
Utrecht University
Department of Mathematics

Master Thesis

Improving traffic mathematically:
Expanding on the work

of Crisostomi et al. (2011)

Author:
Björn Klaassen Bos

Supervisors:
Dr. Karma Dajani

Dr. Ross Kang

August 20, 2014

Summary

In their 2011 article, Crisostomi, Kirkland and Shorten introduced a new
paradigm for modeling road network dynamics using Markov chains to pro-
cess data harvested in near real time from the roads. It was shown to work,
although only for a limited test case. I used the same method and compared
the results with results from traffic simulator SUMO. Comparing the calcu-
lated stationary distribution, mean first passage time matrix and Kemeny
constant to the results from SUMO will show us how their idea works for
larger, more complicated networks as well.

Contents

Preface 4

1 Introduction and Theory 5
1.1 Markov Chains . 7

1.1.1 Random processes and Markov Chains 7
1.1.2 Connection to graph theory 8
1.1.3 Terms used in this paper 9

1.2 SUMO . 19
1.2.1 SUMO files . 20

2 The original article 24
2.1 The need for a new method . 25
2.2 The network . 26

2.2.1 Primal vs. dual . 26
2.2.2 Calculations in more complicated situations 28

2.2 Validation . 30
2.2.1 Stationary distribution 30
2.2.2 Mean first passage time 31
2.2.3 Kemeny Constant . 33

3 Expanding the test 34
3.1 The network . 35

3.1.1 Deciding on an area . 35
3.1.2 Translating real life to a network 36
3.1.3 Creating SUMO files . 38

3.2 Calculations and results . 41
3.2.1 Stationary distribution 41
3.2.2 Mean first passage time 43
3.2.3 Kemeny constant . 47

4 Conclusion and further work 48

2

Bibliography 50

Appendix 52

3

Preface

The pile of paper you are holding at this very moment is my master thesis,
the result of my research done over the last two years at the mathematical
department of the University of Utrecht.
First and foremost I would like to thank my main supervisor, Karma Dajani,
senior lecturer and researcher at the Mathematical Institute of the University
of Utrecht. When I approached her in December of 2011 to ask her to be my
supervisor, she immediately said yes and within a week of our first meeting
I had a subject and was working on my first simulation. Even though things
were not going the way I had hoped during the first half year and I was not
available for the second half year, she was still there when I restarted my
research in February of 2013 and has supported me perfectly along the way.
Unfortunately, she was not able to supervise me until the very end due to
some medical issues. Karma, thank you very much for all the time invested
in me.
Second, I would like to thank Ross Kang, assistant professor at rhe Radbouw
University and previously at the University of Utrecht, for taking over for
Karma on very, very short notice. Along with Ross I would also like to thank
Roberto Fernández for volunteering to be the second reader for my thesis.
Last, I would like to thank Jakob Erdmann, Daniel Krajzewicz and everyone
else behind the sumo-user mailing list for helping me creating my simula-
tions. From the silly questions about the tutorials when I was just starting
to the slightly harder questions when I was getting closer to finishing my
simulations, you were there to answer them within a two-day period, which
made sure I could continue working on it as fast as possible.
To each and every one of you, thank you very much!

4

1 Introduction and Theory

Controlling car traffic and having good road infrastructure are important
problems. The world population is getting richer, so almost every household
has a car and a quarter of all households in the Netherlands have two or more
(Centraal Bureau voor de Statistiek [CBS], 2012). Meanwhile governments
keep expanding the roads to give all these cars a place to drive, but without
too much success. Traffic jams are getting less common, but only Belgium
has more traffic jams than the Netherlands in Europe (INRIX, 2012). Even
with the newest traffic navigation, which can gather info on traffic jams and
send you down a different route, this cannot be averted, because it will only
work around a traffic jam when it is already there and cannot warn you for
traffic jams which are about to appear. Also, when they start working around
the traffic jam, all the navigators might send cars down the same alternative
routes, which might cause traffic jams on those routes instead.
Not only is a traffic jam annoying for the people who are in it and has a
negative effect on the economy, causing delays and costing the drivers gas
while they are not moving, but also it has negative effects on the environ-
ment. When the cars are stuck in a traffic jam, the motors are still running,
polluting the air with exhaust fumes. All in all there is a lot to win by re-
ducing traffic jams.
One possible solution is a system which can predict traffic flows and in such
a way that it can predict traffic jams and try to prevent them by proposing
different routes for the drivers. If this was a possibility at this moment, a
lot of time and money could be saved and we could reduce the amount of
harmful emissions expelled by idle cars. This sounds quite hard to do, but
with the right information and a few mathematical techniques this might not
be as hard as it seems.
In this thesis I will apply Markov chains and the theory put forward by
Crisostomi et al. to simulate a real-time traffic scenario just like a true traf-
fic simulator would and show how this could help reduce traffic congestion
and pollution, based on an earlier article which has showed how to do this
for a very basic network.

5

6

1.1 Markov Chains

1.1.1 Random processes and Markov Chains

A random process is a process in which, at certain times, a transition takes
place from one state to another. These times are set from the start, as are
the states. These are gathered in the state space (X), a set of all states which
the process can visit. You can distinguish between discrete and continuous
variants, both for states as well as time. In our case, we will only use random
processes which are discrete in both state spaces (so the states are fixed
points, not intervals) and time (so we may consider Z as the set of possible
times). This will keep both the state space and the set of times either finite
or countable.
The transitions will occur at these times, among those states, according to
transition probabilities which are non-negative. The process will move to any
of the states within the state space (even the state it is in at the moment).
So

pij ≥ 0

for i, j ∈ X and ∑
j∈X

pij = 1

where pij denotes the probability that the random process will make the
transition to state j at the next time, given it is in state i.
Let the random variable xt denote the state the random process is in at time
t (t ∈ N). A random process is called a Markov chain if it fulfils the following
condition

P (xk+1 = ik+1|xk = ik, xk−1 = ik−1, . . . , x0 = i0)

= P (xk+1 = ik+1|xk = ik) (1)

What this condition says is that the probability the process will make
its transition to a certain state is only dependent on where the process is,
not on where it has been in the past. The notation P (A|B) is the standard
notation for conditional probability and is used to express the probability of
A happening, given B has happened.

7

Using the one-step probabilities as entries, we can construct the transition
matrix P

P =

p00 p01 . . . p0i . . .
p10 p11 . . . p1i . . .
...

...
...

pi0 pi1 . . . pii . . .
...

...
...

1.1.2 Connection to graph theory

Every transition matrix can be translated to a corresponding directed, edge-
weighted graph (and vice versa). This can be done for every n × n matrix by
creating n nodes which represent the states i ∈ X and directing an arc from
i to j whenever the transition probability is non-zero. To give an example of
this translation,

A =

0.5 0.25 0.25
0 0 1

0.5 0.5 0

 (2)

will give us the directed, weighted graph in Figure 1.

Figure 1: The graph corresponding to transition matrix A

And if we would have been given the graph first, we could use the reverse
translation to acquire the transition matrix.

8

1.1.3 Terms used in this paper

In this paper, as in the original article, some terms and calculations are used
when working with Markov chains.

Connectivity

Connectivity is one of the more commonly found terms when working with
graphs and is mostly used in classifying states within the graphs. State j
is accessible from state i when there is an n such that P

(n)
ij > 0, noted as

i→ j. If the opposite is also the case (so state i is also accessible from state
j) it is said that state i and state j communicate, which will be noted as
i↔ j. If this is true for every pair of states, the graph is said to be strongly
connected. So the directed graph with state space X is strongly connected
when

∀i, j ∈ X, i↔ j

If a graph is strongly connected, its corresponding transition matrix is called
irreducible. We will be working with graphs and networks representing streets
in an urban environment, which are meant to connect every point in the city
to every other point in the city. This means that the graphs we will be
working with will be strongly connected, so our matrices will be irreducible.

The left Perron eigenvector

If a graph is strongly connected (and so, the matrix is irreducible), the left
Perron eigenvector π can be determined. This eigenvector, also known as the
stationary distribution, can be calculated in two similar manners. For any
irreducible matrix P ,

1. the left Perron eigenvector is the unique vector π which will satisfy
πTP = πT where π > 0; and

2. if P is aperiodic, the stationary distribution of a matrix P can be found
by solving S = lim

n→∞
P n and then looking at a single row.

A matrix is aperiodic if there exists an n ≥ 1 such that all entries of P n are
strictly positive.

9

Mean first passage time and group inverse

Knowing the stationary distribution of a matrix allows for new calculations
to be made. Especially when it comes to finding the mean first passage time,
the expected number of steps it takes to reach a certain state from a certain
other state, the stationary distribution is very useful.
Given a matrix P, its group inverse P# is the unique matrix satisfying

• PP# = P#P

• PP#P = P

• P#PP# = P#

Meyer (1975) showed many properties and applications of the group inverse
and especially the information it holds on Markov chains. Ben-Israel (2008)
showed how to calculate the group inverse of a matrix A. We can compute
A# of this square matrix by finding the factorization

A = CR

where C is equal to matrix A but without the last column (so its size is
n× (n− 1)) and R is the identity matrix of size (n− 1)× (n− 1) where an
extra column is added containing all −1 elements (so it has size (n− 1)×n).
A then has group inverse A#, if and only if RC is nonsingular. In this case,

A# = C(RC)−2R (3)

Cho and Meyer (2001) showed how to use the group inverse to find the mean
first passage time matrix for a transition matrix. By using the entries of
the group inverse matrix of (I − P), where I denotes the identity matrix of
appropriate dimensions, we will denote the group inverse (I − P)# as Q#.
Using these we can find our mean first passage time matrix M by calculating
its entries mij, the expected number of steps it takes to reach state j given
we started in state i by using the following theorem, which is proved at the
end of the section.

Theorem 1.1.1.

mij =
q#jj − q

#
ij

πj
, i 6= j (4)

and

mii =
1

πi
, i = 1, ..., n (5)

10

Proposition 1.1.2.
If An tends to O (the zero matrix) as n tends to infinity, then (I − A) has
an inverse and

(I − A)−1 = I + A+ A2 + ... =
∞∑
k=0

Ak (6)

Proof. Consider the identity

(I − A)(I + A+ A2 + ...+ An−1) = I − An (7)

By hypothesis we know the right side tends to I. This matrix has determinant
1. Hence, for sufficiently large n, I −An must have a non-zero determinant.
But the determinant of the product of two matrices is the product of the
determinants, hence I−A cannot have a zero determinant. The determinant
not being equal to zero is a sufficient condition for a matrix to have an inverse.
Hence, I − A has an inverse. Since it exists, we may multiply both sides of
(7) by it

I + A+ A2 + ...+ An−1 = (I − A)−1(I − An) (8)

Since I − An tends to I, the right side tends to (I − A)−1, completing the
proof.

Definition 1.1.3
Define an absorbing state to be a state that, once entered, cannot be left.
Define a Markov chain to be absorbing if there is at least one absorbing state
and every other state in the Markov chain can reach an absorbing state.

Definition 1.1.4
For an absorbing Markov chain with transition matrix P we define the funda-
mental matrix to be N = (I−R)−1, where R is the submatrix of P containing
all non-absorbing states.

Definition 1.1.5
Define a state to be transient if, given we start in this state, there is a non-
zero probability we will never return to this state. Define T to be the set
containing all transient states.

11

Definition 1.1.6
For transient states j, We define nj to be the function giving the total num-
bers of times that the process is in state j. We define mi[nj] to be the
expected number of times that, starting in state i, the process will be in
state j. We define ukj as the function that is 1 if the process is in state j
after k steps and 0 otherwise.

Definition 1.1.7
Define e to be the vector with 1 for every entry and ei to be the vector with
1 for its ith entry and 0 for all other entries.

Definition 1.1.8
Define {mij} to be the matrix containing mij as its entries.

Proposition 1.1.9
For an absorbing Markov chain with transition matrix P,

{mi[nj]} = N (9)

where i, j ∈ T .

Proof. It is easily seen that nj =
∞∑
k=0

ukj

{mi[nj]} = {mi[
∞∑
k=0

ukj]}

= {
∞∑
k=0

mi[u
k
j]}

= {
∞∑
k=0

((1− p(k)ij) · 0 + p
(k)
ij · 1}

=
∞∑
k=0

{p(k)ij }

=
∞∑
k=0

Rk since state i, j are transient

= (I −R)−1 by theorem 1.1.2
= N by definition 1.1.4

Which completes the proof.

12

So given the transition matrix P of our Markov chain. To find the mean
first passage time matrix M , we define Pn to be P with state n absorbing,
changing the nth row to eTi . The mean first-passage time min in P is equal
to the sum of all mi[nj] in Pn for j 6= n. From theorem 1.1.9 it follows these
are the values of row i of N , so we find the entries min to our matrix M

min =
∑
j 6=n

mi[nj] = eTi Ne (10)

Definition 1.1.10
A (1)-inverse X for a matrix A is the matrix fulfilling only the second group
inverse criteria, meaning AXA = A. Meyer (1975) proved(

N 0
0 0

)
(11)

to be the (1)-inverse of Q = (I − P). He also showed how

I −QQ# = lim
n→∞

P n (12)

Proposition 1.1.11

Q# = QQ#

(
N 0
0 0

)
QQ# (13)

Proof. QQ#

(
N 0
0 0

)
QQ#

= Q#Q

(
N 0
0 0

)
QQ# Group inverse property 1

= Q#QQ# (1)-inverse property
= Q# Group inverse property 3

Completing the proof.

Proposition 1.1.12

QQ# = I − eπT (14)

Proof. Using definition 1.1.9. we see I − QQ# = limn→∞ P
n. limn→∞ P

n =
Π, where Π is the matrix with π for all of its rows. Since Π = eπT ,
limn→∞ P

n = Π = eπT , so I −QQ# = eπT .

13

Proof of theorem 1.1.1. Combining (13) and (14) we get

Q# = (I − eπT)

(
N 0
0 0

)
(I − eπT) (15)

which, by simple matrix multiplication, gives us

Q# =

(
(I − eπT)N(I − eπT) −πn(I − eπT)Ne
−πTN(I − eπT) πnπ

TNe

)
(16)

where πT = (πT , πn).

By looking at the last column of (16) it is apparent that if i 6= n then

q#in = −πn
[
(I − eπT)Ne

]
i

= −πneTi (I − eπT)Ne
= −πneTi Ne+ πnπ

T)Ne

and

q#nn = πnπ
TNe

Combining the two statements above with (10) gives us

q#in = q#nn − πnmin (17)

or

min =
q#in − q#nn

πn
(18)

which proves (4) and (5) follows from this.

14

Kemeny Constant

For any given transition matrix, the Kemeny constant will give you the ex-
pected number of steps needed to get from a starting state to a random
destination taken from the stationary distribution. It can be calculated by

K =
∑
i∈X

mijπj (19)

Kemeny and Snell (1960) showed how the Kemeny constant K is independent
of the starting state i. This fact is also known as the Random Target Lemma.

Lemma 1.1.12 Random Target Lemma
The value K of an irreducible Markov chain with state space X, transition
matrix P and stationary distribution π, computed using (19), is independent
of starting state i.

For coming proofs we have to define two kinds of hitting times.

Definition 1.1.13
Define the hitting time τi to be the first time the random walk visits state i,
so τi := min{t ≥ 0 : xt = i}.
Define the first return time τ+i to be the first time the random walks returns
to state i, so τ+i := min{t ≥ 1 : xt = i}.
By this definition, we find E(τ+i |x0 = i) = mii = 1

πi
, where E(τi|x0 = i) = 0.

Definition 1.1.14
Define a function h on X to be harmonic at i if

h(i) =
∑
j∈X

pijh(j) (20)

We call a function f defined on X to be harmonic if it is harmonic at every
state x ∈ X.

Proposition 1.1.15
For each j ∈ X, the function hj on X defined by fj(i) = mij is harmonic.

15

Proof. To show this, we first show how E(τj|x0 = i) is harmonic. For no-
tational convenience, let hj(i) = E(τj|x0 = i), then

∑
k∈X

hj(k)pik = (Phj)(i).

Observe that if i 6= j,

hj(i) = E(τj|x0 = i)
=
∑
k∈X

E(τj|x1 = k)pik

=
∑
k∈X

(1 +mkj)pik

=
∑
k∈X

(1 + hj(k))pik

=
∑
k∈X

pik + hj(k)pik

= 1 +
∑
k∈X

hj(k)pik

= 1 + (Phj)(i)

so that

(Phj)(i) = hj(i)− 1 (21)

If i = j, then,

E(τ+i |x0 = i) =
∑
k∈X

E(τ+i |x0 = i, x1 = k)

=
∑
k∈X

(1 + hi(k))pik

=
∑
k∈X

pik + hi(k)pik

= 1 +
∑
k∈X

hi(k)pik

= 1 + (Phi)(i)

Since E(τ+i |x0 = i) = mii, (5) shows (Phi)(i) = 1
πi
− 1,∑

k∈X

hi(k)pik =
1

πi
− 1 (22)

16

Thus, letting h(i) :=
∑
j∈X

hj(i)πj, (21) and (22) show that

(Ph)(i) =
∑
j∈X

(Phj)(i)πj

=
∑
j 6=i

(hj(i)− 1)πj + (1
πi
− 1)πi

=
∑
j 6=i

hj(i)πj − πj + 1− πi

=
∑
j 6=i

hj(i)πj

=
∑
j∈X

hj(i)πj − hi(i)πi

=
∑
j∈X

hj(i)πj

= h(i)

Fulfilling the definition of being harmonic.
Now, since hj(i) = E(τj|x0 = i) is harmonic, we can expand this to our
formula of K.

K =
∑
i∈X

mijπj

=
∑
j 6=i

mijπj +miiπi

= 1 +
∑
j 6=i

mijπj

= 1 +
∑
j 6=i

E(τj|x0 = i)πj

= 1 +
∑
j∈X

E(τj|x0 = i)πj − E(τi|x0 = i)πi

= 1 +
∑
j∈X

E(τj|x0 = i)πj

Thus, since
∑
j∈X

E(τj|x0 = i)πj does not depend on i, K also does not depend

on i.

17

Proposition 1.1.16
If the transition matrix P of a Markov chain is irreducible with state space
X, a function h which is harmonic at every point of X is constant.

Proof. Since X is finite, there exists a state x s.t. h(x) = b is maximal. If
for some state z s.t. pxz > 0 we have h(z) < b, then since h is harmonic and∑
y∈X

pxy = 1

h(x) =
∑
y∈X

h(y)pxy = pxzh(z) +
∑
y 6=z

pxyh(y) < b, (23)

a contradiction. Thus, h(z) = b for all states z s.t. pxz > 0.
For any y ∈ X, irreducibility implies a sequence x, x1, ..., xn = y with
pxi,xi+1

> 0. Repeating above argument tells us h(y) = h(xn−1) = ... =
h(x) = b. Thus, h is constant.

Proof of Lemma 1.1.12. Combining 1.1.15 and 1.1.16, we can conclude the
function for K is constant and therefore does not depend on starting state i

18

1.2 SUMO

In both the original article and my extension of their work, a traffic simula-
tor was needed to collect information and to compare results. In the original
article, the authors chose to use SUMO and so will I.
Simulation of Urban MObility, or SUMO (Behrisch et al. 2011) is an open
source, highly portable, microscopic, multi-modal road traffic simulation
package developed by the Institute of Transportation Systems of the DLR,
the German Center for Aerospace Travelling. It is designed to handle ev-
erything from simple to large road networks. Although SUMO is primarily
created for use on Windows, there are Linux packages available and since it
is open source, you are welcome to alter the software in any way you like.
After downloading the SUMO package, the only other thing you need to
start using SUMO is a text editor which support the .xml extension (so even
Notepad and Wordpad suffice). Every file SUMO will read to create your
network, or create for you, will (have to) be in the .xml extension.
To create a network and traffic flows in SUMO, you will have to create certain
files first. In Figure 2 you can find a normal filetree for a SUMO simulation.

Figure 2: The filetree for creating a simulation in SUMO

19

1.2.1 SUMO files

There are three files which you need to make to create a simulation: A node-
and edge-file (to create a network in the network-file) and a route file, to
define the flow of traffic in the simulation. But these will only create a very
basic simulation and if you want to simulate something more lifelike, you will
have to add more files and more information. I will go through the files I
used for my simulation and explain what they are used for.

Node-file (.nod.xml)

The node-file defines the location of junctions, corners in the road and other
places of interest for your simulation. Nodes are defined by coordinates (x
and y) where the distance to the origin is equal to the length in meters. An
example of a line of the node-file (which defines one of the nodes) is:

<node id=”1” x=”5.0” y=”600.0” />

The id of the node is just a name to which it will be referred to. The
coordinates and the id are the only properties which can be assigned to a
node.

Edge-file (.edg.xml)

The edge-file defines the roads in your network, connecting the nodes defined
in the node-file to each other. Edges are defined by a ’from’ and a ’to’ node,
which means that if a road between node A and node B can be driven in
both directions, the edge has to be defined twice: Once from A to B and
once from B to A. An example:

<edge id=”SorbonnelaanS2” from=”1” to=”2” type=”b” />

Edges can also be given more information, like the number of lanes and
maximum speed. But instead of doing this for each lane individually, it is
easier to define types in the type-file.

Type-file (.typ.xml)

The type-file defines properties of the roads which are used in the network. In
my case, I have defined three properties: Maximum speed (in m/s), priority
(if two roads meet at a junction, the road with the higher priority will have
priority) and the number of lanes. An example of a line of the type-file:

<type id=”b” priority=”6” numLanes=”1” speed=”13.889” />

20

Connections-file (.con.xml)

The last file before creating the network is the connections file. When a car
reaches a junction, most of the time it has multiple possibilities of where it
can go. On roads with multiple lanes it might even depend on the lane you
are on now to which lanes of which roads you may travel. In the connection
files you define all these connections, giving an edge of departure including
the lane you will be departing from and an edge of arrival including the lane
you will be arriving on. A line from this file could look like:

<connection from=”SorbonnelaanS2” to=”SorbonnelaanS3”
fromLane=”0” toLane=”0” />

Network configuration-file (.netc.cfg) and network-file (net.xml)

The network configuration-file is a file in which you tell SUMO which files
in the current folder will give the right information about nodes, edges, etc.
Using this file netconvert, a command line application which is supplied
alongside SUMO, will create the network file for you, which you can use for
the rest of your simulation.

Route-file (.rou.xml)

In a simple simulation, your route file consists of a lot of information. In
this file, you define the type of vehicles which will drive through your net-
work, the routes they will take and how many vehicles will be driving. The
type of vehicles are defined by their respective acceleration speed, decelera-
tion speed, ID, length of the car, maximum speed and more. The route is
straightforward, the chain of edges which are part of the route and an ID by
which the route can be called. The vehicles themselves are then defined by a
departure time, an ID, the route they will take and the type of vehicle they
are. Examples of the different lines:

<vType accel=”3.0” decel=”6.0” id=”CarA” length=”5.0”
minGap=”2.5” maxSpeed=”50.0” />

<route id=”route01” edges=”D2 L2 L12 L10 L7 D7” />
<vehicle depart=”54000” id=”veh0” route=”route01” type=”CarA” />

This is the standard build for a route file, but this is possibly the most cus-
tomizable file in your simulation. Depending on the kind of simulation you
want, it is possible to have your cars take random trips, to route for the
shortest or the optimal path, route from observation points or just random
routes. In my scenario, we will be working with routing by turning probabil-
ities, which means there are other files to be made first.

21

Turn ratio-file (.turns.xml)

If you want to route according to turning probabilities, you will have to
define these probabilities for every road at every junction. This is done in
the turn ratio-file, where for each edge the possibilities are given (just like in
the connection file) alongside the probabilities someone will take that choice.
An example:

<fromEdge id=”SorbonnelaanS2”>
<toEdge id=”SorbonnelaanS3” probability=”0.05” />
<toEdge id=”AarhuslaanE” probability=”0.95” />

</fromEdge>

Turn-ratios can be defined for certain intervals so you can simulate the dif-
ferent behavior of traffic at different times in the same simulation.

Flow-file (.flows.xml)

To complement the turn-ratio file, there will have to be some cars driving
across the network. This is where the flow-file comes in. The flow files defines,
per given interval, how many cars will start at a certain road and lets them
depart, uniformly distributed, over that interval. This means flows will have
to be defined by an ID, a starting edge and the number of cars to depart,
per interval you want to define. An example:

<interval begin=”30” end=”60”>
<flow id=”200” from=”SorbonnelaanS2” number=”2” />

<interval>

SUMO configuration-file (.sumo.cfg)

Just like the netconvert configuration-file, the SUMO configuration-file lets
you sum up which file contains which information so SUMO can use them
to start the simulation. You can call on this file through the command line,
which will execute the simulation, or by using the SUMO-GUI, which will
give you a visualization of the simulation and shows you what is happening
during the simulation to find any flaws in your files.

22

Additional-files (.add.xml)

SUMO is very customizable and it shows in the number of additional files
you can use. Adding traffic lights, public transport or variable speed signs
are all possibilities within the current program. Additional files also have to
be used to get any output from your simulation, whether it is only for getting
the average speed the cars drove on every edge, or whether you want the full
report on capacity, speed, exhaust fume levels etc.

23

2 The original article

Although innovative, the idea behind this thesis is not original. The idea was
first published by Crisostomi, Kirkland and Shorten (2011) in their paper, A
Google-like model of road network dynamics and its application to regulation
and control. Their idea was to use cars as sensors, by equipping them with
the hardware to collect information in real time and then send it to a central
point, where the information can be collected and used to model and engi-
neer road networks. The data is then processed and sent back to the cars,
which can use it to plan the optimal route for the driver to take. This would
allow for faster travel times, fewer traffic jams and optimal use of gasoline,
which in turn will reduce the expulsion of exhaust fumes.
For the calculations, they proposed to make use of Markov chains similar to
how Google’s PageRank algorithm uses it to model congestion in the Inter-
net. Markov chains offer some major advantages over commonly used road
network simulators, since they are easily built from the information we can
harvest by using cars as sensors, the calculations can be made quite quickly
when a decent computer is used and they are capable of giving more insight
into the road network.
The idea of their article was to show how Markov chains could be used to
use the information you get (in the future this would be from cars, but in
their case they got their information from the SUMO traffic simulator) and
transform that into whatever you want to know about the network.

24

2.1 The need for a new method

To reduce congestion and harmful emissions, you need to be able to manage
traffic flows in an intelligent manner. The key to developing strategies to
manage traffic is creating traffic models which are both accurate and easy to
use for predicting and controlling traffic. The biggest objective when devel-
oping models like these is finding a way to develop smart traffic management
systems which proactively take pre-emptive measures to avoid incidents and
traffic jams, rather than reacting to them. Another requirement is that these
models should be constructed from real data obtained directly from real life
situations on the network in near real time.
In the past, stochastic models have been used to simulate road networks be-
cause of how simple they are to use. An example of this is the Constant
Speed Motion model (Fiore and Härri, 2008) but, as the title suggests, they
only work with constant speeds, which means they only simulate very basic
models. For these situations, flow models were introduced, which provide a
more realistic way of modeling urban networks. The problem with flow mod-
els is that you have to define a path for every single vehicle in the flow to
follow. For small networks, this is not a problem, but when cities are defined
by a network of thousands of roads, the amount of work rises dramatically.
The most popular way of investigating the behavior and efficiency of road
networks is using mobility simulators, which uses both stochastic models and
flow models. But they still suffer from scalability issues. That is why there is
a need for a new method. Using cars to acquire the information needed and
then sending it to a computer which turns the information into a Markov
chain to use in your simulation means you still have the simplicity of the
stochastic models, while lessening the problems of scalability since the com-
puter can easily create the matrix for you.

25

2.2 The network

For the example they used in their tests and the validation of their ideas, they
used a very basic route network based on the following transition matrix:

B =

0 0.5 0.5 0 0 0 0
0.5 0 0.5 0 0 0 0
0.45 0.45 0 0.1 0 0 0

0 0 0.5 0 0.5 0 0
0 0 0 0.1 0 0.45 0.45
0 0 0 0 0.5 0 0.5
0 0 0 0 0.5 0.5 0

which corresponds to the following graph

Figure 3: The graph corresponding to transition matrix B

2.2.1 Primal vs. dual

The graph as seen in Figure 3 is an example of a simple network displayed
in the ’normal’ way. This representation, where the nodes correspond to the
junctions in the network and the edges correspond to the connecting roads,
is called the primal representation. Although this is the most common way
of displaying graphs, it is quite bare. It is very simple, which is great for
basic calculations, but might not contain full information.
For this reason they used a different representation of graphs, namely the
dual representation. In this representation, the roles are reversed and the
edges represent the junctions and the nodes correspond to the streets. In
Figure 4 we have a dual presentation of a network which would have the
primal representation of Figure 3. The node AB corresponds to the lane
connecting junction A and junction B in the original network.

26

Figure 4: A dual representation of the graph shown in Figure 3

• In the primal network of Figure 3, it seems possible to drive from node
E to node D, make a U-turn and return to E, while this is not possible.
In the dual representation this is evident by road ED not having the
possibility to reach road ED, showing how turning around is not a
possibility.

• The standard way of creating traffic flows is by using junction turning
probabilities. Since these depend on the road of origin (and not just
the junction you are at) this is only possible in the dual representation,
since this information is not available in the primal graph.

• Information like speed limits and street lengths can be incorporated
into the transition matrix, to be shown later.

For these reasons, they worked with the dual representation of the graph in
their article. We transform the transition matrix to

C =

0 0 0.1 0.9 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.1 0.8 0.1 0 0 0 0 0 0 0 0 0
0.1 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.8 0.1 0.1 0 0 0 0 0 0 0 0 0
0.9 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.9 0.1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.9 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.9
0 0 0 0 0 0 0 0 0 0.1 0.1 0.8 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0.1
0 0 0 0 0 0 0 0 0 0.1 0.8 0.1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.9 0.1 0 0

based on the original transition probabilities and turnarounds (where possi-
ble) having a probability of 0.1.

27

2.2.2 Calculations in more complicated situations

In this case, their simple simulation with this new transition matrix would
suffice. The fact that every road is equal in length and has the same speed
limit means every street can be traversed in exactly the same time. This is a
very good property to have when translating the situation to a Markov chain,
since Markov chains calculate steps instead of time. In this case, every step
is as long as the time it takes to traverse an arbitrary road. But in real-life
situations, it is very easy to find roads which do not take the same amount
of time to traverse. The biggest factors deciding the average travel time for a
street are speed limits (two streets of equal length but different speed limits
have different travel times) and street lengths (streets with the same speed
limit but different lengths will have different travel times as well). In reality
there are even more factors, like the presence of traffic lights, pedestrian
crossings and bus stops, the quality of the road surface, etc. So in a more
complex situation, this will have to be accounted for when translating the
information into a Markov chain.
The answer for this problem is pretty simple. Say we are currently on a road
AC and approaching the junction which can lead us back, to road CA, or
lets us move on to either road CB or CD. The probabilities of turning onto
a particular road are given as

Figure 5: Turning probabilities for the junction at the end of road AC

Suppose we now replace road AC by road A’C’. Road A’C’ is twice as long
as road AC and also has half the speed limit of road AC. These two changes
mean that, on average, the time it takes to travel across road A’C’ will be
four times greater than the time needed to cross road AC. To take this extra
travel time into account, we will add a self-loop to road A’C’ and adjust the
other turning probabilities (since the total will still have to be 1).

28

Although it will be very hard to calculate the exact travel times using
only the length of the street and the speed limit, we are working from a
situation in which the cars will tell us how long it took them to traverse
the road, so the travel time for every road is known. If all the travel times
are then normalized (the shortest travel time will be adjusted to 1 and all
the other travel times are adjusted accordingly) then we can calculate the
probability value on each loop by using

pii =
tti − 1

tti
, i = 1, ..., n (24)

where tti is the average travel time for the i-th road, which we have collected
from the data given to us by the sensors in the cars. All the other probabilities
will be adjusted by dividing them by tti. In the case of Figure 5, this will
give us

Figure 6: Turning probabilities for the junction at the end of the adjusted road A’C’

29

2.3 Validation

When you have ideas like this, you will have to demonstrate their validity.
So, for their basic graph as given in figure 3 (and the dual representation
of the graph from figure 4), Crisostomi et al. started collecting results and
showed how accurate these were.

2.3.1 Stationary distribution

In a Markov chain, the stationary distribution corresponds to the long-run
fraction of time the chain resides in a particular state. For road network, this
means it can tell us the long-run fraction of time cars are driving across a
certain road. It will not tell anything about the amount of traffic actually on
it, but its information can be used to evaluate whether traffic is balanced (or
if some roads get used a lot which can lead to traffic jams) and which roads
are crucial for traffic flows. To get this information from SUMO, they used
the output concerning the occupancy of each road (in vehicles/kilometres)
from which they computed the relative density. For the Markov approach,
they just found the stationary distribution of matrix C. Compared to each
other we get

Figure 7: Comparison between the stationary distribution of cars estimated from the Markov chain
approach (b) and computed from the SUMO simulation (a)

Which seems to be pretty accurate. We can also see that most cars seem
to stay within the sets of junctions A-B-C or E-F-G and rarely travel to the
other set.

30

2.3.2 Mean first passage time

The mean first passage time, although most drivers do not drive around in
a random fashion until they happen to stumble upon their destination, can
give us a reasonable idea of on the travel times from one state to another.
For the Markov chain approach, the mean first passage time can be easily
computed using the group inverse and the formulas shown in section 1.1.3.
It is quite a bit harder to get this information from SUMO. For every entry
of the mean first passage time matrix M a simulation was performed where
a flow of cars started from the origin road until they reached the destination
road. Out of all these flows, the average time was computed. The data was
then displayed in both a 3D plot and a contour plot

Figure 8: 3D plots of the mean first passage times extracted through different simulations in SUMO (a)
and computed using the group inverse (b). The x- and y-axis contain the origin and destination roads,

the z-axis shows the mean first passage time

31

Figure 9: Contour lines of the mean first passage times from both SUMO (a) and the matrix calculation
(b)

32

2.3.3 Kemeny Constant

Calculating the Kemeny constant from the simulation in SUMO will come
down to using the same calculation on the mean first passage time matrix
built from the simulation as you would on the mean first passage time gotten
through the mathematical calculations. Since the 3D plots in the last section
showed these were quite accurate, there is not much use in comparing the
two different values for the Kemeny constant. Because of this they decided
to check the other property of the Kemeny constant: it should be constant.
They took the mean first passage time which they derived from the output of
the SUMO simulation and used the formula from (5) to compute the Kemeny
constant for every road in the network. The results were

Figure 10: The Kemeny constant calculated for every starting road

As can be seen, the values are not exactly the same, but they are approxi-
mately constant, once again showing the method to be reasonably effective.

33

3 Expanding the test

The concept, as brought up by Crisostomi et al, seems like it can be very
useful. But, if we actually were to use it for the network of roads, even if it
were only in the Netherlands, the scale of the entire project would have to
be enlarged greatly. Will it still work then? So far, all they have shown is
how it seems to work in a very small network of seven nodes and eight edges,
but most residential districts are larger then that, let alone entire towns or
cities. And if one city is too much for this concept, how would you ever use
it for an entire country, or even the world? Also, they only used very simple
roads, which only had one lane and all had the same length and speed limit.
In this part of my thesis, I will show you whether the concept will still work
when you enlarge the scale of the network and add more variables to the
roads itself. Different lengths, speed limits, amount of lanes and priority reg-
ulations all play a part in everyday road networks, so I will be taking them
into account during my research.
In this chapter I will show you every step of the way. From deciding the real
life network I would be using, deciding on nodes and edges, translating it to
SUMO files for the simulation and calculating everything using the output
from the simulation and MATLAB. Most of the results of what I have done
can be found in the Appendix, since the files and matrices are too large to
just mention in the thesis itself.

34

3.1 The network

3.1.1 Deciding on an area

The original test seemed to be a success, but the thing it misses the most in
my eyes was realism. It will be very hard to find places in this world where
the roads are of exactly equal length, with precisely the same speed limit, no
traffic lights, no pedestrian crossings, etc. That is why the biggest criteria I
wanted to set to the network I would be using was that it had to be a real
network. Next to that, it had to be/have:

• somewhat large, since I wanted to show how the idea would work for
larger networks;

• not too large, since it would mean far to much work trying to set up
the simulation and the calculations;

• roads of different length;

• different speed limits;

• different numbers of lanes per road.

Next to all that, I would like it to be somewhere which is close to me. I did
not take long to find two good candidates: The neighborhood I live in, or ’De
Uithof’, the district in the city of Utrecht where I study. After comparing
the two areas, De Uithof seemed to be easier to simulate because the roads
are aligned in a rectangular fashion, which made it easier to estimate the
coordinates of all the different nodes I would be using.

Figure 11: De Uithof by Google Maps

35

3.1.2 Translating real life to a network

First, I had to work on the basic elements of the network, namely the nodes
and edges. Every junction which gave the driver of a car a choice between
destination roads was made into a node, just as every corner in a road, since
that would simplify creating the simulation. In the end, the result of naming
al the nodes was the map found in figure 13, where nodes 34 and 35 are a
bit more complicated than they look at first glance, as seen in figure 12

Figure 12: Zoomed in at node 34 and 35

Now, to be able to create the skeleton of the network for SUMO, I had to
give every node coordinates. Since the nodes 13, 14 and 15 were the most
southwards orientated nodes, I set them on the coordinates (x,0) and due
to a mistake I had made when I started creating my simulation, the most
westward oriented nodes 1, 2, 3, 42 and 43 were not set at (0,y) but on (5,y).
Since this would not hurt the rest of the simulation, I did not bother to
change the x-coordinate of every node to make up for this, so I just let them
be.

36

Figure 13: De Uithof in nodes

37

3.1.3 Creating SUMO files

Now that my origin was set at (5,0), I started finding coordinates for the
other nodes. Due to the rectangular lay-out of the area it was relatively easy
to do this; If I knew node 1 to be at coordinates (5,600), node 2, which lies
directly to the south and according to Google Maps at 479 meters away, had
to be on coordinates (5,121). Continuing along this way and experimenting
a bit with the roads which were not lying in a rectangular fashion, I got the
coordinates as given in the node file, which you can find in the Appendix.
Although the coordinates will not all be spot on compared to the actual road
network on De Uithof, it will be good enough for my simulation. Luckily, it
does not have to be an exact copy, since the main reason I am using a real
situation is for the different properties a road can have, not to use the exact
road lengths.
Once the nodes were all set, I continued to the other basic element of a net-
work, namely edges, or in this case, roads. For every two nodes which are
connected on De Uithof, I defined an edge in the edge file. The edges were
named after their actual street name, the direction the street was headed and
a number if there were more edges with the same street name and direction.
These numbers were given in normal reading order, either from top to bot-
tom or from left to right. Also, for every edge some properties were defined:
the number of lanes, maximum speed and a number concerning priority.
Lastly, before I let SUMO use the files I have created so far to construct the
network, I had to create the connections file. Most of this was straight for-
wards, especially on road segments where the driver does not have a choice
when reaching a node. But for every lane of every road heading towards a
node, the possible directions have to be defined.

38

Once these files are created, SUMO can use them to compile the network,
which came out like this:

Figure 14: The network of De Uithof created by SUMO

Figure 15: Close up of nodes 25 and 26 of the network

which, compared to map of figure 12, seems quite similar.

39

After I had created the network, all that was left for me to do was to
get some cars to drive over it. Because the original article noted turning
probabilities at every junction as a part of the information the sensors inside
the cars could collect for them, I assumed they based their simulation on a
random model where every junction has its turning probabilities and so did
I. It looked like they used equal turning probabilities and a probability of
0.1 for turnarounds. I chose to have custom turning probabilities for every
junction by estimating the real values. For example, turning probabilities
from road A to road B would be high if getting to B would actually get them
somewhere they might want to go, or would be low if it was a very illogical
turnaround or route option.
To let cars drive over the network I had created, I had to create a route file.
In this case, this meant creating two other files: a turning probability file,
which tells SUMO if a car approaches a junction from a certain road, which
directions it can take (which was also defined in the connections file) but also
what the probability is it will actually take that road. The other file is a flow
file, which tells SUMO where the cars will actually start. Since the network
I have created is a closed network, I’ve chosen to only let cars spawn in the
first 60 seconds, so as not to clog up the network over time. The number of
cars starting at a certain road was based on the amount of time cars needed
to cross the road. This was done in such a way that, after 60 seconds, the
cars were almost uniformly distributed across the different roads. After this
starting period, the cars would drive around randomly, although still obliged
to follow the given turning probabilities.
From these two files, a route file could be created which was the last step
into getting a simulation started. Now that all the files are done, it was time
to have the cars drive around the network.

Figure 16: Cars driving at the network around node 25 and 26

40

3.2 Calculations and results

With the simulation created, it was time to look at the results. Before I could
do this, I had to make the matrices for the mathematical approach. From the
turning probabilities as mentioned in the turns file in the Appendix I created
matrix T following the method mentioned in paragraph 2.2.2. Now I had
the base for both the SUMO calculations and the mathematical calculations,
which allowed me to continue.
For every calculation I will explain what was done to gather the results from
both SUMO and from the mathematical calculations.

3.2.1 Stationary distribution

For the mathematical calculations, I used the method I explained in para-
graph 1.1.3. For this, I used matrix T, the transition matrix which can be
found in the Appendix. Using MATLAB, it was easy to calculate the limit
to find the stationary distribution πMC .
Using SUMO, this was a little more complicated. SUMO has no option to
give the stationary distribution in the output, but this can be calculated oth-
erwise. The output gave me the sampledSeconds output, which gave me the
number of seconds a vehicle was present on the edge. I divided this value by
the period, which was 3600 in this case, to get the average number of vehicles
on the edge at any given moment. If we divide this value by the sum of the
number of vehicles on all the edges, we can get the stationary distribution.
The exact values can found in the appendix.

41

Figure 17 compares the values we found through both SUMO and the
Markov chain calculations and shows the difference between the two values.

Figure 17: Comparing the stationary distributions (top) and the difference between the values (bottom).

As one can see, the values of the two stationary distributions seem to lie very
close to each other and the right graph shows that the difference between the
two values is, in most cases, very close to zero. For just a few streets, the
values seems to differ more then 0.001 and no more then 0.0025, which means
a difference of just over 2%. All in all, the approach seems to be accurate.

42

3.2.2 Mean first passage time

For the mathematical calculations, I used the method I explained in para-
graph 1.1.3. Using matrix T to create matrix I−T and then finding matrices
C and R as mentioned, I used MATLAB to calculate Q#. This I used to cal-
culate the mean first passage step matrix. Since the matrix works in steps
and I had to normalize the values equalizing 1 step to 0.61 seconds, I had
to multiply every entry of this matrix by 0.61 to get the mean first passage
time matrix MMC . Q# and MMC can be found in the Appendix.
Using SUMO, this was a lot harder. Once again, SUMO has no option to give
the mean first passage time in the output. Calculating it takes a simulation
for every entry of the matrix M , where I used the network and turns file of
the original matrix, and altered the flow file for every simulation. In this way,
I could let a flow of cars start at a certain road and let them drive around
until they reached the desired destination road. In the output, I could find
the time needed for every car and, in this way, calculate the average time the
cars needed to reached the desired state.

43

Figure 18: Comparing the surface graphs of the mean first passage time calculated through SUMO (top)
and through the Markov chain calculations (bottom).

44

Figure 19: Comparing the contour graphs of the mean first passage time calculated through SUMO (top)
and through the Markov chain calculations (bottom).

45

Figures 18 and 19 compare the mean first passage time matrices found in
these ways and once again, the graphs are very much alike. As one can see,
the values found through the simulations are a bit more random, shown by the
spikes the surface graph has and which are particularly clear when one looks
at the higher values. The values found through the Markov chain calculations
are much more constant as can be seen by the straighter lines, especially at
the higher values. This can be explained by the fact that the simulation is
slightly less reliable due to the fact its values are not constant. With ev-
ery simulation comes slightly different results, sometimes lower, sometimes
higher. The Markov chain calculations will always give the same results,
which is also seen by the nearly constant outcomes.

Figure 20: Comparing the difference between the mean first mean passage time matrices.

Figure 20 shows the surface graph of the difference of the values found. As
one can see, the same can be said as with the stationary distribution. The
values seem to be very close to 0 except for a few spikes. Comparing the
different entries of the two matrices, I found that the values found through
the mathematical computation differ by no more than 10% from the values
found through the SUMO simulations. Although this is less accurate than
the values found calculating the stationary distribution, it is still quite de-
cent, although the question arises whether this becomes less accurate when
the size or the complexity of the network grows.

46

3.2.3 Kemeny constant

Since the Kemeny constant is supposed to be, as the name suggests, a con-
stant. It will only be interesting to see if the Kemeny value calculated with
the values found through the Markov chain calculation are (close to) constant.
The values itself I calculated through the method I explained in paragraph
1.1.3.

Figure 21: The Kemeny values for the different roads

The values seem to be, except for a few spikes once again, pretty equal. The
values are mostly found around 1925, with spikes going as low as 1884 and
as high as 1930. This interval of 50 means a difference of around 2.6%, which
is once again reasonable accurate. Since the Kemeny constant is calculated
using the mean first passage time matrix and the paragraph 3.2.2 showed
how these values differed most around the 70th street, this accounts for the
difference found in these calculations as well.

47

4 Conclusion and further work

Overall, the results seem reasonably clear and they are pretty accurate when
we compare them to the results from the SUMO simulation. The increased
size and complexity of the network, by adding lanes, priority regulations etc.
will show differences of around 2% when it comes to both the stationary dis-
tribution and the Kemeny constant. This is fine, seeing as the original article
showed the same differences for these values. For the mean first passage time
matrices, we can see the original article has had some differences as well,
although it is harder to accurately see how big these differences were. Even
so, it is visible how a few values seem to differ more than the 10% I found as
a maximum difference in my experiment. So, all in all, it seems that adding
all this information into the network does not have too much effect on the
accuracy of the calculations.
Taking this into the future, enough possibilities of further work arise. Al-
though this article shows how a bigger network does not have to be a problem,
just De Uithof still is not a very big area if you compare it to an entire city.
A system like this will only be applied when it can be shown to work on
a very large scale. Further work can be aimed at increasing the scale even
more, first to entire (large) cities and then to countries and even continents.
Next to increasing the size, the complexity can be increased as well. In this
article I have added some ’constant’ difficulties, like lanes. Another possibil-
ity is adding ’variable’ difficulties like traffic lights and pedestrian crossings.
These obstacles are not constant in a way that they cannot be predicted.
Traffic lights change to red when there are no longer any cars waiting to
cross the junction or change to green immediately once a car approaches if
no other cars are waiting. The same can be said about pedestrian cross-
ings, the arrival of pedestrians at crossings like these are random. They can
be approached mathematically, but factors like the weather will also play a
part in this: when it is raining heavily, fewer people will be walking outside,
meaning fewer people are crossing the road at pedestrian crossings.
In the end, all of this will need more time. Not only to be worked out fur-
ther, but also for people to get used to the idea. If we look at the way the

48

authors of the original are planning to apply their ideas, namely by installing
a box into every car collecting the needed data, people are not yet ready for
this. Due to all the discussion around privacy we have had in the last few
years, having a box in your car which will make sure you will be followed
everywhere you go will cause even more complaints and discussion. As soon
as privacy is no longer an issue like it is right now, applying systems like this
might just be a great way to lessen the traffic problem. Until then, there will
be no other solution than to sit and wait in traffic, just like the rest of us.

49

Bibliography

[1] Michael Behrisch, Laura Bieker, Jakob Erdmann, Daniel Krajzewicz;
”SUMO - Simulation of Urban MObility: An Overview” In: SIMUL 2011,
The Third International Conference on Advances in System Simulation,
2011, 63-68.

[2] Ben-Israel, A. (2008). The group inverse [Powerpoint slides]. Retrieved
from http://benisrael.net/GI-LECTURE-6.pdf

[3] Brin, S., and Page. L. (1998). The Anatomy of a Lagre-Scale Hypertextual
Web Search Engine/ Computer Networks and ISDN Systems 35.

[4] CBS (2012). Personenautobezit van huishoudens en personen. Re-
trieved from http://www.cbs.nl/NR/rdonlyres/69B7DBF3-BA02-4B1F-
90D0-40F362C6C4E1/0/2012k1v4p34art.pdf

[5] Cho, G.E., and Meyer, C.D. (2001). Comparison of Perturbation Bounds
for the Stationary Distribution of a Markov Chain. Linear Algebra and
its Applications, 335, 137-150.

[6] Crisostomi, E., Kirkland, S., Shorten, R. (2011). A Google-like model
of road network dynamics and its application to regulation and control.
Internat. J. Control 84 (2011), no. 3, 633651, 90B20 (60J20).

[7] Fiore, M., and Härri, J. (2008), The Networking Shape of Vehicular Mo-
bility, in ACM MobiHoc, Hong Kong, China, May 2008.

[8] Google Maps (2010). [De Uithof, Utrecht, The Netherlands] [Street
map]. Retrieved from https://maps.google.com/maps?q=De+Uithof
&hl=en&ll=52.085954,5.1775&spn=0.011168,0.033023&sll=41.747334,-
72.688916&sspn=0.01356,0.033023&hnear=Uithof,+Oost,+Utrecht,+The
+Netherlands&t=m&z=16

[9] INRIX (2012). Files dalen wereldwijd: INRIX Traffic Scorecard geeft een
onthullende blik op de worstelende economien in Europa. Retrieved from
http://www.inrix.com/pressrelease.asp?ID=165

50

[10] Ipsen, I.C.F., and Meyer, C.D. (1994). Uniform stability of Markov
chains. SIAM J. Matrix Anal. Appl. 15 1061-1074

[11] Kemeny, J.G., and Snell, J.L. (1960). Finite Markov Chains. Princeton:
Van Nostrand.

[12] Meyer, C.D. (1975). The Role of Group Generalised Inverse in the The-
ory of Finite Markov Chains. SIAM Review, 17, 443-464.

[13] Ross, S. M. (2007). Introduction to probability models, 9th edition, Aca-
demic Press, San Diego, CA, USA.

[14] Levin, D. A., Peres, Y., Wilmer, E. L. 1., & Peres, Y. (2009). Markov
chains and mixing times: . Providence, RI: American Mathematical So-
ciety.

51

Appendix

Can be found at:
https://sites.google.com/site/expandingappendix/home

52

