
Treecost-based
Preprocessing for

Probabilistic Networks

Master Thesis

Myrna van de Burgwal

Utrecht University
Institute of Information and Computer Science

Supervisors:
Hans Bodlaender
Silja Renooij

Utrecht, March 2015

Preface

This thesis document is part of my graduation project for my master’s
degree in Technical Artificial Intelligence. I started on this project in March
2014, with a break of two months when I was co-teaching the master course
Multi-agent Learning. Motivated by the courses Algorithms & Networks and
Probabilistic Reasoning, I chose to combine the topics of graph theory and
probability theory within my thesis project.

Then, when considering acknowledgements, I first want to extend my gratit-
ude to Hans Bodlaender who supported me throughout this project by means
of weekly (Treewidth club) meetings. He helped me by explaining a lot about
treecost and having discussions about possible reduction rules. I also want
to thank Silja Renooij who helped me to apply graph theory to probabilistic
networks and who also gave good advice for the structure of my thesis. Further-
more, I want to thank Luuk van der Graaff and, especially, Ruvar Spauwen for
sharing their ideas and helping me with the programming part of the project.

Treecost-based Preprocessing for Probabilistic Networks i

Abstract

Probabilistic inference is an important problem in probability theory and con-
cerns the process of computing the probability distribution of variables, given
the evidence of other variables. An often used algorithm for this problem is
the junction-tree propagation algorithm. To minimise the time to process all
the probabilities by means of the algorithm, an optimal tree decomposition is
required. A good parameter that measures the optimality of a tree decom-
position is treecost. Unfortunately, computing the tree decomposition with
minimal treecost is NP -hard Nevertheless, it can be simplified by applying
reduction rules that shrink the graph. These rules are familiar from treewidth,
which is a well-studied parameter compared to treecost. In this thesis, a set of
reduction rules are introduced and proven to be valid. This set includes rules
that remove vertices and separate the graph by its components. Thereafter,
experiments are conducted on input graphs, which are real-life probabilistic
networks. Results of the experiment show that the graphs are reduced signific-
antly, due to these reduction rules. This, in turn, decreases the time to solve
probabilistic inference. Prior knowledge about graph theory and complexity
theory is assumed for this thesis.

Treecost-based Preprocessing for Probabilistic Networks ii

Contents

1 Introduction 1
1.1 Problem statement . 2
1.2 Research questions . 2
1.3 Research objective . 3
1.4 Thesis outline . 3

2 Definitions and Preliminaries 4
2.1 Tree decompositions and treecost . 4
2.2 Lemmata . 6

3 Reduction Rules 7
3.1 Simplicial vertices . 7
3.2 Inclusion minimal clique separators . 9
3.3 Almost simplicial vertices . 11
3.4 Inclusion minimal almost clique separators . 18
3.5 Interesting findings . 25
3.6 A pseudo kernel . 28
3.7 Reduction rules for weighted graphs . 30

4 Experimental Results 33
4.1 Computational method . 33
4.2 Results . 38

5 Discussion and Conclusion 44
5.1 General findings and research contribution . 44
5.2 Future research . 45

Treecost-based Preprocessing for Probabilistic Networks iii

Chapter 1

Introduction
This thesis aims to combine the research fields of graph theory and probability theory by ap-
plying techniques from the first to improve the construction of certain models within the latter,
namely probabilistic networks [22, 31]. A probabilistic network, or the equivalent Bayesian net-
work, is a model of a probability distribution on a set of statistical variables. The (in)dependencies
among these variables can be captured in a directed acyclic graph (DAG), by creating vertices
that represent the variables and directed arcs that correspond to the relationships among them.
An example of a probabilistic network is shown in Figure 1.1, borrowed from [34], originally by [18].

An important problem in the field of probabilistic reasoning is probabilistic inference [17, 38],
which concerns the process of computing of the probability distribution over one variable given a
value-assignment of zero or more variables after previous observation. The most efficient algorithm
currently available for solving this problem is named the junction-tree propagation algorithm [23].
Before performing this algorithm, the DAG needs to be converted into an undirected graph by
applying moralisation, which entails that each pair of vertices that share a common successor is
made adjacent, whereupon all directions of the graph are being removed. An example of this pro-
cedure is given in Figure 1.2. Thereafter, it creates a triangulation of the graph by adding edges
such that each uninterrupted cycle is of length at most 3. From this triangulation, a tree decom-
position [30], or junction tree, can easily be built, which is a mapping of a graph into a tree that
contains bags (cliques) of vertices. To process the evidence, the bags send each other information
about the joint probability distribution and the entered evidence through the edges. Each bag uses
the information received from its neighbours and its local marginal distribution to compute the
marginal probability distribution on its variables. There is one bag that is designated as the root
of the tree. All messages are passed from the leaves to this root, which is called inward propaga-
tion. Subsequently, the root sends these messages back to the leaves, called (outward propagation).

The Metastatic cancer case represented by a probabilistic network

Metastatic Cancer

Serum Calsium Brain Tumour

Coma Severe Headaches

Figure 1.1: ”Metastatic cancer is a possible cause of a brain tumour and is also an explanation for increased
serum calcium. In turn, either of these could explain a patient falling into a coma. Sever headache is also
possibly associated with a brain tumour.”

Treecost-based Preprocessing for Probabilistic Networks 1

CHAPTER 1. INTRODUCTION

(A)

x y

z
(B)

x y

z
(C)

x y

z

Figure 1.2: Moralisation of a directed graph: (A) represents original graph where x and y share common
successor z, in (B) an edge is placed between x and y, and (C) displays the final graph where all directions
are dropped.

The running time of the junction-tree propagation algorithm depends on the tree decomposition
(and thus the triangulation) of a moralised graph. Therefore, it is important to take an optimal tree
decomposition. An often used parameter that designates the optimality of a tree decomposition is
the well-studied notion of treewidth [7, 9]. The treewidth of a graph equals the size of the largest
bag of the tree decomposition minus one (or the maximum clique size in the graph). However,
treecost [10], gives a more representative indication of the tree decomposition. Treecost differs
from treewidth in its measurement function that takes into account the sizes of all bags. It takes
the summation of the costs of all bags, where each bag has a cost equal to 2|bag|. Within the field
of graph theory, treecost is a relatively novel and still little discussed graph parameter, despite its
usefulness for obtaining an indication of the running time of certain graph algorithms [10].

1.1 Problem statement

Unfortunately, constructing a tree decomposition with minimal treecost (as well as minimal
treewidth) of a given graph is NP -hard [24]. For the computation of treewidth successful ef-
forts with respect to decreasing the complexity have been made, by means of preprocessing tech-
niques [6, 8, 11, 12, 13, 21, 30]. Methods that improve the computation of treecost exist as well,
although these mainly include heuristics or non-polynomial algorithms (e.g. [24, 25, 32, 40]).
However, to our knowledge, no polynomial reduction rules for treecost are yet documented.

Based on the arguments above, the formal problem statement of this thesis is as follows.

There are no exact polynomial preprocessing techniques that decrease the complexity of treecost
computation

1.2 Research questions

Based on the problem statement, the main purpose of this thesis is to look for exact methods to
reduce the size of an input graph (e.g. a representation of a probabilistic network), to be able
to perform the treecost computation on a smaller graph than the original one. Subsequently, the
following main research question has been formulated:

What exact preprocessing techniques can be used best to decrease the complexity of treecost?

To answer the main research question, several steps need to be taken. These steps correspond to
the following sub-questions:

SQ.1 Which preprocessing techniques for treewidth should be considered for treecost?

By retrieving literature about preprocessing for treewidth, we will investigate which techniques
are likely to be applicable to treecost as well. Several reduction rules for treewidth and even

Treecost-based Preprocessing for Probabilistic Networks 2

CHAPTER 1. INTRODUCTION

algorithms that create a kernel [21] were defined previously. Since treecost is similar to treewidth,
it is possible that some of these rules and algorithms can be applied to the computation of treecost.

SQ.2 How do our provided techniques compare to each-other based on theoretical proves and the
experiment?

We will analyse a selection (and combinations) of the candidate techniques to check whether they
apply to treecost. Thereafter, experiments are performed on the techniques that are proven to be
valid.

SQ.3 What are the effects of the preprocessing algorithm on input graphs, especially graphs that
represent probabilistic networks?

Whereas preprocessing of graphs for treecost can be applied to many practical problems, this thesis
focusses mainly on networks for probabilistic inference. Therefore, we will investigate the influ-
ence of the developed preprocessing techniques on probabilistic networks. In addition, we will also
investigate influence on other types of networks to test the external validity of the research results.

1.3 Research objective

Based on the previous question above, we determined the following research objectives. The overall
purpose of these experiments is to investigate to what extend the sizes of the input graphs will be
reduced in practice, while the treecost of the graph remains unchanged. Among these techniques
are mainly reduction rules that eliminate vertices and edges from the graph and separate the graph
into several components. Meanwhile, a tree decomposition with minimal treecost is constructed.
As was stated before, literature will be consulted to find reduction rules for the computation tree-
cost. Another approach that will be pursued is to find rules by further investigating how graphs
can be reduced without causing an increase of the treecost.

Similar to the existence of a weighted variant of treewidth [1, 41], there exists a parameter that
defines the weighted treecost. The time to compute the probability distribution of a bag is related
to the product of the variables that are included. This assumes that all variables contain two
values, whereas often the number of values per variable is larger. This number is represented by
the weight of a vertex. The exact time it takes to process one bag corresponds to the product of
weights of the vertices in that bag. Therefore, weighted treecost gives an even better impression
of the complexity of a tree decomposition. However, the difficulty of taking weights into account
is that many reduction rules that can be used for treecost are no longer valid. Hence, the experi-
ments are performed with reduction rules for “regular” treecost.

Previous to this preprocessing, the directed input graphs are moralised. This ensures that a vertex
with many predecessors may induce large cliques in the graph, which is profitable for the reduction
rules. We argue that by means of the rules that will be introduced in this thesis, the complexity
of computing the minimal treecost will be reduced. This implies that probabilistic inference can
be realised more quickly.

1.4 Thesis outline

The thesis is organised as follows. Section 2 introduces a set of basic definitions about graphs
theory. Lemmata concerning tree decompositions are introduced and proven. Section 3 presents
the reduction rules that were found. These rules include, amongst others, simplicial vertices and
safe separators. The structure of the preprocessing algorithm is described in Section 4, together
with details about the experiment and a report on the results. Finally, the thesis ends with a
conclusion and ideas for further research in Section 5.

Treecost-based Preprocessing for Probabilistic Networks 3

Chapter 2

Definitions and Preliminaries
The following notations are used in this thesis. A probabilistic network is a pair {G,P} where
P is a probability distribution over a set of statistical variables and G = {V,A} is a directed,
acyclic graph, where each vertex represents a statistical variable and the arcs represent the inter-
dependencies. Since our reduction rules (as well as probabilistic inference) can only be applied
to (moralised) undirected graphs, in this thesis the notation of a graph G will always refer to an
undirected graph if not stated otherwise. An undirected graph G = (V,E) is a pair with vertices
V and (undirected) edges E. We denote the number of vertices |V | by n and the number of edges
|E| by m. In this thesis, all graphs are assumed to be simple, which entails that the graph contain
no loops or multiple edges.

Another notation for a graph is G[V], which represents a graph G containing a set of vertices V .
V \ {v} corresponds to the set V minus vertex v. G[V \ {v}] denotes graph G that contains the
vertex set V minus v and its incident edges. We denote the vertex set V together with an added
vertex v by V ∪ {v}. The addition of edge (x, y) to graph G is denoted by G + (x, y), whereas
G − (x, y) indicates the removal of (x, y) from G. Similarly, adding a set of vertices S to V is
indicated by V ∪ S and removing S from V by V \ S.

A neighbour of v is a vertex w such that (v, w) ∈ E. This pair of vertices are said to be adjacent.
All neighbours of v together form the neighbourhood of v. The closed neighbourhood N [v] of v in-
cludes v itself, whereas the open neighbourhood N(v) of v does not. Note that N [v] = N(v)∪{v}.
The degree of vertex v equals the number of neighbours it contains, and is denoted by deg(v). If
deg(v) = 0, then v is termed isolated. The maximum degree of graph G is denoted by ∆(G). We
say that x is a common neighbour of vertices v and w if (v, x) ∈ E and (w, x) ∈ E.

A clique is a set of vertices such that all pair are adjacent, i.e. for each pair {v, w} it holds that
(v, w) ∈ E. If all vertices in graph G are pairwise adjacent, the graph is said to be complete.
Note that if G is complete, the entire graph forms a clique. A connected component is a set of
connected vertices, i.e. each pair of vertices {v, w} is reachable through a path in the graph. In
this thesis, we abbreviate a connected component by CC. A separator S ⊂ V is a set of vertices
such that there is a pair of non-adjacent vertices {v, w} that are separated into distinct connected
components by G \ S.

Definition 2.1. A minor G′ of a graph G can be obtained by the removal of one or more vertices,
the removal of one or more edges, or the contraction of one or more edges. The latter removes
one edge (v, w) from the graph and merges the two incident vertices v and w into a new vertex x.
The neighbourhood x consists of all previous neighbours of v and w.

2.1 Tree decompositions and treecost

The treecost problem is the optimisation problem of finding a tree decomposition with minimal
treecost of a given graph. It can be formally defined as follows:

Treecost-based Preprocessing for Probabilistic Networks 4

CHAPTER 2. DEFINITIONS AND PRELIMINARIES

Treecost
Input: Graph G
Output: Smallest number k such that G has a tree decomposition with a treecost of size k.

A tree decomposition is a decomposed tree of a graph G with the following characteristics.

Definition 2.2. A tree decomposition of a graph G = (V,E) is a pair ({Xi|i ∈ I}, T = (I, F)),
where for each i Xi ⊆ V is a bag of vertices and T is a tree with a set of vertices I (s.t. each
vertex represents a bag) and a set of edges F , such that:

•
⋃

i∈I Xi = V ,
• ∀{u,w} ∈ E,∃i ∈ I : u,w ∈ Xi, and
• ∀v ∈ V the set Iv = {i ∈ I|v ∈ Xi} forms a connected subtree of T .

In other words, a valid tree decomposition satisfies the following. For a tree decomposition TD(G)
of G it holds that all vertices of G are included in at least one bag. Moreover, each adjacent pair of
vertices are contained together in a bag. And finally, all bags that contain a vertex v are connected.

The treecost of a graph G, which is denoted by TC(G), is computed by means of a tree decom-
position in the following way:

Definition 2.3. The treecost of a tree decomposition equals
∑

i∈I 2|Xi|.

Definition 2.4. The weighted treecost of a tree decomposition equals
∑

i∈I
∏

v∈Xi
τ(v), where

τ(v) denotes the number of values of variable v.

An example of a graph G together with a tree decomposition of G can be found in Figure 2.1.

(A)

t u

v

w

x

y

z

(B)

t, u u, v, w

w, x

v, w, y w, y, z

Figure 2.1: Graph (A) and its tree decomposition (B) with (unweighted) treecost of (22+23+22+23+22 =) 48.

A tree decomposition can also be characterised in terms of an elimination ordering [36, 37]. This
is a permutation of the vertices of a graph, denoted by π : V → [n] (with n= |E|). During the
constructing of such an ordering, all vertices are eliminated according to the permutation. When
a vertex is removed, all its neighbours are turned into a clique. The added edges during this
process are called fill edges. An elimination ordering that requires no fill edges, is named a perfect
elimination ordering.

Definition 2.5. A perfect elimination ordering of a graph G is an ordering of its ver-
tices v1, ...vn such that for each vertex all its higher numbered neighbours form a clique (i.e. if
(vi, vj) ∈ E and (vi, vk) ∈ E and i < j and i<k, then (vj , vk) ∈ E.

Another way to define if a graph G perfect elimination ordering is to verify of G is chordal. A
graph is called chordal if all cycles of size at least four contain a chord, which is an edge between
two non-successive vertices in a cycle. If a graph is chordal, the graph is said to be triangulated.

Definition 2.6. A triangulation H of a graph G is a triangulated supergraph of G. A minimal
triangulation H of G is a triangulation such that there is G contains no triangulation that is
a proper subgraph of H. Furthermore, A minimum triangulation H of G is a triangulation such
that there is no triangulation of G with a lower treecost.

Treecost-based Preprocessing for Probabilistic Networks 5

CHAPTER 2. DEFINITIONS AND PRELIMINARIES

2.2 Lemmata

Lemma 2.7. Let G′ be a minor of G, then the TC(G′) ≤ TC(G).

Proof. It is obvious that the removal of a vertex v can not increase the treecost, since a tree
decomposition of the original graph G can be transformed by eliminating v from each bag Xi

such that v ∈ Xi. The same holds for the removal of an edge, e.g. G′= G − (v, w), where each
tree decomposition of G is still valid for G′. A more complicated situation occurs when an edge
contraction takes place. Let G be a graph such that v, w ∈ G and (v, w) ∈ E and let G′ be equal
to G, only with a contraction of (v, w) such that v is eliminated and w is made adjacent to all
neighbours of v. Let TD be an optimal tree decomposition for G. An optimal tree decomposition
TD′ for G can be obtained by replacing v in each bag Xi such that v ∈ Xi by w. Since TD′ is both
valid and optimal for G′, we have that TC(G′) ≤ TC(G) if G′ is caused by an edge contraction
of G.

Lemma 2.8. The upper bound on the treecost of a graph G with n vertices, equals 2n.

Proof. The tree decomposition that induces the greatest cost, consists of only one bag which
contains all vertices. Therefore, the treecost of this tree decomposition is 2n, with n the number
of vertices. An example of a structure of a graph that would have such a large treecost is a
complete graph.

Lemma 2.9. The lower bound on the treecost of a graph G with n vertices, equals 2n.

Proof. The tree decomposition that has the smallest treecost, consists of n bags which all contain
only one vertices. Since each bag of size 1 has a cost of 2, the entire tree decomposition has a
cost of 2n. The only graph with n vertices that can have such a small treecost, is a graph that
contains no edges. For a connected graph, the lower bound equals 4n−n, since this is the cost of
a path of length n−1 with two vertices per bag.

The following lemma will be used in this thesis to compare the sizes of bags.

Lemma 2.10. For natural numbers A, B, and C such that A < C and B < C it holds that
(2A+2B) ≤ 2C .

Proof. Consider a value for A and for B such that A+1=C and B+1=C (and thus, A=B). This
satisfies A<C and B<C. Then it holds that 2 · 2A = 2C and 2 · 2B = 2C . Since A=B, we have
that 2A+2B = C and thus 2A+2B ≤ C. In all other cases, either A or B (or both) would be less
than C−1. As 2x is an increasing function, it can be concluded that the statement 2A+2B ≤ C
always holds.

The proof of the following lemmata can be found in [15, 20, 35].

Lemma 2.11. Let W ⊆ V be a clique in G and let ({Xi|i ∈ I}, T = (I, F)) be a tree decomposition
of G. Then there is an i ∈ I with W ⊆ Xi.

Lemma 2.12. Let G be a graph and let (v1, v2, .., vp) be a path in G. Let ({Xi|i ∈ I}, T = (I, F))
be a tree decomposition of G. Suppose i1, i2, i3 ∈ I and i2 is on the path in T from i1 to i3.
Suppose v1 ∈ X1 and vp ∈ X3. Then {v1, v2, .., vp} ∩X2 6= ∅.

Lemma 2.13. Let TD be a tree decomposition of G and let Xi and Xj be two adjacent bags of
TD. Then the set {Xi ∩Xj} forms a separator of G.

Lemma 2.14. Let G be a graph that contains a cycle C. Let TD be a tree decomposition of G.
Consider a pair of non-adjacent vertices v, w ∈ C such that there is no bag that contains both v
and w. Now let v and x break the cycle into two parts, named C1 and C2. Then there is a pair of
vertices x, y ∈ C with x ∈ C1 and y ∈ C2 such that there is a bag Xi in TD with c, d ∈ Xi.

Treecost-based Preprocessing for Probabilistic Networks 6

Chapter 3

Reduction Rules
Computation of the treecost of a graph is NP-hard, but the size of the problem can be decreased
by using reduction rules. These rules allow for certain vertices and edges to be removed or for
decomposing the graph into two or more connected components of which the treecost is computed
separately. Since the treecost is a sum, it is important that the bags that are created during the
application of the rules are being remembered. The vertices which these rules apply to are simpli-
cial vertices, a specific type of almost simplicial vertices, inclusion minimal clique separators, and
a specific type of inclusion minimal clique separators.

The first rules that are introduced remove vertices and edges from the graph. Meanwhile, a bag
is created that includes the removed vertex (or vertices) and its neighbours. The rule describes
which other bags this bag should eventually be connected to. Important is that such a rule is
proven to be safe.

Definition 3.1. A reduction rule that changes graph G into G′ by removing vertices and edges,
is called safe when TC(G) equals TC(G′) + t, where t is the cost of the bag that is created by that
rule.

The reduction rules are supposed to be used in the given order and can be repeated until there
is no vertex left which a rule can be applied to. For each rule, the input graph is being searched
for vertices which this rule concerns. Obviously, a vertex of degree 0 has a bag of its own and can
after creation of this bag be removed. We assume that the graph for which the treecost needs to
be computed is connected, since connected components are treated separately. We first define a
rather straightforward rule for vertices of degree 1.

Rule 1. Let vertex v have degree 1 with neighbour w.
If w has no other neighbours
Then create a bag {v, w} and remove both v and w and their connecting edge (v, w).
Else create a bag {v, w} and remove only v and edge (v, w). This bag should be

connected to an arbitrary other bag containing w.

Lemma 3.2. Reduction rule 1 is safe.

Proof. Since the case of w having no other neighbours is obvious, we only prove the latter case.
Let v have w as its only neighbour and let deg(w) ≥ 2. Consider any tree decomposition of the
graph G[V \ {v}]. Since w ∈ G this tree decomposition contains at least one bag with w in it,
which is called Xi. It is now left to prove that adding a bag {v, w} and making it adjacent to Xi

is never more expensive than including v in Xi. The first option gives an extra cost of 22, whereas
the second option multiplies the cost of bag Xi by 2, which gives an extra cost of the size of the
bag. Since the size of Xi is at least 2 (because w is defined to have more neighbours than just v),
the extra cost is at least 22. Therefore, creating a new bag {v, w} will never lead to a higher cost
than adding v to Xi.

3.1 Simplicial vertices

In this subsection we discuss simplicial vertices and introduce a rule that can get rid of simplicial
vertices to reduce the graph [2, 37]. This rule also defines which bags must be created and which
edges and other vertices may be removed.

Treecost-based Preprocessing for Probabilistic Networks 7

CHAPTER 3. REDUCTION RULES

Definition 3.3. A simplicial vertex v is a vertex such that for each pair of neighbours {w, x} of
v, it holds that (w, x) ∈ E. In other words, N [v] forms a clique.

Since all vertices of degree 1 are simplicial, Rule 1 already gave an intuitive idea of how simplicial
vertices can be removed. We present some lemmata and finally come to a general reduction rule
for simplicial vertices of any degree.

Lemma 3.4. If v is a simplicial vertex, then TC(G) equals TC(G \ {v}) + 2|N [v]|. And thus it is
optimal to create a bag of N [v] and then remove v and its incident edges.

Proof. Since N [v] forms a clique, according to Lemma 2.11 there must be a bag containing all
these vertices. It is now left to prove that it is never better to create a bag of a superset of N [v].
Consider any tree decomposition of G[V \ {v}] that has a bag that contains all neighbours of v
and at least one other vertex. If v is added to this bag, the cost (which is at least 2deg(v)+1)
would be doubled. If, instead, a new bag is created of N [v], the cost is increased by 2deg(v)+1.
Therefore, the latter is never more expensive. And since v is already put together in a bag with
all its neighbours and therefore no longer required for the construction of the tree decomposition,
it may be removed from the graph.

The following two lemmata assume that v is already removed from the graph and a bag of N [v]
is created.

Lemma 3.5. For each neighbour w of simplicial vertex v such that deg(v) = deg(w), i.e. w has
no neighbours outside N [v], w may be removed, together with its incident edges.

Proof. Vertex w is already in a bag with all its neighbours and is therefore not required for any
other bag.

An example of the following lemma can be found in Figure 3.1.

Lemma 3.6. Let w and x be a pair of neighbours of v. If there is no path from w to x that avoids
N(v), then the edge (x,w) may be removed. Otherwise, the edge remains in the graph, as any tree
decomposition will contain another bag that has both w and x in it.

Proof. Assume that the edge (w, x) forms the only path from w to x that avoids the rest of N [v].
This would mean that N [v] \ {w, x} separates w and x. And since there already exists a bag Xi

such that w, x ∈ Xi, they do not necessarily need to be put in another bag together.
If however, there is a path from w to x that avoids N [v], then the edge (w, x) will not be

removed. This implies that another bag will be constructed that contains both w and x, apart
from the bag that consists of N [v]. Since the tree decomposition that will be constructed needs
to be optimal, it cannot afford any redundant bags.

It is now proven that leaving the edge (w, x) in the graph is never more expensive than removing
the edge, by showing that any tree decomposition will contain another bag with w and x together.
Consider graph G′ = G[(V \ (N [v]) ∪ {w, x}], i.e. the graph induced by all vertices of G outside
the closed neighbourhood of v and w and w. Since w and x are adjacent, they form a cycle in
G′. Lets call the vertices in the path on this cycle (from w to x) c1, ..., cn, where n denotes the
number of vertices on this path (note that n can also be equal to 1). Let us assume that there is
a tree decomposition with no bag containing both w and x and demonstrate that this leads to a
contradiction. Since w is adjacent to c1, there is a bag with these two vertices. The same holds for
c1 and c2 etc. Eventually a bag must be created containing cn and x. This bag must be adjacent
to the bag of w and x, but so must the bag of w and c1. This is in violation with the restrictions
of tree decompositions, since a cycle is not allowed. Therefore, there will be a bag containing the
vertices w and x.

We now create a rule that concerns simplicial vertices of any degree.

Treecost-based Preprocessing for Probabilistic Networks 8

CHAPTER 3. REDUCTION RULES

Rule 2. Let v be a simplicial vertex. Create a bag of N [v] and remove v and its incident edges. For
each neighbour w such that deg(v) = deg(w), remove w and its edges. For each pair w, x ∈ N [v]
that has no path avoiding N [v], remove the edge (w, x). All other vertices and edges from this
clique must be retained.

Lemma 3.7. Rule 2 is safe.

Proof. This follows from lemmata 3.4, 3.5, and 3.6.

(A)

v

w

x

CC

CC

w

x

CC

CC

(B)

v

w

x

CC

w

x

CC

Figure 3.1: Two graph examples, before and after the application of Rule 2 are illustrated. CC represents
a connected component.

3.2 Inclusion minimal clique separators

This section discusses clique separators that can split the graph into subgraphs. This enables to
compute the treecost of smaller graphs, which is profitable [5, 16, 29, 39]. Figure 3.2 illustrates
an example of the separation of a graph.

(A)

S

Z1

Z2 Z3

(B)

Z1 ∪ S

Z2 ∪ S Z3 ∪ S

Figure 3.2: (A) Separator S separates the graph into three connected components: Z1, Z2, and Z3. (B)
After separating, the graph consists of three subgraphs: Z1 ∪ S, Z2 ∪ S, and Z3 ∪ S.

Before presenting a reduction rule that comprises inclusion minimal clique separators, we first
introduce some definitions.

Definition 3.8. A full connected component of a separator S is a connected component of
V \ S such that every vertex in S is adjacent to a vertex in the component.

Treecost-based Preprocessing for Probabilistic Networks 9

CHAPTER 3. REDUCTION RULES

A proof of the following lemma can be found in [12].

Lemma 3.9. A separator S of graph G is an inclusion minimal separator of G if and only if each
of its connected components is full.

To allow a separator S to split the graph into its connected components, S needs to be safe.

Definition 3.10. A separator S of graph G is said to be safe for treecost when TC(G) equals∑
Z TC(Z∪S), for all connected components Z of G[V \S]. In other words, if separator S is safe,

the treecost of G can be computed by adding up all costs of the subgraphs of G, where each subgraph
is created by taking a connected component of G[V \S] and S together.

The next rule concerns separators of size 1. Such a separator is by definition inclusion minimal,
since it is connected to all the components that are separated by such a vertex. As each set of
size 1 always forms a clique, a separator of size 1 forms an inclusion minimal separator.

Lemma 3.11. Let S be an inclusion minimal clique separator of graph G with a size equal to 1.
Then S is safe for treecost, i.e. the treecost of G equals the sum of the costs of Z ∪ S for each
connected component Z that is induced by G[V \S].

Proof. Consider a separator S which consists only of vertex v and decomposes the graph into at
least two connected components. Now for each component Z, consider an optimal tree decompos-
ition of Z ∪ S. Obviously, for each vertex z ∈ Z such that (v, z) ∈ E it holds that there is a bag
Xi such that v, z ∈ Xi. Therefore, each tree decomposition contains at least one bag with v. Such
a bag can be taken for each separate tree decomposition and then connected together in a path
to form a tree decomposition for the entire graph. This is allowed, since no pair of vertices from
different components are adjacent to each other.

It leaves us to prove that it is not more efficient to take two bags Xi and Xj from two different
tree decompositions such that v ∈ Xi and v ∈ Xj and replace it by a new bag Xk = (Xi ∪Xj).
Since both Xi and Xj contain at least one vertex from its own component, it is known that
|Xi| < |Xk| and |Xj | < |Xk|. Lemma 2.10 implies that it is never cheaper to replace Xi and Xj by
Xk. Therefore, if the individual tree decompositions are optimal, the composed tree decomposition
of the entire graph is optimal as well and thus S is safe for treecost.

The next rule holds for inclusion minimal clique separators of all degrees.

Rule 3. If S is an inclusion minimal clique separator, then the total treecost can be computed by
taking the sum of the costs of Z ∪ S for each component Z. The final tree decomposition can be
obtained by taking a bag from every separate tree decomposition that contains S and connecting
these together.

Lemma 3.12. Rule 3 is safe.

Proof. The separator S is inclusion minimal, which induces that there exists a z ∈ Z such that
(z, s) ∈ E, ∀s ∈ S. Therefore, there must be a bag in this tree decomposition that contains both
v and z. And since S is a clique, it holds that each tree decomposition of Z ∪ S contains a bag
with S. If such a bag does not contain any other vertex outside S, the tree decomposition of the
entire graph will contain bags that are subsets of other bags, which are redundant. Therefore, it
is required to prove that each bag containing S also contains another vertex. Consider the tree
decomposition created of Z∪S for a certain component Z and assume that the only bag containing
S includes no other vertex. This bag is denoted by Xi. It will now be proven by contradiction
that this is not possible. It is known that all vertices of S are adjacent to at least one other
vertex z ∈ Z, they are contained in another bag than Xi, but not all together. But since each
pair of vertices of the separator is connected by a path in Z, it is not possible to separate vertices
of S in the bags linked to bag S, because this would create a cycle in the tree decomposition.
Therefore, there must exist a bag that contains both S and a vertex z ∈ Z for each Z. These
bags can be connected together in a path to create the tree decomposition for the entire graph.

Treecost-based Preprocessing for Probabilistic Networks 10

CHAPTER 3. REDUCTION RULES

It is still necessary to prove that it is not only valid, but also optimal to connect these separate
tree decomposition of Z ∪ S for each component Z to create a tree decomposition of the entire
graph. It can be concluded that this is indeed optimal, since combining bags of different tree
decompositions that contain S, is never cheaper due to Lemma 2.10.

Corollary 3.13. Let S be a clique separator that is not inclusion minimal. Then S is safe for
treecost providing that bags that are subsets of other bags are being removed.

Proof. Let S be a non-inclusion minimal separator, i.e. there exists a component Z ′ of G \ S and
a vertex s ∈ S such that s is not adjacent to a vertex in Z ′. Tree decompositions of Z ∪ S are
created for each component Z. Each tree decomposition of a component Z ′ that is not full will
have a bag that only consists of S, since vertex s that does not see Z ′ is simplicial and is put in
a bag with just its neighbours. As S forms a clique, this is not a problem. But as there might
be a bag Xi such that S ⊂ Xi, it is non-optimal to keep all bags that contain S. Therefore, all
bags that consist of just S should be removed, except when there is no bag Xi such that S ⊂ Xi,
which means that only one bag of just S should be retained.

The graph is searched for inclusion minimal clique separators in increasing order of size. Since a
clique separator that is not inclusion minimal is a superset of an inclusion minimal clique separator,
it is assumed that the graph is already separated into its connected components.

3.3 Almost simplicial vertices

It was proven earlier that simplicial vertices can be eliminated from the graph while computing
the treecost. Now we examine vertices that are almost simplicial.

Definition 3.14. A vertex v is almost simplicial when all its neighbours are adjacent, except
for one neighbour, which is called the special vertex.

For treewidth there exists a rule that removes all almost simplicial vertices. Unfortunately, no
such rule exists for treecost. However, some rules can be defined for a specific situation, namely
vertices that are almost simplicial and can be made simplicial by adding one edge.

3.3.1 Almost simplicial vertices of degree 2

A reduction rule can be created for all vertices that are almost simplicial and have only two
neighbours. Consider such a vertex v with neighbours w and x that are not adjacent, which makes
v almost simplicial. Both vertices can be the special vertex, but for now w is denoted as special.
If there is no path between w and x that avoids v, then v separates the graph into two connected
components. Therefore, the bags {v, w} and {v, x} can be added and connected to each other and
to the tree decomposition of their own component. Subsequently, v and its incident edges can be
removed. A less trivial concerns the situation where a path between w and x that avoids v does
exist. Before a rule is created for this situation, a new lemma needs to be introduced.

Lemma 3.15. Let G be a graph and let v be simplicial with two non-adjacent neighbours w and
x. Consider an optimal tree decomposition TD of G that has no bag that contains v, w, and
x together, but where the bags Xi and Xj, such that v, w ∈ Xi and v, x ∈ Xj, are adjacent.
Then either Xi \{w} = Xj \{x} or the tree decomposition can be transformed into a new tree
decomposition TD′ such that this is the case, without increasing the treecost.

Proof. It will now be demonstrated how TD where Xi \ {w} 6= Xj \ {x} can be transformed
into TD′, such that Xi \{w} = Xj \{x}. We replace Xi by Xi1 = (Xi∩Xj) ∪ {w} and Xj by
Xj1 = (Xi∩Xj) ∪ {x}. Note that v ∈ Xi1 and v ∈ Xj1. If (Xi \{w}) ⊂ (Xj \{x})), then
Xi = Xi1 and clearly no new bag should be added to TD. The same holds for the case where
(Xj \{x}) ⊂ (Xi \{w}). If, however, Xi 6= Xi1, a new bag Xi2 = Xi \{v} is created and added
between Xi1 and all former neighbours of Xi1, except Xj1. Bag Xi1 is now only adjacent to Xi2

Treecost-based Preprocessing for Probabilistic Networks 11

CHAPTER 3. REDUCTION RULES

and Xj1. A similar addition to the graph of a bag Xj2 should be made if Xj 6= Xj1.
First it must be determined that the new tree decomposition is still valid. Since v has only w

and x as its neighbours, v cannot be adjacent to any vertex outside Xi1 and Xj1. It follows from
Lemma 2.13 that {Xi ∩Xj} forms a separator, and thus Xi1 and Xj1 properly separate Xi2 from
Xj2.

Subsequently, it must be proven that TC(TD′) ≤ TC(TD). As Xi1 and Xi2 are both are
smaller than Xi, it can be derived from Lemma 2.10 that the cost of these new bags together is
never larger than the cost of Xi. The same holds for the cost of Xj1 and Xj2 compared to the
cost of Xj . Therefore we have that TC(TD′) ≤ TC(TD).

An example of the transformation described in the proof above is shown in Figure 3.3.

(A)

v

w

x

a

b

c

(B)

Xi

Xj

v, w, a, b

v, x, b, c

Xi2

Xi1

Xj1

Xj2

w, a, b

v, w, b

v, x, b

x, b, c

Figure 3.3: (A) Graph G with simplicial vertex v, (B) Tree decomposition of G where Xi \{w} 6= Xj \{x}
that is transformed in a tree decomposition where Xi \ {w} = Xj \ {x}.

Now we consider the case where bag Xi and bag Xj from Lemma 3.15 (such that v, w ∈ Xi and
v, x ∈ Xj) are non-adjacent.

Lemma 3.16. Let G be the graph described in Lemma 3.15 with an optimal tree decomposition TD
such that bags Xi and Xj are non-adjacent. Let P be the path from Xi to Xj, with P = (X1, ..., Xp)
and Xi = X1 and Xj = Xp. Then either (X1 \ {w}) ⊆ X2 and (Xp \ {x}) ⊆ Xp−1 or TD can be
transformed such that this is the case, without increasing the treecost.

Proof. Consider the case where (X1\ {w}) 6⊆ X2. This implies that there is at least one vertex
in X1, apart from w, that is not contained in X2 (clearly, v ∈ X2, as v ∈ X1 and v ∈ Xp and
X2 is on the path from X1 to Xp). First we claim that it can be assumed that any optimal tree
decomposition would not have bags outside P that contain v, since v is only adjacent to w and
x. Let Y denote the set of vertices in X1 that are not contained in X2 (apart from v). Formally
defined: Y = (X1 \ X2) \ {w}. For each vertex y ∈ Y it holds that it is non-adjacent to w.
Therefore, v and y do not have to be put in a bag together. Furthermore, Lemma 2.13 it holds
that X1∩X2 forms a separator and so does X1\ Y . Hence, Y may be removed from X1. Since
vertices in Y can still be adjacent to w or vertices in X1∩X2, we create another bag containing
these vertices, denoted by X0. Note that X0 is equal to X1\ {v}. The path can be changed by
adding bag X0 between X1 and all the neighbours of X1, except for X2. We remove the incident
edges of X1, except those that connect X1 to X0 and X2 (which makes X0 the starting point of
the path, instead of X1). Both X0 and the new version of X1 are smaller than the original bag X1,
which implies (by Lemma 2.10) that the treecost is not increased. Obviously, the same method
can be used to make Xp−1 a subset of Xp.

Figure 3.4 displays an example of a transformation of a path described in the proof above.
We now define a reduction rule that removes almost simplicial vertices of degree 2.

Rule 4. Let v be almost simplicial with non-adjacent neighbours w and x. If there is no path
between w and x that avoids v, then create two adjacent bags, namely {v, w} and {v, x}. For bags

Treecost-based Preprocessing for Probabilistic Networks 12

CHAPTER 3. REDUCTION RULES

(A)

v

w

x

a

b

c

(B)

X1

X2

X3=Xp

v, w, a, b

v, x, b, c

v, x, b, c

X0

X1

X2

X3=Xp

w, a, b

v, w, b

v, x, b

x, b, c

Figure 3.4: (A) Graph G with simplicial vertex v, (B) Path P from tree decomposition of G where
Xi\ {w} 6= Xj\ {x} that is transformed in a tree decomposition where (X1\ {w}) 6⊆ X2.

that are created later during the preprocessing, it holds that an arbitrary bag containing w (if one
exists) should be connected to {v, w}, whereas an arbitrary bag containing x (if one exists) should
be connected to {v, x}.

If there is a path between w and x that avoids v, then add the bag {v, w, x}, remove v and its
incident edges, and add the edge (w, x).

Lemma 3.17. Rule 4 is safe.

Proof. Since v forms a clique separator in the first case (where no path between w and x avoiding
v exists), this part of the rule is already verified in the proof of Reduction rule 3. We therefore
continue with the case where there is a path between w and x avoiding v. To prove that this is
optimal, it will be shown that any optimal tree decomposition of a graph G that does not contain
a bag with {v, w, x} can be transformed into a tree decomposition that does contain such a bag,
without increasing the treecost.

Since v and w, as well as v and x, are adjacent, there must exist a bag with v and w and a bag
with v and x. Consider the case where x is not contained in the bag with v and w, and w is not
contained in the bag with v and x. Both bags contain a vertex unequal to v, w, and x, otherwise
the bag is a subset of another bag, which makes the tree decomposition non-optimal. The bag
of v and w is denoted by Xvw and the bag of v and x by Xvx. If these two bags are adjacent
in the tree decomposition then it is known from Lemma 3.15 that their other included vertices
(thus the vertices apart from v, w, and x) are the same. We will call this set of vertices S (i.e.
S = Xvw \ {v, w} = Xvx \ {v, x}). These two bags can be removed and thereafter replaced by two
new bags, namely: a bag of S ∪ {w, x} (which will be connected to the former neighbours of Xvw

and Xvx) and a bag of {v, w, x} (which is only adjacent to the former bag). If Xvw and Xvx are
non-adjacent, it becomes more difficult. One of the two bags can be chosen, say Xvw, whereupon
the bag {v, w, x} can be connected to just this bag. Note that this increases the treecost by
23 = 8. Then v is replaced for x in Xvw, which does not change the treecost. In all bags that are
on the path between Xvw and Xvx the vertex v can be replaced for x as well. Now it holds, by
Lemma 3.16, that the bag Xvx is a subset of its former bag on the path and may thus be removed,
which decreases the treecost by at least 23 = 8. Its former bag on the path is connected to the
neighbours of Xvx. This new tree decomposition has a treecost that is at most the treecost of the
former tree decomposition, since the size of the removed bag Xvx can never be less than three
(which is the size of the added bag {v, w, x}).

3.3.2 Almost simplicial vertices of degree 3

The next step is to discuss what reductions can be made for almost simplicial vertices of degree
3. Consider a vertex x with neighbours w, x, and y, where w is its special neighbour. There are

Treecost-based Preprocessing for Probabilistic Networks 13

CHAPTER 3. REDUCTION RULES

two cases: either w is not connected to any of the other neighbours of v, or w is only connected
to one of them. Without loss of generality it is assumed that in the last case w is connected to x
and not to y. First the case where w is not connected to x or y is discussed (shown in Figure 3.5
(A)).

(A)

v

w

x

y
(B)

v

w

x

y

Figure 3.5: Almost simplicial vertex v with special neighbour w. (A) w is not connected to x or y. (B)
w is only connected to x.

Case (A): w is not adjacent to x or y

The situation where the special neighbour w of the almost simplicial vertex v is not connected to
either x or y, is divided into several subcases, which are distinguished by whether or not there is
a path from w to x or y (or both) that avoids v. If there is no path from w to either x or y that
avoids v, the situation is not interesting, since v separates w from x and y and thus two bags must
be created: {v, w} and {v, x, y} (see Lemma 3). There are three other possibilities, namely:

• There is a path from w to x or to y (but not both) that avoids N [v],
• there is a path from w to x and one to y that both avoid N [v], such that both paths avoid

each other (and thus form two different components),
• there is a path that connects w to both x and w, which means that w, x, and y are all

connected to that same component.

These possibilities are now considered one by one. The first rule applies when there is a path from
w to exactly one of the other neighbours of v. Without loss of generality, it is assumed that this is x.

Rule 5. Consider the graph from case A, with almost sim-
plicial vertex v and its three neighbours w, x, and y of
which only x and y are adjacent. Let there be a path from
w to x that avoids both v and y, but no path from w to y
that avoids both v and x (see Figure 3.6). First create the
bags {v, w, x} and {v, x, y}, then remove v and its incident
edges, and finally add an edge between w and x. If there
is no path left between x and y apart from the edge that
connects them, then this edge can be removed.

v

w

x

y

CC

Figure 3.6

Lemma 3.18. Reduction rule 5 is safe.

Proof. Since there is no path between w and y that avoids v and x, it holds that v and x form a
clique separator. The graph can therefore be separated into these two components, whereafter a
tree decomposition of each of these components can be created, together with v and x. In one of
these components, v becomes simplicial, thus the bag {v, x, y} is required. In the other component,
v is almost simplicial and has a degree of 2. Therefore, it holds that v can safely be put in a bag
with w and x.

Treecost-based Preprocessing for Probabilistic Networks 14

CHAPTER 3. REDUCTION RULES

Rule 6. Again, consider the graph of case A, where x and
y are the only adjacent neighbours of almost simplicial ver-
tex v. Let there be a path from w to x that avoids both v
and y and a path from w to y that avoids both v and x (see
Figure 3.7). Let these two paths be separated in two differ-
ent components by N [v]. Then create the bag {v, w, x, y},
remove v and connect w to x and to y. If there is no path
from x to y, apart from its edge, then this edge may be
removed.

v

w

x

y

CC

CC

Figure 3.7

Lemma 3.19. Reduction rule 6 is safe.

Proof. For this prove we require the term almost clique separator, which is a separator such that
all its vertices, except for one, form a clique. Section 3.4 will discuss these kind of separators
extensively. Reduction rule 3.37 asserts that for all almost clique separators of size 2 an edge may
safely be added between its two vertices, followed by a proof. The vertices w and x form such
an almost clique separator, which, according to Rule 3.37, implies that the edge (w, x) is added.
Therefore, it holds that these must be put in a bag together. The same holds for w and y, since
they y form an almost clique separator as well. Given that v, x, and y form a clique, there must be
a bag containing these three vertices. If separate bags of the three sets that were just mentioned
(i.e. {w, x}, {w, y}, and {v, x, y}) are created, there would be a cycle in our tree decomposition,
which is not allowed. Therefore, it is optimal to create a bag of {v, w, x, y}.

Finally the last possibility is being considered, where w,
x, and y are all connected to the same component, after
removing v (see Figure 3.8). This situation is more diffi-
cult than the other ones and the optimal action depends
on the rest of the graph. Therefore, a specific situation is
discussed first, where w, x, and y share the same neighbour-
hood apart from N [v], which forms a clique. The optimal
bag creation depends in this case on the number of their
common (and only) neighbours.

v

w

x

y

CC

Figure 3.8

Rule 7. Again, consider the case where only x
and y are adjacent. Let the graph be structured
such that after the removal of v, the vertices w, x,
and y would still be connected to the same com-
ponent (as is illustrated in Figure 3.9). Let w,
x, and y have the same neighbours outside N [v],
which are all adjacent to each other. We now
count the number of neighbours outside N [v] of
w, x, and y.

v

w

x

y

a

b

Figure 3.9

If the number of these neighbours of w, x, and y equals 1, then put v, w, and this neighbour
in one bag and v, x, y, and the neighbour in another bag. If there are two common neighbours
outside N [v] (e.g. a and b), their are two options with equal cost: the first option, which is similar
to the one with one common neighbours, is to put v, w, a, and b in one bag and v, x, y, a, and b
in another one. The second option is to create one bag of v, w, x, y, and one bag of w, x, y, and
the two common neighbours. If there are more than two common neighbours outside N [v], then
create a bag of v, w, x, and y and then a new bag of w, x, y, and the common neighbours.

Lemma 3.20. Rule 7 is safe.

Proof. If the common (and only) neighbours outside N [v] of w, x, and y have other neighbours
outside N [v], then these common neighbours form a clique separator. Let S denote this clique
separator. According to Rule 3, the graph can be separated in several components, of which one
only consists of N [v] ∪ S. Since this component is finite, the correctness of the rule can simply

Treecost-based Preprocessing for Probabilistic Networks 15

CHAPTER 3. REDUCTION RULES

be verified by computing the cost of each option. Clearly, if the common neighbours do not have
other neighbours, the graph only consists of N [v] ∪ S, which means that the graph itself is finite.
And thus, for both cases it is easy to see that the rule is safe.

For the last case, where w is not connected to either x or y, and the vertices w, x, and y are con-
nected to the same component, no general rule could be found. In other words, if the neighbours of
v do not share a common neighbourhood outside N [v] that forms a clique, no rule can be applied.
We noticed that in many cases it is not efficient to put N [v] in one bag. And since no pattern
could be found of what bag w should be put in, v could not be easily eliminated. Therefore, we
provide no rule for this case.

Case (B): w is only adjacent to x

Now the latter and most interesting case is being discussed, where w is adjacent to x and x to y.
In the proof of Rule 4 it is described how any path in an optimal tree decomposition from Xvw

(the bag containing v and w) to Xvx (the bag of v and x) can be transformed such that there is
a bag containing v, w, and x together. This algorithm will be used again for the current case. In
fact, the reason that the algorithm works is because there is only one edge missing to cause N [v]
to form a clique, namely the edge (w, y). This implies that there must be a bag containing v, w,
and x and a bag containing v, x, and y. Therefore, only one path is needed to convert the tree
decomposition such that N [v] forms a bag.

Rule 8. If there is no path between w and y that avoids v
and x (as shown in Figure 3.10), create the bags {v, w, x}
and {v, x, y}. Then remove v and its incident edges. Each
neighbour of v that has no neighbours outside N [v], can be
removed as well. If there is no path between w and x, apart
from the direct edge between them, that avoids v, the edge
between w and x can be removed. These vertices are not
required in another bag together. The same holds for the
pair x and y.

v

w

x

y

CC

CC

Figure 3.10

Lemma 3.21. Reduction rule 8 is safe.

Proof. Since there is no path between w and y that avoids v and x, we have that v and x form a
clique separator of the graph. Therefore, separate tree decompositions of the two parts that they
separate can be created, including v and x. As v is simplicial in both parts, it can be put in a
bag with its neighbours, which are w and x in the one part and x and y in the other part. All
connected components of the graph minus v and x that do not contain y, can be connected to the
bag {v, w, x} and all connected components that do not contain w can be connected to {v, x, y}.
Obviously it is possible that there are no such connected components. Since the costs of creating
two separate bags of size 3 (namely 2 · 23 = 16) is equal to the cost of only one bag of size 4 (also
24 = 16), it is also optimal to create one bag of N(v): {v, w, x, y}.

Rule 9. If there is a path between w and y that avoids
v and x (as shown in Figure 3.11), then create the bag
{v, w, x, y} and remove v and its incident edges. We add
an edge between w and y. If x has no neighbours outside
N(v), it can now be removed. If there is no path between
w and x that avoids v, apart from the edge between them,
then the edge between w and x can be removed.

v

w

x

y

CC

Figure 3.11

Lemma 3.22. Reduction rule 9 is safe.

Treecost-based Preprocessing for Probabilistic Networks 16

CHAPTER 3. REDUCTION RULES

Proof. To prove that this is optimal, it is shown that any tree decomposition can be taken in which
w and y are not put together in a bag and transform it to one that contains the bag {v, w, x, y}.
Since v, w, and x form a clique, as well as v, x, and y, we must have two bags that contain
these cliques. Since both bags contain v and x, all bags on the path between these two bags must
contain v and x as well. The other vertices in these bags are from a path between w and y. Now
a bag with v, w, x and y is created and connected to the bag that contains v, w, and x. v and
x can be replaced by y in this latter bag. This also holds for the following bags along this path.
The last bag (which contains amongst others v, x, and y) can now be removed, since without v
and x this bag is a subset of the former bag. As a bag of size 4 is added and a bag of size 4 is
removed and all potential bags in the middle of this path have one vertex less, the treecost can
never be higher.

An other possibility to prove this is to realise that w and y form an almost clique separator. This
means that they must be contained in a bag together (see the proof of almost clique separators of
size 2). Since the combinations {v, w, x}, {v, x, y}, and {w, y} must be in a bag together, the only
option is to create the bag {v, w, x, y}.

For the case where no path exists between w and y that avoids N [v] (i.e. {v, x} forms a separator),
it did not matter if the bag {v, w, x, y} would be created, or the two bags {v, w, x}, {v, x, y}. Hence,
it can safely be said that if w and x are adjacent, as well as x and y (which is the case in rules 8
and 9), it is optimal to put v in one bag with all its neighbours.

3.3.3 Almost simplicial vertices of any degree

It can be concluded that a general rule for almost simplicial vertices of any degree can be created
for the case where the special neighbour is adjacent to all other neighbours except for one. We
call this type of vertices nearly simplicial.

Definition 3.23. A vertex v of a graph G is nearly simplicial when it has a pair of neighbours
{w, x}, such that N [v] forms a clique in G + (w, x), but not in G. In other words, v would have
been simplicial if only one edge was added. We call the non-adjacent pair the special pair.

Clearly, all almost simplicial vertices of degree 2 are also nearly simplicial. For nearly simplicial
vertices, the transformation algorithm of the proof of Lemma 9 can be applied.

Rule 10. Let G be a graph with nearly simplicial vertex v and let w and x be the special pair.
Then create a bag of N [v] and remove v and its incident edges. Thereafter, remove all neighbours
of v that have no neighbours outside N [v]. For each pair y, z ∈ N [v] that is not connected by a
path that avoids N [v], remove the edge (y, z) as well, as this pair is not required to be together in
another bag.

Theorem 3.24. Reduction rule 10 is safe.

Proof. It is assumed that an optimal tree decomposition TD of the graph G described in the
previous rule, does not contain a bag with N(v). To prove that creating a bag of N [v] is optimal,
it is shown that transforming TD such that there is such a bag does not increase the treecost. Since
N [v]\{x} forms a clique, as well as N [v]\{w}, there exist bags containing these cliques. The path
between these bags is denoted by P = (X1, ..., Xp), where (N [v]\{x}) ⊂ X1 and (N [v]\{w}) ⊂ Xp.
Note that all bags on this path contain N [v] \{w, x}. The path is now transformed as follows. A
bag with N [v] is created and connected to X1 which increases the cost by 2|N [v]|. For all bags from
X1 to Xp−1 the vertex v is replaced by x, which induces a valid tree decomposition and keeps the
treecost equal. As Xp is now a subset of Xp−1, it may be removed. Xp cannot be smaller than
the bag with N [v], which implies that the treecost has not increased.

Corollary 3.25. Let v be an almost simplicial vertex and let special vertex w be connected to no
other neighbour of v. Let there be a path from w to a certain neighbour of v, say x, that avoids
N [v], but no path from w to any other neighbour. Then two bags can be created: {v, w, x} and
N [v] \{w}.

Treecost-based Preprocessing for Probabilistic Networks 17

CHAPTER 3. REDUCTION RULES

Proof. As {v, x} forms a clique separator and it was proven earlier that the graph can be split by
its connected components, v becomes an almost simplicial vertex of degree 2 in the first component
and a simplicial vertex in the second. Therefore, it is optimal to remove v and create these two
bags.

3.4 Inclusion minimal almost clique separators

It was shown that inclusion minimal clique separators are safe. The treecost can simply be
computed separately for the connected components. Now inclusion minimal separators that are
almost a clique are being discussed.

Definition 3.26. An almost clique C is a set of vertices that contains one vertex v such that
C \{v} forms a clique.

Definition 3.27. An inclusion minimal almost clique separator S is a separator that forms
an almost clique and separates the graph into only full connected.

Again, no general rule for almost clique separators of any size could be found, but some interesting
findings will be discussed. It was realised that the neighbourhood of an almost simplicial vertex
forms an inclusion minimal almost clique separator, which makes the former a special case of the
latter, namely an almost clique separator that separates the graph into at least one component of
size 1.

3.4.1 Inclusion minimal almost clique separators of size 2

First separators of size 2 are considered, i.e. two vertices x and y that are not adjacent, but
decompose the graph into several connected components. A proof is constructed for the statement
that almost clique separators of size 2 are safe for treecost if x and y are made adjacent. In other
words, it is safe to add an edge between x and y and then separate the graph into its connected
components to compute for each component Z the treecost of Z ∪S. S is now a clique. If x and y
are adjacent, there will always be a bag in every optimal tree decomposition that contains both x
and y. To prove that it is safe to make x and y adjacent, it is shown that any tree decomposition
that has no bag of x and y together, can be transformed into a tree decomposition that does have
such a bag, without increasing the treecost.

(A)

x

y

w z

(B)

x

y

ZA ZB ZC

Figure 3.12: (A) Simple example of a graph where x and y form an almost clique separator of size 2. (B)
Graph that is separated into three components by x and y.

Let G be a graph and the non-adjacent vertices x and y be a separator of the graph. For conveni-
ence, it is assumed that x and y separate the graph into only two connected components. Later
a statement is made for separators that induce more than two components. The two components
that are separated by x and y, are denoted by ZA and ZB . Assume a tree decomposition TD of
G that has no bag with both x and y. There must exist exactly one path between the connected
subtree of bags that contain x and bags with y. This path is designated by P = (X1, ..., Xp). The
first bag, which is denoted by X1, contains an x and is the closest to any bag with a y of all bags

Treecost-based Preprocessing for Probabilistic Networks 18

CHAPTER 3. REDUCTION RULES

that contain an x. The last bag, denoted by Xp, is the closest bag with a y to X1. All bags in
between contain neither x nor y. Note that the path between bags with x and y can be of length
2, which means that the first and last bag are adjacent. The bags of the tree decomposition that
are not part of the path can consist of several connected components (it is also possible that no
other bags are left). The path is converted into a path P ′ that has a bag with both x and y and
later we add the connected components to this new path.

X1 X2 Xp−1 Xp

Figure 3.13: Path P = (X1, ..., Xp), where x ∈ X1 and y ∈ Xp. The dotted lines represent potential edges,
which lead to potential subgraphs. The shaded part on the left may contain x and the shaded part on the
right may contain y. All other nodes of the graph do not contain x or y.

Lemma 3.28. Consider the path P described above. Each bag Xi ∈ P , such that 1< i< p (i.e.
all bags except Xi and Xp) contains at least one vertex of ZA and at least one vertex of ZB.

Proof. From Lemma 2.12 it can be derived that for every path in x, ..., y ∈ G, it holds that if
x ∈X1 and y ∈Xp, then every bag between X1 and Xp contains a vertex of the path x, ..., y. Since
there is a path from x to y through ZA and one through ZB and there is no bag between X1 and
Xp containing either x or y, it holds that all these bags contain at least one vertex from ZA and
one from ZB .

Lemma 3.29. For all connected components of TD that are not part of path P it is necessary
to only consist of either vertices of ZA or vertices of ZB, given that the entire tree decomposition
TD is optimal.

Proof. It holds that the treecost of a graph G equals the treecost of its minimal triangulation H.
If a triangulation H ′ of G is not minimal, then the TC(G) ≤ TC(H ′). It is now assumed that
TD contains a path in a connected component of TD \P that has a vertex a ∈ ZA and a vertex
b ∈ ZB . Each bag Xi on this path is split into two new bags that contain Xi∪ZA and Xi∪ZB if
x /∈Xi, and {x}∪Xi∪ZA and {x}∪Xi∪ZB if x ∈Xi. The treecost cannot be increased, since the
size of each bag is at most |Xi|−1 and 2 ·2|Xi|−1 = 2|Xi|. It also holds that the tree decomposition
is still valid, since no pair of vertices a, b such that a ∈ZA and b ∈ZB needs to be added in a bag
together outside path P . Therefore, it can be assumed that the optimal tree decomposition TD
contains no bag Xi in TD \P such that {a, b} ∈ Xi.

The following lemma makes a statement of the case where P has a length of 2, i.e. P consists only
of X1 and Xp.

Lemma 3.30. Let P be a path of length 2, i.e. P = (X1, Xp). Then it is safe to convert P
into P ′ where the two bags are replaced by two new ones Y1 = {x, y} ∪ ((X1∪Xp) ∩ ZA) and
Y2 = {x, y} ∪ ((X1∪Xp) ∩ ZB).

Proof. First it is shown that by means of this transformation a new valid tree decomposition is
obtained. Vertices of ZA and vertices of ZB are separated by x and y, which implies that no pair
{a, b | a ∈ ZA, b ∈ ZB} is adjacent. Therefore, if x and y are put together in a bag, it is not

Treecost-based Preprocessing for Probabilistic Networks 19

CHAPTER 3. REDUCTION RULES

necessary to added vertices of both ZA and ZB in a bag together. Since it holds by Lemma 3.29
that all bags outside path P consist of only vertices of ZA or only vertices of ZB (and in some
cases x or y), these bags can easily be reconnected to the path P ′, without causing a violation.

Second, it is shown that the size of the new tree decomposition is not increased by the trans-
formation. It may be assumed that X1 \{x} = Xp \{y}, since this is always optimal. Since at
least one vertex of X1 is in ZA and thus at least one vertex is removed from X1 to get Y1, it is
known that |Y1| ≤ |X1|. Similarly, for Y2 it holds that |Y2| ≤ |X2|. Therefore, the treecost has not
increased by converting P into P ′.

We now introduce two new definitions that are required for the next lemmata.

Definition 3.31. A bag is said to introduce a vertex v, if v is contained in that bag, but not in
an adjacent bag.

Definition 3.32. A bag is said to eliminate a vertex v, if that bag does not contain v, but an
adjacent bag does. Note that in this case there only exists one adjacent bag containing v, since
otherwise the bags with v do not form a connected subtree.

A vertex v is usually eliminated in a bag Xi if it is no longer required to be in Xi. The reason for
this is that for each neighbour w, there already exists a bag with v and w together. The neighbour
of bag Xi that contains v, denoted by v, has introduced one or more of the neighbours of v. We
say that v is eliminated in bag Xi by these introduced neighbours.

From now on it is assumed that the length of path P is greater than 2. The next lemma makes
a claim about tree decompositions that contain a bag which introduces two new vertices that do
not share a common neighbour. If such a tree decomposition is optimal, it can be transformed
into a tree decomposition which does not have such a bag.

Lemma 3.33. Let TD be an optimal tree decomposition with adjacent bags Xi and Xj. Again, let
a and b be a non-adjacent pair of vertices, such that a ∈ZA and b ∈ZB. Furthermore, let a, b /∈Xi

and a, b ∈Xj and let (N [a]∩N [b]) = ∅. Then TD can be converted into a tree decomposition TD′

where Xj contains either a or b, but not the other one.

Proof. It is assumed that Xi is not a superset of Xj , since this is non-optimal. Let Xk be a bag
that is adjacent to Xj . There is a set of vertices A such that each vertex in A is adjacent to a
and A ⊂ (Xj \Xk) (possibly |A|=1). for which it holds that as soon as a is introduced after bag
Xj , all vertices in A are eliminated. Moreover, there exists a set of vertices B, such that all are
adjacent to b and B ⊂ (Xj \Xk), that is eliminated by b. It also holds by (N [a] ∩N [b]) = ∅ that
(A ∩B) = ∅. A valid replacement for Xj would therefore consist of two new bags Xj1 = Xj \{b}
and Xj2 = Xj \A. Since both bags are smaller than Xj , the total treecost cannot be larger than
Xj .

An algorithm is now constructed that indicates how P can be transformed into a new path P ′

such that x and y are added in a bag together and the new tree decomposition is still valid. The
algorithm makes use of Lemma 3.33.

Let G be a graph and let {x, y} be an inclusion minimal almost clique separator. Assume an
optimal tree decomposition where there is no bag that contains both x and y. Let P = (X1, ..., Xp)
be a path such that x ∈ X1 and y ∈ Xp and all other bags on the path contain neither x nor
y. Then this path can be transformed as follows. The first bag of the path, which is X1, is
transformed first. This bag consists of x, one or more vertices from ZA, and one or more from ZB .
Now X1 is replaced by two new bags A1 and B1, where A1 consists of {x, y} ∪ (X1∩ZA) and B1

consists of {x, y} ∪ (X1∩ZB). These bags are made adjacent and the path is built, starting from
both A1 and B1, which brings these two bags in the middle of the path. All of the new bags will
contain y, otherwise the bags with y will not form a connected subtree. A1 and B1 are the only
bags with x, since x is not required for any other bags. For the rest, one side of the path will only

Treecost-based Preprocessing for Probabilistic Networks 20

CHAPTER 3. REDUCTION RULES

contain vertices from ZA, whereas the other one will only have vertices of ZB . Now the second
bag of the original path is taken, denoted by X2. Since it was assumed that P was longer than 1,
it holds that X2 is not the last bag of the path yet. Now all vertices Y = X2\X1 are considered.
It holds by Lemma 3.33 that either Y ⊂ZA or Y ⊂ZB . If Y ⊂ZA then X2 can be replaced by
A2 = {y} ∪ (X2∩ZA) and then be connected to A1. And similarly, if Y ⊂ ZB then X2 can be
replaced by B2 = {y} ∪ (X2∩ZB) and connected to B1. By travelling further along the original
path (X3, X4,...), each bag Xi is replaced by either A = {y} ∪ (Xi∩ZA) or B = {x} ∪ (Xi∩ZB).
This continues until the last bag of the path is reached, denoted by Xp. This bag contains, apart
from y, only vertices of ZA and ZB that were also contained in the former bag. This is correct,
because it is always optimal to have y as the only new vertex in Xp compared to Xp−1 and no
other vertices. Since bags with y and Xp∩ZA and with y and Xp∩ZB are already created, there is
no need for another bag, and Xp may therefore simply be removed. The path can be finished now.
At this point the connected components of the original tree decomposition that were not part of
path P can be taken and connected to appropriate bags of the new path P ′. Algorithm 1 describes
this algorithm in pseudocode. Figure 3.14 displays an example of a graph and its corresponding
tree decomposition of which a path P is transformed into a path P ′.

Algorithm 1 Algorithm that converts P into P ′ such that P ′ contains a bag with both x and y

INPUT: Graph G[V], Separator {x, y}, Components ZA, ZB , Path P = (X1, ..., Xp) that con-
tains no bag with {x, y}

OUTPUT: Transformed path P ′ that does contain a bag with {x, y}
1: P ′ ← ∅
2: A1 ← {x}
3: B1 ← {x}
4: for all {v | v ∈ (X1 ∩ ZA)} do
5: A1 ← A1 ∪ {v}
6: end for
7: for all {v | v ∈ (X1 ∩ ZB)} do
8: B1 ← B1 ∪ {v}
9: end for

10: connect(A1, B1)
11: P ′[V]← P ′[V ∪A1 ∪B1]
12: for all {Xi | 2 ≤ i ≤ (P.length− 1)} do
13: if Xi \Xi−1 ⊂ ZA then
14: Ai ← {y}
15: for all {v | v ∈ (Xi ∩ ZA)} do
16: Ai ← Ai ∪ {v}
17: end for
18: connect(Ai, Ai−1)
19: P ′[V]← P ′[V ∪ {Ai}]
20: else if Xi \Xi−1 ⊂ ZB then
21: Bi ← {y}
22: for all {v | v ∈ (Xi ∩ ZB)} do
23: Bi ← Bi ∪ {v}
24: end for
25: connect(Bi, Bi−1)
26: P ′[V]← P ′[V ∪ {Bi}]
27: end if
28: end for

To prove that this algorithm creates a new valid tree decomposition with no increased treecost, a
few things need to be verified.

Treecost-based Preprocessing for Probabilistic Networks 21

CHAPTER 3. REDUCTION RULES

(A)

x

y

a1

a2

b1

b2

(B)

P
x, a1, b1

a1, b1, a2

b1, a2, b2

a2, b2, y

P ′

y, a1, a2

y, x, a1 y, x, b1

y, b1, b2

Figure 3.14: (A) Graph with separator {x, y}. Component ZA consists of a1 and a2, and component ZB

consists of b1 and b2. (B) Transformation of path P into path P ′ which both comprise the entire tree
decomposition. No bag in path P contains both x and y (these vertices are put at the opposite ends of the
path).whereas path P does contain a bag with both x and y.

Lemma 3.34. Path P ′ is still valid, i.e. for all vertices v such that v ∈ Xi for any Xi ∈ P the
bags containing v are connected.

Proof. Since x and y are put together in the first bag, no vertices of ZA need to be put in a bag
with vertices of ZB . And because the order of the original path is followed (only now with ZA

and ZB being separated), it holds that all adjacent vertices of the graph are put together in the
tree decomposition and all bags containing a certain vertex form a connected tree.

Lemma 3.35. Path P ′ is not more expensive than P .

Proof. First the cost of X1 (the first bag of P ′) is being compared to the sum of costs of A1 =
(X1∪{y})\ (X1∩ZA) and B2 = (X1∪{y})\ (X1∩ZB). For convenience, we define A = |X1∩ZA|
and B = |X1∩ZB |. The cost of X1 equals 21+A+B and the cost of A1 and B1 equals 22+A+ 22+B .
Below, it is proven that in the worst case the latter costs 8 more than the former, given that 1 ≤ A
and 1 ≤ B. More formally: 21+A+B+ 8 ≥ 22+A + 22+B . To simplify the equation, both sides are
divided by 2 which gives 2A+B+ 4 ≥ 21+A+ 21+B . First this is proven for A = B = 1. If this is
filled in, we get: 21+1+ 4 ≥ 21+1+ 21+1 ⇔ 8 ≥ 8, which is correct. Now it is proven by means
of induction that if A or B is increased, the equation will still hold. If A ← A+1 and B ← B,
it is found that on the left side the value of 2A+B is doubled, which causes an increase of 2A+B ,
whereas on the right side only the value of 21+A is doubled, which causes an increase of 21+A. If
in this case B = 1, than both sides will give an equal raise. As soon as B becomes larger than 1,
it is found that the increase on the left side is larger. The case where A ←A and B ←B+1 is
similar. Now it can be derived from this that since the equation holds for A=B= 1 and it still
holds if either A or B is increased by one, it holds for any value for 1≤A and 1≤B. Therefore,
in the worst case the treecost is increased by 8. Since no increase is preferred, this cost increase
must be compensated later.

All bags (X2, ..., Xp−1) are now compared to their replacements. The replacement of a bag can
never be more expensive, since that bag is a strict subset of the original bag but then with y
added. Furthermore, Xp is not replaced by any bag. The cost of Xp is at least 8 (since its size is
at least 3), thus this compensates the loss of the first comparison.

Lemma 3.36. All remaining components can be connected correctly to the new path, without
causing any violation for the tree decomposition.

Proof. Since the order of path P is followed, it holds that all vertices of this path that are adjacent,
will again be put in a bag together. Lemma 3.29 implies that all remaining components may not
contain vertices from both ZA and ZB . Each component will therefore have a bag in P ′ that it
can connect to.

Treecost-based Preprocessing for Probabilistic Networks 22

CHAPTER 3. REDUCTION RULES

Due to the previous lemmas, we can now infer the following about inclusion minimal almost clique
separators of size 2 that separate the graph into two connected components.

Lemma 3.37. Let S be an inclusion minimal almost clique separator of size 2, consisting of x
and y that separate the graph into two connected components. Then it is safe to add the edge (x, y)
and compute the treecost of the graph by taking the sum of the costs of Z ∪S for both components.

Proof. This follows directly from the lemmata 3.34, 3.35, 3.36.

The following lemmas work towards a statement about almost clique separators of size 2 that
separate the graph into three components.

Lemma 3.38. Let G be a graph and let {x, y} be an inclusion minimal almost clique separator S
that decomposes the graph into three components ZA, ZB, and ZC . This lemma only regards the
pair of components {ZB , ZC} (which is required for the following lemma), although the statement
also holds for the pairs {ZA, ZB} and {ZA, ZC}. Let TD be an optimal tree decomposition of G.
Now assume that there is no bag Xi such that x, y ∈ Xi. Then there is a pair of vertices {b, c}
such that b ∈ ZB and c ∈ ZC , for which an edge can be added, without increasing the treecost.

Proof. Consider an optimal tree decomposition TD for a graph G where almost clique separator
S = {x, y} separates G into three components, namely ZA, ZB , and ZC . We now prove that there
are two vertices b and c (where b ∈ ZB) and c ∈ ZC), such that adding the edge (b, c) will not
increase the treecost of G. By Lemma 2.14 we have that for each cycle C such that there is a
pair of vertices x, y ∈ C that are not in a bag together, there must be a bag containing a pair of
vertices a, b ∈ C such that if C would be broken by x and y, then a and b are in different parts of
C. The vertices of graph G are part of a cycle, as both components ZB and ZC are connected to
both x and y. Furthermore, no bag contains x and y, and the vertices b and c are in different parts
of the cycle, regarding a partition by x and y. Therefore, there is a bag Xj such that b, c ∈ Xj .
And since b and c are put together in a bag, it holds that TD is also a valid (and optimal) tree
decomposition for G+ (b, c). Hence, the treecost of G equals the treecost of G+ (b, c).

Lemma 3.39. Let G be a graph with inclusion minimal separator S = {x, y} where G \S induces
the three components ZA, ZB, and ZC . Then it is optimal to put x and y in a bag together.

Proof. The tree decomposition of Lemma 3.38 is used to prove Lemma 3.39. By this lemma it
holds that adding the edge (b, c) to G, for a certain pair {b, c} with b ∈ ZB and c ∈ ZC , does not
increase the treecost. However, including this edge causes G \ S to induce only two components,
since ZB and ZC are connected by (b, c). And by Lemma 3.37 it is known that it is optimal
to put {x, y} in a bag if {x, y} forms an almost clique separator that splits the graph into two
components. Therefore, it can be concluded that it is also optimal to create a bag that includes
x and y when there are three components.

Although the case where x and y separate the graph into more than three connected components
does not occur very often, it still needs to be proven that an almost clique separator of size 2 is
always safe, regardless the number of components it seperates. Now we have come to the following
theorem.

Theorem 3.40. Let S = {x, y} be an inclusion minimal almost clique separator. Assume that S
separates the graph into at least two components. Then it is safe to connect x and y and compute
the treecost for Z ∪ S for every component Z.

Proof. By means of the proof of Lemma 3.39 it can be proven by induction that making x and y
adjacent and splitting the graph by G \ S also works for graphs where G \ S induces more than
three components. If a separation of z components implies that it is safe to add an edge between
x and y, it is also safe for graphs where x and y separate z + 1 components.

Treecost-based Preprocessing for Probabilistic Networks 23

CHAPTER 3. REDUCTION RULES

3.4.2 Inclusion minimal almost clique separators of size 3

Now almost clique separators of size 3 are being considered. Unfortunately, no general rule can
be defined. However, we did create a rule that concern nearly clique separators.

Definition 3.41. A nearly clique separator is a separator S such that each pair of vertices
v, w ∈ S is adjacent, except for one pair, e.g. {x, y}. In other words, there is a pair of vertices
x, y ∈ S such that S forms a clique in G + (x, y), but not in G. We call this non-adjacent pair
x, y the special pair.

Obviously, all almost clique separators of size 2 are also nearly clique separators. Again it is
assumed that S separates the graph into two connected components, ZA and ZB .

Lemma 3.42. Let S = {x, y, z} be an inclusion minimal nearly clique separator with the adjacent
pairs {x, y} and {y, z}, and with special pair {x, z}. Then it is safe to add the edge (x, z) and
compute the separate costs of Z ∪ S for each Z.

Proof. Again an optimal tree decomposition TD can be taken such that there is no bag with x, y,
and z. It is assumed that S separates the graph into two connected components, but by means of
making use of Lemma 3.39 and induction it automatically proves the case for more components.
Since (x, y), (y, z) ∈ E there must be at least one bag of x and y and one of y and z. The shortest
path is taken from such bags and denoted by P = (X1, ..., Xp), where x, y ∈ X1 and y, z ∈ Xp. By
following a similar structure as is done in Algorithm 1, this path is transformed into P ′ such that
x, y, and z are in a bag together and the treecost is not increased. Bag X1 is replaced by adjacent
bags A1 = {x, y, z} ∪ (X1 ∩ ZA) and B1 = {x, y, z} ∪ (X1 ∩ ZB). Each bag Xi = X2, ..., Xp−1, is
replaced by either Ai = {y, z}∪ (Xi∩ZA) (adjacent to Ai−1) or Bi = {y, z}∪ (Xi∩ZB) (adjacent
to Bi−1). The following claims are now verified:

• Path P ′ is valid. Each pair v, w ∈ P such that (v, w) ∈ E is contained in a bag together in
P ′. This follows from the fact that no vertex a ∈ ZA needs to be put in a bag with a vertex
b ∈ ZB and pairs of vertices from the same component are not separated.

• The treecost is not increased. Since y ∈ X1 and y ∈ Xp and the rule that states that all
bags that include the same vertex form a connected subtree, it holds that all bags in P contain
y. Bag X1 is replaced by A1 and B1, thus these costs should be compared. Let X1 ∩ ZA be
denoted by A and X1 ∩ ZB by B. The content of bag X1 can be written as {x, y} ∪A ∪B.
Furthermore, A1 = {x, y, z}∪A and B1 = {x, y, z}∪B. The costs of X1 and it replacements
A1 and B1 equal: TC(X1) = 22+|A|+|B| and TC(A1) + TC(B1) = 23+|A| + 23+|B|, where
1 ≤ A and 1 ≤ B. In the worst case, where one of A and B has a size of 1, e.g. A, then (A1)
has a cost of 16, whereas TC(B1) = TC(Xi). The replacement thus causes an increase of
a cost of 16, In all other cases it is not more expensive to replace Xi by A1 and B1. If |A|
(or similar, if |B|), then the increase of 16 needs to be compensated. As bag Xp contains
at least one vertex of ZA and at least one of ZB (apart from vertices y and z), its cost is
at least 16. And since Xp is not replaced by a new bag, but simply removed, the cost is
decreased by at least 16, which compensates for the earlier increase. All bags (X2, ..., Xp−1)
are replaced by a bag that is never larger than the former, since only one vertex is added an
at least one is removed. It can now be concluded that TC(P ′) ≤ TC(P).

• All remaining components can be connected to the path, without causing a
violation. No components of TD \ P contain vertices of both ZA and ZB , they can all be
safely connected to a bag in path P .

3.4.3 Inclusion minimal almost clique separators of any size

Again, for almost clique separators of any size, it is not possible to create a rule that safely
decomposes the graph into its connected components. However, we claim that every nearly clique
separator S is safe for treecost We therefore introduce the following rule.

Treecost-based Preprocessing for Probabilistic Networks 24

CHAPTER 3. REDUCTION RULES

Rule 11. Let G be a graph and let S be an inclusion minimal nearly clique, with special pair
{x, y}. Then add the edge (x, y) and split G into its connected components. For each component
Z, compute the treecost of Z ∪ S and add all these costs together.

Theorem 3.43. Reduction rule 11 is safe.

Proof. Consider an optimal tree decomposition TD of G with no bag Xi such that S ⊆ Xi. Then
TD can be converted into TD′ such that TD′ contains a bag with S and TC(TD′) ≤ TC(TD).
Since S \ {v} forms a clique, there is at least one bag with S \ {x}. Similarly, there is also at
least one bag that contains S \ {y}. The shortest path between these bags can be taken, which is
denoted by P = (X1, ..., Xp), where (S \{x}) ⊂ X1 and (S \{y}) ⊂ Xp. P is converted into P ′ in a
way that is similar to Algorithm 1, which is as follows. Bag X1 is replaced by A1 = S ∪ (X1 ∩ZA)
and B1 = S ∪ (X1 ∩ ZB). Each bag Xi of (X2, ..., Xp−1) is replaced by either S ∪ (Xi ∩ ZA) or
S ∪ (Xi ∩ ZB), depending on which component the currently introduced vertex belongs to. Bag
Xp is removed.

Clearly the new tree decomposition is valid, since vertices of ZA and ZB that are included in
bags on the path, can safely by separated as soon as S is put in a bag. Path P ′ cannot be more
expensive, since TC(A1) + TC(A2) ≤ TC(X1) + 21+|S|, TC(Xp) ≥ 21+|S|, and X ′i ≤ Xi for each
Xi ∈ {X2, ...Xp−1}.

3.5 Interesting findings

Due to the earlier proven theorems some other conclusions can be made. Underneath can be
found some interesting rules that follow from the earlier rules. These rules may contribute to the
reduction of a graph. Some of the structures are easily recognisable and can safely be reduced to
a smaller structure.

3.5.1 Cube rule

For treewidth it is proven that if a graph has a subgraph in the form of a cube, this subgraph may
be transformed into a smaller one [14], see the Figure 3.15.

v

w x

a b

c

d

v

w x

Figure 3.15: Cube rule

Unfortunately, this rule does not hold for treecost, but some other rules for some specific cases
of the cube structure can be made. Let G be a graph that contains a set of vertices that forms
a cube, as illustrated in Figure 3.15. Every vertex of the set {v, w, x} that has no neighbours
outside the cube, can simply be removed together with its edges, after creating a bag of its closed
neighbourhood and making its two neighbours adjacent. For example, if deg(v) = 2 (i.e. v is only
adjacent to a and b) then the edge (a, b) can be added. This can easily be verified by the fact
that v is a nearly simplicial vertex and it was shown earlier that such a vertex may be removed
after connecting its neighbours. For every vertex of the set {v, w, x} that has a greater degree
than 2 but no path to the other vertices of that set without avoiding the cube, it is safe to split
the graph by this vertex. This is the case, since this vertex forms an inclusion minimal clique
separator. If for example v has neighbours outside a and b but there is no path from v to w
or x that avoids the cube, it holds that v separates the graph into two components. After this

Treecost-based Preprocessing for Probabilistic Networks 25

CHAPTER 3. REDUCTION RULES

separation, v becomes nearly simplicial in the part that contains the cube and may be treated as
was described above. For every pair, constructed of vertices of {v, w, x}, such that there is a path
between its two vertices, that avoids the cube, it holds that these vertices can be made adjacent, if
they were not so before. This pair separates the component where the path is contained in, from
the rest of the graph and thus it forms an inclusion minimal nearly clique separator of size 2. As
was proven earlier, it is safe to separate the graph by this pair and connect them.

The only situation for which no change in the graph can be made is where G \ {a, b, c, d} creates
only one connected component. In other words, if deg(v) > 2, deg(w) > 2, and deg(x) > 2 and
there are paths between these vertices that are connected to each other, without passing the cube,
the graph cannot be reduced.

v, a, b

w, a, c x, b, c

a, b, c, d

Figure 3.16

For all other options, several reduction rules, which were de-
scribed above, can be applied to the graph. After the applica-
tion of these rules, all these options induce (a transformation
of) the structure of a cube, forming one entire connected com-
ponent that contains no other vertices. Therefore, the treecost
for this component can easily be computed. If G\{a, b, c, d}
induces three different components, according to the former
rules v, w, and x can be removed and the edges (a, b), (a, c),
and (b, c) can be added. This leaves only the clique {a, b, c, d}
which clearly should be added together in a bag. Figure 3.16
depicts the optimal tree decomposition of this component,
with a treecost of 40.

If there is no path from v to w or x that avoids the cube, but there is such a path from w to x,
then the induced subgraph will have a structure as shown in Figure 3.17.

w x

a b

c

d

Figure 3.17

a, b, c, d

a, b, c, w

b, c, w, x

Figure 3.18

In this subgraph, all vertices are identical to each other. Therefore it does not matter which vertex
comes first in the elimination order. An optimal tree decomposition can be created as shown in
Figure 3.18, with a treecost equal to 48.

If there is a path between v and w that avoids the cube and a path between w and x that avoids
the cube, but there exists no such path between v and x, the optimal tree decomposition of the
converted subgraph equals 64. Figure 3.19 illustrates the subgraph after the transformation and
one of its optimal tree decompositions.

The last situation for which an optimal tree decomposition can be created is where paths exist
between v and w, v and x, w and x that avoid the cube and are not connected to each other outside
the cube. Figure 3.20 displays the converted subgraph and one of its optimal tree decompositions
with a treecost of 64.

Treecost-based Preprocessing for Probabilistic Networks 26

CHAPTER 3. REDUCTION RULES

v

w x

a b

c

d a, b, v, w a, b, d, w b, c, d, w b, c, w, x

Figure 3.19

v

w x

a b

c

d a, b, v, w a, b, d, w b, c, d, w

Figure 3.20

3.5.2 Common neighbours

Now the case is considered where two non-adjacent vertices, v and w, share common neighbours.
There are situations where it is safe to make them adjacent. This is due to earlier made rules,
namely those of safe separators. For convenience, the pair {v, w} is considered for several numbers
of common neighbours.

If v and w share one common neighbour, e.g. a, it is safe to connect v and w if and only if {v, w, a}
forms a separator. The reason for this is because {v, w, a} forms a nearly clique.

If v and w share two common neighbours, e.g. a and b, and a and b are not adjacent, then it holds
that if there is also no path from a to b that avoids v and w, it is safe to make v and w adjacent.
This is the case, since v and w form an nearly clique separator of size 2.

Now let v and w share three common neighbours a, b, and c. If no pairs of a, b, and c share an
edge or path avoiding v, w, and the other common neighbour, then clearly the edge (v, w) may be
added, since v and w form a nearly clique separator of size 2. The same holds for the case where
only one pair of their common neighbours shares such a path or edge. Furthermore, if two pairs
contain such a path or edge, say a and b, and b and c, then it is also safe to connect v and w, since
v, w, and b form a nearly clique separator.

For cases where v and w share more than three common neighbours, it is more complicated to
define when it is safe to add the edge (v, w). Let CN be the set of common neighbours of v and
v and let |CN | = c. The number of pairs of vertices that can be made out of a CN equals

(
c
2

)
.

Hence, he number pairs out of CN such that its vertices are adjacent or contain a path between
them that avoids v, w, and CN , is bounded by

(
c
2

)
. We have now arrived to the following lemma.

Lemma 3.44. Let v and w be two non-adjacent vertices that share c common neighbours, where
the set of common neighbours is denoted by CN . If the number of pairs {a, b}, where a, b ∈ CN ,

Treecost-based Preprocessing for Probabilistic Networks 27

CHAPTER 3. REDUCTION RULES

v w

a b c

v w

a b c

Figure 3.21: Non-adjacent vertices v and w share three common neighbours a, b, and c. Since there is no
path between these neighbours that avoids v and w, the edge (v, x) can be added.

such that (a, b) ∈ E or there is a path that connects them which avoids v, w, and CN , is less than(
c
2

)
, then it is safe to add the edge (v, w).

Proof. The number of pairs that can be made out of CN equals
(
c
2

)
, which implies that at least

one edge is missing in CN . Let {a, b} be that non-adjacent pair that has no path avoiding v,
w, and CN , then of {v, w} ∪ (CN \ {a, b}) separates a and b. Moreover, since al vertices of
{v, w} ∪ (CN \{a, b}) are adjacent, except for v and w, this set forms a nearly clique. Therefore,
v and w can be made adjacent.

3.6 A pseudo kernel

The reduction rules that are provided so far may cause a very effective decrease of the size of the
graph. However, no reduction is guaranteed, since it is possible that none of these rules can be
applied to the input graph. An example of a graph that allows no application of our reduction
rules is the Petersen graph [28]. It would be useful if a reduction method exists, such that a
reduction is guaranteed.

A powerful preprocessing technique that can be used for treewidth is kernelisation [11, 21], which
is a polynomial-time algorithm. Hereby, an instance (G, `) for the treewidth problem is taken
(where G is a graph and ` is a value for which it is verified whether or not a tree decomposition
can be created with a treecost of at most `), whereafter G is reduced to a smaller size, called a
kernel. The size of the kernel depends on the function of a parameter. Unfortunately, it is not
possible to create a polynomial kernel when taking solely ` as a parameter, thus there must be
relied on other parameter. Examples of kernelisation that are done, are based on the Vertex Cover
problem (V C) (with a kernel of size O(|V C(G)|3)) and the Feedback Vertex Set problem (FV S)
(containing a kernel of size O(FV S(G)4)) [11, 21].

Finding kernels for treecost is much harder than for treewidth. For instance, the kernels paramet-
rised by V C and FV S are not valid for treewidth. However, we created an algorithm that reduces
the input size into something that is similar to a kernel. We call this ’kernel’ a pseudo kernel.
The parameters that are taken are the vertex cover and the independent set (IS) of a graph. In
reality, the input size will usually not be (much) smaller, but theoretically speaking, the size will
be ’reduced’ to a function of the vertex cover and the independent set. More precisely, by using
reduction rules for simplicial vertices and pairs with many common neighbours, the size of the
graph can be reduced to O(|V C|3 + |V C|2 · log(|IS|)), where |V C| denotes the size of the optimal
vertex cover and |IS| the size of the optimal independent set.

Before we continue, the meaning of the parameters are first defined.

Definition 3.45. The vertex cover of a graph G is the smallest set of vertices S ⊂ G such that
for all vertices v ∈ G it holds that either v ∈ S or s ∈ S such that (v, s) ∈ E.

Treecost-based Preprocessing for Probabilistic Networks 28

CHAPTER 3. REDUCTION RULES

Definition 3.46. The independent set of a graph G is the greatest set of vertices S ⊂ G such
that for each pair of vertices v, w ∈ S it holds that (v, w) /∈ E.

An interesting fact is that if V C is the smallest vertex cover of graph G, then for all vertices in
G that are not in V C, it holds that they are in IS and vice versa. This immediately highlights
a weakness of our kernel, since if n denotes the number of vertices of the original graph, then
|V C|+ |IS| = n.

For the creation of the kernel, we take the graph G, a parameter `, and a vertex cover X ⊆ G as
an input. The output of our kernelisation algorithm is (G′, `′, X ′), such that the treecost of G′

less than `′ if and only if the treecost of G is less than `.

3.6.1 Reduction of simplicial vertices

For every vertex v that is simplicial a bag will be created of only v and its neighbours. Thereafter,
v and its incident edges can be removed. Since this bag has a cost of 21+|N [v]|, we can subtract
this number from the parameter. Since this operation can cause creation of redundant bags in
the future, there are some other operations that need to be done. For each w that is a neighbour
of v and has the same degree as v: remove w and its incident edges, since all its neighbours are
included in the first bag. For each pair of neighbours that has no path avoiding v or its neighbours
(apart from the edge connecting them): remove the edge connecting this pair. They are only
connected via N [v] and thus N [v] forms a separator for the graphs that connect these pairs. All
other vertices and edges from this clique must be retained, since each pair that does have a path
avoiding N [v] forms a cycle that avoids v, thus there must exist a bag containing this pair.

Before the simplicial vertices are being reduced, one can search for clique separators in the graph
in O(mn) time. The total treecost equals the sum of the costs of each connected component and
the clique separator together.

3.6.2 Many common neighbours

Let vertices v and w, where (v, w) /∈ E and v ∈ V C or w ∈ V C, have x common neighbours. If
the tree decomposition contains a bag with v and the common neighbours and a bag with w and
the common neighbours, this would cost 21+x + 21+x. This composition is not allowed if the cost
is larger than `. Therefore, bags should be created that contain both v and w. Hence, if any pair
of vertices v and w where {v, w} /∈ E have more than 2 log(`) − 2 common neighbours, add an
edge between v and w.

3.6.3 Trivial decomposition

A trivial tree decomposition would be if all vertices of the vertex cover are put in one bag and all
other vertices are separately added in a bag together with the vertex cover and linked to the first
bag. This would cost 2k + 2k+1 · (n−k), where k = |V C|. If ` is more than this number, we know
for sure that the treecost of G is at most `. Consequently, the answer on the question whether a
tree decomposition can be found for instance (G, `,X) is yes.

Furthermore, the answer to this question is easy to find when one of the following situations occur.
If ` is less than the lower bound (which is at least 4n−4 if the graph is connected), then no tree
decomposition can be found with a treecost of at most `. Moreover, if ` is larger than the upper
bound (which is at most 2n for a simple graph), the a tree decomposition with a treecost of at
most ` can easily be found.

Treecost-based Preprocessing for Probabilistic Networks 29

CHAPTER 3. REDUCTION RULES

3.6.4 The kernel

The kernel is very similar to the kernel for treewidth, described in [21]. The remaining graph is
denoted by G′, the remaining vertex cover by V C ′, and the remaining independent set by IS′.
Since all simplicial vertices are removed, we have that each vertex v of IS′ contains at least one
pair of vertices {w, x} (s.t. w, x ∈V C) in its neighbourhood that are not adjacent to each other.
Now lets assign each vertex v to this pair. As w and x cannot have more than 2 log(`)−2 common
neighbours, at most 2 log(`)−2 vertices can be assigned to this pair. Let V C ′ ≤ V C = k. Since
V C ′ contains at most k vertices, there can only be at most

(
k
2

)
pairs of {w, x}. The size of IS′ is

at most (2log(`)−2) ·
(
k
2

)
. We know that ` ≤ 2k + 2k+1 · (n−k), hence we can fill this in as follows.

|IS′| ≤ (2log(2k + 2k+1 · (n− k))− 2) ·
(
k
2

)
≤ 2 log(2k+1 · (n− k + 1)) ·

(
k
2

)
≤ (k + 1 +2 log(|IS′|+ 1)) ·

(
k
2

)
∈ O((k +2 log(|IS′|)) · k2)

= O((k3 + k2 ·2 log(|IS′|))

Since the reduced graph G′ consists of only vertices of V C ′ and IS′, we have that n′ = |V C|+|IS|.
Hence n′ ∈ O(k+ k3 + k2 ·2 log(|IS′|)) = O(k3 + k2 ·2 log(|IS′|)). As one might sees, the size of G′

will in reality be less than the outcome of the kernel formula. Therefore, it is not recommended
for practical use. However, the idea can be useful for inspiration when further research is done in
kernels for treecost.

3.7 Reduction rules for weighted graphs

Until now the treecost of a bag Xi has only been computed by counting the number of vertices
(i.e. |Xi|) and then taking 2|Xi|. In probabilistic networks, vertices, which represent variables, can
have more than two values. The higher the number of values that a vertex contains, the larger the
complexity of the bag that contains that vertex. The number of values is indicated by the weight
of a vertex v, denoted by w(v). This weight value is always at least 2, since a variable that has
only one value is not interesting and will be left out of the network. The weight of a bag Xi is
computed by multiplying the weights of all vertices that are in Xi. In this section we will prove
that for weighted graphs, simplicial vertices and inclusion minimal clique separators can be treated
in the same way as unweighted graphs. Unfortunately, the rules that concern nearly simplicial
vertices and inclusion minimal nearly clique separators, are not valid for weighted treecost.

3.7.1 Simplicial vertices

It was proven earlier that if a vertex v in a unweighted graph G is simplicial, a bag of N [v] may
be created whereafter v may be removed to create an optimal tree decomposition. It will now be
shown that this also holds for weighted graphs.

Theorem 3.47. Let G be a graph with simplicial vertex v. Then it is optimal to create a bag
of N [v] and remove v and its incident edges. Subsequently, each vertex w ∈ N(v) for which
deg(v) = deg(w) must be removed and for each pair x, y ∈ N(v) for which there is no path
avoiding N [v], except for the edge between them, the edge (x, y) must be removed.

Proof. Consider any optimal tree decomposition TD for the graph G. Since N [v] forms a clique,
there is a bag Xi in TD such that N [v] ⊆ Xi. Now it is left to prove that N [v] = Xi. Consider
a graph G′ = G \{v}. Since N(v) still forms a clique, every tree decomposition of G contains a

Treecost-based Preprocessing for Probabilistic Networks 30

CHAPTER 3. REDUCTION RULES

bag Xj with N(v). It must be determined that it is never more expensive to add a new bag of
N [v] than to add v to Xj . Let w(v) be the weight of v, w(N(v)) the product of the weights of all
neighbours of v, and W the product of the weights of Xj \N(v). The treecost of both options is
compared, i.e. the option where N [v] has its own bag and the option where v is added to Xj . More
formally: we compare TC(Xi)+TC(Xj), where Xi = N [v], to TC(Xk), where Xk = Xj∪{v}. By
filling in the variables for the weights we get TC(Xi) + TC(Xj) = w(v) ·w(N(v)) +w(N(v)) ·W
and TC(Xk) = w(v) · (N(v)) ·W). The following can be derived from this.

w(v) · w(N(v)) + w(N(v)) ·W ≤ w(v) · w(N(v)) ·W
⇔ w(N(v)) · (w(v) +W) ≤ w(N(v)) · (w(v) ·W

Since all weight values are greater than 2, the left-hand side of the equation can never be larger
than the right-hand side. The only case where both sides are equals, is when w(v) = W = 2, as
in this case we have w(v) + W = w(v) ·W . In all other cases, the value of the right-hand side is
greater. Hereby it is proven that it is never more expensive to create a new bag of N [v].

(A)

v

w

x

y

z
w(v) = 3

w(w) = 2

w(x) = 5

w(y) = 3

w(z) = 4

(B)

Xi = {v, w, x, y}

Xj = {w, x, y, z}

w(Xi) = 90

w(Xj) = 120

OR

Xk = {v, w, x, y, z}

w(Xk) = 360

Figure 3.22: (A) Weighted graph with simplicial vertex v. (B) Two possible tree decompositions with
treecosts equal to 90 + 120 = 210 (top) and 360 (bottom).

3.7.2 Inclusion minimal clique separators

For an unweighted graph G with an inclusion minimal clique separator S it is proven that an
optimal tree decomposition of G can be computed by taking the sum of the costs of Z ∪S for each
connected component Z of G\S. This is the case, since no vertices from different components are
required in a bag together. Moreover, it is cheaper to create bags of S and one or more vertices
from only one component, than to include vertices from several components. It is now shown that
clique separators are also safe for weighted graphs.

Theorem 3.48. Let G be a weighted graph with inclusion minimal clique separator S. Then S
is safe for treecost, i.e. it is optimal to compute the separate treecost of Z ∪ S for each connected
component Z.

Proof. Consider an optimal tree decomposition TD of graph weighted graph G. As S forms a
clique, it holds that there is at least one bag containing S. S is inclusion minimal, which implies
that for each component Z, there must be a bag Xi such that ({z} ∪ S) ⊂Xi, with z ∈Z. It is
now proven that it is optimal to add no pair of vertices from two different components in a bag
with S. Let Z1 and Z2 be two different components and let X1 and X2 be two bags of the tree

Treecost-based Preprocessing for Probabilistic Networks 31

CHAPTER 3. REDUCTION RULES

decompositions of Z1∪S and Z2∪S respectively, such that S⊂X1 and S⊂X2. The weight of S is
denoted by w(S), the weight of X1\S by w(W1) and the weight of X2\S by w(W2). The total cost
of the bags X1 and X2 together is now compared to the cost of a bag that may replace X1 and
X2, namely X3 = (X1∪X2). The cost of X1 and X2 together equals w(S) ·w(W1) +w(S) ·w(W2)
and the cost the new bag X3 equals w(S) · w(W1) · w(W2). Since the equation is similar to the
one defined in the proof of Theorem 3.47, we can derive from that proof that it is never cheaper
to replace X1 and X2 by X3.

(A)

w

x

y

z

w(w) = 5

w(x) = 3

w(y) = 4

w(z) = 2

(B)

Xi = {w, x, y}

Xj = {x, y, z}

w(Xi) = 60

w(Xj) = 24

OR

Xk = {w, x, y, z}

w(Xk) = 120

Figure 3.23: (A) Weighted graph with clique separator {x, y}. (B) Two possible tree decompositions with
treecosts equal to 60 + 24 = 84 (top) and 120 (bottom).

3.7.3 Nearly simplicial vertices and nearly clique separators

It was proven earlier that for unweighted treecost, a nearly simplicial vertex v can be removed
after making its special pair adjacent. Unfortunately, no such rule can be defined for weighted
graphs. The algorithm which transforms an optimal tree decomposition such that is has a bag
that contains N [v] cannot guarantee that the treecost will not increase, as the weight of w can be
greater than the weights of the other vertices. Even though the weights of the vertices are known,
the algorithm cannot be applied, since the weights of the bags in the original tree decomposition
are not known.

The same holds for inclusion minimal nearly clique separators. As was proven earlier for un-
weighted treecost, that these separators, which only miss one edge to form a clique, are safe. For
weighted graphs, no such rule can be defined. The safeness of such separators depends on the
weights of the vertices that will occur in bags of the path between the two cliques of the separat-
ors of an optimal tree decomposition. Obviously, these vertices are not easily found, as this would
imply that part of the tree decomposition is known.

Treecost-based Preprocessing for Probabilistic Networks 32

Chapter 4

Experimental Results
In the former chapter we have proven several lemmata and theorems that concern preprocessing
for treecost. Moreover, several reduction have been proven to be safe for unweighted treecost.
Unfortunately, only a few rules could be found for weighted treecost. Therefore, we chose to solely
investigate how the reduction rules work for unweighted treecost. To achieve this, a computational
experiment has been conducted to examine the effect of our preprocessing algorithm on several
input graphs. Hereby, we analyse how much is reduced from the graph and which rules have
more influence than others. Since this thesis focusses on investigating the effect of preprocessing
on probabilistic networks, mainly graphs that represent such networks are used as input graphs
during the experiment.

4.1 Computational method

This section describes the computational method that implements the reduction rules for the pre-
processing of graphs. For the experiment we chose the rules that remove simplicial and nearly
simplicial vertices, and rules that split the graph by clique and nearly clique separators (i.e.
rules 2, 3, 10, 11), as all other rules are special cases or combinations of these rules. An interesting
outcome would be if many input graphs are reduced to the empty graph, since this would imply
that computing the treecost of that graph is done in polynomial time. The goal of our experi-
ment is to develop an algorithm that takes an input graph and reduces the number of vertices
by removing (nearly) simplicial vertices and separates the graph by (nearly) clique separators.
By taking several input graphs, it can be discovered how many vertices and edges remain after
the preprocessing. Another interesting aspect that is investigated is how many (nearly) simplicial
vertices and (nearly) clique separators are found. Since most of our input graphs are graphs of
probabilistic networks, a certain structure of these graphs can be recognised. A probabilistic net-
works has a directed graph, thus before the reduction rules are applied, it needs to be converted
into an undirected graph. This is done by moralisation, which generally increases the number of
simplicial vertices and clique separators.

First,we have conducted our experiment on sixteen graphs, which are all from probabilistic net-
works that represent real-life situations. For example, Alarm (anaesthesia monitoring), Boblo
(blood type identification), Oesoca (oesophageal cancer), its two variants: Oesoca+ and Oesoca42,
Pathfinder (lymphatic disease), VSD (prognosis of ventricular septal defect in infants), and Wilson
(liver disease) are medical applications. Then, networks from other fields are: Barley (quality of
barley without pesticides), Mildew (management of mildew in winter wheat), the three networks
OOW-bas, OOW-solo, and OOW-trad (maritime use), Ship-Ship (probability of shipship colli-
sions), and Water (biological processes of a water purification plant) [13, 14]. Thereafter, a small
experiment is done on six graphs that are not from probabilistic networks, namely CFS, Huck,
Jean, Mainuk, Myciel3, and Myciel4.

The computational method was implemented in Java and consists of the following steps (where
the first step is specifically meant for probabilistic graphs and the latter three can be applied to
all types of graphs).

1. The graph G is moralised.

Treecost-based Preprocessing for Probabilistic Networks 33

CHAPTER 4. EXPERIMENTAL RESULTS

2. The (nearly) clique separator with the minimal largest component is computed. If no such
separator can be found, go to 3. Otherwise, for each created component. go to 2

3. The (sub)graph is investigated for (nearly) simplicial vertices, until no such vertex exists
any more.

4. The treecost and number of remaining components are outputted, as well as the number of
times each reduction rule is applied.

The details of the algorithm are described in the following three subsections.

4.1.1 Removing (nearly) simplicial vertices

If the degree of a vertex is small, the chance that this vertex is simplicial becomes greater and
the time it costs to check whether all its neighbours are adjacent becomes smaller. Therefore all
vertices are ordered by degree, starting with the smallest degree. This is done in O(n logn) time by
using Quicksort [33]. By going through this list of vertices, we then search for the first vertex that
is either simplicial or nearly simplicial. Since a bag must be created of the closed neighbourhood
of this vertex the current treecost is increased by 2|N [v]|. If the vertex was nearly simplicial,
the missing edge is added. Each neighbour that has no neighbours outside the neighbourhood is
removed. Thereafter, it is checked for each pair of neighbours if there is a path between them that
avoids the neighbourhood. If not, the edge that connects them is removed. After the removal of a
(nearly) simplicial vertex, the next vertex on the list is being checked. The difficult aspect is that
as soon as all vertices are checked for simpliciality, new vertices might have become simplicial.
Fortunately, this is only possible for neighbours of recently removed vertices. Therefore, upon
going through the list, another list is kept which remembers all neighbours of (nearly) simplicial
vertices. When this list becomes empty, the graph contains no longer (nearly) simplicial vertices.
Since each time a (nearly) simplicial vertex is eliminated only its neighbours are added to the list
(with a maximum of ∆(G) which denotes the maximum degree of the graph), the number of times
a vertex is checked for simpliciality is O(n ·∆(G)). Verifying whether a vertex is (nearly) simplicial
costs O(∆(G)2). After a vertex v is confirmed to be (nearly) simplicial, for all its neighbours it
is investigated whether they contains neighbours outside N [v] (which are subsequently removed if
this is not the case). This has a complexity of O(∆(G)2). For each pair of neighbours {w, x} we
search for a path that avoids N [v] and the edge {w, x} (if not, the edge will be removed). The
algorithm that computes whether such a path exists may use depth first search (DFS) or breadth
first search (BFS) which both uses O(n+m) time. To sum up, the function which removes all
(nearly) simplicial vertices has a complexity of O(n · ∆(G)) · O(2 · ∆(G)2 + (n+m) · ∆(G)2) or
simply O((n2+m) ·∆(G)3.

4.1.2 Finding inclusion minimal (nearly) clique separators

To decompose the graph into its connected components, a (nearly) clique separator needs to be
computed. There are several ways to find such separators. The first algorithm that computes
all minimal (nearly) clique separators that was implemented for this research lists all minimal
separators and then checks which ones are (nearly) cliques [27]. Finding only one minimal separ-
ator can be done in polynomial time, where all neighbours of an arbitrary vertex v are taken of
which the ones that have no neighbours outside N [v] are removed. From here new separators can
be found until a separator is also a (nearly) clique. This however implies that most separators
that are used for the reduction of the graph, only separate very few vertices from the rest of the
graph, whereas it is more efficient if the largest components of G \S are as small as possible. To
compute which minimal nearly (clique) separator has the smallest largest component, all minimal
separators of the graph need to be generated. Whereas finding a new minimal separator takes
polynomial time, the number of minimal separators of a graph is exponential. For the larger input
graphs, this takes too much time and memory. Therefore, a new algorithm had to be found. The
point is that the number of minimal separators is exponential in the size of the graph, but the
number of minimal clique separators is linear. An easy way to find all minimal clique separators

Treecost-based Preprocessing for Probabilistic Networks 34

CHAPTER 4. EXPERIMENTAL RESULTS

Algorithm 2 Remove (nearly) simplicial vertices

INPUT: Graph G[V] and current treecost TC
OUTPUT: Reduced graph G[V]′ and increased treecost TC ′

1: Vcheck ← orderByDegree(V) . keeps list of vertices that still need to be checked
2: while Vcheck 6= ∅ do
3: v ← removeFirst(Vcheck)
4: if simplicial(v) OR nearlySimplicial(v) then
5: TC ← TC + 21+deg(v)

6: if nearlySimplicial(v) then
7: G← G+ (w, x) such that ((w, x) /∈ E AND w, x ∈ N(v))
8: end if
9: for all {w | w ∈ N(v), degree(v) == degree(w)} do

10: V ← V \ {w}
11: Vcheck ← V \ {w}
12: end for
13: for all {{w, x} | w, x ∈ N(v)} do
14: if path(w, x) = FALSE then . if no path between w and x that avoids N [V]
15: G← G− (w, x)
16: end if
17: end for
18: V ← V \ {v}
19: end if
20: end while

is to create a minimal tree decomposition and take all intersections of adjacent bags. The min-
imal tree decomposition is created from a minimal triangulation, which is a chordal graph such
that no other chordal graph that is a proper subset of the current one can be created from the
graph. Such a triangulation can be computed in various ways of which one is described in [3, 19].
Another method to compute the minimal triangulation is to use the extended variant of the Max-
imum Cardinality Search algorithm, called MCS-M [4]. In this algorithm, a permutation is created
based upon weights of the yet unnumbered vertices. These weights are updated during the process.

We now outline the complexity of the algorithm that generates the separators. The MCS-M
algorithm computes a minimal triangulation of a graph in O(nm) time [4]. Creating the tree de-
composition from this permutation takes O(n ·∆(G)). Consequently, the intersections of adjacent
bags must be computed, which represent the minimal clique separators of the graph. There are
O(n) bags of size O(TW), where TW denotes the treewidth. Since the tree decomposition forms
a tree, there are only O(n) pairs of bags of which the intersection needs to be computed (which
in turn takes O(TW 2) time). Clearly, the number of resulting intersections is bounded by O(n)
as well. Now, a list of minimal separators is created, which includes all minimal clique separators
and some non-clique separators. At the end, the minimal separators that do not form a clique,
are eliminated from the list.

All minimal clique separators of the graph are now found. However, the nearly clique separators
of a graph are also required. The most efficient way that is found so far to find these nearly clique
separators, is to compute the intersections of minimal tree decompositions of all alternations of
the graph where one missing edge is added. A nearly clique separator will be a clique separator
in one of the alternations of the graph. This multiplies the current complexity to list all clique
separators by O(n2). After all minimal clique separators of an alternation of the graph is found,
the added edge will be removed again and it is checked whether the separator is still a (nearly)
clique, taking O(TW 2) time.

Treecost-based Preprocessing for Probabilistic Networks 35

CHAPTER 4. EXPERIMENTAL RESULTS

Obviously, a separator S is only added if the current list of separators does not contain S yet.
Verifying if a separator already exists, requires going through the list of size O(n) and checking
for similarity by comparing the O(TW) vertices for each separator. Thereafter, all supersets of
separators are removed, since adding an edge to the graph may produce minimal separators that
are not minimal for the original graph. This is done in O(n2) time (note that the number of
minimal clique separators equals O(n)). Checking if a separator is already contained in the list,
can be done after each run of an alternation of a graph, whereas checking if a separator is a superset
of another one should be done after all separators are generated. Finally, for each separator S
the size of the largest component of G \ S is computed and the separator for which this value
is the smallest, is returned. Finding the components for S is done by applying BFS or DFS,
both taking O(n + m) time, which is done for O(n) separators. Computing for which separator
the component value is minimal, takes O(n) time. Altogether the best minimal (nearly) clique
separator is computed in O(n2) · O(n ·m+ n ·∆(G) + 2n · (TW 2)) +O(n2) +O(n · (n+m)). We
abbreviate this notation as O(n3 · (m+ TW 2)).

Algorithm 3 Find best (nearly) clique separator

INPUT: Graph G[V]
OUTPUT: Minimal (nearly) clique separator S
1: separators← ∅
2: Π←MCSC(G[V])
3: TD ← CreateTD(Π)
4: findAllSeparators(TD)
5: for all {(v, w) | (v, w ∈ V, (v, w) /∈ E} do
6: Π←MCS(G[V] + (v, w))
7: TD ← CreateTD(Π)
8: findAllSeparators(TD)
9: end for

10: for all S ∈ separators do
11: if (clique(S) = FALSE) AND (nearlyClique(S) = FALSE) then
12: separators← separators \ {S}
13: end if
14: end for
15: for all {{S1, S2} | S1, S2 ∈ separators, S1 ⊂ S2} do . Remove supersets
16: separators← separators \ {S2}
17: end for
18: S ← findBest(separators)

4.1.3 Separating by inclusion minimal (nearly) clique separators

As soon as a separator S is returned, the components of G \S need to be computed. This is done
by DFS or BFS with a complexity of O(n+m). If the separator is a nearly clique, the missing
edge is added to the graph. To improve the algorithm, the missing edge is memorised and passed
on together with the separator.

After determining the components, each component is either searched for new separators or sim-
plicial vertices. As splitting the graph by a separator generally makes the new graphs smaller than
removing a simplicial vertex, it is more efficient to run the separator algorithm again. Remem-
bering the list of (nearly) clique separators and assigning them to the components they belong to,
would improve the complexity of the algorithm, since finding all separators consumes a significant
amount of time. Unfortunately, the list of separators can change due to alternations of the graph,
such as: a separator is removed (which may cause a minimal separator to be no longer minimal) or
the removal/addition of edges (which may result in new separators). When no more (nearly) clique
separators of a component can be found, the graph is searched for (nearly) simplicial vertices.

Treecost-based Preprocessing for Probabilistic Networks 36

CHAPTER 4. EXPERIMENTAL RESULTS

Algorithm 4 Find all potential clique separators of a graph

INPUT: Tree decomposition TD
OUTPUT: List of separators S1, ..., Ss

1: bags← getRoot(TD) . Keeps a list of bags that are currently visited
2: for all bag ∈ TD do
3: bag.visited = false
4: end for
5: while bags 6= ∅ do
6: bag ← bags[0]
7: bag.visited← TRUE
8: for all {n | n ∈ N(bag), n.visited = FALSE} do
9: bags← bags ∪ {n}

10: I ← {v | v ∈, v ∈ n} . Computes the intersection of adjacent bags
11: if I /∈ separators then
12: separators← separators ∪ {I}
13: end if
14: end for
15: bags← bags \ {bag}
16: end while

Algorithm 5 Decompose graph by (nearly) clique separators

INPUT: Graph G[V] and current treecost TC
OUTPUT: Set of c components {C1, .., Cc} of G[V], with for each the unchanged treecost of TC
1: S ← findCliqueSeparator(G[V])
2: if S = null then removeSimplVertices(G[V], TC)
3: else
4: components← ∅
5: for all {v | v ∈ V, v ∈ S} do
6: v.visited = TRUE
7: end for
8: for all {v | v ∈ V, v /∈ S} do
9: v.visited = FALSE

10: end for
11: for all v ∈ V do
12: if v.visited = FALSE then
13: v.visited← TRUE
14: C ← findComponent(G[V], v, S)
15: components← components ∪ C
16: end if
17: end for
18: for all C ∈ components do
19: separateGraph(C,TC)
20: end for
21: end if

Treecost-based Preprocessing for Probabilistic Networks 37

CHAPTER 4. EXPERIMENTAL RESULTS

4.2 Results

The goal of our experiment is to study the effect of preprocessing. Each input graph is first
separated into its connected components by the algorithm, until further separation is no longer
possible. Then the graph is searched for (nearly) simplicial vertices, which are removed together
with potential present neighbours that have no other neighbours outside the (nearly) clique. Dur-
ing the application of these rules, the current treecost is updated and passed on. Furthermore,
it is counted how often the four rules (i.e. the reduction rules 2, 3, 10, 11) are being applied.
Obviously, if the search for (nearly) simplicial vertices comes before the search for (nearly) clique
separators, the number of removed vertices will be larger than with the current order. This is the
case since the neighbourhood of a simplicial vertex forms a clique separator and if this is also a
minimal clique separator, it fails to be a separator after the removal of the simplicial vertex. If
that simplicial vertex is found before its open neighbourhood is found as a separator, the number
of simplicial vertices increases by 1, but the number of clique separators is not. In the case where
the separator is found first, the number of clique separators is increased, instead of the number
of simplicial vertices. The same holds for nearly simplicial vertices and nearly clique separators.
After all, changing the order of the rules does not affect the final outcome. At the end of the
process, the algorithm returns how much is left of the graph. An interesting outcome of the ex-
periment would be if the reduction rules that we used, would suffice to reduce some input graphs
that belong to probabilistic networks, to the empty graph.

Table 4.1 reveals the outcomes of the experiments for the graphs of the probabilistic networks
which the reduction rules are applied to. First, the number of vertices and arcs (denoted by |V |
and |A| respectively) before the moralisation and the number of edges |E| after the moralisation
are given. Thereafter, it is shown how often the rules are employed and what the sizes of the
remaining graphs are. With respect to the latter, the results are expressed in terms of the number
of components (denoted by |com|), vertices, and edges. We first observe that five out of sixteen
graphs have no vertices left after the preprocessing algorithm. This implies that no other reduc-
tion rules are required for further preprocessing, since there is nothing left that can be reduced.
Hence, by solely employing the four reduction rules, an optimal triangulation can be created for
these graphs. The graphs that end up empty are the ones that represent Boblo, Oesoca, Oesoca42,
VSD, and Wilson.

w x

a b

c

d

Figure 4.1

A graph that has very few vertices left at the end, is the one of Alarm.
After the preprocessing, this graph only consists of one component that
has six vertices and nine edges. When looking at the adjacent vertices
of the graph, we find that its final structure is exactly as the graph
shown in Figure 4.1. This graph is exactly the same as the graph in
Figure 3.17. Since this graph is relatively small, it is possible to create
the corresponding tree decomposition in little time. As is shown in
Figure 3.18, the optimal tree decomposition of this graph has a treecost
of 48. Therefore, Alarm can also be reduced to the empty graph in
polynomial time. Another graph that contains few vertices after the
preprocessing is the one of OOW-bas. At the end, it has two components
left, of which one has again the exact same structure as the graph in
Figure 4.1. The other component contains nine vertices and nineteen
edges and forms a planar graph. Interesting is that the graph is almost chordal, apart from one
edge. Thus, only one edge needs to be added to create a graph that has a perfect elimination
ordering. This means that, when adding this edge, all remaining vertices can be removed by our
reduction rules. The graph of Munin1 ends up with two components, of which one would have
been reduced to the empty graph if the removal of almost simplicial vertices were allowed. When
recognising certain patterns as is the case with the graphs of Alarm, OOW-bas, Munin1, we might
be able to create a new reduction rule in the future.

Treecost-based Preprocessing for Probabilistic Networks 38

C
H
A
P
T
E
R

4.
E
X
P
E
R
IM

E
N
T
A
L
R
E
S
U
L
T
S

Table 4.1: Results of preprocessing for treecost

INSTANCE
Before After # times applied Results after preprocessing

moralisation moralisation

|V | |A| |V | |E| |SV | |NSV | |CS| |NCS| |com| |V | |E| TC

ALARM 37 46 37 65 18 3 6 2 1 6 9 216

BARLEY 48 84 48 126 13 3 2 2 1 30 84 240

BOBLO 221 254 221 328 153 34 14 21 0 0 0 1464

MILDEW 35 46 35 80 9 6 2 5 1 14 29 284

MUNIN1 189 282 189 366 68 12 11 4 2 98 227 616

OESOCA+ 67 123 67 208 31 7 1 1 1 25 123 1692

OESOCA 39 55 39 67 27 5 4 0 0 0 0 300

OESOCA42 42 59 42 72 26 7 4 0 0 0 0 324

OOW-BAS 27 36 27 54 8 3 2 4 2 15 28 144

OOW-SOLO 40 58 40 87 6 2 3 0 1 30 67 92

OOW-TRAD 33 47 33 72 4 3 2 1 1 24 55 88

PATHFINDER 109 192 109 211 75 6 3 1 1 12 43 792

SHIP-SHIP 50 75 50 114 11 2 4 2 1 33 80 152

VSD 38 52 38 62 26 7 0 1 0 0 0 308

WATER 32 66 32 123 8 1 0 0 1 23 98 192

WILSON 21 23 21 27 15 2 1 0 0 0 0 104

SV = simplicial vertex rule, (NSV) = nearly simplicial vertex rule, (CS) = clique separator rule, (NCS) = nearly clique
separator rule, com = components, (TC) = treecost.

T
reecost-b

ased
P

rep
ro

cessin
g

for
P

rob
ab

ilistic
N

etw
ork

s
39

CHAPTER 4. EXPERIMENTAL RESULTS

The observation that our reduction rules are able to reduce some of the graphs that represent prob-
abilistic networks to the empty graphs is valuable when solving probabilistic inference. Knowing
the optimal tree decomposition of a graph entails solving probabilistic inference in minimal time,
when using the junction-tree propagation algorithm. And since computing the tree decomposition
is NP -hard, it is very profitable if it can be computed in polynomial time for a certain graph. For
graphs that do not end up empty, it holds that computing the tree decomposition with minimal
treecost cannot be done in polynomial time. But since a large amount of the graph may be re-
moved, it becomes simpler to compute the tree decomposition. This, in turn, makes it easier to
solve probabilistic inference on the probabilistic network that the graph represents.

The last value that is displayed by Table 4.1, is the treecost of the bags that are created during
the preprocessing (denoted by TC). For the graphs that were reduced to the empty graph, this
value equals the treecost of the entire graph, whereas the other graphs only reveal the cost of a
part of the graph. As can be observed from the table, the treecost is not always in proportion
to the size of the graph. For example, the moralised graph of Boblo, which has 221 vertices and
328 edges, only has a treecost of 1464, whereas the smaller moralised graph of Oesoca+, with
just 67 vertices and 208 edges, has only been reduced to about half of its size, but already has a
treecost of 1692. This is caused by the fact that the structure of the graph of Oesoca+ is more
complex, whereby it requires more and larger bags. Because of this complex structure, the graph is
also less likely to be reduced to the empty graph, since it contains relatively less simplicial vertices.

4.2.1 Preprocessing for weighted treecost

We further studied how much is reduced of the graph when only employing two rules, namely the
simplicial vertex rule and the clique separator rule. Earlier, we argued that weighted treecost is
an even more representative parameter to measure the complexity of probabilistic inference than
unweighted treecost. Unfortunately, we discovered that of all identified rules for unweighted tree-
cost, only the simplicial vertex rule and the clique separator rule were safe for weighted treecost.
We conducted an experiment that only applies these two rules, which would indicate how much
will be reduced from graphs while applying preprocessing for weighted treecost. Another purpose
for this study is to investigate if the two additional rules (i.e. the nearly simplicial rule and the
nearly clique separator rule) are effective, since these can be seen as very specific cases of the
almost simplicial vertex rule and the almost clique separator rule. We compare these results to
the results of the experiment that allowed the complete set of reduction rules. These results are
revealed by Table 4.2, which displays the number of remaining vertices and edges for both sets of
rules.

The differences between the remaining graphs after applying two rules and those after applying all
four rules, were not very significant. Only the graphs of Boblo, OOW-bas, VSD, and Wilson showed
significant difference in their results. This implies that for these graphs, the nearly simplicial
vertex rule and the nearly clique separator rule are very important. The graphs of Boblo, VSD,
and Wilson were even reduced to the empty graphs, due to these additional rules. However, for
most graphs, the sizes of the remaining graphs when only using two rules, were only slightly larger
than or even equal to the remaining sizes when using four rules. We observed that in many cases,
when solely reducing the graph by its simplicial vertices and clique separators, there are only a
few nearly simplicial or nearly clique separators left (usually with a size of 2 or 3). After removing
these, it occurs sometimes that new simplicial vertices or clique separators emerge. However, in
most occasions no more reduction can be achieved. This explains the small difference for most
graphs between employing two or four rules. Nevertheless, we can argue that the nearly simplicial
vertex rule and the nearly clique separator rule are effective, because in general, a larger part
of the graph is reduced in comparison to when two rules are applied and, even in some cases,
this difference is surprisingly large. For instance, on average the number of vertices and edges
removed by applying two rules is decreased by 58% and 56%, respectively, while by applying the

Treecost-based Preprocessing for Probabilistic Networks 40

CHAPTER 4. EXPERIMENTAL RESULTS

combination of four rules, 65% of the vertices and 61% of the edges are decreased. In addition,
despite that the first pair of percentages entail a smaller reduction, they indicate that preprocessing
can also be effective for weighted treecost. To ensure that the graph is reduced significantly, more
rules for weighted graphs should be determined, if possible. When counting the number of rules
that were used, we observed that the simplicial vertex rule was applied most often. This was
expected, since moralisation makes all predecessors of a vertex adjacent, which may induce many
simplicial vertices.

Table 4.2: Comparing results of application of two different sets of rules

INSTANCE

before after preprocessing

preprocessing

SV and CS SV , NSV ,

CS, and NCS

|V | |E| |V | |E| |V | |E|
ALARM 37 65 7 11 6 9

BARLEY 48 126 30 84 30 84

BOBLO 221 328 40 56 0 0

MILDEW 35 80 15 31 14 29

MUNIN1 189 366 104 237 98 227

OESOCA+ 67 208 26 129 25 123

OESOCA 39 67 0 0 0 0

OESOCA42 42 72 0 0 0 0

OOW-BAS 27 54 21 39 15 28

OOW-SOLO 40 87 31 68 30 67

OOW-TRAD 33 72 26 58 24 55

PATHFINDER 109 211 14 49 12 43

SHIP-SHIP 50 114 35 84 33 80

VSD 38 62 6 12 0 0

WATER 32 123 23 98 23 98

WILSON 21 27 6 8 0 0

4.2.2 Preprocessing for graphs outside probability theory

Our main purpose was to investigate how well our reduction rules performed on graphs that
represent probabilistic networks. However, we also wanted to have an impression of how effective
these rules are on other graphs. Table 4.3 reports the results of our preprocessing algorithm,
applied to six undirected graphs that are not from probabilistic networks (namely CFS, Huck,
Jean, Mainuk, Myciel3 and Myciel 4). The results that show what is reduced from the graphs are
very divergent. For example, the graphs of CFS, Huck, Jean, and Mainuk, show that a reasonable
number of vertices and edges are removed due to the preprocessing, e.g. between 52% and 85%,
and between 60% and 84%, respectively. The relative small graphs of Myciel3 and Myciel 4, on
the other hand, show no reduction at all. None of the graphs are reduced to the empty graph.
Therefore, we conclude that our reduction rules are more effective on graphs that correspond to
probabilistic networks.

4.2.3 Comparing our results to preprocessing for treewidth

In the introduction we argued that treecost gives a better representation of the optimality of a
tree decomposition than treewidth. However, we discovered that many reduction rules used for

Treecost-based Preprocessing for Probabilistic Networks 41

CHAPTER 4. EXPERIMENTAL RESULTS

Table 4.3: Results of reduction rules applied to graphs that are
not of probabilistic networks

INSTANCE
before after preprocessing

preprocessing

|V | |E| |com| |V | |E| TC

CSF 32 94 1 10 33 428

HUCK 74 301 1 11 49 5032

JEAN 80 254 2 24 94 3116

MAINUK 48 198 2 23 80 2000

MYCIEL3 11 20 1 11 20 0

MYCIEL4 23 71 1 23 71 0

treewidth do not apply for treecost, e.g. the rule that removes almost simplicial vertices. There-
fore, it was expected that the rules that we defined for treecost would reduce less of a graph than
the rules that are provided for treewidth. To compare the sizes of our remaining graphs to those
that were reduced by rules for treewidth, we analyse the results of the experiment that is con-
ducted in [13]. In this paper, the input graphs are reduced by the following rules: the simplicial
vertex rule, the almost simplicial vertex rule, the buddy rule (which removes pairs of vertices that
have three common neighbours and subsequently adds edges between the non-adjacent pairs of
these neighbours), the cube rule, the extended cube rule (similar to the cube rule, with the only
difference that the vertex in the middle may have neighbours outside the cube). Among these,
the following rules are not valid for treecost: the almost simplicial vertex rule, the buddy rule,
the cube rule (which we have only proven to be valid in specific cases), and the extended cube
rule. Clearly, when using all these rules, much more of a graph may be reduced than when only
using our four reduction rules. The set of rules for treewidth, which were identified in the paper,
does not include safe separators. Hereby, the remaining graph will always consists of only one
component. This might be a drawback of the experiment, since splitting the graph by a separator
may induce new simplicial (or almost simplicial) vertices.

In Table 4.4 the results of both preprocessing algorithms are displayed. From the values in the
table we can derive that, despite the fact that the number of vertices and edges are not equal for
many input graphs, the differences are only small. For instance, the average number of vertices and
edges that were removed by preprocessing for treecost equals 65% and 61% of the initial graph,
respectively, while in the case of treewidth, these numbers equal 77% and 71%, respectively.
Furthermore, the minimum decrease in vertices and edges equals 25% and 20% for treecost, and
30% and 22% for treewidth, respectively. The reduction rules that were used for treewidth reduced
eight graphs to the empty graph. The rules that we provided for treecost could remove all vertices
of only five of these graphs. This means that three of them did not end up empty in our experiment.
One of them is the graph for Alarm, of which the remainder had a structure that was small enough
to reduce empty in little time, as was discussed earlier. The other two are the graphs for OOW-
bas and Mildew, which both contained a component with a relative simple structure and therefore
could be removed further, by means of reduction rules that might be determined in the future.
In [13] it is shown that these two graphs are only reduced to the empty graph if the almost
simplicial vertex rule is applied, a rule that is not valid for treecost. Hence, it seems that this
rule is very profitable when reducing graphs of probabilistic networks. In addition, the nearly
simplicial vertex rule is also useful, but less strong than the almost simplicial vertex rule.

Treecost-based Preprocessing for Probabilistic Networks 42

CHAPTER 4. EXPERIMENTAL RESULTS

Table 4.4: Results compared to preprocessing of treewidth

INSTANCE
before after preprocessing

preprocessing

rules for TC rules for TW

|V | |E| |V | |E| |V | |E|
ALARM 37 65 6 9 0 0

BARLEY 48 126 30 84 26 78

BOBLO 221 328 0 0 0 0

MILDEW 35 80 14 29 0 0

MUNIN1 189 336 98 227 66 188

OESOCA+ 67 208 25 123 14 75

OESOCA 39 67 0 0 0 0

OESOCA42 42 72 0 0 0 0

OOW-BAS 27 54 15 28 0 0

OOW-SOLO 40 87 30 67 27 63

OOW-TRAD 33 72 24 55 23 54

PATHFINDER 109 211 12 43 12 43

SHIP-SHIP 50 114 33 80 24 65

VSD 38 62 0 0 0 0

WATER 32 123 23 98 22 96

WILSON 21 72 0 0 0 0

Treecost-based Preprocessing for Probabilistic Networks 43

Chapter 5

Discussion and Conclusion
The primary goal of this thesis was to provide a preprocessing algorithm that reduces the size of
graphs that correspond to probabilistic networks. We focus on probabilistic inference, which is a
well-known and (NP -)hard problem in the field of probability theory. This problem concerns the
process of computing the probability distribution of variables given the evidence of other variables.
To ensure that the time to solve this problem is minimal, an optimal tree decomposition is required.
We chose to measure tree decompositions by means of the parameter treecost, which can give a
good indication of the time required to process the computation of all probabilities. Since our
preprocessing technique decreases the complexity of computing the minimal treecost of a graph,
probabilistic inference will be solved more quickly.

5.1 General findings and research contribution

We have provided and proven several reduction rules that decrease the size of graphs. To answer
[SQ.1], we have studied the rules that were determined for treewidth. The most important, yet
trivial, that we considered, concern simplicial vertices and inclusion minimal clique separators.
Two less trivial rules are the nearly simplicial vertex rule and the nearly clique separator rule,
where “nearly” entails that only one edge is missing. These four rules together comprise the set
of reduction rules that we applied on a set of input graphs during our experiment. These graphs
mainly contains representations of probabilistic networks. The results of this experiment show
that most of the input graphs were significantly decreased in size. Some graphs were even reduced
to the empty graph, which implies that an optimal tree decomposition can be computed solely
by preprocessing. Since there are more reduction rules that apply for treewidth than there are
for treecost, we also studied the difference between preprocessing for both these parameters. Sub-
sequently, we noticed that the largest difference was caused by the fact that treewidth allows the
removal of almost simplicial rule, whereas treecost does not. Since the nearly simplicial vertex
rule is a special case of the almost simplicial vertex rule, it was no surprise that the former rule
removed less vertices than the latter rule. Hereby, we have answered [SQ.2].

Other rules that were introduced concern the cube structure and the set of common neighbours of
a pair of vertices. Whereas the cube rule and the common neighbour rule are valid for treewidth,
these rules could only be verified for special cases. These cases were proven by making use of
earlier provided rules, such as the simplicial vertex rule and the clique separator rule.

Finally, we have investigated which rules could be defined for weighted treecost. Since several vari-
ables in probabilistic networks contain more than two values, weighted treecost would be a more
representative measure for the complexity than unweighted treecost. Unfortunately, we found that
only two rules applied for weighted treecost. The only two rules that were proven to be valid, are
the simplicial vertex rule and the clique separator rule. The results show that the input graphs
were reduced to a smaller graph, despite the fact that the reduction was not as effective as for un-
weighted treecost. Moreover, it was discovered that some graphs were only reduced to the empty
graph, when the removal of nearly simplicial vertices and the graph separating by nearly clique
separators was allowed.

Treecost-based Preprocessing for Probabilistic Networks 44

CHAPTER 5. DISCUSSION AND CONCLUSION

Subsequently, we discuss the effect of our reduction rules on a set of input graphs to answer [SQ.3].
Overall, we conclude that our preprocessing method is profitable for probabilistic inference, since
many real-life probabilistic networks were reduced significantly. For the graphs that were reduced
to the empty graph, an optimal tree decomposition can be computed in polynomial time. This
entails that solving probabilistic inference by means of the junction-tree propagation algorithm
can be realised in minimal time. Although this thesis focusses mainly on probabilistic inference,
we also conducted an experiment during which our preprocessing algorithm was applied to graphs
that do not correspond to probabilistic networks. We observed that our rules removed less vertices
from those graphs. None of the graphs were reduced to the empty graph and even two of the six
graphs had nothing removed at all. Therefore, to employ reduction rules on graphs that do not
represent probabilistic networks, more rules need to be defined, since our reduction rules are not
effective enough for these graphs.

5.2 Future research

Compared to treewidth, the number of reduction rules that are safe for treecost is much smaller.
Many rules that are used for treewidth, are no longer valid when computing the minimal treecost.
It would be an interesting research to investigate if more rules can be defined for treecost, in
addition to the rules described in this thesis.

Initially, we envisioned to find a kernelisation algorithm, such that the complexity of computing
the treecost of a graph is guaranteed to decrease. Unfortunately, no effective kernel was found,
apart from a “pseudo-kernel” that does not decrease the input size in practice. Therefore, para-
metrised kernelisation can be an interesting topic for future study.

Another consideration concerned applying aspects from spanning trees with many leaves. For
instance, the research by [26] provides lower bounds and upper bounds for treewidth, given the
number of leaves of a spanning tree of the graph. Computing a strict upper bound for treecost,
would lead to new preprocessing techniques. However, no such bounds were found during this
thesis project. Nevertheless, it might be useful to consider investigating this topic in the future
again.

Finally, as has been clarified before, the nearly simplicial vertex rule and nearly clique separator
rule do not apply for weighted treecost. Since we have only proven two rules to be valid for weighted
treecost, future research can further investigate whether some effective rules can be created such
that the weights of the graph are taken into account. This might lead to a much more optimal
preprocessing algorithm for the probabilistic inference problem.

Treecost-based Preprocessing for Probabilistic Networks 45

Bibliography
[1] Emgad Bachoore and Hans L Bodlaender. Weighted treewidth algorithmic techniques and

results. In Algorithms and Computation, pages 893–903. Springer, 2007. 3

[2] C Berge and P Duchet. Strongly perfect graphs. Annals of Discrete Mathematics, 21:57–61,
1984. 7

[3] Anne Berry. A wide-range efficient algorithm for minimal triangulation. In SODA, volume 99,
pages 860–861. Citeseer, 1999. 35

[4] Anne Berry, Jean RS Blair, Pinar Heggernes, and Barry W Peyton. Maximum cardinality
search for computing minimal triangulations of graphs. Algorithmica, 39(4):287–298, 2004.
35

[5] Anne Berry, Romain Pogorelcnik, and Genevieve Simonet. An introduction to clique minimal
separator decomposition. Algorithms, 3(2):197–215, 2010. 9

[6] Hans L Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. In Proceedings of the twenty-fifth annual ACM symposium on Theory of com-
puting, pages 226–234. ACM, 1993. 2

[7] Hans L Bodlaender. A tourist guide through treewidth. Acta cybernetica, 11(1-2):1, 1994. 2

[8] Hans L Bodlaender. Treewidth: Algorithmic techniques and results. Springer, 1997. 2

[9] Hans L Bodlaender. Treewidth: characterizations, applications, and computations. In Graph-
theoretic concepts in computer science, pages 1–14. Springer, 2006. 2

[10] Hans L Bodlaender and Fedor V Fomin. Tree decompositions with small cost. In Algorithm
TheorySWAT 2002, pages 378–387. Springer, 2002. 2

[11] Hans L Bodlaender, Bart MP Jansen, and Stefan Kratsch. Preprocessing for treewidth:
A combinatorial analysis through kernelization. SIAM Journal on Discrete Mathematics,
27(4):2108–2142, 2013. 2, 28

[12] Hans L Bodlaender and Arie MCA Koster. Safe separators for treewidth. Discrete Mathem-
atics, 306(3):337–350, 2006. 2, 10

[13] Hans L Bodlaender, Arie MCA Koster, and Frank van den Eijkhof. Preprocessing rules for
triangulation of probabilistic networks*. Computational Intelligence, 21(3):286–305, 2005. 2,
33, 42

[14] Hans L Bodlaender, Arie MCA Koster, Frank van den Eijkhof, and Linda C van der Gaag.
Pre-processing for triangulation of probabilistic networks. In Proceedings of the Seventeenth
conference on Uncertainty in artificial intelligence, pages 32–39. Morgan Kaufmann Publish-
ers Inc., 2001. 25, 33

[15] Hans L Bodlaender and Rolf H Möhring. The pathwidth and treewidth of cographs. SIAM
Journal on Discrete Mathematics, 6(2):181–188, 1993. 6

[16] Vincent Bouchitt and Ioan Todinca. Treewidth and minimum fill-in: Grouping the minimal
separators, 1999. 9

[17] Gregory F Cooper. The computational complexity of probabilistic inference using bayesian
belief networks. Artificial intelligence, 42(2):393–405, 1990. 1

Treecost-based Preprocessing for Probabilistic Networks 46

BIBLIOGRAPHY

[18] Gregory Floyd Cooper. Nestor: A computer-based medical diagnostic aid that integrates
causal and probabilistic knowledge. Technical report, DTIC Document, 1984. 1

[19] Dias Dahlhaus. Minimal elimination ordering inside a given chordal graph. In Graph-Theoretic
Concepts in Computer Science, pages 132–143. Springer, 1997. 35

[20] Vibhav Gogate and Rina Dechter. A complete anytime algorithm for treewidth. In Proceedings
of the 20th conference on Uncertainty in artificial intelligence, pages 201–208. AUAI Press,
2004. 6

[21] BMP Jansen et al. The power of data reduction: Kernels for fundamental graph problems.
2013. 2, 3, 28, 30

[22] Finn V Jensen. Bayesian networks basics. AISB quarterly, pages 9–22, 1996. 1

[23] Finn V Jensen and Frank Jensen. Optimal junction trees. In Proceedings of the Tenth interna-
tional conference on Uncertainty in artificial intelligence, pages 360–366. Morgan Kaufmann
Publishers Inc., 1994. 1

[24] Uffe Kjærulff. Triangulation of graphs–algorithms giving small total state space. 1990. 2

[25] Uffe Kjærulff. Optimal decomposition of probabilistic networks by simulated annealing. Stat-
istics and Computing, 2(1):7–17, 1992. 2

[26] Daniel J Kleitman and Douglas B West. Spanning trees with many leaves. SIAM Journal on
Discrete Mathematics, 4(1):99–106, 1991. 45

[27] Ton Kloks and Dieter Kratsch. Listing all minimal separators of a graph. SIAM Journal on
Computing, 27(3):605–613, 1998. 34

[28] S Chandra Kumar and T Nicholas. b-continuity in peterson graph and power of a cycle.
International Journal of Modern Engineering Research, 2:2493–2496, 2012. 28

[29] Hanns-Georg Leimer. Optimal decomposition by clique separators. Discrete mathematics,
113(1):99–123, 1993. 9

[30] Jǐŕı Matoušek and Robin Thomas. Algorithms finding tree-decompositions of graphs. Journal
of Algorithms, 12(1):1–22, 1991. 1, 2

[31] Thomas Dyhre Nielsen and Finn Verner Jensen. Bayesian networks and decision graphs.
Springer Science & Business Media, 2009. 1

[32] Thorsten J Ottosen and Jirı Vomlel. All roads lead to romenew search methods for optimal
triangulation. on Probabilistic Graphical Models, page 209, 2010. 2

[33] Christos H. Papadimitriou. Computational complexity. In Encyclopedia of Computer Science,
pages 260–265. John Wiley and Sons Ltd., Chichester, UK. 34

[34] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan Kaufmann, 2014. 1

[35] Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of tree-width.
Journal of algorithms, 7(3):309–322, 1986. 6

[36] Donald J Rose. Triangulated graphs and the elimination process. Journal of Mathematical
Analysis and Applications, 32(3):597–609, 1970. 5

[37] Donald J Rose, R Endre Tarjan, and George S Lueker. Algorithmic aspects of vertex elimin-
ation on graphs. SIAM Journal on computing, 5(2):266–283, 1976. 5, 7

Treecost-based Preprocessing for Probabilistic Networks 47

BIBLIOGRAPHY

[38] Ross D Shachter. Probabilistic inference and influence diagrams. Operations Research,
36(4):589–604, 1988. 1

[39] Robert E Tarjan. Decomposition by clique separators. Discrete mathematics, 55(2):221–232,
1985. 9

[40] MER van Boxel. Improved algorithms for the computation of special junction trees. 2014. 2

[41] Frank Van Den Eijkhof and Hans L Bodlaender. Safe reduction rules for weighted treewidth.
In Graph-Theoretic Concepts in Computer Science, pages 176–185. Springer, 2002. 3

Treecost-based Preprocessing for Probabilistic Networks 48

	Introduction
	Problem statement
	Research questions
	Research objective
	Thesis outline

	Definitions and Preliminaries
	Tree decompositions and treecost
	Lemmata

	Reduction Rules
	Simplicial vertices
	Inclusion minimal clique separators
	Almost simplicial vertices
	Inclusion minimal almost clique separators
	Interesting findings
	A pseudo kernel
	Reduction rules for weighted graphs

	Experimental Results
	Computational method
	Results

	Discussion and Conclusion
	General findings and research contribution
	Future research

