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Abstract 
This thesis aimed to investigate whether it is possible to model a relatively new and complex 

phenomenon in distracted driving, namely texting while driving. This with the goal to ultimately 

be able to generate simulated human distracted driving data for the development of more advanced 

driving assistance systems. Two computational cognitive models were combined, one to mimic 

texting and another one to simulate human driving behavior. Four different interleaving strategies 

were implemented and the resulting secondary task times together with the simulated driving 

performance in terms of lateral deviation were finally compared with empirical data, which was 

gathered under the same distracted driving circumstances. By qualitatively analyzing the results, 

we could make the case that at least two interleaving strategies could be omitted, as these were 

furthest away from the empirical data. For the other two remaining interleaving strategies, we 

found that they did overlap with the empirical data reasonably well, which is promising for future 

research in simulating more complex secondary tasks using cognitive architectures for data 

generation.  
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1: Introduction 
The exercise of driving a car is a complex task which consists of multiple higher-level interacting 

cognitive processes. It involves perception, attention, learning, memory, decision making, and 

action control (Groeger, 2000). Even though specific tasks can be automated by implementing 

sophisticated systems within the field of artificial intelligence, fully autonomous vehicles co-

existing with human-controlled vehicles remain largely unsolved. This is mainly constrained due 

to the fact that driving itself requires a fairly deep level of understanding of the world and its 

complex interactions. Furthermore, if we were to ignore the technical limitations, there are ethical 

and regulatory issues to be solved prior to autonomous vehicles sharing the road with conventional 

vehicles (Martínez-Díaz & Soriguera, 2018). However, this does not imply that no autonomy-

related technological advances within the automotive sector found their way into implemented 

applications. 

Over time, to improve safety and driving comfort, cars have been progressively equipped with 

different forms of driver assistance tools, also known as advanced driver assistance systems 

(ADAS). These systems technically surpass the more conventional assistance systems (e.g., cruise 

control) and come with their own set of technical challenges. An earlier extension to the more 

conventional systems is known as adaptive/active cruise control (ACC), which provides automatic 

control of the longitudinal position of the car. A more modern implementation of this system 

combines both longitudinal and lateral control of the vehicle, which enables (semi-) autonomous 

driving in certain scenarios (Khodayari et al., 2010). 

Especially nowadays, with potentially distracting electronic devices being present both in the car 

and in the vicinity of the driver, the chances of the driver engaging in risky multitasking behavior 

are greatly increased. From these electronic device interactions, cell phone usage remains one of 

the largest causes of accidents (CDC, 2020). In these dangerous situations, an advanced driver 

assistance system could provide a safety net, however, as is explained in the next paragraph this 

causes a new set of problems. 

When implemented in a hybrid setting, advanced driver assistance systems are commonly 

activated when either the lane deviation or the distance to the car ahead is exceeding a certain 

threshold. Implicitly, the assumption is made that this will need to happen when the driver is 

distracted, which in turn causes the system to intervene. However, these techniques can be 

perceived as limiting to the user’s perceived autonomy when the user is situational aware, thus 

being able to predict and track the attention of the driver is of importance (Pohl et al., 2007). There 

have been different techniques proposed in combination with ADAS that try to infer the driver’s 

attention through sensors (Minoiu Enache et al., 2009). Another method of determining distraction 

is by measuring the car’s absolute lane deviation (Choudhary & Velaga, 2017). What these 

methods have in common is that they are mostly based on a given set of rules. For instance, the 

absolute lane deviation is taken into account whether or not the system should intervene, without 

knowledge of the driver's situational awareness. Therefore, it would be beneficial to be able to 
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predict the situational awareness of the driver in a non-intrusive manner, which could provide a 

higher feeling of autonomy while driving a vehicle. In this way, the driver still has full control of 

the vehicle, while having a safety net available when the driver happens to be not fully situationally 

aware. In essence, this means that we aim to have a better understanding of when secondary tasks 

are being performed and what impact this has on the driving performance to predict the possibility 

of a potentially dangerous situation. 

One way of achieving this is through having access to human driving data. For such systems to be 

able to learn how humans drive, often large quantities of real human driving data are needed 

(Bhattacharyya et al., 2020; Z. Huang et al., 2021). There are datasets available for basic driving 

scenarios, such as the NGSIM highway driving dataset that for example is being used for training 

on lane change behaviors for advanced driver assistance systems (L. Huang et al., 2018). However, 

when we consider the wide variety of possible different distractions; if we want a system to learn 

how a particular specific task interferes with the driving performance, often that data is not readily 

available. For example in a study on the effect of smartphone usage, this data still has to be 

empirically collected (Khan et al., 2021). 

A possible solution for generating large quantities of human driving data, where the driver is 

engaging in a particular secondary task, would be through the utilization of cognitive models to 

simulate this data; as cognitive models aim to capture human behavior. In this thesis, we will model 

one of these potentially dangerous distractions and try to derive whether the resulting driving 

behavior data would potentially be useful for the eventual training of systems, such as advanced 

driver assistance systems. 

1.1 Theory 

Cognitive modeling is an area of artificial intelligence that aims to simulate human mental 

processes in order to predict or understand human decision-making and performance during certain 

tasks. Within cognitive modeling, three different subclasses of cognitive models can be 

distinguished; computational, mathematical and verbal-conceptual models (Bechtel & Graham, 

1999). Since computational cognitive models recently have been considered the most promising 

and flexible category for embedding cognitive theories for practical applications (Sun, 2008), the 

focus will be solely on computational cognitive models.  

Since its inception, there has been an intent to simulate the human mind within an all-

encompassing unified theory (Newell, 1990). Rather than only being able to simulate narrow 

processes, there was the need to have a more generalized theory of cognition. This eventually 

resulted in the introduction of cognitive architectures such as SOAR, ACT-R, EPIC and others 

(Oulasvirta et al., 2018). These cognitive architectures embody a theory of mind (e.g., memory, 

vision, motor action), which is, in turn, built upon theories from cognitive psychology. Cognitive 

architectures aim to provide an algorithmic basis for simulating a broad range of different 

processes within the human mind. They offer a framework that has built-in constraints to closely 

emulate real-world tasks, to either examine the processes involved or predict certain outcomes. 
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An active area of research has been the implementation of multitasking within said architectures. 

While singular tasks are easier to model, it has been proven more difficult to model the switching 

between two separate tasks. Within the context of the ACT-R architecture, however, a general 

theory of multitasking is implemented, also known as threaded cognition (Salvucci & Taatgen, 

2008, 2011). Threaded cognition is an extension to the architecture, such that it is possible to have 

concurrent tasks (or goals) active at once, while still being constrained within the predefined 

processing capabilities of the cognitive architecture. We are interested in one particular application 

of such models, which is the modeling of human car driving with secondary tasks that lead to the 

driver being distracted, which will be elaborated on in the next section. 

1.2 Related Work 

1.2.1 Integrated Driving Model 

As mentioned in the previous section, since driving is a complex task, it has been proven 

challenging to accurately model human driving behavior. Early attempts mostly focused on one 

particular part of driving itself, but there was a need for a more fully-fledged integrated driving 

model (Salvucci et al., 2001). This soon resulted in a theory on how human steering occurs, the 

so-called two-point steering model (Salvucci & Gray, 2004). With these advancements, it did not 

take long before a fully integrated driving model was implemented. Unsurprisingly, the first 

implementations were achieved within the Adaptive Control of Thought-Rational (ACT-R) 

cognitive architecture (Anderson et al., 2004). Since the first integrated driving models were 

implemented, there has been steady progress in extending the computational driving models within 

ACT-R and its various iterations.  

One of the first rigorous computational models of 

driving behavior is by the works of Salvucci 

(2006). This model accounts for steering profiles, 

lateral position profiles and gaze distributions of 

human drivers during lane keeping and lane 

changing. Follow-up work shows that 

predictions considering lane change can be made 

using the aforementioned models. An example of 

this is shown in the study: “Lane-Change 

detection Using a Computational Driver” 

(Salvucci et al., 2007). In this study, the intention 

to lane-change in human participants could be 

predicted with significant accuracy, by using the 

trained data from the cognitive driving model. As 

the paper points out, this method is promising for 

applications within the smart (i.e., adaptive) driving assistance systems. 

Figure 1.1 ACT-R 6.0  (Sun, 2006) 
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Moreover, different additions have been implemented within the integrated driving model. One of 

those studies extended the model with an attention model for simple driving tasks, such as 

identifying crossroads and traffic signs (K. Haring et al., 2012). Other extensions include a variety 

of other more complex tasks, such as reading signs and handling different situations that emerge 

at crossroads (Deng et al., 2017; K. S. Haring et al., 2012).  

1.2.2 Driving and Distraction Models 

Throughout the years, numerous studies have been conducted to gain deeper insight into the 

attention and awareness of human drivers (Chakraborty & Nakano, 2016; Choudhary & Velaga, 

2019; Oviedo-Trespalacios et al., 2016; Pekkanen et al., 2018; Stothart et al., 2015). Especially in 

a world where distractions in the form of smartphones, navigational guidance and car interfaces 

have become ubiquitous, these areas of research have become increasingly important. An 

insightful way of conducting research within the field has been to develop cognitive models, which 

enables researchers to better understand the underlying processes that take place whilst controlling 

a vehicle. Since the topic itself is fairly broad, we will solely focus on models that focus on 

modeling either multitasking or attention in a driving setting. 

For example, the paper “Modeling Driver Distraction from Cognitive Tasks” (Salvucci, 2002) 

where the first attempt is being made at predicting driving performance by using a computational 

cognitive model within the ACT-R architecture. In this study, a secondary task is modeled, known 

as the “Sentence-Span Task”, which involves the processing of sentences and the recall of words 

in these sentences (Alm & Nilsson, 1995). In this study, it was shown that the model was able to 

qualitatively predict multiple measures of driver performance, reported in an earlier empirical 

study. 

In similar research, the effect of cell-phone dialing was modeled, to again predict the resulting 

driving behavior and performance (Salvucci & Macuga, 2002). This study focused more on 

employing a secondary motoric task in a naturalistic driving setting. In this case, four different 

models and strategies were used to validate the model. The baseline driving performance itself was 

also compared to the empirical data. This study showed that using an integrated driving model and 

secondary tasks within ACT-R enables revealing behavioral patterns and the resulting driving 

performance.  

Follow-up research was also conducted to further generalize these findings to other interfaces 

rather than cell phones. A rapid prototyping application was created to evaluate in-vehicle 

interfaces, known as Distract-R (Salvucci et al., 2005). With this study, we see the first attempt at 

creating less-distracting interfaces, solely based on the predicted driving performance that results 

from a computational cognitive model. This application made it possible to use the whole range 

of modalities within ACT-R for the rapid prototypes, such as speech and sound, which shows the 

versatility of using a cognitive architecture. 
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As distractions have become more complex than merely entering a phone number or pressing a 

button, research within the cognitive models has been striving to model these more complex tasks 

as well. In one of those studies, searching for a song in an interface while driving was implemented 

(Kujala & Salvucci, 2015). It is interesting to see that in this study, assumptions are built into the 

model as in where and when people are expected to interleave. These so-called natural breakpoints 

are of importance when secondary tasks are performed while driving (Janssen et al., 2012). 

Recently, research on multitasking and distractions while driving has received a new influx since 

the conception of the Queuing Network ACT-R (QN-ACT-R) framework, which greatly improves 

usability and is more versatile than the older LISP-based ACT-R frameworks. Multi-tasking 

performance is also improved with the addition of the queuing network (Cao, 2013; Cao & Liu, 

2011; Liu, 2009). The framework itself does not change the definition of the models but is more 

sophisticated in its implementation. 

Other influences on driving behavior have been modeled using this framework, such as the effect 

of limited sight distance through fog on car-following performance (Deng et al., 2018). Also, the 

take-over reaction was modeled for a semi-autonomous car driving scenario where an emergency 

occurs, with its resulting driving behavior (Deng et al., 2019).  

1.3 Objective 

We could argue that the techniques for detecting distractions, as described in the previous section, 

are based upon the resulting driver behavior whilst being distracted. The mental processes of being 

distracted are not directly taken into account, solely the resulting behavior from it. Therefore, one 

could argue that cognitive models, at least in theory, could better explain the inner workings of the 

distraction itself. This could, in turn, lead to a better understanding of the resulting behavior from 

different kinds of distractions, as these can be individually modeled. As we will see in the related 

works section, this idea is not new but remains fairly complicated especially with the more 

complex secondary tasks we encounter today. 

These requirements open the door for creating a cognitive model that aims to simulate distracted 

driving behavior, which as earlier stated, could potentially reduce the need for human participants 

in the process of gathering such data. Consequentially, this could be beneficial to potentially train 

an artificial intelligence system in the future, to classify whether an actual human is being 

distracted and what task is being performed.  

It would also be interesting to see whether computational cognitive models can actually 

approximate the resulting driving behavior with a not previously modeled more complex 

distraction, which perhaps could eventually be easily altered to include a wider range of different 

cognitive tasks. 
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With these two objectives in mind, we can formulate the following two research questions: 

RQ 1: Can we realistically simulate driving performance with a periodically occurring complex 

secondary task within an existing cognitive framework? 

RQ 2: Is the resulting simulated driving behavior usable for approximating real human 

distractions within the same task environment? 

Considering earlier work on multitasking while driving, we would preferably want to model a 

secondary task that is relevant to modern-day distracted driving. Since texting while driving is one 

of the most dangerous types of distracted driving nowadays (Foreman et al., 2021), it would be 

logical to model this rather complex task. Another reason for modeling this particular secondary 

task would be the challenge of having an unknown interleaving strategy, thus assumptions have to 

be made on where task-switching occurs such as with the song searching task (Kujala & Salvucci, 

2015). 

To model this secondary texting task, we will be using the mobile phone touchscreen transcription 

typing model (Cao et al., 2018), which would be closest to mimicking a situation when someone 

is sending messages on their phone. As the authors state in their paper as a recommendation for 

future research; it would be interesting to examine whether the combination of the transcription 

typing model and a driving model would result in realistic driving behavior. 

As a common driving performance measurement in the related work, we will focus on the lateral 

deviation of the car. Often the longitudinal deviation is included as well as a performance 

measurement, but since this task is rather complex, the goal is for the driving scenario is to be as 

simple as possible to exclude external factors such as distractions in the form of other cars. 
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2: Methods 
The aim of this research is to test whether a computational cognitive driving model and a secondary 

computational model can be combined to simulate the resulting driving behavior. For the primary 

model, we are using the previously mentioned well-established cognitive driving model from 

Salvucci (Salvucci, 2006). For the secondary task, we will be using the mobile phone touchscreen 

transcription typing model (Cao et al., 2018). Both of these models are created and validated within 

the computational cognitive architecture (QN-)ACT-R. To achieve an accurate representation of 

the combination of the two models, we have to establish certain assumptions on how we would 

expect humans to multitask between these two tasks in a general sense, as these assumptions have 

to be built into the complete combined model itself in order to be able to interleave (Salvucci et 

al., 2005). The simulated driving behavior will then be compared against the driving behavior that 

resulted from the empirical study. 

2.1 Modeling and Simulation 

Within ACT-R production rules are the basic operations. For example, in a typing model, there are 

production rules that describe the finding and pressing of a certain key on a keyboard. The action 

that follows is described within the model itself, which depends on the successive states of the 

simulated mental model, which are stored in buffers. This is what makes multitasking somewhat 

difficult to accurately describe within a formal cognitive production rule system such as ACT-R, 

since the model is based on certain assumptions regarding human behavior. Due to this limitation, 

we have to hypothesize about where the task switching (i.e., interleaving) would most likely occur. 

By consulting literature on earlier studies, it can be stated that it would be beneficial to establish 

different approaches to model the different strategies for the interleaving between two tasks 

(Brumby et al., 2007). This is necessary so that we can create simulated data for different strategies, 

to determine if we can capture the true human behavior with one of those strategies. Thus, 

eventually, these simulated results will be compared with the empirical data that we find in the 

experiment. Hereby we can test whether one of the interleaving strategies fits the data and reason 

whether ACT-R would be suitable for modeling more complex multitasking scenarios. 

Four different interleaving strategies are implemented. 

Strategy 0: We have one naïve approach, where after every find and press key production rule the 

attention is brought back to the road and to continue typing when the car is perceived to be in a 

stable state.  

Strategy 1: A more reasonable interleaving strategy would be that instead of after every letter, the 

interleaving occurs after every word. This interleaving strategy is chosen as an adaption to the 

natural breakpoints that have been shown to arise when phone numbers are entered during driving 

(Janssen et al., 2012). Especially when a given sentence has to be typed during a driving task, we 

could hypothesize that the interleaving occurs in similar chunks as they do with phone numbers, 
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to have at least some situational awareness on the road periodically, which is also known as the 

task performance (or speed-accuracy) trade-off (Janssen, 2012). 

Strategy 2:  The third strategy is to interleave after every two words, which is based on the theory 

that the “word sentence span”, i.e., for transcription typing is usually between 2 and 8 words 

(Salthouse, 1986). Based on this earlier work, the transcription model takes two words as its base-

level “word sentence span”, as they found that this best fitted the human data (Cao et al., 2018).  

Strategy 3:  Finally, we have the last strategy on task switching, where the full secondary task 

(e.g., typing a full sentence) is completed before the attention is brought back to the driving itself. 

In other words, no interleaving is taking place during the secondary task. 

Besides determining the different strategies, we also have to provide the text that will be typed by 

the models. Since we want to have a somewhat realistic scenario considering mobile phone usage 

as a secondary task, we will be using short simple sentences. We will create three distinct 

categories of different numbers of words per sentence; four-, five- and six-word long sentences. 

For every category, three different sentences are predefined which adds up to nine different 

sentences in total (see section 2.2.3 for the exact sentences). 

2.1.1 Model implementation 

Since both models are combined, extra production rules are necessary to describe the imminent 

change of attention/focus back and forth. Fortunately, research has been done on this topic with 

empirically validated models that have been tested for smaller distractions during driving (Cao & 

Liu, 2013; Salvucci et al., 2005). We will go through both models and discuss how they are 

implemented and ultimately interwoven with each other. All models are implemented in the QN-

ACT-R framework (QN-ACTR-Release, 2017/2019). 

We will be using an adaptation of the driving model by 

Salvucci (Salvucci, 2006) with two-point visual-motor 

control implemented in (QN-)ACT-R. This driving model 

uses the same values as the original model as these have 

proven to be the best-known fit for human driving 

behavior. The model, however, is missing the stability 

assessment procedures of the original model so these had 

to be added in. The original model also had a scaling 

parameter for the stability assessment of the car, which is 

used for adjustment to the environment in which the 

simulation is run. Since these values have not been tested 

in TORCS before, we will have to estimate the best 

scaling parameters for stability. At the end of this section, 

we will examine these values further. 

Figure 2.1 Parameter values used in the 

driving model (D. D. Salvucci, 2006) 
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Besides the driving model, we will be using a transcription typing model that has been 

implemented within the QN-ACTR framework as well (Cao et al., 2018). For every run of the 

simulation, the sentences are set within the model accompanied with its corresponding interleaving 

strategy. The model has been adjusted to be able to use different interleaving strategies. The two-

word sentence span is only altered for the one-word and single-letter interleaving strategies. In 

those cases, it means that the imaginal chunk for the temporary storage of the words is re-initiated 

after every interleaving occurrence. With two-word interleaving and full-sentence strategies, this 

happens every two words as originally modeled. 

To interleave between the two models, extra productions rules have to be added to handle the on 

and offloading of chunks within the buffers. In figure 2.2 below, the flowchart is illustrated 

showing the transitions between the two models. 

 

 

 

 

 

Figure 2.2 Flow chart between the two models 
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The initiation of attending to and preparing for the secondary task can be divided into three steps; 

orienting to the sound of the phone, locating the phone and handling the phone (Haddington & 

Rauniomaa, 2011). The first step is modeled as the processing of the audio signal by using the 

“Aural Module” that is available in ACT-R. Locating and handling of the phone is simulated only 

when the car is assessed as being stable after the processing of the audio signal. As ACT-R is 

limited in more complex operations within its “Motor Module”, this delay has been set as a fixed 

variable at 1370 ms, which is based on variables used in earlier studies ( Salvucci et al., 2005). 

The total time between the audio cue and the first letter typed ideally should be around 4 seconds 

(Fitch et al., 2013), as these operations closely resemble the initiation steps for hand-held calling. 

The task switching itself is implemented similarly to the threaded cognition theory that we 

discussed in the introduction. ( Salvucci & Taatgen, 2008). In practice, this means that multiple-

goal chunks can coexist in the goal buffer. When the interleaving occurs between typing and 

driving, all ACT-R modules are re-initiated that were cleared for the typing task, except for the 

second goal buffer chunk which remains on the typing task if there are still remaining 

characters/words to be typed. This results in a delay before the attention is shifted back to driving. 

When all buffers and chunks are back in the original car driving task state, the stability assessment 

production rule is performed. When the car is deemed to be in a stable enough state, the switching 

to the typing task occurs again when the second goal buffer chunk still holds the typing task state. 

Except for the goal buffer, the other buffers are constrained to their basic functionality. In practice, 

this means that, as is defined within ACT-R; the visual buffer, the manual buffer, the retrieval 

buffer, the imaginal buffer, and the aural buffer can practically only hold one chunk at a time. 

As mentioned before, this stability assessment parameter has been set as our only free parameter 

for our model as this was originally implemented with a scaling parameter for a different 

environment. Due to this, we will establish three different scaling values. The stability function 

itself takes into account the stability of the near and far points and the lane position (Salvucci & 

Macuga, 2002). To achieve this, we test the model with the simplest typing task sentences of four 

words and gradually scale up the stability parameter. In figure 2.3 below we can see that the lateral 

deviation while performing the secondary task goes up in a close to parabolic trend. 
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Figure 2.3 Mean lateral deviation for different stability scaling values 

Figure 2.4 Mean of the maximum lateral deviation for different stability scaling values 
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Even though this is an expected result, this does not tell us enough if we want to find a good value 

for the scaling. Therefore, we can also examine the mean of the maximum lateral deviation per 

task. In figure 2.4, we see that we soon hit a ceiling, indicating that the driving performance is 

becoming too atrocious at a certain level. As a matter of fact, the x640 scaling is not able to finish 

the track at all. In the task times below, we get an unsurprising result of lower task times accounting 

for higher scaling values. 

For a good balance between task time differences and lateral deviation differences, the three 

scaling parameters that have been selected are: 1x, 5x and 10x. The decision was made to not go 

higher than a 10x scaling parameter, as that would result in unrealistic bad driving behavior. So, 

every interleaving strategy model will be run three times with these three individual scaling 

parameter values. 

Concluding, for the final simulations in total this sums up to 4 different interleaving strategy 

models, times 3 for the adjusted stability assessment value, which means that in total we have 12 

different models. Each individual model will perform N=180 tasks for every sentence group, which 

means that for every individual sentence there are N=60 performed tasks. This sums up to each 

different model, using a different interleaving strategy, having conducted N=540 tasks in total. 

 

 

Figure 2.5 Mean task times for different stability scaling values 
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2.1.2 Environment implementation 

To run the model a task environment is needed. In this case, we use an external environment that 

ACT-R can control. For the environment and vehicle physics, a modified version of the open-

source driving simulator TORCS (Wymann et al., 2015) is used. The driving model is able to 

interact with the driving simulator using the UDP network protocol. In practice, this means that all 

relevant data is being sent from TORCS, whereafter it is controlled by the model through raw input 

based on the last received values. 

The driving scenario itself consists of a highway of 17km with two lanes going in both directions 

(figure 2.6). The two lanes themselves are 3.75m wide and the emergency lane on the right 

measures 3.5m in width. There are 17 straight sections connected by an equal number of left and 

right curved sections. No other cars or distractions are present on the track itself, to ensure that the 

only distraction will come from the typing task in both the model and the experiment. 

  

The speed of the car itself has been limited to 20 m/s, based on previous research employing a 

similar scenario (Rehman et al., 2019). Since we are interested in the lateral deviation of the car, 

the speed remains constant over the duration of the track. After every run of the simulation (i.e., 

having driven 17km), the scenario is reset with either a different sentence/interleaving strategy or 

left unchanged depending on the number of desired secondary task trials. All variables of interest 

are logged over the duration of the course, such as; time, lane position, distance, distraction and 

task times. An excerpt of variables of interest that were logged during one of the simulations can 

be seen below in figure 2.7. 

Figure 2.6 The track for both the model and the experiment 
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Figure 2.7 Lateral deviation (lane deviation) and distraction plotted over time in seconds. The spikes in 

distraction indicate the start or end of an individual typing task. 
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2.2 Empirical Study 

Since both individual cognitive models have been validated in the past (Cao et al., 2018; Salvucci, 

2006), the experiment will not be focused on validating both models individually. Instead, the 

experiment has two different goals. Since we have acquired the simulated driving performance 

from four different interleaving strategies within the model, the main objective is to acquire the 

same data on the human participants to be able to compare these. The data concerns two measures 

of driving and task performance, the mean lateral deviation of the car as a function of time during 

the tasks and the time it took to complete each individual task. The secondary objective is to record 

all the user inputs on the smartphone as well as the controls for driving the car, to possibly derive 

interleaving data from the inputs themselves, as we are not using an eye tracker for this particular 

experimental setup. The study was approved by the ethical committee at the University of Utrecht.  

It is of major importance that the data gathered during the empirical research resembles the 

experiment conditions of the simulation phase as closely as possible. By doing so we can minimize 

the bias in the data and make a better comparison between the two data sets. In this section, we 

will examine the experiment design and setup. 

2.2.1 Participants 

The requirements for the participants have been adopted from a comparable study on driving 

behavior during distractions in a simulator (He et al., 2014). In order to participate, the participants 

were screened to be in possession of a driver’s license and have at least 2 years of driving 

experience. Furthermore, they had to have at least good experience with touch screen typing, 

preferably in terms of daily usage. Considering the demography, the aim was to assemble a 

predominately homogeneous group, which should result in the most uniform results. The final 

group consisted of twenty (N=20) subjects within the age range of 22 to 33 years old that 

participated in this study. The distribution of male and female participants was exactly 50/50 and 

all of them were right-handed. All participants were fluent in the English language. 
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2.2.2 Materials 

The experiment itself was conducted in one of the labs located in the University of Utrecht that are 

dedicated to simulated driving studies. The room itself was void of any other distractions and the 

participants were left alone after the instructions, to minimize any external distractions or 

influences during the experiment. The participants had a place next to them where they could place 

their phone when needed. 

For the primary task (the driving task) of the experiment, a portable driving simulator was used 

which consisted of a Logitech G27 steering wheel and pedals. The wheel was set to its’ 900 degrees 

input mode, to mimic the steering of a real car as closely as possible. The included H-shifter was 

not used as the car was set to automatic transmission. Besides the driving control setup, a full HD 

(1080p) 27” monitor was connected to a system capable of running the aforementioned driving 

simulator environment TORCS. In the driving simulator, the same highway scenario and layout as 

in the simulation phase were presented to the user, where the participant was able to manually 

control their virtual car. 

For the secondary task, a Samsung Galaxy 

S6 smartphone running Android was used 

which ran a custom app that prompted the 

user to write a particular sentence at 

random intervals. Similar to the 

implementation within the models, the app 

provides an auditory signal to attend the 

user to perform the typing task. It is 

designed in such a way that this will feel 

familiar and comparable to receiving a text 

message through an instant messaging 

app. During the experiment, all the user 

input on the touchscreen and all the 

steering wheel input are recorded and 

synchronized for later analysis.  

 

 

 

 

 

 

Figure 2.8 The final setup of the experiment 
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The app itself is created with Ionic using the Angular framework, which is a powerful cross-

platform mobile app development toolkit. The app communicates with a custom NodeJS server 

that is able to directly read the TORCS clock timer from the process memory by using memory 

injection. By doing so, every keystroke within the app can be precisely synchronized and logged 

with all the other user input (Figure 2.9). 

 

 

The input from the steering wheel is logged as well in the NodeJS server. An example of a full 

session from one of the participants can be seen in Figure 2.10. In the top two graphs, we can see 

the lateral deviation in meters from the center of the lane and the corresponding absolute steering 

wheel angle. The graph ‘KeyPressed’ shows all the individual recorded keystrokes and the graph 

‘Space Typed’ shows when a ‘space’ character was entered on the touch keyboard. Finally, the 

‘Words’ graph shows the length of the particular sentence that had to be entered. 

Figure 2.9 Left and center illustrations: simple app interface. On the right: receiving the input from the app 
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Figure 2.10 The resulting data from one of the participants 
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2.2.3 Design 

Similar to the simulation phase, the main experiment can be divided into two different states where 

the participant might find themselves and where the relevant data is measured over: 

State 1: The participant is driving the car in the rightmost lane to the best of their abilities. Baseline 

driving performance is assessed by monitoring the mean lateral deviation from the center of the 

rightmost lane. 

State 2: The participant is performing the typing task while concurrently driving the car in the 

rightmost lane to the best of their abilities. The driving performance while having to perform the 

typing task is assessed by monitoring the user’s input on the touchscreen as well as monitoring the 

mean lateral deviation from the center of the rightmost lane.  

As can be seen in Figure 2.10, over the course of the experiment the participant will be in either 

one of the two states or transitioning between the two. The main state is the first state where the 

participant will be focused solely on driving. At random intervals, sampled from a uniform 

distribution between 10 and 25 seconds, the participant will be prompted to perform the secondary 

task which will transition them to the secondary state. The switching itself, between state 1 and 

state 2 (after state 2 was initially activated) and the resulting driving performance is measured in 

mean lateral deviation. Besides the driving performance, we are also measuring the time it took 

for the complete task to complete, which amounts to the time between “Phone Alert” and 

“Submit”. 

 

 

 

Figure 2.11 The experiment states and transitions 
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The experiment uses the same nine sentences as the models and is divided into three different 

categories depending on the number of words per sentence. The words have been chosen in such 

a way to make sure that the total characters per sentence category are not fluctuating too much. 

Individual words have been chosen to have a high likelihood of familiarity in order to reduce 

potential confusion, as this is something that the transcription typing model does not take into 

account as well. 

4-word sentences 5-word sentences 6-word sentences 

“Will contact you soon” “See you later no problem” “Hey call later I am driving” 

“Please call me later” “The road is pretty boring” “Will be there in an hour” 

“What is the address” “I will do the groceries” “What time will you be home” 

 

To make sure that all categories are performed multiple times, there are three different runs in 

which all nine sentences are shown in random order. This results in 27 typing tasks being 

performed per participant over the course of the experiment. By doing so we can aggregate all the 

data from each category. 

2.2.4 Procedure 

After the participant has read the general information of the purpose and the goal of the experiment 

and has given their consent, the instructions of the experiment were presented to the participant. 

During the instructions, it was emphasized that the participant should try to feel as immersed as 

possible and that the experiment is not about achieving the best driving or typing performance. 

They were asked to engage as much in the setting as possible and to do what felt most natural to 

them; as if they were driving a real car and had to respond to an important message, even though 

that would obviously be questionable behavior in a non-simulated environment due to this being 

a violation of traffic rules.  

The participant was also informed that the main objective is to keep the vehicle within its 

designated lane and that the throttle could be kept at a maximum at all times until the completion 

of the experiment. To prevent participants from keeping the phone in their hands at all times, they 

were instructed to place the phone back next to them or on their lap when they were not using it, 

depending on what they felt was more comfortable. Also, they were instructed that the typing task 

had to be conducted with one hand rather than with two. Furthermore, they were also instructed to 

not correct typing mistakes, as this is also something the model does not account for. 

The instructions were first followed by a practice trial to get familiar with the typing task on the 

smartphone. After that, the primary task started which is the car driving simulator. After the 

participant had familiarized themself with the car driving for 2 minutes, the main experiment 

began. This meant that from that point on, the auditory cues started to alert the participant to 

perform the secondary task. As soon as it was clear that the participant had understood the task 

and performed the first transcription typing successfully, the participant was left alone for the 

further duration of the trial. 

Figure 2.12 Sentences categorized in their respective categories 
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After 27 completions of the secondary task, the full trial is finished. After a short debriefing, the 

experiment itself was concluded. If the participant was particularly interested in their driving and 

typing performance, the results were optionally shown to the participant. The complete duration 

of the experiment took around 25 to 30 minutes per participant. 
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3: Results 
In this section, we will examine the results that were collected from the models and the empirical 

data from the study. First, we will present the data generated by the models and in the subsequent 

section, we will continue with the empirical data yielded from the participants that participated in 

the experiment. Finally, we will end with comparing both acquired datasets. All the data processing 

and graphs have been conducted using Python 3.7 (Rossum & Drake, 2009) and  Pandas (Reback 

et al., 2021). The statistical analysis was performed in R (R Core Team, 2020) using RStudio 

(RStudio Team, 2020). 

3.1 Modeling and Simulation 

As described in the methods section, four different interleaving strategies have been defined. These 

consist of every letter interleaving, every word interleaving, every two-word interleaving and no 

interleaving; which have been all simulated over the groups of 4, 5 and 6 letter sentences. Since 

all parameters of the driving model itself have been empirically validated, these are not changed 

over the course of the simulations. As a reminder, the stability scaling factor can be interpreted as 

low being the most conservative in the stability assessment, while the higher values result in a 

more liberal assessment. We are interested in two distinct measurements: the lateral deviation 

during the tasks and the time it took for individual secondary tasks to be completed.  
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3.1.1 Task time analysis 

The first step was to analyze the resulting task times from all the individual models categorized in 

their separate sentence groups, which is shown in Figure 3.1. All the times are shown as mean 

times with the error bars respectively showing the standard deviations. The individual task times 

were measured from the onset of the audio stimulus up until the final text is submitted. 

 

 

 

As is to be expected, we can see that for every individual strategy the sentences with the most 

words take the most time. Note that the difference when using the “Every two-words” interleaving 

strategy is less between the 5- and 6-word sentences compared to the 4-word sentences. This could 

be logically explained as the 5- and 6-word sentences are performing one extra interleave 

compared to the 4-word sentences. The difference in task times between these two is also lower as 

it apparently does not take that much more time to type an extra word uninterrupted successively. 

 

Figure 3.1 The mean task times per strategy, sentence group and stability factor 
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It is also evident that when the “No interleaving” strategy is utilized, the standard deviation is very 

small. This is caused by the secondary task being deterministic, which results in very similar task 

times for the same sentences, as no interleaving occurs. Considering that when the audio stimulus 

is given, the car often finds itself in an already stable position, the secondary task can immediately 

start which results in very similar task times. 

By aggregating the previous data over their respective sentence categories, we are better able to 

compare the effect of the stability assessments on the task times. In Figure 3.2, this aggregated 

data is shown. We can see that the error bars are becoming less extended for higher stability scaling 

values. This is a direct result of the time it takes between every interleaving action to assess if the 

car is sufficiently stable to move back to the secondary task. That also explains why the “No 

interleaving” strategy does not show these characteristics. 

 

 

 

 

Figure 3.2 The mean task times per strategy and stability factor 
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The differences in task times when looking at the medium and high stability values are less 

pronounced compared to the task times in the low scaling graphs. This confirms our findings 

during the preliminary tests in the methods section where we observed the same relation between 

the scaling factor and average task times. However, in the next section, we will see that there is a 

clearer difference in driving performance when we analyze the differences in lateral deviation 

between those models.  

3.1.2 Lateral deviation analysis 

For the lateral deviation, we will go through the same procedure as for the task times. We will first 

look at the models with their different strategies over the different sentence groups. The lateral 

deviation is measured during the moment of distraction, i.e., during the start of the task until the 

end. In Figure 3.3, this represents the part of the graph where Typing Task has the value of 1. 

Another method valid method would be to take the lateral deviation values from where Distracted 

is 1, although we are not doing that here as we eventually want to compare this data against the 

empirical data. If we could accurately derive from the empirical data exactly when the participants 

are interleaving, this method could be more accurate. 

Besides the lateral deviation when the secondary task is active, we also want to acquire a baseline 

driving performance. This is simply done by taking the mean of all the data points when Typing 

Task has the value of 0, which results in an overall average of driving performance. In all lateral 

deviation measurements, we take the absolute value, as we are only interested in the absolute 

deviation from the center of the lane. 

 

 

  

Figure 3.3 Lateral deviation is measured when Typing Task has the value of 1 
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Sampling all the lateral deviations data points when performing a complete typing task and taking 

the mean of these we get the results as shown in Figure 3.4. The black line indicates the baseline 

lateral deviation, which is the baseline performance when the model is not in the state of being 

distracted (i.e., the driving model base performance). 

  

 

 

When examining these results, we can see that the baseline driving performance is quite accurate 

overall. This is the driving performance that the standard parameters from the driving model yield. 

These values being rather low is probably due to the highway scenario itself, with mostly straight 

sections and rather gentle curves, plus factoring in a limited speed of the car itself. When the 

secondary task is performed, we see varying results. The differences between the individual 

interleaving strategies and the length of the sentence are less pronounced compared to the results 

that we have seen before concerning the task times. This could partially be explained by the rather 

large standard deviations, which could be affecting the mean values. Consequentially, this could 

mean that the sample size might be too small. Another possible reason is that the moments of 

interleaving (i.e., the time it takes when the car is restabilized during the interleaving) are 

contributing to a proportionally large part of the measured lateral deviation samples. However, as 

Figure 3.4 The mean lateral deviations per strategy, sentence group and stability factor 
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we are using the identical method for measuring the data in the empirical data this should not pose 

a problem for the final comparison.  

As the individual differences in the length of the sentences do not provide meaningful additional 

insights, we will again look at the aggregated data when we combine all sentence groups, which 

is illustrated in Figure 3.5. 

 

 

When examining the aggregated data, the results seem to be more trivial. We can clearly identify 

that a higher stability scaling factor yields higher overall lane deviation for the every- and two-

word interleaving strategies. This is to be expected, as the ‘swerving’ effect will be exaggerated 

during the moments of interleaving, since the secondary task will be continued when the car is in 

a less than ideal position as the stability assessment threshold becomes higher. We distinguish the 

same effect on a very small level for the “Every letter” interleaving strategy, but the effect is not 

present when “No interleaving” is utilized. Also, the baseline lateral deviation will increase due to 

the less strict interleaving policy when the stability scaling is high; further proving that the overall 

baseline driving performance is degrading when using higher values. 

Figure 3.5 The mean lateral deviation per strategy and stability factor 
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As mentioned earlier, when comparing the task times, we saw that the high and medium stability 

scaling models yielded comparable results. However, in this instance, the low and medium models 

respectively are providing the most similar results. 

3.2 Empirical Study  

In this section, we will analyze the empirical data that has been collected during the experiment. 

In total, N=540 tasks have been performed by the participants, adding up to over more than 350km 

driven in the simulator. However, by filtering out unfinished or failed tasks N=487 remains, which 

means that approximately there are 3 failed tasks per participant. In practice, this often meant that 

the ‘submit’ button was prematurely pressed 

when picking up the phone. 

3.2.1 Task time analysis 

First, we will look at the distribution of all the 

task times for all the participants to identify if 

there are outliers. The sample mean x=18.09 

with a standard deviation of s=6.05. As can be 

seen in Figure 3.6 and 3.7, the data is mostly 

normally distributed, although being a little 

right-skewed. However, there is one outlier with 

a mean of 35.75. Considering that this outlier 

is still less than 3 standard deviations away 

from the mean (+2.86), we will not omit this 

data from the dataset. 

 

Figure 3.6 The distribution of the mean task times per participant 

Figure 3.7 Task time frequencies over individual participants 
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We are also interested in finding out what 

the difference is in the task times over the 

different sentence groups. As expected, the 

tasks containing sentences with fewer words 

were performed faster which can be seen in 

Figure 3.8. The distribution of these task 

times per sentence group is shown in Figure 

3.9. 

 

 

 

 

 

 

 

 

Figure 3.9 Histogram of the task times per word category 

Figure 3.8 Mean task time per sentence group over all participants 
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Multilevel modeling analysis 

To determine the covariance between the task times and the individual participants, we can use a 

linear mixed model. If we apply this statistical analysis on all the task times grouped by the 

individual subjects, we get an intraclass correlation coefficient (ICC) of 0.631, thus 63.1% of the 

total variance is accounted for by individual differences. Since this value is higher than 0.5, we 

can state that the difference in observed task times between the individuals explains most of the 

variance (i.e., there are a lot of individual differences in task time) (Park & Lake, 2005). When we 

add the number of words as a predictor variable to this model, we find that the ICC becomes 0.671, 

which with a 4% increase is only marginally higher. 

We can also look at the 3-level model; where the number of words, instead of being a predictor, is 

interpreted as an additional grouping variable within the individual participants. When we add the 

number of words as a grouping variable to our previously established null model, we can see in 

figure 3.10 that the number of words attributes around 10% of the overall variance. If we test this 

with an ANOVA test between the three models, we get the following results: 

Model Parameters Df Pr(>Chisq) 

1 Level model 2   

2 Level model 3 1 < 2.2e-16  

3 Level model 4 1 9.662e-15 
 

By using an alpha level of α = .05, we can conclude that both the individual subjects as well as the 

number of words within the subjects are contributing significantly to the overall variance in task 

times. 

  

 

 

 

Figure 3.10 Variance decomposition of task times  
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3.2.2 Lateral deviation analysis 

For the lateral deviation during tasks the data 

mostly follow a normal distribution, although 

there is a small outlier here as well. The 

sample mean is x=0.42 with a standard 

deviation of s=0.36. As the outlier has a value 

of 0.78, this value is only one (+1) standard 

deviation away from the mean which means 

we will not drop this data. 

In this part we will perform the same analysis 

as conducted with the model data; we need to 

establish the baseline performance of the 

participants so we can compare this with the 

models, as individual differences (i.e., 

individual overall driving skills) are likely 

to be more of influence. 

 

 

Figure 3.11 The distribution of the mean lateral deviations  

Figure 3.12 Lateral deviations over individual participants 
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By computing the baseline driving performance, 

i.e., the driving performance when not 

performing a task, we find the values as 

indicated by the horizontal black lines in figure 

3.14. The difference between the baseline and 

the mean lateral deviation during a task is the 

measurement of absolute lateral deviation, 

which in turn we then can then compare with the 

models.  

Similar to the task times, we find that for longer 

sentences the mean values do increase, although 

the effect is less obvious. The standard 

deviations show that there is quite some variance, 

which can either be explained by the individual driver characteristics in the ability to keep the car 

centered for a particular participant or that this varies between separate tasks. 

 

 

 

Figure 3.14 The distribution of the mean lateral deviations  

Figure 3.13 Stacked histogram of all individual lateral deviations 
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Multilevel modeling analysis 

Similarly, as before with the task times, we can also apply a linear mixed model here for the lateral 

deviations. If we apply this statistical analysis on all the mean lateral deviations grouped by the 

individual subjects, we get an intraclass correlation coefficient (ICC) of 0.231, thus 23.1% of the 

variance is accounted for by the individual subjects. Since this value is lower than 0.5, we can 

interpret this as there being not much difference in lateral deviation between the participants (Park 

& Lake, 2005). This means that the group is more homogeneous in overall driving performance 

while being distracted if we were to compare this to the individual task times. Again, if we add the 

number of words to this model as a predictor variable, we find an ICC value of 0.229, which shows 

that the influence of the number of words is even lower on lateral deviations as it was to the task 

times.  

If we examine the 3-level model, where the 4,5- or 6-words groups are nested within the individual 

subjects, we can see in figure 3.15 below that the number of words only attributes to a small 

proportion of the overall variance. If we test this with an ANOVA test between the three models, 

we get the following results: 

Model Parameters Df Pr(>Chisq) 

1 Level model 2   

2 Level model 3 1 < 2e-16  

3 Level model 4 1 0.1422 
 

This shows that by using an alpha level of α = .05, the individual subjects attribute significantly to 

the variance. However, by adding in the number of words within the individual subjects, we find 

that this variable is insignificant (for an alpha level of α = .05). Thus, it is evident that the number 

of words attributes significantly smaller to the lateral deviation variance than it did for the task 

time variance. 

  

 
Figure 3.15 Variance decomposition of lateral deviation  
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3.3 Data Comparison 

With the complete results from the simulations and the study, we can proceed by comparing the 

simulated data with the empirical data. In the discussion section, a more detailed analysis can be 

found. 

3.3.1 Task time 

Let us first examine the task times from the three different models with their different strategies 

and compare them with respectively the same sentence groups as from the empirical data in Figure 

3.16.  

 

 

 

 

 

 

Figure 3.16 Task time compared with all strategies, sentences and models  
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As we have seen before in both the model and empirical data, the influence of the number of words 

per sentence did yield fairly different results. Only for the low scaling parameter, the empirical 

data falls out of range of the “Every word” interleaving strategy. Furthermore, the “Every two-

words” is within range of the empirical data, independent of the stability scaling multiplier. 

Evidently, the “Every letter” strategy is least identical to the empirical data, followed by the “No 

interleaving” strategy. 

If we were to aggregate all the sentences together, we find the results as shown in Figure 3.17. By 

taking out the number of words subcategories, both the single as two-word strategies are within 

range of the empirical data. Again, interleaving after every letter yields completely different results 

and by using no interleaving at all the task times are apparently too low. 

  

 

 

 

 

Figure 3.17 Task time aggregated over all sentence groups  
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3.3.2 Lateral deviation 

As mentioned before, in the comparison between the models and the empirical data the baselines 

will be shifted to be aligned with the baselines of the models. This means that in the next graphs, 

the actual lateral deviation is higher (as in Figure 3.5 and Figure 3.14 respectively). In Figure 

3.18, the prefix indicates the sentence group (e.g., number of words) and the suffix stands for the 

interleaving strategy which is shown in the table below. 

0 1 2 3 E 

Every letter Every word Every two-words No interleaving Empirical Data 

 

 

 

 

 

 

Figure 3.18 Absolute mean lateral deviation over all models and empirical data 

(blue: 4-word, green: 5-word, red: 6-word sentences) 
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In these graphs, it is interesting to see that the standard deviation of the empirical data is within 

range of all the outcomes of the simulated data, which makes the comparison less trivial. If we 

aggregate all the sentences, we get a better overview of how the model and the empirical data 

compare as is shown in Figure 3.19. 

  

 

 

  

Figure 3.19 Lateral deviation (adjusted) aggregated over all sentence groups  
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4: General Discussion 
The goal of this study was to model and simulate distracted driving behavior while texting. To 

evaluate the accuracy of these results, we have also conducted an empirical study. Since we have 

now gathered all the required results; in this section, we will discuss and interpret these within the 

scope of our predefined research questions and relevant previous studies on the subject.  

By having 12 different models that generated an extensive amount of simulated driving data 

together with 20 participants having performed those same tasks, it is rather challenging to directly 

and quantitatively compare both datasets. Since cognitive models aim to explain the underlying 

processes of human decision-making and the resulting behavior from it, this means that one of the 

shortcomings of this approach is that humans are usually modeled as invariants rather than 

individuals, as data is mostly aggregated or averaged over subjects. This inherently means that the 

modeling itself assumes that there are no individual differences between subjects (Lee & Webb, 

2005). This in itself does not pose an immediate threat for creating a general model of human 

multitasking, but it is something to keep aware of that not all individual differences are captured 

within the resulting model, which makes the quantitative comparison to the empirical data more 

challenging. 

As different sentence lengths provided similar results, we will only discern the aggregated data; 

i.e., all sentence groups combined. From a more cognitive psychology interest, it would also be 

interesting to see whether this data can provide any insight into what interleaving strategies have 

been utilized when performing these tasks. 

4.1 Task time 

With the implementation of the transcription typing model, we find that the results when no 

interleaving is applied during driving are mostly identical to the predicted time it takes when the 

model is run stand-alone with those same sentences. Even though we did not measure the 

transcription typing times without driving, we assume these to be correct as the model has been 

extensively tested (Cao et al., 2018). The task times within the empirical data are longer than those 

singular task times, which is most likely the effect of the speed-accuracy trade-off, as the 

participants are balancing between performing the secondary task and keeping the car reasonably 

under control (Brumby et al., 2007). The question here though is whether one of our predefined 

strategies falls in the most general exercised interleaving strategy. 

We can clearly recognize that the least comparable models (i.e., interleaving strategies) are those 

with every-letter and no-interleaving strategies. Even when taking the low and high stability 

scaling models into account, these strategies produce values that are the furthest from the empirical 

data. Therefore, we could make a case that those strategies seem unlikely to account for an accurate 

representation of the actual interleaving strategies used by the participants. However, we have to 

note here that by making this claim, we are utilizing the implicit assumption that the models are in 

fact able to simulate human behavior to some extent. Although this assumption could be refuted, 
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the mean task times of the most likely interleaving strategies; being the one or two words 

interleaving, are reasonably close to the empirical data mean task times. This is especially true for 

the medium stability assessment model. 

It would be difficult, however, to make such a claim for which strategy is more likely or does 

resemble the truth of the remaining two. Unless when we are looking at the low stability scaling 

model, both models’ mean task times are within one standard deviation of the mean task time 

within the empirical data. Although according to the simulated data from the models, the closest 

fit independent of the stability scaling value, remains the two-word interleaving model. It is 

interesting to see, that in a qualitative approach, the predicted task times of the two most likely 

models are actually within the range of the empirical data. 

4.2 Driving performance 

Unlike task time, driving performance was shown to be more ambiguous to interpretation. We can 

evidently see this in the rather large and overlapping standard deviations within both the empirical 

and simulated data. In the first instance, when looking at the raw data, there was a significantly 

large mismatch between the results of both datasets. This is why, in the results section, we have 

determined the baseline driving performance for both the models and the participants. By doing 

so, it is easier to compare the two, as the model has a much better baseline performance than the 

participants (i.e., mean lateral deviation when not performing any secondary tasks). 

This mismatch between the model and human baseline driving performance is to be expected when 

we consult earlier studies. For example in an earlier study by Salvucci & Macuga (2002), the same 

driving model was used and here the graphs between the model and the human data are scaled as 

well to provide a better comparison. Also note that the variance within the empirical data is higher 

in this study, which confirms our findings as well (Salvucci & Macuga, 2002). The standard 

deviation values from the human data in this study are also comparable to an earlier empirical 

study based on handheld text entry (He et al., 2014). 

With the absolute lateral deviation calculated, we can compare the two datasets as we are now 

analyzing the decrease in driving performance when performing the typing task. Here we can also 

make the case that the every-letter and no-interleaving strategies are most unlikely, as they fit the 

data the least. However, for the high stability scaling model, this is not entirely true; but we have 

to take into account that the baseline lateral deviation has risen there as well; which can lead to 

inaccurate results. If we would solely focus on the low and medium stability models, we can see 

that the every-word and two-word interleaving models again have the best fit in terms of driving 

performance. As in the case of the task times, the means of the two-word interleaving models have 

the closest resemblance to the empirical data. 
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Besides comparing the quantitative values, interestingly enough, we have seen the same type of 

behavioral patterns occurring within the simulated data and the empirical data. This is prevalent 

when the attention switches back from the secondary task to the driving itself. If the offset of the 

car in means of lane deviation exceeds a certain threshold, we see the same type of overcorrecting 

behavior occurring within both the models as the empirical data. This is to be expected from the 

model, as less frequent steering control actions result in larger steering actions (Mörtl et al., 2017). 

4.3 Practical Implications 

In theory, the data that resulted from simulating the models could be used for the training of a 

machine learning algorithm. Even though the applied training of such systems is beyond the scope 

of this study, the behavioral patterns that emerge from the distracted driving cognitive model can 

in fact be used for the classification of whether the driver is currently performing the secondary 

task. The question remains here though what level of accuracy this could theoretically reach. 

Another unknown is how well this could generalize, in performing the same classification for real 

humans. We could argue though that through the use of transfer learning fewer human data would 

be required since we see the same patterns emerge in the simulated data, albeit without the personal 

individual differences.  

As the driving model parameters are kept at default values and are not varied over the different 

models, adjusting these could lead to more ‘individual’ results. This could be beneficial for the 

training of, for example, an advanced driving assistance system; as we have found a rather large 

mismatch between the human and simulated non-distracted driving performance (i.e., the models’ 

baseline driving performance is too accurate). 

Since the results of the strategies “every word interleaving” and “every two-word interleaving” 

yield close results within the empirical data, a possibility would be to use both for the training of 

a classifier. As there might not be a single interleaving strategy utilized by humans, but the applied 

interleaving strategy depends on an unknown function of both individual preferences and 

prioritizing between safe driving or performing the secondary task as quickly as possible (i.e., the 

speed-accuracy trade-off (Janssen et al., 2012)). If the combination of both strategies would 

converge more to the actual perceived data, this could implicate that for tasks such as these it 

would be better to not focus on a single strategy for generating simulated data.  
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4.4 Limitations and Future Work 

A limitation of the implementation was that the models all had to be run in real-time as the model 

was controlling the driving simulator TORCS in real-time. If the models could run faster or in 

parallel, it would be easier to vary over a large range of different parameter values. This would be 

most beneficial in analyzing a wider range of different interleaving strategies to find the best fit, 

as done with finding optimal strategies for phone dialing models (Janssen et al., 2012). This in turn 

could lead to better utilization of the threaded cognition theory (Salvucci & Taatgen, 2008), in 

contrast to the rather hard assumptions on interleaving that we have constrained the models to in 

this research. 

Validation of the models would also be easier when the actual moments of interleaving would be 

further analyzed as performed by the participants in the study. Even though we have recorded all 

the touch input and the steering wheel input, determining the precise moments of interleaving are 

too ambiguous to lead to a conclusion. For future research use of eye or gaze tracking could be 

used to determine these moments more accurately, rather than deriving them from only the user 

input. 

Comparable studies on distractions while driving has measured the driving performance based on 

other measurements than solely lane deviation, such as longitudinal deviation, braking response 

time and headway distance to other cars (Cao & Liu, 2013; Oviedo-Trespalacios et al., 2016; 

Salvucci, 2019; Salvucci & Macuga, 2002). It could be insightful for future studies to use a more 

detailed and real-world high-way scenario to examine the influence on these other performance 

measures. 

4.5 Remarks 

For being rather exploratory research, the results are looking promising. Following our reasoning, 

if we can confidently exclude the every-letter and no-interleaving strategies, the simulated data 

gives a good estimate of the task times and the decrease in driving performance, with the latter 

being more disputable and prone to variance. As for now, the model that resembles the empirical 

data within both modalities the closest, is the two-word interleaving model. This would also be 

backed by the literature, as the word-span typically lies between 2 and 8 words according to 

Salthouse (1986). However, we have to remark that the differences between one- and two-word 

interleaving strategies are often quite small, thus it is difficult to come to a definitive conclusion 

based on this data alone. 

It is worth noting again, that by conducting this study we are implicitly assuming that all humans 

are using the same type of interleaving strategy. Although this could converge as shown in previous 

literature concerning similar tasks, to a somewhat optimal (or average) task performance trade-off. 

In that case, it would be promising to create computational cognitive models within cognitive 

frameworks as ACT-R to simulate human behavior in a variety of different multitasking scenarios, 

as simple assumptions with limited empirical validation could lead to possibly quite accurate 

simulations of real-world situations. This data in turn could be used as initial training data for more 
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advanced AI systems and fine-tuned to real humans by utilizing techniques such as transfer 

learning on the individual level (Yang et al., 2020). Especially since certain behavioral patterns 

tend to arise from the simulated data that reflects the empirical data quite well, having this data as 

prior could be beneficial for such systems. 
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Appendix 

Informed Consent 
The study “Validation of a Cognitive Driving Multitasking Model” is conducted as part of an 

Artificial Intelligence Master’s thesis carried out at Utrecht University. 

By signing this document, I confirm that:  

- I have read and understood the general information of this research, and have been informed 

of all the information listed in the information letter.  

- I have been given the opportunity to ask questions and I had sufficient time to decide whether 

I participate. 

- I know that my participation is completely voluntary. I know that I can refuse to participate 

and that I can stop my participation at any time during the study. And I can withdraw 

permission to use my data up to 2 months after my participation. 

- I understand and agree with how my data will be handled. 

- I agree with my participation in this study. 

 

 

Name: ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 

Date: ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 

Signature: ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
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Information Letter 

Welcome to the study “Validation of a Cognitive Driving Multitasking Model”. This study is 

conducted as part of an Artificial Intelligence Master’s thesis, carried out at Utrecht University. In 

this document, you will read about the purpose of the study, study procedure, management of your 

data, and your rights as participants. Please read these statements carefully before you proceed.  

Purpose: Driving while not having full attention on the road is an important reason for the 

occurrence of accidents. In this study, we try to gain a better understanding of the behavior that 

emerges when one is distracted while driving. This to research how well we can predict specific 

situational behavior with the use of cognitive models that have been created prior to this 

experiment. In this experiment, we will monitor your actions while doing two different tasks. The 

main objective is to drive a car down the highway and maintain your lane as well as possible. Your 

secondary objective is to type certain given sentences on a smartphone when prompted to. Even 

though this is a simulated environment, we hope you can immerse yourself in the experiment and 

feel as natural as possible, since this will help us gain the best overall insight. 

Procedure: After giving the informed consent, you will start the experiment. You will drive a car 

on a highway without any other cars or other distractions. After you have familiarized yourself 

with the simulated car driving, the main experiment will begin. From this point on, whenever an 

audio notification plays on the smartphone, you will be instructed to type the sentence that is shown 

on the screen. The experiment itself is expected to take around 15-20 minutes. 

Voluntariness & Anonymity: Your participation in this research is voluntary. You can withdraw 

at any time without consequences of any kind. All materials associated with the study are 

confidential and will be used only for the purpose of this research. No identifying information will 

be collected. The resulting data will be published anonymously and cannot be assigned to you. 

Privacy & Data Management: All materials associated with the data collection are confidential. 

The data that will be recorded during this experiment includes all interactions with the smartphone 

and the driving simulator. Your data will only be stored only locally and stored in such a way that 

this data cannot be associated with you. Additionally, the anonymized data will be made publicly 
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accessible in the final results of this study. According to the General Data Protection Regulation 

(GDPR), you have the following rights:  

- Right of access by the data subject (Art. 15)  

- Right to withdraw your consent (Art. 7)  

- Right to rectification (Art. 16) - Right to erasure (Art. 17)  

- Right to restriction of processing (Art 18) 

Questions and complaints: If you have more questions about the study, please contact 

f.a.j.fikkert@students.uu.nl. If you have any concerns, please contact the complaint officer 

(klachtenfunctionaris-fetcsocwet@uu.nl) and the central privacy (privacy@uu.nl).  
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