
Dynamic programming on Nice Tree Decompositions

Experiments on globally solving Weighted Steiner Tree.

LW van der Graaff

February 24, 2015

Abstract

Connectivity problems such as the Steiner Tree are NP-hard problems that are fixed-
parameter tractable in the treewidth of the input graph. In this thesis a dynamic programming
algorithm on nice tree decompositions is discussed. Based on observations on nice tree decom-
position diversity and experiment results, a number of optimization heuristics are proposed to
speed up computation. By restructuring the nice tree decomposition, all tested input graphs
show a considerable improvement both in amount of processed partial solutions as well as com-
putation time. Furthermore a number of different data structures are analyzed, that allow for
various constant time operations for graphs of low treewidth.

Contents

1 Introduction 1
1.1 Problem definition . 1
1.2 Tree decompositions . 1
1.3 Nice tree decompositions . 2
1.4 Dynamic programming . 3
1.5 Solving the Steiner Tree Problem . 4
1.6 Reduction of tables . 4

1.6.1 Automatic reduction . 4
1.6.2 Refinement elimination . 5
1.6.3 The Reduce method . 5

2 Data structures 8
2.1 Introduction . 8
2.2 Required operations . 8
2.3 Hashset . 8
2.4 Partial solution hashing . 9
2.5 Vertex coloring . 9
2.6 Cutrow . 9

2.6.1 Introduce and Forget . 10
2.6.2 Join and connect . 11
2.6.3 Overview . 12

2.7 Adjacency matrix . 12
2.7.1 Join . 14
2.7.2 Sparse adjacency matrix join . 16

2.8 Union-find . 17
2.9 Solution extraction . 18
2.10 Overview . 19

3 Optimizing nice tree decompositions 21
3.1 TD simplification . 21
3.2 Forget sorting . 22
3.3 Join minimization . 22
3.4 Branch relocation . 23
3.5 Children Intersection Join . 24
3.6 Edge introduction location . 25
3.7 Multiple join order . 26
3.8 Joincost . 27

4 Runtime optimizations 28
4.1 Vertex coloring . 28
4.2 Marking last bags . 29
4.3 Lattice join . 30
4.4 Cycle detection . 31
4.5 Last join limiting . 33

i

4.6 Join bounding . 33
4.7 Join sorting . 34
4.8 Lattice based reduce . 35
4.9 Connection based partial solutions . 36
4.10 Vertex constraints . 39

5 Experiment 40
5.1 Setup . 40
5.2 Data structures . 41
5.3 Nice tree decomposition optimizations . 41
5.4 Runtime optimizations . 41
5.5 Connection based data structure . 42
5.6 Complete benchmark . 42

6 Conclusion 50
6.1 Concluding remarks . 50
6.2 Further research . 50

6.2.1 Look ahead optimizations . 50
6.2.2 Low level implementations . 50
6.2.3 Inter resultset reduction . 51
6.2.4 Connection based data structure . 51
6.2.5 Minimal joincost tree decompositions . 51

ii

1 Introduction

In this thesis an experimental evaluation of a dynamic programming algorithm on tree decompo-
sitions is given, for solving the Steiner Tree problem. The problem definition and algorithm
implementation are discussed, with an emphasis on efficient data structures for bounded treewidth.
A number of optimization heuristics are proposed which significantly speed up the execution of
the algorithm by effectively processing parts of the graph in a different order. The proposed data
structures and heuristics are tested on a set of benchmark graph instances to show their relevance
in a practical setting.

The algorithm implementation is a continuation of the program code used in a preceding experiment
[1] by Fafianie et al. This experiment shows the effectiveness of the reduce-algorithm introduced
by Bodlaender et al. [2], applied on the Steiner Tree Problem. The results in this experiments
will show that this method remains very effective and will yield even better performance used in
conjunction with the proposed improved data structures and heuristics.

1.1 Problem definition

The goal of this experiment is to solve the Steiner Tree problem, which can be defined as
follows:

Steiner Tree
Input: A graph G = (V,E), weight function ω : E → N \ {0}, a terminal set K ⊆ V and a
tree decomposition TD of G of width tw.
Question: The minimum of ω(X) over all subsets X ⊆ E of G such that G[X] is connected
and K ⊆ V (G[X]).

1.2 Tree decompositions

Instead of operating on the input graph directly, the algorithm will operate on its tree decomposi-
tion(TD). This is a non-unique representation of the graph G = (V,E), consisting of multiple bags
Bx ⊆ V in a tree structure, with the following properties:

•
⋃

x∈TD Bx = V

• ∀e = (u, v) ∈ E, ∃x ∈ TD | u, v ∈ Bx

• if v ∈ Bx and v ∈ By, then v ∈ Bz ∀z on the path from x to y in TD

The width of a TD is the size of its largest bag minus one, and the treewidth of a graph is the
minimum width over all possible tree decompositions. In this work the term MBS (MaxBagSize) is
used to avoid confusion with the -1 term that is used in the treewidth definition. The MBS gives a
clearer view of the exact size of the problem, especially when discussing algorithm implementation
at the data structure level.

1

A

B

C

E

D

F

G

H

(a) Input graph.

ABC

BCD

CDF

CFG

CEG

DH

(b) Tree decomposition.

ABC

BCD

CDE

DEG

DGF DH

(c) Tree decomposition.

Figure 1: Input graph with two possible valid tree decompositions, both with a MBS of 3.

Figure 1 gives an example of a graph and two possible corresponding tree decompositions. A few
observations can be made that can aid in the understanding of the concept of tree decomposi-
tions.

• The tree decomposition must obviously satisfy the three rules defined in this section. All
vertices are present, all edges can be associated with one or more bags, and the presence of
each vertex induces a connected subtree.

• The trivial tree decomposition consists of a bag containing all the vertices. This satisfies all
the constraints but is not useful in practice. Tree decompositions with minimal or low MBS
allow for efficient algorithm execution.

• Each non leaf bag splits the graph into multiple disconnected components, making it a sepa-
rator for the graph. All paths between vertices of the surrounding bags must go through one
or more of the vertices contained in the bag.

• Each clique is fully contained in a bag.

• Some bags can be connected to the tree at multiple locations, possibly reducing the degree
of a bag.

Computing a TD of minimal MBS is NP-hard, but can be efficiently approximated using heuristics,
resulting in a tree decomposition that has close to optimal MBS. In this experiment the TD is
generated using the GreedyDegree [3] heuristic, implemented in the libTW [4] library.

1.3 Nice tree decompositions

The TD is converted into a nice tree decomposition(nice TD), to limit the structure to a small set
of possible transitions between bags. The nice TD remains a valid TD itself (with the same MBS),
but only allows for four different transitions between bags, and introduces a root and leaves which
both contain no vertices. The definition used in this implementation was introduced by Cygan et
al [5], and nice tree decompositions were introduced by Kloks [6].

See Figure 2 for an overview. The four different transitions are:

2

• An introduce bag introduces a new vertex

• A forget bag removes a vertex

• A join bag joins two bags with equal contents

• An edge bag contains the same vertices as its child, but is labeled with the edge it introduces.

ABC

}
introduce bag

AB

AB

}
forget bag

ABC

ABC

}
join bag

ABC ABC

ABC
(A-C)

}
edge bag

ABC ∅
}

leaf bag

A

Figure 2: Bags in a nice tree decomposition.

The leaves are empty bags that have introduce bags as parents, and the tree is rooted in an empty
forget bag. Since a vertex can only be present in a connected set of bags (forming a subtree), each
vertex can be introduced multiple times, but only forgotten once. Each edge is introduced exactly
once, somewhere within the subtree induced by the presence of its two incident vertices.

1.4 Dynamic programming

The dynamic programming algorithm starts in the leaves of the nice TD and traverses the tree up
to the root. A table of partial solutions is created after processing a bag, which serves as input for
its parent bag. The tables propagate from the leaves up to the root of the tree, resulting in a table
with a single optimal solution, if such a feasible solution exists.

At the leaf bag the table just contains a single zero cost solution containing no vertices.

When a new vertex is encountered, it can either be added to a partial solution or discarded,
effectively doubling the amount of input partial solutions. Partial solutions are grouped by the set
of vertices that are chosen from the current bag. The join bag will then compute the Cartesian

3

product between all the groups with the same used vertices to obtain all the possible joins of partial
solutions from both sides. The cost of a joined partial solution is the sum of the costs of the two
used partial solutions, since every edge is only introduced once within the nice TD.

A solution is by definition just the set of edges that form some subgraph in the input graph, with
its cost being the cost of the subgraph. The partial solutions are however only represented by their
accumulated cost and their local connectivity properties.

1.5 Solving the Steiner Tree Problem

The Steiner Tree problem (STP) fits nicely into this paradigm, allow for very straightforward
operations to process the different types of nice bags. A partial solution can be uniquely defined
as a partition of the chosen vertices into one or more disjoint subsets each representing a (part of
a) connected component.

When a new vertex is introduced, it can either be added as a singleton to the partition(used), or
be discarded(unused). These two options are applied to all input partial solutions, the output set
will be twice the size of the input set. Note that if a vertex is a terminal, it is required to be used,
thus no partial solution not using the vertex will be generated, and the output set will be of the
same size as the input set.

When a vertex is forgotten, partial solutions that use the vertex but do not have it connected to
any other used vertex are discarded. This follows from the definition of a tree decomposition, since
after a vertex is forgotten, it cannot be present in any other bag in the nice TD, and thus never
possibly be connected to any other vertex to form a connected and thus feasible Steiner tree.

When an edge is added, it can glue two disjoint subsets in a partition into one, if both subsets
contain one endpoint of the edge. This increases the total cost of the solution with the cost of the
edge.

When two partial solutions are joined, the two partitions are merged with the set union operator.
For every vertex the union of the two connected components it was present in forms a new connected
component in the output partial solution.

1.6 Reduction of tables

1.6.1 Automatic reduction

During execution, new partial solutions can be generated that are equivalent to existing partial
solutions, either with equal or higher cost. Since equivalent partial solutions with equal or higher
cost will never lead to better final results, they can safely be discarded. This operation can be
regarded as trivial, but clearly represents the notion of eliminating partial solutions of which can
be shown that they will not contribute to a better result. A drawback of this approach is that the
algorithm only outputs a single optimal solution, even if multiple optimal solutions exist.

4

1.6.2 Refinement elimination

Given an ordered table of partial solutions, it is easy to spot candidates that will always be outper-
formed by a solution with a better score. A solution is a refinement if it has at least all the same
cuts, showing that it is strictly worse connected. Given a partial solution s, find a partial solution
s′ solution that is a refinement of the solution s. The solution s′′ in Table 1 connects A and B,
which s did not, and thus it is not a refinement of s.

partitions refinement of s

s {{A},{B,C}} (yes)

s′ {{A},{B},{C}} yes
s′′ {{A,B},{C}} no

Table 1: The refinement operator.

If such a refinement has equal or higher costs it may be discarded. It can be said that s represents
s′, since any partial solution t that would complete s′ to a feasible solution, would also complete
s to a feasible solution, and thus s′ may be discarded, since it will never contribute to a better
result.

If the implementation utilizes a data structure that provides a fast refinement operator, this method
will be a viable optimization.

Trivially, if a partial solution is fully connected, all partial solutions of higher cost can be removed,
since the unit partition only has itself as a refinement.

1.6.3 The Reduce method

The reduce-algorithm introduced by Bodlaender et al. [2] extends this concept further by utilizing
representative sets. The main idea of this approach is that a table of partial solutions can be
reduced by removing all entries of which can be shown that will not be able to contribute to a
better final solution.

The entries of the resulting reduced table are said to represent the entries of the table that were
eliminated. Instead of eliminating entries based on comparisons with other entries of equal or lower
cost, entries are eliminated by finding a representative set of equal or lower cost entries.

Figure 3 gives an example of a set of three partial solutions that are representative for the complete
input set of size four. It is easy to see that for any possible improving edge addition to the fourth
partial solution, that same edge addition would also fully connect one of the three first partial
solutions, making the fourth solution effectively obsolete.

In other words, for any given solution outside of the representative set, any extension that would
complete it, would also complete a partial solution within the representative set. Since the partial
solutions are ordered based on cost, the partial solution from the representative set would always
produce a feasible solution at least as good as the solution otherwise produced, and therefore all
solutions not in representative set can be discarded.

5

a b

c d

a b

c d

a b

c d

a b

c d

(a) Set of four input partial solutions, ordered from left to right, all of equal cost.

a b

c d

a b

c d

a b

c d

a b

c d

(b) The six possible edge additions(dashed) that would extend a partial solution to make it fully connected,
the dotted edges also qualify but would result in a redundant solution.

Figure 3: Example of a representative subset of partial solutions.

A representative set can be found in a naive way by enumerating all possible extensions to a fully
connected solution, for each partial solution in the set. If all of the found extensions for a partial
solution will also lead to a fully connected solution with any different partial solution of lower cost,
the solution can be discarded. The set of partial solutions remaining then form the representative
set.

It can be shown that taking a basis in a certain matrix(see Figure 4) will yield the same results,
and is substantially easier to compute.

M[p, q] =

{
1 p u q = {U},
0 else.

Figure 4: Matrix containing 1’s where the meet operation between the two partitions yields
the unit partition.

The matrixM can be written as the product of two cut matrices, CCT , where C ∈ ZΠ(U)×cuts
2 . The

term Π(U) refers to all partitions of the used set of vertices, and cuts is the set of all two-partitions
of the used vertices, where one vertex is fixed on one side. The matrix C contains a 1 where the
partition is a refinement of the cut, or in other words is consistent with the cut.

The product CCT can then be seen to count the number of partitions that are consistent with both
p and q. If p u q = {U}, then there is only one such partition (the partition between all vertices
and the empty set). Consequently, if puq is a partition with at least two disjoint sets, then there is
an even number of cuts that are consistent with both p and q, since the amount of consistent cuts
is equal to 2#blocks−1. Therefore the matrixM≡ CCT (in arithmetic modulo 2). Finding the basis
of minimum weight in C will suffice to construct the representative set, and that can be achieved
with Gaussian elimination, when the entries are ordered by ascending cost.

6

For the complete proof the reader is directed to the original work by Cygan et al [5].

Sorting the set of partial results on their cost and comparing entries comes at a significant com-
putational cost, so the procedure should only be applied if it can discard enough entries to make
up for the increase in computational cost. Therefore the reduce algorithm is only executed if the
number of entries in the table is larger than 2|U |−1, guaranteeing the elimination of at least some
entries, since the size of the basis cannot exceed 2|U |−1(the number of columns).

7

2 Data structures

2.1 Introduction

For every type of bag in the nice tree decomposition an operation is executed on the input set of
partial solutions, resulting in a new set of at that moment still feasible partial solutions. In this
section a number of data structures are discussed that allow for either faster execution time for the
required operations, or a decrease in memory usage. The proposed implementations will enable
the decrease of the overall runtime or memory consumption by a sometimes large constant factor,
allowing for a larger instances to still be solvable within a reasonable time limit. The next sections
will amongst other optimizations show how a bound on the treewidth can be utilized on the data
structure level for a large performance gain.

2.2 Required operations

Table 2 gives an overview of the necessary operations that each implementation must provide for.
There are also some auxiliary functions that are needed for some alternative implementations of
the dynamic programming algorithm.

add(c,v) Add a vertex as a singleton to a partition
remove(c,v) Remove a vertex from a partition
connect(c,v1,v2) Connect two vertices in a partition
join(c1,c2) Join two partitions
equals(c1,c2) Evaluate if two partitions are equivalent
hashCode(c) Generate a 32-bit hash of a partition
cutrow(c) Generate a cutrow representation of a partition

areConnected(c,v1,v2) Evaluate if two vertices are connected
isSingleton(c,v) Evaluate if a vertex is a singleton in a partition
isRefinementOf(c1,c2) Evaluate if a partition is a refinement of another partition

Table 2: Overview of partition operations, and some optional auxiliary functions.

In the following sections a number of different data structures will be discussed, aided by an overview
of the required operations’ complexities.

2.3 Hashset

A naive approach is the construction of a set of sets to represent the partition, in the form of either
linked-list or a hashset. Each vertex is labeled with a unique integer value, and a partial solution
is equal to another if contains the same subsets with the same integer values.

Since the input graphs can be of large size, even for lower treewidth the memory requirement can
be relatively large, especially with the added overhead for the set of sets datastructure implemen-
tation.

8

In previous work [1] this representation was used to demonstrate the effectivity of rank based reduce
method. The approach discussed in the next sections is in practice an order of magnitude faster,
partially because the previous implementation was not necessarily optimized for speed. Therefore
it is omitted from further complexity comparisons and experimental evaluations, since it does not
reveal anything other than an expected sub-par runtime.

2.4 Partial solution hashing

During execution the current set of partial solutions are stored in a hash table. When an equivalent
solution with a lower weight is found, the old entry will be overridden by the new one, effectively
removing the non-optimal partial solution. This requires a good hash function for the partial
solution objects, that both executes fast and results in unique hashes, to avoid hash collisions.

An injective hash function, that maps every input object to a unique value, will result in an
optimally performing hashtable. Theoretically all possible partitions of a set can be enumerated,
resulting in a unique value that lies between zero and the bell number of the size of the set. The 15th

Bell number is 1382958545, which is the highest bell number that still fits in a 32-bit integer, which
is the hash size used in the hashtable implementation. (Applying the reduce function will reduce
this number to 2MBS−1.) In practice a trade-off will need to be made between hash computation time
and the performance decrease due to hash collision in the hashtable. Some of the data structures
proposed in the next section store the partition in a limited amount of bits. This has the added
benefit that the hash for the partition is just the integer value of the used bits, resulting in a
constant time hash function that is also injective for sets of limited size.

2.5 Vertex coloring

In any data structure the need arises to uniquely identify each vertex to be able to perform the
necessary operations and comparisons. The trivial approach is enumerating all vertices in the
graph, resulting in an identifier between zero and the size of the graph ([0,n)).

Given the fact that the algorithm solves the problem progressively on the tree decomposition in
a local fashion (bag by bag), we can map each vertex to an identifier(tree-index) in the range of
[0,MBS).This concept lends itself form a vertex coloring in the graph, which is trivial to obtain if
a tree decomposition is given. Given a nice decomposition, starting at the root assign an unused
index when a forget bag is reached, and unassign(free) the index when the vertex is introduced
in an introduce bag. This process ensures that in each bag, all vertices are always assigned to
unique tree-indices, and each vertex has the same tree-index within its subtree in the nice tree
decomposition.

2.6 Cutrow

Fafianie [1] introduced the idea of representing a partition by all of the cuts it contains. All possible
cuts are enumerated, resulting in a bit string where each bit represents a unique cut of the set of
vertices into two disjoint parts. Whenever the partition is a refinement of a cut, its corresponding

9

bit is set to one. This results in a representation of size 2MBS bits, or 2MBS−1 bits if we fix one vertex
to always be on one side of the cut.

One of the benefits of storing the partition as a cutrow lies in the reusability of the representation
in the Reduce algorithm. This way the 2MBS−1 operations previously needed to compute all the cuts
are no longer required.

The indices of the bits in the cutrow are easily translated to the partition of vertices the cut
represents. The index in two-bit representation defines the set of vertices grouped together on one
side of the partition(defined as the left side). For example, in a graph with treewidth 3 has a cutrow
of size 16. Index 13 is 1101 in two-bit representation, signaling that it represents a cut between
vertex v1, v3, v4 and v2. Note that this is equivalent with index 0010 since this represents the same
cut. This also implies that the first and the last index will always be set, since they represent a cut
between the empty set and all vertices.

This means that all cuts are effectively represented twice in the cutrow. This can be countered
by fixing one vertex to always be selected on the same side of the cut. The problem however is
that when this particular vertex is forgotten, the resulting cutrow is obtained by a logical OR of
the cutrow and its reverse. Computing the reverse of a bit string is generally not implemented at
hardware level and thus a relatively slow operation (O(log n)). Fixing a vertex to one side does
result in only half of the memory requirement, and allows for one extra vertex to fit inside a single
computer word.

In practice a tree decompositions will usually contain many bags of size smaller than the largest bag.
Arguably using the same size cutrow representation is not efficient because of the higher memory
usage and slightly more complicated operations. However this might not outweigh the cost of the
operations needed for rearranging the cutrow when the size of the bag changes. Note that for
smaller bags the tree-indices will most likely not be sequential, thus requiring a transformation
operation when size increases or decreases. Filling up the gaps or introducing new gaps cannot be
done fast without the usage of CPU instructions for bitwise packing and unpacking such as PDEP

and PEXT, which are as of 2014 only supported in the most recent generation of CPUs.

10000001 initial state
10000011 introduce v1

10110011 introduce v3

10100001 connect v1 and v3

10010001 forget v1

Table 3: Cutrow representation. Gray values represent cuts that are not applicable because
the the implied set contains a vertex currently unused.

2.6.1 Introduce and Forget

Introducing a new vertex maintains existing cuts(where the new vertex was not on the left side),
and duplicates them all with the new vertex added (on the left side). This operation is easily
executed with logical operators by merging shifted copy of the existing cutrow 2vi−1 places to the
left.

10

Consecutively, forgetting a vertex is the same shift back also using the logical OR operator. If a
cut exists either with or without the given vertex(or both), it will still exist when the vertex is
forgotten. If the cut did not exist with or without the vertex, it will also be nonexistent after the
vertex is forgotten.

Figure 5 shows the process of adding and removing a vertex, showing the implications for a given
cut.

c

(a) Initial state containt two disconnected com-
ponents, separated by a cut c.

c’

c”

v

(b) Introduce vertex v, existing cut c is dupli-
cated into c′ and c′′.

c’

c”

v

(c) Cut c′ dissolves with the addition of an edge.

c

v

(d) Cut c remains after forgetting v because ei-
ther c′ or c′′ were still present.

Figure 5: Visualisation of adding and removing a vertex from the perspective of a single cut.

2.6.2 Join and connect

The join operation is trivial for the cutrow representation. When two partial solutions are merged,
only the cuts that exist in both input solutions will remain. Simply applying the logical AND
operation between the two bit strings will produce the required result.

Connecting two vertices uses precomputed masks to determine which cuts need to be eliminated.
As stated earlier, the index of the bit signals which vertices are together on one side(the left side)
of the cut. For each vertex we can create a mask for the bit string, that contains a one if the given
vertex is on one side of the cut, as shown in Table 4. When connecting two vertices, all cuts that
had the given vertices on opposing sides can be set to zero. The logical XOR of the two masks
shows all relevant cuts, which can all be set to zero by computing the AND between the input bit
string and the negation of the XOR between the masks.

11

1010101010101010 mask for v1

1100110011001100 mask for v2

1111000011110000 mask for v3

1111111100000000 mask for v4

Table 4: Cutrow vertex masks for a bagsize of 4.

2.6.3 Overview

As can be seen in Table 5, the cutrow allows for very fast execution of the required operations,
but at a cost of an exponentially growing memory requirement. For larger instances, the relatively
slow hash function also becomes a bottleneck resulting in both poor execution time in addition
to the high memory usage. Faster less precise hash functions are possible, but will result in more
collisions which also slows down the execution.

MBS ≤ 6 MBS > 6

add(c,v) O(1) O(#words)
remove(c,v) O(1) O(#words)
connect(c,v1,v2) O(1) O(#words)
join(c1,c2) O(1) O(#words)
equals(c1,c2) O(1) O(#words)
hashCode(c) O(1) O(n2)
cutrow(c) O(1) O(#words)

areConnected(c,v1,v2) O(1) O(1)
isSingleton(c,v) O(1) O(#words)
isRefinementOf(c1,c2) O(1) O(#words)

memory usage in bits 2n

MBS for single 64bit word 6

Table 5: Operation complexity for the cutrow datastructure.

2.7 Adjacency matrix

Instead of approaching the partition in terms of disjoint subsets, it can also be represented in
terms of adjacency between pairs of vertices. When two vertices are both present within the same
connected component, they are marked as adjacent in the adjacency matrix, as shown in Table 6.
Since this matrix contains redundant and unused fields, we represent it in row form as shown in
Table 7.

This representation does contain some redundancy, for example when three vertices are connected,
the connection between any two vertices is implied by both connections to the third vertex. How-
ever, as holds for every implementation in this chapter, there is always a balance between memory
requirement (and thus redundancy), and operator speed.

Adding vertices requires no action, since it does not alter any connectivity.

12

Removing vertices requires all fields that represent a connectivity between the vertex and another
vertex to be set to zero. (If all such fields were already zero, the vertex was a singleton and thus
the solution was infeasible.)

Connecting two vertices requires that the neighborhood of both vertices should be merged, and
updated for all vertices in that neighborhood. This is also required in the join during step 4 and 5,
as explained in Section 2.7.1.

To check if a partial solution is a refinement of another partial solution, the logical OR between the
two needs to be equal to the refinement, signaling that it strictly contains more cuts. Generating
the cutrow can then be done by enumerating all cuts in the form of the adjacency matrix, and
using the refinement operator to check if the partial solution contains the given cut.

Figure 6 and Table 8 show an example of some consecutive operations with the corresponding
adjacency matrix representation.

v1 v2 v3 v4 v5

v1 - 0 1 2 3

v2 0 - 4 5 6

v3 1 4 - 7 8

v4 2 5 7 - 9

v5 3 6 8 9 -

Table 6: Vertex adjacency in ma-
trix form

v4 v3 v2 v1

v5 v5 v4 v5 v4 v3 v5 v4 v3 v2

9 8 7 6 5 4 3 2 1 0

Table 7: Vertex adjacency in row
form

13

v1

v2

v3

v4

v5

(a) Initial state.

v1

v2

v3

v4

v5

(b) Introduce v2.

v1

v2

v3

v4

v5

(c) Connect v2 and v5.

v1

v2

v3

v4

v5

(d) Join candidate from other
branch.

v1

v2

v3

v4

v5

(e) Result after joining partial
solution (c) and (d).

Figure 6: Example series of operations on partial solutions.

v4 v3 v2 v1

Figure 6 v5 v5 v4 v5 v4 v3 v5 v4 v3 v2

a 0 0 0 0 0 0 0 0 0 0

b 0 0 0 0 0 0 0 0 0 0

c 0 0 0 1 0 0 0 0 0 0

d 1 0 0 0 0 0 0 0 0 1

e 1 0 0 1 1 0 1 1 0 1

Table 8: Adjacency matrix representation of operations shown in Figure 6

2.7.1 Join

The general concept of the join operation is to merge the two input solutions with a logical OR
operation, and then to fill in the absent adjacencies that are implied by the context. The join
operation consists of the following steps:

1. Merge both partial solutions together with the OR operation, and use the new partial solution

14

as intermediate result.

2. For both connectivities, mark vertices that are part of a connected component.

3. Select vertices that are part of a connected component within both partial solutions.

4. Extract the current neighborhood of the first marked vertex from the intermediate result.

5. Update the neighborhood of all neighbors of the marked vertex, with the extracted neighbor-
hood.

6. Repeat for the next selected vertex, until all selected vertices are processed.

Each vertex that is not a singleton in both partitions, needs to ensure its neighborhood is fully
connected. This can be done by extracting the neighborhood from the intermediate result, and
adding it to all its neighbors.

Updating the neighborhood of a vertex can be performed in constant time, since the required
portion(only the higher neighbors) of the retrieved neighborhood can be selected using a logical
right shift (i.e. removing the lower portion). The neighborhood of a vertex can then be updated
using an OR with a logical left shift of the selection. This results in a complexity of O(n2) for
graphs of limited treewidth.

Table 9 shows hows these steps work in practice on the example from Figure 6.

v4 v3 v2 v1

v5 v5 v4 v5 v4 v3 v5 v4 v3 v2 v5 v4 v3 v2 v1

a 0 0 0 1 0 0 0 0 0 0 conn(a) 2© 1 0 0 1 0

b 1 0 0 0 0 0 0 0 0 1 conn(b) 2© 1 1 0 1 1

a ∨ b 1© 1 0 0 1 0 0 0 0 0 1 conn(a) ∧ conn(b) 3© 1 0 0 1 0

N [v2] 4© 1 0 0 1 1

adj(N [v2]) 5© 0 0 0 1 0 0 1 0 0 1

result 1 0 0 1 0 0 1 0 0 1

N [v5] 4© 1 1 0 1 1

adj(N [v5]) 5© 1 0 0 1 1 0 1 1 0 1

final result 1 0 0 1 1 0 1 1 0 1

Table 9: Join operation steps for the join in Figure 6, 1 marks adjacencies that needed to be
added beyond the initial OR of the input solutions.

15

add(c,v) O(1)
remove(c,v) O(1)
connect(c,v1,v2) O(n)
join(c1,c2) O(n2)
equals(c1,c2) O(#words)
hashCode(c) O(1)
cutrow(c) O(2n)

areConnected(c,v1,v2) O(1)
isSingleton(c,v) O(1)
isRefinementOf(c1,c2) O(1)

memory usage in bits 1
2n(n− 1)

MBS for single 64bit word 11

Table 10: Operation complexity for adjacency matrix.

2.7.2 Sparse adjacency matrix join

In general, a join operation has a complexity of O(n2) for this data structure, since in the worst
case O(n2) adjacencies have to be set. However, since the neighborhood for a given vertex can be
set in constant time if the treewidth is limited, an lower complexity might be achievable.

The adjacency matrix contains a lot of redundant data, since connected components of size n could
be represented by n − 1 bits(i.e. only the bits set for the lowest vertex), but in this form require
1
2n(n − 1) bits. The consideration has to be made whether the added redundancy brings enough
benefits in other operations to warrant the increase in complexity for the join operation. In this
section an attempt is made to obtain the best of both worlds by accordingly switching between the
two data structures. Instead of merging the two partials solutions directly, and filling in all the
missing adjacencies, the partial solutions are transformed to their sparse form and are joined as
such.

The sparse form is retrieved by just removing all adjacencies for vertices that do not have the lowest
index within their connected component. The result is an adjacency row only containing adjacencies
for the representative of the connected component, making it easier to isolate the different connected
components from the partial solution. If a vertex is part of a connected component within both
partial solutions, both neighborhoods can then be merged into the neighborhood of the lowest
representative. Transforming the result back to the original form can then also be executed in
O(n) time, maintaining an overall complexity of O(n) for the entire operation.

The remark has to be made that since the treewidth is bounded to fit the data structure within a
computer word, adding extra overhead to computations might not be beneficial in practice. Since
this discussion is approaching micro-optimizations and measuring the performance of this concept
relies heavily on the actual implementation, lowering the complexity of the operations will not
necessarily result in an optimal implementation.

On of the benefits of the normal adjacency matrix implementation is the very fast constant time re-
finement operation. If the refinement operator is used to compute the cutrow of the partial solution,

16

this could become a bottleneck since the cutrow contains an exponential amount of entries. How-
ever, since the sparse data structure allows for easy extraction of all connected components(blocks),
the cutrow can be computed in just 2#blocks−1 time, which is always going to be faster than the
otherwise required 2n time.

2.8 Union-find

The Union-find data structure stores the partial solution in terms of groups, alike the sparse ad-
jacency matrix. However, instead of storing vertex relations in predetermined positions, each con-
nected component has a vertex representative, and for each vertex only the representative of the
component it belongs to needs to be stored. This requires less memory than the other approaches,
but adds a slight overhead to some of the operator complexities.

When introducing a vertex, it will not be connected to anything yet thus it will be its own repre-
sentative. When a vertex is forgotten, it is not allowed to be singleton, so it is only allowed to be
its own representative if there are other vertices that have it as a representative. The component it
represented should then pick a new representative(the next vertex with the lowest index), and then
update all remaining vertices of the same component accordingly. Note that vertex v1 will always
have itself as representative, and thus does not need to be maintained in the data structure.

When connecting two components, the vertices of the component with the highest representative
will obtain the representative of the component with the lowest representative.

When joining two partial solutions a and b, for each vertex v both representatives rep(a.v) and
rep(b.v) are selected if unequal. Since these three(or possibly two) vertices are connected, they
all obtain the lowest vertex as their new representative. rep(v) = min(rep(a.v), rep(b.v)), and
rep(max(rep(a.v), rep(b.v)) = min(rep(a.v), rep(b.v)). This results in a complexity of O(n). Fur-
thermore the resulting structure needs to be compressed, because the partial solutions should be
uniquely identifiable to enable fast equivalence checking with other partial solutions. The com-
pression step can also be executed in O(n) time. See Figure 7 for an example of such a join
operation.

17

v1 v2 v3 v4 v5

(a) Initial state of a.

v1 v2 v3 v4

v5

(b) Connect v2, v5 in a.

v1

v2

v3 v4

v5

(c) Initial state of b.

v1

v2

v3 v4

v5

(d) Merge b.v2 into a.

v1

v2

v3

v4 v5

(e) Merge b.v5 into a.

v1

v2

v3

v4 v5

(f) Compress.

Figure 7: Example series of operations on partial solutions using the union-find data structure.

Generating the cutrow cannot be done efficiently using the refinement operator, because it requires
linear time. However, each cut can be expressed in terms of a two-partition in the set of con-
nected components. Since this data structure already stores its connectivity properties in terms of
connected components, the cutrow can be generated by computing all combinations of connected
components.

add(c,v) O(1)
remove(c,v) O(n)
connect(c,v1,v2) O(n)
join(c1,c2) O(n)
equals(c1,c2) O(#words)
hashCode(c) O(n)
cutrow(c) O(2#blocks−1)

areConnected(c,v1,v2) O(1)
isSingleton(c,v) O(1)
isRefinementOf(c1,c2) O(n)

memory usage in bits (n− 1) ∗ dlog2 ne
MBS for single 64bit word 16(19∗, 20∗∗)

Table 11: Operation complexity for Union find. (∗Tightly packed bits,∗∗theoretical maximum.)

2.9 Solution extraction

During execution, locally optimal solutions are maintained(by their local connectivity and their
weight) and all non-optimal and infeasible solutions are discarded. On termination the weight of
the optimal solution will be returned, if a feasible solution exists. To obtain the set of edges that

18

form such a Steiner tree, the selected edges need to be maintained during the execution of the
algorithm.

There are several ways to achieve this, where each solution has its own merits and caveats.

The most straightforward method is to label every edge with a unique number, and for each partial
solution maintain a set of edges that were used during its construction. When two partial solutions
are joined, the two edge sets can be merged, since every edge will only be introduced once within
the nice tree decomposition. This however results in large sets that need to be maintained within
every solution, and need to be copied often whenever new partial solutions are generated from
existing ones.

A more efficient way is to label every edge with a unique index from 0 to m, and maintain a bit
string of length m that represents a set of flags that can be set to true for each edge whenever it
is introduced. Joining two solutions can be achieved by simply computing the logical OR between
the two bit strings. This results in a fixed amount of m bits needed in the data structure for a
partial solution.

If the resulted tree is known to be relatively small, the set of edge numbers might be considered,
since this could require less storage space (i.e. if |E| ∗ dlog2 me < m).

If the amount of edges is very large and the memory requirement for maintaining all used edges
becomes a limiting factor, it also possible to opt for not storing the entire set of used edges,
but merely a number of snapshots of intermediate results at various positions in the nice tree
decomposition. For instance, before execution starts a number of bags can be selected of which the
used vertices will be stored in snapshot within the partial solution data structure. Whenever one
of these bags is reached, the partial solution stores which vertices it used from that bag, requiring
a number of bits equal to the size of the bag. On completion, the algorithm can then be run a
second time using the bit string to store the used edges. It will be able to execute much faster
in the second run, since a significant amount of partial solutions can be discarded because for set
number of vertices it is already known if they will be used in the chosen optimal solution. It is
however key to choose promising bags beforehand that will allow for a large reduction of the search
space, but also not too many bags because of the resulting increase in memory requirement. For
instance bags of large size and bags that join large parts of the graph together will most likely be
good candidates.

2.10 Overview

The join operation is often required and will significantly attribute to the execution time, since
earlier experiments have shown that generally the majority of the time is spent in a few large join
bags. Using a data structure that has a relatively small memory footprint and a fast join operator
will therefore be a good choice for most use cases.

For lower MBS some benefits arise of fitting the entire data structure in a word(e.g. 32 or 64
bits), allowing for some very fast implementations using bitwise operators, fast hash functions and
equivalence checking. For treewidth 5 or lower with 64 bits words the cutrow data structure executes
very fast, and for treewidth 10 or lower adjacency matrix data structure performs well.

19

For larger treewidth the union-find data structure will be the most efficient pick, since it scales
very well compared to the other data structures.

Note that it is difficult to give an overall judgment of the benchmark performance of one of these
implementations, since despite the discussed theoretical improvements the optimizations introduce,
the implementation is done in a language known for its sometimes suboptimal performance. This
was however a decision made because of time constraints, and the validness of the underlying con-
cepts will hold despite the less than optimal environment the experimental evaluation is conducted
in. Section 5 discusses a series of experiments using the different data structures on a variety of
graphs for a quantitative performance comparison.

20

3 Optimizing nice tree decompositions

Given any input graph, many different valid tree decompositions of the same width are possible.
For every tree decomposition, all bags can be selected as root-bag for the nice tree decomposition,
and the order of introduce, forget, edge and join bags can be varied. These options lead to a vast
amount of possible instances that will all output an optimal solution (not necessarily the same
solution), but compute in a different manner. Experiments have shown that execution times for
different instances can vary greatly, generating an opportunity for optimization by creating better
performing nice TDs.

The following observations can be made on the four different nice TD bag types.

• An introduce node will increase the amount of partial solutions, by a factor of 2 (if the
vertex is not a terminal).

• A forget node will decrease the amount of partial solutions.

• A join node will increase the amount of partial solutions.

• An introduceEdge node has little influence on the amount of partial solutions.

In the following sections a number of heuristics are defined to minimize the amount of partial
solutions that propagate through the nice TD.

3.1 TD simplification

To maintain the ability to optimize the nice TD that needs to be generated, the input TD should
not contain unnecessary bags. If a bag contains a subset of vertices of one of its neighbors, it can
be safely removed. This results in more freedom for the nice TD generation algorithm, possibly
enabling better nice TDs.

Between every two bags in the TD, the nice TD will contain a sequence of zero or more forget

bags followed by a sequence of zero or moreintroduce bags. This order is optimal since the forget
nodes will result in a decrease in partial solutions, so the introduce nodes can operate on a smaller
input set. Because this order is fixed, an extra bag between every two bags in the TD can be added,
containing the intersection of the two vertex sets, as shown in figure 8. This will not influence the
structure any of the nice TDs that need to be generated, but does results in an increase of bags
that can be used as root for the nice TD.

21

ABC

CDE

(a) Input TD

ABC

C

CDE

(b) Output TD

Figure 8: The result of adding an intersection bag between connected bags.

3.2 Forget sorting

When a sequence of forget nodes is created, the order of the forgets can be optimized based on
edges that need to be introduced before the vertex is forgotten. This sequence can be ordered based
on the amount of edges that exist between the vertex to forget and its neighbors in the given bag.
The introduceEdge nodes can the be placed higher within the sequence with the result that the
amount of partial solutions will be lower, as shown in figure 9.

forg A {}

forg B {A}

6

forg C {AB}

12

forg D {ABC}

62

edge CD {ABCD}

100

... {ABCD}

100

(a) unsorted

forg C {}

forg D {C}

5

edge CD {CD}

16

forg A {CD}

16

forg B {ACD}

59

... {ABCD}

100

(b) sorted

Figure 9: Example of Forget sorting. The edges are labeled with the amount of partial
solutions a bag sends to its parent.

3.3 Join minimization

If a bag has a degree higher than two, then every next neighbor will require the addition of a extra
join bag in the nice TD (and one more if the bag is the root of the nice TD). It is essential to keep

22

the joins as small as possible since they require a large amount of computation time.

In some cases, an intermediate bag can be added between the bag and two or more of its neighbors,
that has a smaller size and thus resulting in some of the joins to be of smaller size.

Specifically, if the union between two of the neighbors intersected with the bag itself returns a
smaller bag, it will be beneficial to add this intersection as a bag, so that the two neighbors can
meet each other in a smaller join. Figure 10 gives an example of this process.

A B

CD

X

Y

Z

(a) Input graph.

ABCD

ABX BCY

CDZ

(b) Tree decomposition.

ABCD

ABX BCY

CDZ

ABC

(c) Tree decomposition with min-
imized join (one viable option).

Figure 10: Example of join minimization.

3.4 Branch relocation

The structure of a given TD can be altered to some extent to reduce the amount of large joins, if
all of its defining properties maintain intact. As shown in earlier examples, decreasing the degree
of large bags will result in fewer large and computationally expensive joins.

A different approach to achieve this is by relocating branches of the tree such that the degree of a
large bag is lowered, at the cost of increasing the degree of a smaller bag.

For each bag in the TD, consider all of its neighbors. If the vertices of the intersection between the
bag and its neighbor are also present

For each edge in the TD, consider the intersection between its two incident bags. The subtrees
induced by the presence of the vertices in the intersection can be split into two different trees, by
removing the selected edge. The tree on one side now provides feasible attachment points for the
bag on the other side of the selected edge. The goal is to attach one of the incident bags to its
opposite subtree, to reconnect the two parts in a more efficient manner. This will result in a still
fully connected feasible TD.

If both subtrees consist only of the incident bag, or if all other attachment points are either of
larger size or equal size and lower degree, no improvement is possible.

23

A B

CD

X

Y

Z

(a) Input graph.

ABCD

ABX BY

CDZ

(b) Tree decomposition.

ABCD

ABX BY

CDZ

(c) Tree decomposition with relo-
cated branch.

Figure 11: Example of branch relocation.

3.5 Children Intersection Join

If the rooted input TD has a bag with multiple children, the nice TD will insert join bags to
accommodate this. In a naive approach, the entire bag will be copied twice, and connected to its
two children using introduce and forget bags. Similar to the Join minimization approach earlier
discussed, the goal is to minimize the size of the join where possible. Since the root is known, the
same technique can be utilized for bags with two children in the rooted tree.

If both children do not require a vertex of the join bag to be present, they will still both need to
introduce said vertex before the join occurs. If this introduction is placed above the join node, the
join will be smaller (and thus more efficient), and also one less introduce node is needed, as shown
in Figure 12. The set of vertices in the join node is the intersection between the parent, and the
union of its children.

Note that even though this process overlaps with the join minimization procedure, it is less powerful
since it cannot relocate children to newly formed bags, but benefits from operating on a rooted tree.
Therefore this operation should always be executed on an already join minimized rooted tree.

24

ABC

AD BE

(a) rooted TD

join {ABC}

intr C {ABC}(1)

90

intr C {ABC}(2)

90

intr A {AB}

30

intr B {AB}

forg D {A}

10

... {AD}

30

30

forg E {B}

10

... {BE}

30

(b) naive join

intr C {ABC}

join {AB}

200

intr B {AB}

30

intr A {AB}

30

forg D {A}

10

... {AD}

30

forg E {B}

10

... {BE}

30

(c) intersected join

Figure 12: Result of sorting forget nodes.

3.6 Edge introduction location

Every edge is introduced exactly once within the nice TD, and can be done anywhere within the
subtree induced by its endpoints. The following observations can be made:

• It will be more efficient to introduce an edge after one ore more forget bags, rather than
below. Forgetting vertices will decrease the amount of partial solutions, introducing an edge
into a smaller set of partial solutions is more efficient.

• It will also be more efficient to introduce an edge before one ore more introduce bags, rather
than above, since introducing vertices will increase the amount of partial solutions.

• If an edge is introduced directly after a join bag, it will be more efficient to introduce the
edge above one of its children, since they will have a smaller set of partial solutions than the
join bag has.

• Adding the edge before the join might provide for better pre-join reduction resulting in a
smaller join.

• Adding the edge after the join will allow for a slightly less complex join.

The first two rules can be captured in the simple statement that a bag of smaller size is more likely
to contain a smaller set of partial solutions. Adding the edge after the bag with the smallest size,
will thus most likely be the most efficient choice.

If this bag is a join bag, one of the children should be picked, for example the child with the smallest
subtree.

25

3.7 Multiple join order

If there exists a bag in the TD that has more than two children, consecutive joins have to be
constructed to connect the subtrees together. The structure of these joins can be varied resulting
in different nice TDs, with possibly different execution times. An approach could be to cascade the
joins, where every join bag has another join bag and a subtree as child, and the last join bag
having two subtrees as children. A different approach might be to branch out join bags recursively
until enough endpoints are created for all the children. Figure 13 shows the different construction
techniques.

join(1) {ABC}

join(2) {ABC} join(3) {ABC}

...(1) {ABC} ...(2) {ABC} ...(3) {ABC} ...(4) {ABC}

(a) branching joins

join(1) {ABC}

join(2) {ABC} ...(1) {ABC}

join(3) {ABC} ...(2) {ABC}

...(3) {ABC} ...(4) {ABC}

(b) cascading joins

Figure 13: Two different methods for constructing multiple joins.

It might prove to be beneficial to include subtrees with a large set of partial solutions as high as
possible, to avoid large intermediate sets of partial solutions, as shown in figure 14.

join(1) {ABC}

join(2) {ABC}

500

...(1) {ABC}

10

...(2) {ABC}

100

...(3) {ABC}

10

(a) Large amount of partial solutions

join(1) {ABC}

join(2) {ABC}

50

...(2) {ABC}

100

...(1) {ABC}

10

...(3) {ABC}

10

(b) Improved amount of partial results

Figure 14: The join is rebalanced, moving bag 2 up, resulting in one small and one large join.

As shown both the structure and the order of joins can be varied and can result computations being
executed in a different manner.

Acquiring a good balance can also be achieved by selectively joining branches together at runtime,
based on the size of their partial solution tables. This way the opportunity is created to make
an informed decision about the problem at hand. Different strategies are possible such as joining

26

smallest first, largest first, or repeatedly combining largest and smallest. The downside of this
approach is that the results of all branches need to be stored in memory before all the joins can
occur.

3.8 Joincost

Choosing a different root bag for the nice tree decomposition results in a different tree and thus a
different order of computations. For instance, if a bag has degree two it will become a join bag,
where it would otherwise just result in a series of introduce and forget bags. Choosing a bag of
degree higher than 1 as root, will result in a nice tree decomposition with one extra join. Since
join bags are generally computationally expensive, it should be preferable to refrain from adding
unnecessary extra joins.

Furthermore, if a given subset of vertices inside a join does not allow for a feasible partial solution
on one side of the join, the computation of the set of partial solutions on the other side of the join
will have been in vain. A different root bag might lead to a different computational order where
partial solutions for that subset of vertices are never explored, resulting in an improved execution
time.

By predicting the required amount of work in each join bag, the overall workload for a given nice
tree decomposition can be estimated. This estimate will be called the joincost, and the root bag
will preferably be chosen such that it results in a joincost-minimal nice tree decomposition.

The joincost of a nice tree decomposition is computed by executing the dynamic programming
algorithm, but with the exception that all edges, when encountered, are always used. This process
can be described as a fast feasibility check for all subsets, since it detects subsets that at some
point do not contain any remaining feasible partial solutions and can be discarded.

The reduce function described in Section 1.6.3 states that a subset of n vertices results in a rep-
resentative set of at most 2n−1 partial solutions. Using this bound, the amount of joins that will
have to be computed inside a join bag can be counted, and the sum for all join bags results in the
joincost of the nice tree decomposition.

Computing the join cost will be O(2MBS) faster than executing the algorithm itself, since only a
single solution needs to be maintained for each subset in a bag. When computing the join cost for
all different root bags, results can be reused since every bag only requires to be computed three
times, twice for both directions and once for when it is the root of the tree.

The added benefit of this approach is that for each join and forget bag, a list of infeasible subsets
can be maintained. These subsets can then be pushed down the tree to the point of their creation,
somewhere in an introduce bag. This will either be a bag that introduces one of the vertices in the
infeasible set, or the highest introduce bag that creates a superset of an infeasible set. When the
algorithm is executed, every time a bag is processed it will check the list of infeasible subsets and
remove the applicable resultsets. This approach will yield a similar result to the method described
in Section 4.10.

27

4 Runtime optimizations

4.1 Vertex coloring

Using the concept of tree-indices as described in Section 2.5, all instructions can be represented
efficiently using a small number of bits.

The nice tree decomposition can be transformed to a tightly packed instruction queue, and are
sequentially processed while maintaining the state on a stack. The instructions are defined as
follows:

• leaf pushes an empty set of partial solutions to the stack.

• intr introduced a vertex to the top resultset. It has a parameter for the vertex color and a
boolean value if it is a terminal.

• forg forgets a vertex in the top resultset. It has a parameter for the vertex index.

• edge introduces an edge in the top resultset. It has two parameters for the vertex indices and
one for the edge weight.

• join pops two sets of partial solutions from the stack, merges them and pushes the result
back on the stack.

Table 12 gives an example of what the instruction queue looks like for the graph and tree decom-
position in Figure 15.

AT

B C

D

E FT

8

5

9 2

4 7

(a) Input graph with two termi-
nals.

AB

BCD

D

DE DF

(b) Tree decomposition.

0

1 0

2

0 0

(c) Vertices with colors assigned.

Figure 15: Example graph with vertex coloring extracted from the tree decomposition.

28

00 leaf

01 intr 0 F

02 intr 2 F

03 edge 0 2 4

04 forg 0

05 leaf

06 intr 0 T

07 intr 2 F

08 edge 0 2 7

09 forg 0

10 join

11 intr 0 F

12 intr 1 F

13 edge 0 1 5

14 edge 0 2 2

15 forg 0

16 edge 1 2 9

17 forg 2

18 intr 0 T

19 edge 0 1 8

20 forg 1

21 forg 0

Table 12: Instruction queue.

Each resultset of partial solutions is grouped by the vertices used by the solutions in the set, and
identified by a bit string containing ones for all the indices of the used vertices. The presence of one
or more vertices in a set can then be checked using the logical AND operator between the identifier
and a bit string representing the required vertices.

4.2 Marking last bags

When a forget bag is reached and a partial solution contains the vertex to be forgotten as a singleton,
the partial solution will be discarded since it can no longer form a connected tree. It is however
possible to detect these cases earlier, by observing the connectivity possibilities for each vertex.
Looking at the nice tree decomposition, every vertex has an introduce edge or join bag that has all
other edges incident to itself as descendants. After this bag, the vertex can never be connected to
any other vertices, thus if it is still singleton it cannot lead to a feasible solution.

Every join or edge bag is labeled with the vertices it will be the last bag for, and all partial solutions
containing any of the labeled vertices as a singleton can be discarded.

In case of an edge introduction, if it is the last bag for one of the incident vertices and it is still
singleton, the edge must be introduced. In case of a join bag when two solutions are merged, if
both partial solutions contain the labeled vertex as a singleton, the join can be canceled.

If there is a terminal not in the current bag and not in a descendant bag, there can not be any
completed solutions present, since there still remain terminals that need to be connected to the
Steiner tree.

Figure 16 shows an example of how this procedure can benefit the execution by enabling earlier
removal of infeasible partial solutions. When the edge introduction bag for the edge AB is reached,
the vertex A cannot remain singleton. This results in the solutions {A},{A,B},{A,BC} and {A,B,C}
being removed before the join in bag ABC occurs.

In the partial solution {A}, A is both singleton and the unit partition. Removing A would result
in a completed solution, which is not necessarily infeasible. However, since there exist terminals
in bags beyond the bag ABC that are not its descendants, a completed solution at this point will
always be infeasible. Completed solutions may only emerge at or above the root of the subtree
induced by the presence of all terminals, which is either a bag forgetting a terminal or a join
bag.

29

A B

CXT YT

ZT

(a) Input graph with three termi-
nals.

ABC

ACX BCY

BZ

(b) Tree decomposition.

ABC
(A-B)

}
last bag for A

ABC

AC

ACX
(A-C)

ACX
(C-X)

ACX

AX
(A-X)

AX

(c) Part of the nice tree decompo-
sition, before the ABC join.

Figure 16: Bags in a nice tree decomposition.

4.3 Lattice join

Each bag in the nice tree decomposition outputs a table of partial solutions, which can be subdivided
into subtables that use the same set of vertices. For practical reasons, the subtables are stored as
map, where the partition is the key, and the cost the value. When the tables are processed by the
reduce function, the entries are placed into a list and ordered on their cost.

It is however also possible to store the entries in a lattice, using the refinement operator to create
a partial ordering. Figure 17 gives an example of the lattice representation of two input solutions
and its join.

A few observations can be made on the structure of this lattice.

• Each row represents the number the number of subsets present in the entry, equivalently
signifying the amount of edge additions needed to complete the partition to the unit partition
(each edge addition connects two subsets).

• A maximal and minimal element are always1 present, where the former had accepted all edge
introductions, and the latter none(and thus being a set of singletons).

• The cost of elements in the digraph should always be increasing, since if a partial solution is
an equal cost or more expensive refinement of another solution, it can be discarded.

The two following two rules can then be constructed.

1The discard non-cheaper refinements operation, the mark last bags operation from section 4.2 and the last join
limiting operation from section 4.5 do not preserve the lattice property that a minimum element always exists.

30

• Discard non-cheaper refinements.

• Discard siblings. If the cheapest partial solution join in a series of siblings is equivalent to its
coarser parent, all higher cost siblings can be discarded.

The discard refinements rule can be extended to also discard cheaper refinements up to a cost
difference the size of the smallest remaining edge in the graph. It is easy to see that the cost of the
smallest remaining edge is a lower bound on the cost required to transform the refinement of any
given partition to that partition.

Before the join commences, the discard non-cheaper refinements operation is executed on both
lattices. The join is then performed by selecting a partial solution from one lattice and merging it
with all partial solutions from the other lattice. First it is merged with the maximal element. Then
all of its children are processed by increasing cost, and this process is repeated until all elements
are visited. The discard siblings rule can be applied by comparing the result of a child with its
parent. If it is equivalent, all equal or higher cost siblings need not be visited, since they cannot
result in a lower cost or better connected result.

Both rules are applied in Figure 17. In the first phase element B4 can be removed, since it costs
more than its coarser parent. During the actual join when A2 gets merged with B5, the result is
equivalent to A5 being merged with B5, and thus A3 and A4 do no longer need to be merged with
B5. In this example 15 joins are performed to merge two lattices of size 5, whereas that normally
would require 25 joins.

4.4 Cycle detection

When two partitions are merged, and any two neighbors are adjacent in both partitions, the
resulting partial solution will contain a cycle. Since the algorithm should return a tree structure,
partial solutions containing a cycle can immediately be discarded. The challenge remains to detect
such a cycle as early as possible, to avoid any unnecessary work.

A useful parameter is the amount of subsets a partial solution contains. For any partial solution,
numSubsets−1 signifies the number of edges required to complete the partition to the unit partition.
Consequently, numVerts− numSubsets is the number of ‘connections’ currently present, defined as
numConnections.

When joining two partitions, if numConnectionsa + numConnectionsb is larger than numVerts− 1,
the resulting partial solution must contain a cycle, and can therefore be discarded.

This however only applies to a limited number of pairs in the join. When a data structure is used
based on vertex adjacency, a stronger measure can be applied. If the two partial solutions share any
vertex adjacencies, a cycle will be formed when the two connected components are joined that both
contained that adjacency. By detecting this in advance, the partial solutions do not require merging
and can be discarded. In case of the proposed adjacency matrix data structure from Section 2.7,
this can easily be computed by checking if the logical AND between the two adjacency matrices
equals to zero.

A cycle can also be formed when an even number of connected components are merged on an equal
number of connection points. Each connection point between the two partial solutions should result

31

A1
{{1}{5}{6}{7}}

0

A5
{{1}{5,6,7}}

8

A2
{{1}{7}{5,6}}

4

A3
{{1}{6}{5,7}}

4

A4
{{6,7}{1}{5}}

7

(a) Input partial solution lattice A.

B1
{{1}{5}{6}{7}}

4

B2
{{6,7}{1}{5}}

6

B3
{{5}{1,7}{6}}

7

B4
{{5}{7}{1,6}}

12

B5
{{1,6,7}{5}}

9

(b) Input partial solution lattice B.

A2xB3
{{1,7}{5,6}}

11

A2xB1
{{1}{7}{5,6}}

8

A1xB3
{{5}{1,7}{6}}

7

A1xB1
{{1}{5}{6}{7}}

4

A2xB2
{{1}{5,6,7}}

10

A1xB2
{{6,7}{1}{5}}

6

A3xB1
{{1}{6}{5,7}}

8

A2xB5
{{1,5,6,7}}

13

A3xB3
{{6}{1,5,7}}

11

A1xB5
{{1,6,7}{5}}

9

(c) Join result.

Figure 17: Example join with lattice representation.

32

in the decrease in connected components by one.

After the join is completed, this can be detected by counting the number of connected components
in the resulting partial solution. If this is larger than sum of all input connected components minus
the connection points, a cycle must be present somewhere.

4.5 Last join limiting

At the top of the nice tree decomposition, only a limited number of edge introductions will remain,
which can be exploited in the final join. As discussed in the previous section, the number of subsets
in a partial solution indicates the number of edges required to complete it to a unit partition. By
counting the number of remaining edges above the last join, a bound can be created to limit the
partial solutions it produces. If numConnectionsa + numConnectionsb + numRemainingEdges <
numVerts − 1 for a given combination, not enough edges remain for it to be able to become fully
connected so can thus be discarded.

The effectiveness of this process can be maximized by minimizing the number of edge introductions
after the last join. When this number is zero, the join will output at most one solution for each
unique set of used vertices.

4.6 Join bounding

The lattice representation of the partial solutions allow for optimizations that would otherwise not
be possible. However, creating and maintaining this representation is costly, since each element
needs to store a sorted list of parents. Traversing the lattice recursively also yields a lot of redundant
visits.

Inspired by the lattice representation a number of bounds can be computed that operate on an
ordered list, but utilize some of the lattice properties. Processing partial solutions in ascending cost
combined with the use of bounds on cost and connectivity, enables the skipping of the remaining
partial solutions. Both lists of input solutions are sorted, and every partial solution from one list
is joined with all partial solutions from the other side, in ascending order.

During this process, a local and global bound are maintained, consisting of a joined solution and
its cost. The global bound is constructed by joining the two maximal partial solutions, and the
outcome is injected into the resultset.

The local bound is constructed by joining the solution from the outer loop with the maximal
solution from the list in the inner loop. The local bound is also injected into the resultset, and in
the case that an equivalent solution of lower cost already existed, the local cost bound will adjusted
accordingly.

During execution, if either the local or global cost bound are reached, the inner loop gets terminated.
If at any time a join results in a solution equivalent to either the local or global bound, the
corresponding cost will be updated to the new value and the inner loop will be terminated.

33

Figure 18 shows an example of the join bounding procedure in action. In this example, a naive
implementation would require 32 joins, or 26 with cycle detection, but now only 21 joins need to
be computed.

A1 2 : {1},{2},{3},{4}

A2 4 : {1},{2},{3,4}

A3 5 : {1},{2,3},{4}

A4 6 : {1,3},{2},{4}

A5 7 : {1},{2,3,4}

A6 8 : {1,3,4},{2}

A7 10: {1,2,3},{4}

A8 11: {1,2,3,4}

B1 0: {1},{2},{3},{4}

B2 1: {1},{2,3},{4}

B3 4: {1},{2,4},{3}

B4 5: {1},{2,3,4}

globUB0

globUB1

locUB0

locUB1

globUB2

Figure 18: State of an example join showing successive local and global bounds, at point in
time when A5 is processed. The local bound allows that A5 only needs to be joined with B4

and B1. When the global bound is updated at A6×B2 (optimal), no cheaper joins can be made
so the procedure will terminate quickly.

A second local bound can also be maintained, by pre-computing the maximum partial solution of
the first set with each entry from the second set. This bound can then be used to skip single entries
in the inner loop, for which the bound has already been reached at an earlier state.

4.7 Join sorting

Before a join commences, the cost of the result is known as it is just the sum of the two input
solutions. This can be used to create a sorted list of outputs, without actually computing the
joins. With this order being known, a number of joins can be omitted by maintaining a number of
bounds.

The join operation is split into two phases. First all pairs are iterated, and sorted on their combined
costs. Each partial solution is joined with the highest cost solution from the other set, and stored in a
map. This results in two maps, mapping a partial solution to its maximally connected result.

Then the actual joins are executed in order of increasing cost, and the results are stored in a map,
mapping the result to its cost. Before the join is computed, the result map is queried to check if
the one of the two maximal solutions is present. If so, it is of equal or lower cost than the current
combination, and will be of equal or better connectivity.

Whenever a solution is acquired that is equal to the join of the two maximum partial solutions, the
process can halt since all remaining pairs will not be able to yield better results.

The cost upper bound on initiation is the cost of the most expensive partial solution, which is
the join between the highest cost partial solution from each set. Whenever a join yields a partial
solution equivalent to the

34

Since the output of results is sorted, the reduce function can be embedded in the process. The cut
matrix is continuously constructed and reduced, and when a basis is found the size of the number
of columns, the entire process can be halted.

4.8 Lattice based reduce

As discussed in earlier sections, the lattice property of the resultset can be used to construct certain
optimizations.

The reduce algorithm discussed in Section 1.6.3 is able to reduce the size of the resultset to 2n−1

entries. This bound can be explained in a straightforward matter.

Given a set of used vertices in the graph, a viable solution is just a spanning tree of the given
vertices. Every bag in the nice tree decomposition separates a processed part of the graph from the
rest of the graph. The partial solutions available in a bag for a given set of used vertices, represent
feasible intermediate spanning trees in the processed part of the graph, including the current bag.
These intermediate spanning trees can consist of multiple components, all connected to one or more
vertices in the set of used vertices. If any component of an intermediate spanning tree connects
to a single vertex in the current set of used vertices, it does not matter which vertex this is, since
all used vertices will eventually be connected in the spanning tree. A component can also connect
two or more vertices, resulting in multiple viable possibilities. The amount of connections the
intermediate spanning tree makes between vertices in the bag (between 0 and n − 1), defines the
number of possible configurations.

When a partial solution contains one connection and thus connects two vertices, there are 1
2n(n−1)

possible combinations of vertices. However, if there are multiple partial solutions containing one
connection, it is easy to see that the cheapest

(
n−1

1

)
solutions form a representative set for all other

possible partial solutions.

The intuition here is that the number of partial solutions required to represent all possible partial
solutions, can be found by combining two representative sets of of a resultset with fewer vertices.
When two vertices are used, the lattice contains two rows with each one partial solution, one with
zero connections and one with a single connection. When an additional vertex is used, the row
containing one connection can be constructed by either connecting the new vertex to any other
vertex using all

(
1
0

)
partial solutions, or adding it as a singleton to all

(
1
1

)
partial solutions. The

number of partial solutions in each row using k connections can be found by combining
(
n−1
k−1

)
and(

n−1
k

)
, which is

(
n
k

)
.

Approached from a different angle, if the graph is a clique of size n and all edges have been added,
each row with numConnections k in the representative lattice can be constructed by taking all(
n−1
k

)
combinations of k edges from a n− 1 size minimum spanning tree in the clique.

For each number of connections 0 to maxConn there is a row in the lattice, and as is known from
Pascal’s triangle, this will add up to 2maxConn partial solutions. This property can be applied when
the reduce algorithm is executed. Whenever the basis contains the appropriate number of partial
solutions for the given number of connections, it can discard all other partial solutions with the
same amount of connections. This is especially useful for the sorted join discussed in Section 4.7,

35

where the reduction is applied during the computation of a join. If the basis is complete for the
given number of connections the joined output will have, the candidate can be discarded without
even having to compute the join.

This also means that every optimal resultset is always exactly of size 2maxConn. Note that this is a
stronger bound than 2n−1, since the maximal partial solution does not necessarily need to be the
unit partition and contain n− 1 connections. In other words, when maxConn is lower than n− 1,
there are 2n−1−maxConn cuts that will be present in all partial solutions. Therefore the basis in the
cut matrix will be of smaller since, since all the columns representing these cuts can effectively be
discarded.

In earlier work the threshold of 2n−1 was introduced to determine if the overhead of executing the
reduce algorithm could be justified by its performance gains, only executing the reduce step if the
number of partial solutions in the resultset exceeded that bound. Although it showed good results
in practice, this bound is slightly misleading. Since 2maxConn forms a lower bound for the size of
the resultset, the amount of results can only be lower than 2n−1 if at least one cut is present in all
partial solutions. Finding a basis in such a matrix will be computationally expensive because the
matrix contains a lot more columns than necessary. In stead a cut matrix should be constructed
with the appropriate number of columns, significantly reducing the cost of the operation. This does
not mean that the overhead is always justified if the amount of partial solutions is only slightly
smaller than 2maxConn. Choosing a threshold to determine the execution of the reduce algorithm
might prove to be useful, for instance if the size of the resultset is more than 5% above the lower
bound.

The performance gain of the join minimization step discussed in Section 3.3 can be partly attributed
to the existence of the used (incorrect) bound. Whenever a vertex is added as a singleton, the
number of partial solutions for a set of used vertices remains the same, whilst the bound grows
with a factor of two, removing the opportunity to apply the reduce algorithm.

4.9 Connection based partial solutions

For a given (fully connected) set of used vertices, a representative set of partial solutions will be
of size 2n−1. However, in some cases it will be possible to ‘represent’ the representative set with a
smaller number of partial solutions.

Consider a graph that is a clique of size n, and a corresponding tree decomposition consisting of a
single bag of size n. Given a set of vertices and a set of edges that connect these vertices, only the
n− 1 edges that form a minimum cost spanning tree are required to construct a representative set.
Every row i in the partial solution lattice can be constructed by selecting i edges from the spanning
tree, resulting in

(
n−1
i

)
partial solutions in each row, and 2n−1 for the whole lattice.

This concept can be applied to the general case, with some extensions. Given a set of used vertices
in a bag, all feasible partial solutions that connect none of the selected vertices are stored. For each
of these partial solutions the cost of the already selected edges is maintained, and at most n − 1
edges that form a minimum spanning forest(MSF). Note that these stored edges are not necessarily
present inside the current bag, but can also exist elsewhere, as long as their addition connects the
given two vertices.

36

The required operations then become fairly trivial, as only the MSF needs to be recomputed after
each step. When an edge is added, the partial solution will contain at most n edges, so at most one
edge can be discarded. When two partial solutions are joined, their costs are added, the edge sets
are merged and can again be reduced to at most n− 1 edges. If a vertex is forgotten, a minimum
weight incident edge is selected, increasing the cost of the partial solution with its weight. This
follows from the cut property of a minimum weight spanning tree, that states that for any cut in
the graph, a minimum weight edge in the cut will always be present in an optimal solution. When
a vertex is forgotten, all its incident edges must have been added at some point. Because the MSF
was maintained during all operations, a minimum weight edge must be present.

All operations can be computed in linear time, and the partial solutions require little memory since
only the cost, and n− 1 edges with their weight need to be maintained.

Since a join is the Cartesian product between two resultsets, the amount of partial solutions will
grow quickly.

The straightforward way to reduce the resultset is by eliminating partial solutions that have the
same edge set as another partial solution, with costs at least as high. This can be computed in
O(numResults2) time, but will only be able to bound the resultset to a size of O(nn). Given a
representative resultset from the normal approach, its is clear that every solution in this set can also
be represented by a connection based partial solution. The resultset bound of 2n−1 thus also holds
for connection based partial solutions, with an important distinction that it is an upper bound,
and that most likely a smaller resultset will suffice.

Each connection based partial solution of n− 1 edges can generate 2n−1 regular partial solutions.
After a join, at most 4n−1 connection based partial solutions will be present, resulting in 8n−1 regular
partial solutions, which can then be reduced using the earlier discussed rank based approach in
O(82n) time. This is clearly not a very efficient approach of the problem, since computing this
reduction will only be feasible if the amount of input partial solutions is significantly lower that the
theoretical bound of 2n−1. However, due to time constraints only a straightforward approach using
the existing techniques was used, to show the relevance of this alternate representation.

Figure 19 shows a part of a graph during execution, and Table 13 shows a snapshot of the corre-
sponding table of connection based partial results. The results in this table can be used to construct
a representative set, shown in Figure 20, after which all unused results can be discarded.

id cost edges ab ac ad ae bc bd be cd ce de linR rankR

c1 0 . . . 2 . 6 . 3 . 3

c2 1 dx . . . 2 . 6 . 3 . 1

c3 1 cy . . . 2 2 . . 3 . 3

c4 2 dx,cy . . . 2 2 . . 1 . 1

c5 2 bz 3 . . 2 . . . 3 . 3 x

c6 3 bz,cy . . . 2 2 . . 3 . 3 x x

c7 3 bz,dx 3 . . 2 . . . 3 . 1 x

c8 4 bz,cy,dx . . . 2 2 . . 1 . 1 x x

Table 13: Connection based partial solutions. The last two columns mark which entries can
be discarded with respectively the linear and the rank based reduce function.

37

A

B

CD

E

X Y Z

3

1

1

3

1

1

2

6

2

3

2

Figure 19: Part of the input graph, where ABCDE exists as a bag in the tree decomposition.
X, Y and Z have been forgotten, and some of ABCDE’s edges have been added.

c1
A,B,C,D,E

0

c1
AE,B,C,D

2

c1
A,B,CD,E

3

c2
A,B,C,DE

2

c3
A,BC,D,E

3

c1
AE,B,CD

5

c4
A,B,CDE

4

c2
ADE,B,C

4

c4
A,BCD,E

5

c4
A,BC,DE

5

c3
AE,BC,D

5

c1
ACDE,B

7

c4
A,BCDE

6

c4
AE,BCD

7

c4
ADE,BC

7

c4
ABCDE

8

Figure 20: Representative set in lattice form constructed from the set of connection based
partial solutions. Each partial solution is identified by its equivalent connection based partial
solution(c1 − c8), its connectivity and its cost.

38

4.10 Vertex constraints

Given the definition of a tree decomposition and a Steiner tree, the observation can be made that
there exists a subtree in the tree decomposition induced by the presence of chosen vertices in bags.
This follows directly from the fact that a Steiner tree is connected, and for all edges in the graph
there must be a bag in the tree decomposition containing both endpoints. From this concept a
constraint can be formulated stating that for every bag b for which a bag b′ exists for which holds
b′ ⊂ b, every partial solution in b must contain at least one of the vertices from b′.

The tree of used bags in the tree decomposition is at least the size of the subtree formed by all
the bags in between the bags containing terminals. All bags in this subtree are safe for use as
constraining subbags.

Note that if the subbag b′ contains a terminal, it will not be useful as a constraining bag. Because
bags that are a superset of b′ cannot have have partial solution sets containing no vertices form b′,
since the terminal will by definition always be used.

Before computation commences, each introduce bag will get a constraint assigned if available,
retrieved from the smallest constraining subbag that is not a descendant. If there exists a set of
partial solutions using none of the vertices from the constraint, whilst all of them have already been
introduced, the entire set can be discarded.

Figure 21 gives an example of an application of the discussed procedure. After all of A,B,C and
D have been introduced, the sets of solutions using only C,D or CD will not exist since the empty
solution was discarded after enforcing the constraint when B was introduced.

Note that this method is slightly less powerful than the joincost approach described in Sec-
tion 3.8.

A B

CDT

ET F

(a) Input graph with two termi-
nals.

ABF

ABE

AB

}
constraining subbag

ABCD

(b) Tree decomposition, with sub-
tree of used bags.

∅

A

}
constraint check

AB

}
constraint check

ABC

}
constraint check

(c) Nice tree decomposition with
enforced vertex constraints.

Figure 21: Example of vertex constraints. After both A and B are introduced, the constraint
checker removes the empty solution, since either A or B must be present.

39

5 Experiment

5.1 Setup

To gain insight in the performance gains of the proposed optimizations, time measurements and join
counts are used compare performance of different implementations on a set of benchmark graphs.
Not all graphs are evenly susceptible to the different optimization techniques, so the benchmark set
contains different graphs of varying size, treewidth and origin. The input graphs were also used in
an earlier experiments [1] by Fafianie et al, and are a combination of graphs from Steinlib [7] and
TreewidthLib [8].

The graphs selected from the TreewidthLIB originate from Bayesian network and graph coloring
applications. The B and the ES graphs sets from SteinLib are selected, where B contains sparse
graphs, and ES consists of rectilinear graphs. The ES graphs are constructed by distributing points
on a 2D plane, and preprocessing the set for the geometric rectilinear Steiner tree problem with
the GeoSteiner [9] package. Input graph preprocessing such as the techniques described in [10], can
reduce the number of vertices and edges substantially. This will most likely lead to less room for
the discussed optimizations to be effective, since a lot of trivial constructs will no longer be present
in the graphs.

In the following sections all of the earlier discussed optimization techniques are applied one by one,
and comparing the algorithm performance to a reference implementation. This approach is chosen
to highlight the benefits of each individual optimization. Table 15 provides a more detailed overview
of the results of the complete benchmark set, including the properties of all input graphs.

The following implementations will be subject to the performance comparisons

hash Hashset.
cutrow Cutrow.

adj Adjacency matrix.
uf Union find.

nice Straightforward nice tree decomposition generation.
niceOpt Combination of all nice tree decomposition optimizations.

nored Do not use the reduce algorithm.
reduce Use the reduce algorithm.

ljp Last join prediction.
jb Use bounds and sorted input in joins.
pj Compute join on pre-ordered input pairs, and reduce the result table simultaneously.
vc Use vertex constraints.
iss Use infeasible subsets.

opt Combination of niceOpt, ljp, jb, pj and iss.

Table 14: Overview of different algorithm configurations.

Since each bag can be used as a root for the generation of the nice TD, each computation is repeated
selecting each bag once as the root, and measurements are averaged.

40

The combination of testing multiple configurations, all bags as root and multiple iterations for
reliable time measurement results in a large amount of work. The experiment is therefore limited
to relatively small graphs, to keep the total amount of work feasible.

The experiments were executed on OSX 1.6, running Java 1.6 on a 2.4Ghz core with 2048MB of
available memory.

5.2 Data structures

Figure 22 gives an execution time comparison of the different proposed data structures on a subset
of the benchmark graphs. As expected, the non tree-index hashset implementation gets outclassed
by an order of magnitude by all other implementations. It is interesting to see that cutrow imple-
mentation is generally the best performing data structure. This can be attributed to its constant
time operator implementations combined with the minimum memory usage of a single computer
word.

Figure 23 gives a similar comparison but for graphs with a higher MBS. The cutrow data structure
starts performing worse than the other implementations, because of the exponentially growing
memory requirement. An MBS of 11 is the largest size for which the adjacency implementation will
still fit in a single 64-bit computer word, For higher MBS the union-find data structure will be a
good candidate, or possibly an adjacency data structure using multiple.

5.3 Nice tree decomposition optimizations

Figure 24 gives a join count comparison between executing the algorithm on the unedited tree
decomposition that is generated by the heuristic, and a version that is optimized using the proposed
rules. A consistent improvement can be seen, varying from small improvements to requiring only
half the amount of joins.

Five of the proposed rules are applied, but the multiple-join-order was omitted. Some improvements
could be seen, but not significant enough to warrant the increased memory requirement. More
importantly, the join optimization and branch relocation rules result in an overall decrease of the
degree of join bags. This means that the sequential joins simply do not occur often enough to allow
for significant application of the rule.

5.4 Runtime optimizations

Figure 26 shows effectiveness of the rank based approach implemented in the reduce function, com-
pared to a reference implementation. Both implementations use the uf data structure and niceOpt

on the nice tree decomposition. These results are in line with earlier conducted experimental eval-
uation, where this method was already shown to be very effective.

Figure 27 shows the reduction in the number of joins when either vertex constraints, infeasible
subsets or last join prediction is used. All four implementations use the uf data structure, niceOpt
and the reduce function. The vertex constraints and infeasible subsets operation are only minimally

41

effective in some graphs, since they require the existence of small separators in the graph to be able
to effectively discard sets of partial solutions.

The last join prediction shows a consistent reduction in the required amount of joins. Generally
there is always a single join bag that is responsible for a significant amount of work. If this bag is
the last join in the nice tree decomposition, it then can be computed in a fraction of the time it
normally would require.

Figure 28 gives a performance comparison between a reference implementation, bounded joins
and pairwise joins. On all graphs, both methods show a considerable improvement compared to
the reference implementation, and in some instances a significant decrease in the size of the largest
join. Interestingly enough, the pairwise join method requires the least amount of joins, but its more
complex approach generates a significant overhead resulting in an overall slower execution. This
can be attributed to generating all pairs beforehand and storing them in an ordered list. For graphs
with a larger MBS this may still prove to be a viable option, because the generated pairs require a
constant amount of memory while the join operation complexity will grow quadratically.

Figure 29 shows the performance variation in terms of computed joins, when different bags are
selected as root for the nice tree decomposition. Within the tree decomposition, some branches will
perform structurally worse than others, while the largest bag in the center will always be a poor
candidate. It is interesting to see that the introduced optimizations not only decrease the ratio
between the worst and best case significantly, the worst performing bag is no longer a join bag.
The worst performing bag in the unoptimized implementation now performs very well, most likely
due to the last join prediction procedure, utilizing the unique property that a last join has.

5.5 Connection based data structure

The connection based data structure does not perform well on most graphs, and often will not
terminate within a reasonable amount of time. Oddly enough for a small set of graphs it will
perform exceptionally well, especially without the use of the poorly implemented rank based reduce
function.

5.6 Complete benchmark

Table 15 gives an overview of the complete benchmark set, and results for two different imple-
mentations. Both use uf and reduce, but the second implementation also uses opt, to show the
significance of the proposed optimizations.

42

reduce + uf reduce + uf + opt

set name |V | |E| |T | MBS time(ms) joins time(ms) joins

S
te

in
li
b

b01 50 63 9 5 30 536 11 255
b02 50 63 13 5 47 677 8 467
b08 75 94 19 7 163 6 708 36 1 805
b09 75 94 38 7 45 4 297 20 1 441
b13 100 125 17 8 379 55 821 237 15 413
b14 100 125 25 8 178 29 048 59 6 276
b15 100 125 50 9 337 111 605 52 15 404

i080-001 80 120 6 10 1 139 564 674 811 152 664
i080-003 80 120 6 10 1 209 1 028 991 236 109 266
i080-004 80 120 6 11 8 475 5 501 949 1 551 647 420

b06 50 100 25 11 2 252 1 278 201 686 222 253
i080-005 80 120 6 12 99 679 32 492 266 12 653 3 071 141

b05 50 100 13 12 26 003 14 901 666 6 089 1 459 744

S
te

in
li
b

es90fst12 207 284 90 6 317 8 171 189 6 854
es100fst10 229 312 100 6 71 10 580 143 9 203
es80fst06 172 224 80 7 204 20 990 712 15 199

es100fst14 198 253 100 7 283 14 526 293 10 252
es90fst01 181 231 90 8 145 22 423 145 10 742

es100fst13 254 361 100 8 352 80 105 471 51 418
es100fst15 231 319 100 9 454 136 880 338 49 634
es250fst03 543 727 250 9 594 203 645 535 76 197
es100fst08 210 276 100 10 286 195 280 99 41 702
es250fst05 596 832 250 10 1 123 741 162 721 425 716
es250fst07 585 799 250 11 4 993 2 556 609 2 910 1 099 855
es250fst12 619 872 250 12 19 697 9 318 540 5 237 2 482 310
es100fst02 339 522 100 13 48 477 24 953 330 11 648 2 545 085
es250fst01 623 876 250 13 35 000 11 165 018 16 000 1 076 866
es250fst08 657 947 250 14 300 238 87 295 578 65 000 5 436 438

T
re

ew
id

th
L

IB

myciel3 11 20 2 6 103 886 9 417
BN 28 24 49 4 6 21 616 20 470

pathfinder 109 211 21 7 207 8 998 49 2 377
csf 32 94 6 7 25 10 124 37 3 656

oow-trad 33 72 6 8 146 31 704 273 13 699
mainuk 48 198 9 8 607 83 420 285 19 935

ship-ship 50 114 10 9 801 240 277 418 59 455
barley 48 126 9 9 293 99 724 33 19 061

miles250 128 387 25 10 897 283 328 299 50 153
jean 80 254 16 10 1 502 177 876 741 35 393
huck 74 301 14 11 993 32 290 1 125 3 745

myciel4 23 71 4 12 9 829 2 807 722 974 281 474
munin1 189 366 37 12 29 626 30 156 246 3 341 1 380 245

pigs 441 806 88 13 80 199 52 349 884 7 884 1 799 474
anna 138 493 27 13 166 444 82 477 869 14 670 3 376 890

Table 15: Overview of all used benchmark graphs, with results for the configurations
reduce+uf and reduce+uf+opt.

43

b01 b02 es90fst12 es100fst10 b08 es80fst06 es100fst14 pathfinder csf

102

103

104

105

106

8
5
9
0

8
7
6
2

1
2
9

0
5
3

1
7
7

6
4
8

7
0

6
0
9

3
6
1

1
7
8

1
8
4

4
1
7

1
4
7

1
2
8

1
4
4

2
1
9

1
7
2
0

9
7
2

7
7
5
6

9
4
5
2

2
8
8
7

1
2

7
2
9

9
0
5
8

5
0
2
4

4
7
6
7

1
1
8
9

9
7
1

8
8
5
5

1
1

0
2
9

3
3
8
1

1
5

4
9
7

1
0

7
8
2

6
4
8
6

6
0
1
1

1
0
1
0

1
1
4
3

1
0

3
7
6

1
2

9
2
3

4
0
4
0

1
9

2
8
7

1
3

0
7
3

7
7
5
6

7
4
4
7

ti
m

e
in

m
ic

ro
se

co
n

d
s

hashset cutrow adj uf

Figure 22: Performance comparison between different datastructures for graphs of MBS ≤ 6.

b15 es250fst03 miles250 huck i080-004 b06 es250fst07

105

106

107

6
0
9

9
6
4

9
3
9

6
0
7

5
2
0

7
8
3

6
9
4

2
7
1

9
3
0
3

7
1
5

3
0
5
7

5
5
5

6
3
8
8

8
2
2

2
3
3

8
2
1 6
1
5

4
0
5

3
6
0

8
4
6

7
2
1

6
0
7

5
3
4
5

2
1
2

1
7
9
1

4
4
3

3
2
1
0

2
3
1

1
4
3

9
1
0

6
0
8

9
2
1

4
6
5

4
2
4

4
8
2

2
9
0

6
5
3
4

8
7
5

1
9
2
4

1
7
9

3
6
5
0

1
0
6

ti
m

e
in

m
ic

ro
se

co
n

d
s

cutrow adj uf

Figure 23: Performance comparison between different data structures for graphs of MBS ≤ 11.

44

b01 b02 es90fst12 es100fst10 b08 b09 es80fst06 es100fst14 pathfinder csf

102

103

104

105

5
0
5 7
0
1

7
7
9
9

1
0

1
0
8

6
3
6
1

3
7
7
2

2
0

7
5
3

1
0

9
5
7

8
5
2
0

9
4
2
2

2
5
4

4
9
0

7
1
3
4

9
4
3
1

3
6
0
2

2
2
3
4

1
9

0
9
5

1
0

1
6
6

5
3
5
3

5
7
6
8

input graph

jo
in

s

nice niceOpt

Figure 24: Performance comparison between computing on the standard nice tree decompo-
sition versus its optimized counterpart.

es90fst12 es100fst10 b08 b09 es80fst06 es100fst14 pathfinder csf
0

0.5

1

1.5

2

2.5
·104

jo
in

s

ref jc

Figure 25: Performance comparison between the reference implementation and an implemen-
tation using joincost to choose the optimal root bag. The darker shade represents the best
performing root bag, the lighter shade the worst performing.

45

b01 b02 es90fst12 es100fst10 b08 b09 es80fst06 es100fst14 pathfinder csf

102

103

104

105

106

3
7
2

8
2
6

1
5

0
8
8

2
0

6
1
2

3
0

1
7
9

2
2

5
2
8 7
4

4
8
4

2
6

1
9
0 9
1

4
0
8

5
2

7
9
6

2
5
4 4

9
0

7
1
3
4

9
4
3
1

3
6
0
2

2
2
3
4

1
9

0
9
5

1
0

1
6
6

5
4
2
3

5
7
6
8

jo
in

s

nored reduce

(a) Join count

b01 b02 es90fst12 es100fst10 b08 b09 es80fst06 es100fst14 pathfinder csf

103

104

105

2
7
5
6

1
1
3
7

1
1

4
1
4

1
4

8
6
5

9
9
7
4

6
9
7
7

3
1

5
7
1

1
5

1
1
5

2
4

9
1
2

1
9

9
6
2

1
2
1
2

9
8
1

1
0

4
2
0

1
2

8
6
5

3
9
7
9

2
8
4
6

1
7

6
0
7

1
2

2
4
9

7
1
9
9

6
6
8
5

ti
m

e
in

m
ic

ro
se

co
n

d
s

nored reduce

(b) Execution time

Figure 26: Performance comparison between the standard implementation without and with
the reduce algorithm.

46

es90fst01 es100fst13 es100fst15 es250fst03 es100fst08

0

0.5

1

1.5

·105

jo
in

s

reference vc iss ljp

Figure 27: Performance comparison between a reference implementation, vertex constraints,
infeasible subset and last join prediction.

47

b06 myciel4 i080-004 es250fst07
0

0.5

1

1.5

2

2.5

·106

jo
in

s

ref jb pj

es250fst12 munin1 b05
0

0.2

0.4

0.6

0.8

1

·107

ref jb pj

b06 myciel4 i080-004 es250fst07
0

2

4

6

ti
m

e
in

se
co

n
d

s

ref jb pj

es250fst12 munin1 b05
0

5

10

15

20

25

ref jb pj

Figure 28: Performance comparison between the reference implementation, bounded joins and
pairwise joins. Darker part of each bar represents joincount/time of largest join.

48

B0[4,6,10,13,16,22,24,29,33,41,44]
[6.033]

B1[3,4,6,13,16,22,24,33,41,44]
[2.397]

B7[2,4,10,16,22,24,29,33]
[1.896]

B3[1,4,6,10,13,24,29,41,44,45]
[1.816]

B40[3,4,6,13,16,22,33,41,44]
[1.572]

B43[2,4,10,16,24,29,33]
[1.845]

B5[1,4,8,10,13,24,29,44,45]
[1.462]

B41[1,4,6,29,41,45]
[1.222]

B2[3,4,6,13,16,22,33,41,44,49]
[2.526]

B39[3,4,33,41,44]
[1.512]

B4[3,4,6,13,22,33,35,44,49]
[1.127]

B9[3,6,16,22,27,41,49]
[1.430]

B24[3,4,25,44]
[1.511]

B33[26,33,41]
[1.511]

B42[3,4,6,13,22,33,35,49]
[1.033]

B47[3,16,27,41]
[1.428]

B45[3,13,22,35,49]
[1.006]

B46[4,6,33,35,49]
[1.001]

B23[3,22,30,49]
[1.005]

B11[3,12,13,22,35,49]
[1.005]

B34[6,23,35]
[1.001]

B12[4,6,9,33,35,49]
[1.001]

B48[22,30,49]
[1.005]

B20[12,13,35,40]
[1.004]

B28[22,30,47]
[1.005]

B30[30,43,49]
[1.005]

B26[9,15,33,35]
[1.000]

B35[9,15,17]
[1.000]

B38[21,27]
[1.428]

B17[3,14,16,27,41]
[1.428]

B19[3,14,16,48]
[1.427]

B37[39,48]
[1.427]

B8[2,4,10,24,29,33,42]
[1.827]

B14[2,4,16,24,36]
[1.836]

B44[2,4,29,33,42]
[1.827]

B18[4,29,42,50]
[1.826]

B22[2,31,33,42]
[1.826]

B29[42,46,50]
[1.826]

B31[20,31,33]
[1.826]

B32[20,33,34]
[1.826]

B36[5,20,34]
[1.826]

B6[1,8,10,13,29,37,44,45]
[1.128]B13[4,7,8,13,24,44]

[1.222]

B15[1,4,6,28,45]
[1.219]

B16[1,18,29,41,45]
[1.219]

B10[1,8,10,32,37,44]
[1.108]B25[7,19,24,44]

[1.221]

B21[10,32,37,38]
[1.107]

B27[1,11,18,29]
[1.219]

(a) Reference implementation using
reduce + uf. The red bag computed 6x
the optimal amount of joins, the yellow
bags approximately 1.8x.

B0[4,6,10,13,16,22,24,29,33,41,44]
[1.154]

B1[3,4,6,13,16,22,24,33,41,44]
[1.063]

B7[2,4,10,16,22,24,29,33]
[1.510]

B3[1,4,6,10,13,24,29,41,44,45]
[1.101]

B40[3,4,6,13,16,22,33,41,44]
[1.000]

B43[2,4,10,16,24,29,33]
[1.505]

B5[1,4,8,10,13,24,29,44,45]
[1.082]

B41[1,4,6,29,41,45]
[1.138]

B2[3,4,6,13,16,22,33,41,44,49]
[1.027]

B39[3,4,33,41,44]
[1.278]

B4[3,4,6,13,22,33,35,44,49]
[1.007]

B9[3,6,16,22,27,41,49]
[1.228]

B24[3,4,25,44]
[1.187]

B33[26,33,41]
[1.278]

B42[3,4,6,13,22,33,35,49]
[1.016]

B47[3,16,27,41]
[1.227]

B45[3,13,22,35,49]
[1.013]

B46[4,6,33,35,49]
[1.008]

B23[3,22,30,49]
[1.014]

B11[3,12,13,22,35,49]
[1.010]

B34[6,23,35]
[1.005]

B12[4,6,9,33,35,49]
[1.009]

B48[22,30,49]
[1.009]

B20[12,13,35,40]
[1.012]

B28[22,30,47]
[1.009]

B30[30,43,49]
[1.014]

B26[9,15,33,35]
[1.007]

B35[9,15,17]
[1.006]

B38[21,27]
[1.226]

B17[3,14,16,27,41]
[1.221]

B19[3,14,16,48]
[1.220]

B37[39,48]
[1.220]

B8[2,4,10,24,29,33,42]
[1.497]

B14[2,4,16,24,36]
[1.651]

B44[2,4,29,33,42]
[1.494]

B18[4,29,42,50]
[1.492]

B22[2,31,33,42]
[1.501]

B29[42,46,50]
[1.498]

B31[20,31,33]
[1.497]

B32[20,33,34]
[1.495]

B36[5,20,34]
[1.495]

B6[1,8,10,13,29,37,44,45]
[1.086]B13[4,7,8,13,24,44]

[1.160]

B15[1,4,6,28,45]
[1.135]

B16[1,18,29,41,45]
[1.135]

B10[1,8,10,32,37,44]
[1.079]B25[7,19,24,44]

[1.197]

B21[10,32,37,38]
[1.097]

B27[1,11,18,29]
[1.131]

(b) Optimal implementation using reduce

+ uf + opt. The red bag computed 1.6x
the optimal amount of joins, the orange
bags approximately 1.5x.

Figure 29: Tree decomposition of b06, with bags shaded to indicate the amount of joins
computed compared to the optimal amount for that implementation.

b08 b09 b13 b14 b15 b06 b05 myciel4 anna

103

104

105

106

107

108

2
4

1
2
6

1
2

5
6
9

2
9

1
3
7

1
2

7
5
1

2
6

5
9
3

5
1
8

4
5
6 4

6
9
5

3
6
6

8
3
6

8
8
9

1
0

4
7
1

0
6
0

3
7

2
6
1

9
7
4
3

5
2
3

5
3
4

1
9

3
1
6

6
2
4
3

1
3
0

7
5
4

1
0

9
8
9

5
1
0

7
4

4
9
1

2
1
1

2
3
3

1
6
6

9
5
8

1
7

7
6
5

3
8

8
1
3

1
2

9
3
5

2
8

8
4
3

4
8
3

7
5
8

1
5

3
8
2

4
9
3

1
4
8
8

6
7
8

8
8
2
8

8
2
5

ti
m

e
in

m
ic

ro
se

co
n

d
s

ref con conRank

Figure 30: Performance comparison between the standard optimized implementation and the
connection based implementation using linear reduce, and using both linear reduce and rank
reduce.

49

6 Conclusion

6.1 Concluding remarks

The experiments have shown that the proposed optimizations can improve performance consider-
ably. Preprocessing the nice tree decomposition shows to be an effective optimization strategy for
these types of algorithms. The operations are computationally inexpensive and provide consistent
performance improvements, especially with respect to minimizing the joins.

One of the observations that incited this work was the presence of a high variance in algorithm
performance between different root bags for the nice tree decomposition. Especially the last bag
outputted by the heuristic, which is always has maximum size, showed very poor performance
in some input graphs. To some extent these fluctuations have been mitigated by the introduced
optimizations, with especially the last join prediction doing very well for when the root bag is of
large size. Computing the joincost of the nice tree decompositions shows to be a sound strategy to
determine the optimal root bag, albeit with a small added cost.

Using a graph coloring in the form of tree-indices on the data structure level allows for a very
concise representation of the partial solutions. This combined with the opportunity to implement
the required functions very efficiently using bitwise operators, makes it a superior approach in
comparison with a more traditional implementation.

Representing a resultset in terms of a lattice has been a fruitful endeavor for gaining an improved
insight of the underlying structure and inner workings of the algorithm. This led to a number of
optimizations that were reasonably straightforward but not directly apparent in the absence of this
context, and proved to be very effective in practice.

6.2 Further research

6.2.1 Look ahead optimizations

A few of the optimizations introduced in this work can be categorized as look-ahead, in the sense
that information that lies beyond the current bag is utilized to discard certain partial solutions.
The proposed vertex constraints and last join prediction are good examples of this concept, as they
can at times discard large amounts of partial solutions. Overall these methods seem to decrease
the variance between the performance of different root bags for the nice tree decomposition. The
challenge remains to remove this variance altogether, or to be able to predict the performance of
each root bag so the best performing option can be selected. Other techniques such as maintain-
ing the minimum remaining edge cost to predict too expensive refinements, might yield further
improvements.

6.2.2 Low level implementations

The single computer word data structures proposed in this work allow for some very fast low level
optimizations, if executed correctly. Implementing the algorithm in C++ instead of Java would

50

allow for such optimizations, along with the overall performance benefits that the language ex-
hibits. It would be interesting to see how such an implementation would hold up performance wise,
compared to conventional the non-tree-decomposition based methods. It might also be possible
to incorporate preprocessing techniques from [10] into the algorithm, allowing for more problem
specific optimizations.

6.2.3 Inter resultset reduction

Most of the current runtime optimizations are directed towards reducing the size of the resultset
within the scope of a set of used vertices. It might be possible to extend this scope and discard
partial solutions that are represented by partial solutions from other sets. The size of the result-
set is exponential in the number of used vertices, and the number of used vertices subsets of the
bag is also exponential. Discarding whole resultsets alike the vertex constraints rule will gener-
ally be very beneficial for the overall performance. For instance, if the neighborhood of a vertex
can be represented by the other vertices in the bag, all resultsets containing this vertex can be
discarded.

6.2.4 Connection based data structure

The connection based data structure shows good results on some graphs, but often the poor per-
formance of the reduce function results in a very slow execution. There will most likely exist an
implementation with a lower complexity, but due to time constraints, only a straightforward ap-
proach using the existing techniques was used. Given the fact that this method requires at most 2n−1

partial solutions but generally fewer, it might be able to outperform the standard approach.

A good approach would be to start with a small incomplete representative set, and progressively
add partial solutions to it. This can be done by generating a partial solution that is not completed
by any partial solution in the incomplete representative set, and then find the connection based
partial solution that can complete it with minimal cost. The partial solution that completes it
can then be added to the representative set, and the process repeated until the representative set
is complete. If a function to generate these partial solutions exists using O(2bagSize−1) time, the
reduce procedure will be of equivalent complexity to the rank based approach, and likely allow for
overall improved algorithm performance.

The connection based data structure can also be applied to compute upper bound on the cost of a
solution. All partial solutions containing n− 1 edges are feasible. By removing all partial solutions
that have cost greater than maxCost − k, the cost of the resulting solution will be at most nk
above the optimal cost, where n is the number of bags in the nice tree decomposition.

6.2.5 Minimal joincost tree decompositions

Since the required amount of joins can be accurately computed in a reasonable amount of time, it
might be interesting to analyze the construction a joincost-minimal tree decompositions for a given
set of terminals. There could be some similarities with the computation of treecost-minimal tree

51

decompositions, since the computation of the joincost also uses a function exponential in the size
of the bag.

52

References

[1] Stefan Fafianie, Hans L. Bodlaender, and Jesper Nederlof. Speeding up dynamic programming
with representative sets - an experimental evaluation of algorithms for Steiner tree on tree
decompositions. In Parameterized and Exact Computation - 8th International Symposium,
IPEC 2013, Sophia Antipolis, France, September 4-6, 2013, Revised Selected Papers, pages
321–334, 2013.

[2] Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic single
exponential time algorithms for connectivity problems parameterized by treewidth. In Pro-
ceedings of the 40th International Conference on Automata, Languages, and Programming -
Volume Part I, ICALP’13, pages 196–207, Berlin, Heidelberg, 2013. Springer-Verlag.

[3] Hans L. Bodlaender and Arie M.C.A. Koster. Treewidth computations I. Upper bounds.
Information and Computation, 208(3):259 – 275, 2010.

[4] T. van Dijk, J. van den Heuvel, and W. Slob. Computing treewidth with LibTW. November
2006.

[5] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 150–159, 2011.

[6] T. Kloks. Treewidth. computations and approximations. Lecture Notes in Computer Science,
842, 1994.

[7] A. Martin T. Koch and S. Vo. Steinlib, an updated library on Steiner tree problems in graphs.
2000.

[8] H. L. Bodlaender. TreewidthLIB. A benchmark for algorithms for Treewidth and related graph
problems. 2004.

[9] P. Winter D. Warme and M. Zachariasen. GeoSteiner, software for computing Steiner trees.

[10] T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality. Networks,
32:207–232, 1998.

[11] P. Mutzel Chimani and B. Zey. Improved Steiner tree algorithms for bounded treewidth.
Journal of Discrete Algorithms, 16:6778, 2012.

[12] J. A. Wald and C. J. Colbourn. Steiner trees, partial 2-trees, and minimum IFI networks.
Networks, 13:159167, 1983.

[13] Fang Wei-Kleiner. Tree decomposition based Steiner tree computation over large graphs.
CoRR, abs/1305.5757, 2013.

[14] Hans L. Bodlaender, Paul S. Bonsma, and Daniel Lokshtanov. The fine details of fast dynamic
programming over tree decompositions. In Parameterized and Exact Computation - 8th In-
ternational Symposium, IPEC 2013, Sophia Antipolis, France, September 4-6, 2013, Revised
Selected Papers, pages 41–53, 2013.

53

[15] Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases of
perfect matchings. In Proceedings of the Forty-fifth Annual ACM Symposium on Theory of
Computing, STOC ’13, pages 301–310, New York, NY, USA, 2013. ACM.

54

