
Utrecht University

Department of Information and Computing Sciences

Tree-GP: A Scalable Bayesian Global
Numerical Optimization algorithm

February 2015

Author Supervisor
Gerben van Veenendaal dr. ir. D. Thierens
ICA-3470792



Abstract

This paper presents the Tree-GP algorithm: a scalable Bayesian global numerical optimization
algorithm. The algorithm focuses on optimizing evaluation functions that are very expensive
to evaluate. It models the search space using a mixture model of Gaussian process regression
models. This model is then used to find new evaluation points, using our new CMPVR acquisition
criteria function that combines both the mean and variance of the predictions made by the model.
Conventional Gaussian process based Bayesian optimization algorithms often do not scale well in
the total amount of function evaluations. Tree-GP resolves this issue by using a mixture model
of Gaussian process regression models stored in a vantage-point tree. This makes the algorithm
almost linear in the total amount of function evaluations.



Contents

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 6
2.1 Global numerical optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Bayesian optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Posterior distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Initial sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Acquisition criteria function . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Gaussian process regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Gaussian process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Gaussian process regression . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Mean function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.4 Covariance functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.5 Making predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.6 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Vantage-point tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.3 k-nearest-neighbor queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Related Work 16
3.1 Bayesian optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Response surface fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Radial basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Gaussian process regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Algorithm 19
4.1 Initial sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Posterior distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Acquisition criteria function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1



5 Scaling the algorithm 29
5.1 Time complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Mixture model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Definition of local model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.2 Vantage-point tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.3 Adding a point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.4 Making predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.5 Splitting a leaf node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Experiments 39
6.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Test suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Discussion 51
7.1 GP performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Tree-GP performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.3 AMaLGaM performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8 Conclusions and Future Work 55
8.1 Exploration versus exploitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9 Acknowledgments 57

Appendices 58

A Result values 59

2



Chapter 1

Introduction

1.1 Motivation

Much research has already been done in the field of global numerical optimization. That is
because global optimization plays a major role in applied science. A lot of problems can be
reduced to finding the optimum of some function. Examples are finding the best parameters of
an algorithm, doing a simulation with many free variables, or maximizing profit. The problem
definition of global numerical optimization seems so simple: finding the arguments of a function
that gives its minimal value. If this function, which is typically called the fitness or loss function,
is cheap to evaluate and low-dimensional, we can evaluate lots of points in the search space.
Evolutionary Algorithms (EA) are typically very suited for this. Evolutionary algorithms main-
tain a fixed-size population of the points with the best function values that have been found.
This way, an evolutionary algorithm can focus its search on regions with low values. Mutation
and recombination operators are used to evolve the population and create new evaluation points.
Selection is then used to determine the new population.

Simple evolutionary algorithms quickly take too much time if the function is expensive to
evaluate or its dimensionality is high. A possible solution for this is to simply evaluate less
points. Because we still want a good end result, this means that the algorithm needs to put in
more effort to determine the evaluation points. Estimation of Distribution Algorithms (EDA)
are evolutionary algorithms that do exactly that by modeling the population with a density
probability distribution [3]. The algorithm can then sample from this probability distribution to
find points in the search space that characterize good points. By modeling the best points found,
the algorithm can take more intelligent decisions about where to evaluate next. This in turn
means that less evaluations are required to get a similar result of a naive evolutionary algorithm.

Another approach to modeling is called Bayesian optimization [12]. Bayesian optimization
tries to find the next evaluation point by completely modeling the search space. It does this by
putting a prior function distribution over the function. By conditioning this distribution on the
points that have been found before we can predict values for other points. With these predictions
we can then determine where to evaluate next. In this thesis, we will use this Bayesian approach
to global optimization. Our focus will be on functions that are expensive to evaluate, which we
will define to be from one minute up to several hours. If the function takes a minute, we can
only do 1440 evaluations per day, or 10,080 per week. If it takes an hour, we can only do 24 per
day or 168 per week. Because we can only evaluate the function such a small number of times,
we really have to put in some effort to find potentially good points to evaluate. This is exactly
what Bayesian optimization is good at.

3



1.2 Goals

In global optimization an algorithm has to make a consideration between exploration and ex-
ploitation. Exploration is finding new interesting regions of the search space, whereas exploitation
is using the currently known interesting regions to find a local optimum. If an algorithm explores
too much, but does not exploit, it does not find a good final point. On the other hand, if it
exploits too early, it will most likely find a mediocre local minimum of the function. Our first goal
is therefore to construct an algorithm that like simulated annealing first focuses on exploration
and gradually exploits its knowledge of the search space.

A problem of current Bayesian optimization algorithms is that they do not scale very well
with the number of function evaluations. Some of these algorithms require a matrix inversion
per function evaluation, which is of order O(n3), where n is the amount of function evaluations
so far. Even though we target expensive functions and so the time spent is relative, this quickly
becomes a bottleneck, especially if the function can be evaluated in the order of a minute to
several minutes. Our second goal is therefore to construct an algorithm that does scale well with
the total number of function evaluations.

A lot of real-life functions have a lot of parameters. These parameters often interact in a
non-linear way to determine the function value. So the more parameters there are, the harder
the function is to optimize, because we can not optimize the parameters independently. We will
test functions with a dimensionality up to 30 that simulate real-life optimization problems. We
will then compare the performance of our algorithm of these functions with an estimation of
distribution algorithm named AMaLGaM [3]. In addition to the performance of the algorithm,
we also want to show the overhead in time of the algorithm. The overhead of the algorithm is
the time spent to find new evaluation points relative to the amount of time the function takes
to evaluate. We will again compare the results with AMaLGaM.

1.3 Contributions

We have created a Bayesian optimization algorithm called Tree-GP that performs very well on
expensive functions and scales almost linearly in the amount of evaluations. We use a regression
technique called Gaussian process regression to put a posterior distribution over the function.
To make the algorithm scalable, we use a mixture model of multiple Gaussian process regression
models. Each individual model only models a local part of the search space. The models of the
mixture model are put in a data structure called a vantage-point tree to make nearest-neighbor
queries fast. Evaluated function points are only put in models close to it so only a few small
models need to be updated. Likewise, when making predictions in the search space, only models
close to the query point are used. The predictions of the different models are weighted according
to the distances of the models to the predicted point.

Gaussian process regression predicts a Gaussian distribution for each point in space. The
mean and standard deviation of this distribution are combined in order to make the consideration
between exploration and exploitation. We have constructed an auxiliary function called the
Cumulative Mean Probability to Variance Ratio (CMPVR) function that weights this mean and
standard deviation of each point in space. This function is minimized in order to find the best
point to evaluate next. At the start of the algorithm the weighting is chosen to favor high
standard deviations and thus exploration. Slowly low mean values are given more weight so
the algorithm will gear towards exploitation. If no improvement has been found in a while, the
weighting will be reset to make the algorithm start exploring again.

4



1.4 Thesis outline

We will start with some preliminaries: chapter two contains theory that is not part of our research
but needs to be understood to follow this thesis. This chapter will contain a formal definition of
global numerical optimization, explain Bayesian optimization, Gaussian process regression and
the vantage-point tree that we will be using in our algorithm. In chapter three we will delve into
related work of other researchers. After that, in chapter four, we will present the details of our
Tree-GP algorithm. In chapter five we will make the algorithm scalable. In chapter six we will
explain our experiments to compare Tree-GP with the AMaLGaM algorithm and present the
results. We will then discuss these results in chapter seven. Finally we have some conclusions
and ideas for future work in chapter eight. Chapter nine contains some acknowledgments.

5



Chapter 2

Preliminaries

In this chapter we will explain existing theory, techniques and algorithms that are needed to
understand our Tree-GP algorithm. This allows the reader to skip techniques that he or she
already knows.

2.1 Global numerical optimization

2.1.1 Definition

Let us first give a formal definition of the global numerical optimization problem that we want
to solve. Given a black box loss function f : RD 7→ R, we want to find

x∗ = argmin
x

f(x),

subject to x∗ ∈ [0, 1]D.

A loss function is basically the opposite of a fitness function. Whereas a fitness function
returns the fitness of certain parameters, and thus needs to be maximized, a loss function returns
the loss that we obtain for a certain set of input parameters. So fitness functions are supported
with this definition by simply negating the function value. We want to minimize because this
makes the problem statement equivalent to those found in other literature.

2.1.2 Domain

We restrict the arguments of the loss function f to domain [0, 1] for our ease. If the black box
function has a different finite domain, a linear mapping to [0, 1] can easily be made. If the
function has an infinite domain, a mapping can also be made. Given a loss function g(z) with
zi ∈ [−∞,∞], the loss function f becomes

f(x) = g(z), zi =
1

3
αi tan((xi −

1

2
) π),

where αi ∈ R+ is the typical range of the zi. The range [−αi, αi] of zi is approximately mapped
to [0.1, 0.9] of xi. See figure 2.1 for some example mapping for different values of αi. Similar
mappings can be made for loss functions that have only an infinite lower or upper bound, or have
different types of bounds per argument. These mappings can be considered part of the black box
loss function, which is why we can assume the domain to be [0, 1].

6



1000 500 0 500 1000
zi

0.0

0.2

0.4

0.6

0.8

1.0

xi

Figure 2.1: Mappings from zi to xi ∈ [0, 1] for different values of αi. The blue mapping has
αi = 10, the green one αi = 100, red has αi = 1000 and light blue has αi = 10000.

2.2 Bayesian optimization

2.2.1 Posterior distribution

Like we said in the introduction, we will use an optimization technique called Bayesian opti-
mization [12]. Bayesian optimization puts a prior function distribution over the loss function
f . This prior function distribution is conditioned on the values found by evaluations of the loss
function. We then obtain the posterior function distribution which we use to find the point of
the next loss function evaluation. When we evaluate the loss function to find a new value at that
particular point in space, we update the posterior distribution. This process is repeated until
we have either reached an acceptable value or we have run out of evaluations when we give the
algorithm a maximum number of loss function evaluations.

2.2.2 Initial sample

Before we can create our initial posterior distribution, we first need an initial sample of the loss
function. This sample can be obtained in a number of ways, we might for example simply select
random points. The size of this sample will depend on the way of putting a posterior distribution
over f . There might for example be a minimum amount of points required for a model to be
fitted. Once we have these points, we can construct the posterior distribution to bootstrap the
algorithm.

2.2.3 Acquisition criteria function

Determining which point to evaluate given a posterior distribution over the search space is no
easy task. By choosing this next evaluation point intelligently, we hope to converge faster to the
minimum, so that less evaluations are required. The selected point has to satisfy certain criteria.

7



These criteria can be made explicit using an auxiliary function h(x) called the acquisition criteria
function [6]. Minimizing this function determines where to evaluate next given the posterior
distribution. The point that we are going to evaluate at iteration i is given by

xi = argmin
x

h(x | pi−1, i, N),

subject to xi ∈ [0, 1]D.

Here pi−1 denotes the posterior distribution calculated at the previous iteration and N denotes
the total number of evaluations. The previous posterior distribution pi−1, the current iteration i
and the total number of evaluations N is the only information needed by an acquisition criteria
function to determine the next evaluation point. The values of i and N can for example be
used to let the evaluated point depend on how many evaluations are still left. A simple example
of an acquisition criteria function is the predicted value of the posterior distribution. This will
then be minimized and the algorithm will evaluate the predicted minimum of the posterior
distribution. The function h has to be differentiable because we will be using a gradient-based
optimization algorithm to minimize it. It might not be very important to find the exact minimum
of the function, as long as a good evaluation point can be obtained. This is a tradeoff between
time spent minimizing the acquisition criteria function and the quality of the evaluation point
according to the acquisition criteria function.

8



2.2.4 Algorithm

Algorithm 1 describes the full Bayesian optimization algorithm.

Algorithm 1 Bayesian optimization

1: procedure BayesianOptimization(f , N , M)
2: Let f be the function to be optimized.
3: Let N be the number of function evaluations.
4: Let M be the number of initial samples.
5: Let D be the dimensionality of f .
6: Let h be the acquisition criteria function.
7: Let i be the current iteration.
8: Let X be the set of all evaluated points, X = {x1,x2,x3, . . .}.
9: Let xi be the position vector of the evaluation at iteration i.

10: Let T be the set of the values of all evaluated points, T = {t1, t2, t3, . . .}.
11: Let ti be the value of f at xi.
12: Let t∗ be the minimum value found so far.
13: Let x∗ be the position vector of the value t∗.
14: Let pi be the posterior distribution over f at iteration i.
15:

16: (X,T )← GetInitialSample(f , M)
17:

18: t∗ ← min(T )
19: x∗ ← argmin

xi∈X
ti

20:

21: i←M + 1
22:

23: pi ← CreateInitialPosterior(X, T )
24:

25: while i ≤ N do
26: xi ← argmin

x∈[0,1]D
h(x | pi−1, i, N) . Minimize acquisition criteria function.

27:

28: ti ← f(xi) . Evaluate function.
29:

30: if ti < t∗ then
31: t∗ ← ti
32: x∗ ← xi
33: end if
34:

35: pi ← UpdatePosterior(pi−1, xi, ti)
36:

37: i← i+ 1
38: end while
39:

40: return x∗

41: end procedure

9



2.3 Gaussian process regression

2.3.1 Gaussian process

Our algorithm puts a prior distribution over the loss function by modeling it with Gaussian
process regression. Gaussian process regression is a powerful regression technique that models
the loss function with a Gaussian process. A Gaussian process is formally defined as a probability
distribution over functions y(x) which, when evaluated at n D-dimensional points x1, . . . ,xn ∈
RD, together give a joint dimensional multivariate Gaussian distribution [18]. A Gaussian process
y(x) is completely specified by a mean function m : RD 7→ R and a covariance function k :
RD × RD 7→ R. These functions are defined over all functions y(x) drawn from the Gaussian
process as

m(x) = E[y(x)],

k(x,x′) = E[(y(x)−m(x))× (y(x′)−m(x′))].

That is, the expected value over all functions y(x) drawn from the process at a certain x and the
expected covariance between all function values y(x) and y(x′). Together we can write this as

y(x) ∼ GP(m(x), k(x,x′)).

In sections 2.3.3 and 2.3.4 we will explain the meaning of these two functions.

2.3.2 Gaussian process regression

Gaussian process regression uses a posterior Gaussian process that has been conditioned on n D-
dimensional input points x1, . . . ,xn ∈ RD with their corresponding values t = {t1, . . . , tn ∈ R}.
Here conditioning means that all functions drawn from the Gaussian process have to go through
the values t at their corresponding input points. This posterior Gaussian process is a model of
the loss function based on points that have already been evaluated. From this posterior Gaussian
process we can make a prediction for a new point which gives us a Gaussian distribution. The
predicted Gaussian distribution at a point x is the probability distribution over all values of
functions y(x) drawn from the posterior Gaussian process. This is done by adding another
input point to the conditioned Gaussian process and calculating the values that it can take on.
This turns out to be a Gaussian distribution of values. Because the prediction is a Gaussian
distribution, we have a measure of uncertainty, namely its standard deviation. This is a big
advantage of Gaussian process regression.

See figure 2.2 for an example of three samples drawn from a prior Gaussian process and
three samples drawn from a Gaussian process conditioned on some input points. Each sample
is function y(x) drawn from a Gaussian process. In the conditioned Gaussian process these
samples have to go through the input points. The predicted values are also plotted for every x.
As these are Gaussian distributions, both their mean value and twice their standard deviation
have been plotted. The mean value is indicated by the dotted line, and the gray area covers twice
the standard deviation of the prediction. Note the assumed zero mean in the prior. Also note
that the uncertainty that we have of the predicted values has been modeled with the standard
deviation of the Gaussian process. The standard deviation becomes larger the more we move
away from input points: the uncertainty increases. Also note how smooth the samples drawn
from the Gaussian process are. This is determined by the covariance function, which we will
explain later on.

10



0.0 0.2 0.4 0.6 0.8 1.0
x

3

2

1

0

1

2

3

y(x)

0.0 0.2 0.4 0.6 0.8 1.0
x

3

2

1

0

1

2

3

y(x)

Figure 2.2: Three samples drawn from a prior Gaussian process on the left and a posterior
Gaussian process on the right. Note that for each x the prediction is a Gaussian distribution.
The dotted line indicates its mean and the gray area covers twice its standard deviation.

2.3.3 Mean function

Like we said before, a Gaussian process is completely defined by a mean and a covariance function.
We will assume the mean function to be zero, that is m(x) = 0. This assumption means that we
believe the mean over all functions drawn from the Gaussian process to be zero. This in turn
means that we believe the mean of the modeled function to be zero. As this will in general not
be the case, we subtract the average of the values t from every value ti. This process is called
centering the data. The average is added again to the predictions made by the model. This
makes it so that we believe the mean of the modeled function is the average of the input data,
which is a reasonable assumption to make.

2.3.4 Covariance functions

The only thing left to determine is the covariance function. The covariance function k(x,x′)
is a measure of how similar the function value of two points x and x′ are. This function is
also referred to as the kernel function. It describes our prior beliefs of the function that we are
modeling. It determines whether samples drawn from the Gaussian process are smooth, linear or
periodic. A number of covariance functions have been suggested for Gaussian process regression.
Popular covariance functions include:

k(x,x′) = xTx′ (linear)

k(x,x′) = ‖x− x′‖22 ln ‖x− x′‖2 (thin plate spline)

k(x,x′) = θ0 exp(−
D∑
d=1

θd(xd − x′d)2) (squared exponential)

Covariance functions that are a function of x− x′ are called stationary and are invariant to
translations of the input space. The linear covariance function is not stationary and by using it we
belief that the covariance of two points depend on their absolute positions, not on their relative
ones. Using this kernel is the same as doing Bayesian linear regression which can be done much

11



more efficiently than Gaussian process regression. However, it is commonly combined with other
covariance functions. The thin plate spline kernel results in a D-dimensional spline. A spline is a
smooth piecewise defined polynomial. It has the advantage that it has no hyper-parameters, but
this may result in a poorer fit. The squared exponential can be seen as the default covariance
function for Gaussian process regression and works well in practice. It is stationary and functions
drawn from a Gaussian process with this covariance function are smooth and continuous. It has
D + 1 hyper-parameters: a scaling parameter θ0 and D parameters that give each dimension
a weight. The hyper-parameters make the function more generic so that it fits many forms of
covariances between input points.

2.3.5 Making predictions

We can use the conditioned Gaussian process to make predictions for new points in space. Here
we will give the equations to do this, but not how we came to these results. The results described
here are explained in detail in [18], and therefore we refer the reader to this very well-written
book for an in-depth explanation.

First we define the covariance matrix C to be an n× n matrix with the covariances between
all points,

Ci,j = k(xi,xj).

Let x be the point for which we want to make a prediction. Furthermore, let k be a vector of
covariances of the prediction point with all other points,

ki = k(xi,x), 1 ≤ i ≤ n.

Finally let c be the covariance of the predicted point with itself, so c = k(x,x). Then the mean
and variance of the predicted Gaussian distribution at x are given by

µ(x) = kTC−1t,

σ2(x) = c− kTC−1k.

2.3.6 Maximum likelihood estimation

We have already seen that covariance function can have hyper-parameters. These parameters
have to be determined in order to provide the best fitting model. In order to find these hyper-
parameters we use maximum likelihood estimation. Maximum likelihood estimation gives us the
hyper-parameters that make the data most likely. This can be done by maximizing the likelihood
function of the data given the parameters to be found. Often, the log-likelihood function is used
because it is easier to calculate and maximizing it is equivalent to maximizing the likelihood
function. The log-likelihood function of a Gaussian Process regression model is given by the
standard log-likelihood function of multivariate Gaussian distributions, which is given by

ln p(t|θ) = −1

2
ln |C| − 1

2
tTC−1t− N

2
ln(2π).

Maximizing this function in θ gives us our hyper-parameters. This optimization problem is aided
by the fact that we can compute the partial derivative of the function in each hyper-parameter
θi,

∂

∂θi
ln p(t|θ) = −1

2
tr

(
C−1

∂C

∂θi

)
+

1

2
tTC−1

∂C

∂θi
C−1t.

12



Here tr is the trace operator which is the sum of the diagonal of a square matrix. These par-
tial derivatives make it possible to use a derivative-based optimization algorithm, like gradient
descent. A more advanced algorithm such as L-BFGS can be used to find the maximum a lot
quicker than the basic gradient descent algorithm.

2.4 Vantage-point tree

2.4.1 Definition

Our algorithm uses a mixture model of multiple Gaussian process regression models. Each of
these models are put into a vantage-point tree. A vantage-point tree is a data partitioning
structure to speed up nearest-neighbor queries [19]. A data partitioning structure makes a
partitioning of the data itself, in contrast to a space partitioning algorithm like the k-d tree
which partitions all of space. This makes data partitioning algorithms often more efficient than
space partitioning structures when the data is clustered. The vantage-point tree is a particular
data partitioning structure that has been tailored for doing nearest-neighbor queries. A property
that makes the vantage-point tree stand out is that it only needs to evaluate the distance metric
on the input points themselves. Any distance metric can be used to measure distance between
input points. The distance between points is also the only thing that it needs to know in order
to operate. This can be a very useful feature if a distance can only be calculated between points,
and new points cannot easily be constructed from other input points.

The vantage-point tree partitions data points by selecting a point from the data, the vantage-
point. This can simply be done at random, but we will be using a more elaborate method that
will be explained later on. The vantage-point is then removed from the list of input points,
and the algorithm goes on by partitioning the rest of the points. It does this by calculating all
distances to the selected vantage-point with the given distance metric. The median distance is
then selected from these distances. The input points are split according to this median distance.
If the distance of a point is smaller or equal than the median distance, it goes in the left child
node. Likewise, if it is larger it goes into the right child node. After creating the root tree node
with this method, the partitioning process is repeated for every node of the tree that still contain
more than a certain maximum number of points.

2.4.2 Representation

Each node can be seen as a hypersphere if the data are points from RD and the distance metric
is the Euclidean distance, L2. The left child node contains everything that falls into the hy-
persphere, whereas the right child node contains all the remaining nodes. See figure 2.3 for an
example of a partitioning of points in the two-dimensional plane.

13



Figure 2.3: An example of a vantage-point tree of points in R2. Figure taken from [19].

Internal tree nodes store a reference to a vantage point and the minimum, median and max-
imum distance of their child nodes. Leaf nodes store a list of references of its points. The total
storage is thus O(n) where n is the total amount of data points. The selection function for the
vantage-point can be chosen to simply select a vantage point at random, in which case construc-
tion time is O(n log n). This is the case for any vantage-point selection function that is at most
linear.

2.4.3 k-nearest-neighbor queries

Ultimately the data structure is used for k-nearest-neighbor queries. These queries are in practice
very fast as the tree is fully balanced. The k-nearest-neighbor algorithm can make deductions
about which branches of the tree to visit by using the triangle-inequality property of the distance
metric. It makes use of a fixed size max-heap to store the current k nearest points by their
distance to a query point. It keeps track of the maximum distance in the heap, which is its first
element if the heap is full, or ∞ if there are less than k points in the heap. For internal nodes
we can use this maximum distance to determine whether a point in the left or right node can
possibly contain a point closer to the query point than any of the points in the max-heap. If
so, the algorithm recurses into the child node. The vantage point is pushed on the heap if its
distance is smaller than the maximum distance. If a leaf node is reached, the algorithm walks
over its points and pushes the points whose distance are smaller than the maximum distance.
An implementation of the algorithm is given by algorithm 2.

14



Algorithm 2 Vantage-point tree k-nearest-neighbor querying

1: procedure VPTreeKNearestNeighbor(tree, x, k)
2: heap← CreateFixedSizeMaxHeap(k)
3:

4: VPTreeKNearestNeighborInNode(tree.root, x, heap, ∞)
5:

6: return FixedSizeMaxHeapToSet(heap)
7: end procedure
8:

9: procedure VPTreeKNearestNeighborInNode(node, x, heap, dmax)
10: if node.isLeaf then
11: for p ∈ node.points do
12: d← ‖p− x‖ . Calculate distance.
13:

14: if d < dmax then
15: FixedSizeMapHeapInsert(heap, d, (node,p))
16:

17: dmax ← FixedSizeMaxHeapGetMaxKey(heap)
18: . Returns ∞ if the heap contains less than k items.
19: end if
20: end for
21: else
22: d← ‖node.vantagePoint− x‖ . Calculate distance.
23:

24: if d < node.dmed then
25: dmax ← VPTreeKNearestNeighborInNode(node.left, x, heap, dmax)
26:

27: if node.dmed − d < dmax then
28: dmax ← VPTreeKNearestNeighborInNode(node.right, x, heap, dmax)
29: end if
30: else
31: if d− node.dmax < dmax then
32: dmax ← VPTreeKNearestNeighborInNode(node.left, x, heap, dmax)
33: end if
34:

35: if node.dmed − d < dmax then
36: dmax ← VPTreeKNearestNeighborInNode(node.right, x, heap, dmax)
37: end if
38: end if
39: end if
40:

41: return dmax
42: end procedure

15



Chapter 3

Related Work

This chapter contains previous work made by other researchers related to our research.

3.1 Bayesian optimization

Bayesian optimization started with work from Mockus in the 1970s en 1980s [12]. After that,
many ways of putting a prior distribution on the loss function have been suggested. The easiest
way of putting a prior on the function is by fitting low-order polynomials on the function. Early
work that describes how to do this include work of Box et al. [4], Khuri et al. [10] and Myers
et al. [11]. Work by Powell expands on this by using a linear model in 1994 [13] and quadratic
polynomials in 2002 and 2003 [14] [15] with a trust region. A trust region is the region of the
search space that is used to fit the polynomial. If the fit is good, the trust region can be expanded.
If the polynomial does not fit the function well, the trust region is contracted. Ultimately, the
model is used to approximate the derivative of the function which is used to obtain the next
optimization step.

3.2 Response surface fitting

Fitting low-order polynomials is an example of (response) surface fitting: using regression to
create a surface that predicts values of other points in the search space [8] [17]. Response
surfaces can be divided into non-interpolating surfaces, where some function is fitted onto the
points but it is not required to pass through those points, and interpolating surfaces where the
surface goes through each point [8]. A quadratic model is thus interpolating if it has been fitted
on at most three points, but may be non-interpolating if more points are used. Jones shows that
non-interpolating surfaces are unreliable because they do not sufficiently capture the shape of
the loss function [8]. Instead, he advises to use interpolating methods based on basis functions
such as radial basis functions or Gaussian process regression.

3.3 Radial basis functions

Radial basis functions have been used by Ishikawa et al. [7], Björkman et al. [2], Guttman [5]
and Regis et al. [16]. Radial basis functions are real functions whose only parameter is a distance
from a center point. So if c is a center point, a radial basis function is defined as

16



φ(x, c) = φ(‖x− c‖).

The distance norm is usually taken to be the Euclidean distance. An approximation of the
landscape of n input points is created by taking a linear combination of n radial basis functions,
one for each input point which is its center:

y(x∗) =

n∑
i=1

wi φ(‖x∗ − xi‖).

Such a fit can easily be made by using linear least squares fitting, as only the weights have to be
determined.

3.4 Gaussian process regression

Lately Gaussian process regression has been used a lot for surface fitting. Jones uses Gaussian
process regression with the squared exponential covariance function for his DACE algorithm [9].
He proposes the Expected Improvement (EI) acquisition criteria function for Bayesian optimiza-
tion:

hei(x) = E[max(t∗ −N (µ(x), σ2(x)), 0)],

hei(x) = (t∗ − µ(x))× Φ

(
t∗ − µ(x)

σ(x)

)
+ σ(x)× φ

(
t∗ − µ(x)

σ(x)

)
.

Here, N is the normal distribution, φ denotes the standard normal distribution, and Φ denotes
the standard normal cumulative distribution. Also note that the standard deviation σ(x) is used,
not the variance σ2(x).

This acquisition criteria function maximizes expected improvement, that is, it finds the point
of the model that is expected to give the most improvement on the current best found value t∗.
This acquisition function takes advantage of the predicted variance of the predicted distribution
by incorporating the standard deviation. The function however has the problem that it samples
a lot around the current best point before sampling more globally [8]. Because of this, it might
take the algorithm a long time to converge to the global optimum.

Jones gives an overview of some more acquisition criteria functions in his 2001 taxonomy
paper [8]. The first acquisition criteria function that he looks at is the Statistical Lower Bound
(SLB) function, also called the Upper Confidence Bound (UCB) [6]. For a minimization problem,
it is defined as

hslb(x) = µ(x)− κσ(x),

where κ is an adjustable parameter. This function tries to minimize the lower bound of the
predicted value. It does this by subtracting the standard deviation from the predicted mean κ
times. Jones takes κ = 5. This function has the problem that it quickly discards parts of the
search space even if they contain the global optimum. This is caused by the Gaussian process
regression, which generally underestimates the variance. This might give the global optimum
a higher statistical lower bound value than a local minimum. If this is the case, the algorithm
will find the local minimum instead of the global optimum. Therefore, it is important not to be
dependent on the scale of the predicted variance.

The second acquisition criteria function that he gives is the Probability of Improvement (PI)
function. This function tries to maximize the probability of improvement on the current best

17



found value t∗. It is defined as the probability that the predicted value at a point is smaller or
equal to a certain target value. This target is chosen to be smaller than the current best value
t∗. Jones initially takes the target to be t∗ − 0.25|t∗|, based on the idea that he wants to find a
25% improvement on the current fitness value.

The full definition of the PI acquisition criteria function is

hpi(x) = P (N (µ(x), σ2(x)) ≤ t∗ − 0.25|t∗|)

hpi(x) = Φ

(
t∗ − 0.25|t∗| − µ(x)

σ(x)

)
,

where N is the normal distribution and Φ denotes the standard normal cumulative distribution.
Because Φ is a strictly increasing function, using

hpi(x) =
t∗ − 0.25|t∗| − µ(x)

σ(x)

will give the same result. Note that we need to maximize this function. For minimization we
can use

hpi(x) =
µ(x)− (t∗ − 0.25|t∗|)

σ(x)
.

This acquisition criteria function function has two problems. The first one is that we have
a constant that we need to guess, the percentage of improvement wanted. It turns out that the
PI function is very sensitive to this constant. Jones solves this by trying out different values for
this constant and clustering the resulting points. He then evaluates all of the found points. This
obviously involves a lot more work than using a single acquisition criteria function. Moreover,
Jones suggests using a very inefficient clustering algorithm that takes O(n4) time in the amount
of points. Though this problem could be solved more efficiently, there is an even bigger problem
with this acquisition criteria function. The problem is that the PI function is not translation
independent in the fitness function values. If we would add a constant value to our fitness
function value, the improvement wanted would increase, even though the scale of our fitness
function remains the same. Also, if the fitness function value goes towards zero, the wanted
improvement will decrease. At zero the wanted improvement will be zero and below zero the
wanted improvement will increase again. This is obviously strange behavior which Jones has
probably not noticed because he only tests on positive functions. Indeed, when using a positive
function the improvement gradually decreases, which is exactly the wanted behavior for such a
function. Therefore, it is important that the acquisition criteria function is independent of the
scale and translation of fitness function values.

The inherent problem of using Gaussian process regression is the time taken to calculate the
model. For Gaussian process regression this is O(n3) in the amount of evaluation points. The
model is calculated at every evaluation, at which n is increased by one. This will make the
total algorithm use at least O(N4) time, where N is the total amount of evaluation points. This
makes the algorithms using plain Gaussian process regression not scalable in the total amount
of function evaluations.

18



Chapter 4

Algorithm

In this chapter we will explain the bases of our Tree-GP algorithm. First we will explain how
we do the initial sampling. Then we give the details of our posterior distribution and how we
find its hyper-parameters. Finally we explain our acquisition criteria function.

4.1 Initial sample

In order to bootstrap Tree-GP, it first needs an initial sample of the loss function f . There are
various ways to get such an initial sample. One way of doing this is simply selecting uniformly
distributed random points in the search space and evaluating the function at those points. This
is known as random sampling. The disadvantage of this approach is however that points may be
clustered in space. We want to prevent this as sampling evenly over the search space will get us
a better initial regression model.

The way we choose to sample is using Latin hypercube sampling. This method divides
the search space evenly in ranges for every dimension and requires that every range of every
dimension contains at least one point. For example the two-dimensional plane is divided into
rows and columns of the same height and width, and every row and column must contain at least
one point. Within a range, we can just uniformly select a value per dimension. See figure 4.1 for
an example of random sampling versus Latin hypercube sampling in the two-dimensional plane.
This method ensures that points are evenly distributed per dimension, but not over multiple
dimensions. Such additional requirements are much harder to incorporate into an algorithm.
Orthogonal sampling is an example of a sampling method that requires that points are evenly
distributed over multiple dimensions. Latin hypercube sampling however has a balance between
time complexity and how evenly distributed the samples are. We choose the number of divisions
to be the number of sample points.

19



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.1: On the left a random sample is shown in the two-dimensional plane, whereas on the
right a Latin hypercube sampling is shown. Note the ranges of the Latin hypercube sampling
which have been indicated by dotted lines. Note that this random sample is clustered in contrast
to a Latin hypercube sample, which can never be clustered.

The implementation of Latin hypercube sampling is very straightforward. Let’s say we need
M sample points and we have D dimensions. Per dimension d ∈ [1, D] we split d its domain
[0, 1] into M even ranges. We then get a uniformly distributed random value within each range.
After that we shuffle these values and assign them to the d-th coordinates of the M initial sample
points. Technically the shuffling is not even required, but it ensures that the points are more
randomly divided over the search space. Algorithm 3 describes Tree-GP in detail. The total
run time of the algorithm is O(M ×D), as shuffling can be done in O(M).

20



Algorithm 3 Initial sample

1: procedure GetInitialSample(f , M)
2: Let f be the function to be optimized.
3: Let M be the number of initial samples.
4: Let D be the dimensionality of f .
5: Let X be the set of all evaluated points, X = {x1,x2,x3, . . .}.
6: Let xi be the position vector of the evaluated at iteration i.
7: Let T be the set of the values of all evaluated points, T = {t1, t2, t3, . . .}.
8: Let V be a matrix of dimensions M ×D.
9:

10: for d ∈ [1, D] do
11: for i ∈ [1,M ] do
12: r ← GetRealRandomNumber(0, 1) . Get real random division offset in [0, 1].
13: j ← GetNaturalRandomNumber(1, i) . Get random point index in [1, i].
14:

15: v ← i−1+r
M

16:

17: Vi,d ← Vj,d . Swap value with random other point.
18: Vj,d ← v . Assign value to random other point.
19: end for
20: end for
21:

22: for i ∈ [1,M ] do
23: xi ← Vi,? . Set evaluation point.
24: ti ← f(xi) . Evaluate function.
25: end for
26:

27: return (X,T )
28: end procedure

4.2 Posterior distribution

The next step in Bayesian optimization is choosing the way we create the posterior distribution
over the loss function f . This posterior distribution is first calculated over the initial sample.
The posterior distribution is then recalculated over all points after each function evaluation. We
will make use of Gaussian process regression, described in the preliminaries. We use the squared
exponential covariance function,

k(x,x′) = θ0 exp(−
D∑
d=1

θd(xd − x′d)2).

This kernel function has some nice properties. First of all functions drawn from a Gaussian
process with this kernel function are smooth and continuous. Because we know nothing about
the black box loss function this seems like a reasonable assumption to make. It is stationary
which makes the Gaussian process translation independent, which is also a nice property to have.
Finally it provides us with D + 1 hyper-parameters, which we can use to obtain a better fit to
the landscape of the loss function.

21



Like explained in the preliminaries, we will assume a zero mean function and center the value
t. In order to prevent numerical problems, we also divide the centered values by the standard
deviation of t. When making predictions, the reverse transformations are applied.

4.3 Maximum likelihood estimation

In order to fit the Gaussian process regression model to the input points we need to do maximum
likelihood estimation to find the hyper-parameters θ of the kernel function, like we explained in
section 2.3.6. As explained in the preliminaries, this involves a derivative-based optimization
algorithm. A derivative or gradient based optimization algorithm can make use of the fact that
we can calculate the first-order partial derivatives of the function in each of its parameters.
Usually gradient based optimization algorithms only find a local optimum of a function, and so
they need a starting point in the search space. A strategy that runs the algorithm multiple times
with different starting points can be used to make it more likely to find the global optimum.
Gradient descent is an example of a very simple algorithm that takes a step in the direction of
the function gradient at each iteration. The size of the step is determined by the magnitude of
the gradient multiplied by a small constant.

We have chosen the Limited-memory Broyden-Fletcher-Goldfarb-Shanno or L-BFGS algo-
rithm to do derivative based optimization. This algorithm is a very popular quasi-Newton
optimization method. In order to understand what a quasi-Newton optimization algorithm is,
we first need to explain Newton’s method. Newton’s method for gradient-based optimization
uses both the first derivative and the second derivative to approximate the region around the
optimum with a quadratic function. This quadratic approximation can then be used to quickly
step towards the optimum. The second-order partial derivatives of a multidimensional function
is its Hessian matrix. The Hessian matrix consists of the second-order partial derivatives of all
combinations of input variables. As this matrix is usually heavy to compute, quasi-Newton op-
timizers where developed. These optimizers do not compute the Hessian matrix directly. They
approximate it instead by analyzing previously computed first-order partial derivatives of the
function.

The Broyden-Fletcher-Goldfarb-Shanno or BFGS algorithm is such a quasi-Newton optimizer.
It updates the inverse Hessian matrix at each gradient evaluation of the function to be optimized.
The inverse of the Hessian matrix is initialized at the identity matrix. Starting from a given
starting point, the BFGS algorithm calculates the step direction from the inverse Hessian matrix.
After this, it determines the step size with a line search algorithm. Based on the step direction
and size, the current point is updated. Then, both the function itself and its partial derivative
are calculated. This information is used to update the inverse Hessian matrix. After the update
the algorithm is repeated until the gradient is close enough to zero.

Limited-memory BFGS is a variant of BFGS that does not store the entire inverse Hessian
matrix. It only stores the last H position and gradients of the function and implicitly constructs
the inverse matrix at every iteration with this information. The amount of updates that are
stored is determined by the history parameter H and is usually chosen to be around 10 to 15.
For normal BFGS with a D-dimensional function memory usage is of order O(D2). For L-BFGS
it is only O(H ×D) which is a lot less if the function has a lot of parameters.

We have chosen not to run the algorithm multiple times, as this would be too expensive.
Instead, we start from a single starting point and run the algorithm once to find the values of θ.
The initial values of θ were all chosen to be 1, which seems to work reasonable well for most loss
functions. To limit computation power used by L-BFGS, we have also set a maximum number
of iterations. This makes the overhead of finding the hyper-parameters O(1). Note however,

22



that for each iteration a complete Gaussian process regression needs to be calculated, which
involves a matrix inversion. This makes a single iteration very expensive, so in practice it is very
important that we do as little iterations as possible. Because L-BFGS is very efficient, good
hyper-parameters are usually found in 20 to 30 iterations.

4.4 Acquisition criteria function

We have seen in section 3.4 that the existing acquisition criteria function all have weaknesses.
That’s why we decided to construct a new acquisition criteria function. Minimizing the acquisi-
tion criteria function determines which point is going to be evaluated and so it is very important.
We want a function that at first explores the search space, and will later on exploit interesting
regions. After some experimentation we came up with a function that does both, depending on
a constant that can be varied. It combines both the predicted mean and the predicted variance
of the posterior distribution. We call this new acquisition criteria function the Cumulative Mean
Probability to Variance Ratio (CMPVR). It is completely independent of scale and translation
of the loss function. It is also independent of the scale of the posterior distribution its predicted
error. The function is defined as a ratio of which the numerator is the cumulative probability
of the predicted mean. The denominator is the predicted variance, which is weighted by an
exponent c. Let g be the probability distribution over the values of f(x). Furthermore, let G be
the cumulative probability distribution over the values of f(x). Then the full definition of the
acquisition criteria function is

hcmpvr(x) =
G(µ(x))

σ2(x)c
.

Here c ∈ R≥0 is the exploration constant. If c is taken to be 0, the acquisition criteria function
will only contain the cumulative probability of the predicted mean, and so minimizing it will find
the minimum predicted mean. The algorithm will then just be exploiting. If however c is taken
positive, the variance will be weighted in. High variances usually occur at places in the search
space that do not have evaluated point nearby and so this will result in exploitation. Larger
values of c will result in more exploitation, so this constant determines the balance between low
mean values and high variances. Figure 4.2 shows the evaluated points of the two-dimensional
sphere problem for different c values.

23



Figure 4.2: From top to bottom, left to right: the evaluated points of the two-dimensional sphere
problem, for c values 0.1, 0.25, 0.5, 1, 2.5 and 5. Note the consideration between exploration and
exploitation.

Until now we have assumed the probability distribution g to be known. However, in general
this will not be the case. Therefore we will assume the distribution to be a Gaussian distribution.
We can approximate the mean and standard deviation of this Gaussian distribution from the
evaluated function values, the population. The cumulative probability distribution of a Gaussian
distribution can be calculated using the error function erf(x). Given a population mean µpop
and standard deviation σpop, G(x) is given by

G(x) =
1

2

(
1 + erf

(
x− µpop
σpop
√

2

))
.

The error function cannot be evaluated directly as it is defined as an integral,

erf(x) =
2√
π

∫ x

0

e−t
2

.

We can however approximate it with

erf(x) ≈ 1− (a1t+ a2t
2 + · · ·+ a5t

5)e−x
2

, t =
1

1 + px
,

where p = 0.3275911, a1 = 0.254829592, a2 = −0.284496736, a3 = 1.421413741, a4 = −1.453152027
and a5 = 1.061405429, which has a maximum error of 1.5× 10−7 [1]. This approximation is only
valid for x ≥ 0. Because erf is an odd function, we can use − erf(−x) for x < 0.

24



Like we said before, the acquisition criteria function needs to be differentiable, otherwise we
are left with a minimization problem that is just as hard to solve as the original problem. Taking
the partial derivative of hcmpvr(x) with respect to a single coordinate xd we get

∂

∂xd
hcmpvr(x) = σ2(x)−1−c ×

(
σ2(x)× g(µ(x))× ∂µ(x)

∂xd
− c×G(µ(x))× ∂σ2(x)

∂xd

)
,

where g(x) is the Gaussian distribution with mean µpop and standard deviation σpop,

g(x) = N (x, σpop, µpop)

g(x) =
1

σpop
√

2π
exp

(
− (x− µpop)2

2× (σpop)2

)
.

Note that we need the partial derivatives of both the mean function and the variance function
of the posterior distribution. For Gaussian process regression they are given by

∂µ(x)

∂xd
=
∑
i

∂k(x,xi)

∂xd
(C−1t)i

∂σ2(x)

∂xd
= −

∑
i,j

(
∂k(x,xi)

∂xd
k(x,xj) +

∂k(x,xj)

∂xd
k(x,xi)

)
C−1i,j .

The CMPVR function is completely independent of scale and translation of loss function
values. The numerator is the cumulative probability of the predicted loss function value, which
is invariant under scale and translation of loss function values. This makes the CMPVR function
very generic, in contrast to the PI function. The CMPVR acquisition criteria function is also
invariant under the scale of the predicted variance. The scale of the predicted variance does not
matter in the ratio as we are minimizing the CMPVR function. This invariance is important
because Gaussian process regression may underestimates the scale of the predicted variance which
gave problems for the SLB function.

25



Algorithm 4 gives an implementation of the CMPVR acquisition criteria function.

Algorithm 4 Acquisition criteria function

1: procedure GetErrorFunctionValue(x)
2: swap← x < 0
3:

4: if swap then
5: x← −x
6: end if
7:

8: p← 0.3275911
9: a1 ← 0.254829592

10: a2 ← −0.284496736
11: a3 ← 1.421413741
12: a4 ← −1.453152027
13: a5 ← 1.061405429
14:

15: t← 1
1+px

16: v ← 1− (a1t+ a2t
2 + · · ·+ a5t

5)e−x
2

17:

18: if swap then
19: return −v
20: else
21: return v
22: end if
23: end procedure
24:

25: procedure GetErrorFunctionDerivative(x)

26: return 2√
π
e−x

2

27: end procedure
28:

29: procedure GetNormalValue(x, µ, σ)

30: return 1
σ
√
2π

exp
(
− (x−µ)2

2σ2

)
31: end procedure
32:

33: procedure GetCumulativeNormalValue(x, µ, σ)
34: return 1

2 × (1+ GetErrorFunctionValue(x−µ
σ
√
2
) )

35: end procedure
36:

37: procedure GetCumulativeNormalDerivative(x, µ, σ)
38: return GetNormalValue(x, µ, σ)
39: end procedure

26



Algorithm 5 Acquisition criteria function (continued)

40: procedure GetCMPVR(x, µpop, σpop, c)
41: m← GetMean(x)
42: v ← GetVariance(x)
43:

44: n← GetCumulativeNormalValue(m,µpop, σpop)
45: d← vc

46:

47: return n
d

48: end procedure
49:

50: procedure GetCMPVRDerivative(x, µpop, σpop, c)
51: m← GetMean(x)
52: v ← GetVariance(x)
53:

54: m′ ← GetMeanDerivative(x)
55: v′ ← GetVarianceDerivative(x)
56:

57: n← GetCumulativeNormalValue(mean, µpop, σpop)
58: n′ ← GetCumulativeNormalDerivative(mean, µpop, σpop)
59:

60: ∀i : ri ← v−1−c × (v × n′ ×m′i − c× n× v′i)
61:

62: return r
63: end procedure

In order to minimize this acquisition criteria function to find the next evaluation point, we pick
100 random points and run the L-BFGS algorithm with these points as the starting points. We
also run the L-BFGS algorithm starting in the best point that has been found. Of each of these
runs, we pick the point that has the lowest function value. The loss function is then evaluated in
this point and the posterior distribution is updated. Because we only run the L-BFGS algorithm
a constant number of times, and the L-BFGS algorithm uses a constant amount of iterations,
the total time that we spend finding a new point is of the order of calculating a prediction and
its derivative of a Gaussian process regression. Calculating a prediction and its derivative is of
order O(D × n2), where n is the number of points of the Gaussian process regression.

The only thing left to decide is how to vary the exploration constant c over time. Based on
the results of figure 4.2 we decided to initially set c to 0.25 and then letting it exponentially
decay to 0.0001 at iteration 100. This is implemented by multiplying c with (0.0001

0.25 )
1

100 at each
iteration, which is about 0.92472. This way, the search space is gradually exploited. The decay
continues after 100 iterations, but if there is no improvement in 50 iterations, c will be reset
to its initial value 0.25. This will make the acquisition criteria function explore again, which
will hopefully result in finding new minima that can be exploited. The exact constants are not
very important, but is important that the initial value of c is not too low, because the algorithm
needs the exploration to find a good minimum. The exploration also helps with building a more
accurate model, because the evaluated points are distributed over the whole search space. This
in turn helps the algorithm with exploitation. The constant that c converges to should be very
small, because in the end we want to sample at the predicted minimum of the model. That’s
because in the end the minimum of the model is the most likely the minimum of the loss function.

27



Figure 4.3 shows the evaluated points of the two-dimensional sphere problem with our decaying
scheme.

Figure 4.3: The left image shows the evaluated points of the two-dimensional sphere problem for
c = 0.25. The image in the center shows the evaluated points for c = 0.0001. The right image
shows the evaluated points with our decaying scheme.

28



Chapter 5

Scaling the algorithm

In this chapter we will try to scale the algorithm of the previous chapter in the amount of function
evaluations. We will do this by using a mixture model of multiple Gaussian process regression
models stored in a vantage-point tree.

5.1 Time complexity

The details given in the previous chapter are sufficient to give an implementation of a Bayesian
optimization algorithm based on a Gaussian process regression model. However, the time com-
plexity of the algorithm is very important. Even though we assume loss functions that take a
lot of time to evaluate, we still want the overhead of our algorithm to be as little as possible.
As is shown in the preliminaries, calculating a Gaussian process regression over n input points
with dimensionality D requires a matrix inversion of the covariance matrix C. The covariance
matrix itself can be computed in O(D × n2) time and has size n × n. The covariance matrix
inversion takes O(n3) time. This gives us a total of O(D×n2 +n3) time to do a single Gaussian
process regression. The regression is done multiple times to find the hyper-parameters θ, but
the number of iterations of L-BFGS can be considered constant. The time taken to calculate a
new evaluation point is O(D× n2). Because the Gaussian process regression is also recalculated
for every function evaluation, the total time per function evaluation is O(D×n2 +n3). In order
to find the total complexity of the algorithm, we have to sum over all function evaluations. The
algorithm does N function evaluations, so this gives us a total time of

O

(
N∑
n=1

(D × n2 + n3)

)
=

O

(
D

N∑
n=1

n2 +

N∑
n=1

n3

)
=

O

(
D × N(N + 1)(2N + 1)

6
+

(
N(N + 1)

2

)2
)

=

O
(
D ×N3 +N4

)
.

29



5.2 Mixture model

The fact that the algorithm takes quartic time in the total amount of evaluations means that
the algorithm is not scalable. We want the algorithm to be scalable, which ideally means that it
uses linear time in the amount of iterations. In order to make the algorithm scalable, we came
up with the idea to use a mixture model.

A mixture model models the whole search space with multiple local models. In our case,
these local models are Gaussian process regression models. The models are local in the sense
that they only model the region of space that is near the points that they consist of. We limit
this amount of points, so that the time spent creating the local model is only dependent on the
function dimensionality D. New evaluated points are only added to the models whose regions
in space are the closest to that point. These models are then recalculated with the new point.
When a model is bigger than the limit set, it has to be split into two models. Predictions made
with a local model are also only dependent on D. When making a prediction, the models whose
regions in space are the closest to that prediction point are used. The predictions made by each
model at the prediction point are then weighted according to their distance to the model to
make the final prediction. In the next sections, each of the parts of the mixture model will be
explained in more detail.

5.2.1 Definition of local model

A local model of the mixture model is a normal Gaussian process regression model created from a
limited number of points. We have chosen the maximum number of model points to be 50. Each
local model has different hyper-parameters θ, so that the covariance function can be modeled
differently per model. Because local models can have different hyper-parameters, local areas of
the search space can be modeled better, resulting in a better overall model.

5.2.2 Vantage-point tree

When adding new points and making predictions we will be doing k-nearest neighbor queries on
the existing points. In order to speed up these queries, all points are put into a vantage-point
tree. Like explained in the preliminaries, a vantage-point tree speeds up nearest neighbor queries
considerably by splitting the points recursively using a distance metric and a vantage-point. First
all points are added to a root leaf node. Each leaf node it then split into two leaf nodes until
all leaf nodes contain at most a certain maximum number of points. When a leaf node is split,
a vantage-point is chosen from the its points and the remaining points are partitioned using the
median of their distances to the vantage-point. We make two changes to the vanilla vantage-point
tree algorithm in order to make it usable as a mixture model. First off, our tree is not static but
dynamic. This means that the tree is not immediately fully created, but instead incrementally
updated. How this is done will be explained later on. The second change is that our leaf nodes
each contain a Gaussian process regression model of the points in it. The maximum number of
leaf points is set to the maximum number of model points, which is 50. If the number of points
in a leaf node exceeds this number of points, the leaf node is split into two leaf nodes. These two
new leaf nodes are each given a new Gaussian process regression model of the points in it. The
specifics of splitting a leaf node are explained later on.

5.2.3 Adding a point

The disadvantage of using local models is that they cannot use the information provided by
points further away. To mitigate this problem somewhat, points are added to multiple local

30



models. When adding a point, we first find the k existing nearest points using the vantage-point
tree. We then determine the leaf nodes of these nearest points in the vantage-point tree. Note
that there may be less than k leaf nodes as nearest points may have the same leaf node. The new
point is then added to each of the leaf nodes. When a leaf node exceeds the maximum number
of points, it is split into two leaf nodes. The leaf nodes their Gaussian process regression models
are then recalculated using their new set of points. We have chosen the constant k to be 5, which
works very well in practice. Algorithm 6 gives an implementation.

Algorithm 6 Adding a point to a vantage-point tree

1: procedure VPTreeAddPoint(tree, x, t, k)
2: N ← VPTreeKNearestNeighbor(tree, x, k)
3:

4: for node ∈ {ni| (ni,p) ∈ N, ∀j < i : nj 6= ni} do . For all unique leaf nodes.
5: node.x← node.x ∪ {x} . Add point to node.
6: node.t← node.t ∪ {t}
7:

8: if |node.points| > 50 then . Check for split.
9: (left, right)←VPTreeSplitNode(tree, node)

10:

11: left.model← GPCalculate(left.x, left.t)
12: right.model← GPCalculate(right.x, right.t)
13: else
14: node.model← GPCalculate(node.x, node.t)
15: end if
16: end for
17: end procedure

5.2.4 Making predictions

When making a prediction in order to calculate the acquisition criteria function value, we also
combine the values of at most k models. We first find the k nearest points to the prediction
point, and make predictions with their corresponding models. We want points close by to have
more impact on the final prediction than points far away. Therefore, we weight the points their
predictions according to the distance to the prediction point. For the weighting, we use a modified
version of the inverse distance weighting. Let P = {p1, . . . ,pn} be the set of n points to weight.
Let V = {v1, . . . , vn} be their corresponding predicted values. Let x be the prediction point. Let
dmax be the maximum distance of x to P , given by

dmax = max({di| pi ∈ P}), di = ‖pi − x‖.

31



Then the final predicted value v is given by

v =



N∑
i=1

wivi

N∑
i=1

wi

if ∀i : di 6= 0

vi if ∃i : di = 0

where

wi =

(
dmax − di

di

)2

, di = ‖pi − x‖.

This weighting gives points close by a lot more weight than points far away. This is desirable as
the models are local and so models close by a prediction point provide far better predictions for
that point than models far away. We use the same weighting for predicting the mean, variance,
the mean its derivative and the variance its derivative. Algorithm 7 gives an implementation.

Algorithm 7 Making predictions

1: Let tree be a vantage point tree.
2:

3: procedure GetWeightedNearestModels(x, k)
4: N ← VPTreeKNearestNeighbor(tree, x, k)
5:

6: dmax ← max({‖p− x‖ | (node,p) ∈ N}) . Find maximum distance.
7:

8: W ← {}
9: wsum ← 0

10:

11: for (node,pi) ∈ N do
12: di ← ‖pi − x‖ . Calculate distance.
13:

14: if di = 0 then
15: return {(1, node.model)}
16: end if
17:

18: wi ←
(
dmax−di

di

)2
. Calculate weight.

19: wsum ← wsum + wi
20:

21: W ←W ∪ {(wi, node.model)} . Add weighted model.
22: end for
23:

24: for (wi,model) ∈W do . Normalize weights.
25: wi ← wi

wsum

26: end for
27:

28: return W
29: end procedure

32



Algorithm 8 Making predictions (continued)

30: procedure GetMean(x)
31: W ← GetWeightedNearestModels(x, 5)
32:

33: v ← 0
34: for (wi,model) ∈W do
35: v ← v + wi× GPGetMean(model, x)
36: end for
37:

38: return v
39: end procedure
40:

41: procedure GetVariance(x)
42: W ← GetWeightedNearestModels(x, 5)
43:

44: v ← 0
45: for (wi,model) ∈W do
46: v ← v + wi× GPGetVariance(model, x)
47: end for
48:

49: return v
50: end procedure
51:

52: procedure GetMeanDerivative(x)
53: W ← GetWeightedNearestModels(x, 5)
54:

55: v← 0
56: for (wi,model) ∈W do
57: v← v + wi× GPGetMeanDerivative(model, x)
58: end for
59:

60: return v
61: end procedure
62:

63: procedure GetVarianceDerivative(x)
64: W ← GetWeightedNearestModels(x, 5)
65:

66: v← 0
67: for (wi,model) ∈W do
68: v← v + wi× GPGetVarianceDerivative(model, x)
69: end for
70:

71: return v
72: end procedure

33



5.2.5 Splitting a leaf node

The main change that we made to the vanilla vantage-point tree is the way that leaf nodes are
split. Leaf nodes need to be split so that the local models do not become too large. The splitting
boundary is determined by a hyper-sphere centered in a vantage-point, which has the median
distance as the radius. Half of the points lie within the hyper-sphere, the other half lies outside
of it. The trick is to select the vantage-point. Selecting a good vantage-point is a difficult task.
Ideally, when the points are clustered into two clusters we want the split in between the two
clusters. This way, the new models stay as local as possible. However, the situation may arise
that there is only a single cluster. This happens for example when the algorithm exploits a local
minimum. In that case, the density of the points will increase towards the local minimum. The
split should definitely not split through this local minimum, as we want it to be as accurately
modeled as possible. This is only possible if all points within a region of the local minimum are
put into the same leaf node. This way, we zoom in on the solution.

The partitioning algorithm that we use does all of this. Our partitioning algorithm selects the
vantage-point whose splitting hyper-sphere has the maximum average distance to all points. This
is done by trying every point as the vantage-point, and calculating all distances of other points
to the selected vantage-point. The median distance is then selected from these distances. This
median distance will be the radius of the splitting hyper-sphere. The distance to the hyper-sphere
of a point can then be calculated by taking the absolute value of the distance to the vantage-point
minus the median distance. We can then take the average and select the vantage-point with the
maximum average.

Let us also give a formal definition. Let P = {p1, . . . ,pn} be all points to be split. Let the
vantage-point that we are trying be pvp. Let dmed be the median distance of all points in P to
pvp. The average distance davg of all points to this boundary is then given by

davg =
1

n

n∑
i=1

|di − dmed|, di = ‖pi − pvp‖.

The optimal vantage-point p∗vp is given by

p∗vp = argmax
pvp∈P

(davg).

Figure 5.1 shows the behavior of our partitioning algorithm on different sets of points in the
plane. The hyper-sphere is shown in red, which is just a circle in two dimensions. Note the
different behaviors with two clusters and a single cluster. The latter shows the zoom behavior
that we are after. Hyper-spheres are ideal as splitting boundaries in this regard as they allow
both behaviors. This is also one of the reasons that we selected the vantage-point tree as our
nearest neighbor data structure instead of for example the k-d-tree, which has axis-aligned hyper-
planes as splitting boundaries. A hyper-plane boundary will never be able to deliver this zoom
behavior.

34



Figure 5.1: Three splits on leaf points: on uniformly distributed points, two clusters of points
and on uniformly distributed points with a single high density cluster. Note the zoom behavior
on the latter.

Algorithm 9 gives an implementation of our partitioning algorithm. The algorithm takes
O(n2) in the number of points of the leaf node to be split. This number is bound by a constant,
so theoretically the time is only O(1).

Algorithm 9 Splitting a leaf node

1: procedure VPTreeSelectVantagePoint(points)
2: d∗sum ← 0
3: for pvp ∈ points do
4: D ← {}
5: for pi ∈ points do . Calculate distances.
6: di = ‖pi − pvp‖
7:

8: D ← D ∪ {di}
9: end for

10:

11: dmed ← GetMedian(D) . Get median distance.
12:

13: dsum ← 0
14: for pi ∈ points do
15: dsum ← dsum + |di − dmed|
16: end for
17:

18: if dsum > d∗sum then
19: p∗vp ← pvp
20: d∗sum ← dsum
21: d∗med ← dmed
22: end if
23: end for
24:

25: return (p∗vp, d
∗
med)

26: end procedure

35



Algorithm 10 Splitting a leaf node (continued)

27: procedure VPTreeSplitNode(tree, node)
28: (pvp, dmed)← VPTreeSelectVantagePoint(node.points)
29:

30: left.points← {}
31: right.points← {}
32:

33: left.isLeaf ← T
34: right.isLeaf ← T
35:

36: dmax ← 0
37: for pi ∈ node.points do
38: di = ‖pi − pvp‖
39:

40: if di < dmed then
41: left.points← left.points ∪ {pi}
42: else
43: right.points← right.points ∪ {pi}
44: end if
45:

46: if di > dmax then
47: dmax ← di
48: end if
49: end for
50:

51: node.isLeaf ← F
52: node.vantagePoint← pvp
53: node.dmed ← dmed
54: node.dmax ← dmax
55: node.left← left
56: node.right← right
57:

58: return (left, right)
59: end procedure

36



5.3 Algorithm

Algorithm 11 describes the full Tree-GP algorithm.

Algorithm 11 The Tree-GP algorithm

1: Let tree be a vantage point tree.
2: Let µpop be the population mean.
3: Let σpop be the population variance.
4:

5: procedure UpdatePosterior(x, t)
6: VPTreeAddPoint(tree, x, t, 5)
7:

8: Update µpop and σpop with t.
9: end procedure

10:

11: procedure CreateInitialPosterior(X, T )
12: tree.root.isLeaf ← T . Create initial root node.
13: tree.root.x← {}
14: tree.root.t← {}
15:

16: for xi ∈ X do . Add initial sample.
17: UpdatePosterior(xi, ti)
18: end for
19: end procedure
20:

21: procedure GetNextEvaluationPoint(c)
22: v∗ ←∞
23:

24: for i ∈ [1, 100] do
25: for d ∈ [1, D] do . Generate a random point.
26: xd ←GetRealRandomNumber(0, 1) . Get a real random number in [0, 1].
27: end for
28:

29: (x, v)← L-BFGS (GetCMPVR, GetCMPVRDerivative, x, µpop, σpop, c)
30:

31: if v < v∗ then . Find best point.
32: v∗ ← v
33: x∗ ← x
34: end if
35: end for
36:

37: return x∗

38: end procedure

37



Algorithm 12 The Tree-GP algorithm (continued)

39: procedure OurAlgorithm(f , N)
40: Let f be the function to be optimized.
41: Let N be the number of function evaluations.
42: Let M be the number of initial samples.
43: Let D be the dimensionality of f .
44: Let i be the current iteration.
45: Let iimp be the iteration of the last improvement.
46: Let c be the exploration constant.
47: Let X be the set of all evaluated points, X = {x1,x2,x3, . . .}.
48: Let xi be the position vector of the evaluated at iteration i.
49: Let T be the set of the values of all evaluated points, T = {t1, t2, t3, . . .}.
50: Let ti be the value of f at xi.
51: Let tmin be the minimum value found so far.
52: Let xmin be the position vector of the value tmin.
53:

54: M ← 5
55:

56: (X,T )← GetInitialSample(f,M)
57:

58: t∗ ← min(T )
59: x∗ ← argmin

xi∈X
ti

60:

61: i←M + 1
62: iimp ← i
63: c← 0.25
64:

65: CreateInitialPosterior(X, T )
66:

67: while i ≤ N do
68: xi ← GetNextEvaluationPoint(c)
69:

70: ti ← f(xi) . Evaluate function.
71:

72: if ti < t∗ then . Check for improvement.
73: t∗ ← ti
74: x∗ ← xi
75: iimp ← i
76: end if
77:

78: UpdatePosterior(xi, ti)
79:

80: if i− iimp ≥ 50 then
81: c← 0.25 . Reset exploration constant.
82: else
83: c← c× ( 0.0001

0.25 )
1

100 . Update exploration constant.
84: end if
85:

86: i← i+ 1
87: end while
88:

89: return x∗

90: end procedure

38



Chapter 6

Experiments

In this chapter we will compare our Tree-GP algorithm to a variant called GP and with the
AMaLGaM algorithm. We will do this by running the algorithm against two test suites which
have been created for the IEEE Congress on Evolutionary Computation.

6.1 Experiment setup

Now that we have presented the Tree-GP algorithm, we obviously need to see how well it per-
forms. In order to do this, we will have to run the algorithm against black box test functions. It is
hard to do this with real-life test functions because we often know nothing about their properties
or their true global minimum. That is why we will be running the algorithm against artificial test
functions. In the literature, all kinds of such artificial test functions with known properties and
global minima have been proposed. Over time, these test functions have been perfected and put
into various standard test suites. One such a suite is the Black-Box Optimization Benchmarking
(BBOB) test suite. This suite is updated every year and a lot of authors use this test suite to
compare their algorithms with others. This is the most important aspect of such test suites, they
can be used to give a fair comparison of two algorithms. The 2009 version of the BBOB test
suite has been used to test the performance of the AMaLGaM algorithm [3].

Another such a test suite is provided each year by the IEEE Congress on Evolutionary
Computation (IEEE CEC). The recently released 2014 version of the test suites provided by
them is particularly interesting, as they now have a test suite specifically for expensive function
optimization. They also have a normal test suite for other kinds of global numerical optimization
algorithms. Because they provide this expensive function test suite and their test suites are the
most recent, we will be using their test suites to test our algorithm.

The way we will be measuring the performance of our algorithm and that of AMaLGaM is
twofold. The first performance measure is the minimum function value that has been reached
at each function evaluation. The second is the amount of time required to get to this result.
Both performances are very important in order to choose which algorithm is best for a certain
evaluation function.

In order to be able to compare the results of Tree-GP, we will also run the same performance
tests on the estimation of distribution algorithm AMaLGaM. This algorithm has not specifically
been designed for expensive test functions. It does however, put in quite a lot of effort to get new
points in the search space to evaluate. It does this in a totally different way than our algorithm
does. Instead of modeling the values of the optimization function, it models the distribution of
points in the search space that have the best values. It does this by keeping a population of points

39



whose density in space is modeled by a multivariate Gaussian distribution [3]. It then samples
this density model and evaluates the sampled points. After this, the population is updated by
keeping the best points and a new density model is created. We will be using the iAMaLGaM-
Full-Free version of the algorithm for testing. This version determines the population size
of its model incrementally and models all second-order interactions between variables. It also
determines its parameters automatically, so that no configuration is required.

We will also compare the Tree-GP algorithm to a variant of the algorithm that does not
use the vantage-point tree, but uses a normal Gaussian process regression model. This way we
can see how well our mixture model idea scales the algorithm and the impact that it has on the
values found. We will indicate this algorithm as GP. As this algorithm is very inefficient, we will
limit the total amount of function evaluations to 500.

To do statistical sound experiments, we will repeat each experiment five times. For the
minimum function value that has been found at each function evaluation, we will take the
median of the five values. This is because we want to show a value that has actually been found,
which an average value would not be. The timing values that we will show are averages over
the five experiments. We will show both the total run time of each algorithm excluding the
function evaluations and the overhead that each algorithm has per individual evaluation. This
way we can clearly see how well the algorithms scale with the amount of function evaluations.
As AMaLGaM is a lot faster than our algorithm, we will let it do three times as much function
evaluations. This way we can see better how AMaLGaM its best function value converges,
relative to our Tree-GP and GP algorithms. We do three times as much evaluations because
this still allows us to plot the timing in the same graph.

All the tests will be run on machines with an Intel Xeon E3-1270 v3 3.5 GHz quadcore
processor and 8 GiB of memory. Each test will use a single core, so we can run four tests at the
same time on a machine. No other applications will be run on the machines during the tests.

6.2 Test suite

The test suite consists of various test functions that are assumed to be expensive. These functions
are not actually expensive to evaluate, otherwise the experiments would take a very long time.
The CEC expensive test suite contains 8 functions, each of which is used in three different
dimensionalities. This makes for a total of 24 test functions. The used function dimensionalities
are 10, 20 and 30. The suite also indicates how much function evaluations are allowed. This is
500 evaluations for the 10-dimensional functions, 1000 for the 20-dimensional functions and 1500
for the 30-dimensional functions.

The test functions themselves are just mathematical formulas, which makes them easy to
analyze. Each of the functions has different properties. One of these properties is whether
the function has a single global minimum, that is uni-modal. A function can also be multi-
modal, and then is interesting to know how much local minima it has. Another property is
separability. If a function is separable, each of it dimensions can be optimized independently
of the other dimensions. This may reduce a 10-dimensional function optimization to 10 1-
dimensional optimizations. The optimum values of all the test functions are set at zero, in order
to easily compare the results. We will now discuss each test function is the suite.

40



1. Shifted sphere function: The sphere function is the easiest test function as it is just a
multi-dimensional parabola. It has a single minimum and is separable. It has been shifted
so that the optimum is not at the origin. Its definition before shifting is

g1(x) =

D∑
i=1

x2i .

The three versions of this function tested are

f1(x) = g1(x− o1), o1 ∈ RD, D = 10,

f2(x) = g1(x− o2), o2 ∈ RD, D = 20,

f3(x) = g1(x− o3), o3 ∈ RD, D = 30,

where o1, o2 and o3 are the optimum positions.

2. Shifted ellipsoid function: The ellipsoid function function is slightly harder to optimize
than the sphere function, because it scales the dimensions differently. The function still
has a single minimum and is separable. Its definition is

g2(x) =

D∑
i=1

ix2i .

The function has been shifted to prevent the minimum to be at the origin. The three
versions of this function tested are

f4(x) = g2(x− o4), o4 ∈ RD, D = 10,

f5(x) = g2(x− o5), o5 ∈ RD, D = 20,

f6(x) = g2(x− o6), o6 ∈ RD, D = 30,

where o4, o5 and o6 are the optimum positions.

3. Shifted and rotated ellipsoid function: We also test the rotated ellipsoid function.
This is basically the ellipsoid function, except its input has been rotated by a randomly
generated rotation matrix. It also has been shifted so that the minimum is not at the
origin. The function has a single mimimum, but is not separable anymore. The versions
that we test are

f7(x) = g2(M7(x− o7)), o7 ∈ RD, M7 ∈M(D,D), D = 10,

f8(x) = g2(M8(x− o8)), o8 ∈ RD, M8 ∈M(D,D), D = 20,

f9(x) = g2(M9(x− o9)), o9 ∈ RD, M9 ∈M(D,D), D = 30,

where o7, o8 and o9 are the optimum positions and M7, M8 and M9 are rotation matrices.

41



4. Shifted step function: The shifted step function is the discontinuous version of the
shifted sphere function. It has a single minimum and is separable. Its definition before
shifting is

g3(x) =

D∑
i=1

(bxi + 0.5c)2.

The three versions of this function tested are

f10(x) = g3(x− o10), o10 ∈ RD, D = 10,

f11(x) = g3(x− o11), o11 ∈ RD, D = 20,

f12(x) = g3(x− o12), o12 ∈ RD, D = 30,

where o10, o11 and o12 are the optimum positions.

5. Shifted Ackley’s function: Ackley’s function is a popular testing function. The optimum
is basically a giant hole in the search space, whereas the rest of the search space is fairly
flat and has a lot of local minima that are hard to get out of. This makes it very hard
to find the global optimum. The problem is separable and the number of local minima is
exponential in its dimensionality. The definition is

g4(x) = −20 exp(−0.2

√√√√ 1

D

D∑
i=1

x2i )− exp(
1

D

D∑
i=1

cos(2πxi)) + 20 + e.

We test the shifted versions of the function

f13(x) = g4(x− o13), o13 ∈ RD, D = 10,

f14(x) = g4(x− o14), o14 ∈ RD, D = 20,

f15(x) = g4(x− o15), o15 ∈ RD, D = 30,

where o13, o14 and o15 are the optimum positions.

6. Shifted Griewank’s function: Griewank’s function is basically the sphere function with
a high frequency low amplitude cosine added to it. The cosine has a different period per
dimension. This gives the function a factorial amount of local minima in its dimensionality.
It is not separable which makes it harder as well. The definition is

g5(x) =

D∑
i=1

x2i
4000

−
D∏
i=1

cos(
xi√
i
) + 1.

The three shifted versions of this function tested are

f16(x) = g5(x− o16), o16 ∈ RD, D = 10,

f17(x) = g5(x− o17), o17 ∈ RD, D = 20,

f18(x) = g5(x− o18), o18 ∈ RD, D = 30,

where o16, o17 and o18 are the optimum positions.

42



7. Shifted and rotated Rosenbrock’s function: The Rosenbrock function is one of the
most popular testing functions as it is very non-linear. It is very hard because it has a
very narrow valley which leads from a local optimum to the global optimum. It’s easy to
find the valley but very hard to actually find the global optimum in it. The function is not
separable and has a lot of local minima. The definition is

g6(x) =

D−1∑
i=1

(100(x2i − xi+1)2 + (xi − 1)2).

To make this function even harder we shift and rotate the search space. The versions that
we test are

f19(x) = g6(M19(x− o19)), o19 ∈ RD, M19 ∈M(D,D), D = 10,

f20(x) = g6(M20(x− o20)), o20 ∈ RD, M20 ∈M(D,D), D = 20,

f21(x) = g6(M21(x− o21)), o21 ∈ RD, M21 ∈M(D,D), D = 30,

where o19, o20 and o21 are the optimum positions and M19, M20 and M21 are rotation
matrices.

8. Shifted and rotated Rastrigin’s function: Finally we test Rastrigin’s function which
is very much like Griewank’s function, but the cosine added has a very high amplitude.
This makes it very hard to find the global optimimum, as it is barely different from all
the local minima. The cosine does have the same period per dimension unlike Griewank’s
function. It is not separable however, because it has been rotated. Rastrigin’s function
definition is

g7(x) =

D∑
i=1

(x2i − 10 cos(2πxi) + 10).

We will test the shifted and rotated versions

f22(x) = g7(M22(x− o22)), o22 ∈ RD, M22 ∈M(D,D), D = 10,

f23(x) = g7(M23(x− o23)), o23 ∈ RD, M23 ∈M(D,D), D = 20,

f24(x) = g7(M24(x− o24)), o24 ∈ RD, M24 ∈M(D,D), D = 30,

where o22, o23 and o24 are the optimum positions and M22, M23 and M24 are rotation
matrices.

We will be using the shifted sphere function f2 with D = 20 for the algorithm timing exper-
iments.

43



6.3 Results

The results of our experiments can be seen below. The values shown in the graphs of figure 6.1
are the minimum values found by the algorithms at each function evaluation. That is why the
graphs are always monotonically decreasing. The values are calculated by taking the median
value of the minimum values at each function evaluation of the 5 runs that we did for each
function. The values are in logarithmic scale. The graphs are shown in a grid where each row is
a different test function and the columns are dimensionalities 10, 20 and 30 respectively.

Figure 6.2 shows the performance results. The graphs show the total time taken of the
algorithms from the start at each function evaluation. The times shown are in seconds and are
averages over the 5 runs that we did. The times do not include the actual function evaluation
itself, but the time spend in the algorithm. Figure 6.3 shows the overhead time of the algorithms
at each function evaluation. The times are again in seconds and are averages over the 5 runs.
Again, the times do not include the function evaluation itself.

A cubic function has been fitted to the total run time of GP. It is given by

f(x) = −0.0473590576 + 0.00289585665 x+ 0.0000353808647 x2 + 2.76400425× 10−8 x3

where x is the current evaluation starting at 1. The fit has a Mean Absolute Error (MAE) of
0.10911594. The summation over x from 1 to n is given by

g(n) =

n∑
x=1

f(x)

g(n) = −0.0459052 n+ 0.00146563 n2 + 0.0000118074 n3 + 6.91001× 10−9 n4

where n is the total amount of function evaluations. This function gives an approximation of the
total run time of the algorithm excluding function evaluations. The order of the total run time
of GP based on the fitted function is given by

g(x) = O(n4).

A logarithmic function has been fitted to the times of the Tree-GP algorithm. It is given
by

f(x) = 0.11766902 log(x+ 39.26508884)− 0.40674665

where x is the current evaluation starting at 1. It has a MAE of 0.01368722. The summation
over xfrom 1 to n which gives the total run time is given by

g(n) =

n∑
x=1

f(x)

g(n) = −0.40674665 n+ 0.11766902 log ((1 + 39.26508884)n)

where x is the current evaluation starting at 1 and (x)n is the Pochhammer symbol, given by

(x)n = x× (x+ 1)× (x+ 2)× · · · × (x+ n− 1) =
(x+ n− 1)!

(x− 1)!
.

44



The order of the total run time of the Tree-GP based on this fitted function is given by

g(n) = O (−0.40674665 n+ 0.11766902 log((40 + n)!)− log(40!))

g(n) = O (n+ log(n!))

g(n) = O (n+ log(nn))

g(n) = O (n+ n log n)

g(n) = O (n log n) .

An nth root function has also been fitted to the Tree-GP algorithm times. It is given by

f(x) = 0.10250573x1/4.16360816 − 0.1282584

where x is the current evaluation starting at 1. It has a MAE of 0.01189511. The summation
over x from 1 to n which gives the total run time is given by

g(n) =

n∑
x=1

f(x).

The total run times of the algorithm predicted from the fitted functions are shown in figure
6.4. They are calculated by using the summations above. The predicted algorithm overhead per
function evaluations is also shown in figure 6.5. The times are in seconds and do not include the
function evaluations themselves.

45



0 200 400 600 800 1000 1200 1400

10-5

10-4

10-3

10-2

10-1

100

101

102

103
Tree-GP
GP
AMaLGaM

0 500 1000 1500 2000 2500 3000

10-4

10-3

10-2

10-1

100

101

102

103 Tree-GP
GP
AMaLGaM

0 1000 2000 3000 4000
10-3

10-2

10-1

100

101

102

103
Tree-GP
GP
AMaLGaM

0 200 400 600 800 1000 1200 1400

10-4

10-3

10-2

10-1

100

101

102

103
Tree-GP
GP
AMaLGaM

0 500 1000 1500 2000 2500 3000

10-2

10-1

100

101

102

103

104 Tree-GP
GP
AMaLGaM

0 1000 2000 3000 4000

103

104

Tree-GP
GP
AMaLGaM

0 200 400 600 800 1000 1200 1400
10-4

10-3

10-2

10-1

100

101

102

103

104
Tree-GP
GP
AMaLGaM

0 500 1000 1500 2000 2500 3000

10-1

100

101

102

103

104
Tree-GP
GP
AMaLGaM

0 1000 2000 3000 4000

101

102

103

104

105
Tree-GP
GP
AMaLGaM

0 200 400 600 800 1000 1200 1400100

101

102

103 Tree-GP
GP
AMaLGaM

0 500 1000 1500 2000 2500 3000

101

102

103

Tree-GP
GP
AMaLGaM

0 1000 2000 3000 4000

102

103

Tree-GP
GP
AMaLGaM

46



0 200 400 600 800 1000 1200 1400

101

Tree-GP
GP
AMaLGaM

0 500 1000 1500 2000 2500 3000

100

101

Tree-GP
GP
AMaLGaM

0 1000 2000 3000 4000

101

Tree-GP
GP
AMaLGaM

0 200 400 600 800 1000 1200 1400
100

101

102

Tree-GP
GP
AMaLGaM

0 500 1000 1500 2000 2500 3000100

101

102

Tree-GP
GP
AMaLGaM

0 1000 2000 3000 4000100

101

102

103

Tree-GP
GP
AMaLGaM

0 200 400 600 800 1000 1200 1400
101

102

103

104

Tree-GP
GP
AMaLGaM

0 500 1000 1500 2000 2500 3000

102

103

104

Tree-GP
GP
AMaLGaM

0 1000 2000 3000 4000

103

104

105 Tree-GP
GP
AMaLGaM

0 200 400 600 800 1000 1200 1400

101

102

Tree-GP
GP
AMaLGaM

0 500 1000 1500 2000 2500 3000

102

Tree-GP
GP
AMaLGaM

0 1000 2000 3000 4000

Tree-GP
GP
AMaLGaM

Figure 6.1: From top to bottom, left to right: the average minimum evaluation value of f1 to f24
found per iteration. Evaluation values are averages over 5 runs. Each row contains the graphs
of the same function in three different dimensionalities: 10, 20 and 30.

47



0 200 400 600 800 1000 1200 1400

0

500

1000

1500

2000
Tree-GP
iAMaLGaM
GP

0 200 400 600 800 1000 1200 1400

0

100

200

300

400

500 Tree-GP

0 100 200 300 400 500

0

500

1000

1500

2000
GP

0 200 400 600 800 1000 1200 1400
0.000

0.005

0.010

0.015

iAMaLGaM

Figure 6.2: The average time taken in seconds since the start of the algorithm at each function
evaluation. The times shown are not including the function evaluations. The values are averages
over 5 runs. The first graphs shows all algorithms so you can compare their scaling behavior.
The latter graphs show the times of each individual algorithm.

48



0 200 400 600 800 1000 1200 1400

0

2

4

6

8

10

12

14
Tree-GP
iAMaLGaM
GP

0 200 400 600 800 1000 1200 1400

0.0

0.1

0.2

0.3

0.4

0.5 Tree-GP
Fitted logarithmic
Fitted nth root

0 100 200 300 400 500

0

2

4

6

8

10

12

14
GP
Fitted cubic polynomial

0 200 400 600 800 1000 1200 1400

0.00002

0.00004

0.00006

0.00008

0.00010
iAMaLGaM

Figure 6.3: The average algorithm overhead in seconds per function evaluation. The times shown
are not including the function evaluation. The values are averages over 5 runs. The first graphs
shows all algorithms so you can compare their scaling behavior. The latter graphs show the times
of each individual algorithm. Note the cubic function that has been fitted to the GP algorithm
times and the logarithmic function that has been fitted to the Tree-GP algorithm.

49



0 20000 40000 60000 80000 100000

0

1

2

3

4

5

6

7
1e11

GP

0 20000 40000 60000 80000 100000

0

20000

40000

60000

80000

100000

120000 Tree-GP (logarithmic)
Tree-GP (nth order root)

Figure 6.4: The predicted time taken in seconds since the start of the algorithm at each func-
tion evaluation. The values are calculated from the fitted functions. The times shown are not
including the function evaluations.

0 20000 40000 60000 80000 100000

0.0

0.5

1.0

1.5

2.0

2.5

1e7

GP

0 20000 40000 60000 80000 100000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Tree-GP (logarithmic)
Tree-GP (nth order root)

Figure 6.5: The predicted algorithm overhead in seconds per function evaluation according to the
fitted functions. The times shown are not including the function evaluations. Note the difference
between the fitted logarithmic and the fitted nth root function in their predictions.

50



Chapter 7

Discussion

In this chapter we will discuss the results of experiments that we did in the previous chapter. We
will do this by comparing the performance of the three algorithms that we tested, GP, Tree-GP
and AMaLGaM.

7.1 GP performance

GP is our basic algorithm, which is why we will analyze its performance first. This algorithm
does not use the mixture model to scale well in the total amount of function evaluations. It uses
just a plain Gaussian process regression model as the posterior distribution. The performance of
this algorithm is very important, as it provides us with a baseline for our scaling improvements.
The GP algorithm shows us how well our acquisition criteria function CMPVR performs in
combination with a Gaussian process regression model.

Looking at the performance of the GP algorithm against the number of function evaluations
we can indeed say that it performs very well in this regard. The graphs show that GP descends
very quickly with the very few function evaluations that it was given. AMaLGaM only beats
GP for the very last problem, and even there they are basically on par. Because we assume our
loss function to be very expensive, we can afford to spend more time looking for good candidate
points to evaluate. It seems like that investment does pay off, as we find very good values
with very little function evaluations. GP only finds the minimum for problem 4 (shifted step
function) with D = 10, but this is actually quite an accomplishment given that only 500 function
evaluations were allowed.

For almost all problems we see the same behavior in the value graph, first it descends quickly
and then it slowly converges to its final value. This behavior is probably due to the decay of
exploration constant, which will cause the algorithm to exploit more and more towards the end.
The graph of problem 3 (shifted and rotated ellipsoid function) with D = 20 clearly shows the
advantage of resetting this constant so that the algorithm explores again. The algorithm is stuck
in a local minimum for quite some evaluations. This causes the exploration constant to be reset,
resulting in exploration of the search space. This in turn causes the algorithm to find new local
minima, which it then exploits. We can clearly see the quick descend that follows. With problem
7 (shifted and rotated Rosenbrock’s function), D = 20 we are not so lucky however, as the
algorithm does not find a better minimum even after resetting the exploration constant.

Though the performance versus the number of function evaluations of the GP algorithm is
very good, the total run time of the algorithm is very dramatic. As we can see in the results of
the timing experiments in figure 6.3, the time taken per function evaluation quickly increases.

51



The fitted function is a cubic polynomial, which gives the algorithm a total run time order of
O(n4) as we expected. If we would have run the tests with D = 30 and 1500 evaluations, we
could have expected the last iteration of the algorithm to take about 177 seconds or 2 minutes
57 seconds. The full run time of the algorithm would be a whopping 78,060 seconds, or 21 hours
41 minutes, excluding the function evaluations themselves. That is quite a lot of overhead for
just 1500 function evaluations. We can see in figure 6.4 that at a hundred thousand function
evaluations, the full run time of the algorithm is about 7 × 1011 seconds, which is more than
22182 years! These numbers are of course only true if the extrapolation of the fitted polynomial
holds. This is fair assumption however, because the fitted function fits very well to the timing
results.

7.2 Tree-GP performance

The Tree-GP algorithm improves upon the GP algorithm by trying to make it scalable. It is
the main algorithm of this thesis, and so its performance is very important. We will compare
the performance and timing experiment results with the GP algorithm, which is our baseline.

If we examine the value performance of the Tree-GP algorithm, we can see that the results
for D = 10 are very similar to the GP algorithm, which are very good. On the higher dimensional
problems, Tree-GP performs slightly worse than GP. This might be because of the curse of
dimensionality: the higher the dimensionality of the model, the less are the differences in distances
between evaluation points. This is bad for the mixture model, because it relies on models being
local. If models are not local anymore, one global model performs a lot better than multiple
overlapping global models.

Still, the overall results are very good and almost always better than the results of AMaL-
GaM. The minimum values found by Tree-GP quickly decrease at first and then converge
towards the end. The convergence behavior is the same as GP, and is due to the decaying
exploration constant. The algorithm is sometimes stuck, which can be seen by the plateaus in
the graphs. It often starts descending again after the exploration constant has been reset, but
this may take some time. We can clearly see that the algorithm is stuck in the second problem
(the shifted ellipsoid function) with D = 20. At the end of the graph the algorithm gets stuck
and after quite a few evaluations it starts descending again. Even though it takes some time,
without our exploration constant reset it would probably not have started descending again.

Because we test both the shifted and the shifted and rotation ellipsoid problems (problems 2
and 3), we can see how well the algorithm handles rotation. It looks like the algorithm handles
rotation of the loss function well. There is not much difference in performance between the two
problems. We can not draw hard conclusions from these results however, because the ellipsoid
function is a fairly easy test function.

Let us finally examine how well our algorithm does in the timing results. It is after all one
of the main goals of this thesis to scale existing Bayesian optimization algorithms in the number
of function evaluations. If we look at the total time taken by the algorithm it is immediately
clear that our algorithm performs much better than GP does. In the top-left graph of figure 6.2
we can see how well the algorithms perform relative to each other. Whereas GP shows cubic
behavior, Tree-GP seems to be linear in the number of function evaluations. Zooming in on
the times of just GP in the top-right graph, we can see that the times are slightly worse than
linear. This is probably because doing queries on the vantage-point tree becomes more expensive
over time. In the worst case, the algorithm walks through all previously evaluated points in the
vantage-point tree to find the models that are closest to a new evaluation point. This worst case
scenario would take quadratic time. Fortunately however, we can see that the behavior tends

52



more toward linear time than quadratic time.
The top-right graph of figure 6.3 shows the overhead of the algorithm per function evaluation.

It confirms that the overhead is not constant which would give a linear total run time. The
overhead seems to be either a logarithmic or an nth root function. Because we were not sure
which one it was, we fitted both of them. Both functions give a very good fit, which is why we
included both extrapolations in figure 6.5. As we can see, the difference is not that large, even
at a 100,000 function evaluations.

If we examine the total run time in figure 6.2, we can see that at 1500 evaluations, the
total overhead is about 520 seconds or 8 minutes 40 seconds. This is not much overhead on
an evaluation function that takes 5 minutes to compute. The total evaluation time is then
1500× 5 = 7500 minutes or 5 days and 5 hours. In fact, it is only about 0.12%. For a function
that takes an hour the overhead is only 0.0019%. One that takes a minute has 0.58% overhead.
An evaluation functions that takes a second to compute would have 6.9% overhead, which is
significantly more. Moreover, you could evaluate that function a lot more than 1500 times in a
reasonable amount of time. In a day you could evaluate that function 86,400 times. Let’s say
that we evaluate it 100,000 times, which would take about 27 hours 47 minutes. Let us assume
that our worst prediction, namely the fitted nth root function is correct. In figure 6.4 we can
see that our algorithm takes about 120,000 seconds. The overhead amounts to 120% of the time
taken to evaluate the loss function 100,000 times.

We can clearly see that our algorithm is not very suited for loss functions that only takes a
second. Tree-GP was designed for loss functions that are expensive, and so should be used for
those functions. Let us look at a more expensive loss function that takes a minute. Evaluating
it 100,000 times would take more than 3 months, which is a pretty long time. If we would do it
however, the total overhead of the algorithm would still be 120,000 seconds or 33 hours and 20
minutes. This is 2%, which is very reasonable. Evaluation functions that take longer than one
minute have even less overhead and evaluating them 100,000 times becomes even more infeasible.
As a conclusion we can say that our algorithm is very suited for evaluation functions that take
a minute or longer.

7.3 AMaLGaM performance

Finally we tested with the AMaLGaM algorithm. This algorithm has not been made for loss
functions that are expensive to evaluate. Therefore it can permit doing a lot more function
evaluations. Testing AMaLGaM is important because it puts our algorithm in perspective.
We can compare the value performance and timings with Tree-GP in order to make a better
decision when to use which algorithm.

In each of the value performance graphs we can clearly see the steady exponential decline of
AMaLGaM. The algorithm is very robust and predictable, which is a good thing. It models its
population with a density probability distribution. Because the population always contains the
best values found, the model provides valuable information about which regions to exploit. It
does not compute a best point to evaluate from this model, but simply samples the probability
distribution. This gives it the steady decline in the minimum value found. The algorithm does
not do very well on the last problem, the shifted and rotated Rastrigin’s function. The algorithm
is often stuck for quite some time. All algorithms basically perform equally bad on this problem.
Rastrigin’s function is the hardest problem of the test suite because it is not separable, it has a
lot of local minima and it is very hard to model. In the end, the algorithms just jump from one
local minimum to the next. Modeling Rastrigin’s function is very hard because it has a large
periodic component. None of the algorithms that we tested can model periodicity in the loss

53



function, which is why they all perform badly.
Time wise AMaLGaM performs very well. All of experiments were done in almost no time at

all. As we can see in figure 6.2 it takes AMaLGaM about 19 milliseconds to do 1500 evaluations.
In the graph of the times per function evaluation in figure 6.3 we can see that after some time
the overhead per evaluation goes to about 10 microseconds with peaks of 65 microseconds. At
the peaks the probability distribution is recalculated from the current population. When the
probability distribution has been calculated the algorithm samples about 43 points from that
distribution and evaluates them. This makes the average overhead per evaluation about 11.3
microseconds. A million evaluations only has about 11.3 seconds of overhead. This makes
AMaLGaM a very good general purpose algorithm, because the evaluation function is likely to
take a lot more time than the algorithm itself.

54



Chapter 8

Conclusions and Future Work

At the start of this thesis we had two goals. The first one was to construct an algorithm that
first explores the search space and gradually exploits it. The second goal was to make the
algorithm scalable in the total number of function evaluations. These two goals are evaluated in
this chapter. We will also give some examples of future work that can be done.

8.1 Exploration versus exploitation

We have created a numerical optimization algorithm called Tree-GP that focuses on optimizing
expensive evaluation functions. It uses Bayesian optimization with Gaussian process regression
to model the search space. In order to find a point to evaluate in this model of the search
space, we have created an acquisition criteria function called the Cumulative Mean Probability
to Variance Ratio (CMPVR). This function combines both the predicted mean and variance
of the model. The weight of each is determined by the exploration constant. By varying this
constant we determine whether to explore the search space or exploit it. We have created an
exponential decay scheme to gradually change this constant over time. If no improvement is
found within a number of evaluations, the constant is reset to its initial value and the decaying
scheme is run again.

We have tested our algorithm with a test suite created by the IEEE CEC designed specifi-
cally for expensive function optimization. The CMPVR function and the exploration constant
decaying scheme turned out to work well. The Tree-GP algorithm outperformed AMaLGaM
on most test problems. Tree-GP was also almost as good as GP, which is a variant of the
Tree-GP algorithm that does not use the mixture model. The value graphs show that Tree-
GP rapidly descends at first and later on converges more slowly towards the minimum. The
algorithm gets stuck sometimes, but due to the exploration constant reset starts descending
again after some evaluations. The algorithm seems to handle rotations of the loss functions well.

8.2 Scalability

Our second goal was to make the algorithm scalable in the total number of function evaluations.
In order to do this we made a mixture model of multiple local Gaussian process regression models.
We have put these models in a vantage-point tree in order to find the local models close to a new
point. The vantage-point tree also handles splitting local models. It does this with a custom
partitioning function that allows a local model to zoom in on an interesting region. The local

55



models are kept small and only a few local models are updated. This makes the algorithm more
scalable than an algorithm that uses one global Gaussian process regression model. We also did
not have to give up much to make the algorithm scalable, because Tree-GP performs almost
as well as GP, which is a version of the algorithm without the mixture model.

We have done some extensive timing experiments on GP, Tree-GP and AMaLGaM.
Whereas GP uses cubic time in the total amount of function evaluations, Tree-GP uses al-
most linear time. This means that we have made a big improvement in run time. The cubic
behavior of GP quickly becomes unacceptable. Tree-GP has been designed for expensive eval-
uation functions and it delivers on that promise. If an evaluation function takes a minute and
we let the algorithm do 100,000 evaluations, the overhead of the algorithm is only 2%. For
evaluation functions that take longer than a minute the overhead is even less. For evaluations
functions that take much less than a minute, for example only a second, AMaLGaM is more
suited. AMaLGaM is very robust and fast, but takes longer to converge toward the function
minimum. AMaLGaM has almost no overhead, and so can be used for evaluation functions
that are cheap to evaluate. The overhead of AMaLGaM becomes constant over time and is on
average about 11.3 microseconds per function evaluation.

8.3 Future work

Let us finally see what the possibilities are for future work. An improvement on our work can be
accomplished by improving the performance of Tree-GP. This is always useful, because the less
overhead an optimization algorithm has, the more time can be spend evaluating the loss function.
A significant performance gain can be obtained by parallelizing Tree-GP. The current algorithm
minimized the acquisition criteria function by doing derivative-based optimization starting in one
hundred random points. This is now done sequentially, but can easily be done in parallel. The
local models that are stored in the vantage-point tree can also be recalculated in parallel when a
new point is added to them. You can even evaluate multiple promising points of the acquisition
criteria function in parallel and update the model afterward. Or finding a good model of the
search space while evaluating the loss function.

Another possible performance improvement is using another regression algorithm for the
local models. Gaussian process regression is very time consuming and there are other regression
algorithm that can be used. In order to use our acquisition criteria function it needs to not only
predict a value, but also the variance in that value.

Further research may also focus on the effects of varying the exploration constant. We
have shown some figures of evaluation points of the sphere problem for different values of the
exploration constant. An investigation can be done about the effects of various schemes to alter
the constant over the number of function evaluations.

Another possibility for an investigation is to see which acquisition criteria function performs
best under various circumstances. We have given some of the popular acquisition criteria func-
tions that are given in the literature. More acquisition criteria functions can be found and a
comparison between them would be very valuable.

56



Chapter 9

Acknowledgments

First of all I want to thank my supervisor Dirk Thierens for assisting me in making this master
thesis. He provided useful tips, remarks, knowledge and constructive criticism during the whole
process. I also want to thank Linda van der Gaag for examining my work. Furthermore I want
to thank my friends, my two brothers and my parents for supporting me throughout the entire
process. I want to thank Thomas Bayes for creating solutions to solve the problem of Bayesian
inference, which is the very basis of Bayesian optimization. I also want to thank Carl Friedrich
Gauss for writing down the formula of the wonderful Gaussian distribution, which is of course
the basis for Gaussian process regression. Furthermore I want to thank Bjarne Stroustrup for
creating the most powerful programming language in existence today, namely C++, which also
quite possibly has the worst syntax conceivable and requires an awful lot of boilerplate code.
Finally I want to thank the Chinese for inventing Kung fu, which gave me the much needed
distraction from my work on this thesis.

57



Appendices

58



Appendix A

Result values

The tables below show the minimum / median / maximum values that have been reached by the
tested algorithms over the 5 runs that were done. Note that the GP algorithm has been tested
with a maximum number of evaluations of 500.

Tree-GP

10D (500 evs) 20D (1000 evs) 30D (1500 evs)

Function 1 1.833 × 10−6 / 5.543 × 10−6 / 1.891 × 10−5 3.922 × 10−6 / 2.958 × 10−5 / 7.067 × 10−2 3.978 / 7.869 / 5.595 × 102

Function 2 3.944 × 10−5 / 2.417 × 10−4 / 7.140 × 10−4 9.895 / 2.033 × 101 / 1.015 × 102 3.061 × 102 / 7.493 × 102 / 8.679 × 102

Function 3 3.497 × 10−6 / 1.349 × 10−4 / 2.237 5.773 / 6.077 × 101 / 9.756 × 101 7.452 × 102 / 9.437 × 102 / 1.332 × 103

Function 4 1.000 / 2.000 / 3.000 1.000 / 4.000 / 6.000 1.000 × 101 / 1.500 × 101 / 3.300 × 101

Function 5 2.033 / 2.546 / 3.510 1.995 / 2.576 / 1.467 × 101 5.892 / 6.684 / 1.374 × 101

Function 6 9.661 × 10−1 / 1.009 / 1.027 9.678 × 10−1 / 1.017 / 1.081 3.798 / 8.011 / 9.103

Function 7 4.823 × 101 / 6.002 × 101 / 1.459 × 102 5.322 × 101 / 9.814 × 101 / 1.631 × 102 1.444 × 102 / 1.905 × 102 / 3.784 × 102

Function 8 4.583 × 101 / 4.792 × 101 / 7.986 × 101 5.641 × 101 / 1.224 × 102 / 1.394 × 102 2.293 × 102 / 2.609 × 102 / 2.847 × 102

AMaLGaM

10D (500 evs) 20D (1000 evs) 30D (1500 evs)

Function 1 7.323 / 1.587 × 101 / 3.074 × 101 1.534 × 102 / 1.679 × 102 / 1.804 × 102 3.007 × 102 / 4.095 × 102 / 4.654 × 102

Function 2 4.645 × 101 / 7.821 × 101 / 1.449 × 102 9.520 × 102 / 1.266 × 103 / 1.667 × 103 4.408 × 103 / 4.983 × 103 / 5.441 × 103

Function 3 5.569 × 101 / 8.333 × 101 / 1.550 × 102 1.302 × 103 / 1.536 × 103 / 2.567 × 103 7.179 × 103 / 9.997 × 103 / 1.085 × 104

Function 4 9.000 / 1.400 × 101 / 2.600 × 101 5.900 × 101 / 1.290 × 102 / 1.720 × 102 3.130 × 102 / 3.900 × 102 / 4.310 × 102

Function 5 6.441 / 7.135 / 9.551 1.269 × 101 / 1.379 × 101 / 1.414 × 101 1.499 × 101 / 1.529 × 101 / 1.590 × 101

Function 6 4.474 / 4.683 / 7.151 2.252 × 101 / 3.076 × 101 / 4.586 × 101 8.947 × 101 / 9.389 × 101 / 1.180 × 102

Function 7 3.304 × 101 / 3.799 × 101 / 6.040 × 101 1.689 × 102 / 2.293 × 102 / 3.064 × 102 8.639 × 102 / 1.232 × 103 / 1.728 × 103

Function 8 3.283 × 101 / 5.222 × 101 / 6.519 × 101 1.400 × 102 / 1.587 × 102 / 1.712 × 102 2.518 × 102 / 2.800 × 102 / 2.854 × 102

59



GP

10D (500 evs) 20D (500 evs) 30D (500 evs)

Function 1 5.876 × 10−7 / 3.577 × 10−6 / 7.081 × 10−5 4.918 × 10−5 / 1.117 × 10−4 / 4.715 × 10−3 5.507 × 10−4 / 8.690 × 10−4 / 3.856

Function 2 1.037 × 10−5 / 1.768 × 10−5 / 2.548 × 10−5 2.701 × 10−3 / 4.316 × 10−3 / 2.296 2.221 × 10−1 / 1.927 × 103 / 5.171 × 103

Function 3 2.264 × 10−5 / 6.935 × 10−5 / 1.062 × 10−3 2.104 × 10−3 / 5.321 × 10−2 / 1.652 × 101 3.024 × 10−1 / 2.323 / 1.367 × 104

Function 4 0.000 / 0.000 / 3.000 4.000 / 1.400 × 101 / 4.650 × 102 2.000 × 101 / 1.500 × 102 / 5.510 × 102

Function 5 2.306 / 2.512 / 3.052 4.000 / 4.327 / 4.945 4.111 / 4.742 / 1.759 × 101

Function 6 7.683 × 10−1 / 1.012 / 1.017 9.094 × 10−1 / 9.920 × 10−1 / 1.005 9.728 × 10−1 / 1.005 / 9.385 × 101

Function 7 5.103 / 1.067 × 101 / 6.453 × 101 1.896 × 101 / 5.974 × 102 / 2.536 × 103 4.819 × 101 / 1.094 × 102 / 8.819 × 102

Function 8 1.877 × 101 / 3.682 × 101 / 6.475 × 101 1.548 × 102 / 1.921 × 102 / 2.254 × 102 3.405 × 102 / 4.033 × 102 / 4.485 × 102

60



Bibliography

[1] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions: with formu-
las, graphs, and mathematical tables. Number 55. Courier Dover Publications, 1972.

[2] Mattias Björkman and Kenneth Holmström. Global optimization of costly nonconvex func-
tions using radial basis functions. Optimization and Engineering, 1(4):373–397, 2000.

[3] Peter AN Bosman, Jörn Grahl, and Dirk Thierens. Benchmarking parameter-free AMaL-
GaM on functions with and without noise. Evolutionary computation, 21(3):445–469, 2013.

[4] George EP Box and Norman R Draper. Empirical model-building and response surfaces.
John Wiley & Sons, 1987.

[5] H-M Gutmann. A radial basis function method for global optimization. Journal of Global
Optimization, 19(3):201–227, 2001.

[6] Matthew D Hoffman, Eric Brochu, and Nando de Freitas. Portfolio allocation for Bayesian
optimization. In Uncertainty in Artificial Intelligence, pages 327–336, 2011.

[7] Takeo Ishikawa and Michio Matsunami. An optimization method based on radial basis
function. IEEE Transactions on Magnetics, 33(2):1868–1871, 1997.

[8] Donald R Jones. A taxonomy of global optimization methods based on response surfaces.
Journal of global optimization, 21(4):345–383, 2001.

[9] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of
expensive black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

[10] André I Khuri and John A Cornell. Response surfaces: designs and analyses, volume 152.
CRC press, 1996.

[11] Response Surface Methodology. Process and product optimization using designed experi-
ments. Myers, RH and Montgomery, DC, John Wiely & Sons, New York, 1995.

[12] Jonas Mockus. Bayesian approach to global optimization. Springer, 1989.

[13] Michael JD Powell. A direct search optimization method that models the objective and
constraint functions by linear interpolation. In Advances in optimization and numerical
analysis, pages 51–67. Springer, 1994.

[14] Michael JD Powell. UOBYQA: unconstrained optimization by quadratic approximation.
Mathematical Programming, 92(3):555–582, 2002.

61



[15] Michael JD Powell. On trust region methods for unconstrained minimization without deriva-
tives. Mathematical programming, 97(3):605–623, 2003.

[16] Rommel G Regis and Christine A Shoemaker. Constrained global optimization of expensive
black box functions using radial basis functions. Journal of Global Optimization, 31(1):153–
171, 2005.

[17] Timothy W Simpson, Timothy M Mauery, John J Korte, and Farrokh Mistree. Comparison
of response surface and kriging models for multidisciplinary design optimization. American
Institute of Aeronautics and Astronautics, 98(7):1–16, 1998.

[18] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine
learning, volume 2. 2006.

[19] Peter N Yianilos. Data structures and algorithms for nearest neighbor search in general
metric spaces. In Proceedings of the fourth annual ACM-SIAM Symposium on Discrete
algorithms, pages 311–321. Society for Industrial and Applied Mathematics, 1993.

62


	Introduction
	Motivation
	Goals
	Contributions
	Thesis outline

	Preliminaries
	Global numerical optimization
	Definition
	Domain

	Bayesian optimization
	Posterior distribution
	Initial sample
	Acquisition criteria function
	Algorithm

	Gaussian process regression
	Gaussian process
	Gaussian process regression
	Mean function
	Covariance functions
	Making predictions
	Maximum likelihood estimation

	Vantage-point tree
	Definition
	Representation
	k-nearest-neighbor queries


	Related Work
	Bayesian optimization
	Response surface fitting
	Radial basis functions
	Gaussian process regression

	Algorithm
	Initial sample
	Posterior distribution
	Maximum likelihood estimation
	Acquisition criteria function

	Scaling the algorithm
	Time complexity
	Mixture model
	Definition of local model
	Vantage-point tree
	Adding a point
	Making predictions
	Splitting a leaf node

	Algorithm

	Experiments
	Experiment setup
	Test suite
	Results

	Discussion
	GP performance
	Tree-GP performance
	AMaLGaM performance

	Conclusions and Future Work
	Exploration versus exploitation
	Scalability
	Future work

	Acknowledgments
	Appendices
	Result values

