) Cat - Greedy matching
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(e) Dog - Hungarian matching (f) Dog - Greedy matching

(g) Centaur - Hungarian matching (h) Centaur - Greedy matching

Figure 6.5: Four-dimensional diagram represents the relation between max propagation (x-
axis), area descriptor standard deviation comparison (z-axis), geodesic distance standard
deviation comparison (y-axis) and matching error (color). Depicted experiments include
human (a)(b), cat (c)(d), dog (e)(f) and centaur (g)(h) models over spectral matching (Hun-
garian/Greedy).
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Multi-isoring Vector Descriptor

In the majority of the experiments, vector descriptor exposes equal or worse results compar-
ing to the single-isoring case. Nevertheless, tests on the human model pair proved advan-
tageous for multiple isorings local signature (see Fig. 6.6). This is sufficient to argue that
vector descriptor extension enhances the results of the framework. It is observed that the
relationship between error decrease and number of inner isorings is not linear or not fully
predictable and mostly relies on the triangulation.

Regarding vector descriptor benchmarks, we examined cases ranging from 1 to 9 vec-
tor descriptor propagation limits. Table 6.2 presents matching error results for 9 isorings
following linear and exponential approach for both Greedy and Hungarian matching inter-
nal functions. Besides the fact that exponential case is the best approach, Greedy method
presents a noticeable behaviour. To wit, it is observed that error slightly decreases in linear
method, something that relies on the fact that the algorithm makes definitive decisions at
each stage without reconsidering the result in the future.

model rD |r| eH eG

human
lin.

9
34.708 49.64

exp. 33.036 50.991

Table 6.2: Error results for linear and exponential multiple inner isorings distribution. Inner
isorings denote the vector descriptor borders. Inner isoring distribution is indicated by rD and
isorings number is |r|. eH and eG denote matching error for Hungarian and Greedy spectral
matching scheme. Although Greedy matching error is smaller in linear distribution than in
exponential, exponential still presents the smallest error for both Greedy and Hungarian.

1 2 3 4 5 6 7 8 9
33.0369
33.4367

34.1296
34.4159

35.5086
35.7549

|r|

e

Figure 6.6: Matching error for different number of isorings per descriptor (Hungarian
method). It is observed that use of multiple isorings decreases the matching error (from
|r| = 1, e = 33.4367 to |r| = 9, e = 33.0369). This plot refers to the human model.
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Exact Geodesic and Fast Marching Functions

Table 6.3 demonstrates computation times and error matching results for exact geodesic [26]
and fast marching [28] algorithm. Although [26] presents slightly better results as an exact
geodesic computation algorithm (high accuracy is achieved by defining 1e100 additional
vertices on every edge of the mesh), we prefer fast marching because of its lower complexity
advantage (O(n log2 n) and O(n log n) in respect). Complexity difference impact is also
proved in practice, considering that descriptor scores have to be computed for all vertices
of the mesh before detecting the dominant points. We only consider minimum times for
feature detection since performance influence on matching phase is comparably insignificant.
Worth mentioning that, as geodesic distances slightly vary among the two schemes, resulting
feature points are not always identically placed.

In case performance is not of prime priority, [26] suits better for dense triangulations
and small base radii (i.e. high number of feature points). In that case, small deviations
among descriptor scores that otherwise would be negligible, are crucial during both feature
detection and shape matching phase.

model method tm emin

human
[Kap99] 360.01 32.991
[Kim98] 225.31 33.036

cat
[Kap99] 362.11 33.882
[Kim98] 256.15 33.973

dog
[Kap99] 248.32 35.921
[Kim98] 175.02 36.031

centaur
[Kap99] 752.24 38.465
[Kim98] 515.49 38.964

Table 6.3: Results for the use of exact geodesic [26] and fast marching method [28] for
geodesic distances computation. tm is execution time (seconds) of features extraction and
emin is the smallest error between eH and eG. Matching error difference is relatively small
comparing to the increased computation costs of [26].

Single-Order versus Double-Order Affinities

Figure 6.7 illustrates matching results involving the use of first order and combined first and
second-order affinities. Employment of Greedy scheme is disadvantageous for both Ω1 and
Ω1Ω2 cases. Although feature points (local maxima) are detected on corresponding locations
(something that proves that the proposed descriptor is isometry invariant), deviations among
feature scores do not allow for an exclusive use of first-order affinities Ω1. The outcome also
aims to indicate the vital contribution of second-order affinities in the framework. Illustration
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results do not witness an acceptable matching for explicit Ω1 application although they are
distant from the worst case of emax = 206.95 (see Tab. 6.4).

(a) Ω1, eH = 129.972 (b) Ω1Ω2, eH = 33.973 (c) Ω1, eG = 138.281 (d) Ω1Ω2, eG = 34.862

Figure 6.7: Example of cat model matching using first-order affinities (a)(c) and both first
and second-order affinities (b)(d) for Hungarian and Greedy spectral matching. Large match-
ing deviations are observed at the front paws and tail of the cat.

Internal Spectral Matching Functions

We introduce two diagram groups referring to the relations of the two internal matching
functions (see Fig. 6.8). The first group depicts the normalized matching error to the
percentage of top matches. The second one illustrates Hungarian-Greedy error difference to
the respective number of correspondences. Regarding the first class of plots, matching error
is normalized by dividing the correspondence vector error (vector including the error of each
correspondence) with its 2− norm before sorting and summing up error in ascending order.
To wit, corr vector error normalized = corr vector error/norm(corr vector error), where
norm is the 2− norm of a vector.

It is observed that, depending on the percentage of top correspondences, different conclu-
sions are made on each internal matching scheme. In general, deviation between Hungarian
and Greedy grows larger (up to a point) as the percentage of top correspondences increases.
This is because Greedy method makes definite decisions at each step in contrast to Hungar-
ian.

Generally, gradient in the first group of diagrams (see Fig. 6.8 (a)(c)(e)(g)) is explained
as “the quality of current correspondence” since it witnesses the contribution of the current
match to the total error. As top correspondences reach their full percentage, a steep error
increase in noticed. This is a consequence of the remaining less interesting feature points that
the algorithm is “forced” to match. Hence, this point is interpreted as the start of insignif-
icant correspondences and denotes an automatic fraction of best coarse correspondences to
keep.
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State-of-the-art Shape Matching Methods Comparison

The following table (see Tab. 6.4) demonstrates comparison statistics between the proposed
mesh matching framework and two state-of-the-art methods, that is, Blended Intrinsic Maps
[27] and Möbius Voting [30].

Concerning basic parametrization in Blended Intrinsic Maps, we use 256 samples, a
parameter that approximates confidence and similarity of matches. Furthermore, for Möbius
Voting we consider 100 samples and 105 votes (votes are used in the prediction of successful
matches). For details on the parameters please refer to [27] and [30] in respect.

In the case of [27], we compute dense (d) as well as sparse correspondences (s). As
regards to sparse correspondences, in order to keep the comparison unbiased, we retain
only the vertices (from the dense result) that are respectively denoted as feature points in
the area descriptor framework (on the source shape) and then compute the error. Hence,
sparse correspondences of [27] are equal to the number of correspondences of the proposed
framework. The method in [30] presents its correspondences explicitly, thus we do not
interfere on the selection of featured points.

Error calculation for both the existing methods as well as ours, is held as explained in
Section 5.4 (each of the tests considers the respective number of correspondences).

Although our algorithm presents the highest matching error, there are two points worth
noting: First, we consider smaller number of candidate correspondences (mainly due to
hardware limitations), something that is frequently more “punitive” regarding the matching
outcome. Second, taking into consideration the error extrema 0 . . . emax, our framework
presents error that falls into 13 . . . 21.3% of the lowest part of the error range. By comparing
it to the corresponding 7.7 . . . 13.5% of [27] and [30], the general outcome becomes very
promising.

model |c|(B(d,s),M,A) BlendedM(d,s) [27] Möbius [30] AreaDesc emax

human 6615 23 58 23 22.363 17.121 28.727 33.036 224.07
cat 7002 29 58 29 24.836 28.44 29.026 33.973 206.95
dog 6342 33 58 33 24.491 28.024 22.776 36.031 169.064

centaur 7885 20 98 20 21.003 21.639 27.073 38.964 282.599

Table 6.4: Comparison with existing shape matching methods. |c|(B(d,s),M,A) denotes
the number of established correspondences for Blended Intrinsic Maps (dense, sparse) [27],
Möbius Voting [30] and the proposed area descriptor. Number after double horizontal lines
indicate error values. emax denotes the maximum possible error which is equal to the longest
path on the target shape.
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Figure 6.8: Diagram pairs including normalized matching error to percentage of top match-
ings and Hungarian-Greedy spectral matching error difference to number of correspondences
respectively. Plots refer to human (a)(b), cat (c)(d), dog (e)(f) and centaur (g)(h) models.
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(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Figure 6.9: Best matching results for human (a)(b), cat (c)(d), dog (e)(f) and centaur (g)(h)
models. Experiments also considered different numbers of inner isorings. Feature points are
rendered as spheres. Points that are in correspondence have same color and are connected
by a line.



41

Chapter 7

Epilogue

This chapter provides a summary of the problem and points out the main findings. Next,
limitations are denoted along with proposals of directions that further research should go.

7.1 Conclusions

In this thesis, we introduce a framework for isometry invariant shape matching. We primarily
focus on detecting isometry maps between shapes aiming to derive a robust and efficient
method that can be applied in practice.

Initially, we compute a set of characteristic feature points on both shapes based on the
area descriptor. Next, we seek the optimal combination of correspondences such that feature
scores and the pairwise geodesic distances among all equivalent pairs of feature points are
retained. This procedure is assigned to a graph matching scheme called spectral matching.
We includ benchmarks exclusively dedicated to the area descriptor followed by tests on the
matching framework.

One of the main contributions of this thesis was the proposal of the vicinity area descriptor
(inspired by [54] and [64]) and the fact that is an isometry invariant local signature. Its
adaptable referring vicinity, exposes various surface properties making it a multi-scale and a
multi-pupose descriptor. In addition, we showed that, although easy to conceive, our method
presents results that decently stand against state-of-the-art shape matching algorithms.

7.2 Limitations

Regarding limitations, our framework takes for granted geometry of known, consistent topol-
ogy. As showed, we used synthetic meshes for our experiments assuming the absence of
measurement holes. Hence, there are issues to resolve before applying the method to real-
world scanner data (this also refers to future work). Moreover, area descriptor is “partially”
scale-invariant. To wit, although we include a descriptor score normalization step (division
of score with the respective flat disc area), scale factor of one of the shapes has to be known.
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Hence, we can adapt the magnitude of the geodesic base radius accordingly. Furthermore,
matching process is hardware-depended. Memory requirements as well as running times rise
rapidly in the case of dense correspondences establishment. In addition, concerning large
base radii or simple triangulations, feature points are not only sparse but likely to occur in
inconsistent locations. This preconceives the process to an improper matching. Lastly, al-
though the descriptor is isometry invariant, deviations on future scores imply that, exclusive
use of first-order affinities is not capable of carrying out acceptable results.

7.3 Future Work

Various future extensions exist referring to several stages of the proposed framework. They
concern both the quality of the result as well as performance enhancements.

In relation to geodesic computation, the algorithm of Mart́ınez et al. [34] comprises an
interesting extension of the fast marching method. That is, it improves geodesic approxima-
tion through an iterative process and runs in similar speed.

In our framework, standard deviation in the case of vector descriptor is indicated by
a scalar. This number is chosen based on the score of the base radius. Results would be
improved in case we applied a “tailored” tolerance regarding each isoring score, that is,
multiple standard deviations.

An extension worth testing is to replace -the commonly used geodesic distance- second
order affinity. To wit, a pairwise vector descriptor based on 2-dimensional LaplaceBeltrami
operator [25] on each point of the curve would increase the saliency of candidate correspon-
dences.

Efficient Non-Maximum Suppression [43] can be used during feature detection. In con-
trast to the regular NMS, it remains unaffected from the neighborhood size and drastically
minimizes the number of internal comparisons.

We are optimistic that, future tests on improved hardware would reduce matching error.
To wit, it would be possible to handle larger numbers of candidate correspondences and
operate on denser triangulations.

Furthermore, a challenging enhancement is to establish a method that automatically
indicates the optimal base radius for the matching. Hence, tests on a range of maximum
propagations is avoided. Moreover, by detecting a feature set emerging from a diversity of
local maxima (base radii), would capture more interesting aspects of the surface. Another
challenging problem for future work is to provide a theoretical justification concerning the
stability of the framework under near-isometries. Is there any threshold for the used standard
deviations? Which is the isometry error threshold that area descriptor fails to provide a
decent map? How about matching shapes in different classes? We think it is also interesting
to study the proposed framework in the context of self-similarities. Thus, the algorithm
applications would broaden to symmetry detection and semantic shape segmentation.
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Chapter 8

Implementation

In the following subsections, we provide several noteworthy implementation approaches. The
proposed shape matching framework spreads over ∼ 3, 700 lines of C++11 and MATLAB code
(excluding existing functions/methods). For execution instructions, please refer to Usage.txt.

8.1 Storing Distance Map

We integrate MATLAB API in C++ in order to handle .mat files (extension containing
MATLAB code). The first reason is that, reading .mat files through MATLAB API takes
milliseconds instead of reading text-based files in C++. Secondly, the developed framework
shares code between MATLAB and C++. In addition, vector::assign instruction assigns new
contents to the vector, replacing its current contents being incomparably faster than the
traditional vector::push back approach. This integration allows us to execute the code as a
single program and without having to run separate codes manually.

...
#include ”mat.h”

void DistanceMapStorage::DistanceMapMatRead(const char∗ file, vector<double>& v){
// open .mat file
MATFile ∗pmat = matOpen(file, ”r”);
if (!pmat) return;
// extract the specified variable
mxArray ∗arr = matGetVariable(pmat, ”DMAP”);
if (arr && mxIsDouble(arr) && !mxIsEmpty(arr)){

// copy data
mwSize num = mxGetNumberOfElements(arr);
double∗ pr = mxGetPr(arr);
if (pr){

v. resize (num);
v.assign(pr, pr + num);

}
}
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// cleanup
mxDestroyArray(arr);
matClose(pmat);

}

Listing 8.1: DistanceMapMatRead

8.2 Detect Vertices Inside the Vicinity

The following function describes the computation of a vicinity vertex multimap. To wit, given
the outer isoring radius, it maps every vertex on the mesh (considered as source vertex ) to
a list including the vertices in its vicinity (target vertices). The notable idea is that, instead
of linearly linking every vertex to its surrounding points, we read only the upper triangular
part of the distance map while exchanging the key and values on map-element insertion.
Thus, the algorithm recursions become N2−N

2
comparing to N2 of the naive method (where

N the total vertices of the mesh). This is due to the fact that: “vertex t lies inside the
vicinity of vertex s” is equivalent to “vertex s lies inside the vicinity of vertex t”.

...
#include <map>
...
void AreaDescriptor::StoreVerticesIdsInVicinityForEveryVertexFastMarchingMatReadMethod(){

unsigned j, k = 1;
for (unsigned i = 0; i < ( total vertices − 1); ++i){

j = k;
while (j < total vertices ){

if ( isless (mesh3Dptr−>GetDistanceSourceToTargetDistanceMapVectorMethod(i, j),
propagation distacne)){

vicinity vertices multimap .emplace(i, j );
vicinity vertices multimap .emplace(j, i );

}
j++;

}
k++;

}
};

Listing 8.2: StoreVerticesIdsInVicinityForEveryVertexFastMarchingMatReadMethod

8.3 Detecting Faces in Vicinity

This code excerpt presents the process of detecting the faces inside the vicinity of a vertex.
The key concept is the use of a map (faceCount) that maps each face to its occurrences inside
the vicinity. Thus, when a value of the map reaches 3, the corresponding face is pushed in
the vicinity faces list. A similar process is used for the search of faces inside inner isorings.
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...
#include <map>
...

//declarations
// multimap including vicinity vertices [value] to each vertex [key]
multimap<unsigned, unsigned> vicinity vertices multimap;
// multimap includes vertices [key] to adjacent faces [value]
multimap<unsigned, unsigned> vertex to faces multimap;
//map from to face [key] to number of occurences in vicinity [value]
map<unsigned, unsigned> faceCount;
//vector of faces inside the vicinity of the current central vertex
vector<int> facesList vicinity ;
...
void AreaDescriptor::FacesInVicinity(int central vertex){

for (auto vvm it = vicinity vertices multimap.lower bound(central vertex); vvm it !=
vicinity vertices multimap .upper bound(central vertex); ++vvm it)

TraceVertexToFacesMultimap(vvm it−>second);

//don’t forget to also consider the central vertex
TraceVertexToFacesMultimap(central vertex);

}

void AreaDescriptor::TraceVertexToFacesMultimap(int multimap key){
pair <std::multimap<int, int>::iterator, std :: multimap<int, int>::iterator> ret;
ret = vertex to faces multimap.equal range(multimap key);

for (auto it = ret. first ; it != ret .second; ++it){
//FaceCount, counter of occurences. Look if it ’s already there .
if (faceCount.find( it−>second) == faceCount.end())
// Then we’ve encountered the word for a first time.

faceCount[it−>second] = 1; // Initialize it to 1.
else{ // Then we’ve already seen it before ..

faceCount[it−>second]++; // Just increment it.
if (faceCount[it−>second] == 3)//Entire triangle inside vicinity!

facesList vicinity .push back(it−>second);
}

}
}

Listing 8.3: FacesInVicinity

8.4 Integrating MATLAB API to C++ Matching

Framework

Executing MATLAB instructions in C++ environment is crucial for the accuracy of calcu-
lations and execution time (see Sec. 8.1) of the framework. The following code quotation
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presents our approach on calling custom MATLAB functions and passing variables in MAT-
LAB environment.

...
#include ”engine.h”
...
Engine∗ ep;
...
MatlabIOHandler::MatlabIOHandler(){

if (!( ep = engOpen(NULL))) cout << ”Can’t start MATLAB engine”;
}

MatlabIOHandler::˜MatlabIOHandler(){
engClose(ep);

}

void MatlabIOHandler::ComputeMathcingErrorMatlabIO(Engine∗ ep){
//always set cuurent workspace the folder that Matlab project function exist
engEvalString(ep, ”cd D:/../Thesis/ final project /Matlab/”);
engEvalString(ep, ”clear ;”); //clear workspace

//pass string variables
string temp str = mesh name no context;
mxArray ∗mx mesh name no context;
if (!( mx mesh name no context = mxCreateString(temp str.c str())))

std :: cout << ”Unable to convert to mxArray\n”;
if (engPutVariable(ep, ”mesh2 name”, mx mesh name no context))

std :: cout << ”Unable to put into engine workspace\n”;
...

//also pass scalars
mxArray ∗mx max propagation;
if (!( mx max propagation = mxCreateDoubleMatrix(1, 1, mxREAL)))

std :: cout << ”Unable to convert to mxArray\n”;
memcpy((void ∗)mxGetPr(mx max propagation), static cast<void∗>(&max propagation),
sizeof(double));
if (engPutVariable(ep, ”max propagation”, mx max propagation))

std :: cout << ”Unable to put into engine workspace\n”;

//execute custom matlab function
engEvalString(ep, ”main matlab handler(mesh2 name,..., max propagation,...);”);
mxDestroyArray(mx mesh name no context);
...
mxDestroyArray(mx max propagation);
...

}

Listing 8.4: ComputeMathcingErrorMatlabIO
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