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Abstract
When capturing the pose of actors for use in games, commercial companies often use dedicated 
rooms with expensive equipment to accurately establish the pose of an actor. This may be 
prohibitive when the location is unsuitable or the equipment too expensive. This thesis describes 
accelerometers as a cheap and portable sensor and it's use to perform motion capture on humans. 
This was done by providing a model and functions to derive the current pose based on captured 
data, testing its functioning under theoretical optimal conditions, as well as a small sample of live 
tests involving real hardware and human subjects. The tests demonstrate that pure accelerometers 
have intrinsic problems, and that input restrictions or alternative measuring equipment are a better 
path to success.
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Introduction
High quality motion capture has long been limited to professional companies, due to its required 
price of equipment, making it's application unsuited for outdoor or living room use by customers. 
New gaming experiences can therefore be achieved by allowing such equipment to be available in 
poorly controlled environments for suitable prices for consumers. This chapter describes the status 
quo in more detail to explain the purpose of this research.

With the introduction of the Nintendo Wii, consumers have had easy access to accelerometer 
hardware, it being the prominent feature of the new console. With the first release of the Wii came a
boxed game called Wii Sports that demonstrated one of the practical limitations of the device, 
yielding games that made assumptions or otherwise puts restrictions on the input in order to classify
certain motions for certain purposes. The end result was that the game used some relatively simple 
algorithms to translate sensor readings to game controls. A player that is aware of these methods can
make use of such a method to yield alternative play styles, occasionally defeating the purpose of the
exercise or making game play easier. For instance, if you play tennis in Wii Sports, the player is 
expected to use a full arm's swing to make the tennis racket on screen move and hit the ball. The 
same effect can be reached more efficiently and accurately by not swinging the arm, but only 
flicking the wrist, yielding in shorter movement times and invested energy while the sensor 
readings effectively yield the same amount of G forces, but with an improved timing accuracy to 
dictate the ball's direction.

Microsoft has also introduced a video solution for video-based capture as a companion to the Xbox,
which relies on a pair of cameras to detect depth in the image, which is then later used to recognise 
body shapes and limbs. The use of cameras come with their typical downside that there are 
placement and occlusion issues in using the device. Full body pose estimation is typically not 
possible due to a restricted field of view and the presence of furniture. Occlusion and field of view 
issues also occur when trying to monitor multiple actors at once.

In professional motion capture, there is an implementation called Xsens which provides high quality
sensors mounted on a suit to perform full-body motion capture, which was a new product on the 
market at the time this thesis was started and will have had its own independent research over the 
time that this research has been conducted. A paper discussing the prototype for force measurements
dates back to 2008.[1] Unfortunately, the price of this equipment is unfortunately not within the 
average consumer's range.

Based on the now common introduction of accelerometers in various kinds of consumer equipment,
it opens future options where motion capture can be performed with such off-the-shelf consumer 
hardware. This document will demonstrate some of the possibilities and problems inherent with this
choice of approach.



Related work
Pose estimation using various methods have been made in the past, and some of these applications 
have been commercialized since. There are various applications and methodologies that are related 
to the presented research, and need some further explanation. First, the documented applications in 
the field will be discussed, followed by an overview of various types of sensors that have been used 
in the field and could possibly prove a viable alternative.

Pose estimation applications

While this thesis approaches the subject of pose estimation from the computer gaming and 
simulation industry, a lot of research has been done from other subjects of interests. The 
measurement and analysis of movements have found itself numerous potential and existing 
applications in practice. Pose estimation, when used as a form of human-computer interaction, 
shows that fields of physics and anatomy consistently coincide, but many other biomechanical and 
engineering purposes have been discussed. Since the thesis concerns basic pose estimation and the 
theoretical basis, the results could possibly be applied to many subject areas.

Medical sciences

In the medical world, the analysis of body movement has several healthcare purposes. Detailed 
observations of human pose and movements can reveal and quantify mobility. The most interesting 
application for this is to measure and analyse impairments in human mobility. In Schwartz et. al.[2] it
is noted that observation of human movement outside dedicated recording locations is beneficial 
since it allows to extend observations beyond clinical visit, as well as freedom from the restraints of
such observation rooms. The patient could then be observed during daily movements as well. The 
use of an inertial sensor would attain this goal. The specifics of this sensor are not formally 
discussed, although the description seems to suggest a combination of an accelerometer and a rate 
gyroscope. Another form of assisted medical observation that is mentioned is that recording a 
subject during an epileptic seizure can give insights on the responsible brain parts by matching the 
limbs and their quantitative activity to the corresponding brain regions.

In Zhou et. al.[3] the need for automating medical inspection is further emphasized due to a practical 
need caused by a lack of personnel otherwise recommended for medical treatment, pointing out 
stroke as a typical medical condition that is contributing to this condition. Extrapolating from this 
would indicate that there are numerous other medical conditions that can be assisted using 
computer-enabled applications. Veltink et. al.[4] also refer to this need to do home observations on 
subjects, without discussing the actual medical conditions or impairments of the subjects that would
warrant such observation.

Robotics

While this thesis is in itself restricted to the human anatomy of moving limbs, there is some relevant
research that deals with practical applications without necessary biological components. Stubberud 
et. al. briefed the NATO concerning sensors aboard unmanned vehicles.[5] While they omit details 
on potential military applications, the basic situation is one of keeping track of an object influenced 
by unknown external sources. In their topic of research, the terrain offsetting the desired route of 
travel for a vehicle would prove to be the challenge. The system to be discussed in this thesis also 
deals with unknown forces resulting in a new position of the objects under scrutiny.



Equipment

Over the course of history, many pieces of electronic equipment have been used to estimate poses. 
Each uses a certain aspect of physics to determine a part of the relationship of the sensor to the 
physical world. A wide selection of devices have selected for discussion, roughly sorted by 
relevance to the thesis in particular and pose estimation in general.

Accelerometer

The accelerometer is a device that measures the normal force
applied to the device. In its original form, the accelerometer
contains a weight suspended by springs on both ends of an
axis. These springs try to restore the device into its central
position. When the casing of the device is moved, the inertia
of weight inside tries to keep it still or moving in the same
direction, and the momentum of the casing is transferred using
the springs. Because a spring extends proportional to the
amount of force applied, the object slightly moves from its
central position proportional to the amount of force applied,
and attains a new position. In an electric device, this position
can be registered by a wide range of methods. The relative simplicity of the device has made it a 
cheap choice, and easily manufactured to smaller scales. A typical packaged accelerometer device 
consists of three linear units mounted orthogonally to each other to give readings covering all three 
dimensions of space.[6]

Since the device measures acceleration, it will always include the local gravity in its observations. 
This has two functional repercussions during observation. The disadvantage is that to calculate the 
acceleration in world coordinates requires knowing the orientation of the sensor to subtract the 
gravity to obtain the acceleration in other directions. The advantage of this behaviour is that if the 
sensor is known to be in rest, its orientation in two of the three rotation axes can be determined 
directly from the sensor readings without the need of knowing previous states, thereby eliminating 
the problem of drift.

An accelerometer alone is not enough to establish the entire state of the sensor. An accelerometer is 
only able to measure three degrees of freedom, whereas an arbitrary object has six degrees: three for
position and three for rotation. To be able to make estimations regarding their exact pose, extra 
restrictions are needed. This thesis will use the physical constraints of human limbs and joints to 
deal with this problem. Since individual human joints have at most three degrees of freedom[7], the 
same as a the amount of inputs provided by the sensor, this theoretical constraint is obtained by 
having one sensor per joint whose configuration we want to observe.

Rate Gyroscope

An alternative device in pose estimation is the rate gyroscope. Instead of dealing with the 
conservation of linear momentum, it instead relies on the conservation of angular momentum. By 
suspending a lever from its centre of gravity and measuring the force exerted at one of the end, you 
will be able to record the amount of turn rather than the linear acceleration. A regular gyroscope 
however adds a rotating component and uses the effect of precession to reflect the force applied in 
one direction into a resultant force on an orthogonal axis.[8]



Knowing the orientation of the sensor, and especially when it's identical to the orientation of a 
present accelerometer allows the cancelling of the acceleration due to gravity on the accelerometer 
and obtain absolute accelerations and by extension absolute positioning. Since rate gyroscopes only 
measure rate of change rather than an absolute orientation, any implementation of absolute 
orientation is therefore fundamentally based on summing consecutive angular changes into the end 
state. On their own, these systems suffer from drift and a calibration need, which makes 
measurements increasingly inaccurate as time passes.

Video

The previous two methods contrast against the use of cameras to track objects. These devices 
consist of a large array of sensors measuring the absolute amount of incoming electromagnetic 
radiation over a period of time. In domestic cameras, this source is limited to visible light, but video
recordings can also often be made from the infrared spectrum, which is especially used in studio-
based video motion capture. Many implementations can be described as tracking marker objects 
over the course of time, where either a point source or specific patterns of radiations are tracked. In 
the case of patterns, this is either done with artificial shapes designed with the specific intent to be 
easily detectable[9] - such as the barcodes found on shopping articles in real life. Other 
implementations like SIFT[10] find and label points as a description of local details and do not 
depend on the actual application of dedicated markers.

The fundamental problem with this form of observation is that a camera needs line of sight to the 
marker to establish its relative position, after which the specification of the marker in conjunction 
with the camera's optical configuration will determine if it can provide additional information about
it's orientation or distance. Such occlusions can be caused by environmental obstacles, or even the 
subjects own body – both of which might be necessary for the recording to make.

In a commercial motion capture it's typical to use point markers with a multitude of cameras. Each 
camera can see several markers, and by being able to draw multiple lines of sight from known 
camera locations, the marker would be theoretically where those lines of sight intersect. In practice, 
pixel sizes and other calibration and observation errors mean that the marker is to be estimated 
somewhere near the point where the calculated lines of sight approach each other the closest, and 
with a multitude of observers this estimation can be further improved.

Since this method of motion tracking has proven itself into being an industry standard, this thesis 



will use this method as a reference for testing the actual performance of using accelerometers as 
replacement sensors.

The advantages of using local sensors compared to video capture are numerous: There is no need 
for a dedicated set up and configuration prior to a recording session, and there's no line of sight 
required meaning that the pose and location of the actor relative to its surroundings can't 
inadvertently obstruct observation. Furthermore, the system scales better per marker since the 
number of markers present means increasing markers being seen by individual cameras, which 
gives the problem of separating individual markers and even more complicated configurations to 
deal with it, while that problem does not exist when sensors report for themselves.

Magnetometer

In other research, several other devices have been considered for the purpose of pose estimation and
tracking. For instance, measuring the earth's magnetic field has been an century-long standard in 
navigation, and in the meantime, there exist electronic versions of the old-fashioned compass – 
called the magnetometer. These devices have the advantage of reporting an absolute bearing, 
sometimes in the full 3D space rather than the typical compass' single axis of rotation. A key 
problem is that the while the device would normally pick up earth's magnetic field, the north-south 
axis can often be distorted by geological phenomenon, or locally and more profoundly, by sources 
of magnetic fields, rendering the device useless in the worst case.[11]

Gyrocompass

The gyrocompass is a close relative of the gyroscope, is that it uses the same physical foundations 
of a rate gyroscope, with the difference that it's purposely not free of resistance. Since a change in 
rotation applies a force in an orthogonal direction, the way of least resistance is to align with the 
rotational axis of the earth itself. A gyrocompass that's left in place will eventually point true north 
(instead of magnetic north). The downside of this device is that the time needed to establish that 
position is significant, and a gyrocompass is therefore incapable of accurately providing true north 
in an environment with continuous orientation changes beyond it's corrective ability, such as a 
moving human actor.[12]

Echolocation

Audio can also be used for measuring distances, and hence the location of objects. Such a system 
can work in one or two directions: an active beacon can send an (ultrasound) audio signal at fixed 
intervals, or a body or dedicated piece of electronics can respond to an audio signal. Audio doesn't 
travel fast compared to light and recording sensors lack directional sensitivity typical of cameras. 
Instead, the time it takes for a signal to arrive is used to measure the distance. With multiple sender-
receiver pairs, this information can then be used to triangulate the object in question.[13]



Problem definition
In a software implementation of pose estimation, we need inputs, and an algorithm to convert these 
inputs to a pose. The process of determining a pose from the input of a set of accelerometers comes 
with a number of constraints. To be usable in practice, such an algorithm must be able to operate in 
real-time, and provide its answer without having access to future sensor readings. To function as a 
pose estimator, the algorithm to be devised must process the input sensor readings and return a pose
that approximates the real-world situation.

To establish a proof of concept for this method, we limit the initial experiment to a single arm. The 
reason for this is that with a representative subset we can assert that qualities of the algorithm, and 
extend it to the entire body in a later stadium. Another reason for this choice is that in current 
gaming it is also the arm that is used as primary input for other sensing systems, which allows a 
subjective comparison. The model we use will be limited to this problem space, which includes the 
upper arm, lower arm, up to the palm of the hand, while assuming that the shoulder joint is fixed in 
space. If the player were holding an object in his hand, the joints included could make the object 
point in any direction, and include the majority of positions which the subject could physically 
reach. The fingers are assumed to hold the carried object in place, which results in the pose of the 
hand being fixed as needed to wield the object in question. Therefore, continuing past the wrist does
not contribute much physical freedom compared to the actual degrees of freedom, and is therefore a
good separation point. Adding the first few bones and joints past the shoulder add degrees of 
freedom to the problem, whereas they don't add as much to the volume of reachable space 
compared to the selected joints. 

To measure this model, we would need sensors attached to each of the limbs considered movable. 
These would be the upper and lower arm, and the hand as a whole. The actual sensors can readily 
be attached to the upper arm and lower arm. Straps can be used to fix the first two sensors in place. 
The third sensor can be held in hand. For the sensors, Wiimotes are to be used as the readily 
available equipment, which contain an accelerometer within their package.
The problem is then to record the live accelerometer data, process it, and recover the original pose 
of the sensors. To achieve this, we will formalize the described system, and then propose an 
algorithm that will process this data. This thesis will finally conclude with a pair of tests of this 
algorithm including lab simulations and actual live recordings.

Pose definition

The model we will be using for the arm position consists of a skeleton with three joints and three 
bones. Each bone has an accelerometer attached at predefined location. The joints represent in order
the shoulder joint, the elbow joint, and the wrist joint.

To simplify further calculations, we fix the shoulder joint at (0,0,0) in 3D space and define the 
cardinal axes of world coordinates as follows:

– The Z axis is aligned to the axis of gravity, and higher values mean larger distances to 
Earth's centre of mass.

– The X axis is pointing forwards from the subject, with positive values being in front of the 
subject and negative values being behind the subject.

– The Y axis completes the system at right angles. For a left arm which is stretched out 
sideways, the fingertips represent the highest Y value, and the shoulder joint the lowest 
value at zero. Using the opposite arm therefore lives by design in a mirrored space which 



allows the same base calculations to be used after simply mirroring the appropriate axis of 
the sensor and the output before and after the calculation.

Overall, the model looks as follows. All the degrees of freedom are numbered according to their 
order:

We define J1 as the shoulder joint, which has three degrees of freedom. These degrees of freedom 
are represented by three rotation matrices, so that each degree can be manipulated independently. Y-
X-Y matrix rotations are used to indicate the position of the bone relative to the joint using the first 
two matrices, and the rotation of the bone around its axis as follows:

J 1=[
1 0 0 0
0 cos (a1) sin (a1) 0

0 −sin(a1) cos(a1) 0
0 0 0 1

][
cos(a2) 0 sin (a2) 0

0 1 0 0
−sin (a2) 0 cos(a2) 0

0 0 0 1
][

1 0 0 0
0 cos(a3−a1) sin (a3−a1) 0

0 −sin (a3−a1) cos (a3−a1) 0
0 0 0 1

]
Note the subtraction in the third matrix. By including it, we essentially apply the reverse 
transformation provided by the first matrix, and therefore separate the rotation axis of the elbow 
from the direction the upper arm takes from the shoulder so that both orientations can be visualized 
from just their respective variable. Here, a2  defines the angle between the upper arm bone and 
the Y axis matching the outstretched arm position. a1 defines the angle around the bone where 
this rotation is applied. Finally, a3 does not affect the position of the elbow joint, but only applies 
the rotation around the bone's axis.

The upper arm bone B1 extends into the Y direction. A length l 1 should be provided that 
should approximate the typical user's distance between joints:

B1=[
1 0 0 0
0 1 0 l1

0 0 1 0
0 0 0 1

]



Additionally, a second matrix W 1 should be added that describes the location of the accelerometer
relative to this bone, usually halfway the length of the bone. We have to add at a certain offset since 
the volume of the sensor can't be shared with the actual body under observation, which leads to two 
more configurable values x1 and y1

W 1=[
1 0 0 x1

0 1 0
l 1

2
0 0 1 z1

0 0 0 1
]

The elbow joint J 2 has one degree of freedom a4 and operates away from the line of the 
previous bone, making either X or Z rotation a valid choice as the only difference is that the 
preceding rotation would differ by 90 degrees (observed in a3 ). Z is used as the more natural 
choice of the pair as a quick test by bending an outstretched arm yields a rotation around world's Z 
axis as well:

J 2=[
cos (a 4) sin (a4) 0 0
−sin (a4) cos (a4) 0 0

0 0 1 0
0 0 0 1

]
Followed by the attached bone and sensor B2 and W 2 according to the rules above:

B2=[
1 0 0 0
0 1 0 l 2

0 0 1 0
0 0 0 1

]
W 2=[

1 0 0 x2

0 1 0
l 2

2
0 0 1 z2

0 0 0 1
]

The wrist joint J 3 has again three degrees of freedom, of which the Y rotation is actually provided
over the length of the bone and therefore provided first:

J 3=[
cos (a5) 0 sin (a5) 0

0 1 0 0
−sin(a5) 0 cos (a5) 0

0 0 0 1
][

0 cos(a6) sin (a6) 0
0 −sin (a6) cos (a6) 0
0 0 1 0
0 0 0 1

] [
1 0 0 0
0 cos (a7) sin(a7) 0
0 −sin (a7) cos (a7) 0
0 0 0 1

]
For the scope of this thesis, there is no need to define the third bone as there is no new joint to 
connect to, but it's definition would follow the same format as the other bones. There is however a 
sensor attached. In the case of a Wiimote W 3 held in the hand its orientation is no longer with it's 
natural Y axis aligned with the bone but rather at a right angle of it:



W 3=[
0 1 0 0

−1 0 0 0
0 0 1 0
0 0 0 1

][
1 0 0 x3

0 1 0 y3

0 0 1 z3

0 0 0 1
]

If a different grip is desired, then this can be accounted for by choosing the appropriate 
transformation matrices over the ones provided here.

Anticipated problems

A number of possible issues were identified before a design of algorithm was made. The rest of the 
chapter describes these problems and points out potential solutions or workarounds for these.

Walking noise

Using an accelerometer like the Wiimote's gives significant trouble for continuously tracking pose 
for a moving character. Initial tests showed that acceleration measurements when performed on a 
leg were repeatedly out of the 4g range provided by the input data, which also surpasses the 
recordable 3g range guaranteed by the device manufacturer, which simply yields values near the 
sensor maximum. Earlier research already demonstrated that simple walking would be sufficient to 
cause readings above that limit[14], even for an accelerometer that is positioned far away from the 
legs and consequently has the additional advantage of all intermittent joints diffusing the forces of 
impact from a heel strike. Since solving the problem of inaccuracies from making contact with the 
ground is a challenge of its own, the project scope has been moved to the upper limbs, where the 
range of meaningful movement is significantly larger without having to deal with overflows caused 
by an impact. 

As a means to resolve this problem, we will have to select live experiments that don't involve 
walking. Instead, it is left for future research to devise implementations that would expect such 
behaviour. Such implementations would have to amend the algorithm with features that can handle 
overflows, or use specific heuristics when an (heel) impact is detected to determine the resulting 
pose.

Undetermined conditions

Another key issue to be observed is that there are several poses possible with the same sensor 
readings. This is easily shown for static poses without movement involved: Any pose rotated around
the axis of gravity yields the same sensor readings as its original:

M [
cos( ) sin( ) 0

−sin () cos () 0
0 0 1] [00g ]=M [

0
0
g ]

This problem essentially applies to any collection of poses where the absolute orientation of the 
sensors can be written as another member of the set with a rotation around the axis applied.

In addition to gravity, accelerations of the body will add to the observed acceleration of the sensor, 
adding three unknown inputs to a system for a total of six, of which we get to observe three from 
the sensor alone. Corke et al. have previously stated the consequence that such ambiguity can only 
be resolved by using additional sensor types, or by using strong assumptions.[15] Since our system is 
constrained to have less degrees of freedom than the sensors provide, we can already limit the 
amount of ambiguity and as a consequence. Essentially the constraint of our model of the human 



body forms the sufficiently strong assumption required.

Another consequence is that the algorithm has a need to store previous locations to determine the 
current location, demanding that that the algorithm will need to have an input corresponding to the 
previous  configurations.

Noise accumulation

Probably the most predictable side effect of using consumer equipment is their relative lack of 
quality. Testing idle Wiimotes shows that the readings are not constant, even though the sensor is 
not displaced in any direction. Furthermore, different units have a slight difference in their 0g offset,
and the transmission encoding limits the possible resolution to 0.03g. In addition, sampling happens
at a fixed low rate, which means that signals with high frequency components get lost. This is 
especially prevalent in impact moments, where the signal spike might be smaller than the recording 
frequency. That net effect is that there will be an inherent drift present, and that any errors may 
accumulate and possibly get magnified. Any algorithm provided should therefore be able to correct 
for noise accumulation issues.



Algorithm implementation

Now that we have established the input constraints and theoretical requirements for the algorithm, 
we can proceed to defining an implementation that can satisfy the constraints mentioned in the 
previous chapter. The algorithm defined here can then subsequently be used in the experiments 
needed to assert its quality in practice.
The algorithm will consist of a fairly generic pose resolution core, and a number of formalized 
metrics that describe this specific application. In the rest of this chapter, each specific component 
will be explained in detail, followed by a discussion of the result.

The algorithm

Having established the requirements in establishing the correct pose, it becomes apparent that 
finding a direct equation is rather impractical. There also exists an overspecified input domain, 
since as input values for the algorithm we need:

1. Acceleration (a number of 3D vectors)

2. Previous pose estimation, which requires the number of degrees of freedom

3. The velocity of body parts, which can be noted as angular velocities and therefore also 
requires the same number of degrees of freedom.

The sum of the degrees of freedom indicates that we have thrice the number inputs for any output 
size, making the system overdetermined. Since the input is known to contain errors, either as input 
or as potentially cumulative from previous iterations the excess features in the input vector should 
be used to correct the movement. With the use of a fitness function the combination of constant 
input feature data and variable solution data can be combined to a single error score, which can then
be used as the function for an error-minimising system to determine the most appropriate pose. This
is a common approach to solving overspecified systems when various inputs are expected to 
contradict each other. An interesting application of a fitness function system has been done by 
Kaimakis et. al.[16] If there exists little practical knowledge of linking the input and output data sets 
together, trained pattern matching systems are a typical alternative choice. Since both input and 
output is analogue in form, using an evolutionary approach where an algorithm is generated from 
input data alone may provide an efficient and accurate estimation of the input data, although such 
methods provide little insight of why any resulting equations performs the task as expected. Zhao 
et. al. have applied such a method to motion capture in the past.[17]

In this case, it is easily shown how the measured data correlates with the pose and its changes. We 
can make motion capture recordings and obtain both the pose data and input data for reference 
testing. In fact, we have Newton's laws that dictate forces and movement, and we know or measure 
the details in the system, so we can algebraically calculate the input data given the pose and 
generate the measured data based on the pose. 

Error minimising approach

The foundation of an error minimizer is an algorithm that can test various candidate results based on
their suitability and choose a value where the error function is minimal. Since most algorithms are 
designed to be performed on discrete states or solutions, the choice of a solver typically requires 
modification to support a solution space that is linearly continuous. The search algorithm commonly



known as hill climbing is a typical candidate as we can provide an initial configuration and have it 
approach the optimal solution by iterating over the current solution plus or minus some value. To 
get an answer close to the desired solution we can choose a small difference, but as the step size 
decreases, the spent time will increase accordingly.

To fix this performance problem, the algorithm is run several times, halving the difference values on
each iteration. This method can alternatively be viewed as a binary search for finding the solution to
a continuous equation, but extended to a higher dimension.

The standard hill climbing algorithm is known for not necessarily finding the global minimum, and 
occasionally needs to be pushed out of that minimum and locate another one. We know however 
that there is a certain degree of temporal continuity in the observed states, and by using the previous
solution as the starting point for finding the next solution will already provide a solution close to the
global optimum. Since all the inputs being solved for are angles, we also know that each local 
minimum is likely repeated at a period of 2 times pi on any input from each other since these 
represent an identical state. These minima can however be perturbed, or completely dissolved by 
various other constraints. As a partial cover for these cases, the initial step size is set to 2 times pi to
jump between these local minima to the most appropriate one for further refinement with smaller 
steps.

Static pose constraint 

Since the algorithm depends on accumulating errors from constraints, we define functions that 
determine the values for each known criterion. This first error function is designed to provide an 
exact solution for the pose in a specific subset of cases, namely when there is no movement 
involved. This happens when the person under observation is idle. 

The error function is defined as follows:

e ( x⃗ )=∑ wn∣
⃗observed n

∣ ⃗observed n∣
−expected n( x⃗)∣

Where 
⃗observed n

is the sensor reading received from from the Wiimote, and 
expected n( x⃗)

is the gravitational acceleration that would be actually present if the model was in an idle state in 
the configuration being tested, and 

wn

is a positive number indicating the importance of the Wiimote in respect to others. 

For any correct solution, the observation will be identical to the expected solution. The vector 
length has been introduced to make sure all error values are positive, and that small deviations in all
directions are given less emphasis compared to a large deviation in a single vector component. The 
measurement vector has been normalized as a method to counter deviations from the expected state 
and measurement errors: in the idle state all Wiimotes should observe a gravity of exactly 1g. The 
net effect of this addition is that deviations are larger when the direction of the vector is different 
rather than the length, and will counter the effect of differences in Wiimote calibration. 



Domain constraints

Based on initial testing it quickly became apparent that checking for locations alone would often 
cause the error minimising function to jump into configurations that were mirrors from the correct 
position, demanding an additional set of constraints for unlikely poses. One of such criteria for 
weeding out invalid poses is to check that they are physically possible. The joints in the body are 
constrained to certain angle ranges that can be measured and be included. People are still relatively 
different and the physical constraints for each person may be different from another (reasons 
include genetics, age, and training), and low ranges are used as medical indicators in various forms 
of physiologic treatment. Therefore we don't want to have too much discontinuity at the boundary 
condition to allow some movement into the inaccessible range. Therefore, we establish the error 
function as follows:

e ( x⃗ )=∑ constraint( x [n] , un , v n)wn

with the constraint implemented as

constraint ( x , a ,b)=
a−x if x< a

0 if a≥ x≥b
x−b if x> b

where
un , vn

being the desired lower and upper bound on the input angle respectively and 
wn

being the amount of strain passing the boundary will return.

Mathematical analysis will show that anything in the expected domain yields no penalty, and that 
there is no value discontinuity at the boundary. This is important for the hill climbing algorithm to 
be guided to the correct state.

Note that the domain constraint as formulated here does not take into account any configuration that
is physically impossible for other reasons than the mere limitations of joints, such as a limb sticking
through the location where the subject's chest would be expected. There are several reasons why 
checking for this condition is undesirable:

– It requires knowledge about many more joints and physical constructs, even if they are not 
part of the solution to be calculated.

– It can be computationally prohibitive when done with a certain degree of accuracy.
– Subjects are not expected to hit themselves and the input which such behaviour would be 

designed to fix can not be expected unless the other important parts of the pose estimation 
fail (and thus should demand more attention).

– Disallowing such configurations may cause the pose estimator to get stuck in a 
configuration where any improving motion would be hindered by the presence of the 
hindering body, thereby preventing access to the actual optimum configuration.

Of course, a simple constraint that requires the hand to be in front of the torso may be a valid 
domain-specific constraint in some practical applications.

Smooth movement

Another constraint for eliminating impossible configurations is by checking for the presence of 
spatial coherence. By checking that momentum does not alter too rapidly in successive calculations,
visual disturbances caused by input noise can be reduced or removed.

The constraints are actually a pair of error functions:



e0( x⃗ )=∑∣x [n ]− p0[n ]∣wn

and
e1( x⃗ )=∑∣x [n]−2 p0[n ]+ p1[n]∣wn

with 
pn

Being the vector of the nth previous solution, with n = 0 for the previous configuration and n = 1 for
the configuration before that. The last component being 

wn

which is used to control the influence of each component individually. The first equation gives an 
error boost for any change in angle, whereas the second gives an error boost for a change in angular 
velocity by subtracting the new angles from the extrapolated angles based on history.

At this point it is important to know that the weights should be chosen such that they do not 
interfere with the pose constraints ability to move the configuration. Any sufficiently high weight 
will simply fix the configuration in its initial configuration. Also a function controlling the second 
order deviation is deliberately ignored as the acceleration may change very fast in practical cases as 
it simply equates to applying or removing a force on the limb in question, such as releasing muscle 
toning causing the arm to drop under gravity. Since there is already discontinuity of force, any 
relevance of error functions based on the third derivative or even higher is automatically irrelevant.

The conflict between keeping momentum and position constant also have the possible positive side 
effect of stopping drift in cases where actual motion has stopped and the calculated system includes 
some leftover energy.

Dynamic pose

The all-important constraint that does the work would be the one that includes movement based on 
existing motion and the actual acceleration. Whereas the simple pose can cover for idle cases and 
low forces and therefore be possibly sufficient for observing people performing only slow 
movements such as Yoga and other meditative exercises, more active movement requires full use of 
the data available. Especially when the generated forces exceed 1g it can be mathematically 
demonstrated that the simple pose estimator can solve to any unrelated pose.

The core concept of the dynamic pose is that the suggested position and a few predecessors is 
calculated, and the acceleration present at the previous location is calculated. This effectively causes
a latency of one measurement in estimating as the velocity is known between the current and 
previous pose, as well as the previous pose and its predecessor, which causes the actually measured 
acceleration to be centred on the previous sample point rather than the measured point. 

The resulting equation ends up as follows:

e ( x⃗ )=∑ wn∣O n
−1(

(
Ln( x⃗)−Ln( p⃗0)

∆t 0

−
Ln( p⃗0)−Ln( p⃗1)

∆ t1

)

1
2

∆t 0+
1
2

∆t 1

+ g)− ⃗observed n∣
This construction can be divided into the calculation of velocity as the two top divisions, where

Ln( x⃗ )

provides the world coordinates of the nth Wiimote for the configuration, and 
∆ t n

being the time difference between two subsequent observations and estimations of the sample state. 



The change in velocity is then fed into the larger division which calculates the acceleration, using 
the average of the two time intervals to account for any changes in observation size. When 
acceleration caused by movement is calculated, the gravity component is added as

g=(
0
0

9.81)
with the value of 9.81 m/s2 is taken from the average gravitational acceleration at sea level. The 
resulting vector is then transformed using

On
−1

which is the inverse of the orientation matrix of the Wiimote, with the purpose of converting world 
orientation to back to Wiimote relative orientation, yielding the exact sensor value the Wiimote 
should have after moving to this configuration, so that it can then be compared to the actual sensor 
reading

⃗observed n

To complete the equation, the deviation from the expected value is again being scaled with
wn

being the weights per Wiimote.

Combining the error functions

Since each of the functions penalizes different aspects of the configuration, certain functions will on
their own converge to different solutions and need to be balanced out against each other. The 
general idea is to resolve the conflicts by making the constraints override each other in various 
cases. In general, big location deviations are significantly worse than small location deviations, so 
we want to prefer the location over the smoothness function when there is a relatively large amount 
of movement involved:

e total( x⃗)=esmooth(0)( x⃗)+ esmooth (1)( x⃗)+ (edynamic( x⃗))2

The actual function that links the candidate pose to the sensor readings is squared. This is done to 
make sure that if the difference is too large, that the error function will be force to solved for an 
accurate pose instead of dealing with edge criteria, whereas if the actual pose is close to a gimbal 
lock position, the pose will return low values for each of the candidate values, and the smoothness 
can determine which of the poses is to be preferred. Similarly, in noisy systems the actual sensor 
readings do not correspond to the exact poses, and a good enough pose can be used by the 
smoothing function to remove stuttering effects.

For the same reason, if simple fit is to be used as part of the equation it should be squared before 
being added to the smoothness functions.

The domain constraint has little priority demands compared to the pose estimation, as a constant 
error would suffice to prevent an otherwise equivalent solution of ±2π on any angle from occurring.
Based on that, the hill climbing part of the algorithm will start with trying movements of exactly 2π 
so that it will immediately home to the most “central” minimum implied by the domain constraint 
without changing the actual pose. 
The domain constraint does have a need to be stronger than the smoothness constraints, so that it 
can push the state back into the anatomically expected range the moment the pose function allows 
it. 

In initial testing, the weights were empirically tuned to all 0.01s for smoothness constraints and all 
1s for domain constraints with otherwise identical exponents to yield the intended behaviour.



Expected results

1. It is expected that this optimising algorithm will provide a significantly better answer than a 
predefined answer, which goes to show that the process is indeed capable of dealing with the
problem. Since the fitness is an essential component of the algorithm, the failing of this 
hypothesis automatically invalidates the algorithm as a whole.

2. It is also expected that in cases where the speed of movement is low, the forces that alter 
motion are negligible compared to the actual force of gravity, and the algorithm can as a 
consequence be run under the assumption that there is no resultant force and calculate an 
answer solely based on the error estimators ignoring that fact, without it causing it to fail 
hypothesis 1. Testing this will show that a reduced (and thus lighter) version of the 
algorithm may be used in cases where violent motion is not to be expected.

3. It is also expected that under the same assumption of velocity as in hypothesis 2, the 
algorithm may provide an usable answer without knowing previous poses or their estimates, 
without failing the fitness as per hypothesis 1. In addition to the previous reasons, the 
independence of previous observations proves that the chosen subset of the algorithm is 
impervious to the consequences of accumulated errors, and as a consequence, can be run for 
any length of time without causing concerns for raised error margins.

Optimal settings

Due to the number of configurable settings within the algorithm, it becomes a rather mundane task 
of calibrating the settings by hand. Therefore it becomes another task to find the optimal 
configuration for the algorithm that yields the maximum performance. Any future application has its
own demands, and tuning in this fashion can prove to be a good way to optimise for specific 
behaviour. 

While there are a multitude of methods of finding an optimal solution, the choice was made for an 
evolutionary algorithm. This choice serves the purpose of the algorithm being potentially able to 
break out of local minima should the configuration need such a jump.

Expected results

1. A configuration that has been optimised for a particular setting performs better in that setting
than it's initial configuration. This hypothesis serves to make sure there is improvement to 
be made from any human-provided setting

2. A configuration that has been optimised performs better than any other human-provided 
configuration setting. What we are trying to show is that a computer-optimised configuration
is better than one that can be achieved by a human. While we can't possibly exhaustively test
all configurations as the optimising would require the same checks, we will test this against 
all tests performed where the generated setting should have the best performance.

3. An optimised configuration also demonstrates improved performance compared to other 
ranges of tests. If an optimisation is too specific, it would not be able to adequately measure 
real-world scenarios where the input is of a slightly quality than assumed during testing.



Offline experiment
The experimental testing of the proposed implementation will be done in two stages. First there will
be an offline test to see how well the algorithm is capable of reconstituting the system based on the 
input data alone. The experiment is the implementation of the algorithm and applying it to 
generated test data to establish the performance under the best conditions. In the second experiment 
actual recordings will be made with real WiiMotes compared to a baseline provided by a motion 
capture installation.

Automatic testing

The testing routine was made in two parts: one that would actually perform the test, and a pair of 
interfaces to the algorithm that were usable to demonstrate the live result. A visual rendition of the 
running test shows the data that is being observed. This output contains the three distinct parts that 
are key to the experiment:

– Current pose
– Current sensor readings
– Current system configuration

The pose view shows two identical skeletons, with on the left side the input data, and on the right 
side the estimated data from the sensor readings. It's main purpose is to quickly see if the algorithm 
is performing as expected and what the real-world consequences are of any deviations from the 
standard.
The sensor view lists the sensor readings as a bar graph with groups of three bars each representing 
(x,y,z). A bar of zero length represents 0g, values above represent positive g, values below represent
negative g. There are two bars for each sensor: one represents the actual data, and the other 
represents the difference in sensor reading compared to the sensor reading corresponding to the 
estimated pose. Ideally, the right set of bars should be minimal in size.
The bottom half of the screen shows the configuration plot. For each variable that needs to be 
calculated in the system there is a corresponding pair of lines. The green line represents the input 
data, the red line the approximated data. There's a vertical bar across the view which indicated the 
current record point as the interface does not scroll the data for the ease of reading. The bars are 
ordered with the first variable (shoulder arguments) at the bottom and the last (wrist arguments) at 
the top. The distance between the red and green plot is the amount of error during calculation.

The simultaneous display of variables allows for quick observation of certain cases. If the sensor 
readings match the readings expected from the generated pose, while the pose shows significant 
differences, that often means that some constraint is missing or made an negligible impact on the 
problem solving. Another regularly observed comparison was that the pose matches even though the
actual configuration differed. Some cases were caused by visibly identical configurations with a 
difference of zero modulus 2 pi, or in cases where the elbow is stretched and the wrist joint and 
shoulder joint have to fight over which one causes the rotation of the hand (or any of the other 
possible gimbal locks), or fairly often the instance occurs when the arm is in a position close to an 
arm outstretched to the side where the effect of the first Y rotation in the shoulder has zero effect on 
the actual pose and therefore the sensor readings (and typically sticks to its previous value even if 
the source configuration is physically altered otherwise). 



Sample generation

One of the critical aspects of the simulation is that the sensor readings generated should be accurate 
so we do not have two concurrently running problems. Fortunately configuration settings are 
contrary to the input data not over-specified.

The generating process works by selecting a configuration from the sample domain as the target 
pose, then interpolate from the current pose to the newly chosen pose. This takes time in real life 
and therefore also takes time in the simulation and the algorithm will thus get a number of samples 
within certain intervals from one such movement. The sample rate was set to at least 30ms per 
frame, and less samples to allow the UI implementation to stay in real-time synchronisation. The 30
ms is based on having 30fps, which is a common maximum frame rate for a game. At that frame 
rate there would be 0.033s per frame, with some variation between individual frames.
The actual sample points are generated by a Hermite interpolation of the start and end point. 
Hermite interpolation ensures that both the angular velocity and location are continuous during the 
motion. The time for a full movement is chosen between 250ms and 2s, yielding both slow motions 
and very fast motions.



Acceleration calculations

The acceleration observed by the sensor is consistently divided into two components, the 
acceleration observed by the change in pose, and the acceleration observed by gravity.
The gravity component is found easily by calculating the rotation matrix for the sensor in question 
which transforms sensor coordinates to world coordinates. We can skip the translation matrices as 
they do not affect the rotation:

O1= J 1 W 1

O2=J 1 J 2W 2

O3= J 1 J 2 J 3W 3

To invert the conversion so that world coordinates translate to sensor coordinates, we need to invert 
the matrices, after which we can use them to convert the gravity vector:

a⃗ g1=( J 1W 1)
−1(

0
0
g
0
)

a⃗ g2=( J 1 J 2W 2)
−1(

0
0
g
0
)

a⃗ g3=( J 1 J 2 J 3W 3)
−1(

0
0
g
0
)

Since the inverse of a pure rotation matrix is its transposition, these equations are computationally 
more efficient when implemented as follows:

a⃗ g1=( J 1
- W 1

-
)

T(
0
0
g )

a⃗ g2=( J 1
- J 2

- W 2
-
)

T(
0
0
g )

a⃗ g3=( J 1
- J 2

- J 3
- W 3

-
)

T (
0
0
g )

This requires that W is a rotation only. This can be achieved by trimming the matrix to 3x3 which 
drops the translation components from the matrix. The same can be done with the other rotation 
matrices which drops the calculation entirely into three dimensions.

The other component is acceleration based on actual movement of the sensor through world 
coordinates. If there exists a parametric function that describes the location of an object in 3D 
space, we can establish the velocity as the first order derivative of the function:

v⃗= f ' (t)
and we can equate the acceleration as the derivative of velocity:

a⃗= f ' ' (t)

The used function for pose interpolation is the Hermite function which is the third degree 



polynomial:
h (t)=−3t 3+ 2 t 2

Generated from the following standard properties:
h (0)=0
h (1)=1
h ' (0)=0
h ' (1)=0
1−h(t )=h(1−t)

Which indicates that at t=0 and t=1 the velocity is zero, and therefore that a sequence of 
interpolations has a completely continuous velocity and we do not get spikes in acceleration at 
transitions. Since the endpoint of the interpolation is the starting point of the next, the position also 
has the required continuity.
The interpolation in full expands as follows:

an=sn h (t)+ en h(1−t)
With t in [0..1]. Since we interpolate over a period of time:

an( tcurrent )=sn h(
t current

t total

)+ en h (1−
t current

t total

)

Which can be rewritten as:

an( tcurrent )=sn+ (en−sn)h(
t current

t total

)

which provides us the angular velocity and angular acceleration as:

an ' (t current)=(en−sn)h ' (
t current

t total

)=(en−sn)(
−6 t current

2

ttotal
3 +

6∗t current

ttotal
2 )

an ' ' ( t current)=(en−sn)h ' ' (
t current

ttotal

)=(en−sn)(
−12 t current

t total
3 +

6
ttotal

2 )

Following the above, we can establish the location of the sensors by substituting the above equation
into the matrix sequences:

a⃗m1=(J 1W 1(
0
0
0
1
))' '

a⃗m2=( J 1 B1 J 2 W 2(
0
0
0
1
))' '

a⃗m3=(J 1 B1 J 2 B2 J 3W 3(
0
0
0
1
)) ' '

These equations can, with a bit of handiwork, be converted into a direct equation using the standard 
differentiation rules and the derivatives of sine and cosine. Due to the resulting size they are omitted
from this document.



The resulting acceleration can be added to the gravity component before translating it to sensor 
coordinates to yield the actual gravity component. Reduce the vector to three dimensions and add:

a⃗ g1=( J 1
- W 1

-
)

T ((
0
0
g)+ a⃗m1)

a⃗ g2=( J 1
- J 2

- W 2
-
)

T((
0
0
g)+ a⃗m2)

a⃗ g3=( J 1
- J 2

- J 3
- W 3

-
)

T ((
0
0
g)+ a⃗m3)

For an more accurate input, these samples have to be capped at 4g, aliased to the 256 sample points 
within that domain. Noise could eventually be added for a more realistic simulation.

Reproducing WiiMote readings

The WiiMote contains three accelerometers as part of a larger package, including Bluetooth 
equipment. It's programming interface is officially a trade secret, but there have since been made 
packages that can access the device and read data from it.[18] Since Windows, and especially its 
earlier versions, did only come with a small subset of supported Bluetooth device types, each client 
application needs to support each interface type. Windows does support the HID interface by 
default, so removing any Bluetooth replacement drivers gives the application an uniform access to 
the device under Windows.

The Wiiuse package is able to connect WiiMotes and provide us with data from its instruments. The
data returned from the accelerometers is sampled as an 8-bit integer number, whereas the original 
ADXL330 chip performs measurements on a continuous scale.[19] The original chip also mentions a 
minimum range of ±3g and an average range of ±3.6g in each cardinal direction.[20]

What is not specified is how the acceleration axes are mapped respective to the device, and what the
relation is between the received values and the actual acceleration present. The most effective 
approach to determining the cardinal directions is to open the WiiMote and observe the physical 
orientation of the mounted chip, but that does not prevent their labelling being changed during 
further processing. Instead, each of the axes can be labelled by putting the WiiMote on a flat surface
and printing the values for the received acceleration data. Flipping over the device so that the 
bottom end now faces up and taking another set of measurements will allow us to calculate the 
location of the up-down axis on the package relative to the device's coordinate system. The average 
of the two measured values will yield the reading for 0g in all directions, under the assumption that 
the measured values are linear respective to the input data, or otherwise mirrored around 0g.
The experiment can be repeated with each of the sides, and with the camera facing subsequently 
down and up.

Performing this experiment number of times yields values in the range (128±2, 128±2, 96±2) and 
(128±2, 128±2, 160±2), which establishes (128, 128, 128) as 0g and having 32 sample values . This 
also suggests that the accelerometer chip is axis-aligned to the Wiimote package, making it more 
intuitive for the programmer as well as making conversion of coordinates simpler. Repeating it for 
the other long sides yields the same difference in the first component, and either small end yields 
the same for the second component, reaffirming the centre of  (128,128,128) and the hypothesis that



the chip is indeed aligned to the total package.

In practice, the axes of the system are oriented as the following left-handed system:

Where the numerical higher value reported by the accelerometer corresponds to a gravitational 
force in that direction. For example a value of z above the average of 128 corresponds to the 
amount of resistance provided against movement in the positive z direction.

Observing the samples shows that even when not moving, there are repeated differences between 
consecutive measurements. With the samples being within 2 sample points of the average, we can 
estimate the typical inaccuracy to be 2 / 32, or 0.06 g in either direction. 

Since we know the difference between 0g and 1g readings, we can consequently test if the returned 
values are indeed linear for various accelerations. While it is difficult to accurately apply 2g to an 
axis, it is easy to apply to apply somewhere between 0 and 1 g to an axis simply by rotating the 
device. If the measurements are linear (to the extent the inaccuracy allows us to determine so), then 
the length of the observed vector relative to its centre should read 1g at all angles. 
In other words, for any observation where the object is at rest the following equation should hold:

32−err≤∣( x
y
z )−(

128
128
128)∣≤32+ err

This test can be performed with household equipment by positioning the Wiimote at an angle 
between a few books or boxes to fix it in place before reading out and recording the values from the
accelerometer.

In the simulation, there is an explicit conversion to sensor readings in it's integer form, which 
introduces the associated measurement errors. The conversion is performed by adding 128.5 and 
then truncating the remainder, effectively aliasing it to the closest sensor value. The result is then 
truncated to the 0-255 range such that excessive g values are equally lost in the input step of the 
algorithm.

Finding optimal algorithm settings

As part of algorithmic testing it becomes important to know what the performance of the algorithm 
is so that improvements can be objectively measured. A common statistic to do this is by using the 
mean square error metric, which tends to emphasize the outliers, and the mean absolute error, which
demonstrates the average error over the entire set.

Since the test generation knows the original configuration from which the sample data is generated, 
it is easy to compare the reconstructed data from the expected values. This can be used to establish 
the performance of the algorithm by accumulating error values over all generated data points by 
simply running several minutes worth of emulated poses through the algorithm to get a fair 



coverage of movement options. To guarantee that algorithms each receive the same test case, the 
time interval will be fixed instead of operating real time like the graphical version, as well as using 
a seeded pseudo-random number generator to guarantee the same output in each run.

The most straightforward comparison criterion would be to compare the angles of the configuration 
to their expected counterpart. However as previously demonstrated, this is not a completely fair 
estimate as some angles can in some conditions be modified without effecting the actual pose. The 
other alternative is to compare sensor or joint locations for both the original configuration and the 
calculated configuration. This of course has the downside that orientations may be ignored while 
they might otherwise be a critical part of the configuration. A good metric would compare both 
rotation and position in a balance that is the most relevant for its specific goal.

Experimental results

Accompanying this analysis, appendix A contains a selection of detailed results of experimentally 
testing the algorithms with various settings. While the large volumes of test data can be compared in
many ways, the graphs shown are listed according to the needs of testing the hypotheses. 

The results in the first plot show a number of important base results. It contains two mostly 
horizontal lines: one describes an answer of only zeroes, while the other shows the free form 
behaviour of taking just the gravity vector into consideration. In practice, the latter tends to flip the 
model an 180 degrees which yields a solution that matches the input sensors, but is both physically 
impossible and a long distance off from the real position. Any combination of using the input 
function and the constraint function however shows an error margin that is decreasing when 
motions get successively slower, to the point where they pass under the point where an uneducated 
answer provides better results. However, the situation does not hold where the individual motions 
exceed a certain velocity. The crossing point shows to be around 500ms. Since motions are selected 
by two random angles within the valid domain, the average generated motion crosses a third of the 
domain space in that time, which extrapolates to the point where a 1.5 second time between two 
extremes would be where the algorithm would provide better results than an educated guess. 

Plotting the statistics for the individual bones in the model it interestingly shows that the precision 
of the lower limbs is preferred at the cost of the upper limb, with the average answer being 
systematically the best in that case, whereas the improvement is much more significant in others. 
On the other hand, the shoulder joint provides three degrees of freedom – as much as the number of 
degrees provided by the accelerometer, and can often provide an entire arc of movement where the 
sensor readings remain the same. Therefore, using an approach that doesn't include previous states 
is not going to improve an answer, and explicitly finding the arc and resetting it to its centre will 
provide the possible optimum.

When adding any of the other constraints, it shows that the performance can go either way. Small 
weights provide a small improvement to the algorithm, whereas large weights tend to result in 
worse approximations. The effect of the additional constraints also differs with the velocity of the 
input sensors. The position and velocity constraints demonstrate to have a higher acceptable value 
for slower motions than what they do for fast motions. An additional observation is that a high 
position or velocity constraint produces a flat line below the uninformed answer. This is likely 
because the median value for each of the angles is not zero, and the function forces the answer to its
most average state.

The effect of the velocity constraint appears to be the least effective, where improvements to be 



gotten over the base choice happen on a case-by-case basis, suggesting it's not effective. Squaring 
the velocity constraint gives a more typical plot, where significant improvement can be found, with 
the peak settings being contested by

w=0.1
and 

w=0.05
For the position constraint, it is shown that increased velocities renders the effect of the constraint 
useless. Slower motions result in an increasing number settings appearing well below the 
unmodified equation, while fast motions show the constraint to result in worse answers. The 
optimum for the slower end of the domain is near the value

w=0.1
The squared position constraint follows essentially the same pattern, although the graph appears 
slightly less noisy as the base setting switches from best to worst, save from the highest weights, as 
well as most of the other plots reverse order of performance along with it. The optimum at lower 
speeds is expected to be at

w=0.05
where lower values resolve to the original plot and the higher values tend to a frozen state.

The full pose constraint shows relatively little improvement over the base equation, and especially 
at the first half of the plot where it was intended to provide better performance there's no apparent 
improvement. An interesting observation is that the constraint values are required to be significantly
smaller than those of the previous settings, with the weight for the squared constraint being 
approximately the square of the base constraint. This is probably due because the algorithm needs to
calculate in the time of the step and therefore produces larger error margins for the poor input 
quality compared to the time frame.



Live experiment
Since any implementation will be run on actual subjects, it would be prudent that a test is performed
with real-world data as opposed to generated data. For this, the subject will be put in a motion 
capture suit, and the WiiMotes will be strapped on top of the suit. The motion capture system used 
provides accuracy in the order of millimeters. The previous experiment shows that the observations 
are on average off by at least 10 centimeters. This factor 100 difference in accuracy makes the 
reference motion capture system an effective ground truth.

Inspired by the Wii's original purpose of playing games, a set of nine motions were chosen. These 
would have to be either mostly slow (favourable to the algorithm), fast (not favourable), and things 
in between. Individual items are selected to cover a broad and representative spectrum of possible 
motions. The list includes the sports included in the game of Wii Sports, the game that's bundled 
along with a new machine. The entire list consists of:

– Boxing. Fast jabbing motions between bounces in the upper arms. A regular boxer will never
stand still, giving the algorithm continuous amounts of accelerations in all directions to deal 
with.

– Sword fight. The medieval style involves swinging a fairly heavy piece of metal, which 
means long curves and lots of changes in directions, and their corresponding G forces. 
Games like Zelda: Twilight Princess expects the user to make very broad swings to trigger 
special abilities.

– Fencing. A different style, where there's very little movement in the upper arm compared to 
the wrist, which has to quickly manoeuvre in all directions to keep the opponent's rapier at a 
distance. This will most likely stress test the third joint.

– Tennis. Unlike boxing, there's a time of rest between individual swings, making this a lighter
test.

– Golf. Like tennis, this is also part of the original Wii Sports games. The user is expected to 
use the entire arm length to make one large swing, with times of rest in between.

– Billiards. Also consists of a sharp moment between moments of rest.

– Bowling. This is more a sport of control and starts the easy list. There's one swing, but there 
is no need for particular accelerations as you would expect in a golf swing, although there 
are significant differences in placing

– Shooting range. In motion, very little will happen, apart from aiming and potentially the 
acted feedback from the gun.

– Driving. The steering motion tilts the arms into different positions normally indicating the 
direction of the steering wheel. An educated driver can be expected to remain calm, giving 
smooth curves and little acceleration to deal with.

The test subjects will be given just the name of the motion, and the instruction to perform this in the
way of their own making, deliberately leaving them unaware about the purpose of each recording.

The recordings were performed with two participants, both were healthy males between 20 and 30 
years of age.



Post-processing

The motion capture data has to be processed, and the angles of the joints according to the proposed 
system have to be calculated, in order to establish the ground truth. Technical constraints prevent 
the motion capture software to record synchronously with the bluetooth connection reading the 
WiiMotes, which is read by a separate program. To realign the recordings, the angles are converted 
back to WiiMote acceleration data using the same logic as in the first experiment. This gives two 
plots for each input variable, which can then be shifted and manually overlaid to find their relative 
shift. To test for the possibility of clock drift, the registration is performed using either end of the 
plot and then compared if there's any change between measurements. After registration, the plots 
are trimmed, and the selection of WiiMote data is passed through the algorithm to create joint 
angles. These are then compared against the ground truth.

These recordings immediately demonstrate that it's problematic to actually keep the sensors located 
in place with the correct orientation. This manifests itself in plots where parts of the graph reappear 
partially or predominantly on different axes compared to their originals. In addition, the G-sensor 
recordings show their intrinsic nose, as well as noise caused by the sensor seemingly shifting in 
position during the recording. A few recordings were impossible to register as a consequence. 

To get a quantified quality of each recording, the reconstructed angles from the wiimotes are 
compared on a per-sample basis to the ground truth, after which error metrics can be established. 
Possible error metrics would be the mean (square) error between each of the angles, and the mean 
error between the actual locations in space. The former has the problem that differences in angles 
can give arbitrary values when the axis in question is near a state of gimbal lock, where large 
differences on one axis have little effect, or where one axis aliases for another and both can move 
freely as long as their sum remain the same. Potential problems with the latter is that the location is 
problematic to define, and that errors in earlier joints have a potentially magnifying effect on the 
location error at the end of the system. To provide an meaningful solution to this, the locations are 
taken at the end of each limb. This location is apparent for the first two limbs, but for the last limb 
this would mean the size of the person's hand, which is small compared to the rest of the system. 
Instead we assume the person holds a virtual object as in an actual game, with the WiiMote being 
the handhold, and the end of the limb being at the tip of the object, 50 cm away.

Experimental results

The experiment results in a series of individual pairs of angle vectors consisting of a vector for each
frame of input data after running the algorithm, and one for the reference as derived from motion 
capture. Since the purpose is to determine the quality, the actual vectors and individual frames have 
little meaning, and instead the difference between each pair of vectors is calculated and 
accumulated into error distribution plots. The analysis covers many details from individual 
experiments, which have been aggregated into the following collective results, that give a good 
indication of the average performance of the algorithm. 



The following graphs shows the average distance between the end of each limb and it's actual 
position, and the average difference between each solved angle an and its ground truth:
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Further test results can be found in Appendix B, which shows the individual error distributions as 
histogram plots. The relevant details thereof are briefly mentioned in the analysis.

This second experiment illustrates the problems that occur when using this method in practice. 
Observations show that in every experiment, the calculated hand position is half a meter away from 
the actual location on average, which is a significant error that renders the current implementation 
insufficient. This average distance is as unperformant and often worse as the average distance that 
would have been achieved by supplying an answer consisting of all zeros.

If we look at the detail plots, we see that the first two angles – the ones governing the upper arm 
take the form of a gaussian curve, and especially so in the second angle which determines the 
deviation of it's horizontal position. The plots also show that the mean is not centred around a 
difference of 0 radians, but rather off-center, indicating a bias. Since the actual positions of the 
devices aren't calibrated in any way, adding a system that can cover for the error between the actual 
placement and the intended placement of the sensor could possibly improve the final output. 

One notable outlier in the upper arm plots is the graph corresponding to the shooting task. During 
the recording, the participant held his arm stretched in horizontal position, with occasional 
emulation of knockback from the imaginary gun the subject was holding. This essentially means 
that the first and second sensor were consistently placed in-line with each other and the system was 
not physically given an opportunity to establish the actual orientation of the elbow's joint rotation 
axis. In mathematical terms, this rotation axis is the cross-product of the directions of the upper and 
lower arm. With the cross-product defined as a×b=∥a∥⋅∥b∥⋅sinθ⋅n⃗ and the theta corresponding 
to the angle between the limbs being continuously close to zero, we can see that the result of the 
product is also a vector of nearly zero length, effectively losing against noise influences.

The results for the elbow joint itself poses more serious problems, as the distribution plot seems to 
indicate that the computed angle is never accurate in respect to the actually reported angle, leaving a
blank space around the 0 radians of error. Instead the plots shows a peak at π /2 radians, or a 
quarter circle deviation, or have seemed to mirror the angle altogether. The effect of such a 
misplacement obviously has unfortunate consequences on the final output. 

A similar pattern appears in the wrist joints, which both seem to be the sum of two gaussians, their 
peaks at similar distances from the centre. This similarity implies that this joint belongs to the same 
solving issue. Further investigation will have to reveal what the source of this problem is, and how 
it relates to the current implementation.



Conclusion
In this thesis we have investigated the application of accelerometers available as off-the-shelf 
consumer hardware to perform motion capture on subjects. To this end we have performed two 
experiments, one to test our approach in theoretical terms, and one to test the applicability of this 
method in practice. While we have established that the pose can be approximated within a certain 
norm, the problem is not solved in the case where fast motions are required, which limits the 
practical use of the algorithm to only a subset of use cases. For those other cases where the tracking 
of fast movement is required, a different solution or algorithm is needed. There have been further 
difficulties with applying the method to actual hardware and subjects, and a lot of work has to be 
done in that area.

One of the reasons for this theoretical limit is that the full pose constraint as suggested has limited 
effect on the final result. For practical use of the full pose constraint, it may be wise to multiply the 
constraint formula by the time per frame to maintain better maintenance of settings when varying 
conditions.

One of the key observations of the second experiment is that the differences between the simulated 
environment and an actual implementation is that the differences are very large, with nearly twice 
the error as the optimum expected from the first experiment for the second and last bone. This has 
to be caused by the system which can't properly cope with errors introduced by a live environment. 
The results are still potentially usable when they are just limited to the upper limb, but for lower 
positions in the model, the accuracy has demonstrated to be insufficient, and further work needs to 
be done so that the effect of these errors can potentially be reduced.

One of the other contributing observations is that the orientation of the sensors seem to change over 
the course of the experiment, making it necessary to reposition sensors, or accounting for change 
during progress. The bulkiness of the used sensors can have had a big contributing factor to input 
errors, since smaller sensors need less force to be moved in conjunction with the subject.



Future work

Further developments might include other forms of post-processing. In several cases, it is possible 
to detect that the observed vector has significant portions that do not correspond to the gravity 
vector. Many other sources in the field have suggested the use of a Kalman filter to determine a 
final result based on a combination of input and expected future state.[21][22] To use this algorithm, 
the statistical deviations need to be known at computation time. While the deviation of the 
individual components is known by its technical specification, the deviation of the computed pose is
not known. Further tests can establish the needed deviations needed to implement the filter.

In the meantime, an increasing subset of consumer-enabled hardware contains the complementary 
pair of inertial sensors, with the accelerometer being one, and a solid-state gyroscope being the 
other. The combination has been demonstrated to be sufficient to compute individual directions by 
simple integration from the gyroscope only. This significantly improves the performance of the 
process as the pose can be directly established from the gyroscope orientation.

Within the process as described by this thesis, potential improvement can be achieved by dealing 
with input noise. The static noise given by a sensor that's perfectly still can to some extent be 
combated by using a sensor with a higher mechanical accuracy, or by specific calculations that 
compensate for the errors caused by friction and mechanical latencies generated by the internal 
movement of the sensor. 

Proper mounting of sensors, as well as calibration of the actual model to the actor in question can 
also help deal with the effect of sensors being placed on the subject in locations that deviate from 
what the algorithm was originally expecting. Limb lengths vary from subject to subject and have a 
noticeable effect on the forces that are observed by the sensor as per the following common 
equation for centripetal force:

F=mr ω
This shows that the size of the limb is directly proportional to the force generated by moving it. 

More research can be performed in determining what sources of noise have what kind of impact on 
the final outcome, both quantitative, and in ways how to filter or calibrate for specific sources.

In continuation of this work, the next key step is to find a way that avoids the mirroring issues 
found in the current implementation, as they are the current biggest cause of output error in its 
current state.
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