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Abstract

In order to achieve a way to propagate a Gaussian beam through a set of optical elements, several
aspects of optics need to be combined. We will show that by using Gaussian optics in combination
with ray tracing, we can find a method to include several complexities that are not possible with
the common rules of Gaussian optics. We will check our theory with experiments where we shoot
Gaussian beam at an offset with respect to the optical axis of the lens-system. For small deviations
of 1.0 cm from the optical axis on a 2.54 cm wide lens, the theory is in good agreement with the
measurements.
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1 Introduction

The field of nanophotonics considers the interaction between light and matter on the nanoscale. This
research branch has different aspects to it.

In general practice lenses are designed for light to pass through the center in order to get the desired
effect. Different types of theories have been developed to describe the light trajectory through lenses.
But most of them consider either an infinitely thin lens, or light that only hits the center of a thick
lens. This does not really take the spherical form of the lens into account. And because of that, it is
not that easy to calculate what happens to a beam that hits the lens off-center.

In our experiment group we try to bring an ultra-cold atom cloud next to a nanostructure. We do this
with an optical trap which requires that we hit one of the lenses off-center. And in order to understand
what happens with a beam that is going off-axis we aim to derive a theory that can describe the
off-axis beam after propagating through a lens.

This thesis will derive a set of equations to calculate the beam parameters when dealing with spherical
aberration.

————————-
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2 Theory

There exist ways of propagating light rays that give us a good indication of the properties of an optical
setup. Information such as focal distance, refraction and magnification can be calculated and visual-
ized with simple rules. However, problems arise when looking at more complex situations where you
might want to know the intensity profile of your beam. In the first section of the theory, the ray-picture
of light propagation will be briefly explained to get a basic understanding of propagating light. After
that we shall use ray optics in combination with Gaussian optics to derive a set of operations where
we can trace beams through a set of lenses and calculate the intensity field of a beam that is affected
by spherical aberration.

2.1 Ray optics

We will need to find a way to describe the path that light follows. A simple form of light has al-
ways been the wave-picture. You can follow these waves by looking at their wavefronts, and these
wavefronts of light can be tracked by drawing a line perpendicular to these wavefronts. [1] This line
represents the direction in which the energy of the light is flowing towards.

One way to describe this ray path is by defining two variables, namely the distance and the angle
which the ray makes with respect to the optical axis.1

An important component in order to propagate the ray along its path is refraction. For instance, when
the ray encounters a lens it will cross over into a different medium with a different refractive index.
In order to know how the ray continues in the new medium, the direction of the transmitted ray can
be determined by simply using Snell’s law.

Every interface between two media can be viewed as a two-dimensional situation, the incoming wave-
vector can therefore be cast into a parallel and a perpendicular component with respect to the surface
normal-vector. The wave-vector~k = ni~k0 then splits into~k‖+~k⊥ where |~k0| = 2π/λ0 and ni is the
refractive index of the material. The k-component parallel to the surface must remain unchanged
during the transmission into the lens. From this we can derive Snell’s law immediately.

k‖,in = k‖,out (2.1)

nink0 sinαin = noutk0 sinαout (2.2)
nin sinαin = nout sinαout (2.3)

In this equation α represents the angle between the surface normal and the incoming and outgoing
ray.

1Of course this only defined in 2D, but it can be easily expanded to 3D
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2.1. RAY OPTICS CHAPTER 2. THEORY

Already when calculating the focal point of a single lens setup, things are going to get difficult, since
the rays will not have a single focal point anymore as can be seen in Fig. 2.1.

Figure 2.1: The effects of spherical aberration on the focus

Lenses and mirrors are probably the most used calculations in a setup. And now that we have a way
to calculate refraction, we also need a way to deal with reflection. Reflection on a mirror can simply
be considered as ”folding out” the space as pictured in figure 2.2. The ray can be propagated along
a path where the mirror is not installed and the rest of the setup is rotated so that they are behind the
mirror. This way, the ray can continue alongside one axis during the whole setup.

Figure 2.2: A representation of folded out space

2.1.1 Ray transfer matrix analysis

Instead of calculating the refraction and reflection at each interface, we could also make better use
of the two variables, x and θ , we defined earlier by making an approximation. This approximation,
known as the ”paraxial approximation”, requires θ to be small in order to make use of the fact that
sinθ ≈ θ . This severely simplifies Snell’s law, because all that has to be done now is just basic
multiplication and addition. These approximations can be used to describe a set of lenses, mirrors,
slabs or other objects in terms of a matrix multiplication. Finally the newly found ray-vector is defined

with the refractive index n of the current region as
(

x
nθ

)
For each optical element there exists a matrix of the form

(
A B
C D

)
where AD−BC = 1. If that matrix

is multiplied with the ray-vector it returns a new transformed ray-vector that describes the propagated
ray through that optical element.
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CHAPTER 2. THEORY 2.2. GAUSSIAN BEAM

The only thing we have to find out now are the ABCD coefficients for each region. For a spherically
curved material, with radius of curvature R, it is possible to derive the following two equations after
assuming the paraxial approximation

x2 = x1 (2.4)

θ2 = arcsin
[

n1

n2
sin
(

θ1 + arcsin
x1

R

)]
− arcsin

x1

R
(2.5)

n2θ2 ≈ n1θ1 +
n1−n2

R
x1 (2.6)

In matrix notation this becomes
(

x2
n2θ2

)
=

(
1 0

n1−n2
R 1

)(
x1

n1θ1

)
If the ABCD values for all of the elements in the loop are given, then the whole optical setup can be
chained together into one matrix. To visualize this, let’s say there is a setup with two curved surfaces
with radii of curvature R1 and R2 enclosing a piece of material with a thickness d and refractive index
n2, then you can rewrite it to the following matrix-multiplication(

x′

θ ′

)
=

(
1 0

n2−n1
R 1

)
︸ ︷︷ ︸

surface 2

(
1 d/n2
0 1

)(
1 0

n1−n2
R 1

)
︸ ︷︷ ︸

surface 1

(
x
θ

)
(2.7)

This shows the ray-parameters in the final plane right after the last lens.2 What this equation describes
is in fact the matrix for a thick lens, contrived of two spherical surfaces and a finite thickness of the
medium in between the surfaces.

2.2 Gaussian Beam

Now that we have a way to describe ray optics in a simpler way, we can move on to Gaussian optics.
We need Gaussian optics, because ray optics on its own does not really tell you anything about the
shape of your beam after passing through optical elements.

2.2.1 Gaussian optics

A Gaussian beam has, as the name suggests, a Gaussian field distribution in the beam’s waist that
looks like

u(x,y,z) =
U0

q(z)
exp
[
−x2 + y2

w(z)

]
(2.8)

Where the waist at any given point z along the beam with waist at zw can be worked out with

w(z) = w0

√
1+
(

z− zw

zR

)2

(2.9)

zR =
πw2

0
λ

(2.10)

Where zR is the Rayleigh range of the beam. The Gaussian field equation can also be written in terms
of the complex beam parameter q

q = z− zw− izR (2.11)
2Note that you have to read the setup from right to left. The first lens is the first operation on the ray-vector
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2.2. GAUSSIAN BEAM CHAPTER 2. THEORY

This parameter gives helpful information, namely the distance from the waist and the Rayleigh range
of the beam. The Rayleigh range of the beam gives us the distance the beam can travel before the
area of the cross-section of the beam is doubled. Thus giving information about how fast the beam
diverges. If the parameters z−zw and zR are combined, then the waist can be calculated at an arbitrary
position z along the beam. Writing the parameters of the beam in this way is very useful for certain
calculations as shall be seen later on.

2.2.2 Propagating an on-axis Gaussian beam

The propagation of rays through optical elements can be described by a simple matrix multiplication.
However to propagate a general scalar field from one plane (entrance plane) to another plane parallel
to it (exit plane), one has to solve the scalar Kirchhoff integration [3]. Mathematically this amounts
to solving an integral of the following form

uout(x,y,z) =
∫ ∫

K(x,y,z;ξ ,η ,z′)uin(ξ ,η ,z′)dξ dη , (2.12)

where K(x,y,z;ξ ,η ,z′) is the kernel that relates the field in the entrance plane to the field in the exit
plane. uin and uout denote the field in the entrance and exit plane, respectively. In other words, the
kernel describes the propagation of a Huygens’ secondary wave from a point {ξ ,η ,z′} in the entrance
plane to a point {x,y,z}.

Within the paraxial approximation, it can be shown that this kernel is given by the so-called Baues-
Collins-integral kernel [4] [5],

K(x,y,z;ξ ,η ,0) =
k0

2πi

√
n
n′

eik0L0

B
exp
[

ik0
A(ξ 2 +η2)−2(ξ x+ηy)+D(x2 + y2)

2B

]
, (2.13)

which makes use of the same A, B, C and D coefficients as we derived through ray optics.The pre-
factor in this kernel make sure, amongst other things, that energy is conserved.

The coordinates at the entrance plane {ξ ,η ,z′} are a set of coordinates that can be chosen by us, so
in order to make it easier the z′ is chosen to be 0 in the entrance plane.

The expression for the incoming field that will be used has its focus at z′ = 0 and can be re-expressed
from Eq.2.14 to the following form which contains the q-parameter

uin(ξ ,η ,0) =
u0√qx0qy0

exp
[

ik0

2

(
x2

qx0
+

y2

qy0

)]
(2.14)

Where qx0 and qy0 are just the q-parameters at the focus. Plugging these values in the integral, gives
us the following equation

uout(x,y,z) =
k0

2πi
eik0L0

B

√
nin

nout
exp
[

ik0

2B
D
(
x2 + y2)]

×
∞∫
−∞

exp
[

ik0

2B

(
ξ

2
(

B
qx0

+A
)
−2ξ x

)]
dξ

×
∞∫
−∞

exp
[

ik0

2B

(
η

2
(

B
qy0

+A
)
−2ηy

)]
dη

(2.15)
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CHAPTER 2. THEORY 2.2. GAUSSIAN BEAM

The integrals of the form
∞∫
−∞

e−ax2−2bxdx are given by this simple identity
√

π

a eb2/a if Re(a)> 0. So

solving it for the expression of uout gives us:

uout(x,y,z) =
u0√qx0qy0

k0

2πi
eik0L0

B

√
nin

nout

√
2πiqx0B

k0(Aqx0 +B)
×

√
2πiqy0B

k0(Aqy0 +B)

× exp
[

ik0

2

(
D
B
− qx0

B(Aqx0 +B)

)
x2
]
× exp

[
ik0

2

(
D
B
−

qy0

B(Aqy0 +B)

)
y2
]

=
u0eik0L0

√
Aqx0 +B

√
Aqy0 +B

exp
[

ik0

2

{(
D
B
− qx0

B(Aqx0 +B)

)
x2 +

(
D
B
−

qy0

B(Aqy0 +B)

)
y2
}]

(2.16)
We can see that the amplitude has changed, and the pre-factor before x2 and y2 can be see as the
new 1/q′x and 1/q′y. When we work this out we get the relation between the old and the new q-
parameters.

1
q′x

=
D
B
− qx0

B(Aqx0 +B)
=

D(Aqx0 +B)
B(Aqx0 +B)

− qx0

B(Aqx0 +B)
(2.17)

We also know that AD−BC = 1, so if we replace the factor DA with (1+BC) then we can see a
solution forming:

1
q′x

=
(1+BC)qx0 +DB

B(Aqx0 +B)
− qx0

B(Aqx0 +DB)
=

BCqx0 +DB
B(Aqx0 +B)

=
Cqx0 +D
Aqx0 +B

(2.18)

The same steps can be taken for the y components of the function, but the end result comes down
to

uout(x,y,z) =
u0√

Aqx0 +B
√

Aqy0 +B
exp

[
ik0

2

(
x2

q′x
+

y2

q′y

)]
(2.19)

And this very much resembles the starting equation, so the only thing that changes during the propa-
gation through the optical setup is the amplitude and the q-parameter.

2.2.3 Gaussian ABCD

Now that the Gaussian q-parameter allows one to make use of the ABCD matrices once again to
describe, in the paraxial approximation, what happens with a Gaussian beam. The q-parameter can
travel through the system and the beam parameters in the final plane can be simply calculated from
the initial q-parameter with [2]

q f =
Aq0 +B
Cq0 +D

(2.20)

Where the A, B, C and D coefficients are the same elements of the ray transfer matrices used in ray
optics. This q f is then again the q-parameter in the final plane where the real part is the z-distance
from the waist and the imaginary part gives back the Rayleigh range.

This form of propagation through ABCD law with Gaussian optics is only of use when you look at
very simple systems where you relate two parallel planes with an on-axis Gaussian beam. In this
method you define optical elements in one location on the optical axis, this means that spherical
aberration can also not be entered this way. The beam has to go through the middle of the lens or
object in order for Eq. 2.20 to hold. And since we want to know how the profile of the beam changes
due to spherical aberration, or what happens off-axis, we can no longer rely on the fact that our beam
remains Gaussian.
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3 Methods

As mentioned in Section 2.2 the ABCD law is just not enough to discuss the beam profile for an
off-axis beam. And the ray tracing is not enough in order to achieve a way to find the profile of the
beam. So in order to propagate a Gaussian beam through a set of optical elements, several aspects
of these methods need to be combined. We will show that by using Gaussian optics in combination
with ray tracing, we can find a method to include several complexities that are not possible with the
common rules of Gaussian optics.

3.1 Off-axis beams

For off-axis beams we cannot simply use the normal ABCD transfer matrix that is defined for the
on-axis beam. The main issue is that it relates an incoming and outgoing field with the help of two
planes. These two planes are defined such that they are perpendicular to the beam direction, therefore
a different approach is required since the two planes are not perpendicular to the optical axis.

3.1.1 Chief Ray

We consider a small Gaussian beam that is off-axis. First the optical path of the beam needs to be
found, which can be calculated by initially treating the beam as a ray. Ray calculations can be done
without approximations by using Snell’s law and trivial geometry. From now on the ray that describes
the path of the beam will be known as the ”chief-ray”.

~rchief = ~ochief +d p̂

‖~rsphere−~c ‖2 = R2

}
d =−p̂ · (~o−~c)±

√
p̂ · (~o−~c)2− ‖~o−~c ‖+R2 (3.1)

This gives a solution for the path length d that the chief-ray, with starting point ~o and direction p̂,
has to travel before it hits the spherical lens surface with radius R with its center located at point ~c.
With the length now known, the point of intersection can be easily found by plugging d into the first
equation for the chief-ray.

3.1.2 Waist rays and local coordinate system

We pick our initial coordinate system to be a Cartesian coordinate system where our beam is Gaussian.
This coordinate system is chosen as the fixed frame. We always express the direction and location of
the beam in terms of this fixed frame coordinate system. However the field of the beam is only known
along the propagation direction of the beam, therefore it is necessary to define a local coordinate
system along the beam’s trajectory.

When the beam intersects with an optical element its direction might change and since the Gaussian
beam profile depends on the distance it has traveled, a change of local coordinate system needs to take
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CHAPTER 3. METHODS 3.2. NEW ABCD FOR OFF-AXIS BEAMS

place. Not only the direction of the beam, but also the direction of the x- and y-axes are calculated
after passing every interface, this is done because the x- and y-axes are not necessarily under an
angle of 90◦ with respect to each other. To track the changing of these axes we introduce a set of
”waist-rays”.

These waist-rays are rays that run parallel to the chief-ray, and when the chief-ray intersects with a
surface, the waist-rays are intersected with the plane perpendicular to the beam’s direction, its own
z-axis. The difference between the chief-intersection and the waist-ray intersection will give a vector
that lies in the xy-plane. For the x waist-ray vector we should get the new x-axis direction. If this is
calculated at every interface, then this provide us with a way to keep track of the local x- and y-axes.
These local coordinate systems can later be used to calculate the beam profile and translate it to the
final plane.

3.2 New ABCD for off-axis beams

3.2.1 Modifying ABCD with the delta shift

With the direction of the beam known between every interface from the chief-ray, we can derive a
set of parallel planes where we can relate incoming beam and outgoing beam again using a set of
modified ABCD coefficients. The outgoing plane is defined by the direction of the beam towards the
exit plane as seen in Fig. 3.1(a). The exit plane has a local coordinate system that we need to transfer
back through the path of the beam. We drag that plane back until it hits the first part of the lens surface
at point Q. The red line denotes the beam path up until the exit plane Pout. This is necessary because
in order to work with ABCD matrices we need to relate two parallel planes to each other.

Figure 3.1: Zooming in at the intersection on (a) gives us (b) where the ∆-shift can be seen as the
distance from P′ to Q

We can then find the distance between these two planes and use those to define our new ray transfer
matrix ABCD coefficients to propagate the off-axis Gaussian beam to the next interface. As one
can see, line segment QO now functions as the new optical axis, and we have a beam that is shifted
upwards from that axis. So we need to define a shift in the local coordinate system of the beam with
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3.2. NEW ABCD FOR OFF-AXIS BEAMS CHAPTER 3. METHODS

that amount. We call this shift the ∆-shift. This shift is necessary to better relate the plane of income
Pin to the new plane Pout. We can take aberration into account because we defined the new ABCD
coefficients for every beam with a different offset. Resulting in a different traveled distance, and
therefore also a different ABCD matrix operation on each beam.

If we now look closely where the beam enters the lens at point P, we can see that this beam crosses
the incoming plane at point P′ as shown in Fig. 3.1(b).

~∆ = ~Q−~P′ (3.2)
~Q = ~oout−Rẑout (3.3)
~P′ = ~oin +dP′ ẑin (3.4)

dP′ =
(~oin− ~Q) · ẑout

ẑin · ẑout
(3.5)

Where R is the radius of curvature of the lens, ~o is the origin of the beam and ẑ is the direction it is
going in.

Now that we have defined our ∆, we still need to split it into two parts in the perpendicular plane to
the beam direction~∆ = ∆xx̂+∆yŷ, where x̂ and ŷ are the local x- and the y-components. We will talk
more about the next section.

3.2.2 Expressing the incoming field in the new local coordinates

The incoming field distribution at the waist was defined as Eq. 2.14. The field equation for any
position along the propagation direction can be given by

uin(x,y,z) =
U0

q(z)
exp
[
−ik

2

(
x2

qx(z)
+

y2

qy(z)

)]
(3.6)

When the beam hits the next interface in the system, it changes direction, and with that it also changes
its local coordinate system. In order to calculate the beam at the entrance plane of our optical element,
we need to do a projection from {x,y,z}→{ξ ,η ,z′}, the coordinate system after passing the interface.
This way, the local z-axis is always pointing in the beam’s direction. We can achieve this with the
following change of variables

x = ξ dξ x +ηdηx + z′dz′x (3.7)

y = ξ dξ y +ηdηy + z′dz′y (3.8)

z = ξ dξ z +ηdηz + z′dz′z (3.9)

In perfect Cartesian systems, the dξ x can be defined as the dot product between the new x-axis direc-
tion ξ̂ and the old direction x̂. In other words: dαβ = α̂ ′ · β̂ . But this is not entirely correct due to the
fact that the local coordinate axes x̂ and ŷ are not always perpendicular. These new axes-directions are
found from the waist-rays as explained in section 3.1.2. The coordinate transformation always goes to
a new coordinate system with the z-direction in the direction of the outgoing beam. This direction is
known from ray-tracing the chief-ray. So when we want to know a certain beam profile at the entrance
plane {ξ ,η ,z′} then we can get the values that we need to plug in for x, y and z in the fixed frame.
Those values in the function can then return the complex field in the new coordinate system.

uin(ξ ,η ,0) =U0 exp

[
ik0

{([
ξ +∆ξ

]
dξ x +[η +∆η ]dηx

)2

2qx0
+

([
ξ +∆ξ

]
dξ y +[η +∆η ]dηy

)2

2qy0

}]
(3.10)
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CHAPTER 3. METHODS 3.2. NEW ABCD FOR OFF-AXIS BEAMS

To express the Gaussian field from {x,y,z} → {ξ ,η ,z′} we need to do a coordinate system transfor-
mation. Both frames are not necessarily orthogonal systems, but z⊥ {x,y} and z′ ⊥ {ξ ,η}. In order
to project on our new x-axis ξ̂ , the vector needs to be split up in components {x̂, ŷ, ẑ} from the old
frame. The ẑ-term is first taken away, so that we only get the x̂ and ŷ component of the direction. Now
only the parallel component of ξ̂ is left. That can then be split again into old frame x̂ and ŷ.

ξ̂‖ · x̂ = ξx +ξy cosθ

ξ̂‖ · ŷ = ξy +ξx cosθ

}
−→


ξx =

~ξ‖ · (x̂− ŷcosθ)

sin2
θ

ξy =
~ξ‖ · (ŷ− x̂cosθ)

sin2
θ

(3.11)

Where ~ξ‖ is obtained from ~ξ − (~ξ · êz)êz. So now to recalculate the transformation matrix for the new

x-axis ~ξ

dξ x =
ξ̂‖ · (x̂− ŷcosθ)

sin2
θ

(3.12)

dξ y =
ξ̂‖ · (ŷ− x̂cosθ)

sin2
θ

(3.13)

dξ z = ξ̂ · ẑ (3.14)

After doing the same for η and z′, the 3×3 transformation coefficient matrix can be created in order
to do the transformation. And it is done while taking into account that x̂ and ŷ are not necessarily
perpendicular. x

y
z

=

dξ x dηx dz′x
dξ y dηy dz′y
dξ z dηz dz′z

ξ

η

z′

 (3.15)

3.2.3 Outgoing field

To get the outgoing field, all we need to know now is what the expression for our new kernel is.
Because that is part of the equation that relates the field right before the interface with the field after
through A, B, C and D. Again we can choose our own set of {ξ ,η ,z′} coordinates, so z′ is chosen to be
0 in the entrance plane. This also makes the projection a bit easier since z′ terms can be dropped.

In order to speed up calculations, the z projection will not be done at the interfaces. The reason why
can be shown by looking at a 2D case where the translation from x,z→ x′,z′ is given by

x = x′ cosθ − z′ sinθ (3.16)
z = z′ cosθ + x′ sinθ (3.17)

The q-parameter, which is the only z-dependent part of the equation looks like

q(z) = z− zw− izR

= z′ cosθ︸ ︷︷ ︸
=0

+x′ sinθ − zw− izR (3.18)

We want to be able to neglect this z-dependence for calculating the change of coordinates. And since
we always evaluate x in the order of magnitude of the beam waist, x′ ∼ w0 ,this can be neglected if

13
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either zw or zR� w0 . It is easier to see that zR will always be larger than the beam waist at the focus
if we write it out

πw2
0

λ
� w0

w0� λ

(3.19)

This can be easily satisfied if our beam waist at the focus is about the same order of magnitude as the
lens diameter. But we do have to be careful when calculating the z-dependence of the final projection,
since this is where we need the real and imaginary parts of q.

In our case it is necessary to remodel the kernel due to the fact that the x- and y-axes are not always
perpendicular. Our final kernel will have the form1

K(x,y,z;ξ ,η ,0) = |Akernel|exp

 ik0

2B


A(ξ 2 +η

2 +2ξ η cosθ) −

2
(

ξ x+ηy+(ηx+ξ y)cosθ

)
+

+D(x2 + y2 +2xycosθ)


 (3.20)

Everything that was needed to evaluate equation 2.12 has been gathered. After doing the integration,
the outgoing field is given by2

uout(x,y,z) = U0
k0

2πi

√
nin

nout

eik0L0

B

√
π

a1

√
π

a2
exp
[

ik0

2B

(
D+

ik0

2B

(
1
a1

+
cos2 θ

a2

))
x2
]

exp
[

ik0

2B

(
D+

ik0

2B

(
cos2 θ

a1
+

1
a2

))
y2
] (3.21)

where a1 and a2 are defined as follows

a1 = −ik0

(
d2

ξ x

2qx0
+

d2
ξ y

2qy0
+

A
2B

)
(3.22)

a2 = −ik0

(
d2

ηx

2qx0
+

d2
ηy

2qy0
+

A
2B

)
(3.23)

The new propagated beam profile function has retained the form where x2 and y2 are multiplied by
a new constant, these values can be seen as the 1/q f after propagation. Now just as with Eq 2.20 a
rule between the old qx0,qy0 and the new qx f ,qy f can be defined using the A, B, C and D coefficients.
These rules can be applied after every element up to the interface of the next element. A lens system
from the first interface of that lens would be calculated in steps:

1 The ABCD coefficients of the diffraction are found and used to find the new angle of the chief-
ray and the beam.

2 The chief-ray is translated along a certain distance d from the left to the right surface of the lens
with the next ABCD matrix.

3 The Gaussian beam, known up until the first lens surface is then calculated with the new q f -rule
using the combined ABCD coefficients from step 1 and 2.

1See appendix B
2See appendix A
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3.2.4 The final plane

The beam profile still needs to be projected one last time after it has gone through all the optical
elements in order to evaluate it in the final plane. This final projection can be done to the fixed co-
ordinate frame by using the transformation matrix with the fixed frame as the end coordinate system.
This returns the profile of the beamlet in the final plane which can then be summed together with the
other beamlets to produce the end result.

3.3 Splitting the beam into beamlets

In the end we would like to evaluate this equation for a big beam, but then we cannot use all the
approximations that we need. So in order to make this valid for a big beam, we can split the beam into
a superposition of little beamlets. And for this to work, we are looking for a way to split the incoming
single Gaussian function into a sum of little beamlets. It is important that these little beamlets have a
Gaussian shape themselves and have a waist at the focus that is at least one or two orders of magnitude
smaller than the waist of the original beam. It is also important that the waist of the beamlets are
bigger at their focus than the wavelength of the beam, as otherwise we would not be able to use the
d-coefficients for the projection derived in the previous section.

3.3.1 Sampling function

To sample the original Gaussian function, it makes sense to choose smaller Gaussian beamlets. They
shall then each contribute the exact wanted amount that when they are superposed they will return the
shape of the original function.

us(x) =
∞

∑
n=−∞

u(n∆)g(x−n∆) (3.24)

This function basically says that you can create your sampled function us(x) out of a sum of multiple
little functions g(x). These beamlets g(x) will be displaced from the origin with respective amplitude
of the original function f (x) at that displacement. In our case we want our function g(x) to have the
form of a Gaussian so that we can propagate them with the derived rules. So we have to pick the waist
of g(x) in the right way, that the beamlets all add up to our original Gaussian profile.

We start by defining the basic form of our little beamlet

g(x) = exp
[
− x2

w2
s

]
(3.25)

Where ws is the beam-waist of the Gaussian sampling function g(x), this waist needs to be larger than
the wavelength λ = 780 nm but smaller than the waist of the original Gaussian profile. This can also
be generalized to a 2D array of little Gaussian beamlets where the all the parameters and constants
are split into multiplications of x and y. We need a summation of beamlets, but of course a summation
from −∞ to ∞ is not a very fast operation, therefore we must pick a region that just spans the beam.
So a sum of N-beamlets will need to cover at least twice the beam-waist in x and y direction.

N

∑
n=−N

u(n∆)g(x−n∆) (3.26)
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Where N∆ ≥ 2w0. In the smallest possible valid summation, we shall only sum over a region that
spans twice the waist-size of the original beam. This should give us a good portion of the beam to
make our sampled function from.

It is also wise to pick ∆ in the same order of magnitude as the waist of the beamlet ws. By increasing
the value of ∆ with respect to ws, you might encounter so-called aliasing where you can individually
distinguish the little Gaussian beamlets from each other.

The amplitude of the beamlets cannot exactly be the same as the value of the incoming beam. The
beamlets will have some residuals that overlap and those would cause higher values than the original
function. To counter this form of over-counting, a factor of ∆

ws
√

π
must be added to the amplitude of

the small Gaussian beamlets. [6]

After some qualitative experimenting with the parameters and ratio between the spacing and the width
of the beamlets, it can be seen in Fig. 3.2 that the sampled function becomes better when the width of
the beamlets approach the same value as the spacing between the beamlets.

As can be seen in the top row, the shape of the beam is not quite good enough yet. The sampled beam
looks a bit pointy with respect to the original Gaussian. This is also reflected in the difference plot
where an amplitude error of 20-30% in the middle can be seen. The next row is already much better,
where the difference of the two plots is now only 4% of the original amplitude. In the final row where
we chose ∆ = ws, the error is almost not visible anymore.

16
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Figure 3.2: From left to right one can see the original beam, the sampled beam and the difference of
the two plotted in the xy-plane. The beamlet’s width to spacing ratio is increased as you
go down.
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4 Results and Discussion

4.1 Experiment

In order to test if the theory works for off-axis beams we have written a code. This code provides us
with the final beam parameters for a given beam at the entrance plane. In our case we will test the
code by running an experiment where the beam is given an offset with respect to the optical axis. The
beam then travels through the defined optical elements and we can collect the data again at the final
plane. There we can see how the beam shape changes due to the effect of spherical aberration.

4.1.1 Position of the focus with offset

In order to test our calculations, we have also thought of a measurement that allows us to check the
code. The setup that is shown in Fig. 4.1 shows a fiber collimator which couples out light with a
wavelength of 780 nm. For this experiment we chose an achromatic lens with a diameter of 2.54 cm
and a focal length of f = 35 mm. Achromatic lenses are also used in the ultra-cold atom setup. An
achromatic lens is specifically made to cancel shifts of the focus due to chromatic aberration, where
beams with different wavelengths are refracted differently. So in order to understand what happens in
the setup we will try to make use of the same concepts.

Figure 4.1: The fiber collimator is put on a translation stage so that we can vary the offset on the lens

The beam coming out of the fiber collimator has a certain Rayleigh length and a displacement from
the waist. So in order to be able to calculate the beam parameters on the camera, we need to do a
measurement to calculate the initial q-parameters. This is done by measuring the waist of the beam
with the CCD camera at several distances from the out-coupler. We can fit the measured values to Eq.
2.9 which calculates the beamwaist for a given distance from w0. In Fig. 4.2 and 4.3the measurements
are shown with the result of the fits to Eq.2.9.

18
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Figure 4.2: The x-waist function fitted through the measured data points

Figure 4.3: The y-waist function fitted through the measured data points

19



4.1. EXPERIMENT CHAPTER 4. RESULTS AND DISCUSSION

After the measurement of the initial beam parameters we moved the lens into place. We then set the
distance between the camera and the lens by moving the camera until we had the smallest possible
waist on the camera. With the camera in focus we began the measurement of the waists when giving
the incoming beam an offset with respect to the optical axis. To achieve this offset the out-coupler
is shifted back and forth with a distance of 7.5 mm from the optical axis, a total range of 15 mm in
the x-direction. In Fig. 4.4 and Fig. 4.5 the effect of this shift on the x-waist and the y-waist is made
visible by the red dots.

Figure 4.4: Here the x-waists of the beam in the final planes are shown as function of the initial x-
offset

One can see that although the calculated model does not exactly correspond with the measurement,
in the middle it is in quite good agreement with the measurements. As the beam moves further away
from the center, the paraxial approximation will not hold, and therefore the results start to diverge.
It is also quite a small lens, so there is not much distance to scan. If the measurement were to
be improved, they would need to be done on a lens with a larger focal length where the paraxial
approximation would hold over a longer region.
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Figure 4.5: Here the y-waists of the beam in the final planes are shown as function of the initial x-
offset
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5 Outlook

In order to achieve better results, it would be beneficial to study the same focus changes for off-axis
beams with a different set of lenses. In our case we used the AC254-035-B, with 35 mm focal length
and 1 inch diameter, but for lenses with larger focal lengths, the range over which you can measure
increases which allows for more accurate measurements.

Now that a calculation can be done to propagate an off-axis Gaussian beam, the next thing would be
to simulate a situation where you split one big Gaussian beam into an array of little Gaussian beams
that can each propagate through the system on their own. In the final plane they would then be added
together to possibly form into complex patterns due to the accumulated phase-differences.
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Appendix

A - Outcoming field

We write~∆ = ∆ξ ξ̂ +∆η η̂

uin(ξ ,η ,0) =U0 exp

[
ik0

{([
ξ +∆ξ

]
dξ x +[η +∆η ]dηx

)2

2qx0
+

([
ξ +∆ξ

]
dξ y +[η +∆η ]dηy

)2

2qy0

}]

K(x,y,z;ξ ,η ,0) = AKernel exp

 ik0

2B


A(ξ 2 +η

2 +2ξ η cosθ) −
2(ξ x+ηy+[ηx+ξ y]cosθ)+

D(x2 + y2 +2xycosθ)




uout(x,y,z) =
∫ ∫

K(x,y,z;ξ ,η ,z′)uin(ξ ,η ,z′)dξ dη

First comes the integration over ξ by collecting al ξ terms

f1(ξ ) = exp


ik0



ξ
2

(
d2

ξ x

2qx0
+

d2
ξ y

2qy0
+

A
2B

)
+

ξ

(dξ xdηx (η +∆η)+d2
ξ x∆ξ

qx0
+

dξ ydηy (η +∆η)+d2
ξ y∆ξ

qy0
+

A
B

η cosθ − x+ ycosθ

B

)




∞∫
−∞

e−ax2−2bxdx =
√

π

a
eb2/a , Re(a)> 0

a1 =−ik0

(
d2

ξ x

2qx0
+

d2
ξ y

2qy0
+

A
2B

)

b1 =−
ik0

2

(
η

(
dξ xdηx

qx0
+

dξ ydηy

qy0
+

Acosθ

B︸ ︷︷ ︸
γ1

)
+∆η

(
dξ xdηx

qx0
+

dξ ydηy

qy0︸ ︷︷ ︸
γ1−Acosθ

B

)
− x+ ycosθ

B
+∆ξ

(
d2

ξ x

qx0
+

d2
ξ y

qy0

))
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The outcome of the integral is then
∞∫
−∞

f1(ξ )dξ =

√
π

a1
exp
[
−

k2
0

4a1

{
(x+ ycosθ)2

B2 − 2(x+ ycosθ)

B

(
∆η

(
γ− Acosθ

B

)
+∆ξ ( )

)}]

×exp

− k2
0

4a1

η
2
γ

2
1 +2ηγ1

∆η

(
γ1−

Acosθ

B

)
+∆ξ

 d2
ξ x

qx0 +
d2

ξ y
qy0

− x+ ycosθ

B





︸ ︷︷ ︸
f ′2(η)

×exp

− k2
0

4a1

[
∆η

(
γ1−

Acosθ

B

)
+∆ξ

(
d2

ξ x

qx0
+

d2
ξ y

qy0

)]2


There are some remaining η-dependent terms from the first equation we group as f ′′2 (η). Now com-
bining the result of the previous integral with the η-dependent terms of the first equation, we can form
the new integrand f2(η)

∞∫
−∞

f2(η)dη =

∞∫
−∞

f ′2(η) f ′′2 (η)dη

=

∞∫
−∞

exp

− k2
0

4a1

η
2
γ

2
1 +2ηγ1

∆η

(
γ1−

Acosθ

B

)
+∆ξ

 d2
ξ x

qx0 +
d2

ξ y
qy0

− x+ ycosθ

B





×exp
[

ik0

{
η

2
(

dηx

2qx0
+

dηy

2qy0
+

A
2B

)}]

×exp

ik0

η

∆ξ

(
γ1−

Acosθ

B

)
+∆η

 d2
ηx

qx0 +
d2

ηy
qy0

− xcosθ + y
B


dη

We can now again find our a and b-terms to evaluate this integral. Even before writing out b2
2, you

can see that it will bring about some xy-crossterms and since we want a relation between two Gaussian

functions on the entrance and exit plane, we say that these crossterms with prefactor (− k2
0

4a1
)( ik0

2 )must
vanish. This immediately implies that γ1 = 0.

a2 =−ik0

(
d2

ηx

2qx0
+

d2
ηy

2qy0
+

A
2B

)

b2 =−ik0

∆ξ

(
γ1−

Acosθ

B

)
+∆η

 d2
ηx

qx0 +
d2

ηy
qy0

− xcosθ + y
B


The final result of the integration can now be written out by filling in the expression

∞∫
−∞

f2(η)dη =

√
π

a2
× exp

[
−

k2
0

4a2

{(
(xcosθ + y)2

B2

)
− 2(xcosθ + y)

B

(
∆η

(
d2

ηx

qx0
+

d2
ηy

qy0

)
−

∆ξ Acosθ

B

)}]

× exp

− k2
0

4a1

(
∆η

(
d2

ηx

qx0
+

d2
ηy

qy0

)
−

∆ξ Acosθ

B

)2

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Then the remaining terms that did not depend on ε or η are added to the final result to collect the
terms from the outgoing field equation.

x2-term:

Dx
term =

ik0

2B
x2
{

D+
ik0

2B

(
1
a1

+
cos2 θ

a2

)}
y2-term:

Dy
term =

ik0

2B
y2
{

D+
ik0

2B

(
cos2 θ

a1
+

1
a2

)}
x-term:

∆
x
term =

ik0

B
x

{
ik0

2a1

[
∆ηAcosθ

B
−∆ξ

(
d2

ξ x

qx0
+

d2
ξ y

qy0

)]
+

ik0 cosθ

2a2

[
∆ξ Acosθ

B
−∆η

(
d2

ηx

qx0
+

d2
ηy

qy0

)]}
y-term:

∆
y
term =

ik0

B
y

[
ik0

2a2

[
∆ξ Acosθ

B
−∆η

(
d2

ηx

qx0
+

d2
ηy

qy0

)]
+

ik0 cosθ

2a1

[
∆ηAcosθ

B
−∆ξ

(
d2

ξ x

qx0
+

d2
ξ y

qy0

)]]

→ ik0

2B
Dx

term

{
x2− 2∆x

term
Dx

term
x
}

;
∆x

term
Dx

term
= ∆ξ

=
ik0

2B
Dx

term
(
x+∆ξ

)2− ik0

2B
Dx

term∆
2
ξ

→ ik0

2B
Dy

term

{
y2− 2∆

y
term

Dy
term

y
}

;
∆

y
term

Dy
term

= ∆η

=
ik0

2B
Dy

term (y+∆η)
2− ik0

2B
Dy

term∆
2
η

In the end the final amplitude of the outgoing field equation can be rewritten as

Aout =AKernel U0

√
π

a1

√
π

a2
exp

[
ik0

2

{
(∆ξ dξ x +∆ηdηx)

2

qx0
+

(∆ξ dξ y +∆ηdηy)
2

qy0
− 1

B

(
Dx

term∆
2
ξ
+Dy

term∆
2
η

)}]

× exp

 ik0

2a1

[
∆ξ

(
d2

ξ x

qx0
+

d2
ξ y

qy0

)
−

∆ηAcosθ

B

]2
× exp

 ik0

2a2

[
∆η

(
d2

ηx

qx0
+

d2
ηy

qy0

)
−

∆ξ Acosθ

B

]2


=AKernelU0
π

√
a1a2

eik0∆L0

Where AKernel is the same as derived in Appendix B. Everything above here is the new amplitude or
phase term. Now the total expression looks like

uout(x,y,z) = Aout× exp
[

ik0

2B
Dx

term
(
x+∆ξ

)2− ik0

2B
Dx

term∆
2
ξ

]
× exp

[
ik0

2B
Dy

term (y+∆η)
2− ik0

2B
Dy

term∆
2
η

]
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B - Kernel modification

The kernel for a normal on axis beam is given by

K(x,y,z;ξ ,η ,0) =
k0

2πi

√
nin

nout

eik0L0

B
exp
[

ik0
A(ξ 2 +η2)−2(ξ x+ηy)+D(x2 + y2)

2B

]
The fact that the pre-factors k

2πi

√
nin
nout

eik0L0
B are in here, is determined by the conservation of en-

ergy.This does not work when our x- and y-axes are not perpendicular, so we need to modify it to
the following for to allow for non-orthogonal x̂ and ŷ.

K(x,y,z;ξ ,η ,0) = AKernel exp

 ik0

2B


A(ξ 2 +η

2 +2ξ η cosθ) −

2
(

ξ x+ηy+(ηx+ξ y)cosθ

)
+

+D(x2 + y2 +2xycosθ)




To calculate this, we would simply need to propagate a beam with a kernel of amplitude AKernel. Then
we calculate the energy before and after propagation with the Poynting-vector.

~S =
1
2
(~E×~B) =

(
1
2

n|~E|2
)

ŝ

Then we integrate the poynting vector over the entire surface of the plane, with normalized unitvector
ŝ where the beam is known. This no longer gives us an energy per unit area, but the intensity of the
beam. This is of course related to the energy in the beam and by dividing the incoming and outgoing
intensity we can find the prefactor AKernel

1
2

nout

∫ ∫
|uout|2dx dy =

1
2

nout
π
√cxcy

π2

a1a2
|U0|2|AKernel|2 exp [ik0∆L0]exp [−ik0∆L∗0]︸ ︷︷ ︸

exp [−2k0 Im(∆L0)]

Where cx and cy are the resulting terms that come from the integral over |uout|2 and a1 and a2 are as
derived in Appendix A.

cx = −k0 im
(

1
qx

)
cy = −k0 im

(
1
qy

)
Doing the same for the incoming complex beam amplitude, we get

1
2

nin

∫ ∫
|uin|2dx dy =

1
2

nin|U0|2
∞∫
−∞

exp
[
−k0x2 Im(

1
qx0

)

] ∞∫
−∞

exp
[
−k0y2 Im(

1
qy0

)

]

=
1
2

nin|U0|2
√

π

k0 Im( 1
qx0

)

√
π

k0 Im( 1
qy0

)

Since we know the intensity of the beam must be equal before and after propagation, we can now
relate the two equations and solve for AKernel

|AKernel|2 =
nin

nout

a1a2
√cxcy

π3

√
π

k0 Im( 1
qx0

)

√
π

k0 Im( 1
qy0

)
exp [−2k0 Im(∆L0)]

=
nin

nout

k0a1a2

k0π2

√√√√√ Im
(

1
qx

)
Im
(

1
qy

)
Im
(

1
qx0

)
Im
(

1
qy0

)
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