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Abstract
In this thesis we will construct a phase diagram showing the transitions
to the superfluid and Mott insulating states of magnons in an easy-plane
ferromagnetic insulator with an external magnetic field applied. First we
transform the Hamiltonian describing this system in several ways, to explore
the basic behaviour and to obtain a boundary for the superfluid phase of
these magnons. We then use a mean-field approach with the Bose-Hubbard
Hamiltonian, done by van Oosten et al., “Quantum Phases in an Optical
Lattice”, Physical Review A 63, 053601 (2001), to find the Mott insulating
regions. Finally, we scrutinize the validity of using this Hamiltonian for our
system, by showing some of the different results it yields as compared to the
original spin-Hamiltonian. We conclude that the obtained phase diagram is
inaccurate for low spins (S = 2 or lower) but significantly more reliable for
high spins (S = 6 and higher).
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1 Introduction

Phase transitions are a major physical phenomenon in daily life. We are hardly
surprised to see liquid water evaporating or freezing up under the right con-
ditions. The physical causes for such a transition are less well-known to the
public; it was not until Paul Ehrenfest combined quantum mechanics and sta-
tistical physics in 1933 [1] that we had a solid theory of how various phase
transition occurred. They were described as a discontinuity in some derivative
of the free energy of a system, which still proves to be a useful way to describe
many common transitions.

Ehrenfest did not live to see the discovery of another phase transition, namely
that of liquid Helium to the superfluid state, recognized and named by Allen
et al. [2] and Kapitza et al. [3] in 1937, although he could have learned of
the theoretical prediction of the closely related transition of a gas of bosons
to a Bose-Einstein Condensate, published by Einstein in 1925 based on corre-
spondence with Bose [4]. This remarkable phenomenon generally occurs when
a gas of bosons (particles with an integer-spin number) is cooled to just above
absolute zero temperature. There can then be a macroscopic collapse of these
bosons to a single quantum state, giving the system some fascinating properties.

It was not until 1995 that such a Bose-Einstein Condensate (BEC) was
actually observed in the case of weak interactions [5], but since then many more
observations of different gases in a BEC have been made. Even quasiparticles
like magnons [6] have now been experimentally observed in a BEC. This latter
instance will be important in this thesis.

1937 proved a successful year in the discovery of states of matter. Besides
the earlier described superfluid state, Mott et al. [7], inspired by a publication
earlier that year by de Boer et al. [8] first described the Mott insulator state,
caused by electron-electron interactions. This state could also occur within the
superfluid phase of certain BEC’s, and hence another phase transition was born.

In the early stages of the development of quantum mechanics, many physical
phenomena were revised. In 1911 the Bohr-van Leeuwen theorem [9] showed that
ferromagnetism could be described by the spins of the atoms of the material, and
as such was a purely quantum mechanical effect. These spins aligned themselves
to each other and an external magnetic field, thus creating macroscopic magnetic
properties. When in the groundstate, all spins in the material are aligned. But
when the system gains energy, the spins gain some freedom in angle. To describe
the mechanics of these spin angles, Felix Bloch introduced the concept of the
bosonic quasiparticles called magnons [10]. We later give a more thorough
explanation of magnons.

In 2001 van Oosten et al. [11] analytically made phase diagrams showing
the transition from superfluid to Mott insulator state of ultracold bosonic atoms
trapped in an optical lattice. They were successful when using a mean-field ap-
proach. The mechanics that govern these bosonic atoms can, after some trans-
formations and approximations, also describe the behaviour of the magnons.
Therefore, it is possible to make a phase diagram of magnons, showing the
transitions to the superfluid state and the Mott insulating states. Constructing
this diagram is the first goal of this thesis. As a second goal, we will we scru-
tinize the validity of the approximations made in the process, so that we can
argue under which circumstances these phase diagrams are actually valid.

We start this thesis by giving a model to describe a system in which magnons
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occur. We then transform and approximate the Hamiltonian of this model in
several ways to create a form which is more convenient to describe the magnons.
Then we calculate a boundary for which the magnons collapse to a BEC, and
explore their basic behaviour within this model. We continue by comparing our
Hamiltonian to that in Ref. [11], and use their calculations to make a phase di-
agram of the Mott insulating regions. Finally, we compare magnon expectation
values from the approximated Hamiltonian (which was used to obtain the phase
diagram) to those of the original exact Hamiltonian, so that we can quantify
differences and argue under which circumstances the approximation yields good
results.

2 Model

Before we start any calculations or attempt to make phase diagrams, we will
give a brief intuitive explanation of Bose-Einstein condensates and magnons, as
they are critical to understand this thesis.

2.1 Magnons

Imagine a lattice of ferromagnetic spin particles with an external magnetic field
applied. In the groundstate, all spins in this lattice are aligned to the magnetic
field. We see this in Fig. 1, where the spin of particle S is aligned with a
magnetic field applied in the −z-direction. When the strength of the magnetic
field decreases, these particles will gain some freedom in spin angle (as shown
by the coloured cones), and will randomly choose this angle. This deviation
from the direction in which the spin angle is forced by the magnetic field can be
translated to the creation of a quasiparticle called a magnon. As the magnetic
field continues to weaken, more magnons can be created on the same lattice
site. These magnons, then, can interact with particles on neighbouring lattice
sites, as shown in Fig. 1, creating a ”spin wave” that propagates through the
lattice. Thus, a magnon can also been seen as the quantized version of such a
spin wave, a quasiparticle that reduces the spin of a particle in the direction of
the magnetic field by one unit of ~.

2.2 Bose-Einstein condensates and superfluidity

Now suppose the magnetic field in this lattice is weak enough for magnons to
exist. If these magnons are then cooled to close above absolute zero tempera-
ture, they will want to occupy the lowest energy state possible. Since magnons
obey bosonic statistics, it is possible for more magnons to occupy the exact
same quantum state. Thus, when cooled enough, a macroscopic amount of
magnons can actually condense to the same single-particle groundstate. All
these magnons are then delocalized, ”smeared out” over the lattice if you will,
governed by the same quantum wave function. Therefore, the spin angle that
was randomly chosen by the spin particles (the arrows on the cones of Fig. 1),
is then aligned for all these particles by the magnon condensate, as is shown in
Fig. 2. Viscosity is not applicable to such a condensate of magnons, and this
property is called superfluidity.
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Figure 1: Creation of magnons in a ferromagnetic lattice

Figure 2: Alignment of magnons in a BEC

2.3 Holstein-Primakoff transformation

Throughout this lattice we consider an easy-plane ferromagnetic insulator, i.e.,
a three dimensional lattice of spin particles with an external magnetic field B
applied in the −z direction, described by the Hamiltonian:

H = − J

2~2

∑
〈i,j〉

~Si · ~Sj +
K

2~2

∑
i

(Szi )2 +
B

~
∑
i

Szi . (1)

Here i and j are positions on the lattice, and 〈i, j〉 denotes a neighbouring pair
of spins. Furthermore, J > 0 and K > 0 are interaction energies between sites
and per site, respectively.

From this expression it is not immediately apparent in what manner we
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are dealing with magnons. Thus, to study the behaviour of magnons in this
system we first make them explicitly appear in this Hamiltonian. We do this by
using the Holstein-Primakoff transformation, which is a mapping from angular
momentum operators to bosonic creation and annihilation operators [12]. In
our case then, it transforms the spin operators to the operators that create and
annihilate magnons, as is shown in Fig. 1 by the transformation of the spin cones
to explicitly created magnons. The Holstein-Primakoff transformation states:

S+
i = Sxi + iSyi = ~a†i

√
2S − a†iai ,

S−i = Sxi − iS
y
i = ~ai

√
2S − a†iai ,

Szi = ~(a†iai − S) ,

(2)

where a†i and ai obey the commutation relation [ai, a
†
j ] = δi,j . These operators

are related to the amount of magnons per lattice site n in our system, by n =
a†iai. Thus, magnons can explicitly be introduced in our Hamiltonian, which
transforms the canonical system to an effective grand canonical one. To do so,
we first note that

S+
i S
−
j = Sxi S

x
j − iSxi S

y
j + iSyi S

x
j + Syi S

y
j ,

S−i S
+
j = Sxi S

x
j + iSxi S

y
j − iS

y
i S

x
j + Syi S

y
j ,

(3)

so that the Hamiltonian can be written in terms of S+
i , S

−
i :

H = − J

2~2

∑
〈i,j〉

(
1

2
(S+
i S
−
j + S−i S

+
j ) + Szi S

z
j ) +

K

2~2

∑
i

(Szi )2 +
B

~
∑
i

Szi . (4)

The expressions for S+
i and S−i must be simplified before we can substitute

them in the above Hamiltonian, otherwise we are left with too many compli-
cated terms that will make analytical evaluation in the next chapters all but
impossible. Therefore we rewrite

S+
i = ~a†i

√
2S

√
1− a†iai

2S
,

S−i = ~ai
√

2S

√
1− a†iai

2S
,

(5)

so that this expression is easily simplified by using a Taylor expansion. First
order expansion in powers of 1/S yields

S+
i = ~a†i

√
2S ,

S−i = ~ai
√

2S .
(6)

This expansion is accurate when S is large. But we have to be careful here.
Before we approximated this expression it could be seen that per lattice site, a
state with more than 2S magnons would be unphysical, since then the expression
in square root would become negative and hence imaginary. This observation
is lost after this first order expansion, so we will have to keep it in mind. When
we insert the truncated expansion into our Hamiltonian we obtain:
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H ≈ − J

2~2

∑
〈i,j〉

(
1

2
(2S~2a†iaj + 2S~2aia

†
j) + ~2(a†iai − S)(a†jaj − S))

+
K

2~2

∑
i

~2(a†iai − S)2 +
B

~
∑
i

~(a†iai − S)

= −J
2

∑
〈i,j〉

(S(a†iaj + aia
†
j) + a†iaia

†
jaj − S(a†iai + a†jaj) + S2)

+
K

2

∑
i

((a†iai)
2 − 2Sa†iai + S2) +B

∑
i

a†iai − S

= −J
2

∑
〈i,j〉

(2S(a†iaj − a
†
iai) + a†iaia

†
jaj) +

K

2

∑
i

(−2Sa†iai + a†iaia
†
iai) +B

∑
i

a†iai

+
KNsS

2

2
− JNs(Ns − 1)S2

2
−BNsS ,

(7)
where Ns denotes the total number of lattice sites. Neglecting the constant
terms and and reordering the operators and terms leaves us with the Bose-
Hubbard Hamiltonian:

H = −J
2

∑
〈i,j〉

(2Sa†iaj + a†ia
†
jaiaj) + (

K

2
(1− 2S) +B +

JSz

2
)
∑
i

a†iai +
K

2

∑
i

a†ia
†
iaiai,

(8)
where z is the coordination number denoting the amount of nearest-neigbours
per lattice site.

2.4 Fourier transformation

In the Bose-Hubbard Hamiltonian we obtained, we consider magnons by their
position on specific lattice sites and pairs of lattice sites, then summing over
them to describe our entire lattice. This may not always be useful. We will also
want to consider magnons by their energy, then describing the entire system by
summing overall possible energies. When constructing the first phase diagram,
it will become obvious why describing the Hamiltonian this way simplifies our
calculations.

The energy of a magnon is related to its momentum, and we relate position
and momentum by using a Fourier transformation. Thus, we Fourier transform
the creation and annihilation operators using

a†i =
1√
N

∑
~k

e−i
~k·~xia†~k

, ai =
1√
N

∑
~k

ei
~k·~xia~k , (9)

Here, ~k is the three dimensional wave vector and ~xi a three dimensional
vector denoting the location of lattice site i. We choose out lattice to lie in the
cartesian x, y, z-plane and thus ~k = kxx̂+ky ŷ+kz ẑ and ~xi = liax̂+miaŷ+niaẑ,
where a is the lattice constant and l,m, n are integers, so that ~xi gives indeed
all possible locations of our lattice sites.
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Now we calculate the different components of our Hamiltonian. When car-
rying out a summation over lattice site pairs 〈i, j〉, we note that we can write
this as a summation over single sites i by describing their neighbouring lattice
sites j as either i+ 1 or i− 1. Since site i has two of these neighbouring sites in
every of the three dimensions we consider, we obtain six pairs per lattice sites.
Dividing by 2 to avoid double-counting of these pairs we obtain:

∑
〈i,j〉

a†iaj =
∑
i

a†i (ai+1 + ai−1)

=
1

2N

∑
l,m,n

∑
~k,~k′

a†~k′
a~ke
−i(kxla+kyma+kzna)

[ei(k
′
x(l+1)a+k′yma+k′zna) + ei(k

′
xla+k′y(m+1)a+k′zna) + ei(k

′
xla+k′yma+k′z(n+1)a)

+ei(k
′
x(l−1)a+k′yma+k′zna) + ei(k

′
xla+k′y(m−1)a+k′zna) + ei(k

′
xla+k′yma+k′z(n−1)a)]

=
1

2N

∑
l,m,n

∑
~k,~k′

a†~k′
a~ke

ila(k′x−kx)eima(k′y−ky)eina(k′z−kz)

[eik
′
xa + e−ik

′
xa + eik

′
ya + e−ik

′
ya + eik

′
za + e−ik

′
za]

=
1

2

∑
~k,~k′

a†~k′
a~kδ~k,~k′ [e

ik′xa + e−ik
′
xa + eik

′
ya + e−ik

′
ya + eik

′
za + e−ik

′
za]

=
∑
~k

a†~k
a~k[cos(kxa) + cos(kya) + cos(kza)] ,

(10)

where we used the relation
∑
l,m,n

eila(k′x−kx)eima(k′y−ky)eina(k′z−kz) = Nδ~k,~k′ . Sim-

ilarly we obtain the results∑
〈i,j〉

a†iai = 3
∑
~k

a†~k
a~k∑

i

a†iai =
∑
~k

a†~k
a~k

∑
i

a†ia
†
iaiai =

1

2

∑
~k,~k′, ~k′′, ~k′′′

a†~k
a†~k′
a ~k′′a ~k′′′ δ ~k′′+ ~k′′′,~k+~k′

∑
〈i,j〉

a†ia
†
jaiaj =

1

2

∑
~k,~k′, ~k′′, ~k′′′

a†~k
a†~k′
a ~k′′a ~k′′′ δ ~k′′+ ~k′′′,~k+~k′

×[cos(k′xa) + cos(k′ya) + cos(k′za) + cos(k′′′x a) + cos(k′′′y a) + cos(k′′′z a)] ,

(11)

so that now we can rewrite Eq. (8) in terms of a†~k
, a~k:

H =
∑
~k

(~ω~k +
K

2
(1− 2S) +B)a†~k

a~k +
∑

~k,~k′, ~k′′, ~k′′′

~ω′~k δ ~k′′+ ~k′′′,~k+~k′ a†~k
a†~k′
a ~k′′a ~k′′′ ,

(12)
where ~ω~k = cos(kxa) + cos(kya) + cos(kza)− 3
and ~ω′~k = cos(k′xa)+cos(k′ya)+cos(k′za)+cos(k′′′x a)+cos(k′′′y a)+cos(k′′′z a)+ 1

2 .
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Let’s discuss what this expression tells us. First of all, we’ve gone through
some effort to express our Hamiltonian in terms of a†~k

a~k. This is useful, since

〈a†~ka~k〉 is interpreted as the amount of magnons in our lattice with wave num-
ber k. Thus we now have an expression that will lead to easily physically
interpretable results.

The J-term in our Hamiltonian controls particle interactions between sites.
It “forces” magnons to propagate, or “hop” through the lattice. When J is
large compared to K, a delocalized wavefunction minimizes the magnon energy.
Therefore, the system collapses to a Bose-Einstein condensate (if the usual BEC
requirements are satisfied). These delocalized magnons then align the freedom
in spin angle of the particles in the lattice (as shown in Fig. 2).

The K-term describes magnon-magnon interaction per site. When K is large
compared to J , the energy of the system is minimized when all the sites contain
the same amount of magnons. Thus in this state, no magnons will hop from
one site to another, and the freedom in spin angle remains unaligned. This is
shown in Fig. 3. An existing BEC of the magnons would be destroyed. This
state is called the Mott insulating state.

Figure 3: Mott insulating state of magnons in a lattice

However, if the amount of magnons cannot be distributed equally among
lattice sites, e.g. there is a surplus of one or more magnons, the total energy
of the system is equal for several magnon configurations. Then there is nothing
stopping these magnons from propagating through the lattice, as is shown in
Fig. 4. These magnons will become a delocalized BEC again, thus aligning the
freedom in spin angle of all the particles in the lattice.

Figure 4: Possible BEC of magnons in a lattice
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In the following sections we will construct phase diagrams to show the tran-
sitions between these states.

3 Basic behaviour near phase transition

Now that we have rewritten our Hamiltonian to the from of Eq. (12), we are
all set to explore the behaviour of the magnons in our system. In each section
we neglect some term(s) of the Hamiltonian so that a different aspect of the
system can be highlighted. We discuss results to gain insight in our system and
the approximations made.

3.1 Neglecting 4th order interaction terms: a superfluid
boundary

We start by constructing a first phase diagram of our system. To do so, we
throw away the fourth order terms in our Hamiltonian (interactions on-site and
between sites) so that we are left with just

H =
∑
~k

(~ω~k +
K

2
(1− 2S) +B)a†~k

a~k . (13)

A phase diagram is obtained by laying proper restrictions on the chemical
potential µ of the system. However, in our system of magnons it is not imme-
diately apparent what the chemical potential actually is. Therefore, we need
to find its distribution function and make a comparison with the Bose-Einstein
distribution function. We note that Eq. (13) can be rewritten as

H =
∑
~k

Ω~ka
†
~k
, a~k , (14)

where Ω~k = ~ω~k + K
2 (1−2S)+B. We see that this is actually a sum over many

harmonic oscillators with frequencies Ω~k/~, so that the energy states ε{n~k
} of

our system are

ε{n~k
} =

∑
~k

Ω~k(n~k +
1

2
) . (15)

Here n~k are integers denoting the energy level, and from now on we leave out
the constant term 1

2 . We then calculate the partition function of our system:

Z =
∑
{n~k
}

e
−βε{n~k

} =
∑
{n~k
}

e
−β

∑
~k

Ω~k
n~k

=
∏
~k

∑
n

(e−βΩ~k)n =
∏
~k

1

1− e−βΩ~k

,

(16)
so that the average energy of our system is

〈U〉 = − ∂

∂β
ln(Z) = − ∂

∂β
ln(

∏
~k

1

1− e−βΩ~k

) = − ∂

∂β
(
∑
~k

ln(
1

1− e−βΩ~k

))

=
∑
~k

Ω~ke
−βΩ~k

1− e−βΩ~k

(1− e−βΩ~k)2
=

∑
~k

Ω~ke
−βΩ~k

1− e−βΩ~k

=
∑
~k

Ω~k
eβΩ~k − 1

.

(17)
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Since the distribution function 〈N~k〉 of a system is by definition related to
its average energy by 〈U〉 =

∑
~k

〈N~k〉Ω~k, we see that the distribution function of

our system is given by

〈N~k〉 = (eβΩ~k − 1)−1 = (eβ(~ω~k
+ K

2 (1−2S)+B) − 1)−1 . (18)

Finally, comparing this to the Bose-Einstein distribution function f(ε~k) =

(eβ(ε~k−µ) − 1)−1, we make the comparison ε~k = ~ω~k and µ = K
2 (2S − 1)−B.

This comparison is useful, since we know which restrictions on the chemical
potential of a regular bosonic system obeying the Bose-Einstein distribution are
necessary in order to reach Bose-Einstein condensation. This chemical potential
should be lesser than or equal to the lowest single-particle groundstate energy,
which in our case is 0 (minimum value of ~ω~k). We see that

µ

{
≥ 0 if B

K ≤
1
2 (2S − 1) =⇒ BEC

< 0 if B
K > 1

2 (2S − 1) =⇒ No BEC .
(19)

Plotting this boundary we make our first phase diagram in Fig. 5, where we
shaded our BEC phase.

0
B
K

T

BEC No BEC

S - 2
1

Figure 5: Superfluid boundary when neglecting magnon-magnon interactions
(shaded surface), and when not neglecting them (dashed line)

This crude phase diagram is evidently independent of temperature. Once
B
K passes the threshold 1

2 (2S − 1) = S − 1
2 , the system will collapse to a Bose-

Einstein condensate. We thus have shown the interesting phenomenon that in
our lattice, by varying the applied magnetic field, it seems that we can incur
BEC. However, we have neglected all on-site magnon-magnon interactions, and
as is discussed by Stoof et al. [13], this does indeed leave us with this superfluid
boundary which is independent of temperature. When these interactions are
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not neglected, as Ref. [13] shows, one will actually find a boundary that is
qualitatively shown in Fig. 5 by the dashed blue line. We keep this in mind but
do not precisely calculate this curved boundary in this thesis. For temperatures
close to zero our threshold at B

K = S − 1
2 is a reasonable approximation.

3.2 Neglecting interactions between sites: a single spin
problem

We saw that for the previous approximations our system would collapse to a
Bose-Einstein condensate once a certain threshold of BK was passed, independent
of temperature. We discussed however, that this is a result of having neglected
the on-site magnon-magnon interactions. Clearly, to find more detail of the
dynamics of our system, these interactions have to be included in our calcula-
tions. Therefore we will now describe our lattice in the case that J = 0, so that
there are no interactions between different lattice sites. This way, every site is
uncoupled, so we can just describe our system by considering a single site, then
multiplying the results by Ns. Although we lose the information on magnon
propagation between sites by considering this single spin, this leaves the on-site
magnon-magnon interaction undisturbed by approximations.

A single lattice site is governed by the Hamiltonian

H =
K

2~2
(Sz)2 +

B

~
Sz . (20)

Let’s first consider T = 0. We know the eigenvalue equation

Sz|S,ms〉 = ~|S,ms〉 , so H|S,ms〉 = (
K

2
(ms)

2 +Bms)|S,ms〉 , (21)

where ms is the well-known secondary quantum spin number, ranging with
integer steps from −S to S.

We want to find the expectation value of Sz: 〈Sz〉T=0 = 〈Ψgs|Sz|Ψgs〉 =
~ms,Ψgs , where |Ψgs〉 denotes the groundstate of our system. We are thus left
with the task to find the groundstate of the system and its corresponding value
of ms, so that we can evaluate 〈Sz〉T=0. This groundstate however, is different
in several domains of B, for different values of ms. We check the possible
eigenvalues for S = 1 and S = 2. Since we want to plot over the variable
B
K again, we divide these eigenvalues by K, and then select the groundstates

depending on the domain of B
K .

Table 1: Eigenvalues for S = 1, divided by k

B
K 0 (0, 1

2 ) 1
2 > 1

2

ms = −1 1
2

1
2 −

B
K 0 1

2 −
B
K

ms = 0 0 0 0 0

ms = 1 1
2

1
2 + B

K 1 1
2 + B

K
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Table 2: Eigenvalues for S = 2, divided by k

B
K 0 (0, 1

2 ) 1
2 ( 1

2 , 1) 1 (1, 3
2 ) 3

2 > 3
2

ms = −2 2 2− 2BK 1 2− 2BK 0 2− 2BK −1 2− 2BK

ms = −1 1
2

1
2 −

B
K 0 1

2 −
B
K − 1

2
1
2 −

B
K −1 1

2 −
B
K

ms = 0 0 0 0 0 0 0 0 0

ms = 1 1
2

1
2 + B

K 1 1
2 + B

K
3
2

1
2 + B

K 2 1
2 + B

K

ms = 2 2 2 + 2BK 3 2 + 2BK 4 2 + 2BK 5 2 + 2BK

In Table 1 and Table 2 we highlighted the minimum values within each
domain. We now know the groundstates in each domain with their respective
values of ms , so we can evaluate 〈Sz〉T=0 within these domains. Finally, we
conduct the Holstein-Primakoff transformation Sz = ~(a†a− S), so

〈a†a〉 =
〈Sz〉
~

+ S . (22)

In Fig. 6 we plot the results for S = 2.
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4
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B
K

ai ai†

Figure 6: 〈a†iai〉 at T = 0 for a single spin-2 particle

In this figure, we see that when B
K > 3

2 , 〈a†a〉 = 0 and so there are no
magnons. This is because the magnetic field is strong enough to completely
align the spin. Once B drops, the spin will not be forced so strongly to align
with the magnetic field, so the spin gains some freedom and can lower its easy-
plane anisotropy energy. This freedom means the spin angle can vary. Thus,
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magnons are created, more so as the magnetic field weakens, up to a maximum
of 2S per lattice site. We already noted this maximum when we first considered
the Holstein-Primakoff transformation.

Let us now calculate 〈Sz〉 in the case that T 6= 0. Once again, we divide
eigenvalues by K so that we can plot over the domain of B

K . This leaves βK as
adjustable parameter in the canonical ensemble average of Sz:

〈Sz〉 =
1

Z

S∑
ms=−S

ms~e−β( K
2 m

2
s+ B

Kmsms) =
1

Z

S∑
ms=−S

ms~e−βK( 1
2m

2
s+ B

Kms) ,

(23)

where Z =
S∑

ms=−S
e−βK( 1

2m
2
s+ B

Kms).

Then, after using the Holstein-Primakoff transformation again, we can plot
〈a†iai〉T 6=0 for several values of βK. But before we do so, we’ll calculate the

variance in the amount of magnons per lattice site, σ2
〈a†iai〉

= 〈(a†iai)2〉−〈a†iai〉2.

To do so we use the Holstein-Primakoff transformation again and work out the
squares:

〈(a†iai)
2〉 =

〈S2
z 〉

~2
+ 2S

〈Sz〉
~

+ S2 , while 〈a†iai〉
2 =
〈Sz〉2

~2
+ 2S

〈Sz〉
~

+ S2

Therefore, σ2
〈a†iai〉

=
〈S2
z 〉 − 〈Sz〉2

~2
.

(24)

In Fig. 7 we plot 〈a†iai〉T 6=0 and σ2
〈a†iai〉

for several values of βK.

We see that for nonzero temperature, thermal fluctuations are introduced.
At low temperatures (so high values of βK) these just peak around the tipping
points from x to y magnons. This uncertaintly in magnon quantity becomes
more widespread as the temperature increases, until it doesn’t even reach zero
any more in the middle of the magnon plateaus. By then, the discrete ladder of
magnon quantity is barely recognizable. Increase the temperature even further
and thermal fluctuations are so high that the entire ladder becomes a smooth
line, governed by large variance.

3.3 No interactions neglected: variance at T = 0

We have seen that for a single spin at zero temperature, varying the magnetic
field will create and annihilate magnons in a discrete ladder. However, a single
spin does not consider magnon propagation between sites, so we now calculate
the variance of magnon quantity per lattice site at zero temperature σ2

〈a†iai〉
=

〈(a†iai)2〉 − 〈a†iai〉2 without neglecting interactions between sites.
Suppose our system consists of N (bosonic and identical) magnons in the

groundstate, which we denote by |ΨN
T=0〉. Next we define the vacuum state of

our system with zero magnons as |0〉, where 〈0|0〉 = 1. Our system groundstate
is formed by creating N magnons with wave vector ~0 in this vacuum state, so

|ΨN
T=0〉 = A(a†~0)N |0〉 , (25)
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Figure 7: 〈a†iai〉 and σ2
〈a†iai〉

at T 6= 0 for a single spin-2 particle

where A is a normalization factor to be determined. To normalize this expression
we use the relations known for bosonic creation and annihilation operators:

a†~k
|n〉 =

√
n+ 1|n+ 1〉 , a~k|n− 1〉 =

√
n|n〉 , (26)

where |n〉 denotes the state with n magnons in our system, with 〈n|n〉 = 1.
Now, the groundstate should also obey 〈ΨN

T=0|ΨN
T=0〉 = 1. We can use the

above relations to normalize this state:

A2〈0|(a~0)N (a†~0)N |0〉 = (1)×A2〈1|(a~0)N−1(a†~0)N−1|1〉

=(2)× (1)×A2〈2|(a~0)N−2(a†~0)N−2|2〉 = N !×A〈N |N〉 = 1 .
(27)

This leads us to the expression for our groundstate:

|ΨN
T=0〉 =

1√
N !

(a†~0)N |0〉 . (28)

Before we continue to calculate the average amount of particles per lattice
site, 〈a†iai〉, we derive the commutation relation [a~k, (a

†
~0
)N ], which will be useful

in later calculations. First we use the known relation [a~k, a
†
~0
] = δ~k,~0. Using
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Leibniz’ rule for commutation relations ([A,BC] = B[A,C] + [A,B]C), we find

that [a~k, (a
†
~0
)2] = 2δ~k,~0a

†
~0
. After a few iterations we come to the conclusion that

[a~k, (a
†
~0
)N ] = Nδ~k,~0(a†~0)N−1 . (29)

And finally, since our groundstate is given in momentum space, we make use of

the Fourier transformation a†j = 1√
N

∑
~k

e−i
~k·~xja†~k

. Now we calculate the average

amount of magnons per lattice site:

〈a†jaj〉 =
1

Ns

∑
~k,~k′

e−i
~k·~xjei

~k′·~xj × 1

N !
〈0|(a~0)Na†~k

a~k′(a
†
~0
)N |0〉 . (30)

Here the expectation value vanishes unless ~k = ~k′, because if you remove a
particle of state ~k′ from the groundstate, and put it back in state ~k, the
new state will be orthogonal to the groundstate. Thus we are just left with∑
~k

1
Ns
〈ΨN

T=0|a
†
~k′
a~k|Ψ

N
T=0〉 = N

Ns
, because this expression basically counts the

amount of magnons in the groundstate in our lattice with any wave vector ~k,
which are exactly all the magnons we defined in our lattice.

In a similar fashion we start to calculate

〈(a†jaj)
2〉 =

1

N2
sN !

∑
~k,~k′, ~k′′, ~k′′′

e−i
~k·~xjei

~k′·~xjei
~k′′·~xjei

~k′′′·~xj∗ 1

N !
〈0|(a~0)Na†~k

a~k′a
†
~k′′
a ~k′′′(a

†
~0
)N |0〉 .

(31)

We then use the commutation relation we derived above to write a ~k′′′(a
†
~0
)N |0〉 =

Nδ~k,~0(a†~0)N−1|0〉+(a†~0)Na ~k′′′ |0〉 and similarly for the left side of the expectation
value. We note that the second term is equal to zero because the annihilation
operator acting on the empty vacuum state leaves us with nothing. Analogous
to the above line of thought the expectation value vanishes again unless ~k′ = ~k′′.
We are left with the expression

N2

N2
sN !

∑
~k′

〈0|(a~0)N−1a~k′a
†
~k′

(a†~0)N−1|0〉

=
N2

N2
sN !

∑
~k

〈0|(a~0)N−1(1 + a†~k
a~k)(a†~0)N−1|0〉

=
N2

N2
sN

∑
~k

〈ΨN−1
T=0 |(1 + a†~k

a~k)|ΨN−1
T=0 〉

=
N(N − 1)

N2
s

+
∑
~k

N

N2
s

.

(32)

Thus we find that the variance σ2
〈a†iai〉

= 〈(a†iai)2〉 − 〈a†iai〉2 = − N
N2

s
+

∑
~k

N
N2

s
.

This is evidently a quantum fluctuation at zero temperature. Going back to the
T = 0 plot when considering a single spin (so J = 0), we found a discrete ladder
with no variance across the domain. We therefore conclude that this was also
a crude approximation that neglects certain properties that may be important
for the phase diagram which we want to obtain.
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4 Mott insulating regions: a mean-field approach

A different approach must be used to obtain the transitions to the Mott insu-
lating regions of our system, which are a lot more detailed than we can expect
to accurately show with the evidently crude approximations used so far. A way
to obtain these transitions was proposed by van Oosten et al.[11] They started
with the observation shown by Jaksch et al.[14] that a system of bosonic atoms
trapped in an optical lattice could be described by the Bose-Hubbard Hamilto-
nian. They then used several approaches to construct a phase diagram, of which
a mean-field approach yielded results. With this approach, they were able to
predict the Mott-insulating boundaries of the atoms in their system. Since our
magnons obey bosonic statistics, we may be able to show our transitions with
analogous calculations.

Let us try a mean-field approach for our system then, to see which results
its yields. We first use the most basic approach imaginable: ai =⇒ 〈ai〉,
thus transforming every creation and annihilation operator to its expectation
value. This expectation value then, is the square root of the expected amount
of magnons per lattice site, an order parameter in our system which we call φ.
Rewriting our Hamiltonian (Eq. (12)) in terms of φ we obtain the free energy:

E = Ns(
K

2
(1− 2S) +B)φ2 +

KNs
2

φ4 . (33)

Minimizing the free energy with respect to the order parameter gives us an

expression for the order parameter: φ =
√
〈ni〉 =

√
S − 1

2 −
B
K . We plot the

results in Fig. 8.

0 S-1/2

0 B

K

Φ

S - 1/2

Figure 8: Order parameter φ that minimizes the free energy

We see that the order parameter reaches zero when B/K = S − 1/2, a
familiar quantity by now. This backs up our previously found results that this
is indeed a critical point at which a phase transition occurs to the superfluid
phase.

In their paper, van Oosten et al. used a more advanced Mean-field approach.
Their method was based on a mean-field order parameter they introduced that
made it possible to describe their system by an uncoupled Hamiltonian. They
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then used second-order pertubation theory to find an expression for the bound-
ary between the superfluid and Mott insulator phases. Since their system is
mathematically very similar to ours, we compare our system to theirs, so that
we can use their theoretical results to construct a phase diagram for our lattice
with magnons. Their system is described by the Hamiltonian

H = −t
∑
〈i,j〉

a†iaj +
U

2

∑
i

a†ia
†
iaiai − µ

∑
i

a†iai . (34)

Comparing this with our Hamiltonian (Eq.(8)) we find that it is identical, after

we throw away the fourth order term −J2
∑
〈i,j〉

a†ia
†
jaiaj . We then define their

parameters as t = JS, U = K and µ = −(K2 (1 − 2S) + B + JSz
2 ), so that our

Hamiltonians are identical.
After extensive calculations van Oosten et al. find their expression for the

boundary between the superfluid and insulator phases that is exact within their
mean-field approach:

µ̄± =
1

2
[Ū(2〈a†iai〉 − 1)− 1]± 1

2

√
Ū2 − 2Ū(2〈a†iai〉+ 1) + 1 , (35)

where the subscript ± denotes the upper and lower halves of the Mott insulating
regions of phase space. Further Ū = U/zt, µ̄ = µ/zt, and 〈a†iai〉 is the amount
of magnons per lattice site.

Since we made the comparison of their parameters with ours, we can directly
substitute these in this expression for µ̄. But since we also have µ̄ = µ/zt =

−(K2 (1 − 2S) + B + JSz
2 ) = −( K̄2 (1 − 2S) + B̄K̄ + 1

2 ), we can equate these

expressions and solve it for J
K , which gives a boundary between our magnon

superfluid and insulating phases. We plot this boundary for 〈a†iai〉 = 1, 2, 3, 4
in Fig. 9.
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Figure 9: Mott insulating regions after mean-field approach of van Oosten et al.
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Here, z is again the amount of nearest-neighbour lattice sites. We see these
bulges appear within the blue-striped region of BEC, which is fairly consistent
with the previously calculated threshold B

K = S − 1
2 (there independent T and

J) when we neglected interactions. Within these bulges BEC is broken and
the system resides in the Mott insulator phase. The bulges appear only for
an integer value of 〈a†iai〉, which means that all lattice sites contain the same
integer amount of magnons. This is in accordance with the theory we gave of
the Mott insulating phase: with the same amount of magnons on each site,
they will not hop to other sites (see Fig. 3), and thus the freedom in spin angle
remains unaligned and BEC is broken.

We also see that the insulating regions only appear within a very limited
range of J/K, that grows even smaller when we work with higher spins or

higher dimensions. Further we note that the bulges grow even smaller as 〈a†iai〉
increases. Although 〈a†iai〉 seems unrestricted, we had to keep in mind that any

state with 〈a†iai〉 larger than 2S is unphysical (as discussed before). Therefore

the Mott insulating region bulges will in fact stop after 〈a†iai〉 = 2S.
In response to an earlier version of this diagram, Stoof (co-author of Ref. [11])

made the suggestion that the region labeled as “No BEC” could be viewed as
the Mott insulating region for 〈a†iai〉 = 0, so for zero magnons in our system.
Calculations were made and accordingly the BEC boundary was updated to
match this useful observation.

Thus we have created a phase diagram showing the superfluid and Mott
insulating phases of magnons in a ferromagnetic lattice. In the next chapter we
check whether the results we just found are trustworthy.

5 Comparing the Spin- and Bose-Hubbard Hamil-
tonian

To map the phase transitions to a Mott insulating state of magnons in our
system we used the mean-field approximations of the Bose-Hubbard Hamil-
tonian. But remember, to obtain the Bose-Hubbard Hamiltonian form the
Spin-Hamiltonian, we used a Holstein-Primakoff transformation followed by a
truncated Taylor expansion in powers of 1/S. We expect that because of this
expansion, we will find some differences between the results predicted by the
Spin- and Bose-Hubbard Hamiltonian, especially when S is small. We want to
investigate just how accurate will the predictions made by the Bose-Hubbard
Hamiltonian are for our system of magnons, so that we can argue how valid
the phase diagram we just obtained is. To do so, we compare the expectation
value of the total amount of magnons 〈a†a〉 in a crystal with 2 lattice sites, and
evaluate this expectation value both from the exact spin-Hamiltonian and the
Bose-Hubbard Hamiltonian.

5.1 Expectation values for S = 1 using the spin-Hamiltonian

Our spin-Hamiltonian (Eq. (1)), written out for two lattice sites in one dimension
(of which the last is connected to the first one again), reads

H = − J

2~2
~S1 · ~S2 +

K

2~2
((Sz1 )2 + (Sz2 )2) +

B

~
(Sz1 + Sz2 ) . (36)
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This Hamiltonian acts in the direct product space TS1
⊗ TS2

, spanned by
the direct product states |ms,1〉⊗ |ms,2〉, where ms,i ranges from −Si to Si. We
first consider two spin-1 particles, so that a basis of our space is formed by the
nine states

|1〉 ⊗ |1〉 |1〉 ⊗ |0〉 |1〉 ⊗ |-1〉
|0〉 ⊗ |1〉 |0〉 ⊗ |0〉 |0〉 ⊗ |-1〉
|-1〉 ⊗ |1〉 |-1〉 ⊗ |0〉 |-1〉 ⊗ |-1〉 .

(37)

To find a matrix representation for our Hamiltonian in this basis, we use the
matrix-representations of the spin operators for spin-1:

σx =
~√
2

0 1 0
1 0 1
0 1 0

 , σy =
i~√

2

0 -i 0
i 0 -i
0 i 0

 , σz = ~

1 0 0
0 0 0
0 0 -1

 ,

The spin operators in this Hilbert space are now obtained by taking, for
example, Sz1 = σz ⊗ I, so that Sz1 acts upon the first lattice site as usual,
while trivially acting on the second one. Similarly we use Sz2 = I ⊗ σz, and
~S1 · ~S2 = σx1⊗σx2 +σy1⊗σy2 +σz1⊗σz2 , where I is the 3x3 identity matrix. We
then calculate the 9x9 matrix representation of our Hamiltonian. To make the
calculations less complicated, we divide this Hamiltonian by K, so that it is only
dependent on J

K and B
K . We diagonalize this matrix to find its eigenvalues and

corresponding vectors. After normalization these 9-component vectors represent
the eigenstates of our Hamiltonian and are dependent on J

K . We can now
continue to calculate some expectation values.

Let’s start with our system in the groundstate, for J = 0. Since the two
particles are then uncoupled, we expect the same results as we calculated be-
fore for a single-spin, only now multiplied by 2. We select the groundstates of
our diagonalized Hamiltonian, which are again dependent on B

K . We can then
calculate 〈Stot,z〉T=0 = 〈S1,z + S2,z〉T=0 = 〈Ψgs|S1,z + S2,z|Ψgs〉, and use the
Holstein-Primakoff transformation to translate the results in terms of magnons.
We plot the results in Fig. 10.
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Figure 10: 〈(a†a)tot〉 at T = 0 and J = 0 for two spin-1 particles
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We see that this is exactly what we anticipated. The two lattice sites are un-
coupled and therefore magnons are created at both sites on the exact thresholds
as we calculated for single spins.

Next we calculate the expectation value 〈Sz〉 when T 6= 0 and J 6= 0. We do
this (as before) by taking the canonical ensemble average:

〈Stot,z〉 = 〈S1,z + S2,z〉 =

∑
n
〈Ψn|S1,z + S2,z|Ψn〉e−β〈Ψn|H|Ψn〉∑

n
e−β〈Ψn|H|Ψn〉

. (38)

In a similar fashion we calculate 〈S2
tot,z〉 and the variance of Stot,z. After

using the Holstein-Primakoff transformation we plot the results for βK = 100
(since we are interested in the behaviour at low temperatures, where the phase
transistions occur) and several values of J

K in Fig. 11.
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Figure 11: 〈(a†a)tot〉 and σ2
〈(a†a)tot〉 for βK = 100 for two spin-1 particles

We see that when J/K is small, the system behaves like the sum of two
uncoupled particles which we calculated before. This was to be expected, since
J is the term that controls interactions between the sites. As J/K increases, we
see that when 1 magnon is created in the lattice, the threshold for the second
magnon to be created is shifted, due to interaction energies between sites. When
J/K is large, these thresholds even out so that all steps in the ladder of magnon
creation and annihilation are of the same size in their domain of B/K.
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5.2 Expectation values for S = 1 using the Bose-Hubbard
Hamiltonian

Now we calculate the same expectation values using the Bose-Hubbard Hamil-
tonian, so that we can compare its results. To do so, we have to write out
Eq. (12) for two lattice sites, again in 1 dimension and where the second site
is connected to the first one. To get rid of the sums over pairs we write∑
〈i,j〉

a†iaj = 1
2

∑
i

a†i (ai+1 + ai−1), and similarly for the fourth order term in

J . We obtain the Hamiltonian:

H = −J [S(a†1a2 + a†2a1) +
1

2
(a†1a

†
2a1a2 + a†2a

†
1a2a1)]

+ [
K

2
(1− 2S) +B + JS](a†1a1 + a†2a2) +

K

2
(a†1a

†
1a1a1 + a†2a

†
2a2a2) .

(39)

The Hilbert space on which this Hamiltonian acts is spanned by the states
|n1〉 ⊗ |n2〉, where n1 and n2 represent the amount of magnons on lattice site 1
and 2, respectively. A matrix representation of a† and a acting on a single site
is then:

a† =



0 0 0 . . . 0 . . .√
1 0 0 . . . 0 . . .

0
√

2 0 . . . 0 . . .
...

...
...

. . . 0 . . .
0 0 0

√
n 0 . . .

...
...

...
...

. . .
. . .


, a =



0
√

1 0 . . . 0 . . .

0 0
√

2 . . . 0 . . .
0 0 0 . . . 0 . . .
...

...
...

. . .
√
n . . .

0 0 0 0 0
. . .

...
...

...
...

...
. . .


,

(40)
where n is the maximum amount of magnons on that lattice site.
Note that n seems to be unrestriced, i.e. there can be an arbitrary amount of

magnons on each lattice site. This is a result of the truncated Taylor expansion
from the Holstein-Primakoff transformation we used to obtain the Bose-Hubbard
Hamiltonian. As mentioned, we should keep in mind that before we used that
approximation, it could be seen that any state with more than 2S magnons one
one site is unphysical. We have an opportunity here to research what the Bose-
Hubbard Hamiltonian predicts when we make calulations with these unphysical
states, but for now we will cut off the matrix representations of a† and a so that
no more than 2S magnons can be created per lattice site.

We then take S = 1 so that we can construct the operators of our Hamilto-
nian by taking a†1 = a† ⊗ I3 and a†2 = I3 ⊗ a† and similar for a1 and a2. With
these, we then find a 9x9 matrix representation of the Bose-Hubbard Hamilto-
nian, which we divide by K again. After diagonalizing this matrix we find that
the eigenvectors are this time dependent on both J/K and B/K.

The Bose-Hubbard Hamiltonian as used in the calculations by van Oosten et
al. lacked the fourth order J-term, since it would make analytical elaboration
impossible. Since we used their calculations to map the transition from insu-
lator to superfluid phase of our system, we’d like to see the difference between
the results of the Bose-Hubbard Hamiltonian when this fourth order term is
excluded and included.
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In the usual way we calculate the thermal average 〈(a†a)tot〉. When we take
J = 0, the results are exactly the same as for the Spin-Hamiltonian. This is
hardly surprising, since the Taylor expansion we used was only included in the
coupled terms. When we take J 6= 0, the results begin to deviate rapidly. In
Fig. 12 we plot the results for βK = 100 of the Bose-Hubbard Hamiltonian
including the fourth order term (blue) and without the fourth order term (red),
and compare them with the previous results from the Spin-Hamiltonian (yellow).
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Figure 12: 〈(a†a〉)tot at βK = 100 for the Spin-Hamiltonian and Bose-Hubbard
2nd and 4th-order Hamiltonian for S = 1

As we can see, even for very small values of J/K the second order Bose-
Hubbard Hamiltonian differs from the Spin-Hamiltonian. It is accurate for the
first magnon created, but then the differences become ever larger for every
second magnon that’s created. The difference only magnifies as J/K rises, and
is already huge by the time that J/K = 0.4.

The fourth order Bose-Hubbard Hamiltonian fares slightly better. In a
greater range of J/K it remains accurate in predicting the threshold for the first
two magnons created in our lattice. The third and fourth magnons of our system
are less accurate, but the overall deviations from the Spin-Hamiltonian are still
about half of those observed from the second order Bose-Hubbard Hamiltonian.

As discussed, we expected differences because to obtain the Bose-Hubbard
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Hamiltonian we expanded an expression around zero in powers of 1/S. Since
we now took S = 1, this whole expansion is not very well legitimated. Were we
to consider our system for higher spin, however, we would expect to find more
accurate results.

5.3 Expectation values for S = 2

Therefore, we now calculate the same expectation values for S = 2. This means
that for the Spin-Hamiltonian, we use the spin-2 matrices instead of those for
spin-1, and for the Bose-Hubbard Hamiltonian, we cut off the infinite matrix
representation for a† and a to permit a maximum of 2S = 4 magnons per
lattice site, instead of 2. Calculations are analogous to those for spin-1, only
now we obtain a 25x25 matrix representation for both the Spin- and Bose-
Hubbard Hamiltonians, which considerably lengthens the time needed for the
calculations to be completed. The results are plotted in Fig. 13.
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Figure 13: 〈(a†a〉)tot at βK = 100 for the Spin-Hamiltonian and Bose-Hubbard
2nd and 4th-order Hamiltonian for S = 2
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The results are similar to what we found for S = 1. As soon as J 6= 0, the
Bose-Hubbard Hamiltonian deviates from the Spin-Hamiltonian. When J/K is
small enough, the fourth-order Bose-Hubbard Hamiltonian is fairly accurate in
predicting the threshold for creation of the first 4 magnons in our lattice, but
this accuracy quickly deteriorates; when J/K = 0.2, only the first 2 magnons
are predicted nicely and above that the fourth order Bose-Hubbard Hamiltonian
barely gives better results than the second order. Still, in all, the ladders as
predicted by all Hamiltonians are not completely dissimilar. It is imaginable
that for higher spin the approximation will slowly improve, but a comparison
of the results from spin-1 and spin-2 is inconclusive in this respect.

5.4 Expectation values for S = 6

We therefore take a large step to spin-6. As the matrix representations of
the spin operators Sx, Sy, Sz for S = 6 are uncommon to find in literature,
we use the known eigenvalues of the operators to construct these three 13x13
matrices ourselves to calculate the spin-Hamiltonian. For the Bose-Hubbard
Hamiltonian, we cut off the matrices for a† and a to permit a maximum of
2S = 12 magnons per lattice site. Both Hamiltonians are now 169x169 matrices.
To calculate the wanted expectation values (again, completely analogous to the
methods above) for these large matrices, optimized programming and a lot of
patience are needed. We therefore only compute 〈(a†a)tot〉 for βK = 100 and
J/K = 0.1 for the spin- and 2nd-order Bose-Hubbard Hamiltonian, and plot
the results in Fig. 14.
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Figure 14: 〈(a†a〉)tot at βK = 100 and J/K = 0.1 for the Spin-Hamiltonian and
Bose-Hubbard 2nd-order Hamiltonian for S = 6

We immediately see that the results are much more accurate than before.

25



A few minor differences can be discerned in the first magnons when comparing
the second-order Bose Hubbard Hamiltonian to the spin-Hamiltonian, but they
only grow larger after about 18 magnons (out of the maximum of 24 that can
be created in this system). We now have enough results to make a reasonable
conclusion.

6 Conclusion

A phase diagram of the superfluid and Mott insulating regions of magnons
in a ferromagnetic lattice has been obtained (see Fig. 9). In order to use the
calculations done by van Oosten et al. to map the Mott insulating regions of this
system, we were obliged to describe our lattice by a form of the Bose-Hubbard
Hamiltonian. This could be done by using a Taylor expansion and subsequently
neglecting a fourth order term we obtained. We compared the expectation value
of the amount of magnons in a two-site, one-dimensional lattice, using both this
approximated Hamiltonian and the original spin-Hamiltonian.

When taking S = 6, we found that the first three-quarter of the magnons
in our two-site lattice were accurately predicted by the approximated Bose-
Hubbard Hamiltonian. We can therefore conclude that this Hamiltonian is fairly
trustworthy in showing the first three-quarter of the bulges of Mott insulating
regions in our phase diagram. There, it predicts that the first bulge always
stays below J

K = 0.2
zS , which is much smaller than the J/K = 0.1 at which the

deviations of the Bose-Hubbard Hamiltonian were tested. Successive regions
of Mott insulating phases only appear for increasing smaller values of J/K,
and we expect this tendency to continue when the regions seem less accurately
predicted (after about three-quarter of the regions). For the small values of
J/K that those regions then exist, the differences between the Bose-Hubbard-
and the spin-Hamiltonian have almost vanished (i.e. they are not nearly as
large as tested in Fig. 14). We therefore argue that for S = 6 even more than
three-quarter of these regions are fairly reliably shown in our phase diagram.
This is especially true when working in higher dimensions, since then accuracy
everywhere is enhanced, because the insulating regions exist for even smaller
values of J/K than discussed above. When considering a lattice of particles
of higher spin, results will also become increasingly accurate, both because the
used Taylor expansion is better legitimated and because the Mott regions will
appear for lower values of J/K.

When the particles in the lattice are of a lower spin, more care must be taken.
Large deviations of the expectation values from the Bose-Hubbard Hamiltonian
are seen even at small values of J/K, so we should be more suspicious of the re-
sults it yields for the Mott insulating regions at these lower spins. For S = 2 and
S = 1 the Bose-Hubbard Hamiltonian is only accurate when describing the first
magnon in a two-site lattice. But we need at least one magnon on both sites in
order to be able to reach the first Mott insulating state containing magnons. The
second magnon in our two-site example lattice however, is not very accurately
predicted by the Bose-Hubbard Hamiltonian, so the phase diagram we obtained
cannot be trusted into detail for low spins. This problem could be partially
solved by including the fourth-order term in the Bose-Hubbard Hamiltonian
which we neglected from Eq. (34) onward. This fourth-order Hamiltonian stays
reasonably accurate in describing the first two magnons in our lattice, where
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it could transit to the first Mott insulating region. One could then expect a
fairly accurately predicted first Mott region for these low spins, especially when
working in more than one dimension. This would mean however, that a dif-
ferent approach than used in this thesis should be taken to construct a phase
diagram, since our method was based on that of van Oosten et al., where analyt-
ical calculations would be impossible when including the relevant fourth-order
term.

Further we found a transition of our magnons to a superfluid state when
B/K dropped below the threshold of S − 1/2. To reach this result, we once
again used the second-order Bose-Hubbard Hamiltonian, where now even the
fourth order in the K-term was thrown away, thus neglecting on-site magnon-
magnon interactions. As discussed in Ref. [13], we know that this boundary is
actually not independent of temperature when these interactions are included.
At temperatures close to zero our superfluid transition is a reasonable approx-
imation, but some work is still left to be done to obtain an accurate phase
diagram showing this transition at higher temperatures.

Other future work includes investigating the accuracy of the predicted transi-
tions for more than two lattice sites and in higher dimensions. Such a many-body
problem could be solved numerically using the Gutzwiller ansatz (a factorizable
wavefunction), which works well in three dimensions or more.

As for experimental possibilities, Momoi et al. [15] have shown that Mott in-
sulating states correspond with plateaus in the magnetization when varying the
magnetic field, whereas it is gapless for a superfluid state. Since the magnetic
field is an easily adjustable parameter, this link could be exploited to experi-
mentally observe the transitions from a superfluid to a Mott insulating phase
as predicted in this thesis.
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