
UNIVERSITY OF UTRECHT

DEPARTMENT OF INFORMATION AND COMPUTING

SCIENCES

A Decision Support Model for using
an Object-Relational Mapping Tool in
the Data Management Component of

a Software Platform

Rares George Sfirlogea

Supervisors:

dr. R.L. Jansen
dr. ir. J.M.E.M. van der Werf

Friday 6th February, 2015
Academic year 2014/2015

Abstract

The usage of an ecosystem-based application framework gives software com-
panies a competitive advantage in delivering stable, feature rich products
while keeping the completion time to a minimum. It is seldom the case that
a platform is selected by looking at its software architecture although it can
reveal a lot of details about its limitations and functionality. The Object-
Relational Mapping (ORM) tool in the data management component imposes
extendability restrictions on the software platform. The software architect or
developer that is responsible of making this decision is often unaware of the
platform traits leading to breaking the general conventions or even consider-
ing a costly rewrite of the entire application in the future. The aim of this
research thesis is to create a decision support model regarding the inclusion
of an ORM tool in the platform architecture and the consequences it imposes
on the software platform’s quality attributes. With this artefact, any individ-
ual in charge with the product architecture can make a more knowledgeable
decision, by aligning the platform capabilities with his data requirements.

Acknowledgements

I would like to express my sincere appreciation for all the people who helped
this research reach its final state. With a special mention going to my thesis
coordinators, the experts who agreed to be interviewed and of course my
girlfriend, family and friends who put up with me during this long period of
time.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem statement . 5
1.3 Thesis outline . 6

2 Research approach 8
2.1 Research objective . 8

2.1.1 Stakeholders . 8
2.2 Research questions . 9
2.3 Research process . 10

2.3.1 Structured literature review 11
2.3.2 Documentation analysis 11
2.3.3 Case study . 12
2.3.4 Quality attributes impact measurement 13

2.4 Process-Deliverable Diagram 13
2.5 Validity . 13

2.5.1 Construct validity . 15
2.5.2 Internal validity . 15
2.5.3 External validity . 15
2.5.4 Reliability . 16

3 Research Study Findings 17
3.1 Data management component architecture 17
3.2 Object Relational Mapping . 20
3.3 Object-relational impedance mismatch 23

4 Affected quality attributes 28
4.1 Performance . 30

4.1.1 Measurement criteria 31
4.1.2 Experiment . 31

4.2 Maintainability . 34
4.2.1 Measurement criteria 35

4.2.2 Experiment . 36
4.3 Scalability . 38

4.3.1 Measurement criteria 39
4.3.2 Experiment . 39

5 Decision support model 42
5.1 Decision-making process . 42
5.2 Decision-making methods . 44

5.2.1 Pros and Cons Analysis 44
5.2.2 Cost-Benefit Analysis (CBA) 45
5.2.3 Analytic Hierarchy Process (AHP) 46
5.2.4 Kepner-Tregoe Decision Analysis (K-T) 47
5.2.5 Multi-Attribute Utility Theory Analysis (MAUT) . . . 49
5.2.6 Custom Tailored Tools 49

5.3 ORM usage support model . 49
5.3.1 Identify data requirements 51
5.3.2 Pros and cons analysis 53
5.3.3 Situational analysis . 55
5.3.4 Solution selection . 57
5.3.5 Example . 57

6 Evaluation 62
6.1 Method . 62
6.2 Feedback . 63
6.3 Support model checklist . 64

7 Discussion 65
7.1 Limitations . 66

8 Conclusion 68
8.1 Further research . 70

References 72

A PDD Activity and Deliverable tables 76

B Semi-structured interview guidelines 79

C Software platforms documentation analysis 82
C.1 .NET (C# / VisualBasic.net / J#) 82
C.2 Grails (Java) . 83
C.3 Struts 2 (Java) . 83

C.4 Spring (Java) . 83
C.5 Android SDK (Java) . 84
C.6 Node.js (JavaScript) . 84
C.7 iOS SDK (Objective C / Swift) 85
C.8 CodeIgniter (PHP) . 85
C.9 Zend (PHP) . 85
C.10 Django (Python) . 86
C.11 Ruby on Rails (Ruby) . 86

D Experiments performed 87
D.1 Performance experiment . 87
D.2 Maintainability experiment . 91
D.3 Scalability experiment . 94

E Statement of authenticity 96

List of Figures

1.1 Bottom-up application architecture from data perspective . . . 3

2.1 Process-Deliverable Diagram of the Research approach 14

3.1 Data management component architecture 19
3.2 Example of mapping database table to prototype class 21
3.3 Structure hierarchy differences between object-oriented and

relational systems . 24
3.4 Example of primitive data type mapping between SQL and Java 25

4.1 Concept schema ERD . 32
4.2 Performance experiment pseudo-code for measuring response

time . 33
4.3 Performance chart with experiment test results 34
4.4 Difficulty of code comparison chart 37
4.5 Scalability timeouts per number of concurrent requests by

platform . 40

5.1 General decision making process as described by Baker et al.
(2002) . 43

5.2 Example of structuring the decision problem into a hierarchy . 46
5.3 ORM decision support model overview diagram 50

D.1 Response time performance chart for Yii Framework (PHP) . 89
D.2 Response time performance chart for Django Framework (Python) 89
D.3 Response time performance chart for Grails Framework (Java) 89
D.4 Response time performance chart for Ruby on Rails (Ruby) . 90
D.5 Logical statements comparison chart 92
D.6 Time to program comparison chart 92
D.7 Delivered bugs comparison chart 92
D.8 Scalability experiments results (Ruby on Rails - Ruby) 94
D.9 Scalability experiments results (Django - Python) 94
D.10 Scalability experiments results (Yii Framework - PHP) 95
D.11 Scalability experiments results (Grails - Java) 95

List of Tables

1.1 Differences and similarities between DAO and ORM 5

2.1 Research approach used for each research question 10

3.1 Example of Ruby on Rails ORM query transition to SQL . . . 22
3.2 Example of declarative and imperative operations 26

5.1 Pros and cons analysis score interpretation 54
5.2 Example functional requirements 58
5.3 Example concepts, attributes and relationships identification . 58
5.4 Example primary data workflows identification 59
5.5 Example pros and cons analysis 59
5.6 Example assessment against non-functional requirements . . . 60

A.1 PDD activity table . 77
A.2 PDD concept table . 78

D.1 Performance response time results 88

D.2 Performance response time results comparison 88
D.3 Maintainability experiment results legend 91
D.4 Maintainability experiment results 93

Chapter 1

Introduction

1.1 Background

The pace at which new products and services are released in the software in-
dustry has seen an impressive ascension in the last decade (Fichman, 2004).
This has been possible due to the availability of advanced software platforms,
also known as application frameworks, that provide a basic starting point for
an application on top of which domain specific features are to be built (Evans,
Hagiu, & Schmalensee, 2006). An application framework can be defined as a
instantiation of software reuse techniques in the form of a software package.
The package usually contains an abstract design for a type of software appli-
cation, providing a set of core components which can be easily extended (?,
?).

Considering the level of abstraction of the application base that they offer,
some platforms can provide only a foundation for a certain technology, for
instance a web application framework, while others may be more functional
oriented. Examples of platforms come from both the open source domain
(such as Ruby on Rails, Joomla, Drupal, Node.js, Android) or the propri-
etary software domain (such as iOS, Microsoft CRM, SAP NetWeaver, Oracle
Application Development Framework).

Also outlined by Fayad and Schmidt (1997), the main benefits from the usage
of an application framework are a result of the following key features:

• Modularity - Having the framework carefully structured in easily dis-
tinguishable components reduces the effort of understanding how it
works and what are its core capabilities and limitations.

1

• Reusability - Provides default built-in functionality in a stable form
eliminating the need to implement and test basic, common features.

• Extensibility - The platform’s components are built with extension
in mind, allowing the creation of new functionality.

One of the decisive factors of choosing a specific platform is the amount
of functionality that is included in the framework which covers the require-
ments of the project at hand. The advantages of software reuse are best
applied when using a software platform that is part of a software ecosys-
tem (Frakes & Kang, 2005; Griss, 1997). As defined by Jansen (2013), an
ecosystem based software platform consists of a group of software artifacts
that can be perceived as a coherent whole and with which third parties can
create applications for their individual purpose. The architecture of appli-
cation frameworks is adaptable, taking future changes into account, through
the implementation of extension points. This allows platform extenders to
add new functionality and avoids quick degeneration of the platform (Eick,
Graves, Karr, Marron, & Mockus, 2001).

The software architecture of a platform can be defined as “a set of struc-
tures needed to reason about the system, which comprise software elements,
relations among them and properties of both” (Bass, Clements, & Kazman,
2012). To put this in a simpler form it can be interpreted as the common
understanding of several experts of how the major components work in a
complex software system (Fowler, 2003). Although presented as a high level
set of artefacts that describe the system and its behaviour(Shaw & Gar-
lan, 1996), a close analysis can reveal qualities that influence how well the
end product will perform. In the research of Kabbedijk, Salfischberger, and
Jansen (2013) two architectural patterns have been identified that show how
online applications currently adapt to dynamic functionality adjustments. In
order to reveal the impact that each discovered pattern has on the overall
platform the affected quality attributes are further analysed and discussed.

One critical part of a modern platform architecture is the way data is being
accessed, managed and applied. This element of the application takes care
of the retrieval and storage of information useful to its users. Failure to
facilitate the perfect operation of the data management component can lead
to a decrease in data quality and application performance. In turn this
may cause a functionality fault and an overall bad user experience for the
developed product. Although the term of data management can be used to
describe a vast array of topics, in this research project the concept will refer
to the platform’s component or unit that handles the management of data
from the low level queries to the actual usage in the application business logic

2

implementation.

Information found in software systems can be stored using a vast array of
methods and mechanisms depending on the data type and its purposed
longevity. While information necessary only for the lifetime of a user re-
quest (also know as in-memory data) is automatically handled by the used
programming language or software platform, persistent data may be kept in
independent retention systems. Regardless of the location where the storage
system exists in relation to the software platform, internally or externally,
it is also reffered to as a data source. The software platform communicates
with each data source through particular adapters forming a data gateway
between the application and the storage system.

Figure 1.1: Bottom-up application architecture from data perspective

In addition to having a data source and a data gateway for that specific source
type, complex applications make use of data modeling in order to provide
a simple interface and adding more structure to information. Figure 1.1
shows an example of architecture layers from a data perspective. The data
sources feed the application with information from storage solutions or other
services. The application uses the data gateway to handle the connection and
communication with any data source. Additionally the data management
component can model the received information into abstract objects called
data models which would then be used in constructing the business logic and

3

presenting it to the user.

It should be noted that the data models we are referring to are not neces-
sarily the logical models also present as database physical concepts (such as
tables). To create a better understanding between the business requirements
and the business logic which is going to be implemented in the platform a
conceptual data model can be created. This abstraction is technology in-
dependent and is a distinguishable entity present in the dictionary of the
business requirements.

Fowler (2002) defines a set of patterns that are applied for modelling data en-
tities, their relationships and behavior. In handling data sources he identifies
four types of data gateways:

• Table Data Gateway - An object that acts as a gateway to a database
table. One instance handles all the rows in the table.

• Row Data Gateway - Can be defined as an object that acts as a
gateway to a single record in a data source. There is one instance of
such an object per row.

• Active Record - This gateway wraps a row in a database table or
view, encapsulates the database access, and adds business logic on that
data. The difference between this pattern and the Row Data Gateway
is that it contains additional business logic for each row object.

• Data Mapper - A layer of independent objects called Mappers that
transfer data between them and a database. This type of gateway com-
pletely separates the in-memory objects from the database instances
making it possible to add complex business logic relationships like in-
heritance.

These patterns help in making the platform database agnostic by implement-
ing universal methods of accessing and querying the data storage solution.
In order to allow higher customization they often accept statements in the
native procedural languages provided with every major database, such as
Structured Query Language (SQL).

Although four basic data gateways are outlined above, most of the application
frameworks at the time of this research use two orthogonal object-oriented
design patterns: the Data Access Object (DAO) pattern and Object Relation
Mapping (ORM). Both standards come as an abstraction layer above the
data sources and handle the connection and communication between the
application and the information provider. The similarities and differences
are presented in Table 1.1.

4

Similarities Differences

- acts as an object oriented
intermediary between the
application and a type of database
or other data persistence storage
solution

- DAO refers to singular objects
that create an abstract interface
with the database tables

- does not expose the details of the
underlying database

- ORM refers to creating a virtual
object database that can model mul-
tiple entities (objects) and the rela-
tionship between them

- is bidirectional, moving data back
and forth between objects and the
database

- handles database connections and
contains an abstract interface for
running CRUD (create, replace,
update, delete) queries

Table 1.1: Differences and similarities between DAO and ORM

While DAO tries to simplify the database access by creating an abstract
persistent interface to the data source, the Object Relation Mapping pattern
can relate to as a type of Active Record or Data Mapper, incorporating
complex business logic and making it easy to map any relationship between
models.

1.2 Problem statement

Although one of the main reasons for selecting a specific software platform is
the fact that it satisfies a large part of the required functionality, it is often
encountered that this does not fully incorporate the needed features for the
situation at hand. In this case the software businesses that are using the
platform must come up with other solutions.

For example, a closed-source software platform provides only a set of limited
public extendability points, therefore substantial extensions of the framework

5

often requires bypassing the limitations that the platform’s architecture im-
poses (Bourquin & Keller, 2007). This problem can be avoided by doing a
more comprehensive analysis during the platform selection process.

The decision to use an application framework is rarely influenced by its soft-
ware architecture (Jansen, 2013), therefore leading to initial unawareness of
its limitations. This makes it difficult to avoid future situations that involve
breaking the general conventions of the software platform in order to fulfil
the business requirements of the product. The problem of how data is being
managed is critical for successfully implementing a software project, in con-
sequence the selection of an appropriate pattern for the data management
architecture upon which the product will be built must entail understanding
of the inherent constraints.

Because it provides a simplified, object-oriented way to work with databases,
an ORM component is often considered to be used in the data management
part of the product architecture. Even though it provides immediate benefits
when employed, it also brings negative effects to various application quality
attributes.

The current scientific literature in the software architecture domain does not
specifically address the issue of architectural data management patterns and
the effect that they have upon the overall platform. This research project
looks at one of the popular patterns employed in the data management com-
ponent, the Object Relational Mapping tool. By analysing the outcomes of
using such a component we provide valuable insight to any of the interested
parties, i.e. platform creators and extenders.

The usage of an ORM component as part of a software platform
data management architecture brings many immediate advantages
to the platform extender. However, because of the complexity of
the problem, the decision to include such a component is made
without understanding the imposed constraints and leads to future
unpredictable shortcomings.

1.3 Thesis outline

Chapter 1 introduced the reader to the problem that is being addressed in
this research project by outlining the context and key concepts related to the
subject.

6

Chapter 2 will present the research objective and supporting research ques-
tions along with the methods that are going to be employed to achieve the
end goal. Along with the detailed description of the research approach a
Process-Deliverable Diagram is included to elucidate the steps that were
undertaken and their respective deliverables. At the end of this section a
validity analysis is made.

Chapter 3 gives a detailed look on the key concepts of the research topic
resulting from the structured literature review, case study and documentation
analysis. The first section presents the candidate architecture of a data
management component in a modern software framework. The next sections
continue on developing the subject of what is an ORM and what challenges
does implementing one may have.

Then, in Chapter 4 a presentation of the list of affected quality attributes
when an ORM component is used is given. Each quality attribute is then
further discussed. A set of measurement criteria are established and an
experiment is performed for each one to validate our assumptions.

Chapter 5 starts by describing the general decision-making process and the
available methods that can be employed. Each method relevancy is discussed
and a selection is made for the construction of the research project final
deliverable. The last section of this chapter presents the created model.

Chapter 6 entails how the evaluation of the model was carried out and what
were the results of this evaluation.

Chapter 7 further discusses the decision support model, how can it be used
and what are the implications in that regard.

Chapter 8 closes the research project presenting the conclusions and dis-
cussing how the research could be extended with future investigation.

7

Chapter 2

Research approach

This chapter describes the end objective of the research project and what
are the steps which will be applied in order to attain it, including a set
of supporting research questions, detailed explanation of the used research
methods and a Process-Deliverable Diagram depicting the research approach.

2.1 Research objective

Considering the issues explained above, we can bring a clear definition of our
main research objective:

To construct a decision support model for determining whether
an Object Relational Mapping tool is suitable for the data man-
agement component of the used software platform.

The main goal of this model is to present the capabilities and constraints of
the ORM pattern in the light of the data requirements of the end product.
This will be shown in relation with the effect it has upon the platform’s
quality attributes. A practical outcome of this document would be to support
the selection decision of a specific software platform.

2.1.1 Stakeholders

The key stakeholders would need to have a role that involves direct and
significant influence upon the software product architecture. Depending on

8

the size of the project this can be a Software Architect, Software Developer
or a Product Engineer.

Secondary stakeholders that intermediate the communication and extract
requirements can also be accounted for, i.e. Project Managers or Business
Consultants.

2.2 Research questions

The main research question can be formulated in the following manner:

Q: What are the criteria based on which a software
architect can make a decision for using an ORM tool
in a software platform?

In order to distinguish the criteria needed for making a knowledgeable deci-
sion we need to form a greater understanding on the ORM pattern and the
challenges that its implementation faces. In result we can contrive the first
supporting sub-question as:

Q1: What are the challenges that come from applying the Ob-
ject Relational Mapping pattern?

By evaluating the obstacles that an ORM tool implementation might en-
counter we identify any positive or negative effects that the usage of such a
tool will trigger, leading to our second sub-question:

Q2: What are the consequences for using an ORM tool in the
data management component of a software platform?

In sequence the previously found consequences would need to be translated
into something comparable and measurable in connection with the overall
software platform and end product. This can be done by identifying the
affected quality attributes. Hence, the sub-question:

Q3: Which quality attributes are influenced by the usage of an
ORM tool?

Each significantly affected quality attribute is individually evaluated creating
an overview on how the data management component of the architecture
influences the whole framework revealing the objective of this research.

9

2.3 Research process

This section explains the method applied for achieving the research project’s
end objective. On account of having a decision support model as the main
deliverable, we can classify our research approach as being a design science
research. Also outlined by Hevner, March, Park, and Ram (2004), design
science “creates and evaluates IT artefacts intended to solve identified orga-
nizational problems”. The artefact in this project involves detailed descrip-
tions of the data management ORM architectural pattern merged with the
effect that it has upon the platform quality attributes.

As a base for conducting this research a grounded theory (Glaser & Strauss,
1967) approach is considered. The topic addressed in this project is not
extensively addressed in the literature, therefore a relevant initial theoretical
framework could not be applied. By collecting data from various sources and
analysing them at a conceptual level we can draw conclusions with objective
theoretical insights.

Research
question

Research approach

Q1 Literature study
Documentation analysis

Q2 Literature study
Case study

Q3 Literature study
Case study
Design of experiments

Q Design science

Table 2.1: Research approach used for each research question

In order to better outline the boundaries of the topic and establish a clearer
context, a set of qualitative research methods are going to be used: literature
review, documentation analysis and a case study. The gathered information
would then be employed for identifying the main characteristics of a data
management component. This would contribute to defining the main chal-
lenges and consequences of the data management ORM pattern.

10

The research process will consist of several non-sequential steps which are
going to be detailed in the subsections below.

2.3.1 Structured literature review

A structured literature review will be performed in order to identify the chal-
lenges of the Object Relation Mapping pattern as part of a data management
component. A part of the ideas found in the scientific literature have already
been discussed above. This step will improve the information on already
discovered concepts and extend the list with new ones.

Aside from discovering architecture patterns the literature will be examined
on the topic of software applications quality attributes. In order to infer the
relationship between the ORM tool and the platform’s quality attributes a
greater understanding about what they describe and how can their perfor-
mance be measured is necessary.

A list of preliminary keywords will be created based on the initial research
which will be used for querying academic research search engines, such as
Google Scholar, in order to discover related publications. The returned re-
sults and their references are analysed and filtered. This process will be
repeated several times after the list of keywords is refined contingent on our
findings. To ensure higher relevance the publications from the last 10 years
will be favoured against the older ones.

2.3.2 Documentation analysis

A set of ecosystem based software platforms will be chosen for closer analysis.
To ensure the availability and completeness of their documentation, the most
popular at that time will be selected. Each framework is inspected so that the
main architecture characteristics and functionality of the data management
component is recognized.

The framework selection process will consist of the following steps:

1. Find out which are the most used (on the basis of market share) and
the most popular (that have a significant positive usage trend) pro-
gramming languages to date. Use quantitative ranking systems such
as the TIOBE Programming Community Index.

11

2. Create a short list of programming languages which cover more than
80% of the market share.

3. In consensus with its market share select an appropriate number of
frameworks to be analysed for each programming language.

Each selected software framework will then be analysed from the perspective
of the research topic. As such the main data management component will
be identified and its main features explained. The interdependence between
the component and the entire software platform is also an important factor
to be noted when analysing the architecture.

2.3.3 Case study

As a way to comprehend the context of the research topic and get a grasp of
its application in a real life situation, an explanatory holistic multi-case study
(Yin, 2009) with data collected from multiple sources will be performed. The
data gathering techniques include:

• Conducting interviews at several software businesses that make use
of ecosystem based platforms and identify how do they use the data
management component of the framework. To support the validity of
their knowledge, the people that are going to be interviewed should be
directly involved in the development process of the product. This in-
cludes both computer programming or designing the software architec-
ture. The interview will be focused on two parts: the method in which
they employ the data management component and what has been the
effect of that component on the quality attributes of the application.
A preliminary interview guideline document has been created and is
present in Appendix B.

• Gathering data about existing data management platform components
and their usage issues from querying development Q&A websites (such
as StackOverflow, CodingStack, CodeRanch). As the afore mentioned
websites generally include issues with a high degree of specificity, this
step will be executed in a latter phase in order to acquire the necessary
knowledge to be able to filter out and classify the information.

The case study does not have the purpose of answering our research ques-
tions or providing clear explanations for what are the challenges when using
an ORM, but rather give an indication of what the experts in the domain
know about the issue and how do they usually choose to handle it. Further

12

elaboration on the subject will be done with some of the case study subjects
as they are going to be used to evaluate our final deliverable.

2.3.4 Quality attributes impact measurement

Once the research context is clarified and the challenges for using an ORM
tool are identified we pursue on discerning the affected quality attributes of
the application framework. This is done to show that the usage of an ORM
component has a significant effect on the platform. Along with identifying the
influenced software qualities, this also helps in quantifying the consequences
as they are more extensively covered in the literature.

The list of the influenced quality attributes is constructed through logical
inferences from the previous gathered data and through the design of several
computer experiments which measure the impact upon the software platform.
The process of establishing the measurement criteria and performing the
measurements is further explained in Chapter 4.

2.4 Process-Deliverable Diagram

With the purpose of creating a simple but insightful view upon the employed
research approach, a Process-Deliverable Diagram (PDD) has been built ac-
cording to the method described by van de Weerd and Brinkkemper (2008).
The resulting diagram, depicted in Figure 2.1, represents the main activities
employed in the research method along with every deliverable that emerge
from them. Every activity is put in chronological order, outlining concur-
rency when applicable, and having the outcome deliverable on the right side.

As support for the PDD, every activity and concept (deliverable title) are
further explained in Table A.1 and Table A.2 present in Annex A.

2.5 Validity

The assessment of the quality of this research project is done by applying
the validity tests as described by Yin (2009), therefore this section covers the
topics of construct validity, internal validity, external validity and reliability.

13

Figure 2.1: Process-Deliverable Diagram of the Research approach

14

2.5.1 Construct validity

The issue of construct validity refers to the decision of correctly adopting
operational measures when studying the concepts involved in the research.
For the most part being an issue for projects in the data collection phase
especially when a case study research method is being used (Tellis, 1997), the
solutions proposed by Yin (2009) involve ensuring the objectivity of process
through the use of multiple sources of evidence and the identification of the
chain of evidence.

To conform with these requirements a multi-case study is performed at com-
panies, which don’t have a direct business connection and use different tech-
nologies for developing their products. This is done not only to provide a
broad view upon the current state of the software industry on the research
topic but also ensures that the created decision model will receive feedback
from a contrasting collective.

2.5.2 Internal validity

Internal validity relates to the correctness of inferring causal relationships.
Being only an issue for explanatory studies in the data analysis phase, it
raises concerns when not all involved factors are considered.

Due to the fact that this research focuses on a problem which only has two
states (the presence or absence of an ORM tool in the software architecture)
it significantly reduces the number of failures to catch certain conditions or
factors when interpreting the gathered data. All the causal relationships
being made are validated through experiments and expert validation.

2.5.3 External validity

The problem of external validity is focused on establishing the boundaries
to which the study’s presumptions can be generalized beyond the context of
the case study or other collected data. This ensures an objective view on
the studied topic and eliminates the failure to extract outcomes specific to a
broader population.

The decision support model we are creating includes data from multiple
sources that have real implementations in the software industry and a repli-
cation logic has been applied when collecting the data. As a support method,

15

a set of experiments have been carried out to validate the quality attributes
impact presumptions.

2.5.4 Reliability

The reliability of the project stands for the ability to replicate the study
results when the data collection and analysis procedures are applied in a
similar manner. This implies a thorough documentation of all the steps
taken during the research as well as rigorous explanation on how to employ
them.

Along with a Process-Deliverable Diagram (see Section 2.4) which describes
the whole process activities along with their consequent deliverables, the
case study interviews have been conducted following the guidelines present
in Annex B and all the computer experiments followed are detailed in Annex
D. The structure of this document follows the logical sequence of the steps
followed.

16

Chapter 3

Research Study Findings

This chapter is based on the detailed examination of the project context by
applying the following three research methods: performing a structured lit-
erature review on the topic, analysing the documentation of several software
application platforms and conducting a case study.

As a result, the first section goes into more details on how the data manage-
ment component works and presents its architecture fragments. We continue
with a section on where in this architecture does the Object-Relation Map-
ping module fits and what are its main functions. The last section discusses
the challenges that arise when trying to build an ORM tool.

3.1 Data management component architec-

ture

As a preliminary step for establishing a clear image of what the data manage-
ment component of an application framework might look like, the scientific
literature in the domain has been analysed.

Having a vital role in the software creation process, the software architecture
consists of several architectural elements that have a particular form (Perry &
Wolf, 1992). This architectural form on its own is composed of properties and
relationships that have the function of defining constraints either in choosing
that specific element or in its placement (organization and interaction with
other architectural elements).

Because the relevant literature did not detail the topic to the extent that

17

is needed in this study we have pursued in analysing the documentation of
several application frameworks currently used in the software industry.

As a starting point we selected nine programming languages used in enter-
prise applications by looking at the TIOBE Programming Community index.
This index is an indicator of how favoured are certain programming platforms
based on the number of engineers specialised in that language, courses, third-
party vendors and relevant hits on more than 20 search engines.

Considering the gathered short list of programming languages and the avail-
ability of ecosystem based application frameworks for them, we selected a
number of eleven frameworks for which the documentation will be closely
analysed so that the data management component architecture can be dis-
tinguished. A detailed report of the documentation analysis can be found in
Appendix C.

One observation that could be made immediately after analysing the report
is that almost all the popular modern application frameworks have a strictly
modular architecture following the single responsibility principle (Martin &
Martin, 2006). Although created more than 25 years ago by Krasner, Pope,
et al. (1988), the Model-View-Controller (MVC) paradigm is still used in
most of the platforms, providing a straightforward separation between data
entities, their behaviour and the end-user presentation (views). This means
that the data management component will always reside in a completely
separate module which for some instances can also be completely detached
from the application.

With the rise of agile development several software design paradigms have
gained popularity that adapted to the change-responsive release cycle. Dur-
ing the documentation analysis it was noticed that there are frameworks
which give a high importance to implementing these paradigms such as don’t
repeat yourself (DRY), first presented by Hunt and Thomas (2000), or Con-
vention over configuration (CoC).

A layered system architectural style (Garlan & Shaw, 1994) was applied to
model the data management component for modern frameworks (see Figure
3.1), providing a hierarchy of the inner components. Each layer provides
services to the layer above it.

18

F
ig

u
re

3.
1:

D
at

a
m

an
ag

em
en

t
co

m
p

on
en

t
ar

ch
it

ec
tu

re

3.2 Object Relational Mapping

In general an ORM refers to a software component that maps data between
incompatible type systems in object oriented programming languages by cre-
ating a virtual database that can be used from within the language. By
doing this it creates a complex persistence layer for the application that falls
beyond the scope of the developed environment into a storage solution.

A common example would be mapping the data from an SQL database in
an object oriented environment, including not only the translation between
the object state and a database column/row but also a definition on how to
generate manipulation queries. This means that the ORM component would
be handling the database connection, create an abstract interface that would
allow basic operations to be performed in an object oriented fashion and
maintain a bidirectional synchronization between the created objects and
their persistent storage solution counterparts.

The object paradigm borrows concepts from the software engineering field,
whereas the storage solution focuses on the mathematical set theory (Ambler,
2000). Applying an object-oriented approach for controlling the underlying
application data streamlines the development process and brings several ben-
efits (Rumbaugh et al., 1991).

An ORM exists in the form of commercial or open source packages, inde-
pendent or built into a software framework, but often the developer can also
opt to build one from scratch in order to better adapt to the situation at
hand. Even though a customised solution would seem enticing at first the
challenges faced by building an ORM tool are not trivial and raise multiple
issues on their own as explained in section 3.3.

Often following the Active Record pattern described by Fowler (2002), an
ORM tool allows creating prototype classes for business entities and links
them back to the storage solution, not only connecting the object oriented
environment with the actual data but also modelling behaviour (ex. calcu-
lating any customer benefits as soon as his age changes).

Also mentioned by Juneau (2013), by applying a higher level of abstraction
on the data present in the storage system an ORM component also makes
use of the following features:

• Defining abstract entities which have a direct correspondent in the
business side of the software application. By making sure the termi-
nologies used are the same, the development process better aligns with

20

the product business strategy eliminating any eventual language non-
conformity. An example of how a database table could be linked to a
prototype entity class can be seen in Figure 3.2.

Figure 3.2: Example of mapping database table to prototype class

• Automatically synchronize entity specification with database schema
regardless of the database type through the use of adapters (database
agnostic). More advanced ORM tools can manage all the database
migrations that were applied over time and keep track of the state in
which a certain database resides.

• Modelling relationships (one-to-one, one-to-many, many-to-one, many-
to-many) between the defined entities. By creating tangible connec-
tions between concepts it creates an opportunity for assuring tight
coupled data that can be accessed and validated in a straightforward
manner.

• Easy to understand and write queries independent of the underlying
query language of the storage solution. It is often the case that an
ORM will include an implementation of a high level query interface
that is very similar to the DAO object pattern. The readability benefit
that comes from this can also be depicted from the example found in
Table 3.1.

Ruby on Rails ORM Generated SQL

company = Company.find(2) SELECT ‘companies‘.* FROM ‘companies‘

WHERE ‘companies‘.‘id‘ = 2 LIMIT 1

21

company.sites.where

("created_at > ?",

1.day.ago)

SELECT ‘sites‘.* FROM ‘sites‘ WHERE

‘sites‘.‘company_id‘ = 2 AND

(created_at > ’2014-07-16 10:32:26’)

company.update_attributes

(name: "Test")

UPDATE ‘companies‘ SET ‘name‘ = ’Test’

WHERE ‘companies‘.‘id‘ = 2

company.destroy DELETE FROM ‘companies‘

WHERE ‘companies‘.‘id‘ = 2

Table 3.1: Example of Ruby on Rails ORM query transition to SQL

• Add validation of object attributes to improve data integrity and con-
sistency. Because of the presence of concrete entity relationships the
validation process can also include complex interdependencies that en-
force cross-entity limitations.

• Implement behaviour triggers that mimic the actual business process.
These callbacks are launched as soon as the object state is being altered
(on/before create, update, destroy).

The complexity of the ORM tool varies between available implementations.
Simple solutions such as ORMlite provide only basic database access and
query abstraction along with entity definition, while more intricate ones such
as Hibernate include the whole array of features mentioned above plus differ-
ent adaptable caching techniques (for example lazy loading or eager loading),
scalability support or even complete object-oriented idioms support for the
concept classes.

The creation of an effective ORM tool is considered a notable difficult prob-
lem because of the vast array of issues that it needs to address (Neward,
2006). The next section presents an overview of these concerns.

22

3.3 Object-relational impedance mismatch

The challenges that arise in the process of mapping data between the object-
oriented environment of the development language and the storage system
are incorporated under the umbrella term called Object-relational Impedance
Mismatch. As outlined by Sam-Bodden and Judd (2004) the problems en-
capsulated in this term do not refer only to technical issues but also to a
cultural roadblock formed by two groups of people with different ideologies:
on one hand trying to represent everything as objects with the scope of solv-
ing business requirements, on the other hand trying to flatten and normalize
all the collected data in order to provide efficient and performance concerned
storage and access.

It is therefore critical to understand that the object and relational approaches
are constructed on different foundations, that in turn come with distinct
abstractions or organization rules. Ireland, Bowers, Newton, and Waugh
(2009b) classify the problems of object-relational impedance mismatch under
six categories:

• Structure - is relevant when discussing about the design of the repre-
sentation and the way it is organized in the system. It should be noted
that a class could provide additional arbitrary structure through the
use of methods which makes the object structure volatile in comparison
to a table row which has a fixed anatomy. In object-oriented program-
ming a repetition mechanism is available through the use of inheritance
and polymorphism creating supplementary hierarchy (such as a class
extending another class) not present in relational databases. In short
this means that the representation of an object-oriented class has no
direct correspondent in SQL making the bidirectional synchronization
more difficult. Differences are depicted in Figure ??

• Instance - calls attention to the instantiation of concept representa-
tions, their state and how they behave. In accordance with its founda-
tion ground (set/relational theory) a row depicts a definite statement
about a domain of discourse, in opposition to an object which can con-
tain arbitrary structures or behaviour. This entails that the state of an
object for example cannot not be fully preserved in a relational stor-
age system and certain limitations need to be fixed. Moreover while
the primitive data types in object oriented programming languages are
similar, those from relational storage systems vary to a higher degree
usually adapting to the type of stored data (see Figure 3.4 for exam-
ple). This means that certain storage data types may need additional

23

Figure 3.3: Structure hierarchy differences between object-oriented and rela-
tional systems

translation logic when mapped.

• Encapsulation - refers to the distinction present in how the structural
and functional unit (i.e. an object or a table row) is organized and
accessed. In contrast to having a hidden representation with restricted
access to its properties and contents, a relational table row does not
provide this functionality leading to security concerns on its condition
consistency. Encapsulation is one of the four fundamental paradigms
that are present in object-oriented programming and it can exist even
in high-level structural units such as classes or modules.

• Identity - The concept of identity is different between instances of
classes and a relational system. While in a database a row is always
persistent conserving it’s state and identity, objects exist in a tempo-
rary in-memory environment where the identity differs from its state.
This leads to the existence of two objects with equivalent states but
different identities raising further issues on handling such occurrences.

• Processing Model - Due to the above mentioned structural differ-
ences, managing changes on a certain instance requires further atten-
tion maintaining the state correctly synchronized. This has to be done
keeping in mind that there are transactional differences (the unit of

24

Figure 3.4: Example of primitive data type mapping between SQL and Java

25

work for OOP instructions is smaller than database transactions), ma-
nipulative differences (queries include only primitive declarative opera-
tions whereas objects can perform more complex imperative operations
– see Table 3.2) and environment differences (objects are stored in lim-
ited memory space).

Operation type Example

Declarative operation
(what to do) UPDATE ‘companies‘

SET ‘status‘=’active’

WHERE ‘companies‘.‘id‘ = 2 LIMIT 1

Imperative operation
(how to do) def activate!(company_id)

Company.find(company_id)

.update_attributes(status: ’active’)

end

Table 3.2: Example of declarative and imperative operations

• Ownership - involves the responsibility prioritization for maintaining
the functionality and integrity of the system. A relevant example might
be that the class model and database schema are owned by different
teams creating a necessity for change processing rules to create a valid
correlation.

Another highly debated matter regarding ORM tools is the issue of extreme
convenience to the point of ignorance (Fowler, 2012; Keith & Schnicariol,
2010). Due to the highly abstracted interface for persistent storage sys-
tems, software developers using an ORM component often tend to ignore
the underlying database technology and write code without any significant
knowledge on the topic. While the solution of mapping persistent storage
units to object-oriented classes creates a streamlined development environ-
ment the underlying problems still exist. Not being aware of the challenges
of the ORM makes it problematic not only to fix the potential issues but also
to predict them.

The diversity of IT systems and technologies makes it impossible to success-
fully create a completely database agnostic solution that accommodates any
use case. The mapping problem should not be hidden from the platform

26

extender, this is why the scope of an ORM component should be limited to
providing a way to avoid rewriting repetitive storage related tasks (reusability
of existing data management practices).

In an effort to provide a clear process on how to tackle the problem of im-
plementing an Object-Relational Mapping tool, Ireland, Bowers, Newton,
and Waugh (2009a) provide a framework for identifying the common levels
of abstraction and the root cause for the mapping mismatch. The created
process not only helps understanding the source of any issues that may be
encountered, but also gives instructions on how to address them at the most
convenient level of abstraction.

27

Chapter 4

Affected quality attributes

Every software project begins with creating a candidate application archi-
tecture that defines the relevant components and the relationship between
them. Problems identified early in the development process can be solved in
a quicker manner, as such evaluating the software architecture of a platform
even in its early stages avoids bigger costs for resolving issues in the product
testing phase (Clements, Kazman, & Klein, 2003). The evaluation forces the
stipulation of certain quality goals which better scope the architecture and
settle any potential conflicts. This is done through the analysis of quality
attributes.

Quality attributes, also referred to as non-functional requirements, are sys-
tem properties that help define and measure how the product is performing.
The use of concrete metrics to estimate software quality identifies potential
problems and leaves space for further improvement of the system. To assure
better customer satisfaction, it is a good practice to consider targeting certain
quality attribute goals from the planning and design phase (Kan, 2002).

The failure to meet user necessities often is a result of software developers
focusing on resolving all business requirements through the application func-
tionality without correlating them with the impact on the quality parameters
of the system (Barbacci, Klein, Longstaff, & Weinstock, 1995). It should be
noted however that the quality attributes of the system are frequently in-
congruous, making it difficult to create an all-around linear system metric.
This constrains the designer to achieve a balance between several attributes
where the trade-off is also acceptable for the customer.

As a result of careful analysis of the data management component of mul-
tiple software platforms, along with the information gathered from industry

28

experts via the performed case study and the structured literature review,
we have come to the deduction that an ORM software component in general
will affect the following quality attributes: performance, maintainability,
scalability.

Although other quality attributes might be affected by this component, we
believe that it is to a smaller degree or not common to all ORM tools regard-
less of how it is implemented. As such the following list of common quality
attributes was discarded:

• Reusability. While an ORM component can contain a vast array of
features which perform common practices when working with databases,
this is not the case for all implementations. The degree of reusability
is relative to the complexity of each implementation, most of them be-
ing limited to the basic CRUD (Create / Retrieve / Update / Delete)
operations relative to abstract concepts.

• Availability. Although one can argue that the proportion of time
when the system is functional can be smaller due to a higher number
of components included in the architecture that can fail, the available
ORM components are generally stable and influence this quality at-
tribute in a smaller degree.

• Manageability. The management of a platform which contains an
ORM component brings no advantages or disadvantages through its
functionality to the person responsible for this task.

• Reliability. Although the reliability of a system can be affected by the
negative effect on performance or scalability, we feel that the impact
on reliability is dependent on the influence pertained on the other two
quality attributes. Because of its secondary status we have discarded
it from our analysis.

• Security. An ORM component can contain various security practices
implemented in the storage process (such as SQL injection). Due to
the limited availability of these features and its direct link with the
reusability quality attribute we have chosen to not analyse it further.

• Usability. Although the abstraction of the storage solution brings
several usability benefits such as the ability to write common oper-
ations more efficient, this quality attribute was dismissed due to the
component’s scope. As its purpose is not to completely replace working
with the underlying technology, an ORM would require an additional
effort for learning how to use it, while continuing to partially check and

29

optimize how its operations translate to database queries.

• Supportability, Testability. Not applicable due to the component
scope and functionality.

The next sections further detail each analysed quality attribute, the cause and
effect of an ORM on that parameter and presents the validation experiments
performed during the research study.

4.1 Performance

Performance is one of the indicators for the quality of service of a soft-
ware product along with availability and reliability (Hasselbring & Reussner,
2006). This quality attribute is concerned with how long does it take for the
application to respond to a certain event, either triggered by the user or by
other internal/external stimuli, and its throughput for a fixed time interval.
The difficulty of establishing a system performance comes from the variety
of request sources and arrival patterns (Bass et al., 2012).

Failure to achieve a satisfactory performance affects the application respon-
siveness and the productivity of its users causing loss of revenue and sup-
plementary costs for the necessary adjustments on the system (Williams &
Smith, 1998). Moreover the changes applied on the product in a latter stage
has increased costs, which is why a performance evaluation should be started
when designing the software architecture. Kazman et al. (1998) proposes a
method for evaluating the architecture quality called Architecture Trade-off
Analysis Method (ATAM). This method should be considered in order to
validate the architectural decisions made that have significant impact on the
application quality attributes.

Due to the fact that an ORM tool constitutes an additional abstraction
layer above the database connection adapter addressing a non-trivial map-
ping problem between two incompatible systems (as detailed in Section 3.3),
we infer that the inclusion of such a component may have a negative impact
on the performance of the platform. This has been also confirmed by several
of our case study interviewees who have encountered performance issues with
using ORM implementations in their software projects.

30

4.1.1 Measurement criteria

The Response time is a metric that represents the amount of time it takes
the software application to return a response on a given input. Because of the
nature of our studied topic we will consider that the request for service will
involve only database queries eliminating other solicitations (such as network
activity, disk IO) from our discussion. The response time is composed of the
wait time and the service time, which represent the time spent in queue
waiting for the system to take over the task and the actual time spent to
resolve the task.

Throughput refers to the number of requests that can be completed by
the system in a fixed interval of time. This can be calculated by dividing
the time period by the average response time. Due to the fact that various
factors can intervene with the throughput it is usually the case that separate
tests are ran so that real environment conditions are considered.

4.1.2 Experiment

This experiment has been conducted in aid of our statement that an ORM
component has a negative impact on the platform performance quality at-
tribute. Due to the high abstraction being done between two incompatible
systems, the supplementary logic has a significant influence on the response
time of the software framework. This is a result of several mapping difficul-
ties such as: managing primary data types which do not exist in one of the
system or synchronization of information state due to differences in the size
of the unit of work.

It should be noted that because of the differences between programming
languages, software frameworks and ORM implementations this test should
not be considered as an exact benchmark for performance, but more as a
validation for the negative trend that is common regardless of technology
used. The

In order to test the performance of the data management component of
the system we have created a concept schema composed of three models:
a Company which can have multiple Employees which can hold multi-
ple Documents. Each entity has three description attributes along with a
primary key for identification, the appropriate foreign keys for relationship
modelling and two logging attributes that register the date at which the

31

Figure 4.1: Concept schema ERD

record was created and updated. A graphical representation in the form of
an Entity-Relationship Diagram (ERD) is depicted in Figure 4.1.

A persistent storage solution has four basic operations that are frequently
ran by a data management component: create, read, update and delete.
Also known under the acronym CRUD, these actions also refer to the SQL
commands CREATE/INSERT, SELECT, UPDATE and DELETE. The fol-
lowing pseudo-code (Figure 4.2) describes the experiment process steps that
we undertook to measure the average response time of the data management
component.

The test was divided into three sections which were benchmarked:

• Create entity instances and the relationships between them.

• Browse through records and their relationships and update them.

• Retrieve records and their relationships and delete them.

Each section provides a response time value upon running the test which
indicates the time from start to finish to perform the operations as measured
by a regular clock. In order to avoid inaccuracies all tests were performed
several times and an average response time value was calculated.

To prove the results’ independence from a specific software platform the ex-
periment was done for several frameworks. The selection of the test platforms
was carried out taking into consideration the previously analysed documen-

32

Benchmark time to run :
Create Company
For i from 1 to 10 run :

Create Employee i f o r Company
Create 10 Documents f o r Employee i

Benchmark time to run :
Read Company
Update Company
For each Employee i from Company

Read Employee i
Update Employee i
For each Document j from Employee i

Read Document j
Update Document j

Benchmark time to run :
Read Company
For each Employee i from Company

Read Employee i
For each Document j from Employee i

Read Document j
De lete Document j

De lete Employee i
De lete Company

Figure 4.2: Performance experiment pseudo-code for measuring response
time

tation and the cost of setting up a valid test environment, therefore four
open-source frameworks were chosen written in different programming lan-
guages: Grails (Java), Yii Framework (PHP), Django (Python), Ruby on
Rails (Ruby). All chosen platforms have the ORM component loosely cou-
pled, for that reason they can be either removed or disabled for the purpose
of this test.

The experiment results are aligned with our previous statement showing a
significant negative trend for running database queries through an ORM com-
ponent as opposed to running them directly through the database adapter
by using SQL. Therefore the response times recorded when using an ORM

33

Figure 4.3: Performance chart with experiment test results

This performance chart shows the difference between response times when the
ORM component is used or when direct SQL input queries are applied. For
example the PHP test results imply that the average response time when an

ORM was used (0.19262s) is almost 80% slower then the response time where
direct SQL queries were used on the database adapter (0.107040s).

component (Figure 4.3) are 80% to 230% slower than providing direct SQL
input queries. The complete set of results and accompanying comparison
charts can be found in Annex D.1.

The performance consequences of using an ORM are very relevant for ap-
plications that have a higher number of users and demanding work cycles.
This can also be the case for products where future scaling is considered. On
that account it is often the case that the current project at hand does not
include a completely performance centric process, but rather encompasses a
handful of parts that have higher execution demands making the inclusion
of an ORM more likely. For that reason it is important to rigorously iden-
tify potential hotspots in the application workflow that present performance
threats.

4.2 Maintainability

Maintainability is the quality attribute of a system that pinpoints the diffi-
culty with which changes can be applied to the application to fix errors, im-
prove on existing components or build new functionality (Somasegar, Guthrie,
& Hill, 2009). The importance of this characteristic is a result of the high
costs of maintaining a software product which is usually around 40% of the

34

cost of development (Coleman, Ash, Lowther, & Oman, 1994). A system
with high maintainability will reduce the tendency of code entropy and re-
duce the costs of any alterations which undergo in its life cycle.

Oman and Hagemeister (1992) propose a hierarchical structure of maintain-
ability attributes which can be combined to form a singular metric that can
be used to measure a software system general maintainability. The process
of automation for analysing a system’s maintainability quality has proven to
be a helpful asset in the decision making process. Thus it can be used for
decisions regarding quality of subcomponents, testing resources allocation or
even development-purchase trade-off analysis.

The issue of maintainability sits at the core of building an ORM tool, its
scope being to provide a familiar setting with the rest of the development
environment. Having an object-oriented interface for working with the per-
sistent storage system does not force the developer to switch to another
design philosophy when writing the application code and improves its read-
ability. Moreover the implementation of common relational data concepts
and operations speed up the development process and its ability to adapt to
change.

4.2.1 Measurement criteria

Because measuring software maintenance and its relation to the actual code
base of the product is problematic, several index computation techniques
have emerged. These techniques are often used interchangeably or simulta-
neously to form a unique value to measure software maintainability. Among
the used methods we can enumerate:

• source lines of code (SLOC) - one of the popular methods of mea-
suring the effort put into creating a software product by counting the
number of source code text lines. In order to make the metric more
relevant for several types of code writing, a distinction was made be-
tween counting the physical and the logical (independent statements)
lines of code.

• depth of nesting or inheritance computation refers to the degree
of encapsulation of functional units (functions, classes, modules etc.)
within the application code. A highly nested functional unit is more
complex and intricate to maintain.

• module coupling and cohesion measures the degree of interdepen-

35

dency between application modules and the degree with which the ele-
ments inside each module belong together respectively (Stevens, Myers,
& Constantine, 1974). To have high maintainability it is good practice
to implement loosely couple modules with high cohesion.

• cyclomatic complexity measure - a software metric first introduced
by McCabe (1976) to compute the complexity of a computer program’s
code by analysing its control flow graph. It can be applied on different
abstraction levels such as command, function, class, module, and counts
the number of linearly independent paths that can be taken through
the control flow graph.

• Halstead complexity measures, as the name suggests first introduced
by Halstead (1977), are a set of software metrics that calculate several
characteristics of the implementation code, such as the difficulty of
comprehension or creation effort.

External metrics can be also used for measuring the maintainability of a
software system but are beyond of the scope of our research since they can
only be applied on existing product implementations.

4.2.2 Experiment

To prove the positive trend for maintainability when using an ORM an exper-
iment has been performed. Because our research topic is limited to evaluating
the effects of an ORM inside the data management component of a software
platform, there are several previously presented metrics that do not fall inside
the scope of the experiment. This being said the intention is not to analyse
the ORM implementation libraries but rather see the differences between the
code used for building basic specific functionality with or without this com-
ponent. Therefore the cyclomatic complexity, coupling/cohesion and depth
of nesting/inheritance are not relevant for our experiment.

This experiment has been conducted in aid of our statement that an ORM
component has a positive impact on the platform maintainability quality
attribute. Due to the abstraction of the persistent storage system in an
object oriented fashion, the coding style is consistent and more compact
having an impact on the overall effort of development and code complexity.

With the reasoning of covering the whole array of basic database opera-
tions, the maintainability metrics were measured upon the source code bench-
marked in our performance experiment. The pseudo-code for the analysed

36

implementation is present in Figure 4.2.

For each of the four platforms that was previously tested, we extracted the
benchmarked code snippets and put them side by side for further analysis.
To measure the maintainability aspect of the code we used two metrics: the
source lines of code measurements and the Halstead complexity computation.

In order to correctly assess the complexity of the source code we have con-
sidered that all the SQL queries present in the code are separate logical
statements that need independent analysis from the rest of the code. This
is due to having a completely different syntax and requiring the developer
to think outside the platform environment in which the code is being built.
As such, although both the physical and logical source lines of code metrics
were measured, we feel that the physical statement measures are not relevant
considering that we are analysing only a small part of the software system.

Figure 4.4: Difficulty of code comparison chart

Part of the Halstead complexity, the difficulty of code tries to quantify how easy
it is to write the analysed code. This chart shows that according to this metric it

is about 50% to 150% less difficult to comprehend the written code when an
ORM component is used due to streamlining the development process.

The results confirm that there is a positive impact on the application code
maintainability once an ORM is used. This is the case for both metrics used.
Therefore, while there is little difference in the physical lines of code between
the two implementations, writing data queries without an ORM adds an
extra 8% to 65% more logical statements.

All of the Halstead complexity metrics show a significant trend for the code
when not using an ORM. It is both more difficult to comprehend and build

37

while attracting almost double the amount of delivered bugs. It is also no-
ticeable that the Java-based ORM implementation (Hibernate) stands out
from the others because of its high complexity, reducing the maintainability
differences. The complete set of results and accompanying comparison charts
can be found in Annex D.2.

4.3 Scalability

Scalability refers to the system ability to react to significant increases in work
load without the degradation of performance (Weyuker & Avritzer, 2002).
The term is also used for measuring the ability of the product to be easily
modified as so it adapts to higher demands. The scalability characteristic of
a system is in direct connection with its long-term success (Bondi, 2000). An
unscalable system does not necessarily mean that it has poor performance
under higher work loads but also that the costs necessary for keeping the
product running exceed expectations.

Although it is frequently present as a requirement that a system is scalable,
the factors that contribute to this software quality are not as clear as for other
attributes. This makes it difficult to identify the necessary steps needed for
improving this trait. As such, a set of important performance measurements
are established for the project at hand which contribute for estimating the
software’s ability to adapt to more demanding conditions.

Homer, Sharp, Brader, Narumoto, and Swanson (2014) have created a com-
prehensive guide on patterns and practices that are usually applied for in-
creasing a system’s scalability. Although they have a focus on cloud-hosted
applications, most of these practices can be applied for any type of software
product where scalability is a concern. Cloud computing is an umbrella term
referring to software applications offered as a service on the Internet and the
software/hardware setup present in the datacenters which offer those services
(Armbrust et al., 2010).

The reason for choosing to focus on cloud-hosted applications is the sig-
nificant benefits of cloud computing when it comes to scalability. A cloud
solution offers total flexibility for assigning the necessary resources for run-
ning your application while keeping a transparent overview on the involved
costs. What this mean is that it provides purportedly infinite scalability in a
seamless fashion as soon as the workload increases with an easily predictable
cost.

38

4.3.1 Measurement criteria

As the term’s definition suggests, scalability can measure both the per-
formance degradation under different workloads or the system’s ability to
be changed to adapt to such situations. This can mean monitoring either
the performance metrics under certain environment conditions or calculating
other quality metrics (such as maintainability, running cost) under different
circumstances.

Among the common techniques to measure this quality attribute is selecting a
set of performance metrics that are appropriate for the product and keeping
track of how they evolve. As a result the response time and requests
throughput are valid candidates for the observation. After the selection, the
scalability measurements imply monitoring the performance metric reaction
to changing the size and volume of the workload. An example for this would
be simulating increasingly high number of concurrent requests or the
degradation of performance because of a big volume of data stored in
the persistent storage system.

It should be noted that the monitoring process for the performance metrics
when trying to evaluate a system’s scalability often results in bad measure-
ment results along with system failures. The assessments should therefore be
built with this in mind, looking also for request timeouts, components
freezing or resource bottlenecks.

Because the factors that contribute to the scalability of the system are vague,
establishing a measurement criteria for this quality inherits the same short-
coming. Therefore a framework such as the one created by Kaner and Bond
(2004) or Schneidewind (1992) is recommended to be applied for the project
at hand in order to evaluate if the scalability metric chosen is relevant.

4.3.2 Experiment

As it is directly linked with the performance quality attribute, we infer that
the scalability of a platform should be negatively affected by the inclusion of
an ORM in the data management component. Therefore an experiment was
conducted to sustain this statement.

Because the performance degradation of response times was demonstrated
in a previous experiment, we decided to expand it in order to show its effect
on scalability. All the test platforms are web frameworks, this why the tool
httperf (Mosberger & Jin, 1998) was used for gathering various metrics:

39

number of concurrent requests, number of replies, total test time and number
of timeouts.

For each platform the test ran involved sending a set of 1 to 20 concurrent
requests and measuring the total time it took the framework to send out the
responses. As a potential system requirement we opted for a timeout of 5
seconds so it limits the testing time.

It should be taken into account that the maximum number of concurrent
requests used in this experiment was not randomly chosen, but a result of a
series of preliminary tests. For that reason it was checked prior to starting the
experiment what are the limits for each platform in the number of concurrent
requests they can handle without the appearance of any timeouts. While
this limit varied from platform to platform we have chosen to select the
maximum so that the results would be valuable regardless of the differences
in performance.

Figure 4.5: Scalability timeouts per number of concurrent requests by plat-
form

This chart shows the number of timeouts that occurred on a platform with an
ORM component when a certain number of concurrent requests were made. For

example, while the PHP framework had greater performance than the other
frameworks with no timeouts occurring during the tests, the Java-based one

stopped giving back responses after 17 concurrent requests per second were sent.
The test results for all platforms returned no timeouts when the ORM

component was not used.

The results are on par with our assumption and show significant response
time differences once the workload increases. As such, the platforms correctly

40

responded to all the concurrent requests when no ORM component was used
with a slight variation on the total time as a result of the difference in pro-
gramming language performance. However when an ORM component was
utilised the performance started degrading slowly to the point that requests
were timed out (Figure 4.5).

An exception to the rule was the Yii Framework (PHP) which showed better
performance (no timed out requests) than the other platforms as a result of
the lighter ORM implementation but experienced a more abrupt response
time degradation towards the end of the test (Figure D.10).

This shows that the additional logic necessary for the bidirectional synchro-
nization of the ORM component imposes scalability repercussions regardless
of the size of the library. Reducing the number of features in the ORM does
increase its performance but still presents scalability issues on the long term.

The complete set of results can be found in Annex D.3.

41

Chapter 5

Decision support model

The individuals in charge with making decisions regarding the software archi-
tecture of a product are often put in situations where not enough information
is available to support their selection. Therefore a decision is adopted based
on previous experience and scarce facts available in the documentation of
reused components. This alters the objectivity of the decision-making pro-
cess and may lead to future unintended consequences.

In this chapter we detail the decision making process along with the methods
that can be employed to reach a valid decision. Afterwards a suitable method
is selected for the research scope and a decision model is created based on
the fixed method.

5.1 Decision-making process

The activity of choosing a candidate option out of several requires the decision-
maker to have sufficient knowledge in multiple aspects of the problem. In
turn the decision objectives need to be identified and a trade-off analysis
needs to be done, all while balancing the involved risks (Keeney & Raiffa,
1993).

As a preliminary action to starting the decision process the problem needs
to be clearly defined and detailed. In the case of our research the trigger
is the little consideration for the data management component architecture
when selecting a specific software framework (see Section 1.2). In other
words an individual in charge with a product architecture takes decisions
regarding the data management component without thinking carefully about

42

its implications, although it directly affects the product. Often misguided by
its immediate benefits, a decision-maker may come to a conclusion that the
inclusion of an ORM component does not have any repercussions on the
quality attributes of the product. As discussed in Section 3.3 and Section 4,
the challenges and consequences are not immediately visible and can lead to
potential issues.

The problem of using an ORM tool needs to keep in mind a number of
requirements such as:

• including support for the persistent storage system that will be used

• facilitating the queries of the storage system necessary to accommodate
the application information workflow

• maintaining a sustainable performance level within the predictable lev-
els of usage growth

For that reason the mandatory goal of this process is making a knowledgeable
decision that maximizes the maintainability of the product code while making
sure that the performance is in acceptable limits and is not affected by any
sudden increases in work load.

Figure 5.1: General decision making process as described by Baker et al.
(2002)

As a result of making a decision, the individual responsible may come to the
alternative to exclude the ORM component or include it for partial/complete
usage. Although the number of alternatives is limited, the complexity of the
underlying problem makes it difficult to make a well informed choice.

Once the problem has been carefully defined along with its objectives, goals
and available alternatives, we continue on selecting a decision making method.
This method will be used in the creation of a support model that aims to
assist the decision maker.

43

5.2 Decision-making methods

Decision making methods are generally accepted techniques in implementing
objective reasoning for the analysis of several available choices (Baker et
al., 2002). These procedures are mainly used when the difference between
the present alternatives is vague and can spawn difficulties in the selection
process.

The process of selecting a technique to be used in our main deliverable is
also a result of the analysis of currently available methods in the scientific
literature. In this section we present some of the more popular decision
making methods and their applicability to our research scope.

5.2.1 Pros and Cons Analysis

The pros and cons analysis is a comparison method often used for simple
decisions with a limited number of alternatives. It implies listing the positive
and negative aspects in parallel and choosing the alternative which offers the
maximum number of advantages and minimum number of drawbacks. Each
point on the list needs to be further explained to provide insight and the
rationale behind the statement.

Although it offers a simple approach for making a decision without requiring
mathematical aptitudes there is a risk of oversimplifying the problem. This
is true for complex issues which often do not have only two contradicting
sides. An example of this would be considering scaling up a system only via
hardware or exclusively with software optimizations. While this is possible,
it does not necessarily provide the optimal solution.

Due to the fact that not all points mentioned in a pros and cons analysis have
equal importance for the decision maker, it can be misleading to compute a
solution just by counting the number and cons and pros. For that reason it
is frequent that a weight is assigned to each entry marking it relevant for the
situation at hand.

A score is to be computed for each alternative using the following formula:

Solution = max(Scorei) where Scorei = Totalprosi − Totalconsi

This can be translated in written form as: the solution is equal to the alter-
native with the maximum score where the score is the difference between the
total number of pros and the total number of cons. If the analysis contains

44

points with unequal importance the formula stays unchanged with the men-
tion that the total number is replaced with the sum of weights per pros and
cons respectively.

5.2.2 Cost-Benefit Analysis (CBA)

The Cost-Benefit Analysis (CBA) is a quantitative method for comparing
decision alternative’s costs in relation to their long term advantages (Baker et
al., 2002). In order for this method to be successfully applied it is mandatory
that both the costs and benefits can be clearly quantified using the same
unitary system, such as time spent, man hours or monetary currency. The
chosen quantification unit needs to have economic relevance to the decision
maker. This also constitutes the main difficulty for using this method as it
is problematic to assign a pertinent value for the implementation expenses
and the rewards that are generated by it (Cellini & Kee, 2010).

The generic process of analysing the costs and benefits as described by
Boardman (2010) contains the following steps:

1. Identify decision alternatives

2. Identify stakeholders who are involved or affected by the decision

3. Determine the measurement criteria and unit for all the costs and ben-
efits

4. Estimate the measurements of costs and benefits for the applicable time
blocks

5. Convert the concluded measurements into a common unit with eco-
nomic relevance for the decision-maker

6. Compare the adapted values taking into account the implementation
risks and value depreciation over time

7. Apply linear relationships such as maximum profit or lowest cost

8. Select an optimal solution

While for the pros and cons analysis the costs are referred to only if they sit in
an extreme: either being too high or very low, the CBA puts them in the cen-
trefold of the method eliminating involuntary subjectivity. Although it brings
additional advantages, this decision-making method’s validity is entirely de-
pendent on the correctness of the costs and benefits estimation. Therefore
any ambiguity present in the measurement phase can produce flawed results.

45

5.2.3 Analytic Hierarchy Process (AHP)

First introduced by Saaty (1988), the Analytic Hierarchy Process (AHP) is a
systematic process of making a decision by organizing the problem’s alterna-
tives and decision criteria into a hierarchy and performing pair comparisons.
This is done using a nine-point scale (1 to 9) to rank the importance differ-
ence between each two criteria and performing multiple mathematical calcu-
lations for establishing a numerical score for each alternative. The solution
is selected based on the maximum total score.

The series of actions needed to apply the AHP method according to Saaty
(1990) are the following:

1. Structure the decision problem by identifying its characteristics, issues,
stakeholders and descend from the goals to the criteria, subcriteria and
alternatives

Figure 5.2: Example of structuring the decision problem into a hierarchy

2. Carry out pair comparisons between each of the identified criteria using
a level of importance relative scale and compute priority vector

3. Carry out pair comparisons between each of the identified criteria and
the alternatives using the same scale and compute priority vector

4. Calculate global priorities for each alternative

5. Select the solution with the maximum global priority score

In the structuring phase of the method it is presumed that the set goal for
this decision does not produce alternatives that are significantly different.
As an example, in the selection process for a car the options available would
not include both small city cars and industrial trucks. Pertaining a similar
level of magnitude gives the used comparison relative scale higher accuracy.

46

The comparison phase consists of comparing pairs of criteria and pairs of
alternatives in relation to each criteria.The fundamental relative scale mea-
sures the impact one criteria has over the other in reaching the set goal. As
such a 1 is assigned if the first criteria is of the same of importance as the
other and 9 is assigned if the first criteria is of extreme importance when
compared to the other one. After everything has been rated a comparison
matrix is built using the formula:

A = (aij) where aij = wi/wj

So for example if comparing criterion i with criterion j and we would set a
value of 9 (criterion i is very important to the end goal when compared to
criterion j):

aij = 9 resulting that wi = 9, wj = 1 , so aji = 1
9

The priority vector represents the principal eigenvector of the comparison
matrix. This needs to be calculated for all the created comparison matrices
along with a consistency check. As a final step a global priority vector is
computed that lists the concluding scores for each alternative. The maximum
between the resulting scores is the optimal solution that would solve the
decision-maker’s problem.

Although proven to be very useful for many decision makers, the Analyti-
cal Hierarchical Process is disputed from a theoretical point of view for the
occurrence of rank reversals when subsequently a non-optimal alternative is
introduced to the same problem (Ishizaka & Labib, 2009).

5.2.4 Kepner-Tregoe Decision Analysis (K-T)

A decision making method introduced in the 1960s by Kepner and Tregoe
(1976), the Kepner-Tregoe Decision Analysis puts an emphasis on weighting
the requirements and dividing them into two groups by their importance:
musts and wants. The first category acts as an elimination step, while the
latter further evaluates the options for better accuracy. As with the other
presented methods the solution is selected after a final score is calculated for
every alternative.

A potential user of this method needs to go through the following stages:

1. Define the decision statement. It should contain the reasoning behind
it, the desired result and the implementation process to reach the end
goal.

47

2. Identify the objectives and divide them into two groups: musts and
wants. The musts consist of critical objectives in the absence of which
an alternative would be not be considered anymore. The wants provide
a lower level list of requirements that can make a differentiation between
the choices.

3. Identify the alternatives. The choices need not to be aligned to the
objectives discovered in the previous step as this will be done in the
next step. The only requirement is that they fall as a potential solution
for the initial decision statement.

4. Filter out alternatives that do not succeed in achieving the musts. Due
to the critical importance of the musts to the business strategy these
choices are completely eliminated from any latter phase.

5. Assign a weight for the items in the list of wants. This is done on a
relative ten point scale (1 to 10) where 1 ranks the entry as being least
important in reaching the end goal and 10 ranks it as very important.
Note that if one of the entry is critical it should be included on the list
of musts and not wants.

6. Score alternatives in relation to each want. The score is calculated
by multiplying the weight of the want with a rating assigned to that
respective alternative. The rating is on the same ten point scale and
measures the degree to which the selected alternative satisfies the ob-
jective.

7. Select the first two alternatives by total score and perform a problem
analysis. By analysing each alternative against the negative effects that
may occur when implementing it, a risk assessment is made. This is
done by listing each negative effect along with scoring its probability
of occurrence and its significance resulting in a total weighted score.

8. Select solution by comparing their total weighted score and risk assess-
ment scores.

The technique is widely used in business management circles and brings
comprehensible structure to the decision process. By filtering out alternatives
through critical requirements it reduces the time needed to make the decision,
preventing complications caused by an overwhelming number of options. Its
validity however is still strongly related to the objectivity of the individual
in charge of assigning the objective weights and their scores.

48

5.2.5 Multi-Attribute Utility Theory Analysis (MAUT)

The Multi-Attribute Utility Theory Analysis (MAUT) refers to a quantitative
comparison method which applies utility functions to transform different
concept measures in a common scale supporting the user to make a more
relevant decision (Baker et al., 2002). The application of MAUT is generally
focused on problems that need to examine the tradeoff between multiple
objectives. In its early applications it was used for solving decision making
problems in the public sector.

Similar to the Kepner-Tregoe Decision Analysis, it employs a systematic
approach where the criteria is identified in a hierarchical manner, a weight
is assigned for each criterion to represent the importance it has for the case
at hand and the alternatives are scored per criterion. The difference appears
when calculating the global score for each alternative. This computation is
done by an utility function that needs to be accurately be identified by the
method user. Although it should rescale any input to values in the 0-1 limits
where 0 is the least preferred solution and 1 is the best, this does not mean
that the function should be linear such as the one described by K-T. As
such, the correctness of the method proposed solution is dependent on the
accuracy of the selected utility function.

5.2.6 Custom Tailored Tools

In order to better understand certain constraints or the complex behaviour of
a problem, custom-tailored tools may be used or implemented to support the
decision process. Although the development of such an artefact requires note-
worthy resources, it can produce results with a higher level of relevance. This
should only be taken into consideration if the previously described methods
are not applicable or provide unsatisfactory results.

5.3 ORM usage support model

Having explained the decision process and the afferent methods that can be
employed to support it, we proceed in this chapter to describe the decision
model for using an ORM in the data management component of a software
platform. For this purpose we have chosen to divide the model into several
parts.

49

Figure 5.3: ORM decision support model overview diagram

50

As a prerequisite the user will need to clearly identify its data requirements
for the project at hand. This step is a preparation for the following model
stages. It provides the necessary information for weighing or scoring certain
statements that are dependent on the project data requirements. It is also
important to identify the primary role of the data and its workflow. This
can lead to storage division by role which in turn means that the following
model steps would need to be repeated for each partition.

The next step would involve providing better understanding on what consti-
tutes an ORM component and list the advantages and disadvantages that it
imposes. The user will then assign a weight for each item in the pros and
cons list and calculate a global score. This score acts as a filter for extreme
cases where the solution is distinguishable and does not require further anal-
ysis. It also forces the decision maker to separately think about each item
and establish the importance for the project at hand.

If the previously calculated score does not sit in the extremes, it is mandatory
that further examination is pursued. This will be done using a straightfor-
ward procedure which analyses available ORM implementation candidates
in relation to data hotspots that can cause potential issues. By fixating
non-functional requirements for performance and scalability the data man-
agement component alternatives can be successfully assessed and a relevant
solution selection can be done.

In the next subsections we continue on detailing each method step, its out-
come and continuation.

5.3.1 Identify data requirements

The identification of relevant data requirements is a very important step for
designing an efficient software system. It provides a list of non-functional re-
quirements extracted from the gathered functional requirements by analysing
the potential data workflow in the system. Because in itself requirements en-
gineering constitutes a complex process that is outside of the scope of this
research we will consider that the complete set of functional requirements
has been gathered, discussed upon and agreed with. With this in mind, we
proceed on how the process of data requirements extraction is done:

1. Identify independent concepts, their attributes and their re-
lationship from analysing each functional requirement. This step
can also be translated into the creation of an entity-relationship (ER)
model. Although not necessary in some cases (such as working only

51

with non-relational data), generating an ER model not only brings
structure and clarity, it also reveals the system’s complexity and can
be easily instantiated into a database.

2. Identify primary data workflows. The primary data workflows
consist of the system simple or complex operations that need to be
performed upon one request or trigger. For the purpose of reducing
the process complexity and redundancy multiple flows which execute
the same logical task may be grouped together. This can be later split
for further analysis if necessary. Each workflow may be further detailed
by including the entangled concepts along with the CRUD operation
performed on it.

3. Identify data hotspots. A data hotspot is a workflow or data entity
that can cause potential issues on one of the quality attributes of the
system (such as performance or scalability) when certain environment
conditions change. Rigorously determining these hotspots prevents the
user in making decisions that may eventually break the platform due
to their high change sensitivity. In order to identify them, one must
analyse the previously found concepts and workflows and look for one
of the following:

• Unusual concept attribute type (which can cause difficulties to
store/manipulate it)

• High number of potential records for a specific concept

• Intricate relationship between two concepts

• Extreme complexity of a specific workflow (requires significantly
more resources to run or involves a lot of concepts)

• High number of triggers for a specific workflow (caused either by
high user traffic or an automatic event)

This step requires the model user to be able to analyse the previously
discovered items with predictable production environment conditions.
The validity of this step is dependent on this prediction which is often
based on previous experience.

4. Document data requirements. Once the previous steps have been
successfully completed, a list of data requirements will need to be cre-
ated. The enumeration will need to include information about the used
storage systems (relational or non-relational) and their role, the con-
cepts which are going to be stored and data hotspots concerns together

52

with potential solutions.

The construction of the list of data requirements is a practical initiative not
only for the purpose of this model but also for any architecture decision
related to the data management component. Between the great benefits
that it provides we can mention: the clear reasoning behind choosing specific
storage solutions and the identification of potential issues that the data for
the project at hand may impose on the software platform.

It is worth mentioning that the selection of a certain storage solution should
be done keeping in mind that it can directly affect the final decision of this
model. The main reason for this can be the limited support of the existing
ORM candidates for this specific solution or the discrepancy between the
purpose of the component and the data that needs to be stored.

In the next subsection we continue on informing the decision maker on what
does an ORM component consists of and how can it fit in the candidate
architecture of the software platform.

5.3.2 Pros and cons analysis

An Object Relational Mapping (ORM) tool is a subcomponent of the
data management module of a software platform that maps data between
incompatible type systems in object oriented programming languages by cre-
ating a virtual database that can be used from within the language. It is
therefore creating a bridge between the implemented storage solutions and
the object oriented language by creating a persistence layer. This abstraction
layer facilitates the work with the storage solution by creating a streamlined
development environment.

It should be noted that although it provides significant abstractions, its pur-
pose is not to completely hide the underlying database technology, but to
increase productivity and efficiency by simplifying the implementation of
best practices on common data operations and workflows. As such the soft-
ware platform extenders will need to possess sufficient knowledge about the
technology behind the used storage systems. To successfully use such a com-
ponent, it is mandatory that the developers understand how every part of
the ORM works and how the used abstractions translate to other query lan-
guages.

In order to better assess the applicability of such a component in the project’s
architecture a list of the main advantages and disadvantages has been con-

53

structed below. Because some cases can clearly push the balance in favour
of a certain alternative, we ask the decision maker to assign a weight on each
item on the list on a five point relative scale, where 5 represents an extreme
level of importance and 1 represents a low level of importance or the project
at hand.

Pros:

• Database agnostic architecture

• High-level concept and relationship modelling

• Reduces development effort

• Reduces maintenance costs

Cons:

• Require additional learning time to become proficient in

• Decrease in performance for data operations

• Additional optimization may be required for scaling

• Cannot accommodate architectures with high scalability

The weight assignation needs to be done keeping in mind all the previously
discovered data requirements. For example, it is obvious that an application
with a lot of data hotspots will show high interest in keeping a good perfor-
mance if it has the potential to scale in the future, while for smaller projects
the development effort or costs may have a more critical stance.

A global score can then be calculated from the difference between the total
assigned weights for the pros and cons. This serves as a guideline for the
decision maker as to how the addition of an ORM component aligns with its
data requirements. Although not definitive (a situational analysis still being
needed), the score result can be interpreted as:

Score (s) Interpretation

s >= 8 Highly probable that an ORM will bring more
benefits than disadvantages.

s <= −8 Highly probable that an ORM will bring more
disadvantages than benefits.

−8 < s < 8 Requires situational analysis for clarification.

Table 5.1: Pros and cons analysis score interpretation

54

On the completion of this step the model user should have a clear under-
standing on what is an ORM component, what implementation benefits and
drawbacks it imposes and how do these relate to its earlier determined data
requirements. In the next subsection a more advanced analysis is made on
how does an ORM component affect the software platform quality attributes.

5.3.3 Situational analysis

In order to better assess the applicability of this data management component
to the current architecture a customized version of the Architecture Trade-
off Analysis Method (ATAM) (Kazman et al., 1998) will be used. However,
because of the technical aspect of the problem, in order to analyse the trade-
offs of the architecture only the architecture stakeholders will be involved.

The addition of an ORM component at the architecture level of a software
platform comes with significant effects on its quality attributes. As such,
additionally to having development value through the streamlined language,
it has a positive impact on the overall system maintainability. This comes
with the cost of added implementation logic to accommodate the difference
between the two incompatible systems (the object oriented software platform
and the storage solution), in result having a negative impact on performance
and scalability. If the decision maker is not completely aware of these cir-
cumstances the following risks may appear:

• Inefficient data queries due to extreme convenience.

• Inefficient data queries due to language standardization logic.

• Incapacity of handling current or future workload due to data perfor-
mance issues.

• In case of a decision to remove the ORM, necessity to do a costly
application rewrite because it sits on the base of all the information
the application uses.

Having known the purported risks, the decision maker along with any ar-
chitecture stakeholders that are relevant to the task will need to follow the
subsequent analysis procedure:

1. Discuss data hotspots solutions. Due to the high risks that they
impose on the final product each item found on the data hotspots list
needs to be further analysed and discussed. Potential solutions to re-
duce the quality attribute degradation will need to be discovered before

55

any decision regarding the data management component is made.

2. Identify viable ORM implementation candidate. When creating
a software product the underlying technology used (such as program-
ming language or low level framework) is rarely influenced by prelim-
inary study but rather by the availability of developer resources or
subjective preferences. This means that the available ORM implemen-
tations may vary both in number or complexity depending on which
technology is being used. This step involves identifying viable candi-
dates and creating a short list to be used later for the assessment. One
additional important trait that also needs to be considered is the ability
to reduce development effort.

3. Create non-functional requirements that establish performance
and scalability caps. In order to accurately evaluate how the ORM
component will accommodate the current architecture a set of non-
functional requirements need to be set. Real-life environment condi-
tions will need to be considered when fixating the specifications along
with a pragmatic view on how the application will scale in the near to
distant future.

4. Assess data management component against non-functional
requirements. Having established a set of requirements for the per-
formance and scalability of the application, we can then pursue in test-
ing the ORM candidates. Experiments should mimic the workflow of
the data hotspots and provide a measurement on how well each ORM
candidate performs.

The experiments performed for measuring the candidate ORMs against the
set non-functional requirements would mitigate any risks appearing from
workload changes, with a focus on the data hotspots that are more likely to
cause issues. This should be done by identifying workflows with peak data
operations present in the application. By setting up a test environment for
measuring requests response time, timeouts or throughput, the dissimilarity
between the implementations can be discovered. The differences could be
the result of additional logic or supplementary optimization.

On the completion of this step the model user should have a clear under-
standing on where an ORM could have a potential negative effect on the
quality attributes of the platform and what solutions does he have in order
to fix them. The next subsection presents the procedure to select a viable
alternative.

56

5.3.4 Solution selection

The final step of the method combines the information gathered in all the
previous phases. As such, the user should be aware of its exact data require-
ments, what is an ORM component along with its advantages/disadvantages
and the potential issues that may arise from his main data workflows. Also
having tested the applicability of each candidate implementation in relation
to the fixed non-functional requirements, the method user can decide if se-
lecting an existing solution is relevant to its situation.

The solution should be selected keeping in mind the following:

• The data requirements should be completely fulfilled by the solution or
adapted so that they still encompass the product objectives and satisfy
the requirements.

• The potential risks caused by future product workload growth should
be encompassed in the non-functional requirements.

• The performance and scalability traits of the solution are in the limits
fixed by the non-functional requirements.

• For alternatives which meet the above conditions the decrease in de-
velopment effort should be the decisive factor.

Having clarified all of the above, the method user can make a knowledgeable
decision on whether an ORM data management component is a relevant
addition to the software framework architecture and which alternative brings
the most advantages to the project at hand.

5.3.5 Example

For the purpose of providing an example of how to use the previously de-
scribed model we will consider the following case:

An online newspaper application needs to be built using a
modern software platform. It currently has a traffic potential of
an average of 10000 unique visitors per day. It will have an av-
erage of 300 articles published at any time. Given the functional
requirements presented below, is an ORM component a valid ad-
dition to the platform software architecture?

57

Functional requirement

1 The newspaper is accessed through the Internet via a public
website where all the following functionality is available.

2 The application has a private dashboard where adminis-
trators, editors and moderators can login with an email
and password.

3 Administrators can manipulate (CRUD) all system users.

4 Editors can manipulate (CRUD) and list/unlist article
categories.

5 Article categories order is determined by a weight estab-
lished through a priority attribute.

6 Editors can manipulate (CRUD) and publish/unpublish
articles (rich-text format).

7 Articles order is determined by a weight established
through a priority attribute.

8 Website visitors can access published articles while brows-
ing through article categories or through the front page.

9 Website visitors can create a user account and comment
on each article.

10 A moderator will validate each comment before it is made
public.

Table 5.2: Example functional requirements

Step 1: Identify data requirements

Concept Attributes Relationships

Article title (string)
content (text)
published (boolean)
priority (integer)

has many Comments
belongs to User
belongs to Article Category

Category name (string)
listed (boolean)
priority (integer)

has many Articles

Comment content (text)
moderated (boolean)

belongs to User
belongs to Article

Role name (string) has many Users

User email (string)
password (string)

has many Articles
has many Comments
belongs to Role

Table 5.3: Example concepts, attributes and relationships identification

58

Data workflow Estimated peak requests/s

User login 10

User (administrator) manipulates other
users

1

User (editor) manipulates a Category 2

User (editor) manipulates an Article 5

Visitor retrieves an Article 27

User comments on article 9

Moderator validates Comment 2

Table 5.4: Example primary data workflows identification

By looking on the functional requirements and the previously identified con-
cepts and data workflows we infer the main data hotspots for this applica-
tion are: the article data entity and the article retrieval workflow. Having
identified the main data hotspots we then pursue in documenting the main
highlights of our findings into a data requirements list:

• The application requires a relational storage system to persist all the
necessary data. Due to its high popularity, an SQL based solution
would be preferred.

• The Article data entity contains rich-text content that may contain
media (such as audio, images or video), storing this concept may require
additional analysis.

• The high traffic for article retrieval may need optimization work for
this particular workflow in order to provide acceptable performance.

Step 2: Pro and cons analysis

Pros W Cons W

Database agnostic architec-
ture

1 Learning time proficiency 2

Concept/relationship mod-
elling

4 Performance decrease 4

Reduces development effort 4 Additional optimization for
scaling

2

Reduces maintenance costs 5 Cannot accommodate high
scalability architectures

1

Total pros 14 Total cons 9

Table 5.5: Example pros and cons analysis

Step 3: Situational analysis

59

Having a pros and cons analysis global score of 5, means that the addition of
an ORM component has a positive trend towards bringing more advantages
than drawbacks to the platform architecture. By looking at the previous steps
we infer that the main concern is the performance and scalability drawbacks
caused by the data hotspots. In order to fix that, the following solutions
were proposed:

• To store the content of the articles, they are going to be modelled into
other data entities or linked through to a local file storage system or a
Content Delivery Network (CDN).

• Article retrieval can have its performance drastically increased by caching
all records so that a database query is not performed.

ORM implementation candidates:

• ORM1 (included in used software framework) provides tight integration
with the other framework components with database migration man-
agement, event callbacks, concept and relationship modelling, concept
validation and inheritance

• ORM2 provides lightweight implementation of concept and relationship
modelling

• ORM3 provides concept and relationship modelling, concept validation
and inheritance, limited SQL database support

Non-functional requirements:

1. System should be able to handle at least 40 concurrent requests without
response timeouts.

2. The response time for an article retrieval should be less than 2 seconds,
regardless of current workload.

Candidate Avg. resp. time (s) Max concurrent req.

ORM1 1.278 40

ORM2 0.918 67

ORM3 1.422 35

Table 5.6: Example assessment against non-functional requirements

Step 4: Solution selection

By looking at the pros and cons analysis score and the situational analysis
done in the previous section we conclude that the newspaper application
can benefit from the inclusion of an ORM tool in the data management

60

component of its architecture. Because it provides better integration with the
existing framework components and additional features that would benefit
the product maintainability, the ORM1 alternative was selected.

61

Chapter 6

Evaluation

In order to assess the created decision model we have conducted interviews
with experts in the domain. All of their suggestions and feedback was kept
into account when creating the conclusive version of the support model. The
interviews were conducted with a total of 3 people with experience in the field
ranging from 3 to 8 years. The highlights of these discussions are incorporated
in this chapter.

6.1 Method

The evaluation was done by presenting the support model to each interviewee,
followed by a conversation where the feedback was recorded. The interview
was done in a semi structured fashion acting in according with the following
fixed topics and questions that were applied for the whole model as well as
for each step:

• Comprehension

What was your understanding that this model would do?

Were you at any time unsure of the action that needs to be performed
for a certain step?

• Applicability

Would you use this decision model when having to decide to incorporate
an ORM in your architecture?

Do you think it is relevant to apply this step?

62

• Suggestions

Is there any other additional action that you would do when making
this decision?

Do you find a step in the model to be unnecessary?

After the feedback was received the decision support model was reviewed and
updated accordingly.

6.2 Feedback

The model has predominantly received positive feedback. All of the inter-
viewed individuals agreed with the fact that the process follows the logical
series of actions needed in order to achieve the end objective: make a knowl-
edgeable decision for the inclusion of an ORM in the platform architecture.
The language used was clear and there was no confusion in what is needed
to be done when performing a certain step.

One of the experts argued that choosing the underlying storage technology
was introduced in the decision model and its example but that it was not
easy to perceive the fact that this decision in itself can have a big effect on the
final solution. It was agreed upon the aspect that the two are not mutually
exclusive and need to be done with great consideration for each other. A
better explanation on this topic was added to the first section.

For the problem of scalability it was also suggested that it would be a problem
if it wasn’t already considered for the part of the architecture outside of the
scope of the data management component. This was further described in the
appropriate step of the situational analysis.

Although should be left as an open subject, the way the ORM candidates are
assessed against the non-functional requirements was highlighted as being a
bit confusing for somebody with less experience. As such, a suggestion of
what should these experiments should measure and the reasoning behind it
were added.

Another issue raised by one of the interviewees was that the development
effort and maintainability aspect of the problem was not given sufficient
attention. The model was constructed with the objective of mitigating any
potential risks that would cause the project to fail. We have found during
the case study interviews that the benefits that cause the positive effect on

63

maintainability are very often influenced by the subjectivity of the decision
maker. The opinions on this are either that the component is significantly
limiting the ability to communicate with the storage solution or that it makes
the development process extremely efficient. Because of the bipolar views,
the development effort was chosen as a criteria of lower importance.

The applicability of the model was a highly debated subject. It was con-
firmed during the interviews that the support model is capable of aiding an
individual into making a more knowledgeable decision. However the level of
experience in the domain may push you to think that you can reconstruct the
steps from previous occurrences. Due to its clear structure some of the ex-
perts stated that they would use it if a more compressed version was available
without the extended explanations.

6.3 Support model checklist

Because it was suggested that the decision support model should have a
minified version that can be easily applied, we created a checklist that goes
through all the steps present in the model. It is recommended that you use
this list only if you have applied the full decision model on previous occasions.
The full support model can always be consulted when having unclarities.

�X Identify concepts, attributes and relationships

�X Identify data workflows

�X Identify data entity/workflow that can cause potential issues (hotspot)

�X Establish potential used storage technologies and their role

�X ORM component purpose is relevant to project data requirements

�X Find data hotspot solutions

�X Identify ORM implementation candidates

�X Predict future application workload (how it will scale)

�X Establish performance and scalability caps (non-functional requirements)

�X Create experiments to measure how each ORM candidate performs

�X Compare experiment results

�X Select solution

64

Chapter 7

Discussion

There were no major barriers encountered in carrying out the research project,
despite the fact that some changes occurred in the process in order to ac-
commodate different issues. The main problem was caused by the scarce
availability of information directly linked to the studied topic. Although
from a technical standpoint sufficient knowledge was found in the literature,
there was little business-oriented work that pinpointed the implications for
architectural decisions.

Moreover the case study confirmed once again that the selection of under-
lying technologies such as the software framework is rarely influenced by its
software architecture, as also described by Jansen (2013). As an example,
the used technology for the products most of our interviewees were building
was a result of the decision made by looking at the availability of developer
skills and resources or a strict personal preference. Because of this we can in-
fer that subjectivity is still a strong characteristic when making architectural
decisions.

Choosing the data management component will inevitably be very dependent
on the underlying technology due to the highly volatile characteristics that
separates them. For this reason the popularity, complexity or usability of the
used technology can counter balance a decision in a certain direction. For
example, a product that is created with a lower-level framework will naturally
not have a wide range of available ORMs and furthermore the creation of
such a tool from scratch can prove to be a high complexity project on its
own, which in the end does not bring sufficient benefits.

An Object-Relational Mapping tool is an abstraction that adds significant
logic to the application framework which can affect the performance or scal-

65

ability of the product. The performance of the component is in direct co-
ordination with the performance of the underlying programming language,
therefore it is evident that the final solution provided by using the support
model may differ when trying to build the same project with distinct tech-
nologies.

It should be taken into account that the created support model retains a
general note in order to cover all the cases mentioned above while still pro-
viding aid for the decision maker with its clear structure and applicability.
Moreover the deliverable generated by the first step of the model can be used
for other purposes and can also be of added value to the software architecture
documentation.

The situational analysis of the support model addresses the risks ensued by
the data management component in general and a potential ORM compo-
nent. By discussing the issues and evaluating them against actual imple-
mentations, we eliminate any future unpredictable shortcomings and raise
the awareness of the component constraints.

As a result of its technical nature, the applicability of the support model
requires the decision maker to have extensive knowledge in storage solutions
and software architectures in general. The method steps involve the close
collaboration with the development team and the individuals in charge with
gathering the end product requirements. This ensures that the formulated
method requirements are based on realistic environment conditions and the
architecture will have a valid implementation instance.

7.1 Limitations

To make it more relevant for enterprise applications we have excluded the
comprehensive analysis of NoSQL databases support for the data manage-
ment component. Therefore all the tests included in this research are mainly
done with SQL-based storage solutions.

Due to the time constraints of this project, we were forced to consider only
a limited number of software platforms to analyse. This may affect the
objectivity with which our candidate data management architecture is built.

Although some literature addresses the topic of data management in a soft-
ware framework, we felt that there is a lack of prior research studies on this
topic with more recent data. As such some of the patterns discovered might

66

be considered outdated or not relevant to modern day software platforms.

The problem of mapping two incompatible systems is very complex, for that
reason the measurements done for estimating the effect on the platform is
dependent on a high number of factors. We acknowledge that some of these
factors may be critical in lowering the impact on the platform when using
an ORM. The decision to not try and optimize the testing environment in
any way was made in order to show that additional steps are needed when
including the ORM component. The quantification of the magnitude of these
steps are outside of the scope of this research project.

67

Chapter 8

Conclusion

To conclude our research we will review the trigger, objectives and outcomes
of our work in this chapter. The selection of a software platform is closely
linked to the degree with which it satisfies the required functionality, however
it is often the case that it does incorporate the needed features. Due to its
importance and low level locality in the product architecture, the data man-
agement component can cause unwanted issues in advanced stages of develop-
ment. By making a knowledgeable decision in an early phase of the product
development, the software extender can avoid future problems caused by this
component.

The objective of this study is to create a decision model that comes in support
for determining whether an Object Relational Mapping tool is suitable for
the data management component of the used software platform.

In aid of our end objective the following research questions were formulated
and answered:

RQ1: What are the challenges that come from applying the Object-
Relational Mapping pattern?

The Object-Relational Mapping pattern’s main objective can be
considered a challenge on its own by trying to map data between
incompatible type systems. The difficulties that arise from this are
known under the name of object-relational impedance mismatch
and come from the fact that the object and relational approaches
are constructed on different foundations (i.e. software engineering
vs mathematical set theory). Therefore it raises concerns on how to
map the dissimilarities in structure, identity, processing and own-

68

ership.

RQ2: What are the consequences for using an ORM tool in the data
management component of a software platform?

Although the immediate benefits that it provides are easily recog-
nizable, the usage of an ORM in the data management component
also has consequences. Having a database agnostic architecture
that allows easy to use high-level concept modelling comes at the
cost of adding a layer of complex logic. This causes a decrease in
performance for data operations and the necessity for additional
optimization for scaling. As a further matter, because of the strong
abstraction being done, supplementary learning time is needed for
proficiency and may cause convenience to the point of ignorance of
the underlying storage technology.

RQ3: Which quality attributes are influenced by the usage of an
ORM tool?

On account of having an extra layer of logic in the architecture
the ORM will inevitably bring an adverse effect on the product’s
performance and scalability. The experiments performed in our re-
search show that actions dependent on heavy storage queries will
show a 2 to 3 times decrease in response time. The benefits of the
component are seen when looking at how it influences maintainabil-
ity. Depending on the complexity of the ORM implementation it
can significantly lower the number of lines of code needed to develop
storage related tasks, with it also the effort for comprehension, time
to program and number of delivered bugs.

RQ: What are the criteria based on which you can make a deci-
sion for using an ORM tool in a software platform?

The points of reference to which a decision to include an ORM in the archi-
tecture of a software framework is made are:

• Clear identification of the data requirements of the project at hand
along with potential data hotspots

• The relevance of the component objective for the data requirements

• Availability of implementation alternatives

• Alternative assessment against non-functional requirements set on real-
world environment conditions

69

Main deliverable: Decision support model for including an Object-Relational
Mapping component in the architecture of the used software framework.

We find that the created support model can come of great use to individuals in
charge of a software product architecture, as it provides a structured process
with which a knowledgeable decision is made preventing future undesirable
complications. The deliverable is a representation built with the knowledge
gathered from the literature and industry experts, having real applicability
for modern-day software frameworks.

8.1 Further research

This systematic investigation was revolved around a software architecture
problem of current application frameworks. Because of the broad nature of
the topic, this research can be further extended or studied upon spawning
work in:

• The development of a generic data management component decision
model.

A direct extension of this research study would involve the generalisa-
tion of the decision model to incorporate any type of data management
components. The benefits of this would include among others: in-
creased awareness of existing solutions, quicker decision process and a
broad scope that can accommodate more circumstances.

• A knowledgeable selection of a software framework.

As mentioned in the research introduction, software extenders do not
follow a clear process of selecting a software platform with which to
build their products. Their criteria is often mislead by their own sub-
jectivity or is strictly dependent on the personal preference of the de-
cision maker. A coherent method that would aid the selection process
is required to consider the architecture behind each alternative.

• The main reasons for the appearance of architectural breaches.

Software application frameworks often give a long list of features and
functionality out of the box, giving software extenders the ability to de-
liver stable and complex applications in a convenient time span. How-
ever, developers sometime choose to ignore the conventions imposed
by the platform in order to get access to functionality which is oth-

70

erwise inaccessible. One of the reasons for this is presented in this
research (not well informed architectural decision on the data man-
agement component). Further effort could be done in discovering any
other justification that these architectural breaches appear.

71

References

Ambler, S. W. (2000). Mapping objects to relational databases: What you
need to know and why. developerWorks, downloaded from: www-4. ibm.
com/software/developer/library/mapping-to-rdb. index. html , 1–9.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A.,
. . . others (2010). A view of cloud computing. Communications of the
ACM , 53 (4), 50–58.

Baker, D., Bridges, D., Hunter, R., Johnson, G., Krupa, J., Murphy, J., &
Sorenson, K. (2002). Guidebook to decision-making methods. Re-
trieved from Department of Energy, USA: http://emiweb. inel. gov-
/Nissmg/Guidebook 2002. pdf .

Barbacci, M., Klein, M. H., Longstaff, T. A., & Weinstock, C. B. (1995).
Quality attributes. (Tech. Rep.). DTIC Document.

Bass, L., Clements, P., & Kazman, R. (2012). Software architecture in
practice. Pearson Education. Retrieved from http://books.google

.nl/books?id=-II73rBDXCYC

Boardman, A. (2010). Cost-benefit analysis: Concepts and practice.
Prentice Hall. Retrieved from http://books.google.nl/books?id=

ZgNiuQAACAAJ

Bondi, A. B. (2000). Characteristics of scalability and their impact on per-
formance. In Proceedings of the 2nd international workshop on software
and performance (pp. 195–203).

Bourquin, F., & Keller, R. K. (2007). High-impact refactoring based on
architecture violations. In Software maintenance and reengineering,
2007. csmr’07. 11th european conference on (pp. 149–158).

Cellini, S. R., & Kee, J. E. (2010). Cost-effectiveness and cost-benefit anal-
ysis. Handbook of practical program evaluation, 493.

Clements, P., Kazman, R., & Klein, M. (2003). Evaluating software archi-
tectures. .

Coleman, D., Ash, D., Lowther, B., & Oman, P. (1994). Using metrics to
evaluate software system maintainability. Computer , 27 (8), 44–49.

72

http://books.google.nl/books?id=-II73rBDXCYC
http://books.google.nl/books?id=-II73rBDXCYC
http://books.google.nl/books?id=ZgNiuQAACAAJ
http://books.google.nl/books?id=ZgNiuQAACAAJ

Eick, S. G., Graves, T. L., Karr, A. F., Marron, J. S., & Mockus, A. (2001).
Does code decay? assessing the evidence from change management
data. Software Engineering, IEEE Transactions on, 27 (1), 1–12.

Evans, D. S., Hagiu, A., & Schmalensee, R. (2006, September). Invisible
Engines: How Software Platforms Drive Innovation and Transform In-
dustries. The MIT Press .

Fayad, M., & Schmidt, D. C. (1997). Object-oriented application frameworks.
Communications of the ACM , 40 (10), 32–38.

Fichman, R. G. (2004). Real options and it platform adoption: Implications
for theory and practice. Information Systems Research, 15 (2), 132–
154.

Fowler, M. (2002). Patterns of enterprise application architecture. Addison-
Wesley Longman Publishing Co., Inc.

Fowler, M. (2003). Who needs an architect? IEEE Software, 20 (5), 11–13.
Fowler, M. (2012). OrmHate. http://martinfowler.com/bliki/OrmHate

.html. (Online; accessed 15-August-2014)
Frakes, W. B., & Kang, K. (2005). Software reuse research: Status and

future. Software Engineering, IEEE Transactions on, 31 (7), 529–536.
Garlan, D., & Shaw, M. (1994). An introduction to software architecture.
Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory.

Chicago: Aldine Publishing.
Griss, M. L. (1997). Software reuse architecture, process, and organization

for business success. In Computer systems and software engineering,
1997., proceedings of the eighth israeli conference on (pp. 86–89).

Halstead, M. H. (1977). Elements of software science.
Hasselbring, W., & Reussner, R. (2006). Toward trustworthy software sys-

tems. Computer , 39 (4), 91–92.
Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in

information systems research. MIS quarterly , 28 (1), 75–105.
Homer, A., Sharp, J., Brader, L., Narumoto, M., & Swanson, T. (2014).

Cloud design patterns: Prescriptive architecture guidance for cloud
applications.

Hunt, A., & Thomas, D. (2000). The pragmatic programmer: from journey-
man to master. Addison-Wesley Professional.

Ireland, C., Bowers, D., Newton, M., & Waugh, K. (2009a). A classification
of object-relational impedance mismatch. In Advances in databases,
knowledge, and data applications, 2009. dbkda’09. first international
conference on (pp. 36–43).

Ireland, C., Bowers, D., Newton, M., & Waugh, K. (2009b). Understanding
object-relational mapping: A framework based approach. International
Journal on Advances in software, 2 (2 and 3), 202–216.

73

http://martinfowler.com/bliki/OrmHate.html
http://martinfowler.com/bliki/OrmHate.html

Ishizaka, A., & Labib, A. (2009). Analytic hierarchy process and expert
choice: Benefits and limitations. OR Insight , 22 (4), 201–220.

Jansen, S. (2013). How quality attributes of software platform architectures
influence software ecosystems. In Proceedings of the 2013 international
workshop on ecosystem architectures (pp. 6–10).

Juneau, J. (2013). Object-relational mapping. In Java ee 7 recipes (pp.
369–408). Springer.

Kabbedijk, J., Salfischberger, T., & Jansen, S. (2013). Comparing two
architectural patterns for dynamically adapting functionality in online
software products. In Patterns 2013, the fifth international conferences
on pervasive patterns and applications (pp. 20–25).

Kan, S. H. (2002). Metrics and models in software quality engineering.
Addison-Wesley Longman Publishing Co., Inc.

Kaner, C., & Bond, W. P. (2004). Software engineering metrics: What do
they measure and how do we know? methodology , 8 , 6.

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., & Carriere,
J. (1998). The architecture tradeoff analysis method. In Engineering
of complex computer systems, 1998. iceccs’98. proceedings. fourth ieee
international conference on (pp. 68–78).

Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: pref-
erences and value trade-offs. Cambridge university press.

Keith, M., & Schnicariol, M. (2010). Object-relational mapping. In Pro jpa
2 (pp. 69–106). Springer.

Kepner, C. H., & Tregoe, B. B. (1976). The rational manager; a systematic
approach to problem solving and decision making.

Krasner, G. E., Pope, S. T., et al. (1988). A description of the model-view-
controller user interface paradigm in the smalltalk-80 system. Journal
of object oriented programming , 1 (3), 26–49.

Martin, M., & Martin, R. C. (2006). Agile principles, patterns, and practices
in c#. Pearson Education.

McCabe, T. J. (1976). A complexity measure. Software Engineering, IEEE
Transactions on(4), 308–320.

Mosberger, D., & Jin, T. (1998). httperfa tool for measuring web server
performance. ACM SIGMETRICS Performance Evaluation Review ,
26 (3), 31–37.

Neward, T. (2006). The vietnam of computer science. The Blog Ride, Ted
Newards Technical Blog .

Oman, P., & Hagemeister, J. (1992). Metrics for assessing a software sys-
tem’s maintainability. In Software maintenance, 1992. proceerdings.,
conference on (pp. 337–344).

74

Perry, D. E., & Wolf, A. L. (1992). Foundations for the study of software
architecture. ACM SIGSOFT Software Engineering Notes , 17 (4), 40–
52.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W. E., et
al. (1991). Object-oriented modeling and design (Vol. 199) (No. 1).
Prentice-hall Englewood Cliffs, NJ.

Saaty, T. L. (1988). What is the analytic hierarchy process? Springer.
Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process.

European journal of operational research, 48 (1), 9–26.
Sam-Bodden, B., & Judd, C. (2004). Object-relational mapping. In En-

terprise java development on a budget: Leveraging java open source
technologies (pp. 333–405). Springer.

Schneidewind, N. F. (1992). Methodology for validating software metrics.
Software Engineering, IEEE Transactions on, 18 (5), 410–422.

Shaw, M., & Garlan, D. (1996). Software architecture: perspectives on an
emerging discipline (Vol. 1). Prentice Hall Englewood Cliffs.

Somasegar, S., Guthrie, S., & Hill, D. (2009). Microsoft application archi-
tecture guide. Microsoft,.

Stevens, W. P., Myers, G. J., & Constantine, L. L. (1974). Structured design.
IBM Systems Journal , 13 (2), 115–139.

Tellis, W. (1997). Application of a case study methodology. The qualitative
report , 3 (3), 1–17.

van de Weerd, I., & Brinkkemper, S. (2008). Meta-modeling for situational
analysis and design methods. Handbook of research on modern systems
analysis and design technologies and applications , 35 .

Weyuker, E. J., & Avritzer, A. (2002). A metric to predict software scalabil-
ity. In Software metrics, 2002. proceedings. eighth ieee symposium on
(pp. 152–158).

Williams, L. G., & Smith, C. U. (1998). Performance evaluation of soft-
ware architectures. In Proceedings of the 1st international workshop on
software and performance (pp. 164–177).

Yin, R. K. (2009). Case study research: Design and methods (Vol. 5). Sage.

75

Appendix A

PDD Activity and Deliverable
tables

Activity Sub-activity Description

Determine context Analyse
documentation

Perform an analysis of the documen-
tation of several ecosystem-based soft-
ware platforms, pinpointing the main
functionality and design characteristics
of the data management component
and the ORM tool

Perform literature
review

Extend on the concepts already discov-
ered by performing a literature study
and select context relevant resources

Perform case study Conduct interviews at several software
businesses and support the findings
with data gathered from development
Q&A websites

Platform quality
attributes impact

Identify affected
quality attributes

Determine which platform quality at-
tributes are affected by the ORM tool
component

Establish impact
measurement
criteria

Identify how each affected quality at-
tribute can be measured so that the im-
pact can be compared or studied

Perform quality
attributes
measurements

Apply the previously established mea-
surements on each affected quality at-
tribute

76

Decision support
model development

Select decision
making method

Determine which decision making
method is suitable for creating a
valuable decision support model

Build decision
model

Create the actual research artefact
based upon the selected decision mak-
ing method and the previously gathered
data

Decision support
model validation

Perform expert
validation
interviews

Get feedback on the created decision
model from the experts by conducting
interviews

Refine model based
on expert feedback

Improve and clarify the decision sup-
port model based on the received feed-
back

Table A.1: PDD activity table

Concept Description

DOCUMENTATION
ANALYSIS

A deliverable comprised of the main designs and
functionality of various software platform data man-
agement architectures

RELATED
LITERATURE

Extended literature review on data management ar-
chitecture, the ORM pattern, its challenges and con-
sequences

CASE STUDY REPORT Deliverable incorporating findings resulted from the
company interviews and Q&A website queries

RESEARCH CONTEXT Combined and processed gathered information from
the documentation analysis, literature review and
case study

PLATFORM QUALITY
ATTRIBUTES

A list of all the quality attributes of ecosystem-based
software platforms

AFFECTED
PLATFORM QUALITY
ATTRIBUTES

Short list of the quality attributes of ecosystem-based
software platforms based on whether they are influ-
enced by the ORM data management component

QUALITY
ATTRIBUTES
MEASUREMENT
CRITERIA

The guidelines which apply in order to measure the
affected quality attributes

77

QUALITY
ATTRIBUTES IMPACT

A set of measurements that quantify the impact the
ORM tool has upon the quality attributes of the plat-
form or product

SELECTED DECISION
MAKING METHOD

The specific decision making method used in building
of this research artefact

DECISION SUPPORT
MODEL

A decision support model document that offers a
comprehensive description of the ORM data manage-
ment pattern, its challenges, consequences of usage,
effect on the platform quality attributes in relation
with the data requirements of the project at hand

EXPERT VALIDATION
FEEDBACK

Domain expert feedback about the created DECI-
SION SUPPORT MODEL resulting from a set of
interviews

REFINED DECISION
SUPPORT MODEL

An improved variant of the DECISION SUPPORT
MODEL that takes into account the EXPERT VAL-
IDATION FEEDBACK

Table A.2: PDD concept table

78

Appendix B

Semi-structured interview
guidelines

Start the interview by introducing yourself and the research you are conduct-
ing. Reassure the interviewee that his opinion/knowledge is anonymyzed and
ask for the possibility to record the conversation.

The interview should be focused on five main areas of interest:

Opinion validity Try to find out more about the role and responsibility of
the interviewee inside the company in order to validate his knowledge
relevance to the research. Example questions:

• What is your technical background?

• What is your role inside the company?

• What responsibilities does your role impose?

• Are you directly involved in the development process?

• Are you directly involved in the design of the software product archi-
tecture?

Data management component usage Find out details about how do they
currently use the software platform’s data management component.
Example questions:

• What software platform are you using?

• What were the reasons behind selecting this software platform?

79

• Did you consider looking at any benchmarks when choosing this plat-
form?

• Do you use the default data management component of the software
platform?

• Do you use an ORM (Object Relation Mapping) tool/module ?

• If not, how do you handle complex cross-entity queries? Did you built
a custom ORM ?

• If yes, how did you end up using that ORM module?

• What databases do you use for storage?

• What is a typical data flow in your product?

• Do you have any views/background jobs that make extensive use of the
data management component?

Quality attributes performance during product usage/development
Figure out if they encountered any issues while the product was in de-
velopment or production. If not, establish which could be the limits
that they may surpass in the future. Example questions:

• How many potential users will use your product?

• Have you ever tested the product performance?

• Did you notice anything missing from the data management compo-
nent?

• Did you have to do any optimization on the data queries to increase
performance?

• Did you encounter any issues while developing the product?

• Do you consider changing the database type in the future?

• What do you plan to change in the next iteration of the product?

ORM usage in a new project Figure out what are the criteria on which
they would select an ORM tool for a new fictive project. Example
questions:

• Considering you would have to build a software product from scratch,
would you consider using an ORM tool? Why?

• Do you think using an ORM is dependant on which software platform
you are choosing for development?

80

• What would be the data requirements for a product that would push
you to not use an ORM?

• Do you think it may be a good practice to create your own ORM from
scratch? Why?

• Do you think it makes sense to use an ORM tool just for certain parts
of an application?

Decision support model Discover characteristics that could be included
in the decision model that could better help the decision maker. Ex-
ample questions:

• Would you use a model that puts the quality attributes in contrast with
the project data requirements to make the decision of using an ORM
tool?

• Besides providing you a clear list of benefits/disadvantages, what else
can help you in making a decision to (not) use an ORM tool?

81

Appendix C

Software platforms
documentation analysis

This section provides a summary of each software framework documentation
analysed when conducting this study. For each framework a short description
is included along with a more comprehensive discussion about what does the
data management component have to offer and how does it work at the
architecture level.

A side note on the C programming language: Although one of the most popu-
lar programming languages even to this day, being an imperative (procedural)
and low-level programming language, C did not spawn any ecosystem-based
software platforms but rather created a base on which new programming
languages have been built on directly or indirectly (such as C#, Go, Java,
JavaScript, Python, PHP and many others). Its main method of extension
are libraries.

C.1 .NET (C# / VisualBasic.net / J#)

The most popular software framework developed by Microsoft for their own
ecosystem (available for other platforms as well as third party implemen-
tations) released in February 2002. It consists of two major components: a
large framework library (Framework Class Library - FCL) and an application
virtual machine runtime environment (Common Language Runtime - CLR).

The basic component from the .NET framework which handles access to
data and data services is called ADO.NET . It includes support for Mi-

82

crosoft SQL Server and XML but most of the popular database solutions can
also be plugged in through the OLE DB and ODBC standards. With the
scope of providing a more abstract solution for data management two other
components have been built on top of ADO.NET providing mainly ORM-like
functionality: LINQ and the more functionality advanced Entity Framework.

C.2 Grails (Java)

Java-based full stack web development framework aimed at simplicity by
the implementation of the Don’t Repeat Yourself (DRY) principle. It was
released in July 2005 and was built by looking at the popular modern frame-
works such as Ruby on Rails, Django, TurboGears. It improved on the
existing Java technologies such as Hibernate or Spring and wraps all these
technologies together with the Groovy language, having a wide array of Do-
main Specific Languages (DSLs).

It ships by default with a ORM implementation called GORM (Grails’ object
relational mapping) which is actually Hibernate under the hood that allows
entity definitions in a simplified DSL.

C.3 Struts 2 (Java)

Open source web application framework built upon the Java Servlets and
following the MVC (Model-View-Controller) pattern. Released in October
2006 as a readaptation of the initial Apache Struts containing the WebWork
framework which was forked from it.

It does not ship with its own data management solution but recommends
either building your own DAO implementation or use one of the existing
popular solutions, such as Apache Cayenne, Enterprise Java Beans, Hiber-
nate, myBATIS.

C.4 Spring (Java)

Released in October 2002, the Spring Framework is a Java-based application
framework and a inversion of control container for the platform in general.
While most of its core functionality is often used in any Java application, it

83

has multiple components that provide all the means necessary for building
complex applications on top of the Java EE platform.

The data access component included in the framework acts as a wrapper for
commonly used Java data management modules (such as JDBC, Hibernate,
Apache Cayenne) providing resource management, exception handling and
other features through the usage of template classes.

C.5 Android SDK (Java)

The Android SDK is the complete set of tools needed for application devel-
opment on the Google Android mobile platform. With an official release in
September 2008, the cross-platform development kit consists of a debugger,
libraries, a handset emulator and afferent documentation.

As a data storage solution the platform allows: storing private basic data in
key-value sets (preferences), storing raw data on the internal or external stor-
age of the device, storing structured data in a SQLite database and through
network services. Because of the client-centric applications built with the
platform that do not require a vast amount of data stored, the data manage-
ment component only provides data access adapters and a low level query
abstraction library.

C.6 Node.js (JavaScript)

Only notable framework outside the client-side scope for the JavaScript pro-
gramming language is Node.js, released in May 2009 . The platform is built
upon Google’s Chrome JavaScript runtime engine (V8) with the purpose of
creating fast, scalar network applications. To achieve this goal it uses an
event-driven, non-blocking I/O model which basically translates into: every
I/O operation must use a callback.

Although the framework does not come with a complex built-in data manage-
ment component, it does provide low-level modules for accessing file systems
and network data. Due to the simple module loading system (1 to 1 cor-
respondence between files and modules) and the included package manager
(npm - node package manager), the open-source community has created a
vast array of plugins, such Sequelize, Persistence.js, node-db. They provide
both ORM solutions or basic SQL abstraction layers.

84

C.7 iOS SDK (Objective C / Swift)

Released in March 2008, the iOS SDK is Apple’s application development
kit for their mobile devices. Due to the strict terms and conditions of their
proprietary platform, the applications may not be built with any other tech-
nology.

As part of the framework, by default data can be managed in three ways:
using the included Core Data component, using an SQLite database and
by using HTML5 localStorage. While the SQLite and HTML5 localStorage
solution provide only a low level procedural implementation, the Core Data
component provides a general purpose complete data management solution.
It uses the included SQLite database system and provides a persistent object
oriented storage solution and other complex ORM functionality.

C.8 CodeIgniter (PHP)

One of the popular web application frameworks in the PHP ecosystem re-
leased in February 2006, CodeIgniter, is a lightweight platform for building
dynamic websites with speed in mind. It follows the Model-View-Controller
(MVC) pattern and as its underlying programming language it is cross-
platform.

The data management component is loosely coupled and provides access to a
wide variety of databases through PHP’s database abstraction layers (PDO,
ODBC etc.). By default, a simple SQL abstract interface is available along
with a simple Active Record class that follows the pattern with the same
name.

C.9 Zend (PHP)

The Zend framework was initially released in March 2006 and is identified as
an open source web application framework. As the other popular frameworks,
it follows a use-at-will architecture with loosely coupled components and
follows the MVC pattern.

The Zend\Db module contains all the functions regarding data management.
It provides PHP database drivers adaptation through the Zend\Db\Adapter

85

sub-module together with an SQL abstraction layer (Zend\Db\Sql), a Table
Gateway and a Row Gateway implementation.

C.10 Django (Python)

Open source full-stack web application framework written in Python pro-
gramming language released in July 2005. It follows the Model-View-Controller
(MVC) pattern.

The data management component is present in the django.Db module and
exists in the form of an ORM (Object-relation mapping) tool. The default
implementation follows Fowler’s Active Record pattern. While the imple-
mentation technique adopts a loosely coupled modules philosophy this does
not imply that decoupling the data management component will not have
consequences, in result replacing it will need an extra effort for making the
new component fit the system.

C.11 Ruby on Rails (Ruby)

Open source full-stack web application framework written in Ruby pro-
gramming language released in December 2005. It follows the Model-View-
Controller (MVC) pattern.

The data management component is called ActiveRecord and is actually an
ORM tool. Although seen as an important part of the framework, it is mod-
ular and can be replaced with other custom data management components
such as DataMapper or MongoMapper.

If follows the Active Record pattern described by Martin Fowler in his book
Patterns of Enterprise Application Architecture. It creates objects that carry
both persistent data and behaviour which operates on that data. Active
Record takes the opinion that ensuring data access logic is part of the ob-
ject will educate users of that object on how to write to and read from the
database.

86

Appendix D

Experiments performed

This annex includes the complete validation experiments results also men-
tioned in Chapter 4. The experiments were based on multiple implementa-
tions of the pseudo-code found in Figure 4.2 which was done for a number
of four frameworks: Grails (Java), Yii Framework (PHP), Django (Python),
Ruby on Rails (Ruby). The code was then ran under the same limited re-
sources conditions in a virtual machine.

D.1 Performance experiment

For the performance experiment the tests are measuring the response time
using a time difference technique (register time on operation start/end) for
the following sections:

• Create entity instances and the relationships between them (R1)

• Browse through records and their relationships and update them (R2)

• Retrieve records and their relationships and delete them (R3)

Each section was ran 10 times and an average was made with the following
formula:

AV G(Rx) =

10∑
i=1

Rxi

10

This was also done for the whole code by summing up all the individual
section response times. After this, the average response times were compared
for each platform and a percentile was calculated as: D = AV G(R)ORM

AV G(R)SQL

87

Platform AVG(R1) AVG(R2) AVG(R3) AVG(R1+R2+R3)

java (ORM) 0.282132 0.250973 0.169387 0.702492

java 0.074864 0.073737 0.073259 0.221860

php (ORM) 0.06425 0.07227 0.05610 0.19262

php 0.032103 0.038910 0.036026 0.107040

python (ORM) 0.086445 0.131038 0.094342 0.311825

python 0.034631 0.042338 0.037272 0.114241

ruby (ORM) 0.238332 0.186045 0.131501 0.555878

ruby 0.052164 0.061461 0.053072 0.166698

Table D.1: Performance response time results

Platform ORM no ORM Times
slower (D)

java 0.702492 0.221860 3.17

php 0.19262 0.107040 1.80

python 0.311825 0.114241 2.73

ruby 0.555878 0.166698 3.33

Table D.2: Performance response time results comparison

88

Figure D.1: Response time performance chart for Yii Framework (PHP)

Figure D.2: Response time performance chart for Django Framework
(Python)

Figure D.3: Response time performance chart for Grails Framework (Java)

89

Figure D.4: Response time performance chart for Ruby on Rails (Ruby)

90

D.2 Maintainability experiment

The maintainability experiments involved extracting the code that represents
the pseudo-code from Figure 4.2 and evaluating it by using the number of
lines of code (physical/logical) and the Halstead complexity. Please refer
to the legend in Table D.3 when analysing the results. For the Halstead
complexity the following formulae were used:

V ocabulary(O) = O1 + O2

Length(N) = N1 + N2

V olume(V) = N ∗ log2O

Difficulty(D) = O1
2
∗ N2

O2

Effort(E) = D ∗ V

Term Definition

LOC Physical source lines of code

LLOC Logical lines of code

O1 Number of distinct operators

O2 Number of distinct operands

N1 Total number of operators

N2 Total number of operands

Table D.3: Maintainability experiment results legend

91

Figure D.5: Logical statements comparison chart

Figure D.6: Time to program comparison chart

Figure D.7: Delivered bugs comparison chart

92

P
la

tf
o
rm

ru
b
y

ru
b
y

(n
o

O
R

M
)

p
h

p
p

h
p

(n
o

O
R

M
)

ja
v
a

ja
v
a

(n
o

O
R

M
)

p
y
th

o
n

p
y
th

o
n

(n
o

O
R

M
)

L
O

C
25

25
5
6

4
8

4
5

2
7

2
9

2
9

L
L

O
C

23
38

4
6

5
2

3
7

4
0

2
9

4
4

-
-

-
-

-
-

-
-

-

O
1

14
19

1
6

2
0

1
7

1
9

1
3

2
0

O
2

33
39

3
7

4
5

4
0

3
8

3
9

3
9

N
1

90
24

2
2
0
9

4
1
3

1
6
5

2
5
3

1
2
7

2
6
7

N
2

76
15

9
1
1
8

2
5
4

1
2
7

1
5
8

9
2

1
5
0

V
o
c
a
b

u
la

ry
47

58
5
3

6
5

5
7

5
7

5
2

5
9

L
e
n

g
th

16
6

40
1

3
2
7

6
6
7

2
9
2

4
1
1

2
1
9

4
1
7

V
o
lu

m
e

92
2.

06
23

49
.0

5
1
8
7
3
.0

3
4
0
1
6
.9

2
1
7
0
3
.2

0
2
3
9
7
.3

2
1
2
4
8
.4

0
2
4
5
3
.0

6

D
iffi

c
u

lt
y

16
.1

2
38

.7
3

2
5
.5

1
5
6
.4

4
2
6
.9

9
3
9
.5

0
1
5
.3

3
3
8
.4

6

E
ff

o
rt

14
86

4.
75

90
98

0.
53

4
7
7
8
7
.5

8
2
2
6
7
3
2
.7

8
4
5
9
6
5
.2

1
9
4
6
9
4
.0

5
1
9
1
4
2
.0

8
9
4
3
4
8
.5

4

T
im

e
to

p
ro

g
ra

m
82

5.
82

50
54

.4
7

2
6
5
4
.8

7
1
2
5
9
6
.2

7
2
5
5
3
.6

2
5
2
6
0
.7

8
1
0
6
3
.4

5
5
2
4
1
.5

9

D
e
li

v
e
re

d
b

u
g
s

0.
31

0.
78

0
.6

2
1
.3

4
0
.5

7
0
.8

0
0
.4

2
0
.8

2

T
ab

le
D

.4
:

M
ai

n
ta

in
ab

il
it

y
ex

p
er

im
en

t
re

su
lt

s

D.3 Scalability experiment

The scalability experiment involved sending concurrent requests to each frame-
work for executing the code and analysing the time it takes the system to
respond to all requests along with the number of timeouts generated. In
order to limit the tests running time and also add a realistic non-functional
requirement to the experiment, a timeout of 5 seconds was enforced on each
request.

Figure D.8: Scalability experiments results (Ruby on Rails - Ruby)

Figure D.9: Scalability experiments results (Django - Python)

94

Figure D.10: Scalability experiments results (Yii Framework - PHP)

Figure D.11: Scalability experiments results (Grails - Java)

95

Appendix E

Statement of authenticity

I hereby confirm that this thesis document represents my own work. It was
not composed by anyone else for my benefit and I did not copy its content
from another person. All sources that I have used have been properly and
clearly documented.

I further attest that if I have used the ideas, words, or passages from an
external source, I have quoted those words or paraphrased them and have
provided a clear and appropriate documentation of the source of that mate-
rial.

Friday 6th February, 2015

96

	Introduction
	Background
	Problem statement
	Thesis outline

	Research approach
	Research objective
	Stakeholders

	Research questions
	Research process
	Structured literature review
	Documentation analysis
	Case study
	Quality attributes impact measurement

	Process-Deliverable Diagram
	Validity
	Construct validity
	Internal validity
	External validity
	Reliability

	Research Study Findings
	Data management component architecture
	Object Relational Mapping
	Object-relational impedance mismatch

	Affected quality attributes
	Performance
	Measurement criteria
	Experiment

	Maintainability
	Measurement criteria
	Experiment

	Scalability
	Measurement criteria
	Experiment

	Decision support model
	Decision-making process
	Decision-making methods
	Pros and Cons Analysis
	Cost-Benefit Analysis (CBA)
	Analytic Hierarchy Process (AHP)
	Kepner-Tregoe Decision Analysis (K-T)
	Multi-Attribute Utility Theory Analysis (MAUT)
	Custom Tailored Tools

	ORM usage support model
	Identify data requirements
	Pros and cons analysis
	Situational analysis
	Solution selection
	Example

	Evaluation
	Method
	Feedback
	Support model checklist

	Discussion
	Limitations

	Conclusion
	Further research

	References
	PDD Activity and Deliverable tables
	Semi-structured interview guidelines
	Software platforms documentation analysis
	.NET (C# / VisualBasic.net / J#)
	Grails (Java)
	Struts 2 (Java)
	Spring (Java)
	Android SDK (Java)
	Node.js (JavaScript)
	iOS SDK (Objective C / Swift)
	CodeIgniter (PHP)
	Zend (PHP)
	Django (Python)
	Ruby on Rails (Ruby)

	Experiments performed
	Performance experiment
	Maintainability experiment
	Scalability experiment

	Statement of authenticity

