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Abstract

In this thesis we aim to compute the conductance of a disordered non-
standard topological insulator numerically. We test several algorithms for
this purpose and argue that the recursive Green’s function algorithm is con-
venient for our purposes. We test the stability of the conductance under
disorder of a specific topological crystalline insulator and find that in this
case crystalline symmetries do not suffice to make the boundary modes ro-
bust.
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Chapter 1

Introduction

In the last years topological insulators have become an important research
topic in theoretical condensed matter physics [1, 2, 3]. These systems have
the interesting properties that, if they have boundaries, electrons can prop-
agate along the boundaries, while the bulk of the system is insulating. An-
other remarkable property is that the boundary conductance is not hindered
by disorder in the system. This can be explained as electrons moving along a
“one-way road”, such that they can not backscatter when they stumble upon
disorder. These topological phases arise due to symmetries of the system;
in [1, 2, 3] topological phases of systems with only anti-unitary symmetries
have been completely classified.

These anti-unitary symmetries do not tell the entire story however. Because
topological insulators are usually realised in crystalline systems, we can also
analyse the effect of crystalline symmetries on the existence of boundary
modes. It turns out boundary modes can indeed exist [4, 5, 6, 7, 8], but a
complete theory for these topological crystalline insulators where also the
stability with respect to disorder is addressed does not yet exist.

The aim of this thesis is to study the stability under disorder of one such
topological crystalline insulator. The model for this insulator is taken from
[5] and the results have also been published separately in [9]. To study this
system we combine numerical simulations with semi-analytical tools.

The numerical simulations are carried out by perturbing the system with
disorder and then using the non-equilibrium Green’s functions formalism
[10, 11], which is used to express the conductance in terms of the Green’s
function of an operator depending on the system Hamiltonian and the way
electrons are entered into and exit from the system.[12, 13] The simulations
are then performed by computing conductances for various disorder realiza-
tions and parameters and comparing them.
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In order to apply the non-equilibrium formalism it is important to specify
the way electrons enter and exit the system (through leads, which model long
wires) and to reduce the size of the operator to be inverted to the size of the
matrix which specifies the system Hamiltonian. This can be done using the
concept of the lead self-energy [13], which can be computed numerically [14].

When the inverse Green’s function has been defined, the conductance can be
obtained from a block of the Green’s function. This means we should com-
pute a part of the inverse of a matrix. This matrix to be partially inverted is
mostly sparse, complex and non-hermitian and usually large. Another aim
of this thesis is to describe and test algorithms to obtain the relevant part
of the Green’s function.

This thesis is structured as follows: in chapter 2 we give a short review
of important concept for the transport of electrons through crystals, the
effects disorder usually has and how the computation of the conductance
can be interpreted as a scattering problem. Appendix A gives some more
background information about the quantum mechanics used in this chapter.

In chapter 3 we describe the non-equilibrium Green’s function formalism,
introducing the lead self-energy and expressing the conductance in terms
of Green’s functions. This chapter also contains some simple examples of
conductance computations and a general algorithm for the computation of
the lead self-energy. Some more examples of conductance computations for
simple disordered systems are given in appendix B, which also serves as a
further illustration of concepts discussed in chapter 2.

In chapter 4 we compare various ways in which we could obtain the con-
ductance numerically. This chapter is a combination of literature reviews
and practical tests for algorithms that could potentially be used to compute
conductances efficiently. Some background information on the numerical
linear algebra used in this chapter can be found in appendix C.

Topological insulators are the topic of chapter 5. We first give a short in-
troduction on topological insulators using an example. Afterwards we state
our results on topological crystalline insulators: this part of the thesis is
a slightly extended and reformulated version of [9]. We end this thesis by
drawing some conclusions in chapter 6.
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Chapter 2

Introduction to electron
transport theory

In this chapter we introduce concepts from electron transport theory. We
argue that electron transport is most easily described in crystals. We then
introduce some models for electron transport in crystals and make a connec-
tion between those different models. Also discussed is the effect of impurities
in the crystal on electron transport, since real-world crystals always contain
some impurities.

Having introduced the crystal background on which the electrons move,
we introduce the Landauer-Büttiker formalism to connect the movement of
electrons through a system consisting of leads (wires that guide the electrons
to the insulator we want to study) and an insulator of interest to physical
properties of this insulator, such as conductance. It will turn out to be use-
ful to describe this as a scattering problem, in which electrons are scattered
from one lead into another by scattering through the insulator.

2.1 Electrons in crystals

We would like to describe the behaviour of electrons in solids. Since solids
consist of many individual atoms or molecules that are relatively close to-
gether, each of those atoms or molecules contains many electrons and ev-
erything is described by the laws of quantum mechanics, this is in general
not possible. If we however make some assumptions on the structure of the
solid and the electrons therein, the problem can become a lot more tractable.

We assume that our atoms or molecules together with most of their elec-
trons form a regular structure, a crystal, that influences how the rest of the
electrons behave. We will also assume that any interactions between the
non-bound electrons can be neglected due to screening by the atoms and
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molecules with their bound electrons.

Depending on how we describe the interactions between bound matter and
unbound electrons, we can use different models for electron behaviour in
crystals. Here we will discuss two types of such models, the nearly-free elec-
tron model and tight-binding models. First however, we make more precise
what we mean with a crystal and introduce some concepts from crystallog-
raphy. A much more detailed introduction on crystals can be found in for
example [15].

2.1.1 What is a crystal?

A crystal is a solid that is built up from large numbers of identical atoms
or molecules, such that the positions of these building blocks are regular.
With regular we mean that for an infinite extension of the crystal there exist
discrete symmetries. For ordinary crystals, translations by vectors known
as the lattice vectors are among those discrete symmetries. The points at
which atoms or molecules are located are known as lattice points.

A common and convenient way to describe a crystal is by specifying a basis
cell and the lattice vectors. A basis cell is defined as a part of the crys-
tal such that the entire crystal can be constructed by taking the basis cell
together with copies of the basis cell to which a shift by a lattice vector is
applied any number of times. The smallest basis cell (which is in general
not unique) is known as a primitive cell. A special kind of primitive cell is
called Wigner-Seitz cell. This is a different name for the Voronoi cell [16] of
any lattice point.

Since (perfect) crystals are periodic, we can apply a spatial Fourier trans-
formation to them. This will again yield a lattice, known as the reciprocal
lattice. The Voronoi cell around the origin of the reciprocal lattice is known
as the first Brillouin zone.

2.1.2 Bloch’s theorem

We will now consider a model for electron transport known as the nearly-free
electron model. In this model, the electrons are described with quantum me-
chanical wave functions Ψn(x) satisfying the time-independent Schrödinger
equation

− ~2

2me
∆Ψn(x) + V (x)Ψn(x) = EnΨn(x), (2.1.2.1)

where n ∈ N is an index1, x is a position vector, me the electron mass, ∆
the Laplacian, V (x) a periodic potential energy function with the same pe-

1Throughout this thesis, we use the convention that 0 ∈ N. We denote N\{0} by N+.
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riodicity as the crystal, En the energy corresponding to the n-th eigenstate
and ~ := h

2π and h Planck’s constant.

Bloch’s theorem [17] now states that the solutions to (2.1.2.1) can be written
as the product of a plane wave and a periodic function.

Theorem 1 (Bloch’s theorem). A basis of solutions to (2.1.2.1) is given by
Ψn(x) = eikxun,k(x), where k is a vector known as the crystal wave vector
or Bloch momentum (taking values in the first Brillouin zone), un,k(x) are
functions which have periodicities equal to the crystal lattice vectors and the
index n is referred to as the band index.

Proof. This proof is taken from [18]. We first show that any state that is a
simultaneous eigenstate of the operators that translate the system along a
lattice vector is a Bloch wave.

Suppose we have such a state Ψn(x) for some n. Then Ψn(x + ai) =
e2πiθiΨn(x), where ai is a lattice translation vector and θi ∈ R (because
we are on a crystal, the translation can not change the normalisation of Ψ
but only a phase). Define k :=

∑3
i=1 θibi and un,k(x) := e−ikxΨn(x), where

bi is the reciprocal lattice vector corresponding to ai. Then un,k(x + ai) =
e−ik(x+ai)Ψ(n,x + ai) =

(
e−ikxe−2πiθi

) (
e2πiθiΨ(n,x)

)
= un,k(x). Hence

un,k(x) has the same periodicity as the lattice and Ψ(n,x) = eikxun,k(x) is
a Bloch wave.

We now note that any lattice translation vector commutes with the crystal
Hamiltonian and any other lattice translation vector. This means (cf. for
example appendix A or [19]) that there exists a simultaneous eigenbasis of
the Hamiltonian and all translation vectors. By the arguments above, the
elements of this eigenbasis are Bloch waves and since they are eigenfunctions
of the Hamiltonian they are energy eigenstates solving (2.1.2.1).

2.1.2.1 Band structure

Following [19], we now argue that the energy E as a function of the crystal
wave vector k is continuous and periodic over the Brillouin zone. We do this
by considering a one dimensional example, for which we will find one energy
band. Afterwards we will generalize this to a system with multiple bands.

We first consider a one-dimensional system with some periodic potential
and send the barrier height of this potential to ∞ over intervals of non-zero
length. An infinite set of degenerate ground states of this system is given
by states that are localised around one specific minimum of the potential
(between two neighbouring infinite barriers). We can index these states by
|l〉 , l ∈ Z.
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The energy eigenstates |l〉 are not eigenstates of the translation operator,
but we can find a family of eigenstates |θ〉 :=

∑∞
l=−∞ e

ilθ |l〉, which are
eigenstates of both the Hamiltonian and the translation operator for any
θ ∈ [−π, π] [19].

If we now consider the situation where the barriers between potential min-
ima are high but finite, we can define ∆m := 〈l +m| Ĥ |l〉, where Ĥ is the
system Hamiltonian and m ∈ Z. Since the barriers are high, we assume ∆m

to go to zero rapidly as m→∞. We act with this Ĥ on |θ〉

Ĥ
∞∑

l=−∞
eilθ |l〉 =

∞∑
l=−∞

∞∑
m=−∞

eilθ∆m |l +m〉

=
∞∑

m=−∞
∆m

∞∑
l=−∞

ei(l−m)θ |l〉

=

( ∞∑
m=−∞

∆me
−imθ

) ∞∑
l=−∞

eilθ |l〉 .

We recognize that the eigenvalue is a Fourier series and identify θ = ka,
where a is the lattice spacing and k the wave vector. The energy as a func-
tion of the Bloch momentum is now smooth and periodic over the Brillouin
zone.

In this example, the entire spectrum is indexed only by one variable k ∈
[−π/a, π/a] and we can define a smooth periodic map form [−π/a, π/a] to
R by k →∑∞

m=−∞∆me
−imθ. This map is known as (energy) band [20].

We have however seen in Bloch’s theorem above that in general the Bloch
eigenfunctions un,k are characterised not only by the Bloch momentum k,
but also by an index n.2 We say such a system has n bands, since for each
value of the index n we can define a smooth periodic map from the Brillouin
zone to the energy eigenvalues corresponding to the Bloch eigenfunctions
[20]. All bands together are known as the band structure of the system.

Band structure can also be used to explain the existence of conductors,
semi-conductors and insulators. Suppose we have a system with multiple
bands that are separated by (one or more) gaps.3 There will be electrons
filling all states available to them, starting from the one with the lowest

2In our simple 1D example above k becomes a scalar and n can take only 1 value.
3A gap can be defined as an interval of energies such that there exist lower and higher

energies that are in the spectrum of the Hamiltonian Ĥ, while this interval does not
contain any eigenvalues of the Ĥ, so these energies are not in any band, while above and
below it there are bands. If no gaps exist, the system will always be a metal.
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energy.4

At zero temperature, all states with energies below the chemical poten-
tial (see section 2.1.3) will be filled and all states with energies above it are
empty. If the chemical potential is within some band, we can easily increase
or decrease the number of electrons by varying the potential a little bit and
(if there is no disorder, see section 2.1.4) electrons can move rather freely
through the system, which is then known as conductor. If the chemical po-
tential is in one of the gaps5, the above process does not work and we are
dealing with an insulator.6. The highest filled band of an insulator is called
valence band, while the lowest empty band is the conduction band.

At non-zero temperature the electrons are distributed according to a prob-
ability distribution known as Fermi-Dirac distribution instead, but qualita-
tively the distinction between insulators and conductors remains the same.

2.1.2.2 Effective mass

The group velocity of a wave packet in band n is given by vn(k) = 1
~∇kE(k).

If we define the crystal momentum p = ~k, we can use Newton’s second law
dp
dt = F = ma, where t denotes time, F is a force, a an acceleration and m
an effective mass (to be computed). Combining these formulas we get

1

mn
= an

1
dp
dt

=
d

dp
vn(k) =

1

~2
∆kE(k). (2.1.2.2)

We remark that the effective mass can be either positive or negative, as op-
posed to “real” mass, which is always positive! Near the band edge (which
is the region where we are most interested in) we can use a quadratic ap-
proximation of the band dispersion relation

E(k) ≈ En +
~2k2

2mn
.

We can then smooth out the wave function and eliminate the periodicity
from the problem by introducing the effective mass equation [13](

En +
(i~∇+ eA)2

2mn
+ U(x)

)
Ψ(x) = EΨ(x), (2.1.2.3)

where e is the charge of an electron, A is the vector potential (to couple
the electron to an external electromagnetic field, see for example [19] or

4At zero temperature they will fill precisely those states with lowest energy, while there
will be a different distribution at finite temperature, but low energy-states will always be
preferred over high energy-states.

5or precisely at the maximum of a band
6Unless the gap is narrow, in which case we have a semi-conductor
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[13]), U(x) some potential energy (in general not periodic, since the effective
mass takes care of the periodic lattice potential) and, with a slight abuse of
notation, Ψ(x) the smoothend-out wave function. We can see that (2.1.2.3)

indeed induces the quadratic dispersion relation E(k) = En + ~2k2

2mn
.

2.1.3 Tight-binding models

In addition to the nearly-free electron model, there are also other models for
electron transport through crystals. One group of models is known as the
tight-binding models. In these models the moving electrons are assumed to
be localised at a certain site and they are only influenced by sites that are
sufficiently close to them.

We will again be interested in finding eigenstates of the Hamiltonian op-
erator H, but in this case the Hamiltonian will not be a differential operator
any more. We will obtain an expression for H using the formalism of second
quantisation. If we assume the number of states M to be finite, we can write
H as the product of a row vector c†, a Hamiltonian matrix Ĥ and a column
vector c

H = c†Ĥc. (2.1.3.1)

In the above, c† is interpreted as a vector of creation operators, that is, it is
a vector of M operators c†i , with i ∈ 0, ...,M − 1, that create an electron at
lattice site i. If there is already an electron at lattice site i, it will return the
number 0. This is known as the Pauli exlusion principle (see for example
appendix A or [19]). We interpret c as a vector of annihilation operators cj ,
with j ∈ 0, ...,M − 1, that remove an electron at lattice site j if there is an
electron at lattice site j; if this lattice site is not occupied, these operators
will return the number 0.

The Hamiltonian H has the property that H = ΣM−1
i,j=0αijc

†
icj , for a set

of real numbers αij . This means that the creation operators are always to
the left of the annihilation operators (this is called normal ordering) and
that there is an equal amount of creation and annihilation operators (this
makes sure the number of particles is conserved).

The diagonal elements of the Hamiltonian matrix Ĥ give a certain energy
to a lattice site and the i-th diagonal element will be referred to as the local
chemical potential at site i. The laws of quantum mechanics require Ĥ to be
Hermitian (i.e. equal to the complex conjugate of its transpose). Since we
want energies and occupation numbers to be real, Ĥ will be a real symmetric
matrix. We will call the matrix element αij at position (i, j) (with i 6= j) in
the Hamiltonian matrix the hopping between lattice site i and lattice site j.
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A key property of tight-binding models is the assumption that the hop-
ping between lattice sites more than a few sites apart is zero. This means
that electrons will only be influenced by the surroundings and not move
more than a few sites per time unit. This will lead to a sparse Hamiltonian
matrix, a property useful for numerical methods.7

2.1.3.1 Tight-binding and finite element methods

Tight-binding models are not completely unrelated to the nearly free elec-
tron model. We now demonstrate, following [13], how applying a finite dif-
ference scheme to an effective mass equation leads to a tight-binding model.

For simplicity we consider a one-dimensional lattice with no vector poten-
tial. If we also absorb the band energy into the potential, (2.1.2.3) simplifies
to solving the eigenvalue problem for the Hamiltonian operator Ĥop

Ĥop = − ~2

2mn

d2

dx2
+ U(x). (2.1.3.2)

If we let f(x) a test function, discretise the coordinate x with lattice spacing
a and define fj := f(ja) and Uj = U(ja) for any integer j, we can use a
standard finite difference approximation8

Ĥopf ≈ −
~2

2mn

(
fj+1 − 2fj + fj−1

a2

)
+ Ujfj .

If we assume the length to be finite, this becomes a matrix-vector multipli-
cation, where the Hamiltonian matrix is given by

Ĥmat =


... − ~2

2mna2
0 0

− ~2
2mna2

Uj + ~2
mna2

− ~2
2mna2

0

0 − ~2
2mna2

Uj+1 + ~2
mna2

− ~2
2mna2

0 0 − ~2
2mna2

...

 . (2.1.3.3)

This Hamiltonian matrix Ĥmat can also be interpreted as a tight-binding
Hamiltonian matrix with local chemical potentials Uj + ~2

mna2
and nearest-

neighbour hopping terms − ~2
2mna2

.

2.1.4 The effects of disorder

Until now we have only concerned ourselves with ideal crystals, with per-
fect symmetries. However, this complete perfection can not be achieved

7See also chapter 4 and appendix C.
8See for example [21]
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in nature, since the lattice structure will always be distorted by for exam-
ple thermal fluctuations. These distortions of the crystal structure, either
caused by chemical impurities (other atoms or molecules than those the lat-
tice consists of) or by crystal defects (the correct atoms or molecules are not
at the place they would be in a perfect crystal) are known as disorder.9

The effect of disorder on the electrons of a crystal is that it in general
hinders movement, by making the crystal less uniform. As long as the dis-
order is not too large, we can still use the effective mass equation (2.1.2.3),
but we should add random fluctuations to the potential U(x). Hence we
can still use tight-binding models, but with random fluctuations added to
the local chemical potential.10

2.1.4.1 The Drude model

The Drude model is a classical model for electron transport which expresses
the resistance of a material with chemical potential within the conduction
band in terms of the disorder, leading to some form of Ohm’s law (R = V

I or
J = σE, where R is resistance, I an electrical current, V the applied electric
potential, J the current density, σ the conductivity and E the electric field).
In this model we assume that electrons move classically (so they respond to
the force applied to them by an electric field according to Newton’s second
law) and that the only other way their momentum changes is by colliding
with impurities, after which we assume their momentum to be completely
random. Following [13], we derive how these assumptions lead to Ohm’s law.

We consider a system in a constant electric field E. The electron momentum
will converge to a steady state situation quickly and it is this steady state
we study here. In the steady state, the expectation value of the electron
momentum p does not change any more:

0 =

〈
dp

dt

〉
= eE−

〈mv

τ

〉
(2.1.4.1)

where e is the charge of the electron, m the (effective) mass, v the electron
velocity and τ the time between collisions with impurities. We now define the
momentum relaxation time τm := 〈τ〉 as the mean time between collisions
and the electron drift velocity vd := 〈v〉. We remark that the electric current
density can be expressed in terms of electron drift velocity and electron
density ne through J = evdne, after which we arrive at Ohm’s law

J = evdne =
e2neτm
m

E, (2.1.4.2)

9If there is so much disorder that no crystal structure can be defined any more, we
refer to a solid as being amorphous

10This makes the term local chemical potential appropriate indeed.
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where we can see that the relation between current density and electric field
is indeed linear and the conductance is given by e2neτm

m , which goes to 0 if
the disorder becomes very large and becomes infinite in pure samples.

2.1.4.2 Localisation

We have discussed a model for conductance in which the electrons are treated
classically. However, their movement is in general not obeying classical equa-
tions; the electrons are quantum mechanical particles. Quantum mechanical
effects will change the way electrons move through the system, leading to
deviations from Ohm’s law.

If the dimension of the system is sufficiently low or the disorder is large,
the electronic states will get localised,[22], [23], that is, their position proba-
bility density distribution |Ψ(x)|2 will be exponentially decaying away from
a certain central point x0

|Ψ(x)|2 ≤ Ce−
2|x−x0|

ξ , (2.1.4.3)

where C is some constant and ξ is known as the localisation length [22], [23].

The conductance G is defined as the inverse of the resistance, that is, if
I is an electrical current, V an applied voltage and R the electric resis-
tance, then G = 1

R = I
V . Suppose our system is a hypercube of size Ld

(L is the length, d the dimension). We define the generalized dimensionless
conductance g(L) [23], [24]

g(L) :=
G

e2/2~
≈ σLd−2, (2.1.4.4)

where σ is the conductivity and G the conductance. We remark that the
approximation in (2.1.4.4) is valid for large L, since this relation holds for
uniform conductors, like the systems discussed in section 2.1.4.1.11 We can
also approximate g(L) in the regime where the disorder becomes very large,
so that there is localisation ([22], [23], [24])

g(L) ∼ e−αL, (2.1.4.5)

where α is some positive constant. We will now use the scaling argument
of [24] to argue that if we are in 1 or 2 dimensions, g(L → ∞) = 0. We
first consider multiple identical systems of size L; they have conductance
g(L). If we combine bd such systems to form a system with sides bL, the
conductance should be given by g(bL).

11Since for uniform and cubic systems J = I
Ld−1 and E = V

L
, this is just Ohm’s law.
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We remark that we want this to hold for any b ∈ R+ and that both g
and L are always positive, so their logarithms are well defined. Further-
more, L 7→ g(L) is a smooth bijection from R+ to g(R+). Hence there exists
a smooth monotonic function of one variable β(g)[24], such that

d ln g

d(lnL)
= β(g(L)).

The asymptotics of β(g) are obtained from the different approximations for
g(L) (2.1.4.4) and (2.1.4.5)

lim
g→∞

β(g) = d− 2, (2.1.4.6)

lim
g→0

β(g) = ln(Kg), (2.1.4.7)

where K is some constant. We conclude that for systems of dimension 1 or 2,
β(g) is always negative. Since g is a decreasing function of L, the conclusion
is that the conductance always vanishes for large systems, so there can be
no real metals in 1 or 2 dimensions. We demonstrate this with numerical
examples in appendix B.

2.2 The Landauer-Büttiker formalism for electronic
transport

We have described how electrons in general behave in solids. We will now
model systems that are more related to systems studied in experiments and
which consist of an object to be studied (the central region) and wires (to
which we will refer as leads) that are connected to the object. The approach
will be based on considering this as a scattering problem; it was first devel-
oped by Landauer [25] and expanded by Büttiker [26]. This will only be a
short introduction; [13] explains this in much more detail, making links to
experiments. A rigorous derivation of the important Landauer formula can
be found in [27].

2.2.1 Assumed experimental set-up

We assume that the central region and leads are crystalline solids. The
ends of the wires would then be connected to things like power sources and
measurement devices. We use a model in which we assume the leads to be
much longer than the object (we refer to this property as semi-infinite and
model it by sending one edge of each lead to ±∞ respectively) and that they
are described by the Schrödinger equation with the discrete Schrödinger op-
erator (2.1.3.3) and constant potential (this property is called ideal). We
assume the leads and central region to be aligned along one direction which
we will call the x-axis. A sketch of such a setup is shown in figure 2.1.
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Figure 2.1: A sketch of the assumed setup. All systems are discrete and the
leads extend to infinity. A wave enters from the left (black arrow) and we
measure the part that is transmitted to infinity through the right lead (red
arrow)

The experiment now consists of shooting an electron into the lead at x →
−∞ and measuring whether it comes out of the left lead again at x→ −∞
or at the right lead at x → ∞. There is no time scale in this experiment,
but otherwise we would also let the time t→ −∞ at the start of the exper-
iment and t → ∞ at the end of the experiment, which is the standard way
of modelling scattering in quantum mechanics, see for example [19], [28].

2.2.2 The transport model

Because we are actually interested in the behaviour of the central region
as a part of the system, we will choose the leads to be identical and as
simple as possible, such that we can treat them exactly or with only a little
computational effort.

2.2.2.1 The central region

The part of interest is the central region, which will be described by some
model tight-binding Hamiltonian. The central region can be 1-, 2- or 3-
dimensional and have any band structure. We pick our leads to have the
same dimension as the insulator and a band structure that is (slightly) wider,
that is, for any energy in the band of our central region, we want that energy
to also be in the band for the leads. All-in-all, the central region can basically
be anything we like, as long as it can be described by a tight-binding model
and fits into the scattering formalism.

2.2.2.2 Semi-infinite leads

The leads are used to transport electrons to and from the insulator. They
will be chosen to be as simple as possible. As simple as possible means
that there dimensionality should be the same as that of the insulator, they
should be discrete (to make the coupling straightforward) and should be de-
scribed by a discretised version of (2.1.2.3), with zero vector potential and a
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constant potential U and effective mass m chosen such that the band width
encompasses all of the insulator spectrum.

We take the lead lattice spacing constant and at first impose zero Dirich-
let boundary conditions on a rectangular domain. If our dimensionality is
greater than 1, we pick our boundaries in the directions other than the x-
direction to be such that the boundaries of the central region are contained
within. One boundary in the x-direction is chosen to be the beginning (or
end) of the insulator and for the other we take the limit of x → ±∞ by
adding extra lattice points and keeping the lattice spacing constant. In one
dimension we can solve this exactly (see section 3.1.3) and in two or three
dimensions we can straightforwardly generalize from this case.

2.2.3 The transmission function

The transmission function Tpq is defined to be the chance that an electron
shot in through mode q ends up in mode p. We define the transmission
function between leads A and B, TAB(E) to be the sum over all modes
p ∈ A, q ∈ B. We remark that TAB(E) takes values between 0 and the
number of modes. It is a function of the energy E and we require that
TBA = TAB.

The Landauer-Büttiker formalism relates the transmission function between
different leads A,B to the conductance G(E) of an insulator, through the
Landauer formula [25], [27]

G(E) =
e2

h
TAB(E). (2.2.3.1)

The Landauer formula only holds for systems at zero temperature (but it
can be generalized to systems with non-zero temperature) and we assumed
that all electrons in the lead have the same spin (else we should multiply the
right-hand side of (2.2.3.1) with a factor 2). For non-zero temperature t, the
generalisation of the Landauer formula is straightforward, provided that we
still apply an infinitesimal voltage bias12 between the leads [13]. If we let

f0(E) =
(
e
E−µ
kt + 1

)−1
(with µ the chemical potential and k Boltzmann’s

constant) the equilibrium Fermi-Dirac distribution we get the conductance

G(µ, t) =
e2

h

∫
TAB(E)

(
−∂f0(E,µ, t)

∂E

)
dE. (2.2.3.2)

12The assumption of an infinitesimal bias can also be lifted, see [13], [14]; in chapter
3 we discuss how we apply a non-equilibrium theory to the equilibrium systems that we
want to study.
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It can be seen that if t→ 0, the two expressions for the conductance coincide
(if we identify the Fermi energy E = µ).

2.2.4 The scattering matrix

Since the leads are quantum mechanical systems, we can decide to focus on
the waves that travel through them. When these waves hit the scattering re-
gion in the middle, their amplitudes are modified and one mode may partly
change into another. If the total number of modes in the leads is M , we
can define an M -by-M matrix that relates the current amplitudes of these
waves before and after the scattering to another.13 This matrix is known as
the S-matrix.

If the current is to be conserved, the S-matrix S is a unitary matrix (see [13]
for a derivation). It is clear that there should exist a simple relation between
the transmission function and the S-matrix elements; the transmission func-
tion between modes p and q and the S-matrix element Spq are related by
Tpq = |Spq|2. This means that we can indeed obtain the conductance by
considering electron transport as a scattering problem.

13The current amplitude characterizes the current carried by a wave and is given by the
square root of the wave velocity times the wave amplitude.
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Chapter 3

Electron transport theory
with Green’s functions

We have introduced some theory on the transport of electrons on crystals and
described the Landauer-Büttiker formalism to connect this electron trans-
port to physical observables. The question of how to compute the relevant
transmission function or scattering matrix remains. Green’s functions will
be introduced and shown to be useful in computing these quantities. This
will be further illustrated by examples.

3.1 Green’s functions

We start with introducing Green’s functions and compute some of impor-
tance to our purposes. In section 3.2.1 we need an expression for the Green’s
function of the infinite discrete ideal lead and in section 3.2.2 we need the
Green’s function for the semi-infinite discrete ideal lead. Our discussion will
follow that in reference [13].

We are interested in solving the time-independent Schrödinger equation,
which is in our case either a second order elliptic partial differential equa-
tion or a system of linear equations.

We can solve an equation of the form Âx = b, where Â is a given in-
vertible matrix, b a given vector and x an unknown vector by inverting
Â: x = Â−1b. The method of Green’s functions consists of proceeding
analogously in trying to find a solution to a differential equation; a Green’s
function is a distribution that is a right inverse of a differential operator.1

The Green’s functions we need are not unique, because we will still have to

1We will actually also refer to the right inverse of finite difference operators and some-
times even the inverses of matrices as Green’s functions, if these finite difference operators
and matrices arise from tight-binding models.
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enforce boundary conditions.

Suppose we have a system described by an effective mass equation (2.1.2.3),
to which we add an excitation f(x) (i.e. an incoming wave from the leads).
We will then have an equation of the form(

Ĥop + En − E
)

Ψ = f. (3.1.0.1)

Loosely speaking, we will then take G = −
(
Ĥop + En − E

)−1
and Ψ =

−Gf .2 To make this more precise, we need to introduce some theoretical
concepts regarding partial differential equations. The introduction here will
be brief, but much more background information can be found in for example
[29], [30] and [31].

3.1.1 What are Green’s functions?

When we look at the operator Ĥop, a natural question to ask are what its
domain and co-domain are. It is clear that the Hamiltonian sends a function
to another function, so we will now define some important function spaces
known as Lp-spaces and their generalizations, Sobolev spaces.

Definition 1. Let 1 ≤ p < ∞, n ∈ N and Ω ⊂ Rn open. Let f : Ω → R be

a function. The Lp(Ω)-norm is defined by ||f ||Lp(Ω) :=
(∫

Ω |f(x)|
1
p dx

)p
.

We remark that all integrals are to be understood as Lebesgue integrals and
that with “function” we may also mean “the equivalence class of functions
that are the same almost everywhere”, that is, functions that only differ
from each other on a set of measure 0. An introduction to measure theory
can for example be found in [32].

Definition 2. Let 1 ≤ p < ∞, n ∈ N and Ω ⊂ Rn open. The space of
functions with finite Lp(Ω)-norm,

(
Lp(Ω), ||.||Lp(Ω)

)
, is called Lp(Ω).

Proposition 1. Lp(Ω) is a Banach space. L2(Ω) is a Hilbert space.

Proof. The proof can be found in many books, for example in [29].

Sobolev spaces are generalizations of Lp-spaces, in the sense that a function
is an element of a Sobolev space if a certain derivative of it is in an Lp-space,
or if it is a certain derivative of a function in an Lp-space. Before we can
properly introduce Sobolev spaces, we should introduce the concept of weak
derivatives.

2It is conventional to choose the signs like this.

21



Definition 3. Let n ∈ N and Ω ⊂ Rn open. Let f : Ω → R be a func-
tion. We say that g : Ω → R is a weak derivative of f , if

∫
Ω fφ

′ =
−
∫

Ω gφ ∀φ ∈ C∞0 (Ω), where C∞0 (Ω) is the space of infinitely differ-
entiable and compactly supported functions on Ω and φ′ is the derivative of
the test function φ.

Proposition 2. For any differentiable function u : Ω→ R the strong deriva-
tive u′s coincides with the weak derivative u′w almost everywhere.

Proof. Let φ be a test function. Then
∫

Ω (u′s − u′w)φ =
∫

Ω u
′
sφ −

∫
Ω u
′
wφ =∫

Ω uφ
′−
∫

Ω uφ
′ = 0, where we first used the linearity of the integral and then

the definition of the weak derivative and partial integration. We conclude
that u′s = u′w almost everywhere by the fundamental lemma of the calculus
of variations.

The above proposition shows that weak derivatives are indeed a generalisa-
tion of ordinary (strong) derivatives. In the same way, Sobolev spaces are a
generalisation of Ck-spaces

Definition 4. The Sobolev space W k,p(Ω), where k ∈ N and p ∈ [1,∞],
is defined as the space of functions f ∈ Lp(Ω) for which the k-th weak
derivative is also in Lp(Ω). The Sobolev norm is defined as ||f ||Wk,p(Ω) :=(∑k

j=0 ||Djf ||pLp(Ω)

) 1
p
.

Proposition 3. Sobolev spaces with Sobolev norm defined above are Banach
spaces. If p = 2 they are Hilbert spaces.

Proof. The proof can be found in many books, for example in [29].

We can now see that the differential operator Hop will send an element of
W k+2,p(Ω) to W k,p(Ω), for all k ≥ 0. Sobolev spaces satisfy inequalities
known as Sobolev inequalities. In particular, for p > N ∈ N+ the following
holds

Theorem 2 (Morey). Let p > N ∈ N+. Then W 1,p(RN ) ⊂ L∞(RN ) with
continuous injection. For all u ∈W 1,p(RN ), almost all x, y ∈ RN , α = 1−N

p
and C a constant depending on p and N

|u(x)− u(y)| ≤ C|x− y|α||∇u||p.

This implies that all such functions u are equal to a continuous function
almost everywhere, so we can represent all elements of W 1,p(RN ) by a con-
tinuous representative.

Proof. The proof can be found in many books, for example in [29].
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We can now introduce the concept of distributions and in particular the
Dirac δ-distribution. We choose p = 2 and represent every element of
W 1,2(RN ) by its continuous representative.

Definition 5. Let C∞0 (Ω) be the space of test functions. A distribution
is a linear functional on C∞0 (Ω). The Dirac δ-distribution is defined by
< δ, φ >L2(Ω):= φ(0), for φ ∈ C∞0 (Ω).

Proposition 4. The Dirac δ-distribution is an element of the dual space of
(W 1,2(RN ), ||.||L2(RN )).

Proof. By Moreys’s theorem we can represent all elements f(x) ∈ (W 1,2(RN ), ||.||L2(RN ))

to be continuous and bounded. Then < δ, f >L2(RN )=
∫ N
R )f(x)δ(x) dx =

f(0) defines a bounded linear functional, so the δ-distribution is in the dual
space.

We remark that we have extended the δ-distribution to a functional on
W 1,2(RN ) in the above, which can be done unambiguously. We also remark
that we use the L2-norm instead of the W 1,2-norm and do not identify W 1,2

with its dual space.

The Dirac δ-distribution plays the role of an identity in the sense that the
retarded Green’s function is a solution of(

ε− Ĥop(x) + iη
)
G(x, x′) = δ(x− x′), (3.1.1.1)

where x, x′ ∈ RN are coordinates and η is a positive infinitesimal that will
make sure our solution is unique3. We have also fixed the band index n
and defined ε = E − En. We have now made our loose definition of the
Green’s function precise: the Green’s function is defined by (3.1.1.1) and
the solution of (3.1.0.1) is given by Ψ(x) = −

∫
RN G(x, x′)f(x′) dx′.

3.1.2 Green’s functions for finite difference operators

We have defined the Green’s function for differential operators. However,
we will be most interested in using Green’s functions to solve finite differ-
ence equations and matrix equations. We now relate these different notions
of Green’s functions and we find a way to compute these Green’s function
using the spectral representation.

As explained in section 2.1.3.1, finite difference operators are both related to
differential operators and to matrices. This suggests that their right inverse

3(and satisfies certain boundary conditions if we use it for evaluating the time-dependent
Schröedinger equation)
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should be something that has some properties of Green’s functions and also
some properties of inverse matrices. For a matrix, the inverse would be a
matrix dependent on the real parameter ε. In the previous section we have
found that the Green’s function for a differential operator depends on the
real numbers x, x′, ε.

We can connect these two by realizing that every matrix element has two
indices corresponding to two lattice sites. This suggests that the Green’s
function for a finite difference operator should also depend on the lattice
sites and energy, so it will be a function G : I × I ×R, where I is an (count-
ably infinite) index set. If we would take I to be finite, we would recover
a matrix, whereas taking I to be uncountable would give us the case of a
Green’s function depending on continuous coordinates, i.e. a Green’s func-
tion for a differential operator.

It is important to note that the Green’s function of a finite difference opera-
tor is a right inverse; in general it will not commute with the operator to also
be a left inverse. This is the same as for differential operators, but different
from the way matrices work. We can use a discrete version of (3.1.1.1) to de-
fine the retarded Green’s function for finite difference operators: we replace
x, x′ by indices j, l ∈ I and replace the Dirac δ-distribution by a Kronecker
δ-function δjl, which is 1 if j = l and 0 otherwise.

In order to compute the retarded Green’s function we will derive the spectral
representation of the Green’s function. Suppose we have solved the eigen-
value problem for the Hamiltonian operator Hop. We then have a complete
orthonormal basis {Ψn}n∈N of eigenfunctions of the Hamiltonian operator
Hop with corresponding eigenvalues {En}. We define projectors Πn which
project any state on the corresponding basis element (in Dirac notation
these projectors are defined as Πn := |Ψn〉 〈Ψn|, see appendix A or [19]).
Any state Ψ can now be decomposed into basis states: |Ψ〉 =

∑
n∈N Πn |Ψ〉.

In particular, we can decompose the Green’s function |G〉 := G(ε, j; l) de-
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fined by the discrete version of (3.1.1.1) into basis states. Then

δjl =
(
ε− Ĥop(j) + iη

)
G(ε, j; l) =

(
ε− Ĥop + iη

)
|G〉 (3.1.2.1)

=
(
ε− Ĥop + iη

)∑
n∈N

Πn |G〉

=
∑
n∈N

(
ε− Ĥop + iη

)
|Ψn〉 〈Ψn, G〉

=
∑
n∈N

(ε− En + iη) |Ψn〉 〈Ψn, G〉

=
∑
n∈N

(ε− En + iη) Πn |G〉 . (3.1.2.2)

It is now clear that we can write G(ε, j; l) as

G(ε, j; l) =
∑
n∈N

Πn(j, l)

ε− En + iη

=
∑
n∈N

Ψj,nΨ∗l,n
ε− En + iη

. (3.1.2.3)

The spectral representation (3.1.2.3) is a useful tool for the computation of
Green’s functions for which the eigenvalue problem is (easily) solvable.

3.1.3 The Green’s function of an ideal lead

We compute the Green’s functions for one-dimensional discrete ideal leads
for both infinite and semi-infinite leads. The discrete lead is described by
(2.1.3.3), with potential energy Ui set to 0.

We start by considering the discrete lead with Dirichlet boundary condi-
tions at the boundary points 0 and L. The equations become as follows

− ~2

2ma2
Ψj−1 +

~2

ma2
Ψj −

~2

2ma2
Ψj+1 = EΨj , (3.1.3.1)

Ψ0 = 0, ΨN = 0,

where Ψj = Ψ(ja) and N = L/a. Lattice points are at ja for j ∈ 0, 1, ..., N
and will also be denoted by xj := ja. It can be useful to view the system
as a tight-binding model instead of a discretisation of a continuous model
(see section 2.1.3.1), so we also introduce the parameters µ = ~2

ma2
and

t = − ~2
2ma2

.

We note that the eigenfunctions of a corresponding continuous ideal lead
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are sinusoids, so Ψκn(x) ∼ sin(κnx) (where κn = πn
L ). For the discrete lead

we make the same ansatz for the eigenfunctions and plug them into (3.1.3.1)

E sin(κnxj) = − ~2

2ma2
sin(κnxj−1) +

~2

ma2
sin(κnxj)−

~2

2ma2
sin(κnxj+1)

= − ~2

2ma2
sin(κn(xj − a)) +

~2

ma2
sin(κnxj)−

~2

2ma2
sin(κn(xj + a))

=
~2

ma2
(1− cos(κna)) sin(κnxj). (3.1.3.2)

This shows that the eigenfunctions are indeed given by Ψj,n =
√

2/L sin(κnxj),
with dispersion relation E(κn)− µ = 2t cos(κna). The velocity of the wave
packets is given by

vn =
1

~
∂E

∂κn
=

~
ma

sin(κna). (3.1.3.3)

We can now compute the Green’s function using the spectral representation
(3.1.2.3)

GR(ε, j; l) =
N∑
n=1

Ψj,nΨ∗l,n
ε− E(κn) + iη

(3.1.3.4)

=
2

L

N∑
n=1

sin(κnxj) sin(κnxl)

ε− ~2
ma2

(1− cos(κna)) + iη

=
2

L

N∑
n=1

{
eiκnxj−e−iκnxj

2i
eiκnxl−e−iκnxl

2i

ε− ~2
ma2

(1− eiκna+e−iκna

2 ) + iη

}
. (3.1.3.5)

We introduce the variable zn = eiκna and take the limit L → ∞, which
enables us to write the retarded Green’s function as an integral over the
unit circle in the complex plane

GR(ε, j; l) =
−i
4πa

∮
|z|=1

(
zj − z−j

) (
zl − z−l

)
ε− ~2

ma2

(
1− 1

2

(
z + 1

z

))
+ iη

dz

z
. (3.1.3.6)

We can compute this integral by means of Cauchy’s residue theorem (see
for example [33]). In order to do this it is helpful to split the powers of z in
the numerator and identify where the poles are for general powers p ∈ Z of
z, so we should solve

zp
(
z2 +

(
2ma2ε

~2
− 2 + iδ

)
z + 1

)
= 0, (3.1.3.7)

where the infinitesimal δ = 2ma2

~2 η. We define ε̄ := 2ma2ε
~2 . For p ≥ 1 there

is a pole of order p at 0, a pole of order 1 somewhere within the unit circle
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and another pole of order 1 outside of the unit circle. For p ≤ 0 there is one
pole of order 1 within and one pole of order one outside of the unit circle,
but there are no poles at 0. The poles of order 1 are given by

z± = − ε̄
2

+ 1− iδ

2
± 1

2

√
ε̄2 − 4ε̄+ 2i(ε̄− 2)δ. (3.1.3.8)

We remark that z+ = 1
z−

, so there will always be one pole within and one

pole outside of the unit circle in the complex plane.4 We can check numeri-
cally that z+ is inside the unit circle if ε̄ ∈ [2,∞[ and that z− is in the unit
circle when ε̄ is not in this interval. Another property of z± is that it only
has a non-zero imaginary part if ε̄ ∈ [0, 4], that is, if the energy is within
the band width.

We must in addition make the important remark that the square root has
a branch cut along the negative real axis. This means that the 2i(ε̄ − 2)δ
will give an extra minus sign in front of the square root for ε̄ ∈ [0, 2]. In
practice this means that when we take δ → 0 we should select the solution
with z+ for the interval [0,∞], in this way accounting for the extra minus
sign automatically.

This now implies that the computation of (3.1.3.6) can be performed by
considering∮

|z|=1

dz

zp(z − z+)(z − z−)
=

2πi
zp+(z+−z−)

, if p ≤ 0 and |z+| < 1,
2πi

zp−(z−−z+)
, if p ≤ 0 and |z−| < 1,

2πi
zp+(z+−z−)

+ dp−1

dzp−1
2πi

(z−z+)(z−z−)

∣∣∣
z=0

, if p ≥ 1 and |z+| < 1,

2πi
zp−(z−−z+)

+ dp−1

dzp−1
2πi

(z−z+)(z−z−)

∣∣∣
z=0

, if p ≥ 1 and |z−| < 1.

(3.1.3.9)

We rewrite (3.1.3.6) in the form of (3.1.3.9)

GR(ε, j; l) = − ima
2π~2

(∮
|z|=1

dz

z−(j+l)(z − z+)(z − z−)
−
∮
|z|=1

dz

z−(j−l)(z − z+)(z − z−)

−
∮
|z|=1

dz

z(j−l)(z − z+)(z − z−)
+

∮
|z|=1

dz

z(j+l)(z − z+)(z − z−)

)
.

(3.1.3.10)

In principle we have now computed the semi-infinite lead retarded Green’s

4The infinitesimal δ will guarantee that there are no poles on the unit circle.
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function for any two lattice points. To provide some further insight and for
later reference, we will now set j = l = 1 and work out the derivatives in
(3.1.3.9)

GR(ε, 1; 1) =
ma

~2

(
± z2

±
(z+ − z−)

∓ 2

(z+ − z−)
± z−2

±
(z+ − z−)

+ (z+ + z−)

)
,

(3.1.3.11)

where the ±-sign is determined by the pole z± that is within the unit circle.

We can now define the momentum κL(ε) ∈ C by choosing z+(ε) = eiκLa.
Then 2 cos(κLa) = z+ +z− = (2− ε̄) and we re-obtain our dispersion relation
and lead velocity

ε− µ = 2t cos(κLa), (3.1.3.12)

vL =
1

~
∂ε

∂κL
=

~
ma

sin(κLa). (3.1.3.13)

We can also rewrite our Green’s function in terms of κL and as follows

GR(ε, 1; 1) =
−1

ta
e±iκLa, (3.1.3.14)

where we remark that both κL and vL are in general not purely real. We
have now computed the right lead Green’s function, but the left lead Green’s
function is of course precisely the same.

The computation of the infinite lead Green’s function is analogous to the
computation of the semi-infinite lead Green’s function. In this case the
eigenfunctions are given by Ψj,n =

√
1/Leiκnxj , where n now runs from −N

to N . The dispersion relation remains the same. We compute the Green’s
function in the same way, remarking that we now go round the contour
twice. The integral analogous to (3.1.3.6) is

GRInf (ε, j; l) =
i

πa

∮
|z|=1

zj−l

ε− ~2
ma2

(
1− 1

2

(
z + 1

z

))
+ iη

dz

z
. (3.1.3.15)

If we now consider the case where j = l we obtain

GRInf (ε, j; j) =
2ma

~2

1

z+ − z−
=
−ima
~2

1

sin(κLa)
= − i

~vL
. (3.1.3.16)

3.2 The non-equilibrium Green’s function formal-
ism

The non-equilibrium Green’s function formalism is a way of describing quan-
tum transport. It was originally developed by Kadanoff and Baym [11]
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and by Keldysh [10]. Another name for it is Keldysh formalism. For
non-interacting systems in equilibrium this formalism is equivalent to the
Landauer-Büttiker formalism described previously (this will be shown in the
part on Fisher-Lee relations).

3.2.1 Fisher-Lee relations

Fisher-Lee relations [12] describe the scattering matrix in terms of Green’s
functions and in this way connect the non-equilibrium Green’s function for-
malism to the Landauer-Büttiker formalism.

A system as in the section on the Landauer-Büttiker formalism can be de-
scribed as an ideal lead that is modified such that all wave functions are
multiplied by the wave amplitude scattering matrix upon passing through
the origin. The (part of the) lead to the left of the origin will be referred to
as lead − and the part to the right of the origin as lead +.

If we consider the retarded Green’s function for a one-dimensional infinite
lead derived above in a lattice point 0− with coordinate smaller then but in-
finitesimally close to 0, the left-moving amplitude is not modified, while the
right-moving amplitude is scattered and the exponential becomes 1. Hence
[13],

GR±(0±; 0−) = δ±−A
− + Sw±−A

+, (3.2.1.1)

where δ±− is the Kronecker delta function and Sw±− the wave scattering ma-
trix element corresponding to the scattering by the system. Using (3.1.3.16),

A+ = A− = − i
~v− and Sw±− =

√
v−
v±
S±− and taking into account when δ±−

is 0 we arrive at the Fisher-Lee relation

S±− = −δ±− + i~√v−v±GR±(0±; 0−). (3.2.1.2)

In the above Fisher-Lee relation the velocities are given by (3.1.3.12) and
(3.1.3.13).

In case of multi-moded leads the following Fisher-Lee relation can be de-
rived [13]

Snm = −δnm + i~
√
vnvm

∫∫
χn(y±)GR±(0±, y±; 0−, y−)χm(y−) dy± dy−,

(3.2.1.3)
where the indices n,m number the channels (n in lead ± and m in lead −),
transverse coordinates are labelled with y and transverse wave-functions
with χ.
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3.2.2 Lead self-energy

We have derived the Green’s function for an isolated semi-infinite discrete
lead and we described how to compute the scattering matrix from the sys-
tems Green’s function. We now connect the leads to the insulator and use
the expressions for the lead Green’s functions to simplify the problem of
computing the system Green’s function. This will also enable us to derive
a more compact expression for the transmission function (and hence the
conductance) between two leads.

3.2.2.1 The leads as boundary conditions on the system

Our system consists of an insulator connected on both sides to a semi-infinite
lead. The system is described by a tight-binding operator. We can distin-
guish five different components in the system Hamiltonian, namely the left
and right lead Hamiltonians Ĥl and Ĥr (tight binding operators), the insula-
tor Hamiltonian Hi (a matrix, since the insulator is finite) and the respective
couplings τl, τr of the leads to the insulator (of finite rank, since only a finite
number of sites is coupled).

Since inverting matrices is in general easier than inverting operators and
we have already inverted the lead operators, we would like to use the lead
Green’s functions to reduce the problem to a matrix inversion problem. This
means that we would like to alter the Hamiltonian matrix in such a way that
the leads and lead-system couplings are included; if we were to consider the
corresponding differential equation problem, this would amount to using
special “open” boundary conditions.5

We write the system Hamiltonian as a block matrix.6

Ĥsystem =

Ĥl τl 0

τ †l Ĥi τr
0 τ †r Ĥr

 . (3.2.2.1)

The system retarded Green’s function Gsystem is the right inverse of (E +
iη)1̂−Ĥsystem, where 1̂ is the identity operator. Gsystem can also be written
in the same form as the Hamiltonian

Gsystem =

Gl Gli Glr
Gil Gi Gir
Grl Gri Gr

 .

5As pointed out in [13], writing the insulator, coupling and a finite part of the lead as
a matrix and imposing Dirichlet conditions would correspond to a closed system, where
no electrons can get out of. Writing down a finite matrix and making it “infinite” by
applying periodic boundary conditions would yield an infinite chain of finite leads coupled
to insulators, which is also clearly not what we want.

6Note that the lead (and system) Hamiltonians are now infinite-dimensional matrices
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If we multiply Gsystem by Ĥsystem from the left we would get the following
equations (where 1̂ stands for an appropriate identity matrix or operator
and 0̂ for an appropriate zero matrix or operator)(

(E + iη)1̂− Ĥl

)
Gli + τlGi = 0̂, (3.2.2.2)(

(E + iη)1̂− Ĥr

)
Gri + τ †rGi = 0̂, (3.2.2.3)

τ †l Gli +
(

(E + iη)1̂− Ĥi

)
Gi + τrGri = 1̂. (3.2.2.4)

It is clear that (3.2.2.2) and (3.2.2.3) can be solved in terms of the semi-
infinite lead Green function. If we then substitute these solutions into
(3.2.2.4), we obtain

− τ †l GLτlGi +
(

(E + iη)1̂− Ĥi

)
Gi − τrGRτ †rGi = 1̂, (3.2.2.5)

where GL(R) is the Green’s function of the isolated semi-infinite left (right)
lead. These identical quantities have already been computed (see (3.1.3.10)
and (3.1.3.14)).

We note that (3.2.2.5) is easier to solve then (3.2.2.2)-(3.2.2.4), because
(3.2.2.5) is a matrix-equation for a matrix of dimensions equal to the di-
mensions of the Hamiltonian matrix; because we have solved the problem
of the isolated semi-infinite lead and the coupling between the leads and
insulator is only on the area near the insulator boundary, we have reduced
the effect of the leads to that of a boundary condition on the insulator.
Therefore our focus will be on (efficiently) solving (3.2.2.5) and then ap-
plying (3.2.1.2) or (3.2.1.3) to obtain the scattering matrix and hence the
conductance.

3.2.2.2 Definition of the lead self-energy and lead velocity oper-
ator

In (3.2.2.5) we can combine all the three terms into one such that the insu-
lator Green’s function becomes the inverse of a modified matrix(

(E + iη)1̂− Ĥi − Σ
)
Gi = 1̂, (3.2.2.6)

where we have defined the retarded lead self-energy Σ := Σl+Σr := τ †l GLτl+
τrGRτ †r . We can compute the retarded lead self-energy from the analytic lead

Green’s functions and the couplings and subtract it from
(

(E + iη)1̂− Ĥi

)
,

after which we need to invert the resulting matrix. We note that the retarded
lead self-energy has in general a non-zero imaginary component (for instance
if there are propagating modes [13], [14]), which means that we can leave
the infinitesimal η out of our computations.
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Example 1 (Computation of the retarded lead self-energy). Suppose we
have a 1D system of length N for which the only connections between leads
and insulator are hoppings with strength tc between the last site of the left
lead and the first site of the insulator and between the last site of the insulator
and the first site of the right lead. Then the self-energy matrix only has non-
zero elements in the upper-left and lower right corner. These elements are
equal and given by Σ11(E) = t2cGL(E, 1; 1), where GL(E, 1; 1) is given by

(3.1.3.14). We define ε̄ := 2ma2ε
~2 and t = −~2

2ma2
and plot atΣ11(ε̄)

t2c
in figure

3.1. The real part is plotted in blue and the imaginary part is plotted in red.

-2 2 4 6
Ε

-1.0

-0.5

0.5

1.0

atS11

tc
2

Figure 3.1: A plot of atΣ11(ε̄)
t2c

as a function of ε̄. Also confer [34]

We can also define the advanced lead self-energy ΣA analogously by taking
the equations for the advanced Green’s functions corresponding to (3.2.2.2)-

(3.2.2.6) instead. We will then get ΣA := τlGLAτ †l + τ †rGRAτr, where GL(R)A

is the advanced Green’s function of the isolated semi-infinite left (right) lead.

If
(
GL(R)A

)†
= GL(R), then ΣA = Σ†.

With the advanced and retarded lead self-energy we can define the lead
velocity operator or level-width function Γl(r) := i(Σl(r)−ΣA

l(r)), which is the

velocity or current operator within the left (right) lead [14], [34].
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3.2.2.3 A compact expression for the conductance

With the help of the lead velocity operator we can find a compact expression
for the transmission function Tlr between left and right lead. It is given by

Tlr = Tr
[
ΓlG

RΓrG
A
]
. (3.2.2.7)

In [13] (3.2.2.7) is derived for multi-dimensional leads that are coupled only

at the edge, with coupling constant t = ~2
2ma2

, where m is the effective mass
inside the lead. In [14] it is shown that this formula also holds for very gen-
eral systems. Here we verify the formula for systems discussed in example
1 above.

We sketch the argument given by [13]. We note that the matrices Γl(r)
only have 1 non-zero element. This element is identical and given by Γ11

l =
ΓNNr = −~vL. The fact that these matrices only have one non-zero element
means that we can scale out this element and perform the matrix multi-
plication easily: the product ΓlG

R will be (proportional to) a matrix with
first row equal to GR and the rest zeros. Further multiplication by Γr will
yield a matrix whose only non-zero element is in the upper right corner and
proportional to GR1N . Multiplication by GA will pick out the last row of GA

after which taking the trace gives

Tlr = ~2v2
LG

R
1NG

A
N1

= ~2v2
LG

R
1NG

R∗
1N

= |Slr|2, (3.2.2.8)

where we used the fact that our Green’s functions are actually inverse ma-
trices, ΣA = Σ† and the previously derived Fisher-Lee relation (3.2.1.2).

It is important to note that the matrices Γl(r) are very sparse and only
contain elements corresponding to connecting the left (right) edge of the
insulator to the leads. This means that our matrix products in (3.2.2.7) will
also yield very sparse matrices and the traces will only consists of sums of
very few elements of the Green’s function. An efficient way of computing
the transmission function would then be to decide beforehand which of the
elements we need and what combination they will form, thereby saving us
the effort of the big matrix multiplications and of taking the trace and also
enabling us to think of ways to not compute the entire Green’s functions,
but only the elements we need. These more efficient ways of computing
Green’s functions will be first addressed in chapter 4; we will now derive a
more general formula expressing (3.2.2.7) into (generally) smaller parts of
the Green’s functions.
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Suppose we want to compute Σl for given coupling τl and isolated (re-

tarded) lead Green’s function GL. Then Σl = τ †l GLτl; this self energy is
defined for all combinations of sites (i, j) in the system. We denote the set
of sites within the lead for which the coupling to system site i is non-zero
by {pi} and remark that Σl(i, j) = 0 if either {pi} or {pj} is empty. It
follows from the definition of τl that it has a finite number of columns and
an infinite number of rows. Following the convention that the first index in
a matrix denotes the row number and the second the column number, we
can straightforwardly write down an expression for the non-trivial elements
of the left self energy matrix

Σl(i, j) =
∑
k∈{pi}

∑
n∈{pj}

τ †l (i, k)GL(k, n)τl(n, j).

For the right self energy matrix the non-trivial elements are given by a
similar formula

Σr(i, j) =
∑
k∈{pi}

∑
n∈{pj}

τr(i, k)GR(k, n)τ †r (n, j).

We have derived that Γl(r) can only have non-zero elements if both corre-
sponding sites are connected to the left (right) lead. If we index our sites
according to their position on the left-right axis (which is sensible consid-
ering the geometry of the problem) Γl(r) will have a dense matrix block in
the upper left (lower right) corner and be zero everywhere else. Suppose
that this matrix block is of dimension M × M (and that the dimension
of the right block is the same). We can then perform the computation in
(3.2.2.7) block wise to reduce it to taking a trace of a product of four dense
M ×M -matrices

Tlr = Tr
[
ΓIIl GRINΓNNr GANI

]
, (3.2.2.9)

where ΓIIl
(
ΓNNr

)
denotes the dense M ×M upper left (lower right) corner

of Γl(r), G
R
IN the M ×M upper right corner of GR and GANI the M ×M

lower left corner of GA.

We have derived a computationally easy formula (3.2.2.9) for the trans-
mission function from a general formula (3.2.2.7) from the literature [13],
[14]. This way of computing the transmission function will give the trans-
mission function between two leads, irrespective of the number of modes
within the leads. It only needs a small part of the Green’s function to be
computed and will also function correctly if the transmission is computed for
energies that are not in the transmission band of the lead (this means that
the lead is insulating, scattering states do not exist and the imaginary part
of the self-energy (and hence the lead velocity operator) is 0), namely that
the transmission between two insulating leads as seen from infinity is always
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0. When the necessary parts of the Green’s function have been derived,
(3.2.2.9) will be the most convenient way of computing conductance.

3.3 Example transmission calculations

We now demonstrate how to use the methods of the previous section to
compute the transmission function. This will be done using three examples:
scattering by a single site with a potential different from the lead chemical
potential, the Su-Schrieffer-Heeger model in which the insulator is a one-
dimensional wire for which the hopping takes two alternating values and a
simple two-dimensional hopping model.

3.3.1 Single site scattering

Our simplest example is that of an insulator that consists of one site and
is connected to leads with hopping equal to the hopping within the leads.
This model would correspond to an infinite ideal lead with one impurity in
the middle. It can be solved analytically and is also treated in [13].

We choose the hopping t = 1, the unit of length a = 1 and the central
site Hamiltonian H1Site = u+ 2; the band of the leads has total width four
and center at 2, so for u = 0 we do not have any scattering at all. We restrict
our attention to the lead band, since scattering states are only defined if the
band admits propagating modes. In this case the S-matrix can be computed
analytically, the result is [13]

Sexact =

(
u

i~vL−u
i~vL

i~vL−u
i~vL

i~vL−u
u

i~vL−u

)
, (3.3.1.1)

where vL is given by (3.1.3.13).

We can also compute the transmission function using methods from the
previous section, i.e. by combining (3.1.3.14), the definition of self-energy
and (3.2.2.6), after which we either use (3.2.1.2) or (3.2.2.7). It can easily be
verified that all three methods give the same result for all u and all energies.
It can also be checked that for u = 0 the transmission becomes 1 for all
energies. In figure 3.2 we show the transmission for u = 1.5.

3.3.2 The Su-Schrieffer-Heeger model

The Su-Schrieffer-Heeger model was originally introduced to model proper-
ties of polyacetyline [35]. Its Hamiltonian models a one-dimensional chain
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Figure 3.2: The transmission function for two leads separated by a single
site scatterer

with alternating nearest-neighbour hoppings t, t′ and a chemical potential µ

HSSH = −


∑
j∈N+

µc†jcj

+

∑
j∈N+
j odd

tc†jcj+1 + h.c.

+

 ∑
j∈N+
j even

t′c†jcj+1 + h.c.


 ,

(3.3.2.1)
where the first site is indexed with 1, the creation and annihilation operators
for site j are denoted by c†j , cj and “h.c.” means Hermitian conjugate. This
Hamiltonian gives rise to a gapped two-band structure (if t 6= t′). Further-
more, if the smaller of the two hoppings connects the first to the second
site or the final-to-last to the last site, there is a soliton in the band with
energy equal to −µ (i.e. there are 0,1 or 2 of such solitons). These states
are however localised and do not contribute to the conductance. The center
of the gap is at −µ and the width of the gap is 2|t− t′|.

3.3.2.1 Results

We had to scale the hopping within the lead tL := − ~2
2ma2

and the lead
chemical potential such that the system band was contained within the lead
band (else the scattering matrix would not be a sensible concept). We
connected the leads only to the first and last sites of the insulator with
a hopping parameter tIL. We choose µ = 0, t = 0.8, t′ = 1.2, tIL = 1,
chain length 100 and scaled the leads to have a band from −2.5 to 2.5 (all
these numbers are in arbitrary units of energy). The transmission function
is shown below in figure 3.3 (the energy E was increased from −2.5 to 2.5 in
steps of 0.001 after which the points were joined by straight line segments)
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In figure 3.3 we can clearly see a large number of oscillations in the band.

-2 -1 0 1 2
E

0.2

0.4

0.6

0.8

1.0

Tlr

Figure 3.3: The transmission function for the SSH-model. Note that there
is indeed a band gap and that the localised states do not contribute to the
transmission.

The peaks are at the maximum expected transmission. These oscillations
are known as Fabry-Pérot oscillations [36] and occur because the bands are
not continuous, but consist of discrete points. At the interface between
system and lead electrons may reflect, reducing the transmission. There are
resonant peaks when a mode in the system is available to a lead electron, at
which the transmission is equal to 1. As we will also see in the next example,
the precise form of these oscillations depends on to what extend the modes
in the lead and in the system are compatible.

3.3.3 Disorder

We can add disorder to the system by adding fluctuations to the chemical
potential. Even though this does not seem to make a significant qualitative
difference to the band structure, the effects on the transmission function are
large. This is mainly due to the effects of localisation. We considered again
the parameters µ = 0, t = 0.8, t′ = 1.2, tIL = 1 and lead band from −2.5
to 2.5. This time however, we added an independent uniformly distributed
fluctuation between −0.4 and 0.4 to the chemical potential on each site for
10 chains of length 100 and computed their average transmission function
(the energy E was increased from −2.5 to 2.5 in steps of 0.001 after which
the points were joined by straight line segments).
We can see in figure 3.4 that the transmission for the disordered system is
lower than the transmission of the clean system. If we would have considered
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Figure 3.4: The transmission function for the disordered SSH-model (in
red). Note that the transmission has become a lot lower than the original
transmission (shown in blue). This figure was generated using an ensemble
of 10 chains of length 100.

a single chain instead of the ensemble, we would have seen sharper, but
higher peaks, but even then only a few peaks would hit 1. The number
of peaks would also be smaller than for the clean case. If we look at the
spectrum of the chains, it still looks almost the same qualitatively, with
two clusters of eigenvalues at the clean-system bands and two states in the
gap. This leads to the conclusion that disorder may not be very visible
in the spectrum, but that it does hinder transmission significantly through
localisation; for more details on this, see appendix B.

3.3.4 Two-dimensional uniform hopping

The next example we look at is two-dimensional: we consider a rectangular
lattice of dimension l in the x-direction and dimension w in the y-direction.
The lattice spacing is a and we consider a nearest-neighbour hopping model
with hopping strength t and chemical potential µ. An example like this is
also used in the kwant tutorial, [37], [38]. Because the leads are aligned along
the x-direction, we index the sites such that sites in the same column have
consecutive indices. The structure of the resulting Hamiltonian is pictured
below, with µ in blue and t in red.
Please note that we index the two dimensional lattice as follows: we start
by indexing the sites in the first column, starting with the site for which
the x- and y-coordinates are the smallest. Then we go to the next smallest
y-coordinate etc., until we arrive at the end of the column at site (1, Ny).
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Figure 3.5: A schematic plot of the two-dimensional tight-binding system

We then go to the next column, starting with site (2, 1) and continue. This
numbering has the advantage that all sites that are connected to the left
lead carry the first Ny indices and all sites connected to the right lead carry
the last Ny indices.

3.3.4.1 Two-dimensional ideal leads

In order to consider a two-dimensional system, we need to connect it to two
dimensional leads. To do this, we generalize the results from section 3.1.3.
We take leads with the same width as the system.

Those ideal leads are described by (2.1.2.3) in two-dimensions, with zero
vector potential and constant potential U(x, y), in which we can absorb the
band energy. The boundary conditions are Dirichlet boundary conditions
on a rectangle [0, Lx]× [0, Ly] ⊂ R2. This problem can be considered to be
the superposition of two one-dimensional problems and there is a straight-
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forward discretisation [21]

− ~2

2ma2

(
Ψk
j−1 − 4Ψk

j + Ψk
j+1 + Ψk−1

j + Ψk+1
j

)
= (E − U)Ψk

j , (3.3.4.1)

Ψk
0 = 0, Ψk

Nx+1 = 0, Ψ0
j = 0, Ψ

Ny+1
j = 0,

where the x-coordinate is indexed by j, the y-coordinate is by k, the lattice
spacing is a and we assume Lx = (Nx + 1)a and Ly = (Ny + 1)a.

We introduce κxn = πn
Lx

, κyn′ = πn′

Ly
, with n ∈ 1, .., Nx and n′ ∈ 1, .., Ny.

The eigenfunctions solving (3.3.4.1) are given by

Ψk
j (κ

x
n, κ

y
n′) =

√
4

LxLy
sin(κxnja) sin(κyn′ka). (3.3.4.2)

The dispersion relation is

E(κxn, κ
y
n′) = U − ~2

ma2

(
cos(κxna) + cos(κyn′a)− 2

)
(3.3.4.3)

and the retarded Green’s function is given by

G(ε, j, k; j′, k′) =

Ny∑
n′=1

Nx∑
n=1

Ψk
j (κ

x
n, κ

y
n′)
(

Ψk′
j′ (κ

x
n, κ

y
n′)
)∗

ε− E(κxn, κ
y
n′) + iη

(3.3.4.4)

=
4

LxLy

Ny∑
n′=1

Nx∑
n=1

sin(κxnja) sin(κyn′ka) sin(κxnj
′a) sin(κyn′k

′a)

ε− U + ~2
ma2

(
cos(κxna) + cos(κyn′a)− 2

)
+ iη

.

(3.3.4.5)

We can compute the Green’s function using the results from section 3.1.3:
we keep Ly fixed and take Lx to infinity. We introduce t = −~2

2ma2
and

ε̄(n′) := 2
(
ma2(ε−U)

~2 − 1 + cos(κyn′a)
)

such that all the results carry over

from section 3.1.3 if we take ε̄→ ε̄(n′). We can express (3.3.4.5) in terms of
(3.1.3.10)

G2D(ε, j, k; j′, k′) =
2

Ly

Ny∑
n′=1

sin(κyn′ka) sin(κyn′k
′a)G1D(ε(n′), j, j′).

(3.3.4.6)
We will be mainly interested in the case where j = j′ = 1, so we get

G2D(ε, 1, k; 1, k′) =
2

Ly

Ny∑
n′=1

sin(κyn′ka) sin(κyn′k
′a)
−1

ta
e±iκL(n′)a, (3.3.4.7)

where κL(n′) = −i
a log(z+(ε̄(n′)). This means that we can compute the

exact two-dimensional lead Green’s function for systems that are not too
wide, after which the methods of section 3.2.2 can be applied.
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3.3.4.2 Results

The two-dimensional systems under consideration have as many bands as
their width. These bands all cover a range of energies. We can estimate the
transmission at a given energy by drawing a line of constant energy through
the band structure and counting how many bands are “hit” by this line of
constant energy. This is then the expected transmission.

Suppose we choose an insulator of width 4, with µ = 0 and t = 1. We
first derive its (bulk) band structure, which is done by applying periodic
boundary conditions in the x-direction and then taking the limit where the
period length goes to infinity. We can then perform a Fourier transform on
the x-coordinate and obtain 4 continuous bands shown in figure 3.6
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Figure 3.6: The bulk band structure of a 4 mode 2D wire

Looking at figure 3.6, we expect a transmission function consisting of plateaus
at 1, 2, 3 and 4, symmetric around 0. No Fabry-Pérot oscillations are ex-
pected, since this is a rather fine-tuned system in which the leads and centre
are all exactly the same, which means our system is in fact a periodic in-
finite lead of width 4. As shown in figure 3.7, our expectations agree with
the result7.

3.3.4.3 Disorder

By adding some random fluctuations to the local chemical potential we can
add disorder to the system. It is expected that the disorder will not change

7Which is also consistent with the results in [37], [38]
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Figure 3.7: The transmission of a 4 mode 2D wire as a function of energy

the spectrum significantly (though it can become less regular), but that lo-
calisation effects will strongly reduce the values of the transmission function.

For our test of the effects of disorder we used the same system as the system
used in figure 3.7. The disorder was modelled by adding to the local chemi-
cal potential fluctuations which were independent and uniformly distributed
between −0.5 and 0.5. The ensemble average of 10 independent systems was
taken. In order to limit the computational time, the step size in the energy
was 10 times as large as the step size used in figure 3.7. The result is shown
in figure 3.8.
In figure 3.8 we can see that the transmission function is on average much
smaller, especially in the energy range for which the clean system has the
highest transmission rates. This reduced transmission rate is due to local-
isation effects. If we were to increase the disorder, this would lead to even
smaller transmissions; if we for example take fluctuations that are uniformly
distributed between −2 and 2, the transmission becomes negligible, which
is consistent with appendix B.

3.4 The lead Green’s function for arbitrary tight-
binding models

It turns out that in order to study the transmission of the topological states
of matter discussed in section 5.1, we have to further generalize our ideal
lead computations. Reasons for the need of this generalization will be given
in the next subsection. The rest of this section contains a derivation of a

42



-4 -2 2 4
E

1

2

3

4

Tlr

Figure 3.8: The transmission of a 4 mode 2D disordered wire as a function
of energy

(mostly) stable way of computing these more general lead Green’s functions
numerically, following [14].

3.4.1 Why ideal metals can not always be used as leads

The tight-binding Hamiltonians that realize topological insulators will in
general not be similar to the systems considered in section 3.3. For instance,
one of the features of the Hamiltonian in section 5.2 is that it contains a
next-nearest neighbour hopping term.

When we want to couple our leads to the system, we have to explicitly
specify the way in which sites of the lead are coupled to sites of the insu-
lator. If the leads and the insulator have the same global structure, as in
section 3.3, it is clear which lead-site should be connected to which insulator
site and the coupling matrices can be defined easily.

However, if the structure of the couplings is different between insulator and
leads, there is some ambiguity in how to couple the different parts of the
system. We could of course resolve that ambiguity “by hand”, that is, we
could just pick some convenient coupling matrix and proceed as usual. How-
ever, the choice we make does not have to (and likely will not) correspond
to the effective coupling that would be realized in an experimental situation.

Since it would be very non-trivial to derive what the “physical” coupling
for a general system would be, we strive to obtain a situation comparable
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to that in section 3.3 instead: we would like to choose the lead to have the
same structure as the insulator. We do this by using the same Hamiltonian
for lead and insulator, but to guarantee the lead to be transmitting, we will
shift the chemical potential of the lead such that for the energy range of
interest we are in the lead band, which is conducting.

3.4.2 Derivation of the lead Green’s function

We are now faced with the task of computing the semi-infinite lead Green’s
function for arbitrary tight-binding models. This problem has been solved
many times in literature (see for example [39, 40, 41, 42, 14] and references
therein). We will follow the approach used in [14], to which we refer the
reader for additional details.

Suppose we have an infinite lead, consisting of a periodic repetition of unit
cells. It’s Hamiltonian is block three-diagonal: on the block diagonal there
is an infinite repetition of the unit cell Hamiltonian H0, the upper block
diagonal consists of an infinite repetition of the hopping Hamiltonian H1,
enabling electrons to hop from one unit cell to its left neighbour and the
hopping to the right is governed by an infinite repetition of H−1 = H†1 on
the lower block diagonal.

Because the infinite lead is periodic, we can use Bloch’s theorem (see section
2.1.2) to write the eigenfunctions as

ϕn,k(j) = φn,ke
ikj ,

where j is a unit cell index, k ∈ [−π, π] and φn,k and eigenvector of H0 +
H1e

ik + H−1e
−ik (with eigenvalue En,k). For fixed k, the eigenvectors φn,k

are a complete orthonormal system.

We remark that we can also interpret the infinite lead as two semi-infinite
leads that are connected with a hopping matrix: it then follows from Dyson’s
equation (4.1.1.3) that [14]

G(j, j + 1) = g(j + 1, j + 1)H−1G(j, j), (3.4.2.1)

where g(j, k) is the (retarded) semi-infinite (right-)lead Green’s function and
G(j, k) the (retarded) infinite lead Green’s function between sites j and k.

As in section 3.1.3, we write the Green’s function as a contour integral which
we then attempt to solve. Proceeding analogously to (3.1.3.4)-(3.1.3.6) and
scaling the length such that the unit cell spacing a = 1, we obtain [14]

G(ε, j, j′) =
−i
2π

∮
|z|=1

zj−j
′ (

((ε+ iη)1−H0) z −H1z
2 −H−1

)−1
dz,

(3.4.2.2)
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where ε and η are defined as in section 3.1.3 and 1̂ is an appropriate identity
matrix.

In order to invoke Cauchy’s theorem for the contour integral (3.4.2.2) we
should identify which quadratic eigenvalues λn and -vectors un solve the
equation [14]((

(ε+ iη)1̂−H0

)
λn −H1λ

2
n −H−1

)
un = 0. (3.4.2.3)

As in section 3.1.3, we intend to solve 3.4.2.3 without giving η a non-zero
numerical value: instead, we can analyse the effect of an infinitesimal η by
looking at the eigenvalues and vectors for the system with η = 0 [14].

In practice, we solve (3.4.2.3) by writing it as a linear generalized eigen-
problem of twice the size, that is, we introduce vn := λnun and solve the
system8 (

0̂ 1̂

−H−1 ε1̂−H0

)(
un
vn

)
= λn

(
1̂ 0̂

0̂ H1

)(
un
vn

)
. (3.4.2.4)

Having solved this eigenproblem,9 we compute the velocities (see (3.1.3.13))
for eigenvectors with absolute eigenvalue 1 and classify the eigenvalues and
-vectors into two equally sized groups [14]:

• Left-goers, with |λn| > 1 (left-decayers) or |λn| = 1 and negative
velocity (left-movers).

• Right-goers, with |λn| < 1 (right-decayers) or |λn| = 1 and positive
velocity (right-movers).

It can be shown [14] that eigenvalues corresponding to right-goers are inside
the unit circle for infinitesimal η and left-goers are outside. We denote
the matrix with columns consisting of right-going eigenvectors by U<, the
corresponding diagonal matrix of eigenvalues by Λ< and V< := U<Λ<. For
the right-goers these matrices are denoted by U>, Λ> and V> respectively.
These matrices will be square and their size is denoted by N . We also define

U1 :=

(
U<
V<

)
,

U :=

(
U< U>
V< V>

)
.

8The substitution vn := λnun is similar to a substitution often used to turn a second
order differential equation into a system of first order differential equations, see f.e. [43]
and [21].

9Algorithms to solve this generalized eigenproblem are given in [44].
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Assuming without proof that U< is invertible,10 the contour integral (3.1.3.6)
can be computed [14]

G(ε, j + 1, j) = U<Λ<U
−1
< G(ε, j, j). (3.4.2.5)

Combining (3.4.2.5) and (3.4.2.1) yields the lead Green’s function g(ε) and
self-energy Σ(ε)

g(ε)H−1 = U<Λ<U
−1
< , (3.4.2.6)

Σ(ε) = H1U<Λ<U
−1
< . (3.4.2.7)

3.4.3 Towards a stable computation of the lead Green’s func-
tion

The algorithm sketched above does yield the lead Green’s function for very
general choices of Hamiltonians, but there are still some situations in which
is suffers from stability problems. We now identify the causes of these prob-
lems and attempt to find solutions to them.

There are three kind of problems that can destabilize the algorithm:

1. The generalized eigenvalues λn solving (3.4.2.4) may be degenerate.

2. The velocities of the non-decaying eigenvectors may be very close to
0.

3. Even if U< is invertible in exact arithmetic11 its condition number (see
appendix C) may become very high (see [14] for an example).

The degeneracy of eigenvalues can be problematic, since then the eigenvec-
tors will not be uniquely defined any more. For decaying eigenvalues, this is
no problem, since the eigenvectors will still be classified correctly into right-
or left-goers and the final result (3.4.2.6) will not change. If the degener-
ate eigenvalues do have absolute value 1, the computation of the velocities
becomes ill-defined. However, this is a rare situation and if the degenerate
eigenvalues are both left-going or both right-going, this problem can be han-
dled [14].

Velocities that are close to zero are an issue however: because there will

10This can not be proven in general; if U< happens to be singular we are out of luck,
but fortunately this does not usually happen in practice.

11If it is not invertible, then the derivation of 3.4.2.5 breaks down as well as subsequent
steps; the solutions discussed later in this section will not help and become ill-defined
themselves.
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always be numerical errors in the computed velocities, this leads to misiden-
tification of left- and right-going modes. In this way U< and Λ< will consist
of the wrong eigenvalues and -vectors and the final answer (3.4.2.6) becomes
plain incorrect.

To prevent this from occurring, we should make sure that either these very
small velocities are computed to high enough accuracy or we should pick
our energy such that no velocity is too small. These two approaches are of
course two sides of the same medal, since higher accuracy will make larger
energy ranges permissible. We also remark that if this occurs small shifts
in energy will not make a difference, since the velocities will depend on the
energy smoothly.

If U< is invertible but ill-conditioned, (3.4.2.5) still holds, but it will not
make sense any more to compute the lead Green’s function, because of nu-
merical inaccuracies. U< can either be ill-conditioned because U itself is
ill-conditioned or because we take a submatrix. Following [14], we rewrite
(3.4.2.6) to depend on submatrices (and their inverses) of orthogonal ma-
trices. In principle the orthogonality of a matrix does not prove anything
about the condition numbers of their submatrices, but in practice we do
expect the conditioning of the submatrices to improve.

Let B be any invertible N ×N matrix and define U ′1 := U1B, U ′< := U<B
and V ′< := V<B. Then

g(ε)H−1 = V<U
−1
<

= V<BB
−1U−1

<

= V ′<U
′−1
< .

Our goal is now to construct an invertible matrix B, such that the condition
number of U ′< is lower. The idea is to focus on bringing the condition num-
ber of U to 1 and then use the transformation that does this as our matrix B.

We assume H1 to be invertible12. Define the matrix A corresponding to
(3.4.2.4)

A :=

(
0̂ 1̂

−H−1
1 H−1 H−1

1

(
ε1̂−H0

)) .
Of course, the columns of U are the eigenvectors of A. Suppose we only
wanted to find the eigenvalues of A. A possible approach would then be to
find the Schur decomposition13 of A. The Schur decomposition of A con-
sists of a unitary matrix Q and an upper triangular matrix T such that

12For singular H1, see [14]
13See for example [44]
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A = QTQ†.

Since the spectra of A and T are the same, all eigenvalues of A appear
on the diagonal. Because Q is unitary, its condition number subordinate to
the 2-norm,14 κ2(Q) = 1 [44], [45].

We furthermore note that we can adjust T and Q such that the eigen-
values of A appear in any desired order on the diagonal of T and that this
reordering is computationally cheap compared to computing the original
Schur decomposition15 [44].

Now assume the first half of the eigenvalues on the diagonal of T correspond
to right-going modes and that there are no eigenvalues that are degenerate
and both right- and left-going16, then there exist block matrices

X =

(
X1 0̂

0̂ X2

)
, Y =

(
1̂ Y12

0̂ 1̂

)
,

such that [44], [14]

X−1Y −1Q†AQYX =

(
Λ< 0̂

0̂ Λ>

)
. (3.4.3.1)

Since (3.4.3.1) is nothing else but the solution of (3.4.2.4), we can identify
the transformation Q = Y −1X−1U that transforms the basis given by the
columns of U into an orthonormal one. It now follows that

g(ε)H−1 = Q21Q
−1
11 , (3.4.3.2)

where the indices denote matrix blocks of size N ×N .

We remark again that the use of the Schur decomposition does not guaran-
tee that the condition number of the block Q11 is close to 1 and examples
can easily be given in which a subblock of a unitary matrix is singular. It
does however seem reasonable to assume that the conditioning of the blocks
of Q is better than the conditioning of the blocks of U .

In summary, we have identified some causes for instability of the numerical
computation of the Green’s function for an arbitrary lead. The solutions
proposed in this section may help stabilize the algorithm in some cases, but
there remain situations for which the lead Green’s can not be computed
(reliably).

14See appendix C for definitions.
15In Matlab this can be done using the ordschur() routine [46].
16so diag(Λ<) ∩ diag(Λ>) = ∅
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3.4.4 A pragmatic approach to lead Green’s function com-
putational stability

The numerical computation of the lead Green’s function as described above
is not unconditionally stable and it is not obvious if and how this could be
fixed. In many cases we can however compute it without trouble and we
can use physical arguments to justify restricting our attention to the cases
in which the lead Green’s function is computable with our algorithm.

The motivation for computing the lead Green’s function for a general Hamil-
tonian was to couple a system to a lead that only differed in the value of
the chemical potential. This is both more physical and less ad-hoc then
specifying some coupling to an ideal lead ourselves. A shift of the chemical
potential is still not entirely physical, but does not invalidate the computa-
tions, because the leads function only as source and sink of electrons.

A way to speed-up and stabilize computations consists of removing the en-
ergy dependence of the leads. This means we really fix the sum of the
chemical potential and the energy within the leads. Even though it could
be argued that the computational system now bears less resemblance to an
experimental situation, it is important to realize that our goal is not to re-
semble the experimental situation as closely as possible, but only as closely
as needed to obtain comparable results.

The step we take here can either be interpreted as “attaching a different
material as lead at each different energy” or as “keeping the density of
states of our sources and sinks constant at all energies”. Regardless of the
interpretation, we make the leads more abstract here, giving computational
advantages while not giving physical disadvantages.
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Chapter 4

Computational methods for
the transmission function

As can be seen from the Fisher-Lee relation (3.2.1.3) and the compact for-
mula for the transmission function (3.2.2.9), we do not need to know the
full Green’s function in order to compute the conductance. Furthermore,
the tight-binding Hamiltonian is a sparse matrix. These properties can be
exploited to compute the transmission function efficiently.

In this chapter we compare three of such methods: the recursive Green’s
function method [47], [48], [49], (a standard way of doing this in physics),
a sparse direct method (an optimised variant of LU-decomposition (see ap-
pendix C) as provided by MATLAB [46]) and an iterative method, which
uses the generalised minimal residuals algorithm (GMRES) with a precon-
ditioner (see appendix C and [50]).

4.1 The recursive Green’s function algorithm

The recursive Green’s function algorithm is a popular way to compute trans-
mission functions. It is based on physical considerations and most suitable
for the computation of transmission through systems that are long in the
direction of the leads, but not very wide.

4.1.1 Derivation of the algorithm

The basic idea of the recursive Green’s function algorithm is to start with
a part of the system for which we know the Green’s function as long as this
part is not connected to the rest of the system (i.e. one of the leads). We
then consider the part of the system that is connected to the known part
(i.e. a slice of the insulator), compute the Green’s function for this slice if it
were disconnected and then connect the two disconnected parts for which we
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know the Green’s function and coupling, treating the coupling as a pertur-
bation using the Dyson equation derived below. We do however remark that
the Dyson equation is exact and that we will not use any approximations in
solving it, thus incorporating the coupling in an exact manner.

This will yield the relevant parts of the Green’s function for the connected
system, after which we add another slice. Our derivation in section 4.1.1.2
follows [14], though the algorithm there starts at the right lead, while we
will start at the left lead. In order to give a more precise description of this
algorithm, we will first derive the central equation of the recursive Green’s
function method, the Dyson equation.

4.1.1.1 The Dyson equation

The Dyson equation relates Green’s functions of non-interacting systems in
quantum field theory to Green’s functions for systems which do interact, see
for example [28]. We will specifically derive it for matrices here, since that
is the case for which we need it.

Let Ĥ0 be a square matrix (i.e. an insulator Hamiltonian into which the
lead self-energy is already incorporated). We denote the matrix E1̂ − Ĥ0

1

by Ginv0 , assume it is invertible and denote its inverse by G0. Now define
other matrices V and Ĥ = Ĥ0 + V and Ginv, G analogously. We then have

Ginv0 = E1̂− Ĥ0

= E1̂− Ĥ + V

= Ginv + V. (4.1.1.1)

Furthermore, we remark that we are dealing with matrices here, so all in-
verses are both left- and right inverses. We get

GGinv = G0G
inv
0

= G0

(
Ginv + V

)
= G0

(
Ginv + V GGinv

)
= (G0 +G0V G)Ginv, (4.1.1.2)

from which the Dyson equation

G = G0 +G0V G (4.1.1.3)

follows immediately. Another form of the Dyson equation, which can be
computed analogously, is given by

G = G0 +GV G0 (4.1.1.4)

1where E ∈ R and 1̂ an appropriate identity matrix
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4.1.1.2 The block-wise computation of the Green’s function

We index our system such that we can write our Hamiltonian as a block
tridiagonal matrix, with the upper left block corresponding to the first slice
of our insulator, connected to the left lead and the lower right block corre-
sponding to the last slice, connected to the right lead (here a “slice” is a
subsystem with dimension one lower than the studied system).

Suppose that there are a total of N + 1 slices. We can then define the
following sequence of subsystems: subsystem L(0) consists only of the left
lead. Subsystem L(1) consists of the left lead and the first slice of the insu-
lator. Subsystem L(i), with 1 ≤ i ≤ N consists of the left lead and the first
i slices of the insulator and subsystem L(N + 1) consists of the full system,
including the right lead.

We assume that we know the Green’s function for L(0) (see section 3.1.3).
We furthermore assume that we can invert square matrices with the same
dimensions as the number of sites per slice easily. We define ĤL(i),0 to be
the Hamiltonian of a system consisting of L(i−1) and the disconnected slice
i (note that this is not a subsystem of our system under consideration, but
it is the sum of two subsystems). We let ĤL(i) be the Hamiltonian of L(i)

and V := ĤL(i) − ĤL(i),0. The corresponding Green’s functions will be re-
ferred to as GL(i),0, GL(i). We remark that the ith row and column of GL(i),0

vanishes for all off-diagonal blocks and that the only non-zero blocks of V
are V i−1,i, V i,i−1.

We want to use the Dyson equation to compute blocks situated at the top
row. In order to do this we need to apply the equation for the following
blocks

Gi,iL(i) = Gi,iL(i),0 +Gi,iL(i),0V
i,i−1Gi−1,i

L(i) , (4.1.1.5)

Gi−1,i
L(i) = Gi−1,i

L(i),0 +Gi−1,i−1
L(i),0 V i−1,iGi,iL(i), (4.1.1.6)

G1,i
L(i) = G1,i

L(i),0 +G1,i−1
L(i),0V

i−1,iGi,iL(i). (4.1.1.7)

We use the fact that Gi−1,i
L(i),0 vanishes and substitute (4.1.1.6) into (4.1.1.5)

to obtain

Gi,iL(i) = Gi,iL(i),0 +Gi,iL(i),0V
i,i−1Gi−1,i−1

L(i),0 V i−1,iGi,iL(i). (4.1.1.8)

We now note that (4.1.1.8) is solved by

Gi,iL(i) =

((
Gi,iL(i),0

)−1
− V i,i−1Gi−1,i−1

L(i),0 V i−1,i

)−1

(4.1.1.9)
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and for i > 1 (4.1.1.7) simplifies to 2

G1,i
L(i) = G1,i−1

L(i),0V
i−1,iGi,iL(i). (4.1.1.10)

The equations (4.1.1.9) and (4.1.1.10) enable us to compute the relevant
blocks of the Green’s function, provided that we can compute some quan-
tities for the disconnected system. It is easy to see that they are given
by

Gj,kL(i),0 =


Gj,kL(i−1), if j < i and k < i,(

E − Ĥi +
√
−1η

)−1
, if j = k = i,

0, else,

(4.1.1.11)

where the Ĥi is the Hamiltonian of the isolated slice i.3 This gives us the
recursion

Gi,iL(i) =
(
E − Ĥi − V i,i−1Gi−1,i−1

L(i−1) V
i−1,i

)−1
(4.1.1.12)

G1,i
L(i) = G1,i−1

L(i−1)V
i−1,iGi,iL(i). (4.1.1.13)

We remark that we can leave the infinitesimal imaginary part out of (4.1.1.12)
(see section 3.2.2). The recursion (4.1.1.12), (4.1.1.13) is started by setting
G0,0
L(0) = G0,0

L , where GL is the Green’s function for the isolated left lead and

V 0,1 = τl(0, 1), V 1,0 = τ †l (1, 0). In the first step, where i = 1, we do not use
(4.1.1.13).

From i = 2 until i = N the recursion is straightforward. We note that
G1,N
L(N) is obtained this way, but that we still need to connect the system to

the right lead, which means that we should in fact compute G1,N
L(N+1)! We

can compute this using (4.1.1.9), (4.1.1.13), (4.1.1.4) and known properties
of right lead and coupling, resulting in the following final step

GN+1,N+1
L(N+1) =

((
GN+1,N+1
R

)−1
− τ †r (N + 1, N)GN,NL(N)τr(N,N + 1)

)−1

,

G1,N+1
L(N+1) = G1,N

L(N)τr(N,N + 1)GN+1,N+1
L(N+1) ,

G1,N
L(N+1) = G1,N

L (N) +G1,N+1
L(N+1)τ

†
r (N + 1, N)GN,NL(N), (4.1.1.14)

where GR is the Green’s function for the isolated right lead. Having com-
putedG1,N

L(N+1) with (4.1.1.12), (4.1.1.13) and (4.1.1.14), we can apply (3.2.2.9)
to obtain the transmission function without having to compute the inverse
of the full matrix.

2For i=1 we should compute this block using (4.1.1.9)
3In 4.1.1.11 all the i’s are indices.
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4.1.2 Computational cost of the recursive Green’s function
algorithm

Consider a d-dimensional insulator (d ∈ {1, 2, 3}). We assume it can be
divided in N square slices with side M (i.e. the slices have Md−1 sites). We
estimate the computational cost in terms of the asymptotic behaviour of the
number of basic computational operations as M,N →∞.

Even though the results obtained this way will give a far from complete
picture, it is still useful to give an idea of how the program will scale to
large insulators, the analysis is easy and it is a very common way to esti-
mate the performance of algorithms.

We want to compare the recursive algorithm with the cost of just apply-
ing (3.2.2.6). To apply (3.2.2.6) directly, we should invert a matrix with

size
(
NMd−1

)2
. There are multiple ways (such as LU-decomposition or

Gauss-Jordan elimination) in which the full inverse can be computed, with

computational cost of O
((
NMd−1

)3)
.

The recursive Green’s function algorithm consists of an initialisation step,
the actual recursion and a finalisation step. Only the actual recursion
(4.1.1.12),(4.1.1.13) depends on the system length.

We first analyse the cost of one recursion step. This means we should
solve (4.1.1.12),(4.1.1.13) once. For (4.1.1.12) we have to do two matrix
multiplications, two matrix additions and one inversion; for (4.1.1.13) we
should perform two matrix multiplications. All matrices are dense matrices
with dimensions

(
Md−1

)
×
(
Md−1

)
(this is due to the fact that all slices are

strongly coupled to the rest of the system). We assume multiplications and

inversion to be O
((
Md−1

)3)
operations (see appendix C); the additions

scale as O
((
Md−1

)2)
.

This means that the total cost per recursion step is O
((
Md−1

)3)
. Since

there are N steps, the recursion scales as O
(
NM3(d−1)

)
. Initialisation and

finalisation do not depend on the system length. For this the lead Green’s
function should be computed; this has to be done for any method and will
generally cost O

(
M3(d−1)

)
(see sections 3.3.4.1 and 3.4). Having computed

this lead Green’s function, a few multiplications and inversions should still
be done, also costing O

(
M3(d−1)

)
.

The total cost will hence be given by O
(
N
(
Md−1

)3)
. The cost depen-

dence on slice size has not improved, but there is a significant improvement
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on the length dependence: this used to depend on the length cubed and has
become linear.

In principle it is possible to parallelize the algorithm, though it should of
course be reformulated quite a bit first [51]. In our implementation we will
however not pursue this route, since there are usually many different trans-
missions to be computed in one run and trivial parallelisation (assigning
different transmission to different computational units) will do.

4.1.3 Stability of the recursive Green’s function algorithm

A look at the main recursion and appendix C make it seem that the recur-
sive Green’s function algorithm is unlikely to be unconditionally stable. The
large amounts of multiplications and inversions will introduce errors and all
intermediate results effect later (intermediate and final) results. It is fur-
thermore not straightforward to apply perturbation theory to fully analyse
the algorithm.

Another property of the recursive Green’s function algorithm is that only
the block we are actually interested in is computed, whereas in the other
methods discussed in this chapter a number of columns of the full Green’s
function is computed. The advantage of this is that we do not compute
quantities we do not need for the final answer, but it also has the disadvan-
tage that we can not just compute the residual to obtain an error estimate,
as opposed to the more standard methods where we can easily check if apply-
ing the inverse Green’s function to the computed Green’s function columns
yield a result that is somehow close to columns of the identity matrix or not.

We do not have to dismiss the recursive Green’s function algorithm because
of this, however. If problems are to occur in the execution of the algorithm,
it is likely that some matrix elements become very big. When this happens,
the “inv()” routine in Matlab (used in our implementation) should complain
about condition numbers that are estimated to be very high. This particular
warning however is extremely rare, which can give us hope that the results
are reliable (but it does not guarantee it).

A better way to ascertain stability is to compare the results to those ob-
tained using a different algorithm, preferably one for which we know it is
stable. Due to the computational cost, this should not be done in all cases,
but a few tests can also reinforce our confidence in the recursive Green’s
function algorithm. A good candidate for a “comparison algorithm” is the
LU decomposition discussed below: the stability properties can be found in
the literature and are straightforward to evaluate for a given problem. We
did this stability test for some systems discussed throughout the thesis and
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the differences in the computed transmission functions were always negligi-
bly small.

Another reason to assume the algorithm to be fairly stable is the fact that
it is often used in physics and the results seem to be sensible [14]. In our
computations with this algorithm we also found the results to be physically
justifiable.

To come up with a more quantitative check of the RGF algorithm, we re-
consider the system in section 3.3.4. We pick a width of 10, t = 1, µ = 0,
energy E = 0 and leads identical to the system. For this system we know
the conductance to be exactly 10 for any system length.4 We compute the
self-energy using the methods from section 3.4 and show the absolute error
as a function of system length in table 4.1.

Length Absolute error

1 1.78× 10−15

10 7.11× 10−15

100 4.44× 10−14

1000 3.41× 10−13

10000 1.74× 10−12

100000 4.20× 10−12

Table 4.1: Absolute error as a function of length for the computed trans-
mission of 10 connected infinite leads, using a Matlab implementation of
the RGF algorithm, combined with the self-energy computation described
in section 3.4.

We can see in table 4.1 that the error does depend on the system length,
but even for very large systems, with up to a million sites, the error remains
very small (compared to the transmission). We furthermore remark that
the error for a system of length one is in fact equal to the smallest repre-
sentable difference between the double 10 and the next representable double.

All in all, we can say that the recursive Green’s function formalism is usable,
but we should of course check if our results make any sense, in which case
we can pragmatically assume that the computation was apparently stable.
If we are in doubt, we should re-do the particular computation with an
alternative method.

4In this case the distinction between “leads” and “central region” is arbitrary and we
are in fact computing the conductance of (a part of) an infinite ideal lead of width 10, at
an energy and chemical potential such that all modes contribute to the conductance.
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4.2 Direct column-wise solution

We need only a few elements in the full Green’s function and the recur-
sive Green’s function is a way of computing these elements and too many
unnecessary elements in the full Green’s function. An alternative way of
computing only a small part of the matrix is by only considering the rele-
vant columns in (3.2.2.6). We then solve the equations for the columns of
the Green’s function using either a direct or an iterative method.

As in section 4.1.2, we consider a system with length N and width M in
dimension d ∈ {1, 2, 3}. In order to use (3.2.2.9), we have to solve Md−1

equations of the form
Ax = b, (4.2.0.1)

where A =
(

(E + iη)1̂− Ĥi − Σ
)

is a NMd−1×NMd−1 matrix, x is an un-

known vector and b is a given (standard basis) vector. As stated in appendix

C, the general problem Âx = b is at most of order O
((
NMd−1

)2)
and at

least of order O
((
NMd−1

))
, so the total cost will be between O

(
NM2(d−1)

)
and O

(
N2M3(d−1)

)
.

In comparison to the recursive Green’s function approach we see that is
is (asymptotically) worse for the asymptotically slowest way of computing
the inverse and asymptotically better if we can use an algorithm that solves
the sparse matrix-vector equation (4.2.0.1) in linear order. The rest of this
section will be about solving the linear equation (4.2.0.1) using direct matrix
methods, while in section 4.4 we will try to find an efficient iterative method
for this problem.

4.2.1 LU-decomposition

We compare the performance of our implementation of the recursive Green’s
function algorithm to that of LU-decomposing the inverse Green’s function
Ginv (for a system with length N and slice size Md−1) and then solving the
set of equations Ginvgi = ei, where gi denotes the i-th column of the Green’s
function, ei the i-th standard basis vector in RNMd−1

and the index i runs
from (N − 1)Md−1 + 1 to NMd−1.

The LU-decomposition is carried out by using the Matlab \-operator, which
calls a build-in LU-decomposition algorithm. Since this is such a common
operation, we may assume that it is implemented efficiently in Matlab and
it should certainly be able to obtain the performance stated in appendix C
and yield high accuracy results.
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The bandwidth of Ginv is of the order of the slice size and the total di-
mension of the order of the system size, so if we plug those into the per-
formance estimates of appendix C, we obtain an expected performance of
O(NM3(d−1)), both for the LU-decomposition and the forward- and back-
substitution [44]. This means the scaling of both the RGF and the LU
based algorithms is asymptotically the same and we should use practical
performance and accuracy tests to see which one is to be preferred.

4.2.1.1 Results

We tested the performance of both RGF and the built in LU-decomposition
on a system of practical importance for our purposes: the tests where run
on a Hamiltonian as described in section 5.2. This is a two-dimensional
tight-binding Hamiltonian on a square lattice, with four orbitals per site.5

The self-energy of this Hamiltonian has to be computed using the methods of
section 3.4. We denote the number of sites in the direction along the leads as
Nx and perpendicular to the leads as Ny, so we have N = Nx and M = 4Ny.

We tested the execution time of both methods using the Matlab profiler.
During these tests we fixed Ny = 80 and increased Nx. This particular test
is of great practical importance, since computations like this need to be done
many times to obtain the results in section 5.2. The computed answers of
both methods coincided very well (and were sensible), so they are both sta-
ble in this case and the choice between them can be based on computational
performance. The timings are summarised in table 4.2.

LU RGF

Nx time (s) time (s)

80 57 11
120 77 13
160 98 15
200 120 17
240 143 20

Table 4.2: Timings of the computational time for both LU-decomposition
and RGF algorithms. Timings were done using Matlab R2012b on a Win-
dows 7 Enterprise system using an Intel Core 2 Duo CPU E7400 @2.80GHz
and 2GB of RAM.

From table 4.2 it can be seen that the increase of computational time does

5That is, there are four different electrons at each site: they are at the same position,
but their full state (including for instance spin and chemical potential )is different, so the
Pauli exclusion principle is not violated.

58



indeed seem linear when increasing Nx for both methods, but that the RGF
algorithm performs much faster overall. It should be remarked that these
systems are relatively small (so the asymptotic scaling may not tell the whole
story at these sizes) and that for example background processes run on the
system may cause inaccuracies in the timings. However, the difference in
the time measurements are large and consistent and this test is realistic,
so even this limited test provides good grounds to do further computations
preferring the RGF algorithm over this LU-decomposition.

4.2.1.2 An alternative method for LU-decomposition

It is possible to speed up the LU-decomposition by reordering the matrix to
be inverted. This effectively reduces the band width and hence the fill-in.
The backsubstitution can be sped up by viewing the right hand side vectors
as sparse and by exploiting the fact that only part of the matrix is needed.
This is the approach used by [37]; they use the MUMPS library ([52] and
references therein), in which all these functionalities have been integrated.
A speed-up is reported for large systems. For practical reasons we however
choose to not use this package, but just the basic Matlab functionality.

4.3 An analogous problem: the Helmholtz equa-
tion with radiation boundary conditions

As a motivation for the search for efficient iterative methods for finding the
Green’s function, we describe a related problem for which iterative methods
have been shown to be effective. [53, 54, 55]

In section 3.3.4, we consider the transmission through a 2-dimensional uni-
form metal. If we go back to the time-independent Schrödinger opera-
tor (2.1.2.3) with zero vector potential, set ~2

2m = 1 and define k(x) =√
−E − U(x), we obtain the Helmholtz operator Âh(u, k) := −∆u − k2u,

where u is a function and k(x) the wave number, which can in principle
depend on the space coordinates.

In the above mentioned literature, [53, 54], the interest in the Helmholtz
operator is primarily in the context of geophysical seismic imaging and the
boundary conditions are chosen to be suitable for that context. This means
that the shape of the domain is not necessarily rectangular and at the bound-
ary a combination of Dirichlet and first-order Sommerfeld radiation condi-
tions is specified. The first-order Sommerfeld radiation boundary condition
is defined by

∂u

∂n
− iku = 0, (4.3.0.1)
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where n is the outward normal vector.

Applying a Sommerfeld radiation condition is of course different from at-
taching an ideal lead, but they do share some important features: it can
be seen that a plane wave with wave vector k moving normal to the surface
satisfies the radiation condition, while in an ideal lead modes will asymptoti-
cally be plane waves. Furthermore, in both cases the matrix to be inverted is
sparse, complex symmetric (and not Hermitian) and indefinite [53, 54]. This
makes it useful to consider methods used to solve the geophysical problem
and see if they may be applicable to some transport problems.

4.3.1 Preconditioners

The approach used in [53, 54, 55] is to search for a good preconditioner
and then apply a Krylov method (such as the generalized conjugate gradi-
ent method, used in [53] or GMRES, used in [55], see appendix C). Here we
discuss briefly the algorithm of [53, 55], which uses a shifted Laplace precon-
ditioner6 combined with a projection procedure known as deflation which
is used to get rid of near-zero eigenvalues that slow down the Krylov con-
vergence. To define the projection a procedure based on multigrid method
interpolations is applied [53, 55].7

To give a better idea of the method, we describe one variant of the algo-
rithms given in [53, 55]. In this algorithm, a typical choice of preconditioning
parameter c would be 1 + 0.5i and the operator L̂c would not be inverted
explicitly. In fact, the implicit inversion used during the (flexible) Krylov
method would consist of only one multigrid iteration8 [55], which means we
do not actually precondition with L̂c, but just use it to find good search
vectors [55, 56].

After one or more Krylov iterations we project the near-zero eigenvalues
away; in our variant of the algorithm they will be projected to the largest
eigenvalue, which is one[53].9 After the projection procedure, a smaller sys-
tem (the dimensions of the matrices are typically halved) results. With this
procedure, the small system will have no (near)-zero eigenvalues and retains
the structure of the original problem. This implies we can use the same

6This means we multiply both sides of the problem with M−1, where M is the discre-
tised version of the operator L̂c(u, k) := −∆u − ck2u, with a conveniently chosen c ∈ C,
see also appendix C

7Multigrid methods work by smoothening residuals and then mapping them to coarser
grids. After having solved the problem on the coarsest grid, interpolations are used to
obtain solutions on finer grids. From this interpolation operator a projection operator is
defined in [53, 55].

8This means we apply a V-cycle, in which we go to the coarsest level once and back.
9See [55, 53] for more details and an explicit formula for this operator.
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procedure again.

At some point we will arrive at a very coarse grid , for which we can solve the
equation exactly. We then use interpolations to go back to finer grids, ap-
plying multigrid-preconditioned Krylov iterations again at each finer level.
At the finest level an outer Krylov method is applied with as many iterations
as needed to obtain an acceptable solution.

In summary, our algorithm will consist of applying one or more precon-
ditioned Krylov steps, in which the preconditioner equations are approxi-
mately solved by a multigrid V-cycle and then a projection, at which point
we can repeat the preconditioned Krylov iterations and a new projection.
When we arrive at a very coarse grid the equation can be solved exactly. We
then interpolate and refine our solution. At the finest level we then solve
the system with a flexible Krylov method.[55]

This method does converge quickly; although the convergence speed does
still depend on the number of grid points [55, 53], this dependence is not
too strong. Though an implementation of a method comparable to this al-
gorithm should certainly be less computationally intensive then either the
RGF or some optimised LU method, especially in 3D, it should be clear from
this discussion that it would be very complicated to implement and that it
should be tuned separately for different problems, which makes it infeasible
for us to implement.

4.4 Iterative methods for the Green’s matrix columns

Considering the results of the previous section and noting the analogies to
the system discussed in section 3.3.4, we test the performance of iterative
methods to compute the matrix columns of the Green’s function. In par-
ticular, we test the scaling of the number of iterations of the generalised
minimal residuals method (see appendix C) as we increase the system size
of the 2D uniform hopping model. In order to reduce the number of itera-
tions, various preconditioners will be used.

The goal of preconditioning a matrix A with preconditioner M (where M
is a non-singular matrix) is to obtain a modified matrix M−1A for which
less GMRES-iterations are needed to converge to an accurate solution of
M−1Ax = M−1b.10 Our test system is the uniform 2D hopping model de-
scribed in section 3.3.4. As a benchmark and as a check of the GMRES

10We remark that we do in general not compute the explicit inverse M−1 and that we
sometimes also precondition in a slightly more general way, i.e. we take matrices M1, M2

and solve M−1
1 AM−1

2 M2x = M−1
1 b.
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implementation11 we first test M = 1̂ (i.e. no preconditioning) and M = A
(i.e. using a direct method, so the number of GMRES iterations has to be
1). The result is shown in table 4.3.

Preconditioner A 1̂

n Iterations Iterations

10 1 80
20 1 279
30 1 617
40 1 1080
50 1 1676

Table 4.3: Number of GMRES iterations without restarts needed to obtain
a relative residual < 10−6, for different preconditioners. The parameters
t = 1, µ = 0 and E = 2 are chosen; we always choose square systems with
dimensions n× n (so the matrix size is n2 × n2).

4.4.1 Preconditioning

Having tested these trivial preconditioners (see table 4.3) we conclude that
preconditioning is indeed necessary for this problem and search for more
sophisticated ways of preconditioning the system. We try to find good pre-
conditioners using three different strategies: the first is to find a simplified
version Ã of the matrix A, for which it should be easier to solve equations
(specifically, we can choose Ã to be the corresponding Dirichlet problem or
we can shift the energy to make Ã positive definite; to solve the positive
definite problems arising in the iteration steps we could for example use a
multigrid method).

The second approach consists of preconditioning with an approximate in-
verse of A which is easy to compute (for example using an incomplete LU
decomposition).

The third strategy is based on the realisation that we will often be in-
terested in computing the transmission as a function of some parameter
(energy, disorder, etc.); this means we want to invert parts of matrices that
are all closely related. If we pick a representative matrix Ā and compute the
(approximate or full) LU decomposition L̄, Ū , this may be a good precon-
ditioner for a whole class of matrices with comparable parameters. A key
observation here is that we need to compute the decomposition only once,
so it does not matter if it is relatively slow.

11We use the inbuilt gmres()-routine in Matlab [46].
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When implementing the first strategy mentioned above, we realize that shift-
ing the energy to make the matrix positive (or negative) definite is a special
case of the third strategy (with a relatively large shift). Because of this
we first focus on preconditioning with the corresponding Dirichlet problem.
The results are summarised in the first two columns of table 4.4. In some
cases the preconditioner was ill-conditioned, causing the GMRES-algorithm
to break down. If we look at the cases where preconditioning succeeded,
we see that the number of iterations scales as n0.8. This is better than the
intuitive estimate which would be that the number of iterations should scale
with the number of boundary sites, i.e. as n1. It is however worse than the
scaling n0.5 required to make the method scale as well for this system as the
RGF algorithm.

Preconditioner Dirichlet ILU(0)

n Iterations Iterations

10 13 41
20 - 78
30 25 5
40 32 5
50 - 4
60 36 4
70 40 4
100 55 3
150 66 3
200 - 3
250 95 3

Table 4.4: Number of GMRES iterations without restarts needed to obtain
a relative residual < 10−6, for different preconditioners. The parameters
t = 1, µ = 0 and E = 2 are chosen; we always choose square systems with
dimensions n × n (so the matrix size is n2 × n2). If the method does not
converge, we write -.

In the third column of table 4.4, we show the number of iterations needed
if we precondition the system with an incomplete LU decomposition with
zero fill-in. That is, we approximate A with the product LU of a unit lower
triangular matrix L and an upper triangular matrix U such that if there
is an (off-diagonal) zero entry in A, there is also a zero entry in L and U .
This means that LU will not be the real LU decomposition of A (since we
disallow fill-in), but it approximates it.[50]

This ILU(0) approximation is the simplest form of the incomplete LU de-
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composition. It can be computed extremely quickly and as can be seen in
table 4.4, it is a very good preconditioner. For the problem considered in
this section, the analytic computation of the self energy using 3.3.4.7 takes
up much more computational time than the actual transport computation,
but a comparison of executing times of either the RGF main loop or the
GMRES-routine using the Matlab profiler does demonstrate GMRES to be
almost twice as fast for the 250× 250 system.

In order to test to what extent we can use preconditioners that differ from
the matrix we want to partially invert, we take up the same system we
study in the rest of the section and precondition with matrices with shifted
energies. Both complete LU decomposition and ILU(0) decomposition are
tested. The results are in table 4.5.

Interestingly, the preconditioner obtained with ILU(0) decomposition is much
more robust to shifts in the energy, up to a certain point (which in this case
would be around ∆E ≈ 0.8), after which the approximation is as bad as the
full inverse. In any case the full inversion does not seem to be worth the
effort, since it is very sensitive to energy shifts. The ILU(0) preconditioner
may be used for systems that differ only a little, but since it can be com-
puted very fast anyhow, it is doubtful whether it would help speed up the
computations.

Preconditioner A(E + ∆E) ILU(0) of A(E + ∆E)

Shift ∆E Iterations Iterations

0 1 5
0.05 23 5
0.1 39 6
0.2 71 6
0.5 160 6
1 253 298
2 337 343

Table 4.5: Number of GMRES iterations without restarts needed to obtain
a relative residual < 10−6, for different preconditioners. The parameters
t = 1, µ = 0, E = 2 are chosen; we always choose square systems with
dimensions 30× 30 (so the matrix size is 900× 900).

In summary, there are many different ways of computing the transmission
function and some perform much better than others. For the 2D test prob-
lems in this chapter, the recursive Green’s function algorithm has done rea-
sonably well, but it’s not as fast as highly optimised direct solvers or Krylov
subspace methods with the right preconditioner. If we wanted to compute
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the transmission through a large 3D system, it is expected that the difference
between those methods would become larger and that the iterative methods
would be the fastest among them.

We do however intend to use the recursive Green’s function algorithm for
the systems considered in the following chapter, because we already have
a working algorithm available in the commercially available software Mat-
lab. To implement a more efficient method (especially in the case of the
most efficient but parameter dependent preconditioned iterative methods)
would require a significant investment of “human time” in terms of the anal-
ysis, programming and optimisation necessary. It is furthermore likely that
slightly different methods or parameters should be used for different systems.
It is therefore more practical to invest computer time instead of human time
and keep using the efficient but slightly suboptimal RGF algorithm if pos-
sible.
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Chapter 5

Topological insulators

With the methods described in previous chapters, we can compute conduc-
tances through physical systems of interest. Here we focus on topological
insulators. These are systems with the band structure of insulators that
do however have non-zero conductance if non-periodic boundary conditions
are applied. This conductance can be attributed to modes lying close to
the boundary of this system, but the exisistence of these boundary modes
can be determined by considering the symmetry properties of the bulk (i.e.
periodic) system [1]. Another remarkable property is that disorder does not
hinder the conductance of these boundary modes, as long as the symmetries
of the system are respected [1].

We first discuss some theory of topological insulators and demonstrate im-
portant properties using an example. We then turn to a non-standard topo-
logical insulator, for which one of the protecting symmetries lies in the lattice
it is defined on. For this system it is known (and will be demonstrated) that
boundary modes do exist, but their stability under disorder had not yet been
tested. This section 5.2 is based on [9].

5.1 Topological states of matter

The standard theory of topological states of matter is based on classifying
Hamiltonians according their anti-unitary symmetries. These symmetries
are particle-hole symmetry and time-reversal symmetry. By making the as-
sumption that other (unitary) symmetries play no role, a theory for which
disorder plays no role can be derived. It turns out that we can distinguish
ten different classes of topological insulators and superconductors this way
(in any dimension) [1, 2, 3]. In this thesis our focus will be on 2D systems
with time-reversal symmetry.

According to the above mentioned ten-fold classification, to systems with
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certain symmetries and dimensionalities we can assign topological indices,
which are homotopy invariants of the band structures the (periodic) Hamil-
tonians encode. We would like to study the effect of the boundary conditions
on the band structure. It turns out that for insulators these effects can be
described by looking at the topological indices [1, 2, 3, 4]. Depending on
these indices, we can distinguish two possible dependencies on the bound-
ary conditions: if the spectrum of a system where the periodic boundary
conditions are replaced by zero Dirichlet conditions is a projection of the
band structure along the axis where the system is “cut open”, we call the
insulator trivial. A topological insulator is a system where replacing the
periodic boundary condition by Dirichlet boundary conditions give rise to
extra (boundary) modes in between the bands.

5.1.1 Bloch’s theorem revisited

Before we give some examples of topological insulators and describe some
of their properties, we will first develop a theoretical framework to interpret
them in. This will be based on considering the results from section 2.1.2 in
a more abstract way. These considerations are based on [57, 20, 1].

Consider a system with Brillouin zone B and n + m bands and assume
without loss of generality that the chemical potential is at 0, there are n
bands below zero over the whole of B and m bands above. Picking as a
basis the different bands, the energy functional E[Ψ] := 〈Ψ| Ĥ |Ψ〉 becomes
a function from B × Cm+n to R.

For any k ∈ B, we can write an orthonormal basis with n+m eigenstates.
This means that choosing a different k′ ∈ B amounts to choosing a different
basis for Cm+n. In general, switching between two bases of Cm+n is encoded
by picking an element of the group U(m+ n).

However, there are two special states: the ground state, for which all bands
with negative energies are occupied and the highest-energy state, for which
all bands with positive energies are occupied. These states are the same over
the whole Brillouin zone and are stabilised under a group action of U(n) and
U(m) respectively. Because of this, the different choices of momentum will
only correspond to the action of a subgroup of U(m+n) and we can interpret
the Hamiltonian as a map H : B → Gm+n,n := U(m+ n)/(U(m)× U(n)).

Viewing the Hamiltonian as a function from the Brillouin zone to some
Grassmann manifold1 of which the properties only depend on the number
of occupied and empty bands gives us the possibility to classify Hamil-

1See [58]
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tonians using homotopy theory. If we for example take B to be the 2-
torus2 T2 and consider insulators with 1 filled and 1 empty band, then
H : B = T2 → Gm+n,n ' S2. The winding number of these maps is a
homotopy invariant [59], [60] and can be any integer. This winding number
C1 ∈ Z is also called the first Chern number.

5.1.2 Chern numbers and Dirac cones

As an example of an insulator with a topological structure, we consider a
Chern insulator [61]. The model we consider is slightly different from the
original and is described in [20]. The Hamiltonian will in this case be a
continuous function H : T2 → S2.3

We can write these Hamiltonians as 2×2 matrices, for which it is convenient
to decompose them in terms of a basis consisting of the 2×2 identity matrix
1 and the three Pauli-matrices, which are given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The Hamiltonian can now be written as

H(k) := d0(k)1 +

3∑
i=1

di(k)σi =: d0(k)1 + d(k) · σ, (5.1.2.1)

where d0(k)...d3(k) are scalar functions defining the particular Hamilto-
nian4 and introduced the vectors d(k) := (d1(k) d2(k) d3(k))T and σ :=
(σ1 σ2 σ3)T for brevity.

If we now take d0(k) = 0 (this has no effect on the topological properties of

the Hamiltonian), assume ||d(k)|| 6= 0 (for all k) and define d̂(k) := d(k)
||d(k)|| ,

the winding number can be computed [20]

C1 =
1

4π

∫ 2π

0
dk1

∫ 2π

0
dk2 d̂(k) ·

(
∂d̂(k)

∂k1
× ∂d̂(k)

∂k2

)
. (5.1.2.2)

We can define Chern HamiltoniansHr(k) by (d1(k) d2(k) d3(k))T = (sin(k1) sin(k2) r+
cos(k1) + cos(k2))T , where r is a real parameter. We remark that for some

2This particular Brillioun zone arises if we take a 2D rectangular system and apply
periodic boundary conditions in both directions. It is a very common geometry to consider
in physics, especially if the radii of the torus are taken to be large.

3To be more precise, the Hamiltonian will be a continuous function with domain ho-
momorphic to T2 and co-domain homomorphic to S2

4and for which some restrictions hold, since the codomain of the physical Hamiltonian
should be (homomorphic to) S2
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combinations of (r,k), the assumption ||d(k)|| 6= 0 does not hold any more.5

For these values of r, the system is not an insulator. In fact, there are phase
transitions taking place at r = −2, 0, 2, in which C1(r) changes. Specifically,
we have [20]

C1(r) =


0 if r < −2,
1 if − 2 < r < 0,
−1 if 0 < r < 2,

0 if r > 2.

The values for k at which there are closures of the band gap correspond to
special points (called high-symmetry points) in the Brillioun zone. For later
reference, we name the point k = (0, 0) the Γ-point, k = (π, π) the M -point,
k = (π, 0) the X-point and k = (0, π) the Y -point.

If we would look at the band structure of the Chern Hamiltonians around
these special points, we can use linear approximations to the Hamiltonians.
For example, around (r, k1, k2) = (0, π, 0), the Hamiltonians can be approx-
imated by Hr(k)|(0,π,0) ≈ k1σ1 +(π−k2)σ2 +rσ3, which is a two-dimensional
Dirac Hamiltonian (with momentum (k1, π − k2) and mass r).6

Around the other special points the Chern Hamiltonians can also be ap-
proximated well by Dirac Hamiltonians. The regions where these approx-
imations hold are called Dirac cones; they are the only places where the
band gap closes. The jumps in the value of the first Chern number can be
computed entirely from the Dirac approximations, but the actual value can
only be determined by the full Hamiltonian.[20]

5.1.2.1 Bulk and boundary properties

Hamiltonians defined on a torus are known as bulk Hamiltonians. The rea-
son for this nomenclature is that the boundary conditions are chosen such
that the analysis of the Hamiltonian is easy (specifically, Fourier transforms
are possible), but without regarding the physical situation where most sys-
tems do not live on tori. The assumption is that for properties that depend
on how states behave in the middle of the system (the bulk), the precise
boundary conditions do not matter and the bulk Hamiltonian is accurate.

We can however also choose to pick different boundary conditions and in
the case of topological insulators it turns out to also be interesting to study
these Hamiltonians on cylinders (with Dirichlet boundary conditions on the
edge) and in the lead-central region-lead geometry discussed in the previ-

5This is the case for (r, k1, k2) = (−2, 0, 0) or (0, 0, π) or (0, π, 0) or (2, π, π)
6In 3 + 1 dimensions, the Dirac equation describes the quantum mechanical behaviour

of relativistic electrons and other relativistic spin- 1
2

particles.
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ous chapters. We will not do any transmission calculations for the Chern
insulator, but we will discuss boundary effects arising from considering the
system on a cylinder.

The procedure for placing the system on a cylinder consists of performing
a (discrete) Fourier transform of one of the directions (for example trans-
forming the wave vector k1 to the lattice coordinate x) and setting Dirichlet
boundary conditions in this transformed direction, after which the spectrum
can be obtained numerically for every value of k2. If we do this for many
values, we can plot the spectrum on a vertical line for each value of k2. If
we then connect the largest values of the spectra for each k2 to each other,
the second largest to each other etcetera, we get one line for every site in
the x-direction. Together these lines form a band structure, of which an
example is plotted in figure 5.1.7

-3 -2 -1 1 2 3
k2
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-1

1
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3

E

Figure 5.1: The band structure of a Chern insulator with r = −1 and 80
sites in the x-direction. k2 was discretised with step size π

100 .

7Please note that with this procedure the modes are plotted as if they never cross. This
is a numerical artefact, since in reality modes can and do cross. For the study of boundary
conditions, this simplified picture of the bulk band structure is however sufficient, since
we only need to know at which energies the bulk lies and (if they exist) how the boundary
modes look like.
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Most of figure 5.1 looks the same as how a projection of the bulk spec-
trum would look. The main differences are that the two bands now consist
of many individual lines (an unimportant finite size effect) and that there
are two modes in between the bands that cross at the point k2 is zero (an
important consequence of applying different boundary conditions). These
two modes are called boundary modes.

The name boundary mode is chosen appropriately for multiple reasons: even
though there existence can be argued for on the basis of bulk properties alone
(the topological quantum numbers), they only manifest themselves in a ge-
ometry with boundaries (such as the cylinder) and their position is also at
the boundary (i.e. the probability density function of the position is strongly
concentrated close to the boundary).

Further properties of the two boundary modes are that they each are located
at a different boundary with opposing group velocities. The corresponding
wave functions are perpendicular to each other. This perpendicularity has
important consequences for the stability of the boundary modes under dis-
order.

The effect of the chemical potential disorder we have considered, is that
it may randomise the momentum of an electron while keeping the energy
constant.8 The electron will be scattered into another mode, with a proba-
bility of this event occurring proportional to the disorder strength and the
overlap integral between the modes.

In the examples considered in section 3.3 or in the bulk of the Chern insu-
lator, at energies where there is transmission, there are many modes avail-
able with different group velocities and non-zero overlap. This implies that
the disorder can induce events which scatter electrons into other (counter-
propagating) modes and thus hinder transmission.

The situation is different if we are in the bulk gap of the Chern system:
for a given energy in the gap, the only scattering events that comply with
the conservation of energy scatter an electron from one edge mode into the
same edge mode (in which case nothing happens and transmission is not
hindered) or into the other edge mode, but this last event has a probability
of almost zero, since the overlap integral between edge modes is exponen-
tially suppressed as a function of system width. The conclusion is that the
transmission is essentially unhindered by disorder, making this system very
robust. This key property is one of the main reasons physicists study topo-

8Disorder also changes the spectrum, but we assume it is small enough not to effect it
qualitatively.
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logical insulators.

Because the fact that boundary modes for which the group velocities are
in different directions do not have any overlap is so important for the way
these systems behave under disorder, we will demonstrate this property in
the context of a Chern insulator. To do this we linearise the edge state theory
around k2 = 0. Around this point the dispersion is linear and the two edge
modes have velocities with the same magnitude v but different directions;
this can be expressed with an effective 1D massless Dirac equation9

Ĥeff (k2)Ψ :=

(
0 ~vk2

~vk2 0

)
Ψ = EΨ. (5.1.2.3)

We should now consider solutions to (5.1.2.3) with the same energy but dif-
ferent momenta.

The eigenvectors solving (5.1.2.3) are Ψ±(k) = 1
2

( √
2

±
√

2

)
and they cor-

respond to (orthogonal) solutions with the same momentum k and different
energies ±~vk. This means that if we define Ψ±(k) := Ψ±(±k), we have
found the solutions with the same energy and different momenta. Since
Ψ±(k) does not depend on k, it is obvious that the same energy solutions
Ψ±(k) are also orthogonal.

There is a simple way to destroy the orthogonality: if we add a small mag-
netic field, the Hamiltonian in (5.1.2.3) is modified by the addition of an
extra term Bσ3, where B is the magnetic field strength, assumed to be
small, so as not to invalidate our effective description.

We get Ĥmag(k2, B) = Ĥeff (k2)+Bσ3, with perturbed energies E((k2, B)) =

±
√
B2 + (~vk2)2 and eigenvectors Ψ±(k2, B) ∼

(
B±E(k2,B)

~vk2
1

)
. The energy

remains an even function of the momentum and we should compute the
overlap integral 〈Ψ+(k2, B)|Ψ+(−k2, B)〉 = − 2B

(~vk2)2
(B + E). If we send

B → 0 we re-obtain the results for the system without magnetic field, but
for non-zero magnetic field the boundary spectrum becomes gapped and the
remnants of the boundary modes start to overlap, ending the robustness
against disorder.

We remark that at the band gap closures the Chern Hamiltonians com-
mute with the time-reversal operator. This means that the time-reverses of
eigenstates of the Hamiltonian must also be eigenstates and that if these

9The dispersion relation E(k2) = ±~v|k2| is immediate from (5.1.2.3)
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eigenstates are different they are orthogonal. Since Kramer’s degeneracy
theorem [62] states these eigenstates must be different, eigenstates come in
pairs that are each others time reversal invariants. The boundary modes
we encountered are such a pair. Because an external magnetic field breaks
the time-reversal invariance of the Hamiltonian, this restriction no longer
applies and the orthogonality can be broken.

5.2 Topological crystalline insulators

We have discussed some general properties of topological insulators, using
the Chern insulator as an example. In these systems, certain symmetries
can give rise to topological invariants and systems with nontrivial topolog-
ical invariants can have special boundary modes. However, the symmetries
introduced before are not all symmetries one can think of. We could for
example also look at whether the symmetries of the underlying crystal lat-
tice gives rise to comparable boundary modes. It turns out there are indeed
boundary modes [4, 5, 6, 7, 8].

These boundary modes can also arise in systems that are trivial accord-
ing to the tenfold way [4, 5, 6, 7, 8]. The effect of disorder on these systems
remained however unclear [9]. In this section we will address this question
for one concrete example of such a system; it is based on a paper [9], pub-
lished together with Carolin Küppersbusch, Vladimir Juričić and Lars Fritz.

The starting point is a model proposed in [5], which is an extension of the
Bernevig-Hughes-Zhang model [63]. The Hamiltonian we consider is defined
on a 2D square lattice and its Fourier space representation is given by [5, 9]

H :=
∑
k

Ψ†k

(
H(k) HSO(k)

H†SO(k) H∗(−k)

)
Ψk, (5.2.0.4)

where the four components of Ψ are two different orbitals (p and s) with two
different spins (↑ and ↓); when the Hamiltonian is written as in (5.2.0.4),

these orbitals are ordered as
(
s↑k, p

↑
k, s
↓
k, p
↓
k

)
. Here H(k) is given as the

dot product of a vector of Pauli matrices σ and a vector d(k) (which also
depends on the model parameters M , B and B̃)

H(k) := d(k)·σ with d(k) :=

 sin kx + cos kx sin ky
− sin ky + cos ky sin kx

M − 2B [2− cos kx − cos ky]− 4B̃ [1− cos kx cos ky]

 .

(5.2.0.5)
The spin-orbit coupling Hamiltonian can be used to couple the spin-up sector
to the spin-down sector. We define this Rashba coupling term (with coupling
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strength R0) as [5]10, [9]

HSO(k) := R0

(
−i sin(kx)− sin(ky) 0

0 0

)
. (5.2.0.6)

We first analyse the phase diagram of the model for R0 = 0. In this case the
system admits four phases [5].11 The boundaries between the phases can
be found by searching for parameters such that d(k) = 0, for some values
of k. This happens along the line M

B = 8 (with d(π, π) = 0) and along the

line M
B = 4 + 8 B̃B (with d(0, π) = 0 and d(π, 0) = 0).12 We note that to

go from the trivial state with M < 0 to the trivial state wtih M
B > 4 + 8 B̃B

and M
B > 8, we will always pass through phase transitions such that at each

high-symmetry point (Γ-, X-, Y - and M -point) the bulk gap will close once.

The next step is identifying what these four phases are. This has been
done in [5] in terms of symmetries of the system. These symmetries are
time-reversal symmetry (so the Chern number of the complete system is
zero, but for zero spin-orbit coupling we can assign Chern numbers to the
different spin sectors) and the underlying lattice symmetry (for which the
high-symmetry points are important). In [5], the phases are named after
the high-symmetry point at which the band gap closes in the transition to
a trivial insulator. We follow the convention of [9] and refer to the Γ- and
M -phases as quantum spin hall insulator (QSHI) and to the XY -phase as
topological crystalline insulator (TCI). It is our eventual goal to compare the
stability of the edge modes under disorder in both the QSHI and the TCI
phase, with and without Rashba coupling. In order to do this it is sufficient
to set B̃ = B. Furthermore, B only functions as a scaling parameter, so it
makes sense to consider values of variables in units of B; hence we define
m := M

B and r0 := R0
B .

For r0 = 0, we can consider the subsystems consisting of only spin up or
only spin down particles and compute13 their Chern numbers C↑1 , C↓1 using

10This definition differs from the coupling in eq. (S9) of [5] by an (unimportant) factor
1
2
.
11We make the (physically sensible) assumptions that 0 ≤ B̃ ≤ B.
12At M = 0 there is also a phase boundary (d(0, 0) = 0).
13This computation was carried out with the help of Wolfram Mathematica; the integral

was computed numerically for a value of m in each phase. Because Chern numbers only
change at band closures and we know when the bands close, this is sufficient to determine
them.
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(5.1.2.2)

C↑1 =
1

4π

∫ 2π

0
dk1

∫ 2π

0
dk2 d̂(k) ·

(
∂d̂(k)

∂k1
× ∂d̂(k)

∂k2

)

=

√
2

4π

∫ 2π

0
dk1

∫ 2π

0
dk2I

=


0 if m < 0,
−1 if 0 < m < 8,
−2 if 8 < m < 12,

0 if m > 12,

(5.2.0.7)

where

I =

[(
− (m− 12) sin(2k1) sin(k2) + (m− 12) sin(k1) sin(2k2)− 2 cos(k1)((m− 4) cos(k2) + cos(2k2) + 3)

+ cos(2k1)(−2 cos(k2) + 2 cos(2k2)−m + 6)−m cos(2k2)− 6 cos(k2) + 6 cos(2k2)− 6)
)

/(
8 cos(kx)(2 cos(ky) + 1)(2 cos(ky) +m− 8) + 2 sin(2kx) sin(ky)− 2 sin(kx) sin(2ky)

+ 32 cos
2
(kx) cos(ky) + cos(2kx)(7 cos(2ky) + 11) + 8(m− 8) cos(ky) + 11 cos(2ky) + 2(m− 16)m + 147

)3/2]

and
C↓1 = −C↑1 . (5.2.0.8)

From this observation the phase diagram for the system with Rashba cou-
pling can be obtained, as long as the coupling is too weak to close the bulk
band gap. The phase diagram is shown in figure 5.2 [9]. It should how-
ever be noted that assigning a Chern number to a certain spin band is only
possible if r0 = 0, since the Rashba coupling breaks spin conservation.14

5.2.1 Cylindrical geometry

Having described the system in Fourier space (i.e. on a torus), we want
to “open it up” and study it on (more realistic) geometries that actually
have boundaries. The procedure consists of performing a Fourier transform
to the Hamiltonian (5.2.0.4) and subsequently applying non-periodic bound-
ary conditions (zero Dirichlet conditions in one direction and open boundary
conditions in another). We start by Fourier transforming in one direction
and applying the Dirichlet conditions, analogously to section 5.1.2.1.

The way to obtain the Hamiltonian on a cylinder or fully in real space
is straightforward but tedious, so we just demonstrate this for one term.

14For r0 = 0 the Z2 topological invariant of interest ν is given by ν =
C
↑
1−C

↓
1

2
mod 2.

For the weak Rashba coupling discussed above the invariant does not change and remains
well defined. We refer to [5] and references therein.
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Figure 5.2: The phase diagram corresponding to (5.2.0.4), for certain pa-
rameter values. Figure taken from [9].

Suppose we want to transform in the x-direction, in which we assume our
grid to have Nx sites. The vector d(k) contains the term cos(kx), so the full

Hamiltonian should contain a term ∼∑k Ψ†k cos(kx)Ψk. Then∑
k

Ψ†k cos(kx)Ψk =
1

Nx

∑
k

∑
x

∑
x′

Ψ†x,kye
−ikxx cos(kx)eikxx

′
Ψx′,ky

=
1

Nx

∑
k

∑
x

∑
x′

Ψ†x,kye
−ikxx e

ikx + e−ikx

2
e−ikxx

′
Ψx′,ky

=
1

2

∑
k

∑
x

∑
x′

Ψ†x,ky
eikx(x′+1−x) + e−ikx(x′−1−x)

Nx
Ψx′,ky

=
1

2

∑
ky

∑
x

∑
x′

Ψ†x,ky
(
δx′+1,x + δx′−1,x

)
Ψx′,ky

=
1

2

∑
ky

∑
x

(
Ψ†x+1,ky

Ψx,ky + Ψ†x−1,ky
Ψx,ky

)
.

This means that the term cos(kx) corresponds to nearest neighbour hop-
ping in the x-direction.15 The zero Dirichlet boundary conditions can be
applied straightforwardly, by not connecting the first and last site of the

15So following the analogy of section 2.1.3.1 we could interpret a term like cos(kx)− 2
as a standard approximation to a second derivative.[21]
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grid. The term sin(kx) corresponds to anisotropic nearest neighbour hop-

ping ∼ (Ψ†x+1,ky
Ψx,ky − Ψ†x−1,ky

Ψx,ky (this is comparable to a leapfrog dis-

cretisation of a first derivative [21]).

Having obtained the Hamiltonian on a cylinder, we can get an idea of the
band structure, analogously to what is done in section 5.1.2.1. In figure 5.3
example band structures for both the QSHI and the TCI phases are shown.
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Figure 5.3: The band structure in the QSHI-phase (left, with m = 7, r0 = 0
(and B̃ = B)) and a TCI (right, with m = 9, r0 = 0 (and B̃ = B)). We
took 80 sites in the x-direction and discretised ky with step size π

100 .

In figure 5.3 we see boundary modes that cross at ky = 0 (both phases)
and ky = π (TCI). We remark that if we project along the x-direction, the
X- and Γ-points correspond to ky = 0 and the Y -point to ky = π. Taking
into account that the spectrum is twice degenerate, we can simply count the
boundary modes to conclude that if we connect the fully real space Hamil-
tonian to leads we expect a transmission T (E) of 2 in the QSHI and 4 in
the TCI.

We can now check numerically that the boundary modes are indeed located
at the boundary of the system and how close to the boundary they actually
remain. We can then estimate a suitable width of the system we shall use
our transport algorithms on by requiring the overlap between modes at dif-
ferent boundaries to be (very) small. The reason we require this is that we
want to study the properties of “large” systems.

In large systems, the boundaries of the system are properly separated from
each other. For our purposes we can define the part of the system where a
boundary mode has a non-vanishing16 probability density to be the bound-

16We have to impose some cutoff here, but a precise definition is not given, since we
expect the probability density to decay exponentially anyhow
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ary (so it gets a certain thickness)17 and the requirement that different
boundaries do not overlap defines what it means to be a large system.

The test was performed by computing the eigenvectors Ψ at zero momentum
(for some representative parameter values, such as the ones used in figure
5.2) and taking the four with the lowest energy (these are two right-going
and two left-going modes). Then the probability density |Ψ|2 was computed
at every site. These probability densities can then be plotted to verify that
the modes are indeed at the boundary. A second test consists of considering
the sites that are in the middle and checking if the probability density is
sufficiently small there. These checks show the modes to be indeed located
at the boundary, but extending inwards somewhat. For a system of width 40
this inward extension is such that the boundaries (almost) touch each other,
making this system size to small for our purposes. In a system of width 80
this is not a problem any more and the boundaries are really separated from
each other.

Last but not least, we can use the properties of the system on a cylin-
der to come up with an idea of how the system would behave if we apply
disorder. This is done by assuming the boundary modes to consist of the
product of some complicated function Ψ(x, s, o) depending on x, spin s and
orbital o (which is the eigenvector of this mode in the cylindrical geometry)
and a plane wave in the y-direction and furthermore assuming that disorder
causes these plane waves to scatter elastically, such that energy is conserved
and the probability of scattering into another mode Ψ̃(x, s, o) with the same

energy is proportional to disorder strength and the overlap integral
〈

Ψ|Ψ̃
〉

.

Because we can numerically obtain the functions Ψ(x, s, o) at some given
energy in the bulk band gap and compute their overlaps, we can check if
this overlap integral is zero18 for all counter-propagating modes at that en-
ergy or not. For such a given energy close to zero we obtain two left- and
two right-moving modes in each Dirac cone (so with momenta ky either close
to 0 or to π, depending on the phase). This means that in the QSHI we get
two left- and two right-movers, while in the TCI we get four of both. When
we compute the overlap between a left-mover and a right-mover at the same
Dirac cone, we do see they are orthogonal (which they have to be because
the system is time-reversal symmetric, so we get two Kramer’s pairs [62]).
This holds in both phases and with or without Rashba coupling.

In the TCI phase we should also check for overlap between left- and right-

17With this definition of the boundary it will in fact still consist of the physical boundary
and (possibly) some neighbouring layers

18or rather extremely small, since our system is of finite size
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movers at different Dirac cones. Here we do note a difference between the
cases with and without Rashba coupling: if there is no Rashba coupling,
there is no overlap between left- and right-movers at the different cones,
while for r0 6= 0 the modes at different cones do start to overlap.

Of course, it is in general a rather special property for these functions to
not overlap, so we should search for an explanation for this in the system
without Rashba coupling. This has to do with the fact that the overlap also
depends on the overlap between spin orientations and we have already seen
that in the absence of Rashba coupling we can split the system up into two
independent spin sectors, each with its own Chern number. Because modes
in one of these sectors always have the same spin as other modes in that
sector and always an opposite spin to modes in the other sector, the overlap
integral between modes in different sectors has to vanish. Since counter-
propagating modes will belong to different spin sectors, scattering between
them is forbidden by spin conservation. Rashba coupling breaks this spin
conservation and hence scattering between counter-propagating modes not
related by time reversal symmetry becomes allowed again.

In summary, our analysis of this model on a torus and cylinder has en-
abled us to predict that we will find both QSHI and TCI phases, with bulk
gap conduction G = 2e2/h in the QSHI phase and G = 4e2/h in the TCI
phase. If we put disorder into the system we do not expect these conduc-
tances to change19, unless we are in the TCI phase with non-zero Rashba
coupling, in which case we do expect to see Anderson localisation.

5.2.2 Conductance and disorder

We now turn to the system in real space and want to connect it to leads. In
order to come up with a realistic coupling, we let the system and leads differ
only in chemical potential and Rashba coupling (in the leads we pick µ in
the bulk band and r0 = 0). The lead self-energy is then computed using the
methods described in section 3.4.20 We remark that strictly speaking this
process already breaks the rotational symmetry of the crystal lattice, but
we expect this to be a minor effect.

Having computed the self-energy, we can use the methods of chapter 4 to
obtain the conductance. As described in section 4.2.1.1, we can do this both
with the RGF and the LU algorithms. The results are the same (and sensi-
ble), indicating both methods to be stable, but the RGF algorithm is much
faster. The results in the rest of this section are all obtained using the RGF

19As long as the disorder is too weak to close the bulk gap.
20These methods turn out to work only for some values of µ, but we can in each phase

still pick a suitable value of µ that is properly in the band.
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algorithm.

We want to compare the different phases and Rashba couplings such that
the bulk gap is comparible. It turns out that this approximatly holds if we
pick m = 7 and r0 = 0 or r0 = 1 for the QSHI and m = 9 and r0 = 0 or
m = 10 and r0 for the TCI. The result for the transmission in the bulk gap
and a little part of the bulk band is shown in figure 5.4.

Figure 5.4: The conductance in the bulk gap for the various phases and
Rashba couplings. Note that the QSHI-phase with and without Rashba is
almost the same here.

In figure 5.4 we can see that the conductance in the TCI bulk gap is in-
deed 4e2/h and in the QSHI it is 2e2/h. Furthermore, the Rashba coupling
has essentially no effect on the QSHI, but the TCI conductance is a bit dif-
ferent. We remark that in the TCI-Rashba phase we increased m a bit, in
order to keep the total bulk gap width comparible.

If we further compare the results in figure 5.4 with the results in section
3.3 it is notable that in the bulk of the systems in figure 5.4 the transmis-
sion is higher (which is not very surprising considering the width of these
systems) and there are clear Fabry-Pérot oscillations, while these oscillations
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are absent in the bulk gap.21 This is again a clue that along a given edge
there is really “one-way traffic” and there is no interference from reflecting
waves. The tiny oscillations in the TCI-Rashba phase indicate again that
Rashba coupling may destabilze the TCI boundary conductance.

The best way of finding out whether a system is stable under disorder is
of course by performing a simulation. The disorder was implemented by
picking at each site22 a perturbation to the chemical potential such that
these perturbations were uniformly distributed between −w and w; we refer
to w as the disorder strength. This means that time-reversal symmetry is
always maintained and the rotational symmetry of the TCI-phase is main-
tained on average. The results are shown in figures 5.5 and 5.6.

Figures 5.5 and 5.6 show clearly that the disorder does decrease the conduc-
tance from the TCI boundary modes when there is Rashba coupling, while
in the absence of coupling the TCI is just as stable as the QSHI (and on
the QSHI Rashba coupling has no effect at all). The stability of the TCI
without Rashba coupling we find is in agreement with [64] and [65], which
were published recently.23

We remark that the stability of the system without Rashba coupling in
both phases is in agreement with our earlier analysis that the QSHI consists
of two decoupled Chern insulators with C↑1 = −C↓1 = −1 [61, 66, 9] and the

TCI of two decoupled Chern insulators with C↑1 = −C↓1 = −2 [9], for which
there can be no backscattering in either case. Furthermore, even though
Rashba coupling turns the spin polarized modes of the QSHI into helical
modes, it will still be protected by time reversal symmetry [62, 63, 67, 68, 9].

We can thus conclude that the TCI phase may be as stable as the QSHI
phase, as long as there is no Rashba coupling. In the presence of Rashba
coupling the boundary properties of the QSHI remain essentially unchanged,
while the boundary properties of the TCI change dramatically, making it
unstable against disorder. Even though we only implemented one specific
form of Rashba coupling, the arguments for the instability of TCI edge
modes should also apply for other forms of spin-orbit coupling, effectively
making the realization of a TCI stable against disorder in realistic materials
unlikely.

21Except in the TCI-Rashba phase, where there remain some tiny oscillations.
22We remark that there are four orbitals at each site, so chemical potentials of orbitals

that share a site are always perturbed identically.
23The work in this section was however caried out independently of these references.
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Figure 5.5: The conductance as a function of disorder strength w/B for site
disordering. This plot is based on 100 samples of each system.

Figure 5.6: The conductance as a function of system length for site disor-
dering with strength w/B = 5. This plot is based on 100 samples of each
system.
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5.2.2.1 Alternative ways of putting disorder into the system

The results in [9] were obtained by disordering sites, which means that chem-
ical potentials of different orbitals on the same site were all shifted by the
same amounts. We could also apply disorder differently, for example not
disordering each site with the same disorder strength, or by disordering dif-
ferent orbitals at the same site independently. Here we demonstrate what
happens if we only disorder the boundary sites of the system (but with dis-
order strengths much larger than the bulk gap) and also how disordering
different orbitals at the same site effects conductance.

If we apply independent disorder to all sites and orbitals, the system without
Rashba coupling remains stable and the TCI phase with Rashba coupling
remains unstable. There is however a difference in the stability of the QSHI
with Rashba coupling: the disorder is now not only a chemical potential
disorder, but also a random magnetic field (and a disorder in tuning pa-
rameter). The combination of Rashba spin-orbit coupling and time-reversal
symmetry breaking by the magnetic field destabilises the QSHI, as can be
seen in figure 5.7. This illustrates that for the time-reversal symmetry it is
in general necessary to be exactly conserved and not just on average.

Figure 5.7: The conductance as a function of disorder strength w/B for site
and orbital disordering. This plot is based on 100 samples of each system.
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The effect of disordering the boundary sites is in fact very simple: with
or without Rashba coupling and in both the TCI and QSHI there is no ef-
fect on the conductance, even if the disorder is very large. The explanation
of this is that it does not matter to the system how wide it is: instead of
Dirichlet conditions which forbid hopping out of the system, this will be
archived by the very high disorder on the outer sites and we are effectively
left with a smaller, but clean system, for which the modes can still propagate
along the new boundary.
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Chapter 6

Conclusions

We have described how the conductance through electronic systems can be
expressed in terms of Green’s functions and described and implemented an
algorithm to compute the Green’s function of an arbitrary lead.

We then discussed different algorithms for computation of this conductance
and compared some of them on computational speed and stability. We ar-
gued that the best performance might be archived by very sophisticated
algorithms and that the recursive Green’s function algorithm offered a good
compromise between speed, stability and implementability for practical sys-
tems. For systems that are very large or for which the conductance needs to
be computed extremely often, it may be beneficial to develop and implement
faster algorithms than the RGF algorithm.

Finally, we looked at topological insulators, first using an example to re-
view some theory on standard topological insulators. Afterwards we looked
at a non-standard topological insulator, where crystalline symmetries also
play a role. We used our transport algorithm and an analysis of the system
on a cylinder to show that for site disorder the TCI phase is only stable
as long as there the spin in the z-direction is conserved. An interesting
open problem remains the study of conductance under disorder for other
non-standard topological insulators, both in 2D and in 3D.
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Appendix A

Some quantum mechanics

Quantum mechanics is the name of a physical theory that is used to describe
processes that happen on a small scale. In this appendix we state some
parts of the theory that are of importance for our purposes. A much more
complete coverage of the theory of quantum mechanics can be found in for
example [19].

A.1 The Schrödinger equation

The Schrödinger equation,(
− ~2

2m
∆ + U(x, t)

)
Ψ(x, t) = i~

∂

∂t
Ψ(x, t), (A.1.0.1)

where ~ = h
2π and h is Planck’s constant (a constant of nature), m is a mass

(a constant that depends on the problem at hand), U(x, t) a given function
of position x and time t that is called potential and Ψ(x, t) an unknown
function of time and position know as the state, is the main equation in

quantum mechanics. The operator Ĥ :=
(
− ~2

2m∆ + U(x, t)
)

, the left-hand

side of (A.1.0.1) is called the (quantum mechanical) Hamiltonian.

If we manage to solve the Schrödinger equation with given initial and bound-
ary conditions, then all properties we may want to measure are encoded in
the state Ψ(x, t) (the way to obtain these properties from the state will be
discussed in section A.2.2. We will now demonstrate how to compute the
state for a simple example and then discuss how Sturm-Liouville theory can
be used to handle more general cases.

A.1.1 A particle in a box

Suppose the potential U(x, t) is constant everywhere (without essential loss
of generality we take this constant to be 0), we impose zero Dirichlet bound-

86



ary conditions on an n-dimensional rectangular domain D and we take any
initial condition Ψ(x, 0) ∈ L2(D). We can then use separation of variables
to reduce this to solving one-dimensional equations and we can rescale and
shift the sides of D to reduce (A.1.0.1) to n copies of the following eigenvalue
problem

− d2y

dx2
= λy(x), (A.1.1.1)

which is of course solved by y(x) =
√

2
π sin(

√
λx).

Since the sine-Fourier basis is a complete orthonormal system on the do-
main, the solution can be obtained by scaling the solutions back to the
original sizes, expanding the initial conditions in terms of the solutions, us-
ing that for these eigenfunctions the time-dependence is exponential and
multiplying the solutions for the different spatial dimensions to obtain a
solution to (A.1.0.1). We remark that the eigenvalues of the eigenfunctions
depend quadratically on the wave numbers of the sinusoids.

A.1.2 Sturm-Liouville theory

Suppose the potential is chosen such that (A.1.0.1) is separable. If we sep-
arate the variables, we obtain eigenvalue equations of the form(

− ~2

2m

d2

dx2
+ U(x)

)
Ψ(x) = EnΨ(x), (A.1.2.1)

where U(x) is a potential depending on one coordinate and En is an (un-
known) eigenvalue (with the dimensions of energy). Following [43], we will
state some results about eigenstates and -energies.

Suppose that we want to solve A.1.2.1 with Dirichlet boundary conditions
(x ∈ [a, b] ∈ R and Ψ(a) = Ψ(b) = 0) and assume U(x) is continuous. This
is an example of a classical Sturm-Liouville problem. All eigenvalues En
are real and satisfy En > infx∈[a,b] U(x). The Schrödinger operator is self-
adjoint and there exists an orthonormal system of eigenfunctions.1

In practice we often want to solve A.1.2.1 without imposing Dirichlet con-
ditions on a compact interval. The following results are from [43] and [69].
Assume

∫∞
−∞ |U(x)||x|k dx <∞, k ∈ {0, 1, 2}. Then there is a finite (pos-

sibly zero) number of discrete eigenvalues En < 0, for which the eigenstates
have finite L2-norm. These states are known as bound states. There is also
a continuous spectrum of eigenvalues with E > 0. The eigenstates with
these eigenvalues do have finite L∞-norm, but their L2-norm is infinite.

1See [43] for proofs of these statements.
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A.2 Notation and formalism in quantum mechan-
ics

We will now explain how some elements from functional analysis are used
in quantum mechanics and introduce a convenient and common notation
for the quantum mechanical states, called Dirac notation. It will also be
explained how quantum mechanical states are related to quantities that
could be measured in experiments.

A.2.1 Dirac notation

The quantum mechanical states Ψ(x, t) we encountered in the previous sec-
tion are functions of position and time. They might also have other degrees
of freedom, like spin, that do not appear explicitly in (A.1.0.1). These quan-
tum mechanical states are elements of some complex L2-space, which is often
referred to by physicists as “the” Hilbert space. This space has of course an
inner product 〈f |g〉 =

∫
f∗(x)g(x) dx, where the integral is taken over all

space and the time is kept fixed.

In the Dirac notation, we drop all dependencies of states on parameters
and write a quantum mechanical state Ψ(x, t) as |Ψ〉. We introduce the
†-operation, called Hermitian conjugate, to take |Ψ〉 to an element of the
dual space 〈Ψ|, requiring that 〈Ψ| |Ψ〉 = 〈Ψ|Ψ〉 =

∫
Ψ∗(x)Ψ(x) dx. It is

clear that † is a bijective operator and that 〈Ψ| |Ψ〉 = ||Ψ||2.

If two states differ only by a multiplication by a complex phase, i.e. if
〈Ψ′| = eiφ 〈Ψ|, for φ ∈ [0, 2π[, we identify them as the same physical state.
This means that each physical state is in fact a U(1) principal bundle.
Choosing a particular state to represent this equivalence class of states is
called gauge fixing and transformations that transform between different
representations of the same physical state are called gauge transformations.
We choose to work only with normalised states, that is, states for which
〈Ψ| |Ψ〉 = 1.

A.2.2 Operators in quantum mechanics

We can also define operators Ô that act on states. We denote this by Ô |Ψ〉.
The corresponding operator that acts on 〈Ψ| is denoted by Ô† and the con-
vention is that it acts from the right, 〈Ψ| Ô†. The †-operation transforms
the state Ô |Ψ〉 into 〈Ψ| Ô† by definition.

We define the expectation value of an operator Ô in a state |Ψ〉 to be

〈Ψ|
(
Ô |Ψ〉

)
=
(
〈Ψ| Ô†

)
|Ψ〉 = 〈Ψ| Ô |Ψ〉, where the equalities are postu-

lated. Let |Ψ〉 , |Ψ′〉 be states. If 〈Ψ′| Ô |Ψ〉 = 〈Ψ| Ô |Ψ′〉∗ for all states, we
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call Ô Hermitian. In general we have that 〈Ψ′| Ô |Ψ〉 = 〈Ψ| Ô† |Ψ′〉∗. We
remark that the expectation value of Hermitian operators is real.

All physical observables (i.e. things that can potentially be measured in
experiments) are represented by Hermitian operators. Examples of quan-
tum mechanical observables are energy, momentum and position. If we
write the state |Ψ〉 = Ψ(x, t) as a function of position (and time), the
operator representing position x̂ corresponds with multiplication with the
position, so 〈Ψ| x̂ |Ψ〉 =

∫
Ψ∗(x)xΨ(x) dx. The momentum operator p̂

will be given by 〈Ψ| p̂ |Ψ〉 =
∫

Ψ∗(x)(i~∇)Ψ(x) dx and the expectation
value of the energy will (of course) be given by the expectation value of
the Hamiltonian, so for the Schrödinger equation (A.1.0.1) this would be

〈Ψ| Ĥ |Ψ〉 =
∫

Ψ∗(x)
(
− ~2

2m∆ + U(x, t)
)

Ψ(x) dx. Although this approach

is rather different to the way classical observables would be computed, we
remark that, by Ehrenfest’s theorem [19], the expectation values of quantum
mechanical observables will coincide with the values they would take on in
classical mechanics.

We can introduce a special kind of operators known as projection opera-
tors ΠΨ := |Ψ〉 〈Ψ|, which project any state in the direction of |Ψ〉. If |Ψ〉 is
normalised, ΠΨ |Ψ〉 = |Ψ〉 and if we sum over the projection operators on a
complete orthonormal system we obtain the identity operator.

We remark that in many of the systems we consider in this thesis the
states are finite-dimensional (column) vectors, so the Hilbert space becomes
a finite-dimensional vector space, where the operators are in fact matrices
and taking the Hermitian conjugate corresponds to taking the transpose and
the complex conjugate of a matrix or vector.

A.2.3 Simultaneous eigenbases

Not all operators that we define for our quantum mechanical system have
to commute, but if two operators do commute, they have a simultaneous
eigenbasis, that is, there exists a basis such that all basis functions are
eigenvectors of both the commuting operators. We show this closely follow-
ing [19].

Suppose the operators X̂, Ŷ commute, the eigenfunctions {|xj〉}j∈N (with

corresponding eigenvalues xj) of X̂ form a complete orthonormal system
and all eigenvalues of X̂ are non-degenerate2.

We can represent X̂, Ŷ as infinite matrices with elements 〈xj | X̂ |xk〉 , 〈xj | Ŷ |xk〉.
2the assumption of non-degeneracy can be lifted, see [19]
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It is clear that the matrix representing X̂ is diagonal. The following holds

Theorem 3 (Simultaneous eigenbases). {|xj〉}j∈N are eigenfunctions of Ŷ

with eigenvalues 〈xj | Ŷ |xj〉.

Proof. We first prove the following lemma:

Lemma 1. The matrix 〈xj | Ŷ |xk〉 is diagonal.

Proof. We use that the operators commute and that the eigenfunctions of
X̂ form a basis.

0 = 〈xj |
(
X̂Ŷ − Ŷ X̂

)
|xk〉 = (xj − xk) 〈xj | Ŷ |xk〉 ,

so the matrix representation of Ŷ is only non-vanishing for the diagonal ele-
ments; using the Kronecker delta we can write 〈xj | Ŷ |xk〉 = δj,k 〈xj | Ŷ |xj〉.

We can write Ŷ in terms of projection operators and act on an eigenfunction
of X̂:

Ŷ |xj〉 =
∑
k∈N
|xk〉 〈xk| Ŷ |xk〉 〈xk|xj〉 =

(
〈xj | Ŷ |xj〉

)
|xj〉 , (A.2.3.1)

which is of course an eigenvalue equation. This proves the theorem, any
eigenfunction |xj〉 of X̂ is an eigenfunction of Ŷ with eigenvalue 〈xj | Ŷ |xj〉.

A.3 The Pauli exclusion principle

Until now in this appendix we have only discussed the quantum mechanical
behaviour of single particles. We are however interested in the behaviour
of large numbers of (non-interacting) electrons in crystals. An important
property of these electrons is that they obey the Pauli exclusion principle,
which states that two electrons can never be in the same state. We first
discuss this exclusion principle and then state some of the consequences for
our non-interacting electron systems.

Quantum mechanical particles have the property that they are indistinguish-
able: all electrons are the same, they just can be in different states. This
means that if we have two electrons in different states |Ψ1〉 , |Ψ2〉, the situa-
tion after “switching them around” should be physically the same. Hence we
should require their combined wave-function to be symmetric or antisym-
metric upon changing the labels 1 and 2. Particles which are combined sym-
metrically are called bosons, particles with antisymmetric combined wave-
functions are called fermions. It turns out that for electrons we should
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always choose the antisymmetric combination: electrons are fermions.

From the antisymmetry property of the combined wave-functions it imme-
diately follows that the electrons have to be in different states, since their
combined wave-function would vanish otherwise. This is then the Pauli ex-
clusion principle. We remark that electrons also have a property known
as spin, which can take two different values. We only require the entire
wave-function, including the spin component, to be antisymmetric, so two
electrons with different spin can still have the same spatial wave function.

The main consequence of this is that even non-interacting electrons notice
each-others presence, because states that are already filled by other electrons
are unavailable. The states themselves do however not change: we can solve
the many particle problem by solving the one-particle problem and then
filling states until the number of electrons is exhausted.
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Appendix B

On disorder in
low-dimensional systems

There are important differences in the way disorder affects the conduc-
tion properties of one- and two-dimensional systems as opposed to three-
dimensional systems. This was discussed in section 2.1.4.2, which is based
on [22], [23] and [24]. With our algorithms for the transmission computa-
tion, this should be possible to verify.

Our example system is the ideal wire, obeying the discrete Schrödinger equa-
tion. We connect it to ideal leads and then disorder the wire, with disorder
picked uniformly on the interval [−w,w]. We study the transmission as a
function of disorder (keeping the length fixed) for a few different energies
and then we keep the disorder constant, while increasing the system length.
This procedure is quickly implemented using the recursive Green’s function
algorithm, see section 4.1.

For these 1D systems it can be seen that the conductance decreases as a
function of disorder or length and that for sufficiently low disorder this
decay becomes asymptotically exponential. This behaviour is indeed the
behaviour predicted by the theory, confirming that Anderson localisation
does indeed take place in this 1D ordinary metal.
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Figure B.1: The conductance as a function of disorder strength w/t for site
disordering. This plot is based on 1000 samples of wires with 1000 sites.

  

Figure B.2: The conductance as a function of system length for site disor-
dering with strength w/t = 0.1. This plot is based on 1000 samples of each
system.
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Appendix C

Numerical linear algebra

In this thesis many linear algebra computations were performed numerically.
In this appendix we describe some features that make numerical linear alge-
bra different from exact linear algebra and we state some algorithms used for
our computations, with an analysis of cost and stability of the algorithms.
Some references for the material in this appendix are [44], [45] and [53].

C.1 Finite precision linear algebra

One of the main differences between numerical and “ordinary” linear algebra
is that in the numeric case all computations done are up to finite precision,
so at every step a round-off error creeps in. It will be our goal to make sure
the cumulative effect of all these round-off errors remains small in practice.
In order to analyse this error accumulation or cancellation, we will introduce
a few important theoretical concepts in this section and demonstrate some
of them in an analysis of a standard matrix multiplication algorithm.

C.1.1 Finite precision computations

When computing things on a computer, all numbers that are used will be
represented by a finite number of bits. This means that numbers can only
be represented up to a certain precision and rounding of numbers can be a
source of errors.

For the arithmetic, we use the model described in [45], which says that
if the numbers x, y are representable in the arithmetic and op = +,−, ∗, /,
then computed(x op y)

exact(x op y) = (1+δ), with |δ| ≤ u and u a (small) number known as
the machine precision. We assume this error estimate to hold for the square
root operation too. We remark that for MATLAB the standard data type
is the double as defined in the IEEE standard 754 [46]. For this arithmetic,
the machine precision u = 2−53 ≈ 1.11 ∗ 10−16 [45], [70].
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We also introduce some notation useful in error analysis (γn-notation, see
[45]): let n be an integer and u the machine precision. Then γn := nu

1−nu .
When we encounter γn in error bounds, we implicitly assume nu� 1.

We want to find algorithms such that even with finite precision compu-
tations the result we obtain is in some sense close to the answer of the
problem we attempt to solve. We call a computation forward stable if the
computed answer differs only a little from the exact answer. If the computed
answer is the exact answer to a slightly perturbed problem, we refer to that
as backward stability. If we almost solve a slightly perturbed problem, we
have mixed forward-backward stability. How large the acceptable deviations
are of course depends on the problem at hand. [45]

We will be primarily interested in problems with complex numbers. The
results in this appendix are derived for real linear algebra, but they all gen-
eralize to the complex case, provided we let δ ∈ C and rescale u → γ4.
[45]

C.1.2 Matrix norms

We would like to state, using only one number, how “far” two matrices are
apart. For this purpose we define some matrix norms. Even though all
norms on finite-dimensional spaces are equivalent, in practice some of them
are more useful then others.

The matrix norms most commonly used in numerical analysis are the Frobe-
nius norm ||.||F

||A||F := (Tr(A∗A))
1
2 (C.1.2.1)

and matrix norms subordinate to Hölder p-norms

||A||p := sup
x 6=0

||Ax||p
||x||p

. (C.1.2.2)

C.1.3 Matrix multiplication

The most common algorithm for matrix multiplication and its analysis are
straightforward. The algorithm is given by implementing the standard for-
mula for matrix multiplication. Let A,B be n × n matrices and define
C = AB. Then the element cij =

∑n
k=1 aikbkj . To compute all elements of

C, we need to compute n2 of these sums, taking 2n3 flops in total.

The error analysis can be performed by considering all the individual com-
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putations in the matrix multiplication. This leads 1 to the following stability
estimates

|C − Ĉ| ≤ γn|A||B|,
||C − Ĉ||q ≤ γn||A||q||B||q, q ∈ {1, 2, F},

where Ĉ is the computed matrix, |A| is the matrix consisting of the abso-
lute values of the elements of A and the norms are the same as those in the
previous section.2

There are some variations possible on the sketched algorithm for matrix
multiplication, mainly in the precise order in which the computations are
done and the way (intermediate) results are stored. By choosing the ap-
propriate algorithm, the constants in the stability estimates can be reduced
[45] and the speed at which the practical computation is carried out can
be increased [44]. However, the theoretical stability and complexity analy-
sis remains the same. Since our purpose here is to enable this theoretical
analysis for the algorithms in this thesis and because we can assume the
programmers of linear algebra libraries to be aware of these practical issues,
there is no need to delve deeper into them here.

We also remark that there exist algorithms for asymptotically faster ma-
trix multiplication (such as Strassen’s algorithm [71])3. The suspicion is
that the best possible complexity of matrix inversion has exponent 2 [73]4.
However, these algorithms are not useful in practice, since their advantage
only shows for extremely large matrices and there may be stability prob-
lems, so we assume that the cost scales as (constant times) the third power
of the matrix dimensionality.

C.1.4 Condition numbers

It is well-known for a system of linear equations Ax = b there exists a
unique solution for all b if and only if A is non-singular. Numerically, it is
easier to solve such an equation if A is “far away” from singularity.

The condition number is a way of expressing this distance from singular-
ity. Suppose A is a non-singular matrix. Then A−1 exists and we can define
the condition number κ(A) := ||A||||A−1||, where any norm can be used.
The precise value of the condition number of course depends on the specific
norm we use and if we want to state something about a condition number

1(see [45])
2The first of these equations hold element-wise.
3the fastest algorithm today scales with an exponent 2.3728639 [72]
4this is certainly a minimum, since we should do something with each matrix element
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computed with a specific norm ||.||q, we write κq(...). For any matrix A,
κ(A) ≥ 1.

Let A be a n × n complex non-singular matrix. The following theorem
expresses the relative distance to singularity as the inverse of the condition
number:

Theorem 4 (Gastinel, Kahan). Let p ∈ [1,∞]. Then

κp(A)−1 = min
∆A

{ ||∆A||p
||A||p

∣∣∣∣A+ ∆A singular

}
. (C.1.4.1)

Proof. See [74] or [45].

There are many ways [45] to estimate errors for the numerical computation
of Ax = b. Here we state one of them, but better estimates can be made.
Let ε > 0, Ax = b and (A + ∆A)y = b + ∆b (both in exact arithmetic),
with ||∆A|| ≤ ε||A||, ||∆b|| ≤ ε||b|| and εκ(A) ≤ 1, then [45]

||x− y||
||x|| ≤ 2εκ(A)

1− εκ(A)
. (C.1.4.2)

This result says that if A is well-conditioned, then the solution of a linear
system is not very sensitive to small perturbations and we can expect algo-
rithms to be normwise mixed forward-backward stable.

Another important result involving condition numbers relates left- and right-
residuals to each other. Let A a non-singular square matrix, X a matrix
of the same dimensions5 and 1̂ the appropriate identity matrix. Then the
left-residual is defined as XA − 1̂ and the right residual as AX − 1̂. Since
A
(
XA− 1̂

)
A−1 = AX − 1̂,

κ(A) ≥
{
||AX − 1̂||
||XA− 1̂||

,
||XA− 1̂||
||AX − 1̂||

}
, (C.1.4.3)

implying that for a well-conditioned matrix A, a good approximate right-
inverse will also be a good approximate left-inverse and vice versa.

C.2 Sparse linear systems

In chapter 4 we describe algorithms for the numerical computation of trans-
mission function. The computationally hardest step of these algorithms
usually consists of solving many equations of the form Ax = ei, where A is

5This matrix Xwill in practice be the computed inverse.
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a given matrix, x an unknown vector and ei a standard basis vector.6

Except for the RGF algorithm, the matrix A is sparse in these computations.
The case were A is dense will be treated in the section on LU decomposition.
If A is sparse (and in our case with a sparsity pattern consisting of blocks in
the upper-left and lower-right corners and some bands), we can either apply
a direct method (LU decomposition) or an iterative method (we describe
(preconditioned) GMRES, but other algorithms are also possible).

C.2.1 LU decomposition

The idea of the LU decomposition is to split the general system of linear
equations Ax = ei into a larger but easier system

Ly = ei

Ux = y,

where L is unit lower triangular, U is upper triangular, LU = A and the
vector y is there for computational purposes only. It can be shown [44] that
if A is of size n× n and for all k ∈ {1, ..., n− 1} the k × k leading principal
submatrix7 is non-singular, there exists a LU decomposition of A. Further-
more [44], if an LU decomposition of a non-singular matrix A exists, it is
unique.

We remark that it is very easy to solve a triangular linear system: there will
be one linear equation with only one unknown; solving for this unknown and
substituting the solution will reduce another equation to a linear equation
with only one unknown left etcetera. This forward (for L-matrices) or back
(for U-matrices) substitution is numerically very stable and the cost scales
as O(n2)[45].

The factors L and U can be computed using Gauss elimination (with partial
pivoting). This standard method is stable in practice8 and costs O(n3) flops.
If A is well-conditioned, this method gives small residuals.[44]

The above results hold for full matrices, but if A is sparse, there may be

6The inversion step in the RGF algorithm can also be written as solving this equation
for all standard basis vectors for a space with the dimension of the slice size. In this way
we would compute a numerical right inverse. However, in our implementation the Matlab
inv()-routine is used, which computes the numerical left inverse [45]. Since the left- and
right-residuals are comparable for well-conditioned matrices and the inv()-routine does
use LU decomposition anyway, this subtlety is not of much practical importance.

7That is, the matrix formed by taking the elements aij ∈ A with i ≤ k and j ≤ k.
8The stability estimates contain a “growth factor” for which no satisfactory estimates

can be made but which is rather low for many matrices [45]
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ways to speed up this procedure. We will look at the particular case where
A is banded with band width p. Then the LU decomposition will inherit this
band width and can be computed with a cost of O(np2)[44]. It should be
noted that the LU bands will generally be filled from diagonal until the p-th
subdiagonal, even if A used to have some empty bands in between. This is
known as fill-in and it has a negative effect on performance, so it is beneficial
to reorder A in a way that minimizes this fill-in. If Gauss elimination with
partial pivoting is used, the columns of L will be permuted (but it remains
unit lower triangular) and the bandwidth of U doubles [44]. This should
however just contribute a constant factor to the computational cost.

C.2.2 Iterative methods

Iterative methods are a way of solving sparse matrix equations approxi-
mately. The basic idea is to start with some guess of the solution to the
equation, analysing how good a candidate solution it is and then improv-
ing this guess, after which the procedure can be repeated with the new
guess. For a good method, the number of iterations a candidate solution
goes through is small, since then the iterative method may arrive at a reli-
able solution more efficiently then a direct method. A reason why iterative
methods are especially suitable for sparse matrix equations is that sparse
matrix-vector multiplications can be carried out very quickly, which means
each iteration step can also be done rather fast. A good reference on itera-
tive methods is [50]. In this section we will give a short description on the
method we applied in chapter 4, that is, we describe the Generalized Min-
imal Residuals method (GMRES) and discuss preconditioning to improve
convergence.

C.2.2.1 Generalized minimal residuals (GMRES)

GMRES is an example of a Krylov subspace method. Krylov subspace meth-
ods approximate x = A−1b by xm = x0+qm−1(A)(b−Ax0), where m is the
iteration step, x0 an initial guess for the solution and qm−1 some (cleverly
chosen) polynomial of degree m − 1. We define the initial residual r0 :=
b − Ax0 and the Krylov subspace Km(A, r0) := span(r0, Ar0, ..., A

m−1r0).
In GMRES, we find the sequence of polynomials q0, q1, ... by imposing the
condition that the residual at iteration rm := b−Axm is orthogonal to the
space AKm(A, r0); this is done by a projection step.[50]

For reference, we state a version of the GMRES algorithm from [50] (al-
gorithm 6.9), to which we refer for further details on the algorithm. In the
thesis we used the standard Matlab implementation of GMRES, which is
slightly different from the algorithm below; the Matlab implementation is
more sophisticated but therefore also harder to write down and our rela-
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tively simple algorithm is already sufficient for our analysis of the method.
We note that in this simple algorithm only the solution after a fixed number
of iterations m is given.

GMRES algorithm (Algorithm 6.9 in [50])

• Define initial residual norm β := ||r0||2 and the initial unit search
vector v1 := r0/β.

• For j = 1 : m

– wj := Avj

– Orthogonalize the wj using Modified Gram-Schmidt (MGS), that
is, For i = 1 : j

∗ hij := wj · vi

∗ wj = wj − hijvi

– hj+1,j := ||wj||2. If hj+1,j = 0, the residual is 0 and we can break
out of the iteration to compute x.

– The next unit search vector is defined as vj+1 := wj/hj+1,j .

• Define the (m + 1) ×m matrix H with entries hij (and other entries
zero) and the matrix V for which the columns are the vectors vi.

• Find ym := miny∈Rm ||βe1 −Hy||2 and compute xm := x0 + V ym.

The computational cost of the GMRES algorithm lies mainly in the (sparse)
matrix-vector multiplications (for square d-dimensional systems of length L
such as described in chapter 4 (and with A the inverse Green’s function), this
costs O(mLd) +O(mL2(d−1)) flops) and the orthogonalization (which costs
O(m2Ld) flops in our systems). Other steps, such as the computation of the
minimizer, can be implemented relatively cheaply [50]. We remark that for
our practical problem we would have to apply the GMRES-procedure Ld−1

times, for different right hand sides.

C.2.2.2 Preconditioning

From the above cost estimation it is clear that in order for the GMRES-
algorithm to perform well, the residual should become sufficiently small af-
ter a low number of iterations. The amount of iterations needed will depend
strongly on properties of the matrix A. The idea of preconditioning is find-
ing non-singular matrices M1, M2, such that M−1

1 AM−1
2 M2x = M−1

1 b is a
more suitable equation for tackling with GMRES and such that equations
of the form M1y1 = c1 and y2 = AM−1

2 c2 (for given c1, c2) can be solved
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easily.9

It is in general not easy to find good preconditioners, since the require-
ment that the equation is turned into a “good” equation for GMRES means
we want the matrices M1, M2 to be chosen such that the spectrum of
M−1

1 AM−1
2 is clustered around some non-zero value and its eigenvectors

are mutually almost orthogonal. However, to make equations involving M1

and M2 easy to solve, these matrices should be as simple as possible. A
third requirement is that M1 and M2 can be obtained using a procedure
that is relatively simple.

The problem of finding the right preconditioner often differs per prob-
lem. It has been adressed in the literature for a large number of problems
[50, 55, 56, 54, 53] and there are some standard techniques that may work
for a particular problem. Among these standard techniques are incomplete
LU factorizations (ILU), in which we search for a lower triangular matrix
L and an upper triangular matrix U such that LU approximates A and the
matrices L, U satisfy certain constraints. The simplest variant of ILU is
called ILU(0); we use it in chapter 4. It consists of doing an LU decompo-
sition with the constraint on the matrices L, U that they have a zero entry
whenever A has a zero entry (so we ignore any fill-in). Although this is in
general a crude approximation, the matrices L, U and are easy to compute
and equations involving them are quickly solvable.

9A system in which M1 is the identity matrix is called right-preconditioned, a system in
which M2 is the identity matrix is called left-preconditioned and a system in which neither
of them is the identity matrix is called split-preconditioned.
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