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Abstract

This thesis aimedo investigate whethat is possible to model a relatively neand complex
phenomenon in distracted driving, namely texting while driviftgs with the goal toultimately

be able to generatensllated human distracted driving data for the development of more advanced
driving assistance systemBwo computational cognitive models were combined, one to mimic
texting and another one to simulate human driving behdwarn: different interleaving sitegies
were implementedand the resultingecondary task times together with #imulated driving
performance in terms of lateral deviatimerefinally compared with empirical datahich was
gathered under the same disteaiadriving circumstancedy qualitativelyanalyzing the results,
we couldmake the case that at least two interleaving strategies could be ométéubse were
furthest away from the empirical dateor the othetwo remaininginterleaving strategiesve
found that they did overlapith the empirical dataeasonablyvell, which is promisindor future
research in simulating more complex secondary tasksg cognitive architecture®r data
generation
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1: Introduction

The exercise of driving a car is a complex task which consists of multiple hayetinteracting
cognitive processes. It involvgeerception, attention, learning, memory, decision making, and
action control(Groeger, 2000)Even though specific tasks can be automated by implementing
sophisticated systems within the field of artificial intelhge, fully autonomous vehicles co
existing with humascontrolled vehicles remain largely unsolved. This is mainly constrained due
to the fact that driving itself requires a fairly deep leskelinderstanding of the world and its
complex interactions. Furghmore, if we were to ignore the technical limitations, there are ethical
and regulatory issues to be solved prior to autonomous vehicles sharing the road with conventional
vehicles(MartinezDiaz & Soriguera, 2018However, this does not imply that no autonemy
relaed technological advances within the automotive sector found their way into implemented
applications.

Over time, to improve safety and driving comfort, cars have peagressivelyequipped with
different forms of driver assistance tools, also known asrazkd driver assistance systems
(ADAS). These systems technically surpass the more conventional assistance ®/gtetnsige
control) and come with their own set of technical challenges. An earlier extension to the more
conventional systems is knows adaptive/active cruise control (ACC), which provides automatic
control of the longitudinal position of the car. A more modern implementation of this system
combines both longitudinal and lateral control of the vehicle, which enables)(semonomous
driving in certain scenariog@hodayari et al., 2010)

Especially nowadayswith potentidly distracting electronic devices being present both in the car
andin the vicinity ofthe driver, theehancs of the driver engaging in risky multitasking behavior
aregreatly increased-rom these electroniaeviceinteractions, cell phone usage remaing of

the largest causef accident§CDC, 2020) In these dangerous situations, an advanced driver
assistance systeoould provide a safety net, however, as is explained in the next paralgisph
causes a new set of problems.

When implemented in a hybrid setting, advanced driver assistance systems are commonly
activated when either the lane deviation or the distance toatheheads exceeding a certain

threshold. Implicitly, the assumption is made that this will need todrapghen the driver is

distracted, which in turn causes the system to intervene. However, these techniques can be
perceived as | imiting to the userds perceived
being able to predict and track the attentibthe driver is of importanc@ohl et al., 2007)There

have been different techniques proposed in combination with ADAS that tryeto inft he dr i ve
attention through sensafglinoiu Enache et al., 2009A\nother method of determiningstraction

is bymeasur ng t he c danebdeviatoi{CGhoutlhary & Velaga, 2017What these

methods ha® in common is that they are mostly based on a given set of rules. For instance, the
absolute lane deviation is taken into account whether or not the system should intervene, without
knowledge 6 the drivers situational awarenes3herefore, t would be leneficial to be able to

5



predict thesituational awareness the driver in a nointrusive manner, which could provide a
higher feeling of autonomy while driving a vehicle. In this way, the driver still has full control of
the vehicle, while having a sayatet available when the driver happens to be not fully situationally
aware.In essencghis means that we aim to haabetter understandingf when secondary tasks
are being performeand what impact this has on the driving performance to predict the possibility
of apotentiallydangerous situation.

One way of achieving this is through havexgress tthuman driving data. For such systembé¢o

able tolearn how humans drive, often larguantities ofeal human driving data are needed
(Bhattacharyya et al., 2020; Z. Huartgaé, 2021) There are datasets availalide basic driving
scenariossuch as th&lGSIM highway driving datasehat for example is being used for training

on lane change behaviors for advanced driver assistance s{istétnang et al., 2018However,

when we consider the wide varietydssibledifferent distractionsif we want asystem to learn

how aparticularspecific task interferes with the driving performance, often that data iieautty
available.For examplein a study on the effect of smartphone usage, this data still has to be
empirically collectedKhan et al., 2021)

A possible solution for generating large quantities of human driving ddwere the driver is
engaging in a particular secondary taskuld be through the utilization of cognitive models to
simulate this datas cognitive modesimto capture human behavidn this thesis, we will model
one of these potentially dangeroustrictions and try to derive whether the resulting driving
behavior data woulg@otentiallybe useful for theeventualtraining of systemssuch as advanced
driver assistance systems.

1.1 Theory

Cognitive modeling is an area of artificial intelligence thahs to simulate human mental
processes in order to predict or understand human deaskimg and performance during certain
tasks. Within cognitive modeling, three different subclasses of cognitive models can be
distinguished; computational, mathemadtiaad verbalconceptual modelBechtel & Graham,

1999) Since computational cognitive models recently have been considered the most promising
and flexible category for embedding cognitive theories fortma@capplicationgSun, 2008)the

focus will be solelyon computational cognitive models.

Since its inception, there has been an intent to simulate the human mind within- an all
encompassing unified theoNewell, 1990) Rather than only being able to simulate narrow
processes, there was the need to have a more generalized theory of cognition. This eventually
resulted in the introduction of cognitive architectures such as SOAR;R@EPIC and others
(QOulasvirta et al., 2018)rhe® cognitive architectures embody a theory of mind (e.g., memory,
vision, motor action), which is, in turn, butlpon theories from cognitive psychology. Cognitive
architectures aim to provide an algorithmic basis for simulating a broad range of different
processes within the human mind. They offer a framework that hasrbadnstraints to closely
emulate realvorld tasks, to either examine the processes involved or predict certain outcomes.
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An active area of research has been the implementation of multitasking within said architectures.
While singular tasks are easier to model, it has been proven more difficult to model the switching
between two separate tasks. Within the context of the-RGifchitecture, however, a general
theory of multitasking is implemented, also known as threaded cog(8aiaucci & Taatgen,

2008, 2011)Threaded cognition is an extension te #nchitecture, such that it is possible to have
concurrent tasks (or goals) active at once, while still being constrained within the predefined
processing capabilities of the cognitive architecture. We are interested in one particular application
of suchmodels, which is the modeling of human car driving with secondary tasks that lead to the
driver being distracted, which will be elaborated on in the next section.

1.2 RelatedWork

1.2.1 Integrated Driving Model

As mentioned in the previous section, sinaevidg is a complex task, it has been proven
challenging to accurately model human driving behavior. Early attempts mostly focused on one
particular part of driving itself, but there was a need for a more-figitiged integrated driving
model(Salvucci et al., 2001)This soon resulted in a theory on how human steering occurs, the
so-called twapoint steering moddSalvucci & Gray, 2004)With these advancements, it did not
take longbefore a fully integrated driving model was implemented. Unsurprisingly, the first
implementations were achieveslithin the Adaptive Control of ThougtRational (ACFR)
cognitive architecturéAnderson et al., 2004)Since the first integrated driving models were
implemented, there has been steady progress in extending the computatiorghusiléths within
ACT-R and its various iterations.

One of the first rigorousamputational models 0l [ nentional modute ——r—r
driving behavior is by the works dBalvucci ‘"°“";"""°"’ o i e
(2006) This model accounts forestring profiles, Gl Bt A
lateral position profiles and gaze distributions < Il

human drivers during lane keeping and la 2 Z|[ Matching (Striatum) |

changing. Followup work shows that 5 §| [ setecton (Paicum) |

predictions considering lane change can be m Eg [ Execution (Thalamus) |

using the aforementioned models. An example r N

this is showni n t he s tQhahge: Y pariotay Mo oton

d etect I on U S I n g a Vlsualfdodule ManualeModuIe r 6
(Salvucci et al., 2007)n this study, the intentior |__(Occipital/Parietal) (Motor/Cerebellum)
to lanechange in human participants could | ™~ e L §
predicted with significant accuracy, by using the

trained data from the cognitive driving model. A Figure 1.1 ACT-R 60 (Sun, 2006)

the paper points out, this method is promising for
applications within the smart (i.e., adaptive) driving assistance systems.



Moreover, different additions have been implemented within the integrated drivired. r@oe of

those studies extended the model with an attention model for simple driving tasks, such as
identifying crossroads and traffic sigfi6. Haring et al., 2012)0ther extensions include a variety

of other more complex tasks, such as reading signs andradiferent situations that emerge

at crossroad@eng et al., 2017; K. S. Haring et al., 2012)

1.2.2 Driving and Distraction Models

Throughout the years, numerous studies have been conducted toegper thsight into the
attention and awareness of human dri@sakraborty &Nakano, 2016; Choudhary & Velaga,
2019; OviedeTrespalacios et al., 2016; Pekkanen et al., 2018; Stothart et al., E&fpégially in

a world where distractions in the form of smartphones, navigational guidance and car interfaces
have become ubiquitsy these areas of research have become increasingly important. An
insightful way of conducting research within the field has been to develop cognitive models, which
enables researchers to better understand the underlying processes that take placatvdiiiisgco

a vehicle. Since the topic itself is fairly broad, we will solely focus on models that focus on
modeling either multitasking or attention in a driving setting.

For exampl e, the paper fModel i ng(Sdvucciv2e02) Di st r
where the first attempt is being made at predicting driving performance by using a computational
cognitive model within the ACTR architecture. In this study, a secondary task is modeled, known

as the -8fant @€asko, whi ch i senteodesvaadsthetrebalt of wards c e s s
in these sentencéAlm & Nilsson, 1995) In this study, it was shown that the model was able to
gualitatively predict multiple measures of driveerformancereported inan earlier empirical

study.

In similar research, the effect of cplhone dialing was modeled, to again predict the resulting
driving behavior and performand®alvucci & Macuga, 2002)This study focused more on
employing a secondary motoric task in a naturalistic driving setting. In this caseliffevent

models and strategies were used to validate the model. The baseline driving performance itself was
also compared to the empirical data. This study showed that using an integrated driving model and
secondary tasks within AGR enablesreveaing behavioral patterns and the resulting driving
performance.

Follow-up research was also conducted to further generalize these findings to other interfaces
rather than cell phones. A rapid prototyping application was created to evaluathidle
interfaces, known as DistraBt(Salvucci et al., 2005)With this study, we see thedtrattempt at
creating lesslistracting interfaces, solely based on the predicted driving performance that results
from a computational cognitive model. This application made it possible to use the whole range
of modalities within ACTR for the rapid protiypes, such as speech and sound, which shows the
versatility of using a cognitive architecture.



As distractions have become more complex than merely entering a phone number or pressing a
button, research within the cognitive models has been striving telrti@se more complex tasks

as well. In one of those studies, searching for a song in an interface while driving was implemented
(Kujala & Salvucci, 2015)It is interesting to see that in this studgsumptions are built into the
modelas inwhere and whempeople are expected to interleave. Theseadled natual breakpoints

are of importance when secondary tasks are performed while dfdangsen et al., 2012)

Recently, research on multitasking and distractions while driving has received a new influx since
the conception of the Queuing Network ART(QN-ACT-R) framework, which greatly improves
usability and is more versatitnan the older LISBased ACTR frameworks. Multtasking
performance is also improved with the addition of the queuing net{@a®, 2013; Cao & Liu,

2011; Liu, 2009) The framework itself does not change the definibbthe models but is more
sophisticated in its implementation.

Other influences on driving behavior have been modeled using this framework, such as the effect
of limited sight distance through fog on dallowing performancé€Deng et al., 2018)Also, the
takeover reaction was modeled for a seamtonomous car driving scenario where an emergency
occurs, with its resulting driving behavi(@eng et al., 2019)

1.3 Objective

We could argue thahe techniquefor detecting distractiongas described ithe previous section

are based upon tmesultingdriver behavior whilst being distractethe mental processof being
distractedarenotdirectly taken into account, solely the resulting behavior fromherefore, one

could argue that cognitive models, at least in theory, could better explain the inner workings of the
distraction itselfThis could in turn,lead to a better understandingtioé resulting behavior from
differentkinds of distractions, as these can be individually modeledwe will see irthe related

works section this idea is not new buemainsfairly complicatedespecially with the more
complex secondary tasks we encounteayod

These requirements open the door for creating a cognitive modeirtisto simulate distracted
driving behavior, whichas earlier state@dould potentiallyreducethe need for human participants
in the process ajatheringsuch dataConsequentially, thisould be beneficiaio potentially train
an artificial intelligence systernmn the future to classify whether an actual human is being
distractecand what task is being performed

It would also be interesting to see whetlmmputatonal cognitive modelscan actually
approximatethe resulting driving behaviowith a not previously modeled more complex
distraction which perhaps couldventuallybe easily altered to include a wider range of different
cognitive tasks



With these two bjectives in mind, we can formulate the following two research questions:

RQ 1:Can werealistically simulate driving performance with@eriodically occurringcomplex
secondary task within an existing cognitive framework?

RQ 2: Is the resulting simulated driving behaviasable for approximating real human
distractions within the same task environment?

Considering earlier work on multitasking while driving, weuld preferablywant to model a
secondary task that is relevamimodernday distracted driving. Since texting while driving is one
of the most dangerous types of distracted driving nowaffayreman et al., 2021t would be
logical to modethis rather complex taslnother reason for modeling this particular secondary
task would be the challenge of havieagunknown interleaving strategius assumptions have to
be made on where taskvitching occurs such as with the song searching(kaghkla & Salvucci,
2015)

To model this secondary texting task, we will be using the mobile phone touchscreen transcription
typing model(Cao et al., 2018)which would be closest to mimicking a situation when someone

is sending messages on their phone. As the authors state in thegilapagprecommendation for
future research; it would be interesting to examine whether the combination of the transcription
typing model and a driving model wouldsult inrealistic driving behavior.

As a common driving performance measuremerthénrelded work we will focus on the lateral
deviation of the car. Often the longitudinal deviation is included as ase# performance
measuremenbut since this task is rather complex, the goal is for the driving scentoibe as
simple as possible to exclude external factors sudmsasctions in the form of other cars
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2: Methods

The aim of this research is to test whether a computational cognitive driving modslesmothdary
computational modetan be combinetb simulatetheresulting driving behaviof-or the primary
mode|] we are using the@reviously mentionedvell-established cognitive driving model from
Salvucci(Salvucci, 2006)For the secondary task, we will be using the mobile phone touchscreen
transcription typing mod€Cao et al., 2018Both of these models are created and validated within
the computational cognitive architecture (QACT-R. To achieve an accurate representation of
the combination of the two models, we haveestablish certain assumptions on how we would
expect humans to multitask between these two tasks in a general sense, as these assumptions have
to be built into the complete combined model itselbrder tobe able tanterleave(Salvucci et

al., 2005. Thesimulateddriving behavior will then beomparedagainst thelriving behaviothat
resulted fronthe empiricalstudy.

2.1 Modeling and Simulation

Within ACT-R production rules are the basic operatidfar example, in a typing model, there are
production rules that describe the finding and pressing of a certain key on a keyboard. The action
that follows is described within the model itself, which depends on the successive states of the
simulated mental modelvhich are stored in buffer§his is what makes multitasking somewhat
difficult to accurately describe within a formal cognitive production rule system such asRACT
since the model is based on certain assumptions regarding human behavior. Due to this limitation,
we have to hypothesize abaufiere the task switching (i.e., interleaving) would most likely occur.

By consulting literature on earlier studies, it can be stated that it would be beneficial to establish
different approaches to model the different strategies for the interleaving betweedasks
(Brumby et al., 2007)This is necessary so that we can crembellated data for different strategies,

to determine if we can capture the true human behavior with one of those strafbggs
eventually these simulated results will be compared with the empirical data that we find in the
experiment. Hereby we can tegtetherone of thanterleavingstrategiedits the dataandreason
whether ACTR would besuitable for modelingnorecomplex multitaskingcenarios.

Fourdifferentinterleaving strategiesre implemented

Strategy 0:We have one naive approach, where after every find and press key production rule the
attention is brought back to the road and to continue typing when the car is perceiveéa & be
stable state.

Strategy 1: A more reasonable interleaving strategy would beitisé¢ad of after every lettahe
interleaving occurs after every word. This interleaving strategy is chosen afaptionto the
natural breakpoints that have beenwh to arise when phone numbers are entered during driving
(Janssen et al2012) Especially when a given sentence has to be typed during a driving task, we
could hypothesizéhat the interleaving occurs in similar chunks as they do with phone numbers,
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to have at least some situational awareness on thepevadlically, which is also known as the
task performancéor speeehccuracy)}radeoff (Janssen, 2012)

Strategy 2: The third strategy is to interleave after every two words, which is bagée timeory

that the Aword sentence spanhohetwden Z2and 8 Womls t r a
(Salthouse, 1986Based on this earlievork, the transcription model takes two words as its-base

| evel Aword sentence spano, as {(Caceceyal,f2@l8nd t ha

Strategy 3: Finally, we have the last strategy on task switching, where the full secondary task
(e.g., typing a full sentence) is completed before the attention is brought back to the driving itself.
In other words, no interleaving taking placeluring the secondary task.

Besides determining the different strategies, we also have to provide the text that will be typed by
the models. Since we want to have a somewhat realistic scenario considering mobile phone usage
as a secondary task, we will basing shortsimple sentences. We will create three distinct
categories otlifferentnumbes of words per sentenc&ur-, five- and sixword long sentences.

For every category, three different sentences are predefined which adds up to nine different
senteges in tota[seesection2.2.3 for the exact sentences)

2.1.1Model implementation

Since both models are combined, extra production rules are necessary to describe the imminent
change of attention/focus back and forth. Fortunately, research has beesndbisetopic with
empirically validated models that have been tested for smaller distractions during (ICiané

Liu, 2013; Salvucci et al., 2005Ve will go through both modeland discuss how they are
implemented and ultimateipterwowen with each otheAll models are implemented in the @N

ACT-R framework(QN-ACTRRelease2017/2019)

We will be using an adaptation of the driving model
. . j ) ) Parameter Value Method
Salvucci (Salvucci, 2006)with two-point visuatmotor . ea —
. . . .. ar K stimate
controlimplemented in (QNACT-R. This driving model ,f 40 Estimated
uses the same values as the original model as these | 3.0 Estimated
. .. Opmax 0.07 rad Estimated
proven to be thebestknown fit for human driving | 3.0 Informal
behavior. The model however, is missing the stability kolow 1.0 Informal
.. thwigjiow 1.0s Informal
assessmergrocedure®f the original modeso these had| i,,, 205 Informal
to be addedn. The original model also had a scalin Pronir 20 Informal
. . .| deate 40 m Informal
parameter for the stability assessineinthe car, which is|g_. 0.07 rad (=1/4 lane) Informal
used for adjustment to the environment in which { %:be 0.035 rad/s (~1/8 lane/s)  Informal

simulation is runSince these values have not been tes*~~
in TORCSbefore, we will have to estimate the be
scaling parameters for stabili#t the end of thisection,

we will examine these values further.

Figure 2.1 Parametervalues usedn the
driving model(D. D. Salvucci, 2006)
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Besides the driving model, evwill be using a transcription typing model that has been
implemented within the QMCTR framework as wel{Cao et al., 2018)For every run of the
simulation the sentences are set within the ma@delbmpanied witits corresponding interleaving
strategy.The model has been adjusted to be ableseodifferent interleaving strategiddie two
word sentence span is ordjteredfor the oneword and singldetter interleaving strategiem
those casest means thatheimaginal chunk for the temporary storage of the words-isitiated
after evey interleavingoccurrenceWith two-word interleaving and fulsentence strategigis
happengvery two words as originally modeled.

To interleave between the two models, extra productions rules have to ba@tidedle the on
and offloading of chunks within the buffers figure 2.2 below, the flowchart isillustrated
showing the transitionsetween the two models.

Driving Model Transcription Typing Model

Random Interval

Drive loop ~ f----------- Audio Signal Submit
ENO
A 4
Drive loop ] Yes
£\
Y
N Y
° Car stable? = > Type

Figure 2.2 Flow chartbetweerthe two models
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The initiation of attending to arreparing for the secondary task can be divideathree steps;
orienting to the sound of the phonkecatingthe phone anttandlingthe phongHaddington &
Rauniomaa, 2011)he first step is modeled as tpeocessingf the audio signaby usingthe

AAur al Mo d u |l e on ACThRa ltocating and haadlingf #hé phene is simulated only

when the car is assessed as being stable aft@rolcessing of thaudio signal. As ACTR is

' imited in more compl ex o0 pthisdely hasheasevas dfiredn i t s
variableat 1370ms, which is based on variables used in earlier stiydszdvucci et al., 2005)

The total time between the audio cue and the first letter tiglgadly should be around 4 seconds

(Fitch et al., 2013)as these operations closely resemble the initiation steps fotledshdalling.

The task switching itself is implemented similarly to the threaded cognition theory that we
discussedn the introduction( Salvucci & Taatgen, 2008)n practice this means that multiple

goal chunks can coexist in the goal buffdfhen the interleaving occurs between typing and
driving, all ACT-R modules are raitiated that were cleared for the typing taskcept for the
second goal buffer chunk whictemains on the typing task there are still remaining
characters/words to be typethis results in a delay before the attentioshistedbackto driving.

When all buffers and chunks are back in the original car driving task state, the stabilitpnassess
production rule is performedVhen the car is deemed to be in a stable enough state, the switching
to the typing taskccurs again when the second goal buffer chunk still holdypiney taskstate.
Except for the goal buffer, the other buffare @nstrained to their basic functionality practice

this means that, as definedwithin ACT-R; the visual buffer, the manual buffehe retrieval
buffer, the imaginal buffeland theauralbuffer canpracticallyonly hold one chunlat a time.

As mentioned before, this stability assessment parameter has been set as our only free parameter
for our modelas this was originally implemented with a scaling parameter for a different
environmentDue to this, we will establish three diffetescaling valuesThe stability function

itself takes into account the stability of the near and far points and the lane p&stiiauncci &

Macuga, 2002)To achievehis, we test the model with the simplest typing task sentences of four
words and gradually scale up the stability parambtdigure 2.3 below we can seéat the lateral
deviation while performing the secondary task goes @xlase toparabolic trend.
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Figure 2.4 Mean of the maximum lateral deviation for different stability scaling values
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Even though this is an expected result, this does not tell us enough if we want to find a good value
for the scaling. Therefore, we can also examine the mean of the maximum lateral deviation per
task. Infigure 2.4, we see that we soon hit a ceiling, irading that the driving performance is
becoming too atrocious at a certain level. As a matter oftfect640scaling is not able to finish

the track at all. In the task timbslow,we get arunsurprisingesult of lower task tingaccounting

for higher scaling values
Task Times (mean)
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Figure 2.5 Mean task times for different stability scaling values

For a good balance between task time differences and lateral deviation differences, the three
scaling parameters that have been selectedgrbx and10x The decision was made to not go
higher than d0xscaling parameter, as that would result in unrealistic bad drbehgvior So,

every interleaving strategy model will be rtimree times with thesthree individual scaling

parametevalues.

Concluding,for the final simulationsn totd this sums up to 4 different interleaving strategy
models times 3 forthe adjustedtability assessment valughich means that in total we have 12
different models. Each individual modeill performN=180 tasks for every sentence group, which

means that for every individual sentence theneeN=60 performed tasks. This sums up to each
different model, using a flerent interleaving strategy, having conducted N=540 tasks in total.
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2.1.2 Environment implementation

To run the model a task environment is needed. In this wa&sese an external environment that
ACT-R cancontrol. For the environment and vehicle @gs a modified version othe open
source driving simulatofORCS(Wymann et al., 20155 used.The drivingmodel is able to
interact with the driving simulator using the UDP network protdogbractice this means that all
relevant data is being sfrom TORCSwhereatfter iis controlled by the model through raw input
basednthelastreceived values.

Thedriving scenario itself consists of a highway of 17km with two lanes gnibgth directions
(figure 2.6) The two lanes themselves ar8.75m wideand theemergency lane on the right
measures 3.5m in widtfthere are 17 straight sections connected bgoaral number of left and
right curved sections. No other cars or distractions are present on the tracloiesetire thathe
only distraction will come from the typing taskboth the model and the experiment

Start

Figure 2.6 The track folboththe model and the experiment

The speed of the car itself has been limii@@0 m/s based on previous research employing a
similar scenarigRehman et al., 20198nce we are interested in the lateral deviation of the car
the speed remains constamterthe duration of the tracldfter every run of the simulation (i.e.,
having driven 17km)the scenario is reset with either a different sentence/interleaving strategy or
left unchangediepending on the number of desired secontiesly trials All variables of interest

are logged over the duration of the course, such as; lame position distance distraction and

task timesAn excerpt ofvariables of interegshatwere logged duringne of thesimulationscan

be seerbelowin figure 2.7.
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Figure 2.7 Lateral deviation (lane deviation) and distraction plotted over time in seconds. The spikes
distraction indicate the start or end of an individual typing task.
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2.2 Empirical Study

Since both individual cognitive models have been validated in thé@astet al., 2018; Salvucci,
2006) the experiment will not be focused on validating both models individually. Instead, the
experiment has twdifferent goals. Since we have acquired the simulated driving performance
from four different interleaving strategies within the model, the nudojectiveis to acquire the
same data on the human participants to be able to compare these. The data twamoceeasures

of driving and taskperformancethe meanlateral deviatiorof the car as function of timeduring

the task@nd the time it took to complete each individual td$le secondargbjectiveis to record

all the user inputs on the smartphone as well as the controls for driving ,tke passibly derive
interleaving data from the inputs themse\a&swe are not using an eye tracker for this particular
experimenal setup The study was appved by the ethical committee at thaiversity of Utrecht

It is of major importance that the data gathered during the empirical research resembles the
experiment conditions of the simulation phase as closely as possible. By doing so we can minimize
the bas in the data and make a better comparison between the two data sets. In this section, we
will examine the experiment design and setup.

2.2.1 Participants

The requirements for the participaritave been adopted from a comparable stadydriving
behaviorduringdistractions in a simulatgHe et al., 2014)n order to participate, the participant
were screened to be possession of a diévr 6 s  And bawenat a2 yearsof driving
experience Furthermorethey had to have at least good experience with touch stypem,
preferablyin terms of daily usageConsidering the demography, the aim was to assemble a
predominately homogenas group, which should result in the most uniform resilte final
group consistedf twenty (N=20) subjects within the age range of 2233 years oldthat
participated in this study. The distribution of male and female participants was exactlyab@/50
all of them were righhandedAll participants were fluent in the English language.
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2.2.2Materials

The experiment itself was conducted in ohéhe labs located in théniversity of Utrechthat are
dedicated to simulated driving studies. The room itself was void of any other distractions and the
participants were left alone after the instructions, to minimize any external distractions or
influences during the experiment. The participants had a place next to them where they could place
their phone when needed.

For the primary task (the driving task) of the experimarortable driving simulatavasused
whichconsistedf aLogitech G2&teemg wheel and pedal$.h e wheel was set to
input mode, to mimic the steering of a real car as closely as possible. The inclstdteiHwvas
not used as the car was set to automatic transmigsides the drivingontrolsetup, a fulHD
(1080p)2 7 monitor was connecteld a system capable of running ta®rementionediriving
simulator environmenfORCSIn the driving simulatgrthe samérighway scenariand layout as
in the simulation phase exe presentedo the userwhere the paitipantwas able tananually
control their virtual car.

For the secondary taskSamsung Galaxy
S6smartphone runningndroid wasused
whichran a custonapp thajpromptedthe
user to write a particular sentence
random intervals. Similar to the
implementatiorwithin the models, thapp M
providesan auditory signal t@ttendthe A
user to performthe typing task. It is
designed in such a way that this will fe
familiar and comparable to receiving a tej
message through an instant messag
app. During the experiment, all the use
input on the touchscreen and all t
steering wheel inputare recorded and
syrchronized for later analysis.

Figure 2.8 The final setup of the experiment

20



The app itself is created witlonic using theAngular framework, which is a powerful cross

platform mobile app development toolkit. The app communicates with a cidbdedSserver

that is able to directly read tHEORCSclock timer from the process memory by using memory

injection. By doing so, every keyelte within the app can be precisely synchronized and logged
with all the other user inp@Figure 2.9)

= .0 71% W 20:55

Driving Experiment App

Waiting for message..

B 7 . 71%m20:56

Driving Experiment App

Will be there in an hour

TR2)3 454617181940

QIWREJREITHYJURI JOYP
AfSIDIFIGIHRJIK]JL
ZIXJCRVIBINIMpE =

#O ©

Nederlands

124

call me 1
call me la

call me lat

se call me late

11 me later

call me later

Figure 2.9 Left and center illustrations: simple app interface. On the right: receiving the input from the ¢

The input from the steering wheel is logged as well inNbdeJSserver.An example of a full

session from one of the participants can be se€igure 2.1. In the top two graphs, we can see
the lateral deviation in meters from the center of the ladetancorresponding absolute steering
angl &ey P h eskogsal thehindividual recorded keystrokes and the graph
O0spacebd

wheel
@pace Typdis h o ws

when a

character

0 Wo rgdaph&hows the lengtf the particular sentence that had to be entered.
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Figure 2.10 The resulting data frorone of theparticipants

22




2.2.3Design

Similar to the simulation phase, timain experiment can be dividedartwo different states/here
theparticipant might find themselvesid wheregherelevant data is measureder.

State 1:The participant is driving the cartine rightmostane to the best of their abilities. Baseline
driving performance is assessed by monitotimg mean lateral devtian from the center of the
rightmost lane.

State 2: The participant is performing the typing task whetencurrentlydriving the car inthe

rightmostlane to the best of their abilitieShe driving performancehile having to perform the

typing task is asessed by monitoring the u&snputon the touchscreen as well as monitoring the

mean lateral deviation from the center of the rightmost lane.

As can be seen iRigure 2.10, over the course of the experiment the participant will be in either

one ofthe two states or transitioning between the two. The main state is the first state where the

participant will be focused solely on driving. At random intervals, sampled from a uniform

distribution between 10 and 25 seconds, the participant will be pronogbediorm the secondary
task which will transition them to the secondary state. The switching itself, between state 1 and
state 2 (after state 2 was initially activated) and the resulting driving performance is measured in

mean lateral deviation. Besid#s driving performance, we are also measuring the time it took
compl et e,

for t h
i Sub mi

e

compl et e

t 0.

+State 1

<1

t ask

t o

Phone Alert

Submit

+State 2

Figure 2.11 Theexperimenstates and transitions
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The experiment uses the samae sentences as the models asdlivided irto three different
categories depending on the number of words per seniBmeavords have been chosersirch
a wayto make sure thahe total characters per sentence categoeyot fluctuating too much.
Individual words have been chosenhave a high likelihooaf familiarity in order toreduce
potential confusion, as this is something that the transcription typing model doekenatid
account as well.

4-word sentences 5-word sentences 6-word sentences

AWill contact you soam fiSee you later no problem fiHey call laterl am drivingd
fiPlease call me latér fiThe road is pretty borimg  AWill be there in an howr
AWhat is theaddress il will do the groceries AWhat time will you be horoe

Figure 2.12 Sentences categorized in their respective categorie

To make sure that all categories are performed multiple times, there are three different runs in
which all nine sentenceare shown in random order. This results in 27 typing tasks being
performed per participant over the course of the experirBgrdoingso we can aggregaddl the

data fromeachcategoy.

2.2.4Procedure

After the participant has read the general information of the purpose and the goal of the experiment
and has given their consettie instruction®f the experimentverepresentedo the participant.

During the instructionst wasemphasized that the participant shouidto feel as immersed as
possible and that the experiment is not about achieving the best driving or typing performance.
Theywereasked to engage as nhuin the setting as possible and to do whkHltmostnatural to

them as if they were driving a real car and had to respond to an important message, even though
that would obviously be questionable behavior in asiatulated environmertue to this being

a violation of traffic rules

The participantwas also informed that the main objective is to keep the vehicle wittsn
designatedane andhatthethrottle couldbe kept at a maximum at all timeastil the completion

of the experimenflo prevent paicipants from keeping the phone in their hands at all times, they
wereinstructed to place the phone back next to them or on thewHap theywerenot using it
depending on what thdglt wasmore comfortableAlso, theywereinstructed that the typgtask

had to be conducted with one hand rather than with fusthermore, thewerealso instructed to

not correct typing mistakes, as this is also something the model does not account for.

The instructios werefirst followed by a practice trial to get familiarith the typing task on the
smartphone After that, theprimary task startedwhich is the car driving simulatoAfter the
participant hd familiarized themself with the car drivinigr 2 minutes the main exp@ment
began This meantthat fromthat point on, the auditory cuestartedto alert the participant to
perform the secondary tasks soon as itvasclear that the participant dainderstood the task
and performed the first transcription typisgccessfly, the participantvas left alone for the
further duration of the trial.

24



After 27 completions of the secondary tastke full trial is finished. After a short debriefinghe
experiment itselfvasconcludedIf the participant waparticularlyinterestedn their driving and
typing performancethe resultsvere optionally shown to the participant.he complete duration
of the experiment took around 25 to 30 minutes per participant.
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3: Results

In this sectionwe will examine the results that were collected from the models and the empirical
data from the study. First, we will present the data generated by the models and in the subsequent
section we will continue with the empirical data yielded from the pgraais that participated in

the experiment. Finally, we will end with comparing both acquired dat#@dtse data processing

and graphs have been conduatsthgPython3.7 (Rossum & Drake, 2008nd Pandas(Reback

et al., 2021) The statistical analysisvas performed inR (R Core Team, 2020)sing RStudio
(RStudio Team, 2020)

3.1 Modeling and Simulation

As described ithemethodssection four different interleaving strategies have been defined. These
consist of every letter interleaving, every word interleaving, everywam interleaving and no
interleaving; which have been all simulated over the groups of 4, 5 and 6 let@rcesn Since

all parameters of the driving model itself have been empirically validated, these are not changed
over the course of the simulatiods a reminder, thetability scaling factor can be interpreted as

low being the most conservative in thebslity assessment, while the higher values result in a
more liberal assessment. We are interested in two distinct measurements: the lateral deviation
during the tasks and the time it took for individual secondary tasks to be completed.
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3.1.1Task time analysis

The first stepwasto analyzehe resulting task times froall the individualmodelscategorized in
their separate sentence groups, which is showigare 3.1. All the times are shown as mean
times withthe error barsespectivelyshowingthe standard deviation3 he individual task times
weremeasured from the onset of the audio stimujuantil the final text is submitted.

Task Times (stability scaling low) Task Times (stability scaling medium)
100 4
i 4 Word Sentences 801 & 4 Word Sentences
& 5 Word Sentences $ 5 Word Sentences
304 { § 6 Word Sentences 704 } ¢ 6 Word Sentences

60 1 %
60 %

it d

0] ? J} 201 ; 3t

T T r T - T - -
Every letter Every word Every two-words No interleaving Every letter Every word Every two-words No interleaving

Task Time (s)

L d 104 $ °®

Task Times (stability scaling high)
} é 4 Word Sentences

80

¢ 5 Word Sentences
$ 6 Word Sentences
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60 *

Task Time (s)
»
(=]

Y
=}
'

w
L

?
{+ 3

10 # «**

2
=3
L

T T T T
Every letter Every word Every two-words No interleaving

Figure 3.1 The mean task tirsger strategy, sentence group and stability fact

As is to be expected, we can see that for every individual strategy the sentences with the most
words take the most time. Note that the differendee n usi ng wlhe dEBv eéemny etr we
strategyis less between the &nd 6word sentencesompared to the-ord sentences. This could

be logically explainedas the 5 and 6word sentences are performing one extra interleave
compared to the-&ord sentenced he difference in task times between these two is also lower as

it apparently does not take that munbretime to type an extra word uninterruptaaccessively
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't is also evident that when t hdarddeMationisvdaryer | e a\
small. This is caused by the secondary task being deterministic, which results in very similar task
times for the same sentences, as no interleaving occurs. Considering that when the audio stimulus

is given, the car oftefinds itsédf in an already stable position, the secondary task can immediately

start which results in very similar task times.

By aggregating the previous data over their respective sentence categemaesbetterable to

compare the effect of the stability assessments on the task bmfagure 3.2, this aggregated

data is shown/Ve can see that the error bars are becoming less extended for higher stability scaling
values.This is a direct resutif the time it takes between every interleaving action to agstwes

car is sufficiently stable to move back to the secondary task. a t al so expl ains
interl eavingo strategy does not show these ch

100 Task Times (stability scaling low) 00 Task Times (stability scaling medium)

80 801

A
L

201 % }
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i

Figure 3.2 The mean task times per strategy and stability factor
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The difference in task times when looking at the medium and high stability values are less
pronounced compared to the task times in the low scaling graplssconfirms our findings
during the preliminary tests in the methods section where we observed the samelretati@m

the scaling factor anaveragdask timesHowever, in the next sectipwe will see that there is a
clearer difference in driving performance when we analyze the differences in lateral deviation
between those models

3.1.2 Lateral deviation analysis

For the lateral deviatignve will go through the same procedure as for the task times. We will first
look at the models with their different strategies over the different sentence groups. The lateral
deviation is measured during the moment of diswaci.e., during the start of the task until the

end In Figure 3.3, this represents the part of the graph whgrging Taskhas the value of 1.
Another method valid method would be to takeléteral deviation values from whebestracted

is 1, althoup we are not doing that here as we eventually want to compare this data against the
empirical data. If we could accurately derive from the empirical data exactly when the participants
are interleaving, this method could be maceurate

Besides théateral deviation when the secondary task is active, we also want to acquire a baseline
driving performance. This is simply done by taking the mean of all thepdaits whenTyping
Taskhas the value of,Gvhich results in an overall average of drivirgyfprmanceln all lateral
deviationmeasurementsye take the absolute value, as we are only interested in the absolute
deviation from the center of the lane.

Figure 3.3 Lateral deviation is measured when Typing Tlaak the value of
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