
Stochastic Active Learning with Monotonicity Constraints

Tijmen Kolkman

February 24, 2015

Abstract

Active learning can in many cases speed up classification tasks by combining expert knowledge

and knowledge about the structure of the data. When it is known that the class label increases or

decreases with the attribute vectors we can exploit this feature to greatly decrease the number of

labelled examples that is needed to construct a classifier. Here we study such algorithms both in

general and in the case where data exhibits such special features. These monotone relations form

the basis of the SMAL algorithm as described by Barile and Feelders in [1], which we will study

in more detail. We describe a special case that can lead to unwanted behaviour in this algorithm

and explore a number of possible alternative approaches that aim to prevent the occurrence of

this special case. We propose a number of changes to the algorithm that aim to reduce the

occurrence of this special case, possibly sacrificing some performance. Experimental results look

promising as they show only a minor drop in performance across our toy datasets and even

increased performance in some cases.

Chapter 1

Introduction

Active learning is a sub-field of machine learning which itself belongs to artificial intelligence. It

differs from standard supervised learning in that the active learner is allowed to choose which

data it wants to learn from. The hypothesis is that if the learner is allowed to decide for itself

which attribute vectors’ labels it wants to learn most, the algorithm will perform better with less

training.

The goal in both active and supervised learning is to learn a so-called classifier, which assigns

a class-label to each instance of the data-set. Here a class-label refers to an attribute that can

be used to describe the individual data instances. For example, a mass spectrometer can analyse

unknown chemical compounds and produce a histogram of relative mass-charge intensities. Since

different ions have different mass-charge values, the shape of the histogram allows an expert in

chemical science to identify which ions are present and label the chemical substance.

To learn the classifier learners need to be trained on a set of data for which the labels are

known, this set is often called the training set. A key challenge of machine learning is to decide

which part of the available data should be used for training and which for validation. The available

data is generally a sample from a larger domain space and need not be entirely uniform, that is it

might be skewed toward certain parts of the domain. It’s therefore common practice in machine

learning to set aside a part of the data for testing purposes to avoid over-tuning the classifier. If

to much of the data is used for training the classifier might generalize poorly to new instances

that weren’t part of the original data set. If the training set is too small it might not represent

the data well enough and lead to inaccurate classifiers. We note here a key difference between

active-learning and supervised-learning; a supervised learner aims to build a classifier using all of

1

the provided training data, whereas an active-learner aims to do so while using only a subset of

the training data.

Obtaining training data is usually a challenge. Since learners need some of the data for testing

the classifiers that were learned, only a part can be used for the actual learning. In addition,

labeled data is often scarce and expensive. In most cases each instance of a data-set needs to be

labeled individually by a domain expert by hand, e.g. in chemical science, providing a bottle-neck

for many learning applications. Active learners aim to overcome this problem by posing queries

of unlabelled data to the domain experts. The queries are chosen in a clever manner so as to

minimize the number of questions asked while obtaining a set of labels that represents the data

well. In this way active learners attempt to achieve good performance while keeping the cost of

obtaining labelled data to a minimum.

In most theoretical analysis, the domain experts are represented by oracles. An oracle is a

black-box which allows a learner to observe the label of any instance of the data-set it wants. Some-

times there are variable costs associated with each instance, or not all labels might be available,

as is the case in real life.

There are different sorts of labelling problems, but here we will only look at ordinal classifica-

tion. That is we assume that labels can be compared and ranked in some meaningful way. For

example, if a survey asks customers to rate their experience on a scale from 1 to 10, there exists a

clear order amongst the replies. A customer who writes down 4 is clearly less satisfied about some

issue than a customer who writes down 7. However, say we want to label the colors of different

flowers based on their external properties. The labels blue, green and yellow do not supply any

meaningful ordering information: We can not say that a blue flower is more ”flower” than a yellow

one, or rank different flowers based on their color.

In some cases, part of the domain knowledge is that there exists some relation between data

and its labels. Specifically it is assumed that attributes have a positive (or negative) influence on

the label. What this means is that if an instance from the data-set has attribute values that are

at-least as high as the values of another instance, its label can’t be lower. The main goal is to use

this information in an active learning setting when formulating the queries that the learner will

present to the oracle. The hypothesis is that the use of these so-called monotonicity constraints

improves the quality of the queries and allows for learning better classifiers with fewer queries.

Specifically we will look at the non-deterministic case. We assume that the oracle is allowed to

make mistakes when deciding the label of a query, leading to (possible) monotonicity violations in

2

the resulting labeling. This case has been briefly considered by Barile and Feelders in their work

on monotonicity constraints [1]. They propose an approach that aims to recover the underlying

monotone classifier when violations are encountered, based on a so-called relabelling-algorithm.

This algorithm can be proven to always return a monotone labeling and on average finds a solution

that yields better results than the original (possibly non-monotone) labelling. It can be shown

however that in some cases this approach fails dramatically. We set out by considering a special

case to illustrate this problem and show why the original approach fails. We design and test a

number of alternative query strategies that aim to fix this problem and improve primarily the

special case performance of the original algorithm,

3

Chapter 2

Preliminaries

We will now define the concepts discussed in the introduction more clearly. Our aim is to obtain,

for a given data-set, a set of ordinal class-labels. That is, we want to learn the label y ∈ Y for

each vector in the data-set, where Y = {1, ...,K} is an ordinal set of K class-labels. Our data-set

X consists of attribute-vectors x = (x1, ..., xm) ∈ X , where X is commonly referred to as the

attribute space. Without loss of generality we assume that the values of the attributes are taken

from R, so the attribute space is an m-dimensional space of real numbers X ⊂ Rm. We assume

that the objects in our data-set, which we will call vectors are generated independently from some

(unknown) probability distribution P (x, y). To clearly distinguish vectors and attribute values

we will use the following notation; Bold-face letters will refer to vectors. Plain-face letters with

subscripts will refer to attribute values. So for example x will be the vector consisting of attributes

x1, ..., xm.

We will call the assignment of labels to vectors a function f . The function f(x) assigns a label

from Y to the vector x, that is f is a function from X to Y. Here we make the specific distinction

between the data-set X and the attribute-space X : The function assigns a label only to vectors

that are present in the data-set, where sometimes the aim is to derive a general classifier for the

entire attribute-space. Torvik [11], for example aims to derive the values of the entire monotone

function over the attribute-space. The collection of all possible assignments will be called F . We

also define the function y that assigns to each vector its true label. The value y(x) denotes the

prior knowledge about our data and the correct label for vector x. For brevity we use the subscript

yx when referring to the value of y(x). Our goal is to build a classifier function h that predicts

the labels of all vectors in the data-set. The classifier h is a function from F , and assigns a value

4

from Y to each vector x . The classifier should aim to predict yx for as many labels as possible.

To measure the accuracy of a classifier a loss-function L(y, h(x)) is used, which reflects the cost

of predicting h(x) when the actual label is yx. An optimal classifier would be a function h(x)

that minimizes expected loss. A common choice as loss-function is 0/1-loss, in which a wrongly

classified vector incurs a fixed penalty of 1. For ordinal classification it makes sense to also take

the order of the labels into account, that is if a label is more wrong it should incur a larger penalty.

This feature is well captured by absolute loss, in which penalties are proportional to the distance

from the true value. An alternative to using abusolute loss is squared loss (or quadratic loss in

some cases), which has some advantages and some disadvantages over absolute loss. As the choice

of loss-function is usually dictated by practical concerns we will not further elaborate here.

Our domain-knowledge is expressed by so called monotonicity constraints on our data. Intu-

itively this means that if a vector x has one or more attributes that have a greater value than the

corresponding attributes of another vector x′ that vector should get a greater label. That is, if

we have some ordering amongst our vectors x and x′, say x ≥ x′, then the corresponding labels

should exhibit a similar order relation, y(x) ≥ y(x′). We define a dominance relation as a binary

relation on X such that for any pair of vectors x,x′ we have that if x dominates x′ every attribute

of x should be greater than or equal to the corresponding attribute of x′:

x′ � x ⇐⇒ ∀j=1,...,mx
′
j ≤ xj . (2.1)

This dominance relation is a partial order (or poset for short) that is, it is both transitive and

reflexive. We will use the notation (Q,�) to mean that set Q is a poset with dominance relation

�. We call two vectors a and b comparable if and only if we have that a ≥ b or a ≤ b. If all

vectors of a poset are comparable the order takes the form of a simple chain.

We call a function f monotone if for any two vectors x and x′ when x dominates x′ the value

of f(x) is also greater than the value of f(x′):

x′ � x =⇒ f(x′) ≤ f(x). (2.2)

Now if we say our data-set has monotonicity constraints we mean to say that for all comparable

vectors the dominance relation equation (2.1) holds and that equation (2.2) holds for our true

label function y. Since we want to build a classifier that closely resembles the function y it stands

to reason that equation (2.1) should also hold for h.

5

1,1

1,2

2,1

2,2

Figure 2.1: A partial order consisting of 4 vectors

To represent partial orders graphically we define an order-graph as follows: Let vertices repre-

sent vectors and directed edges represent order relations. If there is a directed edge from vertex

x to vertex x′ then vector x precedes vector x′ in the order. To avoid clutter transitive edges are

not shown. This means that if two vectors are comparable there should be a (directed) path from

one to the other. To improve readability all order-graphs will be presented in such a way that

successors are to the right of their predecessors. In other words all graphs can be read left-to-right

in increasing order.

Example 2.1. Let’s assume for simplicity’s sake that X = {1, 2} and m = 2. That is, we have

binary attribute values and vectors of only two attributes. Our attribute-space X will then consist

of the following four vectors (1, 1), (1, 2), (2, 1) and (2, 2) The partial order (X,�) can then be

expressed by the order-graph seen in figure 2.1. From the figure we see that the vector (1, 1) is a

predecessor of all other vectors, and that the vector (2, 2) succeeds all the others. We also see that

while both vectors (1, 2) and (2, 1) are successors to (1, 1), and both are predecessors to (2, 2),

neither can be compared to the other since there is no path from (2, 1) to (1, 2). In this example

we listed the values of all attributes inside the vertex. For clarity we will usually only display the

subscript of the vectors.

We define the following concepts which are related to partial orders: An upset ↑ (xi) of xi

contains all elements of X that succeed xi in the order: ↑ (xi) = {xj ∈ X : xi � xj}. Similarly,

a downset ↓ (xi) contains all elements that precede xi: ↓ (xi) = {xj ∈ X : xj � xi}. To refer

to the number of vectors in ↑ (xi) we use u(xi) and, analogously, for the number of vectors in

↓ (xi) we use d(xi). An upper set U of X is a subset of X that contains the upward closure of

all of its elements: xi ∈ U, xi � xj =⇒ xj ∈ U . That is, an upper set contains the upsets of

all its elements. A lower set L of X is a subset of X that contains the downward closure of all

its elements: xi ∈ L, xj � xi =⇒ xj ∈ L. That is, a lower set contains the downsets of all its

elements. Upper sets and lower sets are complementary, that is, if we have an upper set U then

the complement Ū = X \ U is a lower set of X. We conclude with an example illustrating upper

sets and lower sets, and the related concepts of upsets and downsets.

6

Example 2.2. In figure 2.1 if we want to check whether the set U = {(1, 1), (1, 2), (2, 1), (2, 2)} is

an upper set of X we need to make sure that for each of its elements the entire upset is included.

The upset of the first element (1, 1) are all the elements that succeed it in the order, from figure 2.1

we see that these are the elements (1, 2), (2, 1), (2, 2), all of these are also included in U . We follow

the same procedure for the other elements to find that U contains the upsets of all its elements

and is therefore indeed an upper set of X. If we list all upper and lower sets from the simple order

in figure 2.1 we get the following list of sets:

uppersets lowersets

∅ {(2, 2), (2, 1), (1, 2), (1, 1)}

{(2, 2)} {(1, 2), (2, 1), (1, 1)}

{(1, 2), (2, 2)} {(2, 1), (1, 1)}

{(2, 1), (2, 2)} {(1, 2), (1, 1)}

{(1, 2), (2, 1), (2, 2)} {(1, 1)}

{(1, 1), (1, 2), (2, 1), (2, 2)} ∅

Each line also illustrates how the complement of an upper set is a lower set and visa versa. Also

note that for each line we have that U∪L = X, as it should considering U and L are complementary.

7

Chapter 3

Active Learning

3.1 Active Learning

In general, machine learning aims to build a classifier based on some sample from the data for

which labels are already known, usually this sample is selected in one go, before the classifier

is learned. Challenges are how to select the sample and how to use remaining data to test the

classifier. For example if the chosen sample does not represent the data distribution well enough,

the resulting classifier might not generalize well to other, similar datasets. On the other hand,

if the sample is ’to general’ the classifier might not learn enough distinction between different

data vectors which leads to useless classifiers. Active learning is an approach that lets the learner

decide for itself how to build the sample. What this means is that the learner has control over

which vectors it wants to know the label of and use to learn its classifier. For example in a binary

classification problem, it would make sense to only want to train on vectors that lie closer to the

decision boundary, as they at more information than vectors that are farther removed. Where the

goal in general machine learning is to build a classifier that give an accurate description of the

data. Active learning aims to build an (accurate) classifier using as little of the data as possible.

[2]

Settles [8] describes an active learning cycle as follows: First a sample is selected from the data

based on some criteria, also known as a informativeness measure. The sample is presented to a

domain expert, which in this setting is called an oracle, who will decide the label for each vector

in the sample. The second step involves the learner updating its model, or current classifier, by

adding the information it gained from learning the new labels. Next we again select a sample, this

8

time the informativeness of the individual vectors still remaining changes due to the changes in

the model. Different types of (active) learners are distinguished by the methods they use to select

the sample and the informativeness measure they use to decide what to query next. The three

main selection scenarios identified by Settles [8] are: membership query synthesis, stream-based

selective sampling and pool-based sampling. Each scenario describes a common way to sample the

dataset and together they cover a large part of the learners seen in practice. The informativeness

measure is the score function that is maximized to find the optimal vector to query next. In the

literature the optimal query vector is denoted by x∗ and the measure usually has the form:

x∗ = arg max
x∈X

Sθ(x), (3.1)

where X contains all vectors in our sample and Sθ(x) is the score for vector x when using model

θ. Each step of the learning process the active learner will select some sample from the dataset

and for each of them calculate the score, based on its current model θ. The vector with the best

score is selected and its label queried from the oracle. This new information is added to θ and

the process repeats until the learner is satisfied with its classifier. This stopping criteria should

theoretically be based on the learners confidence in its solution, however in practise it is more

likely that learners stop well before to conserve resources.

3.1.1 Sampling settings

The sampling setting describes the method that is used to obtain the samples. There are three

general settings, synthesis, stream-based and pool-based sampling. These three should capture

all practical settings one might encounter while employing machine learning to learn classifiers.

Stream- and pool-based approaches process actual instances of the data set, whereas the synthesis

approach is allowed to form its own instances, granted that they fit somewhere into the feature

space.

The most general setting is membership query synthesis, where the leaner is allowed to formulate

and ask any query that fits its model. Typically the learner asks only queries that are sampled from

some underlying distribution of the input space, but with membership query synthesis it is allowed

to formulate a query de novo. This allows the learner to be very specific about the what it wants to

learn resulting in both flexibility and accuracy. This approach is attractive because it can be shown

that query synthesis is often both tractable and efficient for finite problem domains. The problem

9

is however that the domain should be well suited to handle a wide range of different queries.

Take for example the case of handwriting-recognition. Based on its model the learner might

decide to synthesize a hybrid character that would result in the most information gained. Such

characters would however have no syntactical meaning and a domain expert would have difficulties

interpreting and labelling them. Settles concludes that this approach might work best in fields

where non-human experts are used that have a way of interpreting in-between queries. Think

for example about a robot learning to judge its arm position based on the angles between joints.

Every angle combination would result in a proper spatial location which could be measure by

some outside observer, allowing the learner to synthesise whatever query it wants. The important

aspect to this setting is that the learner is very specific about the vector it samples and queries.

The value of a vector is already decided before it is either sampled or synthesised and subsequently

queries.

Selective sampling is an alternative to the membership query synthesis approach. It is assumed

that in this settings obtaining unlabelled vectors is inexpensive or free, so the learner can so to

speak sample first and ask questions later. The decision on whether to query a sampled vector

or not is usually based a query strategy which allows the learner to make biased random decision

where more informative vectors are more likely to be queried. Another approach is to assign explicit

regions op uncertainty, and only query the vectors that the learner is still uncertain about. The

key point here is that the learner is allowed to sample many vectors and decides whether to query

them on an vector-to-vector basis, therefore this approach is sometimes also called the stream-based

or sequential approach.

The pool-based sampling setting assumes that there are two pools of data available, a small

pool of labeled data and a larger pool of unlabeled data. The information in the labeled pool is

used to create a model that decides which of the vectors from the unlabeled pool to query next.

For many real-world applications it is possible to gather both these pools at once so no further

sampling is necessary. Typically the selection of the next query point is done in a greedy manner

by evaluating some informativeness criteria (based on the labeled data) until all of the unlabeled

vectors have been processed.

3.1.2 Informativeness measure

To select the next vector to query the learner computes the result of equation 3.1 for each of the

vectors in its sample. The process is also known as the query strategy as the decision which vector

10

to query is one of the critical aspects of the active learner. There are a large number of way to

calculate the informativeness of the vectors in the sample, based on the (estimated) distribution of

the data and the model that the learner is building. Settles [8] quite extensively describes a number

of the most used approaches, discussing the pros and cons for each. The main challenge is to decide

what constitutes ’most informative’ query: We can query the vector that would make the current

model change the most (that is the vector that maximizes the Expected Model Change) and hope

that in this way we can converge to the best model in the quickest manner. We could also query

the vector that would increase the learners confidence in its model the most (that is the vector

that maximizes the Expected Error Reduction), aiming instead to quickly find a model the learner

is most confident in. Both these approaches however can be computationally heavy since they

require the model the be retrained each time we want to consider a new vector. Our main focus

therefore will be instead on two other strategies, Uncertainty sampling and Query-by-Committee.

The most common and straightforward measure is uncertainty sampling. The key idea is that

the leaner has available a model θ that will be used to predict the labels for each unlabeled vector

and its confidence. This model θ can for example be obtained from some small set of prior available

labeled data or by analysing data that has been labeled so far. The learner selects the vector about

whose prediction it is least confident based on the value of its uncertainty measure. The form of

this measure depends on the sort of classification (amount of labels in the problem) and the aim

of the model (minimizing classification error, or log-loss etc. see [8]). In general, we want to find

the instance that we are least certain about:

x∗H = arg max
x

[
−
∑
i

Pθ(yi|x) logPθ(yi|x)

]
, (3.2)

where Pθ(yi|x) represents the probability of the label yi given x, under the current model θ. This

measure is sometimes also revered to as the entropy, which is a measure of ’uncertainty’ in the

distribution. So, in fact, we are looking for the vector x that would remove the most ’uncertainty’

from the solution if summed over the posterior probabilities of all possible labels yi ∈ Y .

A different approach is query-by-committee. The learner trains a set number of models θ(i)

that are consistent with the labels it has learned so far. Together the models for a committee

C = {θ(1), . . . , θ(C)}, if a model no longer agrees with all labels that have been learned so far, as

might happen after new information is added, the model is removed from C. The committee votes

on the labels of each the yet unknown query-candidates, allowing each member to predict the label

of the yet unknown vectors. The candidate about which most disagreement exists after voting

11

is the next query, since learning its label would eliminated the greatest number of committees

from C. To implement a query-by-committee framework two things are necessary; The ability to

construct a committee of rivalling models that each support different hypothesis, for example we

can have a number of different decision boundaries that support some set of known vectors. Once

the labels of additional vectors are learned, some boundary might no longer be valid and can be

eliminated. The second condition is that the disagreement between the committee members must

be quantifiable. For example with decision boundaries each remaining unlabeled vector will fall

to either side and we can measure the disagreement by simply tallying votes. We can formalize

the query-by-committee strategy as follows:

x∗V E = arg max
x

[
−
∑
i

V (yi)

C
log

V (yi)

C

]
, (3.3)

where V (yi) is the number of ’votes’ cast for yi being the best label for x and C denotes the

number of committees in C. We are again looking at a measure of entropy, meaning we aim to

query the vector that reduces the dissension the most.

3.2 Noisy Oracles

The basic assumption of most active learners is that their oracles will always return the true

label for the queried vectors. An interesting practical consideration is how the learner should

handle oracles that do not have this guarantee. In practice, the assumption that oracles don’t

make mistakes might be too strict. Human domain experts become tired or distracted and it

is not unthinkable that they make a mistake now and then. The aim of active learning is to

build a representative classifier by asking as few queries as possible. This makes the information

gained by each query more valuable, as each query should constitute as much information as

possible. However this poses a potential problem if this information can no longer be relied upon,

in the sense that the oracle might return the incorrect label. Some potential approaches that deal

with this problem have been investigated. A learner needs to be able to judge the quality of its

labeled instances, and decide how it handles potential noisy answers form the oracle. Important

considerations are whether to keep re-query the same vector if it is suspected to be noisy or to

simply abandon it to query something else. Sheng et al. [9] use an approach where multiple oracles

are used to improve the reliability of queried labels by selectively re-querying.

Another possible solution here is to use a query-by-committee approach that lets competing

12

models vote on the currently labeled vectors. If there is a lot of disagreement on a particular label,

the learner might decide to discard its label and re-query. There are however numerous problems

with this approach. Firstly, since we cannot simply select models that are consistent with the

current set of labeled instances as with the query-by-committee approach, how do we choose which

models form the committee? Secondly, should each model in the committee get the same vote,

or can some models be more right than others? Furthermore, can we simply choose to discard

labels we suspect to be incorrect? There is always a possibility that the suspected label was, in

fact, the correct label for that vector, which would lead us to discard useful information. Some

of these questions are considered by Barile and Feelders in the discussion of their active learning

algorithms for stochastic oracles in [1].

13

Chapter 4

Active Learning with

Monotonicity Constraints

4.1 Active Learning with monotone functions

The goal in (standard) active learning is to find those vectors that represent the dataset well

enough that a classifier can be learned while only part of the labels are uncovered. In active

learning with monotone functions the learning of the classifier is done implicitly while we are

learning. Our goal is to find query-candidates that are representative of the dataset. However we

aim to learn all we can directly each time we query for a label, instead of building a sample. What

this means is, that each time a label is observed we use the knowledge that we are working with

monotone functions to infer more information about our classifier directly. A monotone function

is a function whose values only increase (or decrease) as the function progresses. If we have a

function f(x) that is monotonically increasing we know that for a pair of values x, x′ we have that

if x ≤ x′ it follows that f(x) ≤ f(x′), figure 4.1 shows a function that is monotonically increasing.

If we know the value y of some point on a monotonically increasing function we can conclude that

any points above will have values that are at least y, while points below will have values that

are at most y. This observation is what we will use to learn additional labels from the labels

we observe from the oracle which should greatly decrease the number of queries it takes to learn

the entire classifier. While both monotonically increasing and decreasing functions can be used in

active learning, most literature focusses solely on increasing functions. This should however not

be viewed as a restriction, as the conversion from increasing to decreasing functions is trivial and

14

f(x)

x

a b c
0

Figure 4.1: The function f(x) is monotonically increasing. Intervals a and c are strictly mono-
tonic, meaning x < x′ =⇒ f(x) < f(x′).

all arguments made also hold in the decreasing case.

The key assumption in active learning with monotonicity constraints is that attribute values

have a strictly positive or negative influence on the class-labels. As discussed previously, if our

dataset has positive monotonicity constraints, a higher value on an attribute should not result in

a lower classification. In the case of negative constraints this relation would be reversed, a higher

attribute should not lead to a higher class-label. This assumption of monotonicity is rather strong,

but also provides a powerful tool when used in combination with active learning.

In practice there are many examples where we can find monotonicity constraints, for example

consider a bank which receives two loan applications a and b. If applicant a has a better credit

rating than applicant b, it would be strange that if b’s loan is approved, a’s would be be denied.

Intuitively one could say that once someone has been approved for a loan, every person with a

better credit rating should automatically also be approved. Another example comes from the

realty business; a housing agent judges property values by comparing it to properties that have

similar attributes. This process however is mostly done by looking at said property in person,

which is both costly and time consuming. Important factors in the pricing of a house are things

like lot size, floor area and the number of bathrooms, where larger quantities of any result in a

higher price. Clearly these attributes have a positive influence on the final price, making this

field a good candidate for learning with monotonicity constraints. By having the learner choose

which houses are best to get appraised, or queried, the workload of a housing agent can be greatly

reduced.

15

Many applications have such intuitive relations between attribute values and class-labels and

active learners with monotonicity constraints aim to exploit these relations to select better query-

candidates. In this section we will review some of the work done in this area that forms the basis

for our query strategies. We will start with the general case where we assume an unfailing oracle

that returns the true label for each query. Later we will discus the case of a noisy oracle which

has a non-zero probability of returning a label other than the true label. Different authors use

different nomenclature; what we call a labeling, others might refer to as classifier, model or simply

function. A labeling will be assumed to be monotone, that is equation 2.2 holds, if not otherwise

specified. For a dataset A we will use the notation (A,�) to indicate that it is a poset with an

associated ordering.

4.1.1 Deterministic case

We start with deterministic oracles, that is to say oracles that always return the true label, and

review the work of Barile and Feelders [1]. They derive an expression for computing the optimal

query-point by analysing the intuitive case of a dataset ordered as a simple chain. Unfortunately

solving the expressions turns out to be a hard problem. Therefore they develop a worst-case

heuristic which they implement in the MAL algorithm. In terms of the concepts of chapter 3.1

we have a sample consisting of the entire dataset and for each vector we want to evaluate some

expression that measures the value of learning its label. The model θ will simply consist of the

partial classifier we have built so far and each cycle it’s extended by adding the new information.

In this strategy all vectors are considered to be potential query-candidates. The key assumption

is that the best candidate is the one which allows us to infer the most labels. Or to put it differently,

we look for the candidate that, once its label is known, eliminates the most potential labels for

all the other vectors. For each candidate we want to estimate the number of labels that can be

inferred once its labels is known. That is we want to calculate:

E[N(xi)] =

l=k∑
l=1

P̂ (yi = l)I(yi = l), (4.1)

where P̂ (yi = l) is the estimated probability that the true label of xi is l and I(yi = l) is the

number of labels that can be inferred.

Since we do not know the distribution of the oracle the best approach is to estimate the

probabilities by using the monotonicity constraints. Without any further domain knowledge all

16

monotone classifications are equally likely and we can say that the set of all monotone functions is

uniformly distributed. In some fields one might expect that extremes, like cases where all vectors

have the same true label, are not as likely as the cases were the labels are spread more uniformly.

However, this is domain specific and it makes sense to ignore this aspect in favour of a more general

approach. For each query-candidate we can calculate the probability of its label by counting how

often each label occurs. The probability of vector xi having the label l is then given by:

P (yi = l) =
C(yi = l)

C
, (4.2)

where C is the total number of monotone functions, and C(yi = l) is the number of monotone

functions where xi gets assigned the label l. To find the best query-candidate we now only need to

find the maximum of the expression for the expected number of inferred labels. The only problem

that remains is finding the counts for the number of inferred labels and the number of monotone

functions. We will illustrate how these counts can be related to the concepts of up and downsets.

Suppose we have dataset and ordering (X,�) of n vectors which takes the form of a chain,

that is x1 � x2 � ... � xn. We are looking for labels that respect the monotonicity constraint,

given by: xi � xj =⇒ yi ≤ yj . For simplicity we will take all functions to be binary for now,

that is Y = {1, 2}. To get a monotone classification we can assign the label 1 to any initial

segment of the chain and the label 2 to the remainder. We also include the empty segment, which

would correspond to the case where all vectors get assigned the label 2, giving us a total of n+ 1

monotone classifications. To count the number of classifications where a vector gets the label 1 (or

the label 2) consider the following: Every time a vector x is assigned the label 1 all its predecessors

also need to get assigned the label 1, otherwise we would violate monotonicity. We know that

only vectors that succeed it in the order can potentially have the label 2, meaning that in every

monotone classification where x gets the label 1 at least some of its successors will have the label

2. We also know that if a vector gets label 2, all its successors must also get the label 2. We can

now conclude that the number of classifications where x gets the label 1 is equal to the number

of successors it has. Note that all the successors of a vector x belong to its upset ↑ (x). The

number of items in ↑ (x), and therefore the number of classifications where x gets assigned the

label 1, is given by: u(x). The reverse holds true for the number of times a vector is assigned the

label 2. Instead of items in the upset we count items in the downset of x and we find that the

number of times a vector x is assigned the label 2 is equal to d(x). The probabilities can now be

computed by plugging these results back into equation 4.2. Note that for a chain, we have that

17

for an arbitrarily chosen vector x all other vectors are either in ↑ (x) or in ↓ (x). We find that the

number of monotone functions is equal to u(x) + d(x), which is exactly n+ 1.

P (yi = 1) =
u(xi)

u(xi) + d(xi)
P (yi = 2) =

d(xi)

u(xi) + d(xi)
.

To calculate to expected number of inferred labels we also need to know the number of inferred

labels when xi gets assigned label l, I(yi = l). Imaging we presented vector xi to the oracle and

learn that its true label is 1. Due to the monotonicity constraint in equation 2.2 we know that all

vectors that are a predecessor of xi must also get the label 1. The predecessors of xi are those

vectors that belong to ↓ (xi) and therefore the number of inferred labels can be expressed simply

as I(yi = 1) = u(xi). The case where xi true label is 2 is similar but reversed; if xi gets the label

2 all its successors must also get the label 2 and we find: I(yi = 1) = d(xi). By plugging all this

back into equation 4.1 we find the following expression for the number of inferred labels N(xi)

when querying xi:

E[N(xi)] = P (yi = 1)d(xi) + P (yi = 2)u(xi) =
u(xi)d(xi)

u(xi) + d(xi)
+

d(xi)u(xi)

u(xi) + d(xi)
. (4.3)

The best query-candidate is of course the vector that infers the most labels and hence the vectors

that maximizes this expression, which we can find analytically: Let ca be the total number of

possible assignments, that is u(xi) + d(xi) = ca, then:

max(E[N(xi)]) = max(2
u(xi)d(xi)

ca
). (4.4)

Note that d(xi) = ca−u(xi) we can simplify this expression by substituting either u(xi) or d(xi);

max(E[N(xi)]) = max(u(xi)n− u(xi)
2). (4.5)

The right-hand-side of this expression is a quadratic equation and we can find the the maximum

by setting the first-order derivative to 0 and solving for u(xi) (mind that the d(xi) in the following

expression is the first derivative with respect to xi and not the number of items in this downset):

d

d(u(xi))
[u(xi)n− u(xi)

2] = 0.

18

1

2

3

4

5 6 7 8

Figure 4.2: A poset consisting of 8 vectors.

Solving this equation for d(xi) and u(xi) we find: u(xi) = n
2 , and by definition of n: d(xi) = n

2 .

The maximum of the expected number of inferred labels occurs when we choose the vector xi for

which the upset and the downset are of equal size, that is d(xi) = u(xi). To put it in other words,

the best vector to query is the vector which lies most in the middle of the chain, which intuitively

shouldn’t come as a surprise. In the worst-case we would still be able to infer half of labels by

asking only one query. This result is very similar to the binary search strategy used for searching

for an element in a sorted list; we can infer all labels by querying only log(n) + 1 times, if we

iteratively select the candidate that is in the middle and remove candidates that already have had

their labels inferred.

Extending this strategy to general posets is a little more involved as we can’t simply count the

member of the up and down sets. We will first illustrate the problem by applying the strategy

described above to the poset in figure 4.2. Observe that this time not all vectors are comparable

and we have an ordering that consists of two chains joined at the beginning. Intuitively the best

query-candidate would be one of the vectors from the lower chain, say vector x5 or x6, since

they would infer the most labels in the worst-case. If we would apply the binary search strategy

however we find that u(x5) = 3 and d(x5) = 2, and for the other u(x6) = 2 and d(x6) = 2. Both

not equal and in fact also not ”most equal”. If we look at x2 we find u(x2) = 1 and d(x2) = 1.

Clearly vector x2 is ”more equal” than vectors x5 or x6 and hence the strategy would decide vector

x2 is the optimal query-candidate. The problem here is that the strategy no longer considers all

monotone classifications for each case. If we look at x2 for example, we see that ↑ (x2) only has

1 member, namely x?4. Assigning the labels 2 and 1 (for the empty set) to x4 gives two different

classifications, but we could also assign the label 2 to any of the segments of the lower branch

(vectors x3, x5, x6,x7 and x8) and get a monotone classification. Clearly we can no longer just

count members of the up and downsets to find all monotone classifications. We need a measure

that allows us to also consider all the vectors that are in all the other branches of the order. The

answer is to count the number of upper and lower sets. Look again at the order in figure 4.2, if

we assign the label 2 to any final segment of any or both of the two branches and the label 1 to

the rest we find a monotone classification. Assigning the label 2 to vectors x4, x7 and x8 gives a

19

monotone classification. Or we could assign the label 2 only to the lower branch x3, x5, x6,x7 and

x8, which is also a monotone classification. It turns out that these final segments are all upper sets

of the order; assigning the label 2 to all members of an upper set and the label 1 to all members

of its complement lower set yields a monotone classification. If we want to know how many times

a vector gets assigned the label 2 we only need to count the number of upper sets in which it’s

included. Conversely, if we want to know how many times a vector gets assigned the label 1 we

count the number of lower sets in which it’s included. Hence we can rewrite the probabilities in

terms of upper and lower sets: a vector xi gets assigned the label 1 (respectively label 2) exactly

as many times as it is included in a lower set (respectively upper set). Clearly there is a one-to-one

correspondence between lower sets and monotone binary classifications. Plugging the new counts

into equation 4.2 yields:

P (yi = 1) =
L(xi)

L(xi) + U(xi)
P (yi = 2) =

U(xi)

L(xi) + U(xi)
,

where L(xi) denotes the number of lower sets that include xi, and U(xi) the number of upper sets

that include xi. Using the same approach as before we can determine the best vector to query by

maximizing the expected number of inferred labels. Unsurprisingly we find a similar result; we

should query the vector for which the number of times it appears in an upper set is closets to the

number of times it appears in a lower set. If we turn back to our example, the number of times

x2 appears in a lower set is 12, while the number of times it appears in an upper set is 7. If we

calculate the values for vectors x5 and x6 we find: L(x5) = 12 and U(x5) = 7, and L(x6) = 9 and

U(x6) = 10. Clearly we should ask the oracle for the label of x6 as our intuition predicted at the

start. Extending this concept to general classifications requires a nested sequence of lower sets of

(Q,�), say L1 ⊆ L2 ⊆ · · · ⊆ Lk−1. We can now build a monotone function by assigning to each

of the vectors in the lower sets its associated label, that is:

f(x) =

 j if x ∈ Lj \
⋃
i<j Li, j = 1,k − 1

k otherwise
(4.6)

Unfortunately counting the number of lower sets of a partial order is a hard problem and therefore

Barile and Feelders [1] propose a worst-case heuristic to solve this problem. The main result of

the strategy discussed still holds, although we cannot directly calculate the optimal point. We

still know that our best bet is to find a query-candidate that is somewhere ”in the middle”. This

20

is the basis for the heuristic. We want a strategy that still maximizes the number of labels that

can be inferred in the worst-case, where the worst-case is the potential label that infers the fewest

labels. For each vector xi we determine the size of its upset and its downset, giving us the amount

of labels inferred if we assign label 1 and label 2 respectively. The worst case then is if the oracle

answers the label belonging to the smallest set. The heuristic selects the query-candidate for which

the worst-case yields the best result, that is:

x∗ = arg max
x∈X

min{d(x), u(x)}.

Note how this heuristic still prefers vectors that are near the middle of the order: Vectors near the

edges of the order will have an up- or downset that is much larger than the other and get a low

value for the inner expression. Whereas this expression will be greatest for vectors that have up-

and downset of near equal size, which are the vectors near the middle. To illustrate, for the order

in figure 4.2, the vectors for which the smaller of its up- and downset has the greatest value are

x6 and x5, which is in line with both the results of the counting strategy as well as our intuition.

In the non-binary case, we can no longer assume we can always infer the true label from an oracle

answer. We therefore look at the number of labels that can be excluded from the interval [li, hi]

for each xi, where each vector has an initial interval of [1, k]. To count the number of labels that

are eliminated when xi gets the label yi = y we use:

N(xi, y) =
∑

xj∈↓(xi)

(hj − y)+ +
∑

xj∈↑(xi)

(y − lj)+, (4.7)

where z+ = max(0, z). The vector we want to query is the vector that eliminates the most labels

in the worst-case:

x∗ = arg max
xi∈X

min
y∈[li,hi]

{N(xi, y)}. (4.8)

4.1.2 Monotone Active Learner

The MAL algorithm keeps two lists: Q contains vectors whose labels are known and their labels,

while U contains vectors whose label is not yet determined. For each label MAL keeps an upper

and a lower bound of labels that are still valid. Each iteration of the main loop of the MAL

algorithm will calculate the score (equation 4.7) for all xi ∈ U . The vector with the best score is

selected and queried, added to Q and removed from U . Once the label is known, the information

21

1

2

3

4

5 6 7 8

1:2

1:2 1:2

1:2 1:2 1:2 1:2 1:2

2

3

4

5 6 7 8

1:2

1:2 1:2

1:2 2 2

Initialization: 1: x∗ = x5

1

2 1

2 3 3 2 1

1
1

1 2

1 2 2 2 2

2 2
1

2 1

2 0 0 0 0

2

3

4

5 6 7 8

0

1 1:2

1:2 2 2

2: x∗ = x2

1

2 2
1

0 1

1 0 0 0 0

Q = {∅} U = {x1,x2,x3,x4,x5,x6,x7,x8} Q = {x5,x6,x7,x8} U = {x1,x2,x3,x4}

Q = {x1,x2,x5,x6,x7,x8} U = {x3,x4}

2

3

4

5 6 7 8

0

1 2

1 2 2

Final:

1

2 2
0

0 0

0 0 0 0 0

Q = {x1,x2,x3,x4,x5,x6,x7,x8} U = {∅}

Figure 4.3: Initialization and two steps of the MAL algorithm. Indicated below each vector index
are the bounds, the first pane shows the true labels in the upper-right corner in green. The the
lower-left of each vector the score for that vector is show (resulting from equation 4.7). The bold
circles indicate vectors that are selected for querying, single (red) number indicate labels that are
predicted by the classifier and bold number are queried whereas other are inferred.

is used to infer tighter bounds on the remaining unlabelled points. If the interval of a vector

vanishes, that vector is also added to Q together with the inferred label and removed from U .

This process is repeated until all vectors are labelled or until a maximum of iterations has been

reached. See appendix A for a listing and a more detailed description. Example 4.1 illustrates a

the working of MAL.

Example 4.1. In figure 4.1.2 we show the working of the MAL algorithm on an example order.

At initialization the list Q will be empty and the list U of query-candidates will hold all vectors.

Each vector has associated an upper and a lower bound [li, hi], of labels that are still valid for

the vectors xi, we start out with the bounds [1, 2] for all vectors. If we apply equation 4.7 to

each vector we find that both vectors x5 and x6 infer 3 labels in the worst-case. We arbitrarily

pick x∗ = x5 and observe its label to be 2, adding (x5, 2) to Q and x5 is removed from U . At

this point the algorithm infers the labels of all vectors in ↑ (x5) = {x6,x7,x8} to be 2 as well

meaning we can also add those to Q and remove them from U . The situation is shown in the

second pane. Scores of vectors whose labels are known are set to 0 and we find that we again have

two query-candidates with equal scores, vectors x2 and x3. This time we pick x∗ = x2 and observe

the label 1. We add {x2, 1} to Q and since its label was 1 we infer all labels from ↓ (x2) = {x1}.

This situation is shown in the third pane. We are now left with two single vectors that only infer

their own labels so the algorithm finishes by querying for both. The final situation is shown in

the fourth pane. The vectors in the bold circles had their labels determined by the oracle. The

rest have had their labels inferred. Observe that the vectors that the algorithm chooses to query

22

are all towards the centre of the order.

4.1.3 Related work

Dasgupta [3] gives an analysis of this class of strategies which he classifies as generalized binary

search or GBS for short. Let H denote a hypothesis class and let Ĥ denote the effective hypothesis

class for a dataset X that is yet unlabelled. π will denote the probability distribution over our

class of effective hypothesis Ĥ. The goal is to find the hypothesis h ∈ Ĥ that is consistent with

the true (or hidden) labels of the vectors in X, in as few queries as possible. For a binary set of

labels {1, 2} assume that we have already queried for the labels of a number of vectors up until

the ith vector xi. The set S is a subset of the hypotheses from Ĥ that are still consistent with the

labels of the vectors that have been queried so far: S ⊂ Ĥ. Let S+
i be the extension of S where xi

gets assigned the label 2 and lets S−i be the extension of S where xi gets assigned the label 1. The

greedy strategy that Dasgupta [3] proposes is to select the xi for which the probability for the sets

S+
i and S−i are most equal, that is π(S+

i) = 0.5. Dasgupta [3] continues by proving that the upper

bound for the number of queries needed by a GBS strategy is equal to: 4Q∗ ln 1
minh[π(h)]

, where

Q∗ is the number of queries needed by the optimal strategy. In particular, if the distribution is

uniform, the upper bound reduces to 4 ln |Ĥ|. The class of strategies described by Dasgupta [3] has

clear similarities to the strategy proposed by Barile and Feelders [1]. Limit the effective hypothesis

class Ĥ to monotone functions that are valid on the data (Q,�) and note again the correspondence

between lower sets and monotone classifications. The sets S−i and S+
i are respectively the number

of lower sets that include xi and the number of upper sets that include xi. Our goal is now to

find the vector xi for which the probabilities of these sets are most equal. In other words we look

to find the vector which appears in the most equal number of upper and lower sets.

4.1.4 Stochastic case

Up until now we have made the assumption that oracles behave in a deterministic manner and

always return the same true label. In this section we will review the case where an oracle can be

incorrect and might not return identical labels when presented repeatedly with the same query.

The former point especially is important when considering the strategy employed so far, as it may

present problems with the monotonicity of the classifications. Take for instance a chain with some

hidden monotone classification. We present a vector xi to the oracle as before and receive a label

yi. Based on this label we infer the labels of points in the up- and downsets of xi and advance to

23

the next iteration. Next we query xj and receive the label yj . If everything goes as before (the

deterministic case) we should end up with labels such that either yi ≤ yj if xi � xj or yj ≤ yi

if xj � xi, and the monotonicity constraint is satisfied. However, since the oracle might return

labels that are incorrect we might also end up with either yi > yj if xi � xj or yj > yi if xj � xi,

which both do not satisfy the constraint in equation 2.2. Furthermore, if we infer labels from an

incorrect answer all of the inferred labels might also be incorrect. The main problem we have to

consider is how to deal with monotonicity violations in our (partial) classifier as the monotonicity

assumption was crucial for the inference done by the learner. We do note that we assume that our

oracle always does contribute some knowledge, meaning that the expert is expected to perform

better than random assignment of class labels to vectors. While this assumption is consistent with

intuition (and may seem trivial), Torvik [11] shows that in the binary case taking an error-rate

that is larger than 50% radically transforms the problem. He shows that if the error-rate q is

below 0.5 our objective is equivalent to minimizing the number errors in the classifier. If however

q is greater than 0.5 it becomes equivalent to maximizing the number of errors. It is therefore

important to make the restriction that our oracles have at least some knowledge of their domain.

Barile and Feelders [1] propose to solve the problem of monotonicity violation by repairing the

(partial) classifier that the algorithm is learning. They use a stochastic framework by Kotlowski

[5] that captures the non-deterministic behaviour of the new oracle and allows for the underlying

monotone function to be recovered. Finally they employ an empirical risk minimization approach

to find the best estimate of the Bayes classifier (the monotone function that best describes the

underlying distribution).

In the stochastic framework the original monotonicity constraint (equation 2.2) no longer holds

due to the fact that the underlying function is no longer monotone (in this case, the oracle), but we

do assume that the underlying distribution still exhibits so-called stochastic dominance. This new

constraint is less strict in the sense that we can no longer claim that the value of the classifier is

monotone, but instead we assume that the probability distributions P (x, y) for different values of

x can dominate each other. This concept is illustrated in figure 4.4, the (cumulative) distribution

to the right is dominated by the distribution on the left for each value of y. In our setting this

could be interpreted as follows: Take two vectors xi and xj . If we have that xi � xj then according

to stochastic dominance it should be more probable that xj gets a higher label than xi. We define

24

1

P (l ≤ y|x1)

1

y

k 1

P (l ≤ y|x2)

1

y

k.

0 0

Figure 4.4: Two graphs showing the cumulative probability distributions for two vectors x1 and
x2 of some label l being smaller than the value of y. The green distribution is clearly dominated
by the red distribution.

this relation as follows:

xi � xj =⇒ ∀j : P (y ≤ j|xi) ≥ P (y ≤ j|xj), (4.9)

where j = 1, ..., k. That is to say, if xi precedes xj in the order, the cumulative probability

distribution over all labels for xi should be above the distribution for xj .

With this in mind we can begin our search for the underlying monotone function. It should be

noted that we assume that the underlying function that the oracle uses to generate its responses

is still monotone and that the oracle simply makes mistakes somewhere along the line. This also

means that we assume that there is some ”true” monotone function that we are trying to recover

by probing the oracle in clever spots. We will call this function t. In a sense we now have two

parallel goals. On the one hand there is the active learner who aims to piece together a classifier

by repeatedly querying for new labels. On the other hand we have our stochastic framework whose

aim it is to make sure this partial classifier we are learning stays monotone. It is important to

keep this distinction in mind, as this will be the basis for the final algorithm (SMAL). We will

start by working with the stochastic framework part to find a way to as it were ”re-monotonize”

the partial classifier.

Kotlowski [5] shows that the Bayes classifier can be found by finding the function that min-

imizes the Bayes risk, that is the function that expresses the expected loss for each potential

function. We call the collection of all monotone functions on our data F and we want to find the

25

function f∗ ∈ F that best matches the true function t. We can formulate this as follows:

f∗(x) = arg min
j∈Y

∑
y∈Y

L(y, j)P (y|x).

Where L(x, j) represents the loss incurred if our function predicts y and the true label is j and

P (y|x) represents the probability distribution of observing the label y if querying vector x. It can

be show that if we use a convex loss-function and if the distribution satisfies the stochastic order

constraints, the function f∗ is monotone [5]. That is, given these conditions, we have the following

for any two vectors xi and xj :

xi � xj =⇒ f∗(xi) ≤ f∗(xj).

In other words, if we can estimate f∗ we are guaranteed to end up with a classification that satisfies

the monotonicity constraint in equation 2.2, which was our initial goal.

4.1.5 Stochastic Monotone Active Learner

We return to the work of Barile and Feelders [1], who show a possible approach to estimating

f∗ using a risk minimization approach. They continue by implementing this ”relabeling” step

into the MAL algorithm to solve the problem of monotonicity violations. The result is a two-step

algorithm they dub SMAL (for Stochastic Monotone Active Learner), which shows encouraging

results in both artificial- and real-data experiments. The first step is the same as in the MAL

algorithm, we look for the best query-candidate and request its label. In the second step the

(partial) classification we have so far is passed to a relabeling-algorithm which returns the best

estimate for the true classification.

The Bayes classifier can be estimated by minimizing the loss:

f̂(x) = arg min
f∈F

n∑
i=1

L(yi, f(xi)),

where n is the total number of vectors in the dataset. L(yi, f(xi)) is the loss incurred by function

f when predicting the label for the ith vector. Here yi indicates the label of the function we want

to ”monotonize”. That is, the (partial) classification the learner has learned up until now. The

relabeling-algorithm aims to find the function f̂ that minimizes absolute loss and returns for each

labelled vector an interval [li, hi] of optimal labels (For a more thorough description see chapter

26

8).

The SMAL algorithm keeps a list Q of vectors that are labelled so far and a list U of unlabelled

vectors. Each iteration of the main-loop starts with a call to the relabeling-algorithm, which assigns

to each vector in Q a minimum and a maximum label (l, u). For both the lower and the upper

classifications we calculate the score and average to find the optimal query-point, the new label is

added to Q and removed from U . No inference is done while the main-loop runs, since we can’t

guarantee that the values in (l, u) are the correct labels. Instead the loop continues until either U

is empty or a maximum number of iterations has been reached. If there are any vectors xi in Q

for which li = hi at termination of the main-loop, we assign them their label and infer what labels

we can. The algorithm returns the upper and lower bound for all vectors in Q. The key point is

that once we find a conflict in Q the relabelling-algorithm will solve this conflict and return the

best estimate for the ”true” monotone function. Results indicate that this estimate is closer to

the ”true” monotone function after relabelling than it was before relabelling (see appendix A).

Conflicts arise naturally while progressing through U and as Q grows it becomes more likely that

mistakes made by the oracle introduce monotonicity violations which the relabelling repairs.

27

Chapter 5

Analysis and extension of SMAL

5.1 Problem Description

There is a potential problem with the SMAL algorithm which lies in the way the monotonicity

violations are handled. Each iteration of the main-loop will pass the partial classifier to the

relabelling-algorithm to ”re-monotonize” any violations.

As mentioned, the algorithm does not perform any inference during the loop. This is done

because the relabelling-algorithm might change any label if the change will result in a classifier

with smaller empirical loss. Therefore it can not be guaranteed that any inferred information

stays valid across multiple steps of the iteration. If for example we find a vector which gets

assigned the smallest label, we might infer that all vectors in its downset necessarily also need to

be assigned the lowest label. If the next iteration changes the label of this vector to the largest

label, we can no longer make any inference about the vectors in its downset. Hence the choice

was made to do no inference until the main loop terminates, after which it is certain the (partial)

classifier will no longer change. However, we still compute scores for each query-candidate, and

1 2 3 4 5 6
1:2 1:2 2 1:2 1:2 1:2

1 2 0 0 0 0

1: x∗ = x3 Q = {x3} U = {x1,x2,x4,x5,x6}
1 2 3 4 5 6

1 1 1 1 1 1

1:2 1:2 1:2 1:2 1:2 1:2
1 2 3 3 2 1

Initilization: Q = {∅} U = {x1,x2,x3,x4,x5,x6}

1 2 3 4 5 6
1:2 1 2 1:2 1:2 1:2

0 0 0 0 0 0

2: x∗ = x2 Q = {x2,x3} U = {x1,x4,x5,x6}
1 2 3 4 5 6

1 2

Final: Q = {x1,x2,x3,x4,x5,x6} U = {∅}

2 2 21

Figure 5.1: A chain of vectors x1 � x2 � · · · � x6. To the upper-right corner the first pane shows
the true label. Below the vector index for each vector the bounds can be found. To the lower-left
corner of the first 3 panes the score is displayed.

28

during this computation any label that can be eliminated before calculation will be removed.

This is in fact desirable, for if we didn’t, the scores would not properly reflect the ”information

gained” for each query-candidate. It is this implicit inference step that can potentially lead to

very poor performance, as we will show in this section. We will start out with a simple example

to illustrate the problem and continue to derive a more general description. In the second part we

will propose a number of alternative query strategies that remedy the problem and aim to avoid

poor performance in worst-case scenarios.

The following example will show a simple case that will provide some insight into why this

problem occurs.

Example 5.1. Consider the chain depicted in figure 5.1. Like before, we can skip the first

relabelling step and compute the score with equation 4.7. Vectors x3 and x4 are tied with 3

eliminated labels, we make the arbitrary choice for x∗ = x3 and request its label. This time the

oracle makes a mistake and instead of the correct label we observe the label 2 for x3 (indicated in

bold and blue). As we are not finished there is no inference step yet and the algorithm computes

the scores for the next set of query-candidates. However, the scores for the successors of x3 are

calculated based on the information that their predecessor’s label is 2 and all default to zero. This

is desired behaviour, since had the label for x3 been correct, little would have been gained in

requesting the label of any of its successors, and we expect the relabelling step to repair this error

in some future iteration. If we turn to the working of the relabelling-algorithm, we see that, since

its objective is to minimize absolute-loss, it can loosely be said that it aims to change as few labels

as possible. Since x3 received the highest label, the relabelling-algorithm would only consider

changing its label if any of its successors had a label that violates monotonicity. The error made

by the oracle can thus only be corrected if SMAL chooses any of the vectors in ↑ (x3) as query.

Unfortunate they all get a score of zero, because since x3 has the label 2, the algorithm concludes

that no information is gained by querying anything that succeeds it in the order. This means that

at termination of the main-loop the algorithm will conclude that x3 was labelled correctly and

it can be safely used to infer labels. The situation at termination can be seen in the final panel:

The algorithm returns a classifier which predicts the labels shown in the lower-right corner, only

predicting the correct answer one out of three times.

From example 5.1 we can conclude that, clearly, we cannot simply rely on the relabelling-

algorithm to catch all errors. If we get unlucky and the error happens to infer the labels of all

vectors above or below the query-point the error will never be discovered, in the binary case the

29

SMAL algorithm effectively reduces to MAL. We continue by investigating ways to remedy this

unwanted behaviour. If we can somehow increase the number of monotone functions that are

generated by the relabelling-algorithm the chances of finding dissension amongst them increases.

We start by looking into the cause of the malfunction in SMAL and look for ways to counter this.

We also look to investigate the effect of considering more than just the minimal and maximal

monotone functions returned by the relabelling-algorithm.

The effect of this is most clearly seen in the binary case. Assume we have a chain where the

true labels of all vectors are 1. The SMAL algorithm will select the vector that is most in the

middle for querying and observe its label. If the algorithm observes the label 2 it will infer that

the label of all vectors in the upper part of the chain are also 2, effectively mis-classifying over

50% of the vectors after just one query. More importantly, the next query will always be taken

from the lower part of the chain, as the vectors in the upper part already all classified. Whatever

label we observe next has no influence on the labels in the upper part: If we observe the label 1,

we only infer something about the lower part of the chain. If we observe the label 2, all vectors

succeeding our query-point are inferred to be 2 but that doesn’t change the labels of the previously

mis-classified vectors. Effectively by mis-classifying the first vectors we have excluded half of the

chain for consideration and inferred the incorrect label for all of them.

At this point we can establish an upper bound on the number of mis-classifications the algo-

rithm makes in the worst-case scenario. For the worst-case we assume that all the labels that we

observe from the oracle are the incorrect labels. For simplicities sake we take our order to be a

chain of n vectors and let our set of labels Y be {1, 2}. Each vector either belongs to the majority

class, if its label is the most common (most occurring) on the chain, and to the minority class

otherwise. Now let the set M = {m1,m2, . . . } be the index of the vectors the algorithm chooses to

query, that is xm1 is the first vector the algorithm queries. Since we have a chain we can assume

that the algorithm will always query in the middle of the set of unlabeled vectors and due to the

problem described above we know that after each query, half of the chain will be dismissed by

the algorithm. By definition we know that the labels on the chain are monotone (increasing) and

we therefore know that a vector in the middle of the chain should always belong to the majority

class. We will now show that in the worst-case the number of mis-classified vectors is equal to the

number of vectors that belong to the majority class. First we know that in the initial step the

algorithm will select the vector xm1
whose true label belongs to the majority class, but since we

are assuming the worst-case we will observe it as belonging to the minority class. The algorithm

30

will not technically infer any labels until termination of the main loop, however since the informa-

tion of certain vectors will no longer change we will for simplicity assume that inference is done

right after observation. There are now two possible cases: The minority class has the lowest label.

Or the minority class has the highest label. It is easy to see that the only difference between the

two is that in the case where the minority class has the label 1 the algorithm infers the labels

of the vectors in its downset. And visa versa if the label is 2 it infers the vectors in its upset.

Going with the first base where the minority class has label 1, we thus infer that all vectors in the

downset of xm1
belong to the minority class, that is ∀xi ∈↓ (xm1

) : yi = ym1
. The next step is

to show that for a given sub-chain {mi + 1, . . . , n}, that is the chain resulting from removing all

vectors in the downset of mi, we again predict the minority class for all vectors in the remainder

of ↓ (xmi+1). This proof is trivial, as we know that by definition all vectors belong to the majority

class and that we will therefore observe the minority class for any vector in the remaining chain

when we query. We find that a given query-point xmi+1 will result in observing the minority

class and the inference of the minority class for all the vectors in its downset. At termination

we either have a chain consisting of one or two vectors. If there is one vector left the algorithm

will always observe the minority class. If there are two vectors left the algorithm either picks the

lowest or the highest vector in the order. In the latter case the algorithm observes the minority

class and can infer the remainder. In the former case the algorithm requires an additional step as

no inference will be done. The above shows that in the worst-case scenario where the algorithm

always observes the incorrect label it will predict the minority class for every vector. Therefore

in the worst-case the algorithm mis-classifies all vectors that actually belong to the majority class

and we can express an upper bound on the fraction of errors in the solutions as |majority|n where

|majority| is the number of vectors belonging to the majority class.

If we look closer at the way the relabelling-algorithm works, we can see that, in fact, some

vectors will never get assigned a different label in any relabelling. Errors are repaired by finding

the monotone function f that has the smallest loss when compared to the original non-monotone

input. For example, in figure 5.1 if all vectors have a true label of y = 1 and lets say we observe the

correct labels for all vectors but y3. The solution with the smallest loss would be to simply change

the label of the vector x3 to be y3 = 1. Now consider the case where the labels for all vectors

following x3 are also incorrect that is, we have the labels (1, 1, 2, 2, 2, 2). There are 4 incorrect

labels in this labeling, namely the labels for vectors x3, x4, x5 and x6. However this labeling is a

proper monotone function and the relabeling-algorithm terminates, having found a solution with

31

0 loss. Clearly we need a violation of monotonicity to have any chance of correcting mis-labelings.

As the number of comparable vectors decreases and we consider problems with more labels

the effect of this problem diminishes. Fewer comparable vectors means fewer labels inferred for

each observed label which in turn means fewer mis-classifications. More potential labels means

that there is a smaller chance that parts of the order are considered ”classified”, since this only

happens when the interval of potential labels for a vector is reduced to only one value. So while this

problem is less pervasive in general partial orders with more than two labels, the SMAL algorithm

can potentially mis-classify parts of the data if it gets ”unlucky”. The root of the problem lies in

the fact that the relabeling-algorithm will not always help resolving problems under circumstances

where the incorrect labeling doesn’t contain any monotonicity violations. Therefore our approach

will be to add an additional step to the algorithm that will attempt to ”repair” potential problems

by maximizing the probability of introducing a violation to the current solution.

Firstly consider our chain example in figure 5.1 where all vectors have that yx = 1. We again

observe the label 2 for x3. Relabeling won’t have any effect until we have a conflict, and the only

way to have a conflict is to either observe the label 2 for a vector from the downset of x3 or the

label 1 for a vector from its upset. Having either would result in a classification that violates

monotonicity and will cause the relabeling-algorithm to change the labels of some vectors. In this

case, if we would query again and observe the label of x4 to be 1, the relabeling algorithm finds

two optimal relabelings: yx3
= 1 and yx4

= 1. Or yx3
= 2 and yx4

= 2. SMAL would then proceed

to use both to calculate the next query-point, picking either x5 or x2 as the next query. Our aim

is thus to query vectors that will have the best probability of yielding more than 1 relabelling. We

will now look further into identifying such vectors.

Assume Y ∈ {1, . . . , k} and let Q again denote the set of points for which a label has been

observed and let (Q,�) be the poset made up of these points. We are looking for minimal and

maximal elements from (Q,�) for which we have observed the labels 1 and k respectively. Each

of these points have the potential of excluding parts of the solution space from consideration by

the learner and therefore should be considered for ”reparation”. To put it differently, we need to

query a point such that, if added to Q, is likely to cause a violation of monotonicity. Assume we

have some suspect vector xu that is a maximal element of (Q,�) and we observe its label to be k.

To violate monotonicity we need to observe a label the is a successor to xu and has a label smaller

than k. This clearly means we need to query a vector that is a member of ↑ (xu). Similarly, let xl

be a minimal element of (Q,�), we want to observe a vector from ↓ (xl) with a label larger than

32

1. We define B+ to be the set of vectors in the upsets of any maximal element of (Q,�), that is:

B+ =
⋃

xu∈X
[↑ (xu) \ xu] s.t. xu is a maximal element of (Q,�). (5.1)

The set B+ contains all elements that succeed any element that lies on the end of a branch of our

current ordered set of labelled vectors (Q), see figure 5.2. Note that the maximal element itself is

excluded from B+ as we do not want the learner to re-query this item. Similarly we define B− to

be the set of vectors in the downsets of any minimal element of (Q,�), that is:

B− =
⋃

xl∈X
[↓ (xl) \ xl] s.t. xl is a minimal element of (Q,�). (5.2)

In addition we define B to be the union of B+ and B−:

B = B+ ∪B−. (5.3)

We can use the stochastic dominance assumption in equation 4.9 to find the vector that has

the largest probability of causing a conflict. Recall that we have xi � xj =⇒ ∀j : P (y ≤ j|xi) ≥

P (y ≤ j|xj), for two vectors xi and xj . Let xu be a maximal element from (Q,�), we can find the

vector xuc with the greatest probability of causing a conflict with xu by maximizing the cumulative

probability of observing a smaller label:

xuc = arg max
xc∈↑(xu)

P (yc < yu|xc). (5.4)

Similarly we can find the vector xlc that maximizes the probability of causing a conflict with a

minimal element xl in (Q,�):

xlc = arg max
xc∈↓(xl)

P (yl < yc|xc). (5.5)

To find the optimal conflict vector x∗c the learner needs to compute which of the vectors in B

has the greatest probability of causing a conflict with any of the minimal and maximal elements

from (Q,�). Let MU be the set of all maximal elements in (Q,�) and let ML be the set of all

minimal elements in (Q,�). Then x∗c is an element from B that maximizes either 5.4 or 5.5 over

33

all elements of MU and ML:

x∗c = arg max
xc∈B

[
max

xu∈MU
P (yc < yu|xc), max

xl∈ML
P (yl < yc|xc)

]
. (5.6)

Unfortunately there is no way to explicitly compute the probabilities in this expression. However

we can theorize that as the cumulative distribution of a given vector is always dominated by its

successor (by definition of stochastic dominance), the vector for which we have the best chance to

observe a label that is smaller than that of its predecessor should be its direct successor. That is,

if we have a vector xi and its direct successor xj than querying the label of xj gives us the best

chance of observing a label that is smaller than that of xi. If our order (X,�) is a chain, we can use

the stochastic order constraints to find a x∗u and a x∗l , the optimal conflict vectors for the maximal

and the minimal element respectively: Assume we have the maximal element of (Q,�) xu with

observed label yu = k. B+ will contain the upset of our maximal element, that is ↑ (xu) ⊂ B+,

and we know our query-point must come from there. For each pair of vectors xi,xj ∈↑ (xu) we

know from equation 4.9 that if xi < xj then P (yi ≤ l|xi) ≤ P (yj ≤ l|xj)∀l ∈ {1, k} and therefore

P (yi ≤ yu|xi) ≤ P (yj ≤ yu|xj). Clearly this means that if we want to maximize the probability of

generating a conflict we should query the vector that is a direct successor of xu, since stochastic

dominance tells us that the probability of finding a smaller label can only decrease (or at best stay

the same) if we move toward more distant successors of xu. The element of X that is a direct

successor of xu is the smallest element from its upset, excluding xu itself, that is: if we want to

observe a label yc < yu we should pick the vector xc that is the smallest element of ↑ (xu) \ xu.

Note that xc is a member of the set B+. A similar argument can be made for the minimal element

of (Q,�) xl with observed label yl = 1, where we want to query a vector that is direct predecessor

of xl.

In summary, if we want to maximize the probability of generating a conflict in our partial

classifier we should pick either a predecessor of a minimal element of (Q,�), or a successor of

any of its maximal elements. The element with the highest probability of causing a conflict will

be either the direct predecessor of the minimal element (Q,�), or the direct successor of the

maximal element of (Q,�). There is currently no theoretical basis on how to proceed, since we

cannot explicitly compute the cumulative distributions for the observed labels. In addition, both

x∗u and x∗l need not be unique so there may be multiple optimal solutions. We consider a number

of query-strategies that use different approaches for estimating the best vectors in B to query.

We aim to devise strategies that maximize the probability of discovering any mis-classified vectors

34

x1

x2

B−

B+

Q−

xl

xu

Figure 5.2: Illustration of the boundary zone. The axis represent the two attributes x1 and x2.
The maximal and the minimal vectors all lie on the dashed diagonal line, the dots represent two
such vectors xl and xu. The circle in the centre marked Q− is the set Q without its minimal and
maximal elements.

while respecting the active learning tenet of minimizing the number of queries.

Our new algorithm SMAL+ will introduce an additional intermediate step that will apply the

alternative query-strategies if some ”repair condition” is met. Additionally we propose a number of

different approaches for combining the number of optimal monotone functions that are generated

by the relabelling-algorithm.

SMAL+ is supplied a list of unlabelled vectors U , a list of vectors that have been observed

so far Q and a maximum number of iterations. The algorithm listed in 1 has a similar structure

to the SMAL algorithm, but there are two major differences: In lines 5-12 denoted by R are all

optimal monotone functions. The score H is calculated over all monotone functions. On line 3-4

we apply the new query-strategies if the repair condition is met. This condition will depend on the

set Q of labels observed so far. If the condition isn’t met, the original strategy is used in line 12.

The algorithm returns an interval of possible labels (l, u) for each vector. Example 5.2 illustrates

the new algorithm.

Example 5.2. In figure 5.3 we have a partial ordering on 8 points. Assume binary labels {1, 2}

and Q = {(x3, 1)} after one iteration. For this example we set all true labels to be 1. Say SMAL+

chooses x∗ = x5 in its second iteration and observes the (incorrect) label y5 = 2. We now have

Q = {(x3, 1), (x5, 2)}. Lets say that in the third iteration the ”repair condition” is met and the

35

Algorithm 1 SMAL+(Q,U,max)

1: while max > 0 ∧ U 6= ∅ do
2: R← Relabel(Q)
3: if Repair condition then
4: x∗ ← QueryStrategy(Q,U)
5: else
6: for all x ∈ U do
7: for all r ∈ R do
8: Hr(x)← query value of x using r
9: end for

10: end for
11: H(x)← ∑

r∈R
(Hr(x))/|R|

12: x∗ ← arg maxx∈U (H(x))
13: end if
14: y∗ ← O(x∗)
15: end while
16: (l, u)← Relabel(Q)
17: return (l, u)

31

2

4

5

6

7

8

Figure 5.3: Partial order example

36

algorithm takes the alternative route trying to introduce a monotonicity violation to (Q,�). Our

boundary set would consist of the union of the sets containing the vectors below x2 and above

x5, that is B = {x1,x6,x7,x8}. We know from stochastic dominance that vectors near the edge

of a poset are most likely to be observed having the minimum or maximum labels, so it makes

sense to pick either a successor of x5 or a predecessor of x2 as our best bet to introduce violations.

However, as we do not know the distribution used by the oracle we can only guess at which holds

the optimal point. We can however make some observations that may prove helpful in designing

the query heuristics; One could argue that while we do not know the distribution for the observed

labels we can say something about their relative structure. Since the distributions of vectors near

the edges tend to ”collapse” more toward the minimum or maximum label, we would want to

query a point that is nearest to the centre as its distribution would be more spread out as it

were. In this case, querying vector x1 would likely result observing the label y1 = 1 and not

introduce a violations. On the other hand the observed label for x5 is more likely to be more

equally distributed across the spectrum. In conclusion querying farther from the edges has more

potential of creating the violations we are looking for. Another point to consider is that, since

the main damage done by mislabelled vectors is done when we use their information to infer more

labels. It would therefore be more detrimental if we observe the incorrect label for a vector that

infers the labels of many vectors, as opposed to observing the label of a vector that infers but

few. From this we can conclude that we should look more closely at the labels of vectors that

can potentially do a lot of damage to our classifier. Finally we note that the objective of active

learning is to learn a classifier faster than a regular learning algorithm. It should therefore also

be an objective of the heuristics not to waste too many queries on reducing the risk of errors.

While querying repeatedly near the same location in our order might improve our confidence in

that region, it also costs precious queries, which may cause the learner to neglect other parts.

5.2 Query strategies

The observations made during example 5.2 seem to indicate that we need to focus our querying on

the minimal and maximal vectors that have the largest up- and downsets. We propose a number

of query-strategies that use this observation and we also define a random-pick strategy to serve as

a base-line for testing.

37

5.2.1 Random pick

To establish a baseline for comparison the learner selects an arbitrary vector every time the repair

condition is met. The learner picks from the set X \Q, that is the vectors that are not yet labelled,

and observes its label. Note that this strategy uses no additional information and has an equal

probability of selecting any unlabelled vector as x∗. Our query-strategies should at least perform

better than random pick.

x∗r = sample(X \Q), (5.7)

where sample(x) is a function that randomly selects a vector from set x according to a uniform

distribution.

5.2.2 Conservative approach

As observed in example 5.2, our best chance of finding a conflict is by querying the direct neigh-

bour of the minimal and maximal elements of Q. For this approach we weigh the severity of an

incorrectly observed vector by the number of vectors whose label it infers. As such a vector that

has a large upset (downset) posses a greater risk, as it might potentially predict an incorrect label

for all of its successors (predecessor). Our conservative (optimal) query point x∗con is given by the

vector in B that has the largest up- or downset:

x∗con = arg max

[
max

x+∈B+
u(x+), max

x−∈B−
d(x−)

]
. (5.8)

Recall that u(x) indicates the size of the upset for vector x and similarly d(x) the size of the

downset. This vector should have a decent chance of causing a conflict and with that a mono-

tonicity violation and also, in case it turns out to repair an error, provide the biggest pay-out of

recovered labels. This strategy aims to maximize the number of conflicts and hence the number of

monotone functions generated by the relabelling-algorithm at the cost of expending queries. The

expected results are that the algorithm learns a classifier that predicts a smaller number of labels

than SMAL, but also makes fewer errors.

38

5.2.3 Midway approach

Since queries are expensive, we do not want to spend too much time recovering errors that might

not even be there. Querying the direct neighbour of the minimal or maximal element adds no

information to the solution: In the case we find a label that causes no conflicts it will be either

lower or higher, which in the best case only tightens the bounds of some points. In the case that

we do find a conflict, we actually throw away some information (granted that this might have been

incorrect information). It stands to reason that we should pick a point from a branch in our order

that, in worst case, would add the most information to the solution. As this is exactly the vector

that the SMAL algorithm would have chosen if X = B we have:

x∗mid = max

[
arg max
x+
i ∈B+

min{d(x+
i), u(x+

i)}, arg max
x−i ∈B−

min{d(x−i), u(x−i)}
]
. (5.9)

That is, we select the vector that would be best to query if we only consider the vectors in B. If

the vector we select does create a conflict we have repaired a potential error in the solution. If

we do not find a conflict the learner will always add some information to the solution by selecting

an optimal query point for the set B. This strategy should yield intermediate results: Intuitively

selecting a query-point that is further from the minimal and maximal element should reduce the

probability of getting a conflict. However, the selected query-point should perform better if the

minimal and maximal elements had their correct labels observed.

5.2.4 Random boundary pick

In order to investigate whether the additional calculations done by the heuristics in equations 5.8

and 5.9 are justifiable, random boundary pick picks a random vector from the boundary-set. The

strategy has a similar structure to the heuristic in equation 5.7, but instead only samples B:

x∗rb = sample(B). (5.10)

By picking from the boundary-set the strategy guarantees that the algorithm has a chance of

visiting regions that the original SMAL algorithm does not. The resulting classifier should exhibit

less extreme cases than the SMAL-algorithm, where a large number of mis-classifications are

made. Performance is however expected to be poorer than the heuristics in equations 5.8 and 5.9

as he randomly selected vectors can be both bad for efficiency (as was approached in the midway

39

heuristic) and error prevention (which the conservative heuristic optimizes).

5.3 Score Functions

Additionally, since we aim to find conflicts in the (optimal) monotone functions returned by the

relabelling-algorithm we investigate the effect of considering more than just the minimal and max-

imal relabellings. We aim to see whether it’s cost-effective to include multiple optimal monotone

functions in the calculation of vectors score with the heuristic in equation 4.7.

5.3.1 Min/Max optimal monotone functions

The original SMAL algorithm considers only the minimal and the maximal optimal monotone

functions by assigning the label of each vector in Q the minimum and the maximum value of the

intervals returned by the relabelling-algorithm. For each vector the the final score is the average

of the results of equation 4.7 using the minimal and maximal assignment.

Hmm(xi) = Hu(xi) +Hl(xi), (5.11)

where Hu is the score with the maximal assignment of labels and Hl the score with the minimal

assignment of labels.

5.3.2 Average optimal monotone functions

The relabelling-algorithm calculates all optimal monotone functions before determining the inter-

vals and we can use this information in our algorithm at no additional cost. The score resulting

from equation 4.7 is calculated for each optimal monotone function and the results are averaged

for each vector. If the distribution of labels assigned by each function is not uniform (some func-

tion might assign the same label to some vectors), the average scores should be different from the

original approach. For the average Ha we have:

Ha(xi) =
∑
f∈Fo

[Hf (xi)]/|F|, (5.12)

where Hf is the score with function f and Fo is the set of all optimal monotone functions. As the

relabelling-algorithm can be shown to approach the true function this average should give a better

indication of the true label of the vectors. This should lead to better picks when x∗ is determined.

40

5.3.3 Weighted monotone functions

In addition to all optimal functions, the relabelling-algorithm also computes functions that have

losses that are greater than optimal. We consider the effect of using a weighted average of scores

and investigate its effect. Each function has a weight factor wf that is inversely proportional to

the distance to the optimal solution di, where distance is expressed as the absolute error: wf = 1
di

.

The average score Hw is then given by:

Hw(xi) =
∑
f∈F

[wfHf (xi)]/|F|, (5.13)

where Hf is the score with function f and F is the set of all monotone functions. While the non-

optimal solutions might steer the average away from the true label, we do increase the number of

functions and therefore the potential of finding conflicts. As we have more conflicts this approach

should yield less errors, but as there is more dissension among the functions there might also be

fewer intervals that converge.

41

Chapter 6

Experiments

In this section we report on the evaluation of our proposed query-strategies by performing ex-

periments on artificial data sets. Each of the four query-strategies that focus on error prevention

(equations 5.7, 5.8, 5.9 and 5.10) was implemented with each of the three alternative score heuris-

tics (equations 5.11, 5.12 and 5.13). The data sets are generated from a d-dimensional normal

distribution, orders will be decided based on relative value of the d attributes. To simulate the

stochastic oracle we generate a random monotone function using the Propp-Wilson algorithm (see

Soons [10]) and randomly change the labels of some of the vectors. The randomly generated

base-function will also provide the true labels that are needed for the analyses of the performance.

Each dataset has its own ordering and therefore also need its own oracle. To eliminate potentially

favorable or unfavorable assignments of true labels a new monotone function is generated for each

run and hence also a new oracle. In addition we add a parameter e to the SMAL+ algorithm that

controls the fraction of mislabeled vectors that the oracle returns on average. We did 100 runs

with a data set of 100 vectors and averaged the results for each of the twelve combinations. During

each run we store a the value of performance measure after each iteration, the final results can

then be plotted against the number of iterations, giving an insight into the solution progression

over time.

6.1 Artificial data

The experiment consist of the proposed 100 runs of the the possible query-strategy and score

heuristics on 5 different datasets. As the number of attributes will only influence the number of

comparable vectors in the dataset we limit our selves to only a bi-normal distribution (that is,

42

Dataset Comparability n.o. labels n.o. datapoints
Chain 1 2 100
High 0.85 2 100

Middle 0.5 2 100
Low 0.14 2 100

Chain 3 1 3 100

Table 6.1: Summary of the dataset used in the experiments. The left column marked comparability
shows the fraction of vectors in the dataset that are comparable. The columns marked #k and
#datapoints denote respectively the number of possible labels in K and the number of datapoints
in the datasets n

d = 2) to save some time. Each set of 100 datapoints is drawn i.d.d from a normal distribution

with a correlation of c which controls the comparability of the vectors. For the first 4 datasets we

choose covariance values of c = {1, 0.9, 0,−0.9} resulting in comparabilities as show in table ??,

for convenience we named these datasets chain, High, Middle and Low for obvious reasons. The

final set named Chain3 has the same comparability as the set chain but will feature an oracle that

can assign three different labels, instead of two. The order is determined based on the relative

values of the attributes where we use that xi precedes xj iff all attributes (x1i , x
2
i) are smaller or

equal to (x1j , x
2
j), which also satisfies the monotonicity assumption in equation 2.2. The data is

stored as a 0/1-matrix (i, j), where the relative position of the vectors is stored as a 1 if i < j and

as a 0 if i > j. For each ordering we generate m different monotone functions fi, one for each run

of the algorithm. The naive approach would be to select k − 1 vectors and assign to each of the

segments one of the labels in such a way that the result is a monotone functions. Unfortunately

this approach will not yield a uniform sample, so to ensure this we use an adaptation of the

Propp-Wilson algorithm for monotone functions (see Soons [10]). This algorithm ensures we get

a uniform random sample from the entire distribution of valid monotone functions.

6.2 Oracle

The oracle will be simulated by a classifier that is generated beforehand, the oracle will have

chance to mislabel a vector with a rate of e. This classifier should have two important proper-

ties: It should match real-world expert behaviour, in that it must make mistakes in a believable

manner. The expert should at least perform better than a random draw from the available labels,

we also believe that an expert should make more severe mistakes less often than small ones. In

addition for our strategies to be valid in the stochastic framework, it is should also be a function

that satisfies the stochastic order constraint in equation 4.9. To this end a randomly selected

43

1 1t.

1− e

Figure 6.1: An example of a tent function centred around true label t. The area underneath the
tent should sum to 1 and each label has an associated value that is great than zero, so in fact the
tent describes a probability distribution. The shaded area represent the fraction of the error that
is assigned to the label t− 1, this is the a in equations 6.1, 6.3 and 6.4

monotone function that fits the data order is generated and altered by some perturbing function.

The monotone function will serve as a basis giving the oracle a monotone ”shape” as it were.

The perturbing function should have both the stated properties to make the oracle match expert

behaviour while maintaining the stochastic order constraint. We choose a tent-function (see figure

6.1) that resembles absolute loss to serve as our perturbing function. The tent-shape nicely cap-

tures the required real-world behaviour, were graver errors are less common, and has some useful

mathematical properties. By combining this function with the basis we can determine the entire

probability distribution P (y|x), we will drop the second parameter if the meaning is clear. Say

we have an error rate e, that is the oracle returns the correct answer (1 − e) ∗ 100% of the time.

For some vector x let t denote the true label assigned by the basis and let L denote the set of all

labels except the true label. The oracle should yield the true label 1− e ∗ 100% of the time, so the

remaining e ∗ 100% the oracle should yield on of the labels from L, in such a way that label that

are farther away from t are less likely. If we define a to be some constant whose unit is error
distance

we can express the probability of observing label y = l as:

P (y = l) =
a

dl
, (6.1)

where dl is the distance between label l and the true label t. Note that we have

∑
l∈L

[P (y = l)] + P (y = t) = 1, (6.2)

44

as each label must have a probability greater than zero of being selected. We find that since

P (y = t) = 1− e by definition,
∑
l∈L P (y = l) = e. We can assume without any loss of generality

that our labels range from 1 to k, so the sum in equation 6.1 can be split into two intervals:

1 . . . t − 1 and t + 1 . . . k. If we measure the distance dl as the absolute distance relative to the

true label, that is dl = |t− l| we find that:

e = a(

t−1∑
i=1

1

i
+

k−t∑
i=1

1

i
). (6.3)

Note that since we changed to absolute distance relative to t the intervals are now also relative to

t. Solving this equation for a and plugging the result back into equation 6.1 gives us an expression

that determines the fraction of the error that should be assigned to label l to get a perturbing

function of the required shape. Equation 6.3 can be solved by noting that the sums are in fact

Harmonic functions and can be replaced by their proper Harmonic number Hn. The sum
∑n
i=1

1
i

can be replaced by the nth Harmonic number Hn, since we have already rewritten the intervals to

accommodate, this yields: e = a(Ht−1 +Hk−t), solving for a and plugging the result into equation

6.1 we find:

P (y = l) =
e

Ht−1 +Hk−t
× 1

|t− l| . (6.4)

The oracle can now be simulated by generating a monotone function that assigns to each vector x

its true label tx and returning a label from 1, . . . , t, . . . , k with the probability P (y = 1), . . . , (1−

e), . . . , P (y = k). To prove that the oracle satisfies the stochastic order constraints in equation

4.9 we need to show that the cumulative distribution of a vector dominates the distribution of

its predecessor. The probability distribution for the observed label of a vector x is made up of

two parts, the ”true” label assigned by the basis function and the ”stochastic” part due to the

tent-function. Consider that P (y = t) ≥ P (y = l) for any l ∈ L by definition and that for two

vectors xi � xj we have yi ≤ yj by choice of basis function. For two vectors xi � xj we have

that P (y = ti) ≤ P (y = tj) and we know that the remainder of the probability distribution is

equal, since they are build from the same function. Therefore if a vector succeeds another vector

in the order, its cumulative distribution will always dominate that of its predecessor. It follows

that P (y′ ≤ l|x′) ≤ P (y ≤ l|x) for all l ∈ {1, k} for any x′ � x.

45

6.3 Performance measures

To determine the performance of the different strategies we define a precision and a recall measure.

A good solution has two important properties, namely it eliminates as many labels as possible

and it makes as few mistakes as possible. To this end we compute the fraction of labels that were

eliminated from the intervals as recall and the fraction of errors that were made as precision. We

use the F-score to combine both of these measures.

The recall will measure the quantitative aspect of the solution, a better classifier should elimi-

nate more labels. We define this measure as a fraction of the total number of available labels, that

is the number of vectors in the solution times the number of labels in the intervals at the start of

the algorithm:

recall =
nelim

m× (k − 1)
, (6.5)

where nelim denotes the number of labels that are eliminated by the classifier, that is all the labels

that fall outside the predicted intervals. m denotes the number of vectors in the solution (always

100 in our case) and k the number of labels available. The precision will measure the qualitative

aspect of the solution, a classifier that makes fewer mistakes should score better than one that

makes more mistakes. We define this measure as the relative number of errors that the classifier

makes:

precision =
ncorrect
m

, (6.6)

where ncorrect denotes the number of vectors for which the classifier predicted the correct label.

Note that we only count vectors for which an unique label is predicted by the classifier. If the

predicted interval has a size larger than 1 the vector is considered as predicted uncorrectly.

We can combine both measure using the Fβ-score, which is defined as:

Fβ =
(1 + β2)× precision× recall
β2 × precision+ recall

. (6.7)

Here β is a constant that allows for increasing the relative importance of either the precision

(β > 1) or the recall (β < 1). We will use β = 1 so that both measure contribute equally to the

score. Combining equations 6.5, 6.6 and 6.7 we get the following expression:

46

Qscore =
1

m
× ncornelim

(k − 1)ncor + nelim
. (6.8)

This score should give high values when both the (relative) number of predicted labels is high and

the number of (relative) errors is low. When we make few errors, but also predict eliminate few

labels the score is low. The same is true when many labels are eliminated and the number of errors

is high. The Qscore for a quick strategy would converge faster to 1, since its solution would learn

the labels faster (making the recall in equation 6.5 go to 1 faster). An accurate strategy would

aim to avoid errors to maximize precision (equation 6.6, making the Qscore converge slower (since

fewer labels are learned), but to a higher maximum (since fewer errors are made). The perfect

strategy would be both quick and accurate converging quickly to the highest maximum.

6.4 Execution

We gather and analyse results after each iteration of the main loop. This should give a picture of

the development of the solution as time progresses, since we get data after each query. The main

loop is run until each vector has been queried at least once, due to the nature of the selection

mechanism this should be after m iterations. All data is generated beforehand so all strategies can

use identical data, eliminating bias. All ties are processed in the following manner: if two vectors

score the same during some step of the algorithm, they are put into an increasing order of which

the first element will be selected. This ensure that no query-strategy gains an unfair advantage

getting lucky with the selection of the next query-point.

We expect the quality scores to converge well before the maximum number of iterations is

reached. Due to the experimental setup the learner will keep requesting new labels until the

classifier has learned the label for all vectors. This would mean the recall will always go to 1 as

more and more labels are either observed or inferred. The precision on the other hand should

on average converge to 1 − e, if all vectors would be queried at least once. However due to the

nature of the problem we set out to investigate some vectors will never be considered (see section

5.1). The proposed query-strategies are expected to converge slower than the SMAL algorithm

since they use some iterations on query points that add little new information to the solution.

However we would expect our alternative query-strategies to exhibit a lower variance, as they aim

to eliminate outliers caused by the misclassification of vectors.

47

For each of the 100 orders we sample a random monotone function using the algorithm in

section 8.5 that will be used to represent the true labels. For each order three oracles will be

generated from the set of true labels, one for each setting of parameter e = 10%and20%. Each

of the twelve algorithms will be trained once on each of the orders allowing for the comparison of

the performance on each of the individual sets as well as an averaged performance.

48

Chapter 7

Results and Discussion

7.1 Results

In this section we will present the results of the experiment run on the 5 different datasets from

table ??.Tables 8.1 and 8.2 show the average and minimum Q-scores for and error-rate of re-

spectively 10% and 20%. Immediately apparent is the relation between the comparability of the

vectors in the dataset and the quality of the solution as was also observed by Barile and Feelders

in [1]. As expected all alternative heuristics show worse performance in the earlier stages of the

runs, after only 5% of the vectors is queried. When more vectors get queried we see that for

highly comparable datasets the cons and mid heuristics both outperform the original strategy.

For datasets with a lower fraction of comparable vectors the SMAL algorithm wins out every

time. The four right-most columns contain the worst performing run for each heuristic and should

give some insight into the worst-case behaviour of the query-strategies. They paint a similar pic-

ture as the average Q-scores; For datasets where a large portion of the vectors are comparable the

heuristics show better worst-case performance.

The graphs in figure 7.1 shows the precision and recall values for the different heuristics plotted

against the time progression of the algorithm for the chain dataset. The recall graphs clearly show

how all new heuristics take more time to ”get upto speed” than the original strategy. This effect

becomes less pronounced when the number of comparable vectors decreases and we see that, in the

end, all strategies manage to infer the labels of approximately 95% of the vectors. The precision

graphs, somewhat surprisingly, show a similar behaviour to the recall graphs. The aim of the new

heuristics was to find solutions with less errors, and indeed this seems to be the case for the Chain

49

Figure 7.1: Precision and Recall graphs when using an oracle with an error-rate of 10%. The
graphs show the results when using the original scoring function with each of the 4 heuristics
(including the original SMAL heuristic), on the chain dataset.

Figure 7.2: Precision and Recall graphs, this time when using an oracle with an error-rate of 20%.
The graphs show the results when using the original scoring function with each of the 4 heuristics
(including the original SMAL heuristic), on the chain dataset.

dataset. However for the other datasets the precision graph seems to closely follow the course of

the recall graph. Additional graphs can be found in the appendix. The effects of the new heuristics

for the datasets with fewer comparable vectors (Low, Mid and High) are less pronounced and in

most cases the new approaches do worse than the original strategy.

The graphs showing results for higher error rates (figure 7.2) clearly exhibit worse performance

at the start of the algorithm. However both recall and precision tend to approach the same

maximum after a decent number of queries has been performed. As expected the datasets with

higher comparability tend to converge to their maximum values after fewer queries than is the

case for datasets with lower numbers of comparable vectors. Additional graphs can be found in

the appendix (figures 8.1, 8.2, 8.3 and 8.4). For the Low datasets we see convergence only after

about 80 queries, that is after 80% of the data has been queried. For the Mid datasets the graphs

reach their maximum at around 60 queries, whereas the High and Chain datasets peak after 40

and 20 queries respectively.

50

7.2 Conclusions

The proposed heuristics were expected to perform at least as well as the SMAL algorithm, espe-

cially for cases with a higher oracle error-rate. All heuristics were designed with the general idea

in mind that by sometimes picking a non optimal vector to query, the number of errors can be

decreased. By sacrificing some performance in the early stages of the algorithm’s run the average

quality of the solution is be increased. Indeed for the Chain dataset we see that after an initial

setup two of the three heuristics give better results than the SMAL algorithm. Tables8.1 and 8.2

clearly show that the heuristics Cons and Mid both outperform the original algorithm both in gen-

eral as well as in worst-case behavior. It must be noted however that the performance of the new

heuristics quickly drops off as the number of comparable vectors decreases. On only one occasion

does the Mid algorithm edge out the original strategy and only after about half of the available

vectors have been processed by the oracle. We expect that this behavior stems from the root of the

problem: The problem of extremely bad performance only really occurs when a mis-classification

is made of a vector that infers the labels of a large number of additional vectors (namely one near

the center of the ordering). Hence the problem is expected to occur more frequently on orders that

include a large number of comparable vectors (say a chain). In addition the number of relabellings

we find through the relabelling-algorithm in the two-label case can be expected to be quite low as

it usually only involves flipping the label of one or two vectors. This point is further reinforced by

the absence of influence of changing the score-function: There was little difference in using only

the minimum and maximum labels compared to using all available monotone functions. This is

either caused by having very few possible relabellings, as the choices of changes to make for the

relabeling-algorithm are limited. Or it could be that the former approach gives a good estimate

of the entire distribution of proper monotone functions. While the latter would be convenient,

the lack of options to form different functions for the relabeling-algorithm suggests we are simply

dealing with just a small number of monotone functions.

Combined these two properties make it that our approach is less suited for orders that have

fewer comparable vectors. This however need not be detrimental to the heuristics, as the problem

we set out to explore is most heavily felt when the number of comparable vectors is high. We have

shown that the new heuristics lead, on average, to better performance on a dataset with a high

number of comparable vectors and can therefore be assumed to avoid worst-case behavior more

often than the SMAL algorithm.

Unfortunately our approach is not able to provide any guarantees on the outcome of the

51

algorithm. Ideally one would like to be able to guarantee the end-user that the solution that is

found is always usable and near optimal in most cases. However even though the improvements it

is still possible that the algorithm provides a solution that mis-classifies significantly more vectors

than simply labeling all vectors by hand. At this point it is questionable if a solution with such a

guarantee can ever be found as, due to the stochastic nature of the problem, one can sometimes

arrive quite far from the optimal solution, simply due to a streak of bad luck.

To further investigate the problem it might be worth it to look into specifically crafted datasets

that aim to cause problems for the original approach. By analysing the algorithms behaviour in

these cases it might be possible to identify solutions that are on the wrong track and simply restart

the entire process if such is the case.

Another point of interest is the way the algorithm decides when it needs to employ one of the

alternative approaches. The focus of this thesis has been on designing and testing new heuristics to

approach the problem and the decision whether to employ these has been made in a straightforward

manner. It might for example be interesting to examine the algorithm’s performance when we

only employ the alternative query strategies when a large number of vectors have just had their

labels inferred the last step. Such a step contributes large amounts of information to the solution

and can therefore also contribute large errors if the initially observed label was incorrect.

52

Chapter 8

Appendix

8.1 Graphs and Tables

This section contains detailed results of all experiments run while testing the different heuristics.

The graphs are ordered in such a way that each ”column” represents a single scoring function.

Comparing the different graphs does not yield any significant difference in performance between

the different scoring-functions.

Out of the 32 different columns in tables 8.1 and 8.2, there are 26 cases where the SMAL

algorithm performs best (see bold entries). In 5 1
2 cases the mid heuristic performs best and in 1

2

cases (due to a tie) the cons heuristic wins. The rbound is never the best performing heuristic,

and in the precision and recall graphs this heuristic is always dominated by the other heuristics.

For an oracle which mis-classifies 10% of the queries, the new heuristics perform best on the

Chain dataset, at 20% and 50% of the dataset queried, both Cons and Mid, show higher average

scores than the original. At 20% Mid averages scores of 0.919, 0.920 and 0.922 for the three

different scoring functions, whereas the original only achieves averages of 0.878, 0.878 and 0.878.

Cons performs slightly worse than Mid, but still outperforms SMAL, with scores of 0.908, 0.916

and 0.916. At 50% we see a similar trend, the Mid averages the best scores with 0.988, 0.988

and 0.986, over 0.962, 0.962 and 0.962 for SMAL. Cons again performs slightly worse with scores

of 0.983, 0.977 and 0.982. For datasets with fewer comparable vectors this performance quickly

degrades and we see that the SMAL algorithm is only beaten once in the case of the High dataset

at 50% of the available vectors queried with Mid scoring 0.974, 0.974 and 0.973 over 0.973, 0.973

and 0.973 for SMAL. These results are echoed in the results of the experiments done with an

53

Figure 8.1: Precision graphs of averaged scores for an oracle with an mis-classification rate of
10%. The results are plotted against the number of queries performed (with a max of 100). Each
row shows graphs for a certain data set. From top-to-bottom the data sets are: Chain, High,
Middle, Low.

oracle that mis-classifies 20% of the queries on average. The right most columns in tables 8.1 and

8.2 indicate the worst performing experiments out of the 100 runs. Counting again the number

of best performances over the 32 different cases we see that: The original approach performs best

in 22 cases, in 5 cases the Rbound heuristic performs best, and the Mid and Cons heuristics edge

out the others in 3 and 2 cases respectively.

8.2 MAL

The algorithm maintains a list of unlabelled vectors U and a list of labelled vectors T . There can

be multiple instances of each vector x in the dataset X, the number of times x occurs is marked by

n(x), which is also maintained in T . For each vector xi we also maintain an interval of potential

54

Table 8.1: From top to bottom the tables show the average Q score for the datasets Chain, High,
Middle and Low when using an oracle with an error-rate of 10%. Each pair of columns shows the
average (left) and standard deviation (right) after 5%, 10%, 20% and 50% of the data is queried.
The bold-faced entries mark the best performing heuristic.

55

Table 8.2: From top to bottom the tables show the average Q score for the datasets Chain, High,
Middle and Low when using an oracle with an error-rate of 20%. Each pair of columns shows the
average (left) and standard deviation (right) after 5%, 10%, 20% and 50% of the data is queried.
The bold-faced entries mark the best performing heuristic.

56

Figure 8.2: Recall graphs of averaged scores for an oracle with an mis-classification rate of 10%.
The results are plotted against the number of queries performed (with a max of 100). Each row
shows graphs for a certain data set. From top-to-bottom the data sets are: Chain, High, Middle,
Low.

57

Figure 8.3: Precision graphs of averaged scores for an oracle with an mis-classification rate of
20%. The results are plotted against the number of queries performed (with a max of 100). Each
row shows graphs for a certain data set. From top-to-bottom the data sets are: Chain, High,
Middle, Low.

58

Figure 8.4: Recall graphs of averaged scores for an oracle with an mis-classification rate of 20%.
The results are plotted against the number of queries performed (with a max of 100). Each row
shows graphs for a certain data set. From top-to-bottom the data sets are: Chain, High, Middle,
Low.

59

Algorithm 2 MAL(X,max)

1: T ← ∅
2: U ← X
3: while max > 0 ∧ U 6= ∅ do
4: x∗ ← arg maxH(x)x∈U
5: y∗ ← O(x∗)
6: T ← T ∪ {(x∗, n(x∗)), y∗}
7: U ← U \ {x∗}
8: for all xi ∈↓ (x∗) do
9: hi ← min (hi, y

∗)
10: end for
11: for all xi ∈↑ (x∗) do
12: li ← max (li, y

∗)
13: end for
14: for all xI ∈ U do
15: if li = hi then
16: T ← T ∪ {(xi, n(xi)), li}
17: U ← U \ {xi}
18: end if
19: end for
20: max← max− 1
21: end while
22: return T

labels [li, hi]. The algorithm returns the list of labelled vectors T . At initiation this interval is

set to [1, k] where k is the largest label. In line 4 the best vector to query is selected using the

following heuristic. For each vector xi number of labels that can be eliminated in the worst-case

is computed with:

N(xi, y) =
∑

xj∈↓(xi)

(hj − y)+ +
∑

xj∈↑(xi)

(y − lj)+,

where z+ = max(0, z). We then select the vector that eliminates the most vectors to be the next

to be presented to the oracle in line 5. Lines 8-13 perform the inference step by updating the

upset and the downset of the selected vector x∗. Here we use the monotonicity assumption, which

states that vectors in the downset (upset) of x∗ cannot have a label that is greater (smaller) than

y∗ Lines 14-19 check whether any vectors have their labels uniquely determined by inference, that

is, we check if any vector xi has li = hi. The main loop in line 3 runs until either all unlabelled

vectors are labelled or until a predetermined number of iterations has been reached.

8.3 SMAL

The algorithm is supplied a list of unlabelled vectors U and a list of vectors that have been labelled

so far Q. The algorithm also maintains a count of the number of times a vector unique x appears

60

Algorithm 3 SMAL(Q,U,max)

1: while max > 0 ∧ U 6= ∅ do
2: (l, u)← Relabel(Q)
3: for all x ∈ U do
4: Hl(x)← query value of x using l
5: Hu(x)← query value of x using u
6: end for
7: x∗ ← arg maxx∈U (Hl(x) +Hu(x))/2
8: y∗ ← O(x∗)
9: Q← Q ∪ {(x∗, y∗)}

10: n(x∗)← n(x∗)− 1
11: if n(x∗) = 0 then
12: U ← U \ {x∗}
13: end if
14: end while
15: (l, u)← Relabel(Q)
16: return (l, u)

in U as n(x). Since a vector can be present in U multiple times, the algorithm uses this count to

determine whether or not the vector can still be queried. If the count n(x) reaches 0, the vector x

can no longer be asked of the oracle. The algorithm returns a maximal and a minimal relabelling

of Q. Line 2 computes the maximal optimal relabelling u and the minimal optimal relabelling l for

the vectors in Q, by using the Relabelling algorithm. In line 3-6 the relabellings u and l are each

combined with the set of unlabelled vectors (performing inference if necessary). We then apply

the same worst-case heuristic as the MAL algorithm to compute the scores Hl and Hu for all

vectors in U . Line 7 selects the query point that maximizes the average between these two scores.

Line 10 updates the count of the labelled vector, and lines 11-13 checks whether x∗ should be

removed from U . The main loop runs until either all vectors are labelled or until a predetermined

maximum of iterations is reached.

8.4 Generating Monotone Functions

To draw a random sample from the distribution of all monotone functions on some order we use an

algorithm by Soons [10]. The algorithm is an implementation of the Propp-Wilson algorithm (see

[7]), with a state space S and update function φ that have been modified to work with monotone

functions. The Propp-Wilson algorithm runs two coupled Markov chains starting in points S⊥ and

S> ”in the past” from time T to −1. Each time-step the update function randomly transitions

each chain to the next state in a Monte Carlo simulation. The update function will have the form

φt(S, u), where S ∈ S is an instance of the state space also known as the initial solution, and u is

61

a uniformly distributed random number in the interval (0, 1). It can be shown that, if two chains

’meet’ at some point they become ’stuck’ forever, and if we run multiple chains with the same

values of u each step they all would have coalesced at this state. This last result means that, no

matter what initial state we started in, all result in the same ’fixed’ state and there is no more

bias. It is thus enough to start two chains in different states and run them until they ’meet’, their

shared state is then an unbiased sample from the entire state space.

Recall the observation that we can build a monotone function by assigning labels to each item

of a nested sequence of lower sets (equation 4.6). We can modify an existing function by removing

or adding items to lower sets as long as we maintain the monotonicity. A vector x can be effectively

moved up a set in the sequence by removing it from the first lower set that contains it, as long

as none the vectors in its upset are in its current set. If we use equation 4.6 to assign labels, this

action increases the label of vector x. In a similar way we can decrease the label of a vector, by

finding the last lower set that doesn’t contain it and adding it.

If we choose our state space S to be all sequences of lower sets, that is S = LS1 , . . . , L
S
k−1, we

can define out update functions as follows. The function increase(S, x) will attempt to remove x

from the first lower set Lj that contains it, that is:

increase(S, x)S[LSj → LSj \ {x}] if x ∈ (LSj \ LSj−1) and LSj \ {x} is a lower set. (8.1)

The notation S[X → Y] means state S with element X replaced with element Y . The function

removes x from the first lower set in which it’s encountered, as long as the resulting set doesn’t

violate monotonicity. Conversely the function decrease(S, x) will attempt to add x to the first

lower set Lj doesn’t contain it, that is:

decrease(S, x)S[LSj → LSj ∪ {x}] if x ∈ (LSj+1 \ LSj) and LSj ∪ {x} is a lower set. (8.2)

We can set up our initial states S⊥ and S> as any sequence, but we choose S⊥ to be the sequence

of complete sets, that is LS⊥i = X,∀i ∈ 1, . . . , k. And S> to be the sequence of empty sets, that

is LS
>

i = ∅,∀i ∈ 1, . . . , k.

The algorithm generates for a given order (X,�) a monotone function with k labels. Lines 1

and 2 set up the initial states for the simulation. The loop in lines 3-14 simulates the propagation

of both states, the value T should be chosen large enough to allow the states to ’meet’. Line 5 and

6 draw both a value from a uniform distribution (0,1) and a random vectors from X. If u ≥ 0.5

62

Algorithm 4 Generate Monotone Function (X,�, k)

1: S> ← LS
>

i = ∅,∀i ∈ 1, . . . , k
2: S⊥ ← LS⊥i = X,∀i ∈ 1, . . . , k
3: for i = −T to −1 do
4: u← random(0, 1)
5: x← sample(X)
6: if u ≥ 0.5 then
7: S> ← increase(S>, x)
8: S⊥ ← increase(S⊥, x)
9: end if

10: if u < 0.5 then
11: S> ← decrease(S>, x)
12: S⊥ ← decrease(S⊥, x)
13: end if
14: end for
15: return S>

the subroutine increase will attempt to increase the label of vector x provided that the result is

stil a valid monotone function. If u < 0.5 the subroutine decrease will attempt to decrease the

label of vector x. At termination of the loop we know that both S> and S⊥ represent the same

monotone function and all initialization bias is gone.

8.5 Relabelling algorithm

The Relabelling algorithm by Feelders [4] computes an optimal monotone classification of a data

set for convex loss functions. The algoritm relabels in the sense that it re-evaluates each label

and decides which labels can be changed to construct the optimal monotone function, that is the

monotone function with the smallest loss.

Let fy =
k∑
j=1

n(xi, j)L(y, j), denote the loss when vector xi is assigned the label y. Each vector

xi has assigned to it a weight:

wi(y) = f
′

i (y) = fi(y + 1)− f(y),

that indicates the increase in loss when the label of vector xi is increased from y to y + 1. The

weight of a subset S ⊂ D is given by wS(y) =
∑
i∈S

wi(y), where D is the collecting of all attribute

vectors. We define a minimal minimum weight upper set (MMWUS) U∗(y) as the smallest upper

set with minimum weight w∗U (y). That is, the smallest upper set that would add the least to the

loss when the label of all vectors in U∗ is increased by one. Feelders [4] shows that if we can find

such a MWUS U∗(y) all vectors xi have an optimal label y∗i that is greater than y. In addition

63

it’s shown that if we take the complement of such a MWUS, Ū∗(y) there is an optimal solution

where all vectors get assigned an optimal label that is at most y. Thus we can find a relabelling

with minimal loss if we find Ū∗(y) for each label in {1, ..., k}.

Algorithm 5 Relabel(X ,�)

1: for y = 1 to k − 1 do
2: for i ∈ X do
3: wi ← fi(y + 1)− fi(y)
4: end for
5: U∗ ← minimal minimum weight upperset of (X ,�, w)
6: for all j ∈ Ū∗ do
7: y∗j ← y
8: end for
9: X ← X \ Ū∗

10: end for
11: for i ∈ X do
12: y∗i ← k
13: end for
14: return y∗

The algorithm is supplied a set of labelled vectors X and an ordering �, and returns an optimal

relabelling y∗. In line 3-5 the weights for all vectors are computed given the current value of y.

The algorithm computes the MMWUS in line 5 by solving a max-flow problem as shown by Picard

[6]. In line 6-8 we use that the vectors in the complement of the MMWUS get a label that is at

most y. In line 11-13 the remaining vectors are assigned the greatest label k.

To compute all optimal monotone function the algorithm computes the minimal minimum

weight lower set (MMLUS) L∗(l) analogous to the MMWUS. For the attribute vectors in L∗(l) we

have that the label van be at most l. Combined with the values obtained earlier we now have, for

each attribute vector, an interval of optimal labels. Here we use that we know that the vectors in

a MMWUS for a certain value of l should have a label that is greater than l, giving a lower bound.

Similarly the vectors in a MMWLS should have a value that is at most l, giving an upper bound.

The algorithm is again supplied a set of labelled vectors X and an ordering �. For each

vector i a minimum ymini and a maximum label ymaxi is kept. The algorithm returns an interval

[ymin, ymax] for all vectors in X In line 5-7 the algorithm computes the weights for the current

value of y. In lines 8 and 12 the MMWUS and the MMWLS are computed using the same max-

flow strategy as before. In line 9-11 the algorithm assigns the label y+ 1 to ymin for all vectors in

the MMWUS. Similarly, in line 13-15 the vectors from the MMWLS get their upper bounds.

64

Algorithm 6 Intervals(X ,�)

1: for i ∈ X do
2: [ymini , ymaxi]← [1, k]
3: end for
4: for l = 1 to k − 1 do
5: for i ∈ X do
6: wi ← fi(l + 1)− fi(l)
7: end for
8: U∗ ← minimal minimum weight upperset of (X ,�, w)
9: for all j ∈ U∗ do

10: yminj ← l + 1
11: end for
12: L∗ ← minimal maximum weight lowerset of (X ,�, w)
13: for all j ∈ L∗ do
14: ymaxj ← l
15: end for
16: X ← X \ L∗
17: end for
18: return ymin, ymax

65

Bibliography

[1] Nicola Barile and Ad Feelders. Active learning with monotonicity constraints. In SDM, pages

756–767. SIAM, 2012.

[2] Christopher M Bishop et al. Pattern recognition and machine learning, volume 1. springer

New York, 2006.

[3] Sanjoy Dasgupta. Analysis of a greedy active learning strategy. In NIPS, volume 3, page 2,

2004.

[4] Ad Feelders. Monotone relabeling in ordinal classification. In Data Mining (ICDM), 2010

IEEE 10th International Conference on, pages 803–808. IEEE, 2010.

[5] Wojciech Kot lowski and Roman S lowiński. Statistical approach to ordinal classification with

monotonicity constraints. In Preference Learning ECML/PKDD 2008 Workshop, 2008.

[6] Jean-Claude Picard. Maximal closure of a graph and applications to combinatorial problems.

Management Science, 22(11):1268–1272, 1976.

[7] James Gary Propp and David Bruce Wilson. Exact sampling with coupled markov chains

and applications to statistical mechanics. Random structures and Algorithms, 9(1-2):223–252,

1996.

[8] Burr Settles. Active learning literature survey. Computer Sciences Technical Report 1648,

University of Wisconsin–Madison, 2009.

[9] Victor S Sheng, Foster Provost, and Panagiotis G Ipeirotis. Get another label? improving

data quality and data mining using multiple, noisy labelers. In Proceedings of the 14th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages 614–622.

ACM, 2008.

66

[10] Pieter Soons and Ad Feelders. Exploiting monotonicity constraints in active learning for

ordinal classification. Technical report, Technical Report UU-CS-2014-001, Department of

Information and Computing Sciences, Utrecht University, Utrecht, 2014.

[11] Vetle I Torvik and Evangelos Triantaphyllou. Discovering rules that govern monotone phe-

nomena. In Data Mining and Knowledge Discovery Approaches Based on Rule Induction

Techniques, pages 149–192. Springer, 2006.

67

