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Abstract

This work discusses the navigation of social pedestrian groups in crowded environ-
ments. First, we highlight the necessity for including social group behavior in crowd
simulations. We also compare existing group methods against each other. Next, we pro-
pose Social Groups and Navigation (SGN) method for steering social groups of agents
in planar homogeneous environments with polygonal obstacles. Our method provides
group-specific details on global and local aspects of pedestrian navigation. SGN is in-
spired by the social-force model of Moussäıd et al. 2010. In addition, it borrows the
vision-based collision-avoidance algorithm of Moussäıd et al. 2011. Both original works
have been adjusted to improve the ability of the simulated groups to remain social and
coherent, while avoiding obstacles and other groups. SGN is flexible and can be coupled
with different navigation meshes and global route-planning algorithms. The method is
evaluated through extensive experiments. Results demonstrate the ability of SGN to
produce coherent and social-friendly group configurations throughout the simulation.
Based on our evaluation metrics, the quality improvement over the works of Moussäıd
et al. is significant. When groups of three or four are considered, SGN produces social
friendly configurations at a significantly higher rate than the method of of Moussäıd
et al. In all tested scenarios, the difference of this rate ranges from 15% to 31% for
groups of three. Regarding groups of four, the difference is even greater, ranging from
13% to 53%. When groups of two are considered, the difference is small, ranging from
1% to 4%, but is still statistically significant. Performance results suggest that SGN
is capable of simulating in real-time thousands of agents that are organized in small
social groups.

This thesis project was conducted as part of a collaboration between Utrecht Univer-
sity and INCONTROL Simulation Solutions. Our proposed method has been integrated
both in Pedestrian Dynamics, a crowd flow simulator developed by INCONTROL, and
in the crowd simulation framework developed by Utrecht University. This research has
been supported by the COMMIT/ project [1].
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1 Introduction

Crowd simulations and computer games can be seen as applications in which virtual charac-
ters populate their environments. Motion planning methods are employed in these applica-
tions to generate paths that lead all simulated characters to their destinations. Realism is a
strong requirement for both application domains and can be roughly estimated as the ability
of the application to generate plausible motion behaviors. In practice, this means that the
generated motion behavior of each character should exhibit a trade-off between following a
short and smooth path and following a path that avoids collisions with other characters and
dynamic obstacles.

However, path optimality and smoothness along with collision-free motions are not the
only requirements for a simulation model to be considered realistic. When several people
navigate in real-life, various phenomena have been observed, such as lane formation, stop-
and-go waves, vortices and pushing behavior [27,70,71]. As an effort to enhance naturalness
of simulations, these emergent crowd behaviors should also be predicted by the underly-
ing motion planning techniques. More importantly, the simulation of pedestrians should
also take into account the fact that people often navigate in small social groups. In these
pedestrian groups, the individual paths should be planned in a manner that facilitates social
interactions between the group members throughout their navigation. This aspect of pedes-
trian behavior has been neglected until recently [66] by the proposed simulation models and
remains an active research topic (see Section 2.1).

1.1 Project motivation

The research findings in the fields of sociology and psychology make the requirement to model
pedestrian groups justifiable in order to generate realistic crowd simulations. According to
James [42] and Coleman and James [17], approximately 70% of observed pedestrians walk
in groups. This percentage is expected to be even higher in social-friendly environments, for
instance, theme parks, such as Disney World [2], shopping malls, museums or fun fairs. Roloff
[78] observes the difference in the pedestrian behavior of individuals depending on whether
they belong in a small group or not. The application domain of crowd simulations often
includes simulating mass event scenarios for safety engineering purposes. Aveni [7] mentions
that it is expected for small groups to prevail over individuals at mass events. Furthermore,
one could assume that during emergency scenarios, such as building evacuations, panic
dominates the psychology of the crowd thus leading to individualistic behavior. However,
according to Cocking et al. [16] this is not the case. Aguirre et al. [5] note that, under panic,
the social interactions between individuals are further enhanced, thus leading to collective
behavior. Mawson [62] has observed that the collective behavior of social groups under
stress often increases evacuation times. On a similar note, Drury et al. [22] indicate that it
is also expected from strangers to establish social bonds and form groups during emergency
situations. Therefore, it is evident that a motion planning method should model social group
behavior to generate convincing simulation results. Existing methods for simulating social
groups focus on the local behavior of the individuals that form these groups [48,66,92]. To
the best of our knowledge, no social-group motion-planning method has been proposed that
provides group-specific details on both global and local aspects of pedestrian navigation.

1.2 Project goals

The aim of this project is to propose a method for simulating social pedestrian groups
throughout their navigation in a planar environment. A predefined set of pedestrians com-
poses each social group. Each member of a social group can be initialized anywhere in the
walkable environment. The members of each group must first gather at a meeting area.
Next, all group members must embark together and navigate towards their common des-
tination. Each member of a group must traverse a path that is a trade-off between the
shortest path to the goal of the group and a path that maintains social interactions with the
rest of the group members, while avoiding collisions with obstacles, other groups and other
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pedestrians in the crowd. When a group loses its coherence, its members must attempt to
regain it. Group coherence is determined based on the separating distance and visibility
between the members. Group sociality is determined based on the deviation from a forma-
tion that benefits social interactions. Visual stimulus is employed for concluding on whether
social interactions between group members exist. The proposed method must provide de-
tails on motion-planning for social groups with respect to both global and local aspects of
pedestrian navigation. At the same time, we aim at proposing a method that meets the
performance requirements of a largely populated environment, where social interactions are
expected [7]. Finally, the proposed method must allow for heterogeneity in terms of the
body size, preferred speed and visual ability of the simulated pedestrians.

1.3 Crowd simulation

For a comprehensive study of existing motion-planning algorithms and crowd simulation
techniques, the reader is referred to the books of LaValle [55] and Thalmann and Musse [86],
respectively.

The method proposed in this thesis has been implemented within the Explicit Corridor
Map (ECM) Crowd Simulation Framework [4]. This framework consists of five different
planning levels; see Figure 1.1. On the top level (Level 5), the framework performs high-
level planning. This involves handling events, action planning and any other process that
is not treated in the lower levels. This is the level in which the start and goal positions of
the simulated agents are set. Next (Level 4),there is the global route-planning stage, during
which the framework is responsible for computing a path for each agent that connects its
start with its goal position. During global route-planning, static obstacles define the non-
walkable areas of the virtual environment. A path is generated for each agent, based on
the walkable areas, the start and the goal of the agent. This path serves as a guide for the
agent to its destination. The rest of the simulation levels are repeated sequentially at each
simulation step and determine the motion behavior of each agent between two simulation
steps. The route-following stage determines a preferred velocity for each agent based on
its current position and the global route that was computed at Level 4. Next, during the
local-movement stage (Level 2) the preferred velocity and the local information of each agent
are combined to determine its actual velocity. In the simplest case, the local information for
each agent involve its neighboring agents and any dynamic obstacles. In this case, the aim
of the local-movement stage is to compute for each agent a velocity that deviates as little
as possible from the preferred velocity while avoiding collisions with the static and dynamic
environment. After a velocity has been computed for an agent, the lowest level (Level
1) handles the animation. Depending on the implemented methods and user input, the
framework can return to Level 5 or 4 before repeating the simulation-step cycle. A similar
design is expected in alternative crowd simulation frameworks. Hoogendoorn et al. [38],
for instance, propose a three level hierarchy to pedestrian navigation: 1) strategical, which
involves general planning, 2) tactical, which involves route selection, and 3) operational,
which involves basic walking behavior.
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Figure 1.1: ECM Crowd simulation framework [4]

1.4 Report structure

The rest of this work is structured as follows. In Section 2, we present and compare work
that is related to our research topic. In Section 3, we discuss in detail the works that are
employed by our method. The proposed method for simulating social groups is presented
in Section 4. We conduct experiments to evaluate our method and present their results in
Section 5. Finally, conclusions are drawn and ideas for future work are given in Section 6.

Our method is designed to allow for crowd heterogeneity in terms of the body size,
preferred speed and visual ability of the simulated pedestrians. The method addresses social
group behavior on both global and local aspects of pedestrian navigation. At the same time,
our evaluation suggests that the proposed method produces convincing crowd flows where
social group behavior is exhibited. According to performance results, the proposed method
is capable of simulating in real-time thousands of agents that are organized in small social
groups.
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2 Related work

2.1 Social group behavior

In this section, we discuss existing research on modelling group behavior. We distinguish
approaches based on whether they set a constraint on the group size (large groups), or
whether they consider groups consisting of few members only (small groups). We also
discuss group behavior approaches based on cellular automata and briefly mention relevant
research conducted in the fields of robotics and computer animation. Finally, we draw
conclusions in Section 2.1.2.

Large groups. Modelling the motion behavior of agents that navigate in groups has been
of research interest in the fields of path planning, animation and crowd simulation. Reynolds
[75] presents a method for simulating the group behavior of a flock of birds, a school of fish
or a herd of land animals. The motivation is that group behavior should emerge through
the aggregation of the individual motion behaviors of the group members. Therefore, a
distributed behavioral approach is followed, where each group member navigates based on
simple rules such as separation, alignment, and cohesion. Later, Reynolds enhances his model
by adding several steering behaviors for autonomous agents [76] and elaborates on how to
simulate interesting scenarios where grouped moving entities interact with the environment
[77]. A main limitation of the boid models [75–77] is that they describe the motion behavior
of large groups of animals. As a result, they neglect the specificity of a small group of humans,
where motion planning should maintain social interactions between the group members.

Similar to Reynolds’ work [75–77], Musse and Thalmann [67] introduce a rule-based
method for modelling the crowd behavior of multiple pedestrian groups. Again, the sim-
ulated agents exhibit flocking behavior, but, unlike Reynolds’ work, they are also able to
switch between groups based on sociological factors. However, no details are provided on
how group coherence is addressed on a global motion-planning level. Figures indicate that
herding behavior is exhibited among group members, even for small groups and at low
crowd densities, which is something that contradicts the empirical observations of Moussäıd
et al. [66]. Also, the collision-avoidance scheme of Musse and Thalmann [67] is naive and is
expected to generate unnatural motions and emergent crowd behaviors that lack plausibil-
ity, since in every potential collision pair only one individual is assigned the responsibility
of avoiding the other; this choice is unintuitive.

Kamphuis and Overmars [45] propose a motion planning technique for groups that specif-
ically addresses the requirement to provide a solution path if one exists, while maintaining
group coherence and naturalness. This work improves upon the boid models [75–77] in that
it guarantees that the members of the group will not be separated. Although the authors
deal with the motion behavior of human groups, they focus on large groups where tactical
manoeuvres are allowed to maintain group coherence in terms of space occupancy. There-
fore, such an approach is more suitable to military applications and does not consider the
social and group-size aspects of a small pedestrian group.

On a similar note, Kimmel et al. [49] introduce a velocity-based method for maintaining
group coherence. Their work serves as an extension to existing velocity obstacle (VO) ap-
proaches [9,10,24,84] (see Section 2.2) by enhancing these local collision-avoidance methods
so as to consider team behavior. A main limitation is that the agents move at a constant
speed throughout the simulation. Also, this method attempts to maintain a single forma-
tion for every group based on a proximity graph. This, however, is not the case for real-life
pedestrian groups where it has been observed that a group switches between formations
depending on its social and spatial context [66].

Unlike the methods mentioned above, efforts have been made to address the group motion
planning problem using insight from sociology and psychology research. Park et al. [69]
propose a model for social groups that is inspired by common ground theory [14, 15]. Their
work is not limited to modelling reactive intra-group behavior but also considers the higher
level social interactions between group members. A leader is assigned to each group and
coordination strategies that follow the common ground theory can be defined at both a
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micro and macro simulation level. As a measure of group coherence the authors compute
the distance of a follower from the leader projected on the direction of motion of the leader.

As an alternative approach, Qiu and Hu 2010 [74] introduce a method for modelling
dynamic groups that is based on utility theory and social comparison theory. Their proposed
approach consists of two steps and allows for individuals to dynamically leave a group of
pedestrians and join another according to their spatial and social context. During the
first step, utility theory is applied for an individual to decide which group to join (group
formation). During the second step, social comparison theory is applied for an individual to
decide which member of the chosen group to follow (individual selection). Each agent can
perceive its neighbours that lie within an elliptical field of view and a sociality parameter
determines how likely the agent is to switch groups.

Most of the methods above adopt a leader-follower approach to model group motion
behavior [67, 69, 74–77]. However, such an approach does not suffice to generate paths that
facilitate the social interactions between the members of small groups. Even when group
coherence is guaranteed [45,49], no social group behavior is exhibited. Finally, although the
methods of [69] and Qiu and Hu 2010 [74] deal with the social aspects of group behavior, they
fail to provide details for social groups in all involved motion-planning stages. Therefore,
our method will attempt to deal with the social aspects of small groups. Whenever the
spatial context does not allow for sociality to be exhibited among group members, we will
borrow techniques from the methods above to maintain group coherence.

Small social groups. More recently, research has focused on the motion behavior of
social groups that consist of few pedestrians. Moussäıd et al. [66] conduct an experimental
analysis on the group behavior that is observed within pedestrian crowds. According to
their observations, a small group of pedestrians typically consists of up to four members
that walk in a horizontal line formation at low crowd densities (line-abreast formation).
At moderate crowd densities, the formation is adjusted to a V-shape that allows for social
interaction between the group members (V-like formation). At high crowd densities, the
group members form a lane and a leader-follower approach is adopted so that there is enough
clearance for the group to proceed towards its destination (river-like formation). Based on
these observations a social-force model is proposed to model the behavior of small groups.
However, their approach ultimately sums the force factors that simulate the social and
avoidance interactions of each individual to determine its new velocity vector. As a result,
it is expected that under special conditions the sum of the forces can yield a velocity vector
that is either not realistic or even leads the simulated characters to get stuck in local minima.

Karamouzas and Overmars [47] present a velocity-based approach for steering agents
that are organized in small groups of up to three members. Their method serves as a
trade-off between maintaining group coherence and generating optimal individual paths.
The proposed method relies on empirical data that were discussed in the work of Moussäıd
et al. [66] and explicitly models group formation. The motion of the group members is
determined through optimization based on a cost function that leverages collision avoidance
and social group coherence.

By combining the work of Karamouzas and Overmars [47] with the vision-based avoid-
ance scheme of Ondřej et al. [68], Wu et al. [92] introduce an alternative method for sim-
ulating the behavior of small groups. Such an approach is expected to generate stop-and-
go waves in crowd simulations, which is an emergent crowd behavior that the method of
Moussäıd et al. fails to generate due to its lack of prediction. On the other hand, the per-
formance of Moussäıd et al. is expected to be significantly better than of Karamouzas et al.
and Wu et al., where the velocity of the group and its formation must be jointly optimized.
Moreover, unlike Karamouzas et al. or Wu et al., the collective behaviors that the method
of Moussäıd et al. generates are emergent, since group formation is not explicitly modelled.
Calibrating the parameters of any of the three discussed approaches so as to achieve a ro-
bust group behavior under different simulation environments and crowd densities might be
laborious.

The empirical observations of Moussäıd et al. [66] on small social groups have yielded
important insight on how sociality is exhibited among group members with respect to their

7



trajectories. Moussäıd et al. [66], Karamouzas and Overmars [47] and Wu et al. [92] propose
models to meet these observations. However, none of these methods provides necessary
details on the high-level planning, global route-planning and route-following levels of the
simulation. Also, no performance evaluation is conducted on the works of Moussäıd et
al. [66] and Wu et al. [92]. Performance results of Karamouzas and Overmars [47] indicate
that their method is unlikely to be used for real-time simulations of thousands of agents
that navigate in small groups. However, being able to efficiently simulate small groups in
largely populated areas is expected to be of interest, as the presence of small groups at mass
events is dominant [7]. Therefore, our aim is to propose a method that allows for simulating
in real-time thousands of agents that are organised in small social groups.

Cellular automata. Another approach that has been used in crowd simulations is based
on cellular automata [12, 50, 79]. In this approach, the scene is discretized into cells, where
each cell can be occupied by a single agent. A finite number of states are defined for each
cell. A set of cells relative to the current cell models its neighbourhood. The transition
between cells is based on method-specific rules. More recently, cellular-automata research
has also focused on modelling group behavior [80,82].

Sarmady et al. [80] extend their previous work on modelling crowd behavior using cellular
automata [79] so as to consider the navigation of groups. Their model is based on the
principle of least effort [94] and is adjusted to compensate for leader-follower group behavior.
For each follower in a group, a dependence factor is introduced to describe the motivation
of the follower to track its leader in order to reach its destination. The distance of a
neighbouring cell from the leader is used as a metric to compute the preference of a follower
to move to that cell in order to maintain group coherence.

Seitz et al. [82] also propose a leader-follower approach that utilizes cellular automata
for modelling pedestrian group behavior. The novelty in this approach is that the leader is
not a fixed group member. Instead, the leader is defined at each time as the member that
has minimum distance from the destination. A speed-adjustment scheme is employed to
maintain group coherence. The authors also propose a technique for simulating the motion
of larger groups. Their approach treats a large group as a union of small groups where
inter-leader attraction potentials keep small groups together.

The cellular-automata approaches are rather simple to implement and offer fast execution
times. However, these approaches assume that each cell can be occupied by a single agent
at a time. Furthermore, since cellular automata employ a discretization of the scene into
a grid, the allowed directions of motion are also discretized. This has a negative effect on
the plausibility of the group motions, because the generated paths may not be cost-optimal
or smooth. Therefore, we avoid basing our method on cellular automata. However, we will
borrow and adjust the concept of the dynamic leader from Seitz et al. [82] to facilitate our
high-level planning mechanisms for maintaining group coherence.

Robotics. Modelling group behavior has been a well-studied research topic of the robotics
community. Relevant approaches address the problem of coordination between robots with-
out a requirement for communication protocols [6, 39, 60, 61]. Leader-follower models have
also been proposed [11, 18, 40, 57]. However, these approaches are expected to be computa-
tionally expensive when modelling multiple groups in large crowd simulations, while they do
not emphasize on the social context of pedestrian motion in groups. More recently, Morales
et al. [63] introduced a utility-based model for a robot that walks side-by-side to a human
companion. Their method cannot generalize to the case of small groups consisting of more
than two members, while it specifically addresses the requirements of human-robot interac-
tion.

Computer animation. Pedestrian groups have also been studied within the field of
computer animation. Peters and Ennis [72] employ navigation fields to steer small pedes-
trian groups. Takahashi et al. [85] generate group motion for tactical simulations by ap-
plying graph Laplacian analysis on a sequence of group-formation instances. Ennis and
O’Sullivan [23] conduct experiments on the plausibility of virtual conversing groups based
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on the distance of the group members and their relative orientations. Kwon et al. [52] pro-
pose a method for editing group motions under formation constraints, allowing to synthesize
large group motion clips by stitching smaller clips together.

Recently, example-based approaches [43,56,58] have addressed the problem of simulating
group behavior by exploiting video recordings of real-life pedestrian groups. The trajectories
of group motions are either extracted manually [58] or semi-automatically [56] from captured
data. Lai et al. [53] utilize motion graphs to synthesize the motion of virtual groups. By
following example-based approaches, however, the naturalness of the generated motions
relies on the size of the available group motion database. Also, due to performance reasons,
these methods are often used for offline simulations, while the path planning aspect of the
group behavior is neglected.

Computer animation research on social groups mainly focuses on the lowest level of crowd
simulation which is outside the scope of this research. However, the findings of Ennis and
O’Sullivan [23] can be employed during local-movement phase to decide on whether a group
should be avoided as a whole by other groups or agents.

2.1.1 Comparison of group methods

In Tables 2.1 and 2.2, we compare the most relevant of the group methods that were described
in this section. Each cell indicates whether the method that corresponds to the cell’s column
exhibits the property indicated by the cell’s row.

In the first three rows, we examine whether the methods under comparison provide group-
specific details on the global route-planning, route-following and local-movement levels of the
simulation (see Figure 1.1). No method so far deals with groups on these three simulation
levels.

The forth row indicates whether a method is designed for a pedestrian group consisting
of a few only members (≤ 5). Park et al. [69], for instance, do not explicitly set a constraint
on the group size, but their method is mainly focused on small social groups.

In the fifth row, we illustrate whether a method models the social interactions between
the members of a pedestrian group. Flocking methods generally do not exhibit this property
[67, 75–77, 80], unless additional social rules are incorporated in such methods [69, 74, 82].
Also, the velocity-obstacle approach of Kimmel et al. [49] is not considered to generate social
group behavior, because the formation of the group is fixed and does not adjust according
to the spatial context. Although the method of Kamphuis and Overmars [45] guarantees
group coherence, it does not handle social interactions between the group members.

The sixth row indicates which methods employ a leader for each group. For clarity rea-
sons, Karamouzas and Overmars 2010a [47] employ a leader in their group-model, but do not
adopt a leader-follower approach. Instead, the leader is dynamic and is used as a reference
for defining a local coordinate system and simplifying math computations. Similarly, Wu et
al. [92] borrow this leader-technique from Karamouzas and Overmars 2010a. Seitz et al. [82]
present the only method that utilizes a dynamic leader in a leader-follower approach.

The seventh row indicates whether a method allows for agents to form groups dynam-
ically, leave or switch between groups. Only the works of Musse and Thalmann et al. [67]
and Qiu and Hu [74] allow for this behavior using high-level decision making techniques.

The eighth row indicates whether a method explicitly uses a formation model to describe
the spatial dependencies between the members of a group. The methods of Kimmel et al. [49]
and Qiu and Hu [74] do not consider switching between between formation models. Instead,
they employ a single formation throughout the navigation of a group.

The ninth and tenth row distinguish methods on whether they utilize parameters to
model behavior that reflects the sociality and mental state of the agents, respectively. The
boid models [75–77] use the average position and velocity of the group members as social
variables, while an example scenario is presented in [77], where the annoyance of simulated
birds is used as a psychological variable. Musse and Thalmann et al. [67] define the level
of group dominance and the level of group relationship as social variables in their model.
They also use the emotional status and the goal interest of an agent to describe its current
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mental state. The social-force model of Moussäıd et al. [66] involves among others a group
visual factor and a group attraction factor. The weights of these factors in the final formula
consist of social parameters that express the degree in which an agent tries to maintain
visual contact and spatial proximity with its fellow members, respectively. Karamouzas and
Overmars [47] optimize a cost function to determine the new velocity of a group at each
simulation step. The cost function involves a term that measures the deformation of the
group under a candidate velocity compared to a social-friendly formation. The weight of this
term consists of a social parameter describing the degree in which a group tries to remain
in a social formation. Wu et al. [92] borrow the optimization technique from Karamouzas
and Overmars [47], thus employ the same social variable. Sarmady et al. [80] employ a
dependence factor as a social variable to define the degree to which a group member tries
to follow its leader instead of following an individual path to the goal of the group. Qiu and
Hiu [74] use a sociality parameter to describe how likely it is for an agent to switch between
groups.

The eleventh row indicates whether the proposed methods explicitly allow agents to
have individual parameters that differ from their fellow members. Musse and Thalmann
[67] enable group members to have an individual emotional status. Kimmel et al. [49],
Karamouzas and Overmars [47] and Wu et al. [92] allow group members to have a different
radius. Moussäıd et al. [66] can simulate groups where the members have different masses
and preferred speeds. The method of Sarmady et al. [80] enables each member to have its
own dependence factor.

As can be seen in the twelfth row, the work of Sarmady et al. [80] is the only group
method that uses density information to guide agents. Finally, as the final row indicates,
no method so far takes terrain preferences into consideration for planning the motion of the
groups.

For comparison reasons, Table 2.2 also displays the properties of the method we propose
in this work. Our method is the only method under study that jointly addresses group-
relevant aspects of pedestrian navigation on global route-planning, route-following and local
movement simulation levels. Similar to Seitz et al. [82], our method employs a dynamic
leader for each group, although no leader-follower approach is adopted in our case. Also,
we do not use a formation model. This choice allows for social group behavior to emerge.
Social variables are incorporated in our method and define the strength of coherence and
social interactions between the group members. Our method is designed to allow for the
simulation of heterogeneous groups, with respect to the group sizes as well as the body
size, preferred speed and visual ability of the group members. Dynamic group formation,
psychological variables, density based planning and terrain preferences are not modelled in
our work.

2.1.2 Conclusions

The work of Moussäıd et al. [66] manages to provide a rather simple method for simulating
small groups and is stated to adequately meet empirical observations. Furthermore, the
method is formulated as a social-force model, thus is expected to allow for real-time simula-
tion of thousands of characters that are organised in small groups. However, the underlying
collision-avoidance mechanisms are reactive, therefore lack anticipation. What is more, this
work does not provide the details on how global route planning and route following should
be addressed from a social-group standpoint. The work of Kamphuis and Overmars [45]
discusses these aspects, but it does not handle social interactions between the group mem-
bers. Furthermore, it is possible for a social group to lose its coherence in densely populated
environments or in the presence of bottlenecks. In such cases, a social group should attempt
to regain its coherence. However, none of the discussed methods includes basic high-level
mechanisms that are necessary for a small social group to successfully traverse its path to
its destination while attempting to be coherent. In this thesis, we are going to tackle the
aforementioned problems.
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Reynolds
1987, 1999,

2000

Musse and
Thalmann

1997

Kamphuis
and

Overmars
2004

Kimmel et
al. 2012

Moussaid et
al. 2010

Karamouzas
and

Overmars
2010a

Group-
relevant
global route-
planning

- - + - - -

Group-
relevant
route
following

+ + + - - -

Group-
relevant
local
movement

+ - - + + +

Aim at small
group size
(≤ 5)

- - - - + +

Social group
behavior

- - - - + +

Leader + + - - + +

Dynamic
groups

- + - - - -

Formation
model

- - - + - +

Social
variables

+ + - - + +

Psychologi-
cal
variables

+ + - - - -

Heteroge-
neous
groups

- + - + + +

Density
based

- - - - - -

Terrain
preferences

- - - - - -

Table 2.1: Comparison between group planning methods.
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Wu et al.
2013

Sarmady et
al. 2009

Seitz et al.
2014

Park et al.
2012

Qiu and Hu
2010

Our method

Group-
relevant
global route-
planning

- - - - - +

Group-
relevant
route
following

- + + + + +

Group-
relevant
local
movement

+ - + - - +

Aim at small
group size
(≤ 5)

+ - + + - +

Social group
behavior

+ - + + + +

Leader + + + + + +

Dynamic
groups

- - - - + -

Formation
model

+ - - - + -

Social
variables

+ + - - + +

Psychologi-
cal
variables

- - - - - -

Heteroge-
neous
groups

+ + - - + +

Density
based

- + - - - -

Terrain
preferences

- - - - - -

Table 2.2: Comparison between group planning methods.
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2.2 Local collision avoidance

To achieve realism in crowd simulation, the local behavior of individuals must be modelled.
Furthermore, simulating group behavior in pedestrian crowds should effectively combine col-
lision avoidance with group coherence techniques. Local collision avoidance is an important
aspect of micro simulation, since individuals are expected to adjust their planned route so as
to avoid collisions with dynamic obstacles and other individuals. In the rest of this section,
we discuss various approaches for local collision avoidance between simulated characters.

The social-force model. Early research has proposed social-force methods to model
avoidance behavior [34,37,76]. Helbing and Molnár [37] introduce an approach for describing
pedestrian motion based on social forces. Social forces express the systematic changes over
time in the desired velocity of a given individual within a crowd context. The forces are
composed of several terms that attempt to capture the spectrum of motion behavior. The
method was later extended by its authors to better capture pedestrian behavior in evacuation
scenarios [35] and under panic [36].

A main advantage of the social-force model approaches [35–37] is that their implemen-
tation is rather intuitive and is expected to perform faster than alternative approaches.
Moreover, emergent crowd behavior is observed, since the method implicitly generates lane
formation in areas where agents move in opposite directions. On the other hand, future
research has reported that the generated motions can be unconvincing when a small number
of pedestrians are simulated and the method parameters are not well specified [54]. It is
also argued that unrealistic parameters should be used in such cases in order to maintain
naturalness. Therefore, before applying this method, experimentation is expected on the
manual tuning of such parameters in relation to the virtual scene context. Furthermore, in
high densities the sum of the force factors often leads to a direction of motion that rapidly
changes over time. As a result, oscillatory motion is exhibited thus reducing the realism
of the simulation. Lakoba et al. [54] have also observed, despite the corresponding force
factors, that collisions between agents do occur. Although, collisions between pedestrians
are expected to happen under certain conditions in real-life, the problem lies in that the
method does not resolve those collisions properly, thus allowing agents to pass through each
other.

Velocity-based approaches. Velocity-based approaches [9, 10, 24, 48, 84] were introduced
as an effort to incorporate anticipation in the generated local behavior, which is an aspect
that the social-force approaches failed to consider. Fiorini and Shiller [24] introduce the
concept of the velocity obstacle (VO) to define the set of velocities that would lead a robot
to collide in the future with its static and dynamic environment. This approach considers
a single reactive agent (the robot) and the rest of the dynamic obstacles are assumed to be
passive. Van den Berg et al. 2008 [10] extend the VO approach so as to achieve collision
avoidance between multiple robots that navigate in a planar environment. For this reason
they base their method on the concept of reciprocity, i.e. each agent assumes that the
rest of the agents follow the same avoidance reasoning. By examining all possible pairs
that an agent can form and then by intersecting the allowed new velocity spaces, each
agent selects its new velocity as the allowed velocity that is closest to its desired velocity.
Their method is further enhanced in van den Berg et al. 2011 [9] to guarantee that the
generated motions are oscillation-free while guaranteeing collision avoidance. This work
elaborates on the optimization scheme to define the new velocities for all agents. The
problem is solved using linear programming and relies on the assumption that for each
agent-pair, the avoidance responsibility is evenly shared between the involved agents. A main
limitation of the VO approaches is that they do not allow for variance between the individual
motion strategies. Reciprocity generates rather homogeneous avoidance behaviors, thus
results can be unrealistic. In real-life scenarios, some of the pedestrians are expected to
apply a waiting rule similar to Pelechano et al. [71] to give space to the rest so that they
can easily progress after some time. Also, VO methods do not allow for pushing behavior
since collision avoidance is stated to be guaranteed.
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As an attempt to increase the realism of the generated avoidance behavior, Karamouzas
and Overmars 2010b [48] present a different velocity-based approach that is based on the
empirical observations of Pettré et al. [73]. The authors perform an experimental analysis
on the motion capture data of [73], and propose a velocity-based model that can sufficiently
reproduce the observed motions. Previous research on human behavior is also taken into
account and helps identifying key factors affecting motion behavior. These include the
personal space [33] each individual tries to maintain from the rest, as well as the energy
efficiency that dictates the re-planning decisions of the individuals based on the principle of
least effort [94]. Only a few most urgent collisions are considered for realism, starting with
the earliest one. Similar to the distance thresholds defined in [34], this method employs
remaining time-to-collision thresholds to define the permitted velocities and orientations
throughout the collision avoidance stages using piecewise functions that match the observa-
tions. These permitted velocities and orientations are then optimized based on a criterion
that jointly minimizes energy consumption, collision risk, linear and angular acceleration. A
limitation of this method is that it employs axis aligned boxes to model the static obstacles,
can thus lead to a crude approximation of the non-navigable space.

Vision-based approaches. More recently, vision-based methods have been presented as
an attempt to better simulate the perception model of pedestrians and their corresponding
motion planning mechanisms [65, 68]. Ondřej et al. [68] propose a collision-avoidance tech-
nique that is based on a synthetic-vision perceptual model. The proposed model is inspired
by the experimental observations of Cutting et al. [20]. According to Ondřej et al. , colli-
sion avoidance is based on the bearing angle between a moving pedestrian and an obstacle,
and the remaining time-to-interaction. When the remaining time-to-interaction is large,
avoidance is achieved by maintaining the speed and altering the direction of motion. On
the other hand, when the remaining time-to-interaction is small, then the agent decelerates
until it stops to avoid an imminent collision. The method computes the desired angular
velocity by attempting to both avoid the obstacles and deviate as little as possible from the
goal direction. Only when the time-to-interaction of the most imminent collision is below a
threshold value, then the speed of the agent decreases exponentially.

As an alternative, Moussäıd et al. 2011 [65] introduce a collision-avoidance method that is
based on cognitive science approaches. They employ two vision-based behavioral heuristics
to simulate the perception of pedestrians and their corresponding decision making processes
throughout navigation. At each simulation step, an agent computes the time that corre-
sponds to the most imminent collision for each candidate direction. Then, based on the first
heuristic, the agent determines its desired direction of motion by trying to minimize the
distance from its destination when a new directional change is expected due to the presence
of an obstacle. The new speed of the agent is chosen based on the second heuristic, which
dictates that the agent should maintain a distance from the first obstacle on the chosen
direction that corresponds to a time-to-collision of greater than or equal to the relaxation
time. Should unpredicted collisions occur with other agents or obstacles, physical forces are
applied to simulate the interactions between the colliding entities.

Due to the complexity of the perception model, both vision-based approaches are ex-
pected to perform slower than social-force models or velocity-based approaches. Also, defin-
ing the field of view of an agent using a viewing angle and a fixed maximum viewing distance
can be insufficient. In real-life scenarios, the visual stimulus of a pedestrian is heavily depen-
dent on occlusions. However, the view-dependant visual stimulus that vision-based models
offer better approximates the perception of humans compared to social-force or velocity-
based models. Therefore, we choose to employ the method of Moussäıd et al. [65] as a basis
of our collision-avoidance technique.

2.2.1 Conclusions

The vision-based approaches of Ondřej et al. [68] and Moussäıd et al. [65] are promising
in that they attempt to model the perceptual and decision making mechanisms of humans
regarding collision avoidance. Social-force models superimpose all pair-wise interactions of
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an agent to determine the overall influence on its motion. This avoidance scheme is arguable
and the vision-based approaches of Ondřej et al. and Moussäıd et al. do not adopt it. The
heuristics employed by Moussäıd et al. are rather intuitive and describe pedestrian behav-
ior as a tradeoff between following the shortest path and following a path that minimizes
directional changes. Heuristics have been reported to express well human behavior by being
an integral part of our decision making processes [31, 32]. The challenge lies in identifying
the heuristics that pedestrians employ when planning their motion. In the frame of this
work, an additional challenge would be to identify heuristics that describe the social inter-
actions of a small group and effectively combine them with the ones defined by Moussäıd
et al. to describe the collision-avoidance behavior of each group member. Another point of
consideration is the performance of vision-based techniques. Ondřej et al. report real-time
performance for up to 200 simulated pedestrians, after partially implementing their method
on the GPU. They also propose guidelines on improving running time. On the other hand,
Moussäıd et al. do not evaluate their method in terms of performance. For our method,
we will use the collision-avoidance scheme of Moussäıd et al. 2011 [65] which is expected to
be easier to combine with the social-force model of Moussäıd et al. 2010 [66] for simulating
small social groups than the avoidance scheme of Ondřej et al. [68].
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3 Preliminaries

In this section, we present the details of the work that is directly related to our research..
In Section 3.1, we present the details of the vision-based method by Moussäıd et al. 2011
for local collision avoidance. In Section 3.2, we discuss the social-force model of Moussäıd et
al. 2010 [66] for simulating social groups. For reference and readability reasons, the current
section uses the notation from the original papers [65, 66]. In Section 4, we will provide an
updated notation that resolves any conflicts between the methods borrowed.

3.1 Vision-based avoidance algorithm

The work of Moussäıd et al. 2011 [65] is one of the first approaches to employ visual infor-
mation to determine the avoidance behavior of simulated agents [65, 68]. The motivation
behind this choice is that vision is the principal stimulus that affects the local-movement
decisions of pedestrians [8, 29,30,87].

Let xi and vi define the position and velocity of an agent i, respectively. Each agent
i is modelled by a disc of radius ri centered at xi. The radius ri of agent i is assumed
proportional to its mass mi and is defined as: ri = mi/320, where mi is measured in kg and
ri is measured in meters.

The authors describe the visual stimulus of an agent i using a circular sector to model
the vision field. The vision field ranges φ ◦ to the left and right of the line of sight vector ~Hi.
Let dMax define the maximum viewing distance of each agent. Assuming a disc of radius
dMax centered at xi, the vision field is defined as the circular sector of that disc which has
a central angle of 2φ ◦ and the line of sight vector ~Hi as the angle bisector of the central
angle. Figure 3.1 gives an illustration.

Let v0
i define the preferred walking speed of agent i and Oi define the last visible point

on the direction of the destination point. Let αdes define the angle between the line of sight
~Hi and the desired direction of motion. Let vdes denote the desired walking speed on the
desired direction of motion. Two heuristics are formulated to determine αdes and vdes. The
authors argue that employing heuristics to determine the local behavior of an agent is based
on the observation that people often resort to similar cognitive processes when they have to
process a lot of information or decide on their actions in a small amount of time [31,32].

Let α ∈ [−φ,+φ] be a candidate angle of motion and α0 be the angle that corresponds to
the direction of the destination point Oi. Let f(α) define the distance to the first collision in
the direction that corresponds to candidate angle α, assuming agent i moves at its preferred
speed v0

i . For the computation of f(α), the current velocities and radii of other agents are
used. For each candidate angle α, if no collision occurs within distance dMax, then f(α) is
set to dMax.

Desired angle of motion. The first heuristic determines the desired direction of motion
by computing αdes. Based on empirical observations [8, 87], an agent i chooses a direction
of motion that is a trade-off between avoiding obstacles and minimizing the deviation from
the most direct path. The first heuristic is formulated as follows:

A pedestrian chooses the direction αdes that allows the most direct path to desti-
nation point Oi, taking into account the presence of obstacles [65].

Based on this heuristic, αdes is computed from the following equation:

αdes = argmin
α∈[−φ,+φ]

(
d(α)

)
, (3.1)

where

d(α) =
√
d2
Max + f(α)2 − 2dMaxf(α) cos (α0 − α). (3.2)

For each candidate angle α, d(α) represents the Euclidean distance from the destination
point Oi, after moving along the corresponding candidate direction for a distance of f(α).
Therefore, the first heuristic gives a desired angle of motion αdes such that the distance
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~Hi

−φ +φ

xi

dMax

ri

vi

Figure 3.1: The vision field (light blue) of an agent i (orange).

to the destination is minimum when the next directional change should occur. Figure 3.2
illustrates an example for computing d(α).

~HidMax

Oi

Ci

Xi

α0

α

F

Figure 3.2: Example computation of d(α). Let Xi be the position of point agent i
(blue) and Ci be the position of a static point agent (red). The destination point Oi
lies at a bearing angle α0, while Ci lies at a bearing angle α. Then, f(α) = |XiCi|
and d(α) = |CiOi|. Let F be the foot of Ci on XiOi. Then, d(α) can be computed
as follows:
|XiF | = |XiCi| cos (α− α0) = f(α) cos (α− α0)
|CiF | = |XiCi| sin (α− α0) = f(α) sin (α− α0)
|OiF | = |OiXi| − |XiF | = dMax − f(α) cos (α− α0)

d(α) = |CiOi| =
√
|OiF |2 + |CiF |2 =

√
dMax

2 + f(α)2 − 2dMaxf(α) cos (α− α0)

Desired walking speed. The second heuristic determines the desired walking speed vdes
and is applied after the desired angle of motion αdes has been computed. The relaxation
time τ is utilized to determine the desired speed and is estimated at 0.5s. In practice,
a relaxation time τ = 0.5s indicates that a pedestrian requires 0.5s to adjust its current
velocity to an arbitrary desired velocity. The second heuristic relates the relaxation time
with the desired speed as follows:

A pedestrian maintains a distance from the first obstacle in the chosen walking
direction that ensures a time to collision of at least τ [65].
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Therefore, an agent chooses its speed so that, in case of an imminent collision, there will
always be enough time to avoid that collision. This is achieved by ensuring that at least
a time of τ remains for the agent to adjust its current velocity to a desired collision-free
velocity. Let dh be the distance between agent i and the first obstacle on the desired angle
of motion αdes. Then, according to the second heuristic:

vdes = min (v0
i , dh/τ) (3.3)

As a result, at every simulation step, the desired velocity ~vdes of an agent i is computed
in two steps: 1) the first heuristic is applied to determine the desired angle of motion αdes
(Equation (3.1)), and 2) the second heuristic is applied to determine the desired walking
speed vdes (Equation (3.3)).

Physical-contact forces. The authors also introduce physical contact forces in their method
to simulate the interactions between an agent and the static environment or between a pair
of agents. Those forces are only applied to an agent when there is physical contact (collision).

Let fij be the force that describes the effect of the physical contact with agent j on agent
i. Let k be a global parameter defining the strength of the physical contact forces within the
simulation. Also, let ~nij be the unit vector pointing from j to i. Let dij define the distance
between the centers of mass of agents i and j. Then:

fij = kg(ri + rj − dij)~nij , (3.4)

where

g(x) =

{
x if x ≥ 0
0 if x < 0

. (3.5)

Also, let fiW be the force that describes the effect of the physical contact with wall W on
agent i. Let diW be the distance between agent i and wall W . Let ~niW define the unit
vector that is perpendicular to wall W and points from wall W towards agent i. Then:

fiW = kg(ri − diW )~niW . (3.6)

Acceleration. At each simulation step, the acceleration d~vi/dt of agent i is determined
by combining its internal motivation to adopt a desired velocity ~vdes with the effect of all
physical-contact interactions. It is computed using the following equation:

d~vi
dt

=
~vdes − ~vi

τ
+

∑
j
~fij

mi
+

∑
W
~fiW

mi
. (3.7)

3.2 Social-force model for simulating social groups

In [66], Moussäıd et al. 2010 study the motion behavior of small pedestrian groups. Initially,
they study video recordings of pedestrians and identify groups of people that walk together
and exhibit social interactions. Then, they examine the relative trajectories of the identified
group members. Conclusions are drawn on the spatial organization of social groups based
on the empirical observations. Finally, a social-force model is proposed for simulating the
observed walking behavior of social groups.

According to the observations, a small group of pedestrians typically consists of up to
four members that walk in a horizontal line formation at low crowd densities (line-abreast
formation, see Figure 3.3a). At moderate crowd densities, the formation is adjusted to a
V-shape that allows for social interaction between the group members (V-like formation, see
Figure 3.3b). At high crowd densities, the group members form a lane and a leader-follower
behavior is adopted so that there is enough clearance for the group to proceed towards its
destination (river-like formation, see Figure 3.3c).
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Additionaly, the authors notice that at moderate crowd densities, the V-like formation
that pedestrian social groups tend to adopt does not facilitate crowd flow. A V-like forma-
tion acts as a trade-off between maintaining social interactions within a group and keeping
a safety distance from the rest of the crowd. The V-like formation is not aerodynamic,
because it is concave at its front (with respect to the walking direction of the group). This
leads to a reduced crowd flow, which indicates the significance of social interactions when
examining crowd dynamics. Next, we discuss the details of the proposed social force model
that simulates pedestrian social group behavior.

(a) (b) (c)

Figure 3.3: Typical formations of a social group of three members according to local
crowd density. (a) Line-abreast formation at low crowd densities. (b) V-like formation
at moderate crowd densities. (c) River-like formation at high crowd densities.

Acceleration. Let xi and ~vi define the position and velocity of agent i, respectively. At
each simulation step, the acceleration d~vi/dt of agent i is computed using the following
equation:

d~vi
dt

=
−→
f 0
i +
−→
f walli +

∑
j

−→
f ij +

−→
f groupi . (3.8)

−→
f 0
i is an attractive force that models the desire of agent i to move towards a certain direction

at a preferred speed.
−→
f walli is a repulsive force that models the desire of agent i to keep clear

from static obstacles.
−→
f ij is a force that describes the effect on agent i from its interaction

with agent j.
−→
f groupi models the effect that the rest of the group members have on agent i.

The first three factors of Equation (3.8) are computed based on the work of Moussäıd et al.

2009 [64]. The group force
−→
f groupi is the sum of three factors:

−→
f groupi =

−→
f visi +

−→
f atti +

−→
f repi . (3.9)

Visual group force. The term
−→
f visi is a deceleration force applied to the agent by the

center of mass of the rest group members ci. This force represents the desire of agent i to
keep ci within its field of view as an attempt to remain social. Let αi define the minimum
angle of rotation of the gazing vector ~Hi that is required for agent i to have ci within its

field of view. The force factor
−→
f visi is computed using the following equation:

−→
f visi = −β1αi

−→
Vi , (3.10)

where
−→
V i is the velocity vector of agent i and β1 is a model parameter describing the strength

of the social interactions between the group members.

Attractive group force. The term
−→
f atti is an attractive force applied to agent i towards

the center of mass of the group. This force is applied only when the distance between agent
i and the center of mass of the group exceeds a threshold distance. The threshold distance
is estimated at (N − 1)/2 where N is the group size. This force represents the desire of
the agent i to stay close to the rest of the group members as an effort to maintain group

coherence. The force factor
−→
f atti is computed using the following equation:

−→
f atti = qAβ2

~Ui , (3.11)
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where ~Ui is the unit vector pointing from agent i to the center of mass of the group and
β2 is a parameter describing the strength of the modelled attraction effect. If the distance
between agent i and the center of mass of the group exceeds the threshold distance, then
qA = 1, otherwise qA = 0.

Repulsive group force. The term
−→
f repi is a repulsive force applied to agent i in order to

guarantee that group members do not overlap. Let dik define the distance between agent i
and another group member k. Let d0 define a threshold value. Agent i tries to maintain a

distance of at least d0 from any group member. The force factor
−→
f repi is computed using

the following equation:

−→
f repi =

∑
k

qRβ3
~Wik , (3.12)

where ~Wik is the unit vector pointing from group member k to agent i, β3 is a parameter
describing the strength of the modelled repulsion effect. qR = 1 if agent i overlaps with
group member k, otherwise qR = 0.
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4 Path planning for social groups

In this section, we propose a method, called Social Groups and Navigation (SGN), for steer-
ing social groups of agents in a planar homogeneous environment with polygonal obstacles.
SGN adopts the hierarchical approach of the ECM Crowd Simulation Framework [4] (see
Figure 1.1), thus addressing global and local aspects of navigation in social groups. First,
we present all necessary assumptions and definitions of our method (see Section 4.1). In
Section 4.2, we formulate high-level mechanisms for coordinating the members of each sim-
ulated social group. In Section 4.3, we discuss the global route-planning stage of SGN. This
stage describes how each social group computes its path towards its destination. Next, in
Section 4.4, we provide group-relevant details for the route-following stage. This stage is
performed at each simulation step and is responsible for assigning a preferred velocity to
each agent based on the agent’s path. Finally, in Section 4.5, the actual velocity and new
position of each agent are computed during the local-movement stage.

Our method is extended to account for group-splitting behavior. Details are also provided
on how SGN handles single individuals that do not belong to a social group. These additional
functionalities of our method are discussed in Section 4.6.

During the local-movement stage, the method combines elements from the work of
Moussäıd et al. 2010 [66] and Moussäıd et al. 2011 [65]. In brief, it borrows the vision-
based avoidance algorithm and the social-force model of Moussäıd et al. 2011 to describe
the interactions of each agent with obstacles and other individuals. At the same time, it
employs a social-force model inspired by Moussäıd et al. 2010 [66] to describe the internal
social interactions between the members of each group. Adjustments have been made to
both algorithms borrowed to effectively combine them and increase the plausibility of the
generated motion behaviors. In Section 4.7, we compare our method against the original
works of Moussäıd et al. 2010 and Moussäıd et al. 2011.

4.1 Assumptions and definitions

Let ni be the size of a social group of agents Gi, where 2 ≤ ni ≤ nmax, 1 ≤ i ≤ NG . nmax
defines the maximum allowed group size and NG is the total number of social groups. Let
Aij denote an agent that is member of group Gi, where 1 ≤ j ≤ ni. Each agent Aij is
modelled by a disc of radius rij and is centered at xij . Similar to Moussäıd et al. 2011 [65],
we relate the mass mij of agent Aij with its radius rij using the following equation:

mij = 320rij , (4.1)

where mij is measured in kg and rij is measured in meters. Each agent Aij has a personal
space that is modelled by a disc of radius rp,ij centered at xij , where rp,ij ≥ rij . Let
NW define the total number of wall line segments that model the static environment. For
simplicity reasons, when we refer to the position of an agent, we refer to the position of the
disc center that models the agent. Similarly, when we refer to the distance between two
agents, we refer to the distance between their disc centers. Also, the distance between an
agent and a wall Wu, where u ∈ [1, NW ], is the shortest Euclidean distance between the disc
center of the agent and the line segment that models the wall.

Let vpref,ij define the preferred speed of agent Aij and vpref,i define the preferred speed
of group Gij . Then, the preferred speed of each group is defined as the minimum preferred
speed of all its members, i.e.:

vpref,i = min
j∈[1,ni]

(vpref,ij),∀i ∈ [1, NG ]. (4.2)

We assume, at every simulation step, that the center Xij of the disc that models agent
Aij is a good approximation the location of its head projected on the navigation plane. The
vision field of agent Aij is modelled by a circular sector. The vision field ranges φij

◦ to the

left and φij
◦ to the right of the gazing unit vector Ĥij . Let dMax,ij define the maximum

viewing distance of agent Aij . We assume that dMax,ij > rij∀i ∈ [1, NG ]∀j ∈ [1, ni].
Assuming a disc of radius dMax,ij centered at xij , the vision field is defined as the circular
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sector of that disc which has a central angle of 2φij
◦ and the gazing vector Ĥij as the angle

bisector of the central angle. An agent Aij is considered to be visible by another agent
Apq, where p ∈ [1, NG ], q ∈ [1, np] : (p 6= i) ∪ (q 6= j), when at least one point in the disc
that models agent Aij is within the vision field of agent Apq. Let Visible(Aij ,Apq) be the
predicate that returns: a) true, if Aij is visible by Apq, b) false, otherwise.

For each group Gi, the set Si = {si1, . . . , sini
} defines the start positions of its members.

Let Gi = (gi, rgi) define the goal area of group Gi, where gi is the position of the center of
the goal area and rgi is the radius of the goal area. Let a, b define the position of points
A and B, respectively. Let Reachable(a,b, c) be the predicate that returns: a) true, if the
line segment with A and B as its endpoints has a shortest Euclidean distance of at least
c from every wall segment Wu of the static environment, b) false, otherwise. A point X
at position x is inside the goal area Gi if and only if X lies within the disc of radius rgi
centered at gi and ∃ε > 0 : Reachable(x,gi, ε). Finally, let ρ(x, r) be the density inside a
disc of radius r centered at position x measured in agents per square meter.

Leader and last member. At each simulation step, every social group has a leader and a
last member. Let dg(Aij) be the curve-length distance of an agent Aij from goal position
gi of the group measured along Aij ’s global path (Section 4.3). Let Li ∈ [1, ni] indicate the
leader AiLi

of group Gi. Let li ∈ [1, ni] indicate the last member Aili of group Gi. For each
group, the leader is defined as the member whose curve-distance from the goal position of
the group measured along the global path is minimum, i.e.:

Li = argmin
j∈[1,ni]

(dg(Aij)),∀i ∈ [1, NG ]. (4.3)

Similarly, for each group, the last member is defined as the member whose curve-distance
from the goal position of the group measured along the global path is maximum, i.e.:

li = argmax
j∈[1,ni]

(dg(Aij)),∀i ∈ [1, NG ]. (4.4)

Group coherence. In order to maintain proximity between the members of a social group
throughout their navigation the term group coherence is employed. Group coherence ex-
presses the ability of the members of a group to remain close to each other. Depending on
the relative positions of the leader and last member, we conclude on whether a social-group
Gi is coherent using the following definition.

Definition 4.1. A social group Gi is coherent if and only if there exists at least one point
in the disc that models the leader AiLi that is no further from the last member Aili than the
maximum viewing distance of the last member dMax,ili , i.e.:

Coherent(Gi) ⇐⇒ ||xiLi − xili || ≤ dMax,ili + riLi . (4.5)

Group sociality. In order to maintain social interactions between the members of a social
group throughout their navigation the term group sociality is employed. Group sociality is
based on the visual stimuli and relative positions of all members of a group and expresses
the ability of those members to maintain visual contact and proximity with each other.
Based on empirical observations [19,25,66,91], we employ an inter-member social threshold
distance, dsocial. We assume that for a pedestrian to develop social interactions with another
pedestrian of the same group, it is necessary that the two pedestrians are mutually visible
and their separating distance is at most dsocial. We assume that dsocial + rij ≤ dMax,ij ,
∀i ∈ [1, NG ]∀j ∈ [1, ni]. We conclude on whether a group Gi is in a social configuration
using the following definitions.

Definition 4.2. A group Gi is in a partially social configuration if and only if for every
member there exists at least one fellow member, such that these two members are mutually
visible and their separating distance is at most the social threshold distance, i.e.:
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PartiallySocial(Gi) ⇐⇒ ∀j ∈ [1, ni]∃k ∈ [1, ni] : {(k 6= j) ∧Visible(Aik,Aij) ∧
Visible(Aij ,Aik) ∧ (||xij − xik|| ≤ dsocial + rij + rik)} . (4.6)

Definition 4.3. A group Gi is in a totally social configuration if and only if the group is
partially social and every member has all fellow members within its vision field, i.e.:

TotallySocial(Gi) ⇐⇒ PartiallySocial(Gi) ∧(
∀j ∈ [1, ni]∀k ∈ [1, ni] : (k 6= j) Visible(Aik,Aij)

)
. (4.7)

Lemma 4.1 relates the sociality with the coherence of a group. Figures 4.1, 4.2, 4.3, and
4.3 give example configurations of a group and conlude on its coherence and sociality.

Lemma 4.1. A social group Gi is in a totally social configuration only if Gi is coherent.

Proof. Let Gi be a social group. We assume that Gi is in a totally social configuration.
From definition 4.3, the group leader AiLi

is visible by the last member Aili . Therefore,
||xiLi

− xili || ≤ dMax,ili + riLi
. Then, from definition 4.1, group Gi is coherent.

Both coherence and sociality definitions have been formulated from an individual per-
spective. In essence, they assess the ability of a group to remain coherent and social by
superimposing the ability of each individual member to remain close to its fellow members
and develop social interactions with them. We follow this approach, because we consider
the individual perception of every member a necessary and sufficient condition for a group
to be classified as coherent or social.

Xi3 = XiLi

Xi1

Xi2 = Xili

Ĥi1

Ĥi2

Ĥi3

dMax,i2 = dMax,ili

dMax,i1

dMax,i3

φi2

φi1

φi3

Figure 4.1: A group Gi of size ni = 3. None of the members of Gi are mutually
visible. Therefore, group Gi is not in a partially social configuration. As a result, it
is not in a totally social configuration. The group is coherent, because ||xiL − xil|| ≤
dMax,il + riLi .
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Xi1

Xi2 = Xili

Ĥi1

Ĥi2

dMax,i2 = dMax,ili

dMax,i1

φi2

φi1

Xi3 = XiLi

Ĥi3

φi3
dMax,i3

Figure 4.2: Another example, similar to Figure 4.1. The group is not coherent, be-
cause ||xiL−xil|| > dMax,il. Therefore, group Gi is not in totally social configuration.
Also, none of the members of Gi are mutually visible. Therefore, group Gi is not in a
partially social friendly configuration.
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dMax,i1

Xi3

Ĥi3

φi3
dMax,i3

XiLi
= Xi1

φi1
Ĥi2

Ĥi1

dMax,i2 = dMax,ili

φi2

Xi2 = Xili

dsocial

Figure 4.3: Another example, similar to Figures 4.1 and 4.2. The group is coherent,
because ||xiL − xil|| ≤ dMax,il + riLi . All members are visible to each other, but no
fellow member exists for Ai3 with a separating distance of at most dsocial. Therefore,
the group is not in a partially social configuration. As a result, the group is not in a
totally social configuration.
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dMax,i1

dsocial

Xi3

Ĥi3

φi3
dMax,i3φi2

Ĥi2

Ĥi1

φi1

XiLi
= Xi1

Xi2 = Xili

dMax,i2 = dMax,ili

Figure 4.4: Another example, similar to Figures 4.1, 4.2 and 4.3. Here ||xi1−xi2|| ≤
dsocial + ri1 + ri2 and ||xi2 − xi3|| ≤ dsocial + ri2 + ri3. Additionally, all members
are visible to each other. Therefore the group is in a partially and totally social
configuration. As a result, the group is coherent.

4.2 High-level planning

In the frame of this work, we have avoided using group-coordination mechanisms in the
lower levels of the simulation. Approaches like the algorithm of Karamouzas and Overmars
[48] require, at each simulation step, that the new velocities of the members of a social
group must be jointly optimized. Performance results [48] indicate that such an approach
is computationally expensive therefore unlikely to meet our project goals (see Section 1.2).
Also, in the algorithm of Karamouzas and Overmars, an agent avoids other groups as single
entities to simulate a phenomenon that has been observed in real life by Cheyne and Efran
[13]. However, it should be noted that, in the study of Cheyne and Efran [13], only recorded
pedestrians that were not walking in groups were taken into consideration 1. Therefore,
their observations have an empirical basis only for single pedestrians. As a result, we have
chosen not to model this avoidance behavior in our method. On the other hand, early
experiments of our method proved that it is insufficient to solely rely on the group-related
lower-level mechanisms of each member to guarantee coherence for each group. It has been
observed in those experiments that in densely populated areas and bottlenecks, members of
the same group often separate and group coherence is violated. This is something we expect
to happen in real-life, although relevant research is required to validate our claim. In any
case, we expect groups that have lost their coherence to attempt to regain it.

For these reasons, we have introduced group-coordination mechanisms on the higher-level
of the simulation. Navigation of a social group towards its goal and maintenance of group
coherence are achieved by alternating between group phases. States are also defined for each

1

The behavior of all pedestrians who passed the confederates and who were not walking in groups
was recorded by several observers who were positioned where they could obtain a clear view
without themselves interfering with the subjects’ behavior [13].
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member of a group to implement the group phases. The rest of this section discusses the
details of these mechanisms.

Default Waiter

Finished

Lagger

waiter to default conditions

default to waiter conditions

lagger to waiter conditionsdefault to lagger conditions

default to finished conditions

Figure 4.5: State diagram of a social-group member. The transition conditions of
member Aij of group Gi are:

• default to waiter conditions:
Default(Aij) ∧ Coordination(Gi) ∧ (j = Li)

• default to lagger conditions:
Default(Aij) ∧ Coordination(Gi) ∧ (j 6= Li)

• default to finished conditions:
Default(Aij) ∧(((
||xij − gi|| ≤ rij + rg

)
∧
(
∃ε > 0 : Reachable(xij ,gi, ε)

))
∨(

∃k ∈ [1, ni] : {Finished(Aij)∧
(
||xij−xik|| ≤ rp,ij+rik

)
∧Visible(xik,xij)}

))
• lagger to waiter conditions:

Lagger(Aij) ∧(
∃k ∈ [1, ni] : {Waiter(Aik) ∧

(
||xij − xik|| ≤ rp,ij + rik

)
∧Visible(xik,xij)}

)
• waiter to default conditions:

Waiter(Aij) ∧ Coordination(Gi) ∧
(
@k ∈ [1, ni] : Lagger(Aik)

)
Member states. Figure 4.5 displays the state diagram of a social-group member. At each
simulation step, a member of a group can be in one the following states:

• Finished : An agent who has reached the goal. An agent reaches the goal either when
the agent intersects the goal area of its group or when the agent has inside its personal
space a visible fellow member that is in a finished state. An agent in a finished state
remains at its position.

• Default : An agent who is not in a finished state and whose group is in walking phase.
An agent in a default state follows its path to the goal of the group.
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• Waiter : An agent whose group is in coordination phase and is either the leader of the
group or has inside its personal space a visible fellow member that is in a waiter state.
An agent in a waiter state remains at its position.

• Lagger : An agent whose group is in coordination phase and does not have inside its
personal space a visible fellow member that is in a waiter state. An agent in a lagger
state follows its path to the leader of the group.

Walking

Coordination Idle

walking to idle conditions

walking to coordination conditions

coordination to walking conditions

Figure 4.6: State diagram of a social group. The transition conditions of group Gi
are:

• walking to idle conditions:
Walking(Gi) ∧

(
∀j ∈ [1, ni]Finished(Aij)

)
• walking to coordination conditions:

Walking(Gi) ∧
(
¬Coherent(Gi)

)
∧
(
ρ(xiLi , 1) < 0.7

)
• coordination to walking conditions:

Coordination(Gi) ∧
(
@k ∈ [1, ni]Lagger(Aik)

)
Group phases. Figure 4.6 displays the state diagram of a social group. At each simulation
step, each social group can be in one of the following phases:

• Coordination phase: A group enters a coordination phase for two possible reasons:
a) the group has just entered the simulation, or b) the group has lost its coherence.
When a group Gi enters the coordination phase, its leader AiLi enters a waiter state
and remains stationary at its current position xiLi . The remaining group members
Aik,∀k ∈ [1, ni] : k 6= Li enter a lagger state, plan individual global paths from
their current positions xij to the position of the leader xiLi

and follow these paths.
Throughout the coordination phase, all group-relevant aspects of the lower simulation
levels (Sections 4.3, 4.4, and 4.5) are not included in the motion-planning computations
of the laggers. When a lagger has a waiter in its personal space, the lagger switches its
state to waiter. When all members have switched to waiter state (i.e. no more laggers
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exist), the leader AiLi
plans a path from its current position xiLi

to the goal of the
group gi using the approach detailed in Section 4.3. The remaining group members
Aik,∀k ∈ [1, ni] : k 6= Li merge their individual paths towards the leader Aij with the
path that the leader has just computed. Finally, all group members switch their state
from waiter to default and the group enters a walking phase.

• Walking phase: For each social group, a walking phase begins when a coordination
phase ends. During the walking phase, at least one member of the group is in a default
state and follows its path to the goal of the group (route following, see Section 4.4)
while avoiding collisions with other agents and remaining social within its group (local
movement, see Section 4.5).

• Idle phase: For each social group, an idle phase begins when all members of that group
are in a finished state. During the idle phase, all group members remain stationary.
In other words, a group in an idle phase is a group whose members have reached the
goal.

When a group Gi first enters the simulation, it also enters a coordination phase. At this
time only, the leader AiLi

cannot be defined using Equation 4.3, because no global path has
been computed yet for the members of Gi. At the start of the simulation, we arbitrarily
select a member AiLstart,i

from each group Gi to act as the leader of that group, where
1 ≤ Lstart,i ≤ ni.

At the end of each simulation step, we update the leaders and last members of every group
that is in a walking phase, according to Equations 4.3 and 4.4. For each group that is in
a walking phase, we check whether the coherence condition is met (see Definition 4.1). We
would like every group that has lost its coherence to enter a coordination phase. However,
if a leader stopped at a densely populated region due to its group having lost coherence,
local minima would be likely to occur to the crowd flow. At the same time, we expect that,
in real-life, a member of a group that has lost its coherence waits for its fellow members
within a non-congested region for visibility reasons. For these reasons, a group enters a
coordination phase if and only if the coherence of the group is lost and the local density
around the leader of the group is below 0.7 pedestrians per square meter. However, we
have no empirical data to support our claim and future research is required to validate our
approach. The density threshold is based on the Pedestrian Level Of Service (PLOS), as
proposed by Fruin [26], and suggests an acceptable density for pedestrian flow. The local
density is measured over a disc that is centered at the position of the leader and has a radius
that is equal to one meter. For each group that is in a coordination phase, we check whether
no more laggers exist for that group. Any group that is in a coordination phase and has no
laggers enters a walking phase.

4.3 Global route planning

In agent-based motion-planning methods, the global route-planning level of the simulation
is responsible for computing a path from the starting position of an agent towards its des-
tination. For the path to be feasible, the corresponding algorithm must take into account
the presence of static obstacles as well as the size of the moving agent. Depending on the
quality of the path, global route planning can be an expensive task that needs to search
separately the underlying navigation mesh for each agent.

In the proposed method, all members of each social group are assumed to have a common
destination. Therefore, for each group it is efficient to plan a path to the destination for one
member (leader) and share its path with its fellow members. For this reason, all members
must first gather around the leader, before utilizing the path of the leader towards the
destination of the group. The gathering of the members is achieved through the coordination
phase as explained in Section 4.2. As soon as all members have reached the leader, the leader
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plans a path to the destination of the group. The global path is computed to account for
clearance that corresponds to the largest group member. As a result, the computed path is
feasible and shared by all members, while guaranteeing that all members will have homotopic
trajectories throughout their navigation. Any global route-planning method that accounts
for clearance can be employed at this step [28,44,46,89].

4.4 Route following

The route-following stage determines a preferred velocity ~vpref,ij for each agent Aij based
on its current position xij , a preferred speed and its global route that was computed at
the global route-planning stage (see Section 4.3). This stage is repeated for all agents at
each simulation step. Any agent-based route-following algorithm [41, 46] can be employed
to implement this stage for our method. For each agent Aij , if group Gi is in a coordination
phase, we set the individual preffered speed vpref,ij to be the preffered speed that the route-
following algorithm utilizes. If group Gi is in a walking phase, the route-following algorithm
uses the preferred speed of the group vpref,i (see Equation 4.2) for the computation of the
preferred velocity ~vpref,ij of each member Aij .

According to our route-following approach, it is possible that all group members compete
against each other for moving to the same position. Nevertheless, the local-movement sim-
ulation stage (see Section 4.5) ensures that each member will minimally adjust its direction
of motion so as to avoid collisions. This approach has been proven sufficient to enable group
members walk next to each other, despite having preferred velocities that point towards the
same point on their global routes.

4.5 Local movement

At each simulation step, the local-movent stage determines the new position and veloc-
ity of each agent Aij based on its preferred velocity ~vpref,ij that was computed at the
route-following stage (see Section 4.4) and the local conditions of Aij . Local movement is
performed in two steps. First, the desired velocity ~vdes,ij of agent Aij is computed during

local collision avoidance (Section 4.5.1). Next, the acceleration
d~vij
dt of each agent Aij is

computed based on the proposed social-force model (Section 4.5.2). Finally, the new posi-
tion and velocity of agent Aij are computed using Euler integration [3] based on its current

position xij , velocity ~vij and acceleration
d~vij
dt .

4.5.1 Local collision avoidance

The proposed local collision-avoidance algorithm borrows the approach of Moussäıd et al.
2011 [65]. Adjustments have been made to the original algorithm to allow for more efficient
avoidance maneuvers. We have observed that the original algorithm fails to implement the
avoidance mechanism that the first heuristic dictates (see Section 3.1). According to the
heuristic, at each simulation step, the desired angle of motion of an agent should lead to
”the most direct path to destination point taking into account the presence of obstacles [65]”.
Based on Equation 3.1, the algorithm is expected to choose a desired angle of motion such
that the distance to the destination is minimum when the next directional change should
occur. The authors suggest that for each candidate angle, if no collision occurs within the
maximum viewing distance, then the distance to first collision for that angle is set to be
equal to the maximum viewing distance (see Section 3.1). This approach might discourage
choosing a candidate angle that would lead to an efficient avoidance maneuver towards the
destination. The reason is that, on a collision-free candidate direction, it might be more
efficient to turn towards the destination before covering the maximum viewing distance on
that direction.

Instead, we propose a different approach for the computation of the desired angle of
motion. Let Xij be a point at position xij of agent Aij and Oij be the last visible point
on the direction of the preferred velocity ~vpref,ij . Let α0,ij be the bearing angle of Oij .
Let Ωαij

be the last visible point on the direction that corresponds to candidate angle
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αij ∈ [−φij ,+φij ]. Let Fαij
be the foot of Oij on XijΩαij

. If Tαij
is a point on the last

collision-free position for the agent on the direction that corresponds to αij , then we compute
f(αij) using the following equation:

f(αij) = min (|XijTαij
|, |XijFαij

|). (4.8)

Similar to the original method [65], the remaining distance d(αij) to the destination is given
by:

d(αij) =
√
d2
Max,ij + f(αij)2 − 2dMax,ijf(αij) cos (α0,ij − αij). (4.9)

Figures 4.7 and 4.8 give two examples.
In other words, assuming an agent decides to walk along an arbitrary direction, then the

most efficient choice is to keep walking on that direction until the destination has a bearing
of ±90 ◦. Then, the agent should turn towards its destination and walk straight ahead
(Figure 4.7). However, the agent should anticipate collisions in the chosen walking direction
and expect to turn towards the destination earlier, if necessary (Figure 4.8). Similar to
the method of Moussäıd et al. 2011 [65], the chosen walking direction should correspond
to the minimum remaining distance to the destination, when the next directional change is
expected. Therefore, the desired angle of motion αdes,ij of agent Aij is given by:

αdes,ij = argmin
αij∈[−φij ,+φij ]

(
d(αij)

)
. (4.10)

Similar to Moussäıd et al. 2011 [65], we employ the relaxation time τ to determine the
desired speed ||~vdes,ij || of each agent Aij :

||~vdes,ij || = min (vpref,i, dhij/τ), (4.11)

where dhij is the distance between agent Aij and the first obstacle on the desired angle of
motion αdes,ij .

Therefore, the desired velocity ~vdes,ij of each agent Aij is determined in two steps. First,
the desired direction is obtained using Equation 4.10. Next, the desired speed is computed
using Equation 4.11.

Xij

Ωαij

Oij

~Hij

+φij

α0,ij

αij

−φij Fαij

Tαij

dMax,ij

Figure 4.7: Example computation of f(αij). In this example, |XijFαij | < |XijTαij |.
Therefore, f(αij) = |XijFαij | (red) and d(αij) = |FαijOij | (blue).
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Xij

Ωαij

Oij

~Hij

+φij

α0,ij

αij

−φij FαijTαijdMax,ij

Figure 4.8: Another example computation of f(αij). In this example, |XijTαij | <
|XijFαij |. Therefore, f(αij) = |XijTαij | (red) and d(αij) = |TαijOij | (blue).

4.5.2 Social-force model

At each simulation step, the acceleration
d~vij
dt of agent Aij is computed using the following

equation:

d~vij
dt

=
~vdes,ij − ~vij

τ
+

1

mij

NG∑
p=1

np∑
q=1

~fij,pq +
1

mij

NW∑
u=1

~fij,Wu
+
~fgroupij

mij
, (4.12)

where τ is the relaxation time, ~vdes,ij is the desired velocity of agent Aij that is provided
by the local collision-avoidance step (see Section 4.5.1), ~vij is the current velocity of agent
Aij , mij is the mass of agent Aij , and p ∈ [1, NG ], q ∈ [1, np] : p = i ⇒ q 6= j. The first
three terms of Equation (4.12) are computed based on the work of Moussäıd et al. 2011 [65],
while the last term is computed based on the work of Moussäıd et al. 2010 [66]. Below we
give the details for the computation of each term.

Physical-contact forces. In Equation 4.12, the force factor ~fij,pq defines the force applied
to agent Aij due to physical-contact interaction with agent Apq. Let dij,pq denote the
distance between agents Aij and Apq. Let n̂ij,pq define the unit vector pointing from agent

Apq to agent Aij , i.e. n̂ij,pq = (xij − xpq)/||xij − xpq||. The force factor ~fij,pq is computed
using the following equation:

~fij,pq = kg(rij + rpq − dij,pq)n̂ij,pq, (4.13)

where:

g(x) =

{
x if x ≥ 0
0 if x < 0

, (4.14)

and k is a global parameter that defines the strength of physical contact forces in the
simulation.

In Equation 4.12, the force factor ~fij,Wu
defines the force applied to agent Aij due to

physical interaction with wall line segment Wu. Let dij,Wu
define the distance between

agent Aij and wall Wu. Let n̂ij,Wu define the unit vector that is perpendicular to wall Wu

and points from wall W towards agent Aij . The force factor ~fij,Wu
is computed using the

following equation:

~fij,W = kg(rij − dij,Wu)n̂ij,Wu . (4.15)

Group forces. In Equation 4.12, the force factor ~fgroupij defines the force applied to agent
Aij due to social interaction with the rest of its group members. It is computed using the
following equation:

~fgroupij = ~fvisij + ~fattij . (4.16)
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In Equation 4.16, the term ~fvisij is a deceleration force applied to the agent as an attempt
to remain social within its group. This force represents the desire of agent Aij to keep the
heads of all fellow members within its vision field. Let θij,ik, k ∈ [1, ni] : k 6= j, be the

minimum angle of rotation of the gazing vector Ĥij that is required for agent Aij to have
the center Xik of fellow member Aik within its vision field. Then, we define θij using the
following equation:

θij = max
k∈[1,ni]:k 6=j

(θij,ik), (4.17)

The force factor
−→
f visij is computed using the following equation:

~fvisij = −β1θij~vdes,ij , (4.18)

where ~vdes,ij is the desired velocity of agent Aij that the local collision avoidance produces
(see Section 4.5.1) and β1 is a model parameter describing the strength of the social inter-
actions between the group members.

Figure 4.9 illustrates the computation of angle θij,ik for an example scenario. Let Pik,ij
be the projection of Xik on the line of the gazing vector Ĥij . Also, let τABΓ define the

triangle with points A, B and Γ as its vertices. B̂AΓ defines the angle of triangle τABΓ at
vertex A. In this example, the rotation angle θij,ik is computed from the triangle τXijXikPik,ij

(see Figure 4.9b), as follows:

θij,ik = ̂Pik,ijXijXik − φij ⇔

θij,ik = arccos

( ||−−−−−−→XijPik,ij ||
||−−−−→XijXik||

)
− φij ⇔

θij,ik = arccos

( ||−−−−→XijXik · Ĥij ||
||−−−−→XijXik||

)
− φij . (4.19)

Figure 4.10 gives a different example, where the bearing angle of Xik is greater than 90 ◦.
In this case, the rotation angle θij,ik is computed from the triangle τXijXikPik,ij

(see Figure
4.10b), as follows:

θij,ik = 180 ◦ − ̂Pik,ijXijXik − φij ⇔

θij,ik = 180 ◦ − arccos

( ||−−−−−−→XijPik,ij ||
||−−−−→XijXik||

)
− φij ⇔

θij,ik = 180 ◦ − arccos

( ||−−−−→XijXik · Ĥij ||
||−−−−→XijXik||

)
− φij (4.20)

Equations 4.19 and 4.20 can be combined to provide a general solution for the compu-
tation of angle θij,ik:

θij,ik = arccos

(−−−−→
XijXik · Ĥij

||−−−−→XijXik||

)
− φij . (4.21)

Determining whether the rotation by angle θij,ik is clockwise or anticlockwise reduces to
checking whether Xik lies to the right or to the left of the agent, respectively. The right
and left sides of the agent are defined by the half-planes that the gazing vector Ĥij induces.

If ||−−−−→XijXik|| > dMax,ij then no rotation is possible for making Xik visible to agent Aij ,
because the distance between members Aij and Aik exceeds the maximum viewing distance
of Aij .
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Figure 4.9: Computation of the rotation angle θij,ik that is necessary for the agent
Aij (orange) to have Xik within its vision field. (a) The current vision field of agent
Aij and gazing direction Ĥij . (b) The desired vision field of agent Aij based on the
rotated gaze vector Ĥ ′ij . The desired vision field includes Xik at its border. The
angle of rotation θij,ik can be computed from the triangle τXijXikPik,ij (gray). The
bearing angle (θij,ik + φij) of Xik is less than 90 ◦.

Xik
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Figure 4.10: Another example similar to Figure 4.9. The bearing angle (θij,ik+φij)
of Xik is greater than 90 ◦.

In Equation 4.16, the term ~fattij is an attractive force applied to agent Aij by the centroid
Ci of group Gi. This force represents the desire of the agent Aij to stay close to the
rest of the group members as an effort to maintain group coherence. Let dij,Ci

define
the distance between agent Aij and centroid Ci. Similar to Moussäıd et al. 2010 [66], let
dCi,threshold = (ni − 1)/2 define a threshold distance. It is reminded that ni is already
defined as the size of group Gi. The agent should be attracted by the centroid of the group
when the distance dij,Ci exceeds the threshold distance. The force factor ~fattij is computed
using the following equation:

~fattij = qA(dij,Ci
)β2Ûij , (4.22)

where Ûij is the unit vector pointing from agent Aij to the centroid Ci, β2 is a parameter
describing the strength of the modelled attraction effect, and:

qA(dij,ci) =

{
1 if dij,Ci ≥ dCi,threshold

0 if dij,Ci
< dCi,threshold

. (4.23)

4.6 Method extensions

In this section, we discuss extensions to our base method. First, we provide details on how
group-splitting behavior is modelled in SGN. Next, we describe how single individuals are
handled.

Group-splitting behavior. Costa [19] observes that, in real-life, social groups of more than
three members often split to single individuals, dyads and triads. Our model can be easily
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adjusted to account for this group behavior. The adjustment is applied in the computation of
the visual term ~fvisij of the group force (see Section 4.5.2, Equation 4.18). First, we consider
a group that splits into sub-groups of two or three members. For each sub-group member,
Equation 4.17 is modified so that it only considers fellow sub-group members. In other
words, for each agent we compute the angle of rotation of its gazing vector that is required
for making the head of each of its fellow sub-group members visible. The deceleration of the
agent is proportional to the maximum of the computed angles. If the group is split to single
individuals, then ~fvisij is omitted from our group force (see Equation 4.16). The remainder
of the method details remain identical to the base method.

Navigation of single individuals. Simulating single individuals in SGN is possible with
intuitive adjustments. The main concept is to treat single individuals as groups of size
one and omit all group-relevant aspects of our method. Therefore, for single individuals,
we skip the high-level planning mechanisms (see Section 4.2). Regarding the global route-
planning stage, we do not adopt the approach discussed in Section 4.3. Instead, we couple
our method with any global route-planning algorithm that accounts for clearance [28, 44,
46, 89] and use it without further adjustments. The same applies to the route-following
stage (see Section4.3); any agent-based route-following algorithm [41, 46] can be directly
employed. Collision avoidance is performed as described in Section 4.5.1 with no need
for modifications. Finally, the group force ~fgroupij is omitted in the social-force model (see
Section 4.5.2, Equation 4.12).

4.7 Method summary and comparison with works of Moussäıd et al.

The method we have proposed follows a hierarchical approach (see Figure 1.1) to simulate
pedestrians that are organized in social groups. SGN addresses motion-planning for social
groups both at a global and at a local level. For this reason, we have introduced high-
level mechanisms that coordinate the members of each group and aid in maintaining group
coherence (see Section 4.2). We have also presented novel techninques for adressing social
group behavior during global route-planning and route-following levels (see Sections 4.3
and 4.4). On a local level, SGN employs a social-force model coupled with a vision-based
collision-avoidance algorithm (see Section 4.5). The proposed social-force model describes
the social interactions between group members and is inspired by the work of Moussäıd et al.
2010 [66] (see Section 3.2). In SGN, the vision based collision-avoidance algorithm enables
predictive avoidance behavior and is heavily based on the work of Moussäıd et al. 2011 [65]
(see Section 3.1). In the remainder of this section, we first discuss the differences between
our social-force model and the model of Moussäıd et al. 2010. Next, our adjustments to the
collision-avoidance algorithm of Moussäıd et al. 2011 are summarized.

Social-force model differences. Equation 4.12 defines the social-force model of our method.
A similar model has been proposed by Moussäıd et al. [66] and is defined using Equation
3.8. As discussed in Section 3.2, in the method of Moussäıd et al. 2010, the attractive force
towards the destination of an agent, the force that describes interactions with walls, and
the sum of forces that describe interactions with agents that do not belong to the same
group are all based on the work of Moussäıd et al. 2009 [64]. This work leads to reactive
avoidance behavior and lacks anticipation. Instead, in SGN, these forces have been replaced
by the corresponding forces of Moussäıd et al. 2011 [65], thus introducing predictiveness to
the local-behavior of our agents.

What is more, in SGN, for the computation of the attractive term ~fattij of the group

force ~fgroupij , the centroid Ci of group Gi is employed (Equation 4.22). Instead, in the
method of Moussäıd et al. 2010 [66], the relevant term employs the center of mass of the
group (Equation 3.11). We follow this approach, because we assume that the mass variation
between the members is irrelevant to the desired effect of this term.

Furthermore, in SGN, for the computation of the visual term ~fvisij of the group force
~fgroupij , we compute the required angle of head rotation for making the head of each fellow
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member visible (Equation 4.21). Then, we take the maximum of those angles into consider-

ation for computing the amplitude of the deceleration force ~fvisij (Equations 4.17 and 4.18).
The motivation behind this approach is that we would like each member to slow down when
realizing that a fellow member is not visible. Instead, in the method of Moussäıd et al.
2010 [66], the relevant term employs the required angle of head rotation for making the
center of mass of all fellow members visible (Equation 3.10). Similar to the attractive group
term, the effect of the approach of Moussäıd et al. 2010 is determined by the mass variation
between the members. What is more, in the approach of Moussäıd et al. 2010, when a single
member stays behind and depending on the group size, fellow members do not effectively
slow down. This is expected to lead to group-sociality and group-coherence issues in dense
scenarios.

Additionally, the visual term in the method of Moussäıd et al. 2010 [66] applies a deceler-
ation force that is based on the current velocity of the agent (Equation 3.10). The resulting
force simulates a reactive social group behavior. Instead, the visual term in our method ap-
plies a deceleration force that is based on the desired velocity of the agent that has already
been computed by the local collision-avoidance simulation stage (Equation 4.18). Therefore,
we introduce predictiveness into the social group behavior. Furthermore, this approach is

expected to result in an acceleration vector
d~vij
dt whose direction better simulates the desired

effect.
Finally, the social-force model of of Moussäıd et al. 2010 [66] includes a repulsive term

in its group force for modelling the effect of physical contact between members of the same
group (Equation 3.12). Instead, our method does not include such a term. In SGN, the
effect of physical contact between two agents is defined using Equation 4.13 and is invariant
to the group origin of each agent.

Collision-avoidance adjustments. In the original work of Moussäıd et al. 2011 [65], an
agent is expected to move on each candidate direction until a directional change is required
due to the presence of an obstacle or another agent. Then, the agent is expected to change
its direction of motion and move towards its destination. If no collisions are expected on
a candidate direction, then the agent is expected to move in that direction for a distance
that is equal to the maximum viewing distance before turning towards its destination. The
algorithm of Moussäıd et al. 2011 picks the candidate direction that minimizes the distance
to the destination when the next directional change is expected.

In SGN, an adjustment has been made in this avoidance scheme described above. The
travel distance on each candidate direction is estimated using Equation 4.8. In essence, this
equation dictates that, for each candidate direction, an agent is expected to move on that
direction until the agent either has to avoid a collision or the destination has a bearing of
±90 ◦. This approach is expected to improve the efficiency of the avoidance maneuvers. The
reader is referred to Section 4.5.1, for further discussion on this adjustment. The remainder
of the avoidance scheme is identical to Moussäıd et al. 2011 [65].

Finally, in SGN, the notation has been updated to allow for agents to differ from each
other in terms of their viewing angle and maximum viewing distance. As a result, crowd
heterogeneity can be exhibited regarding the visual ability of the simulated pedestrians.
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5 Experiments

In this section we discuss the experiments we have conducted to evaluate our method. First,
we provide details on regarding the set-up of the experiments and the implementation of SGN
(Section 5.1). Next, we briefly describe the scenarios we have employed for our experiments
(Section 5.2). The quality of our method is evaluated in Section 5.3. Finally, in Section 5.4
we provide results regarding running-time performance.

5.1 Set-up and implementation details

The proposed method has been implemented in C++ within the Explicit Corridor Map
(ECM) Crowd Simulation Framework [4]. The code was compiled and tested in Visual
Studio 2013. All experiments were performed on a PC with an Intel Core i7 860 processor
(2.8 GHz), an nVidia GeForce GTX 285 graphics card and 8 GB of RAM. The operating
system was Windows 7 Ultimate 64-bit with Service Pack 1. Throughout the experiments
a single core was used and we disabled visualization.

For the global route-planning phase of our method, we employed the algorithm described
in [28]. For the route-following phase, the Modified Indicative Routes and Navigation (MI-
RAN) [41] method was used.

We also provide performance results of a parallel implementation of our method. These
results have limited comparison value. Nevertheless, they demonstrate the ability of our
method to simulate in real-time scenarios that involve thousands of pedestrians that navigate
in small social groups.

Steerbench issues. Initially, it was our aim to use Steerbench [83] for the evaluation of
the individual behavior that our method generates. Steerbench provides an agent-based
benchmark score that accounts for collisions, energy efficiency and travel time. However,
after integrating with our framework, some issues were discovered. A limitation of Steer-
bench is that it can only run benchmarks on static environments that have been modelled
by axis-aligned-bounding-boxes. Furthermore, it employs a grid-database for obtaining col-
lision metrics. A limit is also set on the number of agents that can simultaneously occupy
each cell. The defined grid resolution combined with the density limit per cell have been
proven insufficient for our experiments. The authors of Steerbench suggest that modifica-
tion of either the grid resolution or the density limit per cell may decrease performance.
In practice, any of the two approaches caused Steerbench to crash. For these reasons, we
have excluded Steerbench from our evaluation. As a result, an agent-based evaluation of
our method is missing from the present report and is left as future-work.

5.2 Scenarios

We test the ability of our method to generate plausible social group behavior against a
variety of scenarios:

• Bidirectional corridor: The scenario involves six social groups that navigate through
a horizontal corridor of length 20 meters. The corridor has a fixed width of 10 meters.
Half of the groups are initialized at the left side of the environment and have group
goals assigned at the right side of the environment. The other half of the groups are
initialized at the right side of the environment and have group goals assigned at the
left side of the environment. All members of each group are initialized at random po-
sitions within a square region of area 4 square meters. At each side, the initialization
square regions are on top of each other with a separating distance of 1 meter. This
guarantees that the members of each group are initialized close to each other and that
the groups do not overlap during initialization. The goal area of each group is centered
at a random position within a square region of area 4 square meters. The radius of
the goal area is set to 0.6 meters for all groups. For each group, the initialization
and destination square regions are symmetrical with respect to the vertical axis of
the environment. The environment is bound by a square region of total area 1600
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square meters. Figures 5.1, 5.3 and 5.7 provide simulation instances of this scenario
for different group sizes. In this scenario, the challenge for each group is to remain
social before and after it encounters groups that move in the opposite direction. All
groups are also expected to remain coherent throughout their navigation.

• Squeezing corridor: The scenario involves twelve social groups that navigate through
a horizontal corridor of length 50 meters. The corridor has a linearly decreasing width.
The width of the corridor decreases equally at each of the corridor sides. At the left
side of the environment the corridor has a width of 40 meters. At the right side of the
environment the corridor has a width of 10 meters. The medial axis of the corridor
is parallel to the horizontal axis of the environment and passes through the center of
the environment. All groups are initialized at the left side of the environment. All
members of each group are initialized at random positions within a square region of
area 4 square meters. The initialization square regions are on top of each other with
a separating distance of 1 meter. This guarantees that the members of each group are
initialized close to each other and that the groups do not overlap during initialization.
The goal area of each group is centered at a random position within a square region
of area 4 square meters. The radius of the goal area is set to 0.6 meters for all groups.
For each group, the initialization and destination square regions are symmetrical with
respect to the vertical axis of the planar environment. The environment is bound by
a square region of total area 3600 square meters. Figures 5.9, 5.11 and 5.13 provide
simulation instances of this scenario for different group sizes. In this scenario, the
challenge for each group is to remain coherent and social while the corridor becomes
narrower and the crowd density increases. If any of these properties was lost while
inside the corridor, the groups are also tested on their ability to regain coherence and
sociality after exiting the corridor.

• Corners: The scenario involves four social groups that navigate within an square
room whose interior is free of static obstacles. Each group is initialized near a different
corner of the room and has its goal area assigned at the opposite corner. All members of
each group are initialized at random positions within a square region of area 4 square
meters. At each corner, the initialization square regions has a separating distance
of 1 meter from each of the two walls that form the corner. The goal area of each
group is centered at a random position within a square region of area 4 square meters.
The radius of the goal area is set to 0.6 meters for all groups. For each group, the
initialization and destination square regions are symmetrical with respect to the center
of the environment. The environment is bound by a square region of total area 1600
square meters. Figures 5.15, 5.17 and 5.19 provide simulation instances of this scenario
for different group sizes. In this scenario, the challenge for each group is to remain
social before and after all groups cross each other at a center from four different
directions. Groups are also expected to remain coherent throughout their navigation.

• Building evacuation: A building of ten rooms, one corridor and two exits is occupied
by 490 groups. For each group, all members are initialized at random positions within
the same room. All groups must evacuate the building through the nearest exit. One
rectangle region is defined above the top exit of the building and another rectangle
region is defined below the bottom exit of the building. The goal area of each group is
centered at a random position within the region that corresponds to the selected exit.
The radius of the goal area is set to 0.6 meters. Each of the destination regions has a
width of 40 meters and a height of 20 meters. Each of the destination regions has a
separating distance of 10 meters from the nearest environment boundary. The center
of each destination region is horizontally aligned with the center of the corresponding
exit. The environment is bound by a square region of total area 0.09 square kilometers.
The dimensions of the rectangle that minimally bounds the building are 95 meters by
128 meters. Figures 5.21, 5.23 and 5.25 provide simulation instances of this scenario
for different group sizes. The exact dimensions of the building elements can be either
extracted from any of these figures or they can be provided per request. In this
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scenario, the challenge for each group is to remain coherent throughout the evacuation.
Each group is also expected to remain social when the local conditions allow for this
to happen.

• Room evacuation: A crowd of 180 pedestrians evacuate a room through a single
exit. The exact environment dimensions and set-up can be found in [51]. Figures 5.28,
5.29, 5.30, 5.31 and 5.32 provide the initial conditions for this scenario for different
group sizes. This scenario examines the effect that the group size has on the evacuation
time.

After initial experimentation, we have chosen parameter settings that are shared among
all our experiments. Table 5.1 lists these settings. As suggested by Weidmann [88], we
apply a normal distribution to determine the preferred speed of each pedestrian, with a
mean of 1.34 m/s and a standard deviation of 0.26 m/s. We will compare SGN method
against the model of Moussäıd et al. [65, 66]. Therefore, the rest of the parameters are
assigned intuitive universal values. We follow this approach as an attempt to limit the
variance in the benchmarking scores that could be attributed to the heterogeneity of the
crowd. Nevertheless, our method has been defined and implemented in a way that such
heterogeneity can be exhibited, when the application scenario requires it.

We run each scenario 100 times to obtain results that are statistically significant. At
each run, the starting positions of all agents are (possibly) altered due to the different seed
values to the employed pseudo-random number generators. However, the starting positions
are still constrained to lie within the predefined initialization regions. The preferred speed
of each agent remains unaltered throughout the runs, to prevent inducing further variance
to our results.

Parameter Value Description

rij 0.24 m radius of agent Aij
φij 90 ◦ vision-field half angle of agent Aij
dMax,ij 10 m maximum viewing distance of agent Aij
rp,ij 1 m personal space radius of agent Aij
dsocial 1 m inter-member social distance threshold
mean(vpref,ij) 1.34 m/s mean value of agent preferred speed
stdev(vpref,ij) 0.26 m/s standard deviation of agent preferred speed
rg,i 0.6 m radius of goal area of group Gi
τ 0.5 s relaxation time
k 5000 strength of physical contact forces
b1 1 strength of social interactions between group members
b2 3 strength of coherence interactions between group members
tstep 0.1 s simulation time-step

Table 5.1: Simulation parameters and their assigned values throughout the experi-
ments.

5.3 Quality evaluation

We evaluate the ability of SGN to produce plausible simulations in two steps. First, we ex-
amine the quality of the generated social group behaviors (Section 5.3.1). Next, we perform
a macroscopic evaluation of our method (Section 5.3.2).

5.3.1 Social-group-behavior evaluation

We evaluate the ability of our method in terms of quality of the generated social group
behavior under the following scenarios: bidirectional corridor, squeezing corridor, corners
and building evacuation. Similar to Köster et al. [51], we make visual observations to get
a qualitative overview. We agree with Köster et al. that visual observations are insufficient
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on their own. For this reason, we define quantitative metrics to get statistical measures on
the quality of the generated behavior. The metrics are based on our definitions of group
coherence (see Definition 4.1) and group sociality (see Definitions 4.3 and 4.3).

First, we define the lifetime of a group as the number of simulation steps that it takes
for a group to reach its goal. In our experiments, all groups are initialized at the start of
the simulation. Therefore, the lifetime of group Gi,∀i ∈ [1, NG ], is given by the simulation
step that the last member Aili reaches the goal.

To examine the ability of a method to simulate coherent groups, we define the coherence
metric. The coherence metric for a group Gi is the percentage of the simulation steps that Gi
is coherent (see Definition 4.1) measured over its lifetime. To examine the ability of a method
to simulate social groups, we propose two sociality metrics: the partial sociality metric, and
the total sociality metric. The partial sociality metric for a group Gi is the percentage of the
simulation steps that Gi is in a partially social configuration (see Definition 4.2) measured
over its lifetime. Similarly, the total sociality metric for a group Gi is the percentage of the
simulation steps that Gi is in a totally social configuration (see Definition 4.3) throughout
its lifetime.

We employ these metrics throughout the experiments and run the aforementioned sce-
narios for both our proposed method (SGN) and the method of Moussäıd et al. [66]. As a
result, we are also able to compare SGN against an existing method in terms of the gener-
ated social group behavior. Throughout the experiments, our method and the method of
Moussäıd et al. share the same set of seed values and parameter settings. As a result, both
methods run an identical set of scenarios.

For the method of Moussäıd et al. [66] to be able to simulate the scenarios, it is necessary
that we extend it so that it captures all necessary crowd-simulation phases (see Section 1.3).
For this reason, we integrate the algorithm proposed in [66] in the local-movement level
of our framework. We also substitute the collision-avoidance method of Moussäıd et al.
2010 [66] with that of Moussäıd et al. 2011 [65]. This substitution improves the avoidance
behavior of the original algorithm by introducing anticipation and has been verified to do so
through early experiments. Furthermore, for the implementation of the method of Moussäıd
et al. , we enable the high-level coordination mechanism only during initialization. We follow
this approach, because we want to have a working social-group model to compare against
with the minimum required extensions to original the works of its authors.

We run each scenario 100 times for groups of two, three and four. At each run of a
scenario, we measure the coherence, partial sociality and total sociality for every simulated
group. For each run of a scenario, we compute the average of each of these measures over
the entire group population. For each scenario, we perform Q-Q plots of these averages
to test whether the recorded data follow normal distributions over the runs. These plots
can be found in Appendix B. We perform this procedure for both our method and the
method of Moussäıd et al. For a few scenario runs, it can occur that not all groups reach
their goal within reasonable time. The reasonable time is determined based on the average
lifetime of the rest of the runs for each scenario-method combination. Therefore, we set
a time limit to the simulation of each scenario. If any of the groups has not reached its
goal within the time limit, then we consider the run as failed run. Table 5.2 lists all failed
runs for each scenario-method combination. We exclude all failed runs from our comparative
analysis to maintain statistical significance and examine them separately. The average group
coherence, partial sociality and total sociality and their corresponding standard deviation
are listed in Tables 5.3, 5.4 and 5.5, respectively. No Q-Q plots have been performed for the
average group coherence metric on bidirectional-corridor, squeezing-corridor, and corners
scenarios, because group coherence is nearly constant throughout all experiments involving
these scenarios (see Table 5.3).
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Scenario Group size #failed runs

SGN Moussaid

Bidirectional corridor 2 0 0
3 0 0
4 0 0

Squeezing corridor 2 0 0
3 2 2
4 1 5

Corners 2 0 0
3 0 0
4 0 0

Building evacuation 2 7 8
3 8 16
4 19 40

Table 5.2: Number of experiments that failed to run successfully. Results are dis-
played for each scenario-method combination.

Scenario Group size Coherence

Average (%) StDev (%)

SGN Moussaid et al. SGN Moussaid et al.

2 100.000 100.000 0.000 0.000
Bidirectional corridor 3 100.000 100.000 0.000 0.000

4 100.000 100.000 0.000 0.000
2 100.000 100.000 0.000 0.000

Squeezing corridor 3 99.980 100.000 0.196 0.000
4 100.000 100.000 0.000 0.001
2 100.000 100.000 0.000 0.000

Corners 3 100.000 100.000 0.000 0.000
4 100.000 100.000 0.000 0.000
2 96.052 92.742 0.426 0.629

Building evacuation 3 90.551 84.113 0.845 0.908
4 83.347 75.686 0.912 1.048

Table 5.3: Average group coherence (%) and corresponding standard deviation (%).
Results are measured over all successful runs for each scenario-method combination.
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Scenario Group size Partial sociality

Average (%) StDev (%)

SGN Moussaid et al. SGN Moussaid et al.

2 91.720 88.993 2.243 2.639
Bidirectional corridor 3 77.357 51.125 5.128 13.189

4 64.286 21.847 5.265 6.730
2 92.383 90.353 1.040 1.228

Squeezing corridor 3 82.502 61.010 3.586 9.547
4 72.216 20.477 4.598 5.903
2 91.286 89.595 2.523 2.717

Corners 3 80.499 52.679 4.662 18.953
4 70.659 19.411 4.689 7.963
2 54.458 50.470 0.881 0.961

Building evacuation 3 31.189 15.581 0.791 0.654
4 20.453 6.873 0.677 0.385

Table 5.4: Average group partial sociality (%) and corresponding standard devi-
ation (%). Results are measured over all successful runs for each scenario-method
combination.

Scenario Group size Total sociality

Average (%) StDev (%)

SGN Moussaid et al. SGN Moussaid et al.

2 91.720 88.993 2.243 2.639
Bidirectional corridor 3 66.738 25.089 6.386 10.660

4 41.465 0.300 7.251 1.032
2 92.383 90.353 1.040 1.228

Squeezing corridor 3 75.497 27.213 4.228 10.116
4 56.169 0.596 5.969 1.221
2 91.286 89.595 2.523 2.717

Corners 3 71.590 25.366 5.538 15.169
4 50.359 0.215 6.488 1.285
2 54.458 50.470 0.881 0.955

Building evacuation 3 26.501 7.166 0.731 0.442
4 12.403 0.477 0.555 0.088

Table 5.5: Average group total sociality (%) and corresponding standard devia-
tion (%). Results are measured over all successful runs for each scenario-method
combination.

Note that, each scenario resolves to three variants, depending on the group size. The
variants should not be compared against each other, because the size of the agent population
is linear to the group size. As a result, for each scenario variant, the methods under study
are tested on their ability to produce coherent and social group behavior at a different crowd
density. Nevertheless, by following this approach the size of the group population remains
constant between the variants of each scenario. The motivation behind this approach is
that we aim at a similar precision in the obtained metrics of all variants of each scenario.
Furthermore, the partial sociality and total sociality for groups of two are equivalent by
definition. Nevertheless, we have included both metrics in all scenario-variants that involve
groups of two as an extra validation step of our experimental analysis.

As suggested by Tables 5.4 and 5.5, for each scenario, the variance of both the partial
sociality and total sociality metrics differs between the two methods. As a result, the

42



assumptions for applying a Student’s paired t-test analysis are not met [81]. Therefore, we
employ Welch’s t-test [90] to compare the methods for each scenario variant. Furthermore,
we compute the confidence intervals for these tests to further investigate the difference
between the methods under comparison. We follow the same strategy for the coherence
metric on the building-evacuation scenario, since unequal variances are detected between the
two methods (see Table 5.3). In the following paragraphs, we discuss the results obtained
for every variant of each scenario.

Bidirectional-corridor scenario. In this scenario, groups walk along a corridor on two op-
posing directions. The challenge for each group is to remain social before and after it
encounters groups that move in the opposite direction. All groups are also expected to
remain coherent throughout their navigation.

Figure 5.1: Bidirectional-corridor scenario for groups of two: simulation instance
using SGN method. For each group, all members share the same color. The goal
area of a group is visualized by a ring that shares the color of the group members. A
small green (red) dot at an agent’s position indicates that the agent currently acts as
a leader (last member) of its group, respectively.
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Figure 5.2: Bidirectional-corridor scenario for groups of two: bar plot of group
metrics for the two methods under study. Each percentage is the mean percentage
of the simulation steps that a group is in a configuration that meets the property of
the horizontal axis (see Definitions 4.1, 4.2 and 4.3) measured over the lifetime of the
group.

Figure 5.1 provides a simulation instance of this scenario when groups of two are consid-
ered and SGN method is used. Figure 5.2 summarizes the obtained results for this scenario
variant. For both our method and the method of Moussäıd et al. , the coherence of all groups
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is maintained over all runs. In this scenario variant, both methods demonstrate their ability
to produce social group behavior, which is briefly sacrificed for collision-avoidance purposes.
A Welch’s t-test on both partial and total group sociality indicates that the two-tailed P
value is less than 0.0001. Therefore, this difference is considered to be highly statistically
significant. When employing our method, the test suggests a mean improvement on sociality
≈ 2.73%, with 2.04% - 3.41% being a 95% confidence interval of the improvement over the
method of Moussäıd et al.

Figure 5.3: Bidirectional-corridor scenario for groups of three: simulation instance
using SGN method. For each group, all members share the same color. The goal
area of a group is visualized by a ring that shares the color of the group members. A
small green (red) dot at an agent’s position indicates that the agent currently acts as
a leader (last member) of its group, respectively.
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Figure 5.4: Bidirectional-corridor scenario for groups of three: bar plot of group
metrics for the two methods under study. Each percentage is the mean percentage
of the simulation steps that a group is in a configuration that meets the property of
the horizontal axis (see Definitions 4.1, 4.2 and 4.3) measured over the lifetime of the
group.

Figure 5.3 provides a simulation instance of this scenario when groups of three are consid-
ered and SGN method is used. Figure 5.4 summarizes the obtained results for this scenario
variant. For both our method and the method of Moussäıd et al. , the coherence of all groups
is maintained over all runs. In this scenario variant, SGN method manages to produce totally
social and partially social configurations (66.74% and 77.36%, respectively). The method of
Moussäıd et al. scores significantly lower on these metrics (25.09% and 51.13%, respectively).

In detail, regarding partial group sociality, a Welch’s t-test indicates that the two-tailed
P value is less than 0.0001. Therefore, this difference is considered to be highly statistically
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significant. When employing our method, the test suggests a mean improvement on partial
sociality≈ 26.23%, with 23.43% - 29.03% being a 95% confidence interval of the improvement
over the method of Moussäıd et al.

Regarding total group sociality, a Welch’s t-test indicates that the two-tailed P value is
less than 0.0001. Therefore, this difference is considered to be highly statistically significant.
When employing our method, the test suggests a mean improvement on total sociality
≈ 41.65%, with 39.19% - 44.10% being a 95% confidence interval of the improvement over
the method of Moussäıd et al.

Before examining the results for the rest of the scenarios, we provide some example images
for the groups-of-three variant of the bidirectional scenario, as a visual aid to the reader.
Figure 5.5 displays example group configurations that SGN generates. Figure 5.6 displays
group configurations for the method of Moussäıd et al. , when the scenario is run using the
same seed values. Visual inspection, suggests that, for the method of Moussäıd et al. and the
displayed instances, the purple and orange groups do not adopt social configurations. On the
other hand, for SGN, only the purple group sacrifices temporarily its sociality for collision-
avoidance purposes. These observations do not contradict with the sociality measures we
have obtained (see Figure 5.4). Nevertheless, such an evaluation approach is not efficient
and will not be further developed.

Figure 5.5: Bidirectional-corridor scenario: example configurations that SGN gen-
erates for groups of three. The examples are displayed from top to bottom in order
of increasing simulation time. For each group, all members share the same color. A
small green (red) dot at an agent’s position indicates that the agent currently acts as
a leader (last member) of its group, respectively.

45



Figure 5.6: Bidirectional-corridor scenario: example configurations that Moussäıd
generates for groups of three using the same seed values with Figure 5.5. The examples
are displayed from top to bottom in order of increasing simulation time. For each
group, all members share the same color. A small green (red) dot at an agent’s
position indicates that the agent currently acts as a leader (last member) of its group,
respectively.

Figure 5.7: Bidirectional-corridor scenario for groups of four: simulation instance
using SGN method. For each group, all members share the same color. The goal
area of a group is visualized by a ring that shares the color of the group members. A
small green (red) dot at an agent’s position indicates that the agent currently acts as
a leader (last member) of its group, respectively.
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Figure 5.8: Bidirectional-corridor scenario for groups of four: bar plot of group
metrics for the two methods under study. Each percentage is the mean percentage
of the simulation steps that a group is in a configuration that meets the property of
the horizontal axis (see Definitions 4.1, 4.2 and 4.3) measured over the lifetime of the
group.

Figure 5.7 provides a simulation instance of this scenario when groups of four are consid-
ered and SGN method is used. Figure 5.8 summarizes the obtained results for this scenario
variant. For both our method and the method of Moussäıd et al. , the coherence of all
groups is maintained over all runs. In this scenario variant, only SGN method manages to
produce totally social configurations (41.47%). On the other hand, the method of Moussäıd
et al. barely exhibits this ability (0.30%). It manages, however, to produce partially social
configurations (21.85%), although its ability is significantly lower when compared against
our method (64.29%).

In detail, a Welch’s t-test on partial sociality indicates that the two-tailed P value is less
than 0.0001. Therefore, this difference is considered to be highly statistically significant.
When employing our method, the test suggests a mean improvement on partial sociality
≈ 42.44%, with 40.75% - 44.12% being a 95% confidence interval of the improvement over
the method of Moussäıd et al.

Regarding total group sociality, a Welch’s t-test indicates that the two-tailed P value
is less than 0.0001. By conventional criteria, this difference is considered to be highly
statistically significant. When employing our method, the test suggests a mean improvement
on total sociality ≈ 41.17%, with 39.71% - 42.62% being a 95% confidence interval of the
improvement over the method of Moussäıd et al.

Squeezing corridor. In this scenario, groups walk along a corridor of decreasing width.
The challenge for each group is to remain coherent and social while the corridor becomes
narrower and the crowd density increases. If any of these properties was lost while inside
the corridor, the groups are also tested on their ability to regain coherence and sociality
after exiting the corridor.
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Figure 5.9: Squeezing-corridor scenario for groups of two: simulation instance using
SGN method. For each group, all members share the same color. The goal area of
a group is visualized by a ring that shares the color of the group members. A small
green (red) dot at an agent’s position indicates that the agent currently acts as a
leader (last member) of its group, respectively.
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Figure 5.10: Squeezing-corridor scenario for groups of two: bar plot of group metrics
for the two methods under study. Each percentage is the mean percentage of the
simulation steps that a group is in a configuration that meets the property of the
horizontal axis (see Definitions 4.1, 4.2 and 4.3) measured over the lifetime of the
group.

Figure 5.9 provides a simulation instance of this scenario when groups of two are consid-
ered and SGN method is used. Figure 5.10 summarizes the obtained results for this scenario
variant. For both our method and the method of Moussäıd et al. , the coherence of all groups
is maintained over all runs. A Welch’s t-test on both partial and total group sociality indi-
cates that the two-tailed P value is less than 0.0001. Therefore, this difference is considered
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to be highly statistically significant. When employing our method, the test suggests a mean
improvement on sociality ≈ 2.03%, with 1.71% - 2.35% being a 95% confidence interval of
the improvement over the method of Moussäıd et al.

Figure 5.11: Squeezing-corridor scenario for groups of three: simulation instance
using SGN method. For each group, all members share the same color. The goal
area of a group is visualized by a ring that shares the color of the group members. A
small green (red) dot at an agent’s position indicates that the agent currently acts as
a leader (last member) of its group, respectively.
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Figure 5.12: Squeezing-corridor scenario for groups of three: bar plot of group
metrics for the two methods under study. Each percentage is the mean percentage
of the simulation steps that a group is in a configuration that meets the property of
the horizontal axis (see Definitions 4.1, 4.2 and 4.3) measured over the lifetime of the
group.

Figure 5.11 provides a simulation instance of this scenario when groups of three are
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considered and SGN method is used. Figure 5.12 summarizes the obtained results for this
scenario variant. For the method of Moussäıd et al. , the coherence of all groups is maintained
over all runs (100%). For our method, there is a single run for which coherence is briefly lost
for a single group. This results in an average coherence of 99.98%. In this scenario variant,
SGN method manages to produce totally social and partially social configurations (75.50%
and 82.5%, respectively). The method of Moussäıd et al. scores significantly lower on these
metrics (27.21% and 61.01%, respectively).

In detail, a Welch’s t-test on coherence indicates that the two-tailed P value is 0.3198.
Therefore, this difference is considered to be non statistically significant.

Regarding partial group sociality, a Welch’s t-test indicates that the two-tailed P value is
less than 0.0001. Therefore, this difference is considered to be highly statistically significant.
When employing our method, the test suggests a mean improvement on partial sociality
≈ 21.49%, with 19.45% - 23.53% being a 95% confidence interval of the improvement over
the method of Moussäıd et al.

Regarding total group sociality, a Welch’s t-test indicates that the two-tailed P value is
less than 0.0001. Therefore, this difference is considered to be highly statistically significant.
When employing our method, the test suggests a mean improvement on total sociality
≈ 48.28%, with 46.09% - 50.48% being a 95% confidence interval of the improvement over
the method of Moussäıd et al.

Figure 5.13: Squeezing-corridor scenario for groups of four: simulation instance
using SGN method. For each group, all members share the same color. The goal
area of a group is visualized by a ring that shares the color of the group members. A
small green (red) dot at an agent’s position indicates that the agent currently acts as
a leader (last member) of its group, respectively.
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Figure 5.14: Squeezing-corridor scenario for groups of four: bar plot of group metrics
for the two methods under study. Each percentage is the mean percentage of the
simulation steps that a group is in a configuration that meets the property of the
horizontal axis (see Definitions 4.1, 4.2 and 4.3) measured over the lifetime of the
group.

Figure 5.13 provides a simulation instance of this scenario when groups of four are con-
sidered and SGN method is used. Figure 5.14 summarizes the obtained results for this
scenario variant. For both our method and the method of Moussäıd et al. , the coherence of
all groups is maintained over all runs. In this scenario variant, only SGN method manages to
produce totally social configurations (56.17%). On the other hand, the method of Moussäıd
et al. barely exhibits this ability (0.60%). It manages, however, to produce partially social
configurations (20.48%), although its ability is significantly lower when compared against
our method (72.22%).

In detail, a Welch’s t-test on partial sociality indicates that the two-tailed P value is less
than 0.0001. Therefore, this difference is considered to be highly statistically significant.
When employing our method, the test suggests a mean improvement on partial sociality
≈ 51.74%, with 50.24% - 53.24% being a 95% confidence interval of the improvement over
the method of Moussäıd et al.

Regarding total group sociality, a Welch’s t-test indicates that the two-tailed P value is
less than 0.0001. Therefore, this difference is considered to be highly statistically significant.
When employing our method, the test suggests a mean improvement on total sociality
≈ 55.57%, with 54.36% - 56.79% being a 95% confidence interval of the improvement over
the method of Moussäıd et al.

Corners scenario. In this scenario, groups move to the opposite corner of an empty room.
The challenge for each group is to remain social before and after all groups cross each
other at a center from four different directions. They are also expected to remain coherent
throughout their navigation.
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Figure 5.15: Corners-scenario for groups of two: simulation instance using SGN
method. For each group, all members share the same color. The goal area of a group
is visualized by a ring that shares the color of the group members. A small green
(red) dot at an agent’s position indicates that the agent currently acts as a leader
(last member) of its group, respectively.
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Figure 5.16: Corners scenario for groups of two: bar plot of group metrics for the
two methods under study. Each percentage is the mean percentage of the simulation
steps that a group is in a configuration that meets the property of the horizontal axis
(see Definitions 4.1, 4.2 and 4.3) measured over the lifetime of the group.

Figure 5.15 provides a simulation instance of this scenario when groups of two are consid-
ered and SGN method is used. Figure 5.16 summarizes the obtained results for this scenario
variant. For both our method and the method of Moussäıd et al. , the coherence of all groups
is maintained over all runs. In this scenario variant, both methods demonstrate their ability
to produce social group behavior, which is briefly sacrificed for collision-avoidance purposes.
A Welch’s t-test on both partial and total group sociality indicates that the two-tailed P
value is less than 0.0001. Therefore, this difference is considered to be highly statistically
significant. When employing our method, the test suggests a mean improvement on sociality
≈ 1.69%, with 0.96% - 2.42% being a 95% confidence interval of the improvement over the
method of Moussäıd et al.
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Figure 5.17: Corners scenario for groups of three: simulation instance using SGN
method. For each group, all members share the same color. The goal area of a group
is visualized by a ring that shares the color of the group members. A small green
(red) dot at an agent’s position indicates that the agent currently acts as a leader
(last member) of its group, respectively.
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Figure 5.18: Corners scenario for groups of three: bar plot of group metrics for the
two methods under study. Each percentage is the mean percentage of the simulation
steps that a group is in a configuration that meets the property of the horizontal axis
(see Definitions 4.1, 4.2 and 4.3) measured over the lifetime of the group.

Figure 5.17 provides a simulation instance of this scenario when groups of three are
considered and SGN method is used. Figure 5.18 summarizes the obtained results for this
scenario variant. For both our method and the method of Moussäıd et al. , the coherence
of all groups is maintained over all runs. In this scenario variant, SGN method manages to
produce totally social and partially social configurations (71.59% and 80.50%, respectively).
The method of Moussäıd et al. scores significantly lower on these metrics (25.37% and
52.68%, respectively).

In detail, regarding partial group sociality, a Welch’s t-test indicates that the two-tailed
P value is less than 0.0001. Therefore, this difference is considered to be highly statistically
significant. When employing our method, the test suggests a mean improvement on partial
sociality≈ 27.82%, with 23.93% - 31.71% being a 95% confidence interval of the improvement
over the method of Moussäıd et al.

Regarding total group sociality, a Welch’s t-test indicates that the two-tailed P value is
less than 0.0001. Therefore, this difference is considered to be highly statistically significant.
When employing our method, the test suggests a mean improvement on total sociality
≈ 46.22%, with 43.01% - 49.44% being a 95% confidence interval of the improvement over
the method of Moussäıd et al.
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Figure 5.19: Corners scenario for groups of four: simulation instance using SGN
method. For each group, all members share the same color. The goal area of a group
is visualized by a ring that shares the color of the group members. A small green
(red) dot at an agent’s position indicates that the agent currently acts as a leader
(last member) of its group, respectively.
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Figure 5.20: Corners scenario for groups of four: bar plot of group metrics for the
two methods under study. Each percentage is the mean percentage of the simulation
steps that a group is in a configuration that meets the property of the horizontal axis
(see Definitions 4.1, 4.2 and 4.3) measured over the lifetime of the group.

Figure 5.19 provides a simulation instance of this scenario when groups of four are con-
sidered and SGN method is used. Figure 5.20 summarizes the obtained results for this
scenario variant. For both our method and the method of Moussäıd et al. , the coherence of
all groups is maintained over all runs. In this scenario variant, only SGN method manages to
produce totally social configurations (50.36%). On the other hand, the method of Moussäıd
et al. barely exhibits this ability (0.22%). It manages, however, to produce partially social
configurations (19.41%), although its ability is significantly lower when compared against
our method (70.66%).

In detail, a Welch’s t-test on partial sociality indicates that the two-tailed P value is less
than 0.0001. Therefore, this difference is considered to be highly statistically significant.
When employing our method, the test suggests a mean improvement on partial sociality
≈ 51.25%, with 49.42% - 53.07% being a 95% confidence interval of the improvement over
the method of Moussäıd et al.

Regarding total group sociality, a Welch’s t-test indicates that the two-tailed P value is
less than 0.0001. Therefore, this difference is considered to be highly statistically significant.
When employing our method, the test suggests a mean improvement on total sociality
≈ 50.14%, with 48.83% - 51.46% being a 95% confidence interval of the improvement over
the method of Moussäıd et al.

Building-evacuation scenario. In this scenario, all groups must evacuate a building of
several rooms and a wide corridor with two exits. The members of each group are initialized
on the same room. For each group, all members must first gather at their leader. Then,
they must exit the room as a group and evacuate the building using the nearest exit. The
challenge for each group is to remain coherent throughout the evacuation. Each group is also
expected to remain social when the local conditions allow for this to happen. However, we
do not expect groups to be coherent throughout their lifetime, due to the initial coordination
phase.
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Figure 5.21: Building-evacuation scenario for groups of two: simulation instance
using SGN method. For each group, all members share the same color. A 20-color
palette has been used for visualizing distinguishable colors. Therefore, the same
color has been reused on different groups. A small green (red) dot at an agent’s
position indicates that the agent currently acts as a leader (last member) of its group,
respectively. For visualization reasons, we have cropped the empty region outside the
building, where the goal areas reside.
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Figure 5.22: Building-evacuation scenario for groups of two: bar plot of group
metrics for the two methods under study. Each percentage is the mean percentage
of the simulation steps that a group is in a configuration that meets the property of
the horizontal axis (see Definitions 4.1, 4.2 and 4.3) measured over the lifetime of the
group.

Figure 5.21 provides a simulation instance of this scenario when groups of two are consid-
ered and SGN method is used. Figure 5.22 summarizes the obtained results for this scenario
variant. For both our method and the method of Moussäıd et al. , the coherence of groups
is kept at high levels (96.05% and 92.74% respectively). Visual observation indicates that
bottlenecks are formed near the room and corridor exits. Furthermore, due to these bot-
tlenecks, the groups in both methods frequently sacrifice their sociality in order to progress
through the crowd.

In detail, regarding group coherence, a Welch’s t-test indicates that the two-tailed P
value is less than 0.0001. Therefore, this difference is considered to be highly statistically
significant. When employing our method, the test suggests a mean improvement on coher-
ence ≈ 3.31%, with 3.15% - 3.47% being a 95% confidence interval of the improvement over
the method of Moussäıd et al.

A Welch’s t-test on both partial and total group sociality indicates that the two-tailed
P value is less than 0.0001. Therefore, this difference is considered to be highly statistically
significant. When employing our method, the test suggests a mean improvement on sociality
≈ 3.99%, with 3.72% - 4.26% being a 95% confidence interval of the improvement over the
method of Moussäıd et al.
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Figure 5.23: Building-evacuation scenario for groups of three: simulation instance
using SGN method. For each group, all members share the same color. The same
color has been reused on different groups. A small green (red) dot at an agent’s
position indicates that the agent currently acts as a leader (last member) of its group,
respectively. For visualization reasons, we have cropped the empty region outside the
building, where the goal areas reside.
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Figure 5.24: Building-evacuation scenario for groups of three: bar plot of group
metrics for the two methods under study. Each percentage is the mean percentage
of the simulation steps that a group is in a configuration that meets the property of
the horizontal axis (see Definitions 4.1, 4.2 and 4.3) measured over the lifetime of the
group.

Figure 5.23 provides a simulation instance of this scenario when groups of three are
considered and SGN method is used. Figure 5.24 summarizes the obtained results for this
scenario variant. Bottlenecks are formed near the room and corridor exits. In this scenario
variant, SGN method manages to produce totally social and partially social configurations
(26.50% and 31.19%, respectively). The method of Moussäıd et al. scores significantly lower
on these metrics (7.17% and 15.58%, respectively).

In detail, a Welch’s t-test on group coherence indicates that the two-tailed P value is less
than 0.0001. Therefore, this difference is considered to be highly statistically significant.
When employing our method, the test suggests a mean improvement on coherence ≈ 6.44%,
with 6.18% - 6.70% being a 95% confidence interval of the improvement over the method of
Moussäıd et al.

Regarding partial group sociality, a Welch’s t-test indicates that the two-tailed P value is
less than 0.0001. Therefore, this difference is considered to be highly statistically significant.
When employing our method, the test suggests a mean improvement on partial sociality
≈ 15.61%, with 15.39% - 15.82% being a 95% confidence interval of the improvement over
the method of Moussäıd et al.

Regarding total group sociality, a Welch’s t-test indicates that the two-tailed P value is
less than 0.0001. Therefore, this difference is considered to be highly statistically significant.
When employing our method, the test suggests a mean improvement on total sociality
≈ 19.34%, with 19.16% - 19.51% being a 95% confidence interval of the improvement over
the method of Moussäıd et al.
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Figure 5.25: Building-evacuation scenario for groups of four: simulation instance
using SGN method. For each group, all members share the same color. The same
color has been reused on different groups. A small green (red) dot at an agent’s
position indicates that the agent currently acts as a leader (last member) of its group,
respectively. For visualization reasons, we have cropped the empty region outside the
building, where the goal areas reside.
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SGN Moussäıd et al.

Figure 5.26: Building-evacuation scenario for groups of four: bar plot of group
metrics for the two methods under study. Each percentage is the mean percentage
of the simulation steps that a group is in a configuration that meets the property of
the horizontal axis (see Definitions 4.1, 4.2 and 4.3) measured over the lifetime of the
group.

Figure 5.25 provides a simulation instance of this scenario when groups of four are consid-
ered and SGN method is used. Figure 5.26 summarizes the obtained results for this scenario
variant. In this scenario variant, only SGN method manages to produce totally social con-
figurations (12.40%). On the other hand, the method of Moussäıd et al. barely exhibits this
ability (0.48%). It manages, however, to produce partially social configurations (6.87%),
although its ability is significantly lower when compared against our method (20.45%).

In detail, a Welch’s t-test on coherence indicates that the two-tailed P value is less than
0.0001. Therefore, this difference is considered to be highly statistically significant. When
employing our method, the test suggests a mean improvement on coherence ≈ 7.66%, with
7.33% - 8.00% being a 95% confidence interval of the improvement over the method of
Moussäıd et al.

Regarding partial sociality, a Welch’s t-test indicates that the two-tailed P value is less
than 0.0001. Therefore, this difference is considered to be highly statistically significant.
When employing our method, the test suggests a mean improvement on partial sociality
≈ 13.58%, with 13.40% - 13.76% being a 95% confidence interval of the improvement over
the method of Moussäıd et al.

Regarding total group sociality, a Welch’s t-test indicates that the two-tailed P value is
less than 0.0001. Therefore, this difference is considered to be highly statistically significant.
When employing our method, the test suggests a mean improvement on total sociality
≈ 11.93%, with 11.80% - 12.05% being a 95% confidence interval of the improvement over
the method of Moussäıd et al.

Heterogeneous crowds. To demonstrate the ability of our method to simulate heteroge-
neous crowds, we repeat the building evacuation scenario under different settings. First, we
perform a discrete randomization of the size of each group within the interval [1, 4] with a
step size of 1 agent. For a group-size value of 1, we treat the group as an individual agent
and apply the method details described in Section 4.6. We also perform a discrete random-
ization of the radius of each agent within the interval [0.20, 0.25] with a step size of 0.01
meters. The rest of our settings remain unchanged and can be found in Table 5.1. Similar
to the rest of the experiments, the preferred speed of the agents follows a normal distribu-
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tion to allow for further crowd heterogeneity. Under these settings, Figure 5.27 provides a
simulation instance obtained using SGN method.

Figure 5.27: Building-evacuation scenario for mixed group sizes and agent radii:
simulation instance using SGN method. For each group, all members share the same
color. The same color has been reused on different groups. A small green (red) dot at
an agent’s position indicates that the agent currently acts as a leader (last member)
of its group, respectively. Single individuals are displayed in black.

If a crowd involves groups of different sizes, then the average coherence, total-sociality
and partial-sociality metrics are all highly sensitive to the distribution of the group sizes.
Also, regarding individual agents, these metrics are not applicable. For these reasons, we
have chosen not to collect group-evaluation metrics for this senario variant. Nevertheless,
based on visual inspection (see Figure 5.27), we observe that our method manages to produce
social group behavior in heterogeneous crowds. For this scenario variant, we also observe
that individual agents tend to evacuate the building faster than groups. This phenomenon
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is possibly attributed to two reasons: 1) individual agents do not have to coordinate at
the start of the simulation, and 2) individual agents do not slow down throughout their
navigation for coherence and sociality reasons.

Failed runs. We have reproduced all experiment runs that lead to deadlocks. For both
SGN method and the method of Moussäıd et al. , it has been detected that the deadlocks
occur due to limitations of the employed route-following algorithm [41]. In detail, in all failed
runs, at least one agent reaches a configuration that does not allow for an attraction point
to be computed (see [41] for details). This results in an agent with no preferred velocity.
Therefore, both methods fail to steer such agents towards their group goal. As a result, the
corresponding groups fail to reach their goals and the simulation reaches a deadlock. This
problem is exaggerated in densely populated scenarios. According to our observations, in
dense scenarios, it is more likely for an agent to lose visibility of its global route, due to the
agent being carried away by the crowd. Therefore, MIRAN algorithm can sometimes pose
a limit in the ability to successfully run a scenario, for both SGN method and the method
of Moussäıd et al. Nevertheless, MIRAN’s use of reference points (see [41] for details) allows
for an efficient computation of the leader and last member of each group.

5.3.2 Macroscopic evaluation

We run a room-evacuation scenario to test the ability of our method to generate pedestrian
dynamics that meet empirical data. We perform the simulation experiment described in
Köster et al. [51], which is inspired by the real-life controlled experiment of Liddle et al. [59].
The experiment measures the time that is required for 180 pedestrians to evacuate a room
through a narrow corridor. We repeat the experiment for different group sizes. For the
exact set-up of this experiment, the reader is referred to the original works [51, 59]. Note
that, for the implementation of both SGN method and the method of Moussäıd et al. , we
set the radius of all agents to 0.20 m. The rest of the settings remain unaltered and can be
found in Table 5.1. Figures 5.28, 5.29, 5.30, 5.31 and 5.32 display the initial conditions of
this scenario for all group-size variants.

Figure 5.28: Room-evacuation scenario for individuals: initial conditions.

Figure 5.29: Room-evacuation scenario for groups of two: initial conditions. For
each group, all members share the same color. The same color has been reused on
different groups. A small green (red) dot at an agent’s position indicates that the
agent has been initialized as a leader (last member) of its group, respectively.
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Figure 5.30: Room-evacuation scenario for groups of three: initial conditions. For
each group, all members share the same color. The same color has been reused on
different groups. A small green (red) dot at an agent’s position indicates that the
agent has been initialized as a leader (last member) of its group, respectively.

Figure 5.31: Room-evacuation scenario for groups of four: initial conditions. For
each group, all members share the same color. The same color has been reused on
different groups. A small green (red) dot at an agent’s position indicates that the
agent has been initialized as a leader (last member) of its group, respectively.

Figure 5.32: Room-evacuation scenario for mixed group sizes: initial conditions.
For each group, all members share the same color. The same color has been reused
on different groups. A small green (red) dot at an agent’s position indicates that the
agent has been initialized as a leader (last member) of its group, respectively. Single
individuals are displayed in black.
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Method Evacuation time (s)

Individuals Groups of 2 Groups of 3 Groups of 4 Mixed

SGN 73.50 98.10 112.20 115.70 99.20
Moussäıd et al. 82.10 93.50 95.40 84.30 84.10
Köster et al. 73.63 86.93 - 90.59 -

Table 5.6: Evacuation times for the room-evacuation scenario. Results for different
methods are displayed. For SGN method and the method of Moussäıd et al. , all
agents are modelled using a radius of 0.20 m and we perform a single run per group
size. For the method of Köster et al. , we list the mean evacuation times that have
been originally reported in [51] (groups of three and mixed group sizes were not
included in their work).

Table 5.6 lists the evacuation times for each method. When comparing our method
against the method of Köster et al. a similar trend can be observed: the evacuation time
increases when the group size increases. This trend cannot be observed in the method
of Moussäıd et al. Surprisingly, in the method of Moussäıd et al. , when pedestrians are
arranged in groups of four, the evacuation time decreases. In the method of Moussäıd et al.
, groups of four exhibit similar behavior with individuals with respect to evacuation times.
This is in compliance with the empirical observations of Costa [19], who reports group-
splitting behavior when a group is composed by more than three members. This behavior
is neither discussed nor explicitly modelled in the method of Moussäıd et al. [66]. On the
other hand, both SGN method and the method of Köster et al. indicate a negative effect of
social bonds in evacuations. This effect has been previously studied and empirically verified
by Song and Hu [93]. Finally, for both our method and the method of Moussäıd et al. , the
mixed group-size variant of this scenario produces intermediate evacuation times.

However, we acknowledge a limitation in our experimental approach on this scenario.
Due to the strict space and social constraints of this scenario, the initial configuration of
all agents had to be defined in a deterministic manner (see Figures 5.28, 5.29, 5.30, and
5.31). In detail, all agents were evenly distributed within the rectangle region specified by
the original experiment. The initialization resulted in an grid-like agent arrangement of
12 rows by 15 columns. This effectively allowed us to have all groups initialized in totally
social configurations for every group-size variant of this scenario2. At the same time, our
initialization procedure guarantees that all agents do not initially collide. We have followed
this approach, because we consider that our initialization procedure meets space and social
properties that are crucial for interpreting the results of this controlled experiment. On the
other hand, the lack of variance in the initial conditions does not allow us to perform a
statistical analysis similar to Köster et al. [51]. Therefore, we limit ourselves to comparing
our single-run metrics with the corresponding means provided by Köster et al. An approach
that would allow for inducing variance to our results would be to randomize the preferred
speeds of the agents throughout the runs, while respecting the specified normal distribution
(see Table 5.1). This is left for future work.

Furthermore, through visual inspection of our room-evacuation simulations, we expect
a difference of our method from that of Köster et al. in terms of space utilization. In both
approaches, due to high crowd density, a bottleneck occurs within the room, close to the exit.
Our method is agent-based and relies on a social-force model. This suggests that competitive
behavior emerges between individuals. Our agents do not follow social priority rules, because
we have not modelled such behavioral aspects. This results in agents that lie on the back of
the crowd to attempt to approach the exit from the sides. On the other hand, the method of
Köster et al. is based on a cellular automaton that employs potential functions to steer the
individuals. This is expected to lead in a rather coordinated crowd behavior. As a result, in
the method of Köster et al. , the space at the sides of the exit is expected to be underutilized.

2For the mixed group-size variant (Figure5.32), we employ the same initial positions for the agents. For
each column, we require that there exists exactly one group for each group-size under study (i.e. 2, 3 and 4)
in a totally social configuration. We fill the remaining three spaces of each column with single individuals.
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In a similar real-life scenario, we would expect an intermediate crowd behavior. However,
empirical observations are required to validate our claim. Note that, in the original real-
life controlled experiment of Liddle et al. [59], density maps are provided. These density
maps indicate underutilization of the discussed side areas. Nevertheless, Liddle et al. have
used 180 soldiers as their test subjects. As a result, the pedestrian population of the original
experiment might be interpreted as a disciplined single large group. Therefore, it is arguable
whether the metrics obtained in [59] are relevant to the crowd dynamics of pedestrians that
are organized in small social groups.

In addition, we examine the effect that the agent radius has on the evacuation time. We
repeat all group-size variants of the room-evacuation scenario for all agent radii between
0.20 m and 0.24 m with a step size 0.01 m. For each group size, we also include a variant of
this experiment in which the radius of each agent is assigned discrete random value in the
specified interval (see Figure 5.33). Table 5.7 displays the results.

Agent radii:

0.20 m

0.21 m

0.22 m

0.23 m

0.24 m

Figure 5.33: Room-evacuation scenario for mixed agent radii: initial positions and
radius conditions. The outline color of the disc that models each agent indicates the
radius of the agent. The same radii assignment has been adopted in all group-size
variants of this scenario.

Agent radius (m) Evacuation time (s)

Individuals Groups of 2 Groups of 3 Groups of 4

0.20 73.5 98.1 112.2 115.7
0.21 82.9 103.6 120.8 129.6
0.22 86.5 113.8 135.9 135.0
0.23 93.8 293.2 145.0 151.6
0.24 98.9 337.7 170.7 251.8
Mixed 86.3 112.5 131.8 142.8

Table 5.7: Evacuation times for the room-evacuation scenario using SGN method.
Results for different agent radii and group sizes are displayed.

We can observe that the radius of the agents has a significant impact on the evacuation
time for all group sizes. The greater the radius, the longer it takes for all agents to evacuate
the room. For each group-size variant, when agents are modelled using discs of different
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radii, our method leads to intermediate evacuation times. Furthermore, regarding groups
of two, for a radius of 0.23 m and above, crowd congestion is observed for several seconds.
This results in an extreme increase in the evacuation times. Therefore, we conclude that the
macroscopic behavior generated by our method is highly sensitive to the size of the radius
that models the agents.

It should be investigated if similar differences in evacuation times can be empirically
verified. For the real-life controlled experiment of of Liddle et al. [59], it would be interesting
to investigate any correlations between the test-subject body sizes and the evacuation times.
A repetition of the experiment that also accounts for pedestrian organization in small social
groups would provide additional insight. Therefore, we acknowledge a lack of empirical
data that would allow for a thorough validation of our method in terms of its generated
macroscopic behaviors.

5.4 Performance

To test the performance of our method we execute additional experiments. We investigate
the effect that SGN has on the overall performance of ECM crowd simulation framework.
As stated in our project goals (see Section 1.2), we are mainly interested in the performance
of our method in large-scale scenarios, where small social groups are expected to dominate
the crowd. For this reason, we use an extension of the room-evacuation scenario for our
performance measurements. Our extended virtual environment includes 11 rooms, similar
to the one used in the room-evacuation scenario. Each room is initially occupied with 180
agents. This effectively gives as a crowd of 1980 agents. All agents have to evacuate their
room. Four variants of the experiment are executed, depending on the arrangement of the
agents as single individuals, groups of two, three or four. We run 100 times each variant
of the scenario. Each run is terminated when the first agent reaches its destination. We
follow this approach, to prevent artificially high performance scores that would occur if some
agents remained stationary at their destination. For each variant, we measure the average
simulation step runtime and its corresponding standard deviation.

Time per step (msec) Frame-rate (#steps/sec)

Average StDev Average StDev

ECM Framework Individuals 372.11 7.43 2.688 0.048
SGN Groups of 2 374.96 1.29 2.667 0.009

Groups of 3 377.37 1.66 2.650 0.012
Groups of 4 378.21 1.45 2.644 0.010

Table 5.8: Performance results during serial execution of the scenario. The scenario
involves the evacuation of 1980 agents that are evenly distributed over 11 rooms
similar to Figures 5.28, 5.29, 5.30, and 5.31. Average time per step (msec) and
frame-rate (#steps/sec) over 100 runs and corresponding standard deviations are
displayed per group-size variant of the scenario.

In Table 5.8, we display the obtained results for a serial execution of our method. We
observe that our method has a minimum impact on the running time of the of the framework.
When social groups of two are included in the simulation using SGN, the average increase
in the running time of the framework is less than 3 miliseconds per simulation step (≈
2.85 msec). The increase in the running time is maximized when social groups of four are
considered (≈ 6.10 msec). Nevertheless, these increases are only small, if we consider that
the single-individuals variant of this scenario requires ≈ 372 msec per simulation step.

However, we are also interested in the applicability of our method, when thousands of
agents should be simulated in real-time. Therefore, we repeat all performance measures in
a parallel implementation of the framework. Agent-wise parallelization is possible in the
original framework [4] for each simulation step (Levels 1, 2, and 3, see Figure 1.1). Our
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method is fully compatible with this parallelization scheme, therefore can benefit from it.
At the same time, we have introduced group-wise parallelization in our implementation of
SGN that also encloses higher simulation levels, when necessary (Levels 4 and 5, see Figure
1.1).

Time per step (msec) Frame-rate (#steps/sec)

Average StDev Average StDev

ECM Framework Individuals 85.48 1.51 11.702 0.198
SGN Groups of 2 92.65 1.30 10.795 0.154

Groups of 3 92.72 1.37 10.788 0.160
Groups of 4 91.92 1.23 10.881 0.146

Table 5.9: Performance results during parallel execution of the scenario. The sce-
nario involves the evacuation of 1980 agents that are evenly distributed over 11 rooms
similar to Figures 5.28, 5.29, 5.30, and 5.31. Average time per step (msec) and frame-
rate (#steps/sec) over 100 runs and corresponding standard deviations are displayed
per group-size variant of the scenario. For both the agent-wise and the group-wise
parallel parts of our method all 4 CPU cores were employed, thus allowing a total of
8 threads for simultaneous execution.

Table 5.9 summarizes the obtained results for a parallel execution of our method. Again,
we observe that our method has a small impact on the running time of the of the framework.
When social groups of two are included in the simulation using SGN, the average increase
in the running time of the framework is only ≈ 7.17 miliseconds per simulation step. In-
terestingly, the increase in the running time is maximized when social groups of three are
considered (≈ 7.24 msec). Note that, in a parallel implementation, subdividing the crowd
of 1980 agents into social triads has almost the same performance impact with subdividing
it to social couples. More surprisingly, when social groups of four model the crowd, the
running time reaches its minimum (≈ 91.92 msec) among all tested variants that include
social group behavior. We expect this phenomenon to be triggered by performance gains
on the global route-planning phase. As discussed in our method details (see Section 4), in
SGN, for each social group, only the leader is assigned the computationally expensive task
of finding a path to the group goal. The rest of the group members simply plan their path to
the leader which is usually close-by. When all members have reached the leader, the leader
forwards its path to its fellow members. This leads to performance gains over a method that
simulates a crowd as single-individuals. The bigger the size of the social-group, the higher
these performance gains are. On the other hand, a member of a large social-group has to
consider a proportionally large number of fellow members for computing its social deceler-
ation force (see Section 4.5.2). As a result, for a constant number of agents, an increased
group size leads to more computations at the local-movement level and less computations
at the global route-planning level of our framework.

Furthermore, for the parallel implementation, results indicate that our method can per-
form on average more than 10 simulation steps per second (see Table 5.9). We remind that
the simulation step is set to 0.1s throughout all experiments and has been proven sufficient to
generate social group behavior (see Section 5.3.1). Therefore, we conclude that our method
can be used for real-time simulations that involve thousands of agents organized in small
social-groups.
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6 Discussion and future work

In this section, we conclude on our work on social-group navigation. First, we summarize
the contributions of our work (Section 6.1). Next, we identify its limitations (Section 6.2).
Finally, ideas for future work are presented in Section 6.3.

6.1 Contributions

We have proposed a method for simulating the navigation of social groups in crowded en-
vironments. To the best of our knowledge, SGN is the first simulation method to provide
group-specific details on all relevant aspects of pedestrian navigation. Our method is also
flexible. SGN is designed in a hierarchical manner and allows the developer or researcher to
couple it with different navigation meshes or global route-planning algorithms.

At the same time, SGN is an agent-based method that is designed to allow for high
crowd heterogeneity. Group members can differ in terms of their body size, preferred speed,
and vision-field. This effectively allows our method to be considered for applications where
variance in the behavior of individuals should be exhibited. Therefore, application scenarios
can include crowd simulations that are based on a collection of empirical data, as well as
gaming applications in which virtual characters should exhibit social human-like motion
behavior.

In addition, our method avoids utilizing computationally expensive group-coordination
mechanisms at the local-movement level. Alternative methods that do not follow this ap-
proach [47, 92] are expected to perform worse than SGN in terms of running time. What
is more, SGN employs a vision-based collision-avoidance algorithm. This algorithm is an
adjusted version of the algorithm of Moussäıd et al. 2011 [65] that improves the efficiency
of the generated collision-avoidance maneuvers. It also maintains the ability of the origi-
nal algorithm to produce stop-and-go waves. This makes our approach highly competitive,
since it aims at high-quality crowd behaviors in the microscopic scale without introducing
the additional overhead of group-velocity optimization.

Furthermore, our quality evaluation indicates significant improvements over the works
of Moussäıd et al. [65, 66]. In all tested scenarios, SGN proved to generate social-friendly
group configurations at a higher rate than the method of Moussäıd et al. The differences
in quality were small but significant in scenarios that involved groups of two. In scenarios
were groups of three or four were considered, the differences in quality were even bigger.

What is more, SGN does not rely on a formation model for steering social-groups. Sim-
ulated groups switch between line-abreast, V-like, and river-like formations. However, these
navigation choices are not explicitly modelled. Instead, each member of a group adjusts its
motion in an effort to remain social within its group. This implies that the generated social-
group behaviors are emergent. At the same time, this modelling choice allows for a group to
temporarily split, for instance due to overtaking another group. This type of behavior is not
exhibited in methods that employ group formation models [47,92]. Nevertheless, it has been
suggested that such avoidance maneuvers are an accepted behavior for social pedestrian
groups [51].

Also, SGN does not set an upper bound on the number of members that form a social
group. We have evaluated group behavior for groups sizes two to four, because these are
the group sizes that have been observed to prevail in pedestrian areas [19,66]. At the same
time, we provide details on how SGN can be easily adjusted, when we desire to split large
social groups into smaller sub-groups.

Our performance evaluation indicates that our method can be used for real-time simu-
lations that involve thousands of agents organized in small social-groups. As a result, SGN
can be used for mass-event simulations or gaming applications that should exhibit social
group behavior.

Finally, another contribution of our work are the quality-evaluation metrics with respect
to social group behavior. We have proposed an intuitive way to define and measure the
ability of a pedestrian group to remain coherent and social. Coherence and sociality are
examined from the perspective of each individual member of a group. Therefore, for a group
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to be classified as coherent or social, all members must perceive it as such. What is more,
our definitions of group coherence and sociality are on par with empirical data [19, 66, 91],
regarding the spatial arrangements of social pedestrian groups.

6.2 Limitations

Despite the strengths of our method, some limitations can be observed. As discussed in the
previous section, SGN does not utilize a group-formation model. As a result, there is no
control over the observed formation changes. In a simulation scenario, it might be desired
that a specific group never splits, but is allowed to switch to a river-like formation instead.
A mother with her child can be considered as an example. Currently, our method cannot
guarantee this sort of behavior.

What is more, in SGN, social groups do not always avoid other groups as a whole. The
motivation behind our choice is that, in densely-populated areas, we expect groups to invade
the social space that another group induces. This is also expected to be the case when a
single group remains stationary inside a corridor and no alternative routes exist for moving
pedestrians. Therefore, we have not explicitly modelled this behavior.

Another limitation of our method is attributed to its vision-based avoidance algorithm.
Similar to Moussäıd et al. [65], SGN uses a circular sector to model the vision-field of an
agent. In SGN, each agent is also allowed to have a different maximum viewing distance.
Nevertheless, this distance is fixed. In real-life however, the vision-field is sensitive to oc-
clusions. In an open and rather unoccupied environment, a pedestrian might be able to
see hundreds of meters ahead. Also a pedestrian might or might not be able to see past
another pedestrian, depending on their height difference. These visual-stimulus aspects are
considered too expensive and are not modelled by our method. However, we are are not
aware of any avoidance method that does so.

Furthermore, our method might fail to deal with static agents under certain conditions.
For instance, when several groups remain static within an area, another group might try to
pass through this occupied area. In detail, the employed global route-planning method [28]
does not account for crowd density and produces paths that might cross areas were static
agents reside. This is a reasonable choice, since density can change several times by the time
the group approaches the congested area. However, our collision-avoidance algorithm relies
on the vision-field model we discussed above. As a result, the maximum viewing distance
might be insufficient to allow for a selection of a direction of motion that avoids congested
areas.

In addition, our method models agents using a disc shape. We have followed this ap-
proach for several reasons. First, we consider a disc to be a good approximation of the space
that a pedestrian occupies, when projected on the navigation plane. At the same time, it al-
lows for collision checks that are less expensive than those required when employing a more
complex shape. This property of a disc-shaped agent allows our method to perform fast
enough to be considered for simulating thousands of pedestrians that are organised in social
groups. Also, the disc shape allows our method to be coupled with existing global route-
planning algorithms that account for clearance [28, 44, 46, 89] without further adjustments.
Nevertheless, it has been suggested that an elliptical shape can be a better approximation
of the space occupied by agents whose shape is long and narrow [21].

Finally, our collision-avoidance algorithm does not utilize the personal space of each
agent. No personal space is used in the original avoidance algorithm of Moussäıd et al. [65].
We have experimented with including personal space in our collision-avoidance algorithm
by accounting for it during the computation of f(αij) (see Equation 4.8). However, in
dense regions, this led agents to stop moving, because their personal spaces were violated.
Therefore, we decided not to follow a collision-avoidance approach that uses personal spaces.
As a result, when large crowds evacuate areas through narrow passages, density increases
drastically at bottlenecks. This, in turn, leads to crowd congestion. This phenomenon has
been empirically verified [88]. However, we expect our lack of personal-space utilization
during local-movement phase to cause congestions more frequently than what is observed in
real-life.
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6.3 Future work

An area for future work is to perform research on heuristics that members of social groups
employ throughout their navigation. Also, it would be interesting to investigate how these
heuristics interact with the heuristics that pedestrians employ at an individual level [65].
An effective combination of avoidance heuristics with group-relevant heuristics is expected
to further increase the ability of agents to remain social, while avoiding obstacles and other
agents in the simulation.

Furthermore, SGN could be extended to account for the demographics of the simulated
pedestrians groups. Fridman et al. [25] provide empirical data regarding the size of groups,
their dominance over individuals, and the gender of their members for several countries.
They also discuss avoidance-side preference, walking speed, and personal spaces observed in
these countries. Willis et al. [91] provide information on the effect of gender, group size and
age on the inter-personal distances and walking speeds. It would be interesting to create
agent profiles that model these differences and use them in our method.

As discussed in the limitations of our method, our vision-based collision-avoidance algo-
rithm should be extended to account for the personal space of the agents. This would allow
agents to adopt social priority rules avoid and mitigate congestion. As a result, we expect
coordination behavior to emerge. The challenge in this approach is to efficiently determine
the conditions under which an agent should take its personal space into account.

Regarding control over formation changes, SGN can be extended to selectively adopt a
leader-follower approach. This would allow for simulation of social groups that never split,
but switch to a river-like formation instead. Again, the challenge is to efficiently determine
the conditions under which our method switches from regular route following to a leader-
follower model and vice-versa.

Furthermore, the incorporation of psychological variables in SGN will enhance the ability
of our method to simulate safety-engineering scenarios. Panic as well as panic propagation
are expected to have a significant impact on the crowd dynamics in such simulations. Aguirre
et al. [5] suggest that, under panic, the social interactions between individuals are further
enhanced thus leading to collective behavior. Also, Mawson [62] has observed that the collec-
tive behavior of social groups under stress often increases evacuation times. However, more
research should be conducted on how panic affects existing social groups in the microscopic
scale.

In addition, SGN can be extended to improve on treatment of static agents and conversing
groups. A density-based planning approach seems crucial for achieving this effect. The main
challenge in this approach are the expensive computations required for deciding whether it
is possible or not to avoid invading the social space of conversing groups.

Finally, our method could possibly be extended to account for terrain preferences. MI-
RAN algorithm [41], that was employed by SGN for the route-following level of the simu-
lation, already accounts for terrain preference for each individual. When social-groups are
considered in heterogeneous environments, it would be interesting to investigate how global
route-planning and route-following levels are affected.
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[50] Hubert Klüpfel. A cellular automaton model for crowd movement and egress simulation.
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Experiment-based modeling, simulation and validation of interactions between virtual
walkers. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, SCA ’09, pages 189–198, New York, NY, USA, 2009. ACM.

[74] Fasheng Qiu and Xiaolin Hu. Modeling group structures in pedestrian crowd simulation.
Simulation Modelling Practice and Theory, 18(2):190–205, 2010.

[75] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model. SIG-
GRAPH Computer Graphics, 21(4):25–34, 1987.

[76] Craig W. Reynolds. Steering behaviors for autonomous characters. In Game Developers
Conference 1999, pages 763–782, 1999.

[77] Craig W. Reynolds. Interaction with groups of autonomous characters. In Game De-
velopers Conference 2000, pages 449–460, 2000.

[78] Michael E. Roloff. Interpersonal communication: The social exchange approach, vol-
ume 6 of Commtext Series. SAGE Publications, London, 1981.

[79] Siamak Sarmady, Fazilah Haron, and Abdullah Zawawi H. Talib. Multi-agent simulation
of circular pedestrian movements using cellular automata. In Modeling Simulation,
2008. AICMS 08. Second Asia International Conference on, pages 654–659, 2008.

[80] Siamak Sarmady, Fazilah Haron, and Abdullah Zawawi H. Talib. Modeling groups
of pedestrians in least effort crowd movements using cellular automata. In Modelling
Simulation, 2009. AMS ’09. Third Asia International Conference on, pages 520–525,
2009.

[81] Shlomo S. Sawilowsky. Fermat, Schubert, Einstein, and Behrens-Fisher: The probable
difference between two means when σ2

1 6= σ2
2 . Journal of Modern Applied Statistical

Methods, 1(2), 2002.
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A Variables and parameters

nmax the maximum allowed group size
NG the total number of groups
NW the total number of wall segments
Gi the i-th social group in the simulation
ni the size of group Gi
Aij the j-th member of group Gi
sij the start position of agent Aij
Si the set of start positions of all members of group Gi
gi the goal position of group Gi
rg,i the goal radius of group Gi
Gi the goal area (gi, rg,i) of group Gi
ρ(x, r) the density inside a disc of radius r centered at position x
xij the position of agent Aij
rij the radius of agent Aij
rp,ij the personal-space radius of agent Aij
mij the mass of agent Aij
~vij the velocity of agent Aij
vpref,ij the preferred speed of agent Aij
~vpref,ij the preferred velocity of agent Aij
vpref,i the preferred speed of group Gi
~vdes,ij the desired velocity of agent Aij
Ĥij the gazing unit vector of agent Aij
φij the half-angle of the vision field of agent Aij
dMax,ij the maximum viewing distance of the vision field of agent Aij
dg(Aij) the curve-length distance of agent Aij from group goal position

gi measured along the global path of Aij
Li the index of leader of group Gi
Lstart,i the index of leader of group Gi during initial coordination phase
AiLstart,i

the leader of group Gi during initial coordination phase
li the index of the last member of group Gi
Aili the last member of group Gi
Xij a point at the position xi of agent Aij
αij a candidate angle of motion for agent Aij
Oij the last visible point on the direction of preferred velocity ~vpref,ij

for agent Aij
α0,ij the bearing angle of point Oij with respect to agent Aij
Ωαij

the last visible point on the direction that corresponds to candi-
date angle of motion αij

Fαij
the foot of Oij on XijΩαij

Tαij a point on the last collision-free position for the agent on the
direction that corresponds to candidate angle of motion αij

f(αij) the expected travel distance for agent Aij on candidate angle of
motion αij

d(αij) the expected remaining distance for agent Aij from point Oij
when the next directional change is expected if candidate angle
of motion αij is chosen

τ the relaxation time of all agents
k a parameter defining the strength of physical contact forces in

the simulation
~fij,pq the physical contact force applied to agent Aij due to collision

with agent Apq
n̂ij,pq a unit vector pointing from agent Apq to agent Aij
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Wu the u-th wall line segment in the simulation
~fij,Wu the physical contact force applied to agent Aij due to collision

with wall segment Wu

n̂ij,Wu
a unit vector pointing from wall line segment Wu to agent Aij

~fgroupij the group force applied to agent Aij
~fvisij the visual group force applied to agent Aij for maintaining social

interactions with fellow group members
~fattij the attractive group force applied to agent Aij for maintaining

group coherence
Pij,ik the projection of the center Xik of agent Aik on the line of the

gazing vector Ĥij of fellow member Aij
θij,ik the required angle of rotation of the gazing vector Ĥij for Xik

to be visible by agent Aij
β1 a model parameter describing the strength of the social interac-

tions between the members of each group
Ci the centroid of all members of group Gi
dij,Ci

the distance between agent Aij and centroid Ci
dCi,threshold the threshold distance between agent Aij and centroid Ci
Ûij a unit vector pointing from agent Aij to centroid Ci
β2 a model parameter describing the strength of the coherence in-

teractions between the members of each group
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B Experiment results

B.1 Bidirectional corridor

Figure B.1: Q-Q plot of average partial group sociality (%) for the bidirectional
corridor scenario with groups of two using SGN method.
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Figure B.2: Q-Q plot of average partial group sociality (%) for the bidirectional
corridor scenario with groups of two using SGN method.
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Figure B.3: Q-Q plot of average partial group sociality (%) for the bidirectional
corridor scenario with groups of three using SGN method.
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Figure B.4: Q-Q plot of average partial group sociality (%) for the bidirectional
corridor scenario with groups of three using the method of Moussäıd et al.
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Figure B.5: Q-Q plot of average partial group sociality (%) for the bidirectional
corridor scenario with groups of four using SGN method.
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Figure B.6: Q-Q plot of average partial group sociality (%) for the bidirectional
corridor scenario with groups of four using the method of Moussäıd et al.
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Figure B.7: Q-Q plot of average total group sociality (%) for the bidirectional
corridor scenario with groups of two using SGN method.
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Figure B.8: Q-Q plot of average totall group sociality (%) for the bidirectional
corridor scenario with groups of two using SGN method.
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Figure B.9: Q-Q plot of average total group sociality (%) for the bidirectional
corridor scenario with groups of three using SGN method.
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Figure B.10: Q-Q plot of average total group sociality (%) for the bidirectional
corridor scenario with groups of three using the method of Moussäıd et al.
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Figure B.11: Q-Q plot of average total group sociality (%) for the bidirectional
corridor scenario with groups of four using SGN method.
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Figure B.12: Q-Q plot of average total group sociality (%) for the bidirectional
corridor scenario with groups of four using the method of Moussäıd et al.
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B.2 Squeezing corridor

Figure B.13: Q-Q plot of average partial group sociality (%) for the squeezing
corridor scenario with groups of two using SGN method.

94



Figure B.14: Q-Q plot of average partial group sociality (%) for the squeezing
corridor scenario with groups of two using SGN method.
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Figure B.15: Q-Q plot of average partial group sociality (%) for the squeezing
corridor scenario with groups of three using SGN method.
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Figure B.16: Q-Q plot of average partial group sociality (%) for the squeezing
corridor scenario with groups of three using the method of Moussäıd et al.
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Figure B.17: Q-Q plot of average partial group sociality (%) for the squeezing
corridor scenario with groups of four using SGN method.
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Figure B.18: Q-Q plot of average partial group sociality (%) for the squeezing
corridor scenario with groups of four using the method of Moussäıd et al.
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Figure B.19: Q-Q plot of average total group sociality (%) for the squeezing corridor
scenario with groups of two using SGN method.
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Figure B.20: Q-Q plot of average totall group sociality (%) for the squeezing corridor
scenario with groups of two using SGN method.
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Figure B.21: Q-Q plot of average total group sociality (%) for the squeezing corridor
scenario with groups of three using SGN method.
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Figure B.22: Q-Q plot of average total group sociality (%) for the squeezing corridor
scenario with groups of three using the method of Moussäıd et al.
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Figure B.23: Q-Q plot of average total group sociality (%) for the squeezing corridor
scenario with groups of four using SGN method.
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Figure B.24: Q-Q plot of average total group sociality (%) for the squeezing corridor
scenario with groups of four using the method of Moussäıd et al.
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B.3 Corners

Figure B.25: Q-Q plot of average partial group sociality (%) for the corners scenario
with groups of two using SGN method.
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Figure B.26: Q-Q plot of average partial group sociality (%) for the corners scenario
with groups of two using SGN method.
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Figure B.27: Q-Q plot of average partial group sociality (%) for the corners scenario
with groups of three using SGN method.
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Figure B.28: Q-Q plot of average partial group sociality (%) for the corners scenario
with groups of three using the method of Moussäıd et al.
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Figure B.29: Q-Q plot of average partial group sociality (%) for the corners scenario
with groups of four using SGN method.
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Figure B.30: Q-Q plot of average partial group sociality (%) for the corners scenario
with groups of four using the method of Moussäıd et al.
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Figure B.31: Q-Q plot of average total group sociality (%) for the corners scenario
with groups of two using SGN method.
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Figure B.32: Q-Q plot of average totall group sociality (%) for the corners scenario
with groups of two using SGN method.
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Figure B.33: Q-Q plot of average total group sociality (%) for the corners scenario
with groups of three using SGN method.
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Figure B.34: Q-Q plot of average total group sociality (%) for the corners scenario
with groups of three using the method of Moussäıd et al.
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Figure B.35: Q-Q plot of average total group sociality (%) for the corners scenario
with groups of four using SGN method.
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Figure B.36: Q-Q plot of average total group sociality (%) for the corners scenario
with groups of four using the method of Moussäıd et al.
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B.4 Building evacuation

Figure B.37: Q-Q plot of average group coherence (%) for the building-evacuation
scenario with groups of two using SGN method.
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Figure B.38: Q-Q plot of average group coherence (%) for the building-evacuation
scenario with groups of two using the method of Moussäıd et al.
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Figure B.39: Q-Q plot of average group coherence (%) for the building-evacuation
scenario with groups of three using SGN method.
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Figure B.40: Q-Q plot of average group coherence (%) for the building-evacuation
scenario with groups of three using the method of Moussäıd et al.
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Figure B.41: Q-Q plot of average group coherence (%) for the building-evacuation
scenario with groups of four using SGN method.
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Figure B.42: Q-Q plot of average group coherence (%) for the building-evacuation
scenario with groups of four using the method of Moussäıd et al.

123



Figure B.43: Q-Q plot of average partial group sociality (%) for the building-
evacuation scenario with groups of two using SGN method.
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Figure B.44: Q-Q plot of average partial group sociality (%) for the building-
evacuation scenario with groups of two using SGN method.
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Figure B.45: Q-Q plot of average partial group sociality (%) for the building-
evacuation scenario with groups of three using SGN method.
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Figure B.46: Q-Q plot of average partial group sociality (%) for the building-
evacuation scenario with groups of three using the method of Moussäıd et al.
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Figure B.47: Q-Q plot of average partial group sociality (%) for the building-
evacuation scenario with groups of four using SGN method.
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Figure B.48: Q-Q plot of average partial group sociality (%) for the building-
evacuation scenario with groups of four using the method of Moussäıd et al.
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Figure B.49: Q-Q plot of average total group sociality (%) for the building-
evacuation scenario with groups of two using SGN method.
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Figure B.50: Q-Q plot of average totall group sociality (%) for the building-
evacuation scenario with groups of two using SGN method.
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Figure B.51: Q-Q plot of average total group sociality (%) for the building-
evacuation scenario with groups of three using SGN method.
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Figure B.52: Q-Q plot of average total group sociality (%) for the building-
evacuation scenario with groups of three using the method of Moussäıd et al.
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Figure B.53: Q-Q plot of average total group sociality (%) for the building-
evacuation scenario with groups of four using SGN method.
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Figure B.54: Q-Q plot of average total group sociality (%) for the building-
evacuation scenario with groups of four using the method of Moussäıd et al.
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