
.

U U

F S

D I C S

MS C S

M T

A GUI T

 -DSL

A N

S ID: 3816834

a.nikas@students.uu.nl

Thesis Supervisors:
Wishnu Prasetya

s.w.b.prasetya@uu.nl

Jurriaan Hage

j.hage@uu.nl

February 2014

mailto:a.nikas@students.uu.nl
mailto:s.w.b.prasetya@uu.nl
mailto:j.hage@uu.nl

.

ABSTRACT

In the last few years, game development has been going through rapid improvements

in terms of graphics quality and game play and, thus, the need for better interaction

between gamers and games (artificial intelligence) has greatly increased. As games

become more complex, however, so do game states; and game developers now have to

work on game engines that are able to provide users with more flexible scenarios. As

a result, programming a game to react in unpredictable ways significantly raises the

possibilities of facing new challenges, as there is always more space for errors and bugs

that the human eye is now unable to perceive, let alone reproduce for testing purposes,

within a reasonable period of time.

I firmly believe that evolutionary computing could prove to be a valuable asset towards

this direction and play an interesting role in game development and testing, by helping

game designers, programmers and testers to better understand the behavior of a game.

The advantages of evolutionary programming methods could fulfill the need for high

testing standards, since they can produce almost human and less predictable behaviors.

In my thesis, I will research evolutionary computing techniques and examine how they

perform in player behavior simulation, as well as develop the corresponding algorithms

to given testing purposes. More specifically, this thesis presents a prototype of a new

Domain Specific Language to describe a testing purpose and how it could be decomposed

into a plan. Then, this needs to be converted into fitness functions, along with an efficient

algorithm to solve these functions to produce test-cases satisfying the purpose; which

might be difficult for a human tester to solve manually. For my evaluation part, I will

develop a tool/library using an emerging scripting language, Lua. My main goal in that

part is to prove the scalability of my algorithm and expose wrong behavior, bugs and

errors in real game software.

The field of evolutionary game testing is still unexplored and it seems that it can

potentially offer a lot to the computing science community. My research could help in

reducing time consumption in game testing. It could also improve the Quality Assur-

ance procedure and provide game designers with new ways of developing better AI systems.

i

PREFACE

First and foremost, this thesis is dedicated to my brother Aleksandros! Without him, I

would not have the opportunity to be here!

I would like to sincerely thank my supervisor, Dr Wishnu Prasetya, for his guidance

and support throughout this study. My thanks also go to my second supervisor, Dr

Juriaan Hage for his feedback and evaluation of my thesis.

Many many thanks go to my wonderful family for their love and support throughout

my life. Thank you for believing in me!

Special thanks go to all of my friends who supported me and never let me down, thank

you "Aμοίρα", thank you ncs, thank you Chris!

I am grateful to Maria, Xaroula and Stefania for their support, their endless love and

as well as, their delicious food ;)

Andreas Nikas

iii

CONTENTS

1 1

1.1 Context 1

1.2 Problem Description 2

1.3 Objective 3

1.4 Research Questions 3

1.5 Research approach 3

1.6 Research Contribution 4

2 7

2.1 Context 7

2.2 Testing levels 7

2.3 Automated software testing techniques 9

2.3.1 Capture and Replay 9

2.3.2 Script Based Testing 10

2.3.3 Keyword Driven Testing 11

2.3.4 Data Driven Testing 11

2.3.5 Model Based Testing 12

2.4 Evolutionary algorithms 13

2.5 Perfect Mazes 14

3 19

3.1 Context 19

3.2 DSL 19

3.2.1 GDL & GDL-2 21

3.2.2 ViGL 21

3.2.3 Zillions of Games 23

4 25

4.1 Context 25

4.2 Game Development with Unity3D 27

4.3 Console 29

4.4 The pseudo-DSL – GTP-DSL 29

4.5 Lua & LuaInterface 33

4.6 Testing Algorithms 36

4.6.1 Random Walk Algorithm 36

4.6.2 Heuristic AI Algorithm 37

4.6.3 Evowalk Algorithm 38

4.7 Mazes: a more specific domain 39

4.8 Problems and solutions during the implementation 40

4.8.1 LuaInterface 40

v

Contents

4.8.2 Continuation & coroutines 40

4.8.3 Time consuming algorithm and sub-goals 40

5 41

5.1 Context 41

5.2 Perfect Mazes with the Recursive Backtracker Algorithm 41

5.3 Expressing testing goals to game terms 43

5.4 Experimental data 44

5.5 Results 45

5.5.1 Random walk results 45

5.5.2 Heuristic-AI walk results 48

5.5.3 Evowalk results 50

5.6 Discussion 52

6 53

6.1 Context 53

6.2 Expressing goals and sub-goals in game terms 53

6.3 Automated game testing and DSLs 54

6.4 Future work 55

6.4.1 Reduce first, debug later 55

6.4.2 Extending the evowalk algorithm 55

6.4.3 Other Future Work 55

7 57

7.1 Bibliography 57

8 61

8.1 Context 61

8.2 Experiment Reports 61

8.2.1 Random Walk Algorithm full results 62

8.2.2 Random Walk Algorithm full results 63

8.2.3 Heuristic AI Algorithm full results 64

8.2.4 Heuristic AI Algorithm full results 65

8.2.5 Evowalk Algorithm full results 66

8.2.6 Evowalk Algorithm full results 67

8.2.7 Evowalk Algorithm full results 68

8.2.8 Evowalk Algorithm full results 69

8.3 Code samples 70

8.3.1 GDL 71

8.3.2 GDL 72

8.3.3 ViGL 73

8.3.4 Zillions of Games 74

vi

1
INTRODUCTION

1.1

During the last decade, there have been major and rapid improvements in the quality

and performance of video graphics cards as well as a fast growth in the game industry:

new start-up game development companies enter the marketplace every day -and so do

game titles, while the more traditional ones have had to swiftly change and adapt in

order to survive the competition.Computer and console video games continuously change

the game-play by incorporating more and more features every year. These changes have

not only been driven by but also grown higher expectations, in terms of graphics quality,

game play, interactivity and AI.

As a result, game design and development of modern games in 3D environment become

all the more complex, as game companies strive to achieve the most realistic impression

of real-world graphics and conditions, multiplying thus the required parameters and

widening the grounds for bugs and errors. Therefore, quality assurance in terms of game

testing -which has always been a significant factor to the success of a game title- has

become of vital importance.

However, game testing has always posed a great challenge to human testers, locating a

bug in a three-dimensional open-world game, with multiple game scenarios and move-

ment freedom, is now more demanding than ever, not to mention isolating the bug and

reproducing it in order to determine and fix the bad code segments.

Quality Assurance contributes to the success of a game in the market and it is considered

as an important asset of its plain development. Furthermore, many game organizations

are willing to invest in hiring skilled engineers and analysts for QA roles and there is a

significant percentage increase on QA in the total IT budget of a project (more than 6%

than last year)[1].

It is remarkable that a great amount of gaming companies/studios follow different

testing techniques in order to assure the quality of their software. One of the most

well-known game testing techniques involves the use of Capture/Replay tools (also known

as Capture/Playback and Record/Playback) in combination with regression methods(see

Chapter 3). An interesting feature of the specific technique is that it uses a scripting

language to program and repeat specific actions in loops for various test inputs, enabling

1

the selection of different routes throughout the process, according to the game results

each time. However, aside from other drawbacks of this technique such as the need

for system stability and the lack of maintainability, Capture/Replay tools also require

manual capturing. Hence, human testing with use of Capture/Replay tools is an ever

time-consuming process that requires a high capacity of data to be stored and a large

budget to begin with. A particularly noteworthy fact is that more than 50% of the

development time is consumed by testing, in order to improve the quality of the software

[1].

Currently, there is no significant tool to support an automated testing environment

in the level of a system's Graphical User Interface and solve the main game testing

difficulties, such as system safety, robustness and usability, even if the companies are

trying more and more to use cost-efficient automated tests.

1.2

A fair part of the success pie of software and more specifically of a game belongs to the

complete emendation of the technical difficulties. Nowadays, the use of testing techniques

and tools becomes more and more necessary.

However, the tools which are used have quite a lot of disadvantages. Capture &

Replay, one of the most commonly used techniques, can only be used when the software

application is working properly, does not support automatic generation of test cases and

requires experienced human resources. Accordingly and in terms of usability, data-driven,

keyword-driven and UI-Map-Driven techniques need great experience in scripting lan-

guages, and use a lot of files for each test case. The above techniques will be explained

in the next session.

As a matter of fact, lack of automation can be observed in each technique. Without

taking advantage of that, testing requires not only a significant amount of time and

storage but also manual labor and extra costs. An automated technique could provide

convenient and faster results in a more timely and cost-effective way.

According to the World Quality Report of 2014 [1], only 13% of the game companies

are using purchased automation tools to generate new test data, and another 13% are

using custom made automation tools for the same reason.

2

1.3

1.3

My main goal is to research and develop a prototype of a new Domain Specific Language

to model the game/’s functionality in order to perform more accurate and less time

consuming automated tests. According to [2], a domain-specific language (DSL) is a pro-

gramming language or executable specification language that offers, through appropriate

notations and abstractions, expressive power focused on -and usually restricted to- a

particular problem domain.

To achieve such automation, I will research and optimize certain evolutionary computing

techniques.

1.4

RQ: How can game related testing goals be expressed in
game terms?

RQ: In what terms could a Domain Specific Language im-
prove the automation testing experience?

Some interesting sub-questions arise out of the first research question:

SQ1: Is it possible to break down a game testing goal into
sub-goals?

SQ2: Many games involve randomness, concurrency, or
multi players, contributing to a high degree of non-
determinism. How can a testing goal be solved under
such conditions?

SQ3: Are there other kinds of DSLs that can be used for
goal-oriented game testing?

SQ4: Is it possible to have a DSL for that purpose, and could
it be generic for all types of games?

1.5

Before proceeding to the development and evaluation of our language and in order to

establish the necessity of our purpose, we commit to an in-depth literature review on

DSLs that have been developed and used in goal-oriented game testing in the past,

therefore essentially answering the third sub question. After going through the literature,

the very next step is to research and develop a Domain Specific Language which can

describe generic entities of a game. That language should be able to express the initial

state, the goals and sub-goals of the game, accompanied by a set of operators and a set

3

of objects to operate on [3].

However, instead of developing a language from scratch with its own parser and

development tools, syntax and documentation, we decided instead to use features of

existing frameworks and languages and only add problem-specific keywords, thus creating

a pseudo-DSL. A pseudo-DSL is a common DSL which relies on an existing programming

language. Consequently, there is no need of writing or maintaining a parser for the

specified domain language. The use of pseudo-DSL will save us time from the research,

development and debugging of a completely new DSL.

Taking it to the next step, some experiments are carried out in order to prove the

usability and scalability of our pseudo-DSL, certain game testing scenarios have to be

defined and tested with the proposed language. The scenarios at play will be specific

mazes in a 3D environment, which will be generated using a common technique for solving

and generating perfect mazes, namely a recursive backtracker algorithm (see Chapter

2.4). The test cases will consist of four levels of difficulty. The following three custom

made algorithms, which are the implementations of some keywords of our pseudo-DSL,

will be used to solve these mazes:

• a random walk algorithm;
• an Ai-heuristic algorithm, and ;
• an evolutionary algorithm;

Eventually, after assessing how all algorithms performed for the given test cases and

using the results of the testing procedure, we will be able to evaluate the proposed

language entirely as well as conclude whether our game testing goals can be expressed

into game terms.

1.6

In this thesis, a 3D game testing framework is presented, providing fully functional

but novel APIs. The framework integrates with the embedded programming language

Lua, taking advantage of its syntactic sugar and combining it with our pseudo-DSL.

Such a framework, written in Unity3D and Lua, could be used for several purposes.

Taking advantage of our pseudo-DSL, we could not only perform model-based testing

in a fully-automated way, but also simulate game events through our provided in-game

console or via Lua scripts.

Additionally, we provide 3 "monkey" bug tracking algorithms which we used for our

experiments and could be found handy for future use, as long as they are fully extensible

4

1.6

and customizable.

Furthermore, we set the foundations for a fully extensible pseudo-DSL for one of the

most known 3D game engines in the Industry of game development.

5

2
TOWARDS GAME TESTING

2.1

In this Chapter, we introduce basic concepts and background which are relevant for this

thesis. In Section 2.2 we mention several types and levels of software testing people

typically distinguish in practice.. As mentioned before (see Chapter 1), our research is

based on Domain Specific Languages for games, and is introduced in Section 2.3. Later

on, in Section 2.4 we discuss a variety of algorithms to generate perfect mazes; these are

later needed for the Experiment in Chapter 7; and Section 2.5 discusses evolutionary

algorithms, which we later use to implement some part of our DSL (Chapter 4).

2.2

Before explaining the testing levels, it is noteworthy to mention the two basic classes of

software testing, namely black box testing and white box testing [4].

Black box testing (also called functional testing) is the testing process that ignores the

internal mechanism of a system or component and focuses solely on the output generated

in response to selected inputs and execution conditions.

White box testing (also known as structural testing or glass box testing) is testing by

taking into account the internal mechanism of a system or component.

Each type of testing can be derived from requirements and specifications that define the

correct behavior, in order to identify the incorrect behavior of the current test. Testing

usually ensures the detection of the faults remaining from earlier stages of development,

in addition to the faults introduced during coding period. Therefore, different levels of

testing are used in the testing process and each level of testing aims to test different units

of the system.

According to Laurie Williams [5], there are six levels of software testing: Unit testing,

Integration testing, System or Functional testing, Acceptance testing, Regression testing

and Beta testing. Though, as stated in Software Testing Fundamentals [?], Regression
Testing can be considered as a testing technique, rather than level, as long as it can be

performed at any of the first four levels.

7

Unit Testing is the testing of individual hardware or software units or groups of related

units [4]. The main purpose of this testing level is to validate that each unit of the

software application performs as designed. Units can be considered as the smallest testing

part of software and they usually have one single output. It is performed by using White

Box Testing techniques and usually carried out by the software developers themselves.

This is the first level of testing and ensures the reliability of the code. But, even if the

units work individually, that does not mean that all of them combined necessarily work

as intended. Integration testing then follows to test the integrated code.

Integration Testing is the testing process in which software components, hardware

components or both are combined and tested to evaluate the interaction between them

[4]. It can be used along with white box techniques and black box techniques and its

main purpose is to expose potential faults in the interaction between combined units.

Integration Testing can be performed only by software developers or experienced inde-

pendent testers.

System Testing is testing conducted on a complete, integrated system to evaluate the

system compliance with its specified requirements [4]. It is usually carried out in the

black box way (the whole internals of a system is too complex to be handled ala white

box) and by an external testing team. Its main purpose is to examine the high-level

design as well as the customer requirements, in order to ensure that the functionality

responds to what the system is meant to do. This level of testing typically also include

the testing of non-functional aspects of the whole system, such as its performance and

security. Thus, it includes, for example, the following additional types of testing:

• Stress Testing, which is conducted to evaluate a system or component at or beyond
the limits of its specified requirements [4].

• Performance Testing, which is conducted to evaluate the compliance of a system or
component with specified performance requirements [4].

• Usability Testing, which is conducted to evaluate the extent to which a user can
learn to operate, prepare inputs for, and interpret outputs of a system or component
[4].

Security Testing is a process to determine that an information system protects data

and maintains functionality as intended. The six basic security concepts that need to

be covered by security testing are:confidentiality, integrity, authentication, availability,

authorization and non-repudiation.

System Testing is where most resources are allocated to and it is too timely and

expensive to be used in order to locate lower-level faults. Our research will be performed

and evaluated on the System Testing level.

8

2.3

Acceptance Testing refers to the formal testing process used to determine whether or

not a system satisfies its acceptance criteria and to enable the customer to determine

whether or not to accept the system [4]. It is performed immediately after System Testing

and before making the software available for the end user, using Black Box techniques.

These types of tests are pre-specified by the customer within a realistic environment and

this level is usually merged with System Testing.

Regression Testing is selective retesting of a system or component to verify that mod-

ifications have not caused unintended effects and that the system or component still

complies with its specified requirements [4]. As mentioned above, regression testing

can be performed on each pre-defined level (more usually in the system testing level)

whenever the software changes, using both black and white box testing. The purpose of

running the regression test case is to make a “spot check” in order to examine whether the

new code works properly and has not damaged any previously-working functionality by

propagating unintended side effects [5]. Due to the importance of regression testing, com-

panies invest a respective amount of time and money to adopt automated regression tools.

Beta Testing is testing conducted to determine unexpected system faults and is directly

connected with acceptance and system testing. Beta testing belongs to the black box

testing class and it is performed by potential users or beta testers. Using the specific

testing type, companies could identify unexpected errors produced by the users in a

variety of environments without any costs, as long as the testers are also users. On the

other hand, the lack of systematic testing, the low quality error reports and the time

cost to examine the error reports are significant disadvantages.

2.3

As already mentioned, testing is an expensive, time-consuming and intensive process

which has to be repeated for every single modification. Automation in testing could give

a vital boost in development. The following section describes the most commonly used

automated testing approaches.

2.3.1 Capture and Replay

Capture and Replay Testing has been one of the most used approaches until now, since

almost every automated tool implements that method. All tests are performed manually,

by recording all inputs and outputs of the procedure. Immediately after the capturing

process, the same sequence of actions automatically replays itself while it logs the new

results. After finishing with the replay process, the actual responses to the captured

9

results are compared and the differences are reported to the tester as errors.

The technique has several advantages over other methods [21]:

• It requires the least training and setup time, given that it does not require program-
ming skills.

• The development of the tests can be defined by the tester on the fly.
• Logging the whole procedure of the test cases provides an excellent trail of the steps
in order to recreate the error.

Unfortunately, there are several disadvantages which leads to the development of new

methods such as script-based testing:

• As mentioned before, all tests must be performed manually in order to be captured,
resulting in higher time costs; this is even worse when a test needs to be adjusted
after a modification to the code.

• In order to perform that method, the software must be stable enough for the manual
testing / capturing part.

• The lack of maintainability of the test scripts is an important factor. Every update
in the code that changes the interface may force us to recapture a whole set of tests,
thus incapacitating the automation.

• The testing scripts are short lived, which directly affects the maintainability of the
project.

2.3.2 Script Based Testing

The Script Based Testing approach uses test scripts to automate the execution of the

tests. A test script is an executable script which runs one or more test cases and is

written in a programming or scripting language such as Lua, Perl, PHP, JavaScirpt,

Groovy; Lua will also be used for the implementation of the current thesis. The test

scripts are responsible for the initialization of the SUT (System Under Test) and its

calibration in the required context. After that, it defines the test input values, passing

them to the SUT, and then compare its output to pre-determined expected results. Test

scripts must control and observe the SUT using certain APIs [22]. This implies that

testability criteria must be defined, that guarantees that such APIs exist.

Script based testing can be combined well with regression testing with the regression

testing technique as it solves the execution problem by automating it. That way, the

tester could easily run all the test scripts for free.

10

2.3

But, what happens when parameters that are used to initialize the SUT, are changed

in the API? Unfortunately, each time some requirements change or some implementation

details change, the test scripts must also evolve. This important factor increases the test

maintenance problem which results in more costs. Furthermore, test scripts are quite

complex which requires experienced programmers in order to write and maintain them.

The next two approaches, namely keyword-driven and data-driven testing, solve the

maintainability problem of low level test scripts by raising the abstraction level of the

test cases.

2.3.3 Keyword Driven Testing

Keyword Driven (or Table Driven) Testing uses action keywords or phrases to express

specific fragment of the execution of a test script. The combination of those keywords

is translated to executable code which follows the same steps such as the script based

testing technique, aiming that way in a higher abstraction level. The implementation of

these keywords requires basic programming skills but the design of the test cases can

be written by non programmers. The higher level of abstraction does not only offer less

production costs, but also offers easy maintenance as the test cases can be used in an

updated or modified SUT.

However, the test data are designed manually, and requirements have to be in accor-

dance with the test cases resulting in the necessity of manual tracking, which is still a

costly process.

2.3.4 Data Driven Testing

The Data Driven Testing technique procedure is quite similar to the previous techniques

and can be easily compared with the capture and replay. The only difference is that, in

the first one, the inputs and outputs are fixed instead of variables, as opposed to the

second one.

Some extra advantages of this technique are:

• The design of the tests can be accomplished easily. There is no need to have a stable
working SUT as the test cases can be developed beforehand. Only the execution of
the test requires a running SUT.

11

• The creation of the test cases -inputs and outputs- can be accomplished by anyone
and does not require programming skills. All the data can be stored using a simple
text editor.

However, execution of the test cases requires not only experience and programming

skills, but also data management and high storage capacity.

2.3.5 Model Based Testing

Model Based Testing is one of the most widely used automated techniques that includes

the answer for each problem of the previous approaches. It provides automation, not

only during the execution of the test but also during the creation of the test cases. That

results in the reduction of the maintenance costs. Furthermore, the traceability from

requirements to test cases is generated automatically.

The automation of the test cases is an important factor that reduces the production

costs. Instead of writing multiple test cases manually, the specific technique generates a

set of test cases with regard to a predefined abstract model of the SUT.

According to [22], a model based process can be divided into the following main steps:

• Model the SUT and/or its environment
• Generate abstract tests from the model
• Execute the tests on the SUT and assign verdicts
• Analyze the test results

The first step is of vital importance, since it defines the accuracy and stability of the test

cases. Modeling the SUT is a manual procedure and the main purpose is to define an ab-

stract model of the system that needs testing. In our case, we will try to define a Domain

Specific Language which describes a specific type of game and hopefully a game in general.

Afterwards, a model based related tool automatically generates test cases using the

defined abstract model. In that case, the test selection criteria must be carefully consid-

ered, so that the number of test cases is significantly reduced to a finite amount.

The third step of the model based process will transform the abstract test cases to

executable scripts. For that purpose, the need for a transformation tool is required as it

will manage to fill the gap between the abstract test cases and the concrete SUT. This

step can be achieved by linking the abstract model terms with low level SUT details such

as functionality, movements and interactions. An important advantage of that step is

12

2.4

that the abstract tests could use a different programming language from the one used for

the Environment.

The last two steps are a typical part of the testing procedure. First, all the test cases

are executed on the SUT while they are logging all the output responses of the software.

Afterwards, all the test results are analyzed and a readable report is then produced for

the tester. It is important to mention that when a fault is identified, it could be a real

fault in the SUT, but it could also be falsely reproduced if the model turns out to be

incomplete. A model is complete if every execution of the SUT that is correct, is also

verified as correct by the model.

2.4

For the implementation part of my thesis, I will use evolutionary algorithms in order

to generate test cases [13]. An evolutionary algorithm (EA) is a subset of evolutionary
computation, a generic population-based metaheuristic optimization algorithm. An

EA uses mechanisms inspired by biological evolution, such as reproduction, mutation,

recombination, and selection. Candidate solutions to the optimization problem play the

role of individuals in a population, and the fitness function determines the quality of the

solutions (see also loss function). Evolution of the population then takes place after the

repeated application of the above operators.

A genetic algorithm takes a random population of solutions as an input and, through a

recombination process as well as mutation operations, it gradually evolves the population

towards an optimal solution. Apparently, an optimal solution is not always guaranteed

and that depends on how well defined the fitness function is. The fitness function evaluates

the populations and decides which of them fit as parents of the next generation of solutions.

The resulting solutions with the highest fitness values form the new population and

the cycle is repeated, in an effort to approach the optimal solution.

Evolutionary algorithms have been the most popular search-based algorithms for gen-

erating test cases and [14] supports exactly that, with a benchmark between 5 techniques

for test case generation using a genetic algorithm. The genetic algorithm outperforms

the other algorithms in most scenarios and distributions; it is the best choice when there

is simply no algorithmic way known to solve the problem (e.g. it is a black box) or the

algorithmic way to find a solution of the problem is too costly.

13

2.5

With regard to the graphical interface of the game, “perfect” Mazes are used. Perfect

mazes are mazes with only one single unique solution that does not involve retracing

steps [11]. This means that the maze has no inaccessible sections, no circular paths

and no open areas. In terms of Computer Science, such a Maze can be described as a

spanning tree over the set of cells [12].

Below, there is a representative description of the most known maze creation algo-

rithms that were researched, in order to pick the most appropriate algorithm for our cause:

• Recursive Backtracker :This is one of the most known algorithms in its field which is
also directly related to its solving method. The main characteristic of the algorithm

is that, each time it moves to a new cell, it pushes the previous cell on the stack.

If there are no unvisited cells next to the current position, it pops the stack to

the previous position. The Maze is done when the stack is empty. The Recursive

Backtracker is one of the fastest maze generation algorithms in the family of perfect

Mazes, even though it requires a stack up to the size of the Maze, while keeping

the “Dead End” rate really low.

• Prim’s algorithm:During the implementation of the Maze, it gives each cell one
of the following types: The first type, “In”, means that the cell is already carved

and it is part of the Maze; the “Frontier” refers to when the cell is part of the Maze

but not carved; and the “Out” type when the cell is not part of the Maze. The

algorithm starts with an “In” cell and baptizes the surrounding cells as “Frontier”.

Randomly, it selects a neighboring "frontier" which carves into it and updates the

neighboring “out” cells to “frontier”. The algorithm stops when all of the “out” cells

are gone. It runs really fast and the solution of the Maze is usually pretty straight

forward.

• Kruskal’s algorithm:It is actually an algorithm used for creating minimum span-
ning trees from connected weighted graphs. The algorithm requires a storage of

proportional size with the size of the Maze, as well as a labeling procedure that

enumerates edges and walls between cells randomly. Kruskal's algorithm, then,

reviews each edge to detect if the cells on either side have different IDs, deletes

the wall in between and labels the cells all over so that they share the same ID. If

the cells on either side of a wall already share the same ID, the algorithm assumes

there must already be an existing path between the cells at play, and the wall is

left intact, in order to avoid an unwanted loop. Furthermore, it runs quite fast

providing low solution rate.

• Aldous-Broder algorithm:The algorithm does not require extra storage or to keep
track of the stack. This algorithm starts from a random cell and moves to a random

adjacent cell. If an un-curved cell is entered, it carves it continuing the previous

14

2.5

cell. The Maze is ready when all cells have been carved. The interesting thing of

the specific algorithm is that it will create all possible Mazes of a given size with

equal probability. However, it is quite slow and the termination of the algorithm is

not guaranteed.

• Wilson/’s algorithm:This is an improved version of the Aldous-Broder algorithm,
the main difference being that it runs much faster. It also only requires storage

up to the size of the Maze. It first adds the Maze's first cell randomly, then starts

from another random cell that is not part of the Maze and does random walk till it

finds a cell that belongs to the Maze. When the already created part of the Maze is

hit, it goes back to the random cell that was picked at the beginning and it carves

the path it had taken, adding the cells from the path to the Maze.

• Hunt and kill algorithm:It is similar to the recursive backtracker algorithm but it
does not require extra storage or stack. Therefore, it could implement largest Mazes.

The “Hunt and Kill” algorithm starts exactly as the Recursive Backtracker and,

when a collision is made with no escape options, it activates the “hunting” mode

in which it performs and overall scan of the Maze until a cell not yet belonging

to the maze is found next to an already carved cell; the cell is added to the maze

and constitutes the starting point of the carving procedure yet again. The Maze

is completed when all the cells are scanned by the “hunt” mode at least once. It

usually keeps low “dead end” and “solution” rate.

• Growing tree algorithm:This algorithm is fully customizable and only requires

storage up to the size of the Maze. It starts from a random point in the grid and,

each time it carves a cell, it adds it to a list. Afterwards, it picks a cell from the list

and carves a path into an uncarved cell next to it, adding the latter to the list. Then

the listed cell gets erased from the list and, eventually, the algorithm is done when

the list is empty. The interesting part of this algorithm is that customizing the

selection of the uncarved cells can simulate other algorithms such as the Recursive

Backtracker or Prim/’s.

• Eller’s algorithm:This algorithm is special because it's not only faster than all

the other ones that lack obvious biases or flaws, but its creation is also the most

memory-efficient [12], since it only reserves in the memory one generated row at a

time. There is a set for every cell in a row, and two cells belong to the same set

only if there is a path linking them. The checking process only works for the part

of the Maze that has already been carved, thus preventing isolations and loops.

• Recursive division:It is yet another algorithm similar to the “Recursive Backtracker”
algorithm, with the only difference being that it focuses on walls instead of paths.

It starts randomly with either a horizontal or vertical wall, crossing the available

area in a random row or column. Afterwards, it repeats the process on the pair

of the divided subareas recursively. The “Dead End” ratio is quite high, but it is

relatively fast to be created.

15

• Binary tree algorithm:The "binary tree" algorithm is one of the most biased ones,
but is also one of the most trivial to implement. Furthermore, it is the simplest to

solve and the fastest algorithm to form a Maze. As the name suggests, if starting

from upper left side, It could be considered as a binary tree, with its root on the

upper left and using only one rule which dictates that each node has one parent

-which can be either the upper left cell or the cell above, but never both of them.

Reversing a binary tree Maze upside down, treating the passages as walls and the

walls as passages, you get another binary tree.

• Sidewinder algorithm: This algorithm also generates the Maze by one row at a

time. It starts by randomly deciding whether to carve a passage leading right or

considering the horizontal passage completed. Then, it randomly picks one cell

along this passage, and carves a passage leading upwards. In comparison to the

binary tree algorithm which goes up from the leftmost cell of an horizontal passage,

the sidewinder algorithm goes up from a random cell. Thus, the solution rate is

low and almost the same as the binary tree algorithm.

Algorithm Dead End % Type Focus Bias Free Memory Time Solution %

Recursive Backtracker 10 Tree Passage Yes N2 24 19.0

Hunt and Kill 11 Tree Passage No 0 55 9.5

Recursive Division 23 Tree Wall Yes N 8 7.2

Binary Tree 25 Set Either No 0∗ 7 2.0

Sidewinder 27 Set Either No 0∗ 8 2.6

Eller's Algorithm 28 Set Either No N∗ 10 4.2

Wilson/'s Algorithm 29 Tree Either Yes N2 51 4.5

Aldous-Broder Algorithm 29 Tree Either Yes 0 222 4.5

Kruskal's Algorithm 30 Set Either Yes N2 32 4.1

Prim's Algorithm 36 Tree Either Yes N2 21 2.3

Growing Tree 49 Tree Either Yes N2 43 11.0

Table 1: the main characteristics of the perfect Maze creation algorithms

.

The table above shows the main characteristics of the perfect Maze creation algorithms

[12]. These numbers are taken from a 100x100 Maze using the software Daedalus.

The column Dead End contains the approximate percentage of cells that are dead ends

in a Maze created with this algorithm. The table is sorted by that column. The recursive

backtracker algorithm supposedly could have less than 1% dead ends, having enough run

factor and the highest possible dead end could go up to 66%.

16

2.5

Furthermore, there are two types of perfect Maze creation algorithms. Tree bases

algorithms grow the Maze like a tree, having always a valid perfect Maze on every step of

the algorithm. On the other hand, a set based algorithm builds where it pleases, keeping

track of the parts that are connected with each other, in order to form a valid Maze at

the end of the procedure.

The 'Recursive Backtracker' algorithm and the 'Hunt and Kill' algorithm cannot form

a Maze by adjusting walls on their passage but only through curving their path, contrary

to the 'Recursive Division' algorithm where it can only be done using a wall adder due

to its bisection behavior. The rest of the algorithms could work both ways adding walls

or curving their path.

The Bias Free column means that the algorithm treats all directions and sides of the

Maze equally, where analysis of the Maze afterward cannot reveal any bias.

An important factor in a perfect Maze creation algorithm is how much extra memory

or stack is required to form it. Some of the algorithms do not need any memory storage,

while others need a single row (N) or proportionally to the number of cells (N2).

The Time column shows the time it takes to create a Maze using this algorithm and the

numbers are only relative to each other and depend on the size of the Maze. Some of the

algorithms that either use walls or curving to implement the Maze take much longer when

they add walls. Last but not least, the Solution column is the percentage of cells in the

Maze that the solution path passes through with the start and the end in opposite corners.

17

3
DSL IN GAMES

3.1

In this chapter, I will try to give a short overview of the work that is associated with the

area of domain specific languages used in game testing automation with a model-driven

approach. Before going through the related literature, it should be pointed out that

there is not really anything related to the field of game testing, as far as domain specific

languages are concerned, but only in that of software testing.

To begin with, the most known domain specific languages that are used to express game

terms are listed below. Even though these Domain Specific Languages were primarily

developed in order to express a game or even construct the functionality of one and

not actually test it, they inspired our attempts nevertheless. It should also be made

clear that these languages are designed to help develop 2D games and not 3D ones. In

the second section, I present the most used -state of the art- approaches in automated

software testing.

3.2

This thesis is directly related with the research and design of abstract models that

describe a game, or a test case of a game. A Domain Specific Language (DSL) can be

used to describe models. But first, what is a DSL, and what are the advantages and

disadvantages of using it?

According to [6] and [7], a DSL is a programming language specialized to a particular

application domain that offers, through appropriate notations and abstractions, expressive

power focused on -and usually restricted to- a particular problem domain. A DSL could

describe an application domain in a higher level of abstraction which makes it much

easier to deal with. As stated in the definition, DSL can be considered as an excellent

candidate for our purpose.

One of the most important reasons of using a DSL is the better maintainability that

offers, as long as the code is understandable and, more or less, self-documented because

of the higher abstraction level. Thus, it gives the opportunity to allow solutions to be

expressed in the idiom and at the level of abstraction of the problem domain, making

that easier to user with no programming skills to understand, modify, extend and reuse

the language.

19

Furthermore, according to [6], that results in higher quality, productivity, reliability,

portability and reusability. Another advantage is that DSLs allow validation at the

domain level, as long as the language constructs are safe.

On the other hand, in our case, there is one main disadvantage. Designing and main-

taining a DSL is a costly procedure. It takes time not only to design a well defined DSL,

but also to train users to use it in a proper way, which could affect the productivity.

As pointed out in [8], using a DSL may lead to a loss in efficiency of the final software,

but it may also lead to an increase. When using a DSL, one writes code at a higher

abstraction level; translating this code into a general purpose language or some other

target language may lead to inefficiencies in the final product. Nevertheless, in our case,

we will use a DSL to express a game in order to construct a model which will test it,

instead of developing the whole game.

In our case, we took advantage of the programming language Lua. Lua is a powerful,

fast, lightweight, embeddable scripting language [9] which was designed, implemented,

and maintained by a team at PUC-Rio, the Pontifical Catholic University of Rio de

Janeiro in Brazil. It combines procedural syntax with powerful data description constructs

based on associative arrays and extensible semantics.

Lua is a relatively new language which joined the game development from its early

stages. We decided to take advantage of Lua by taking into account the following reasons.

First of all, Lua is a proven, robust language and it is considered to be the fastest

language in the realm of interpreted scripting languages [9]. But the most important

reason is that Lua can be embedded into almost every type of applications. Furthermore,

Lua has a simple and well documented API, providing examples and special programming

cases.

Last but not least, Lua is malleable. It has just enough syntactic sugar and meta-

mechanisms to be easily repurposed for domain specific languages [10].

There is a great variety of DSLs known as domain-specific entertainment languages.

Based on [15], these are a group of DSLs that are used to describe computer games or

environments, or even potentially used for other digital entertainment such as video

or music. Some of the more well known examples of these are: Extensible Graphical

Game Generator, Zillions of Games, ViGL, Py-VGDL, Game Description Language

(GDL), GDL-2 and World Description Language, UnrealScript, GameXML, and Xconq.

The following subsections explain some of them, which are most used in the game industry.

20

3.2

None of these are used to test games actually, but they at least prove that terms and

concepts in games can be abstracted with a DSL. For each of these DSLs of the following

sub-chapters, there is a code sample of the well-known game “tic-tac-toe” at the chapter

appendix, taken from [8].

3.2.1 GDL & GDL-2

To begin with, it is worth mentioning the term of general game playing was first in-

troduced by the Stanford Logic Group of Stanford University and is the reason why

one of the most known description languages for games was developed, namely Game

Description Language (GDL) as well as its extensions, such as GDL-2. "General Game

Playing" is the design of artificial intelligence programs in a way that enables them to

play more than one game successfully [16]. According to [17], games are defined by sets

of rules represented in the Game Description Language.

GDL describes the state of a game world in terms of a set of true facts [18]. It uses

logical rules in order to define the set of true facts in the next state, and keeps track of

the transition between the states. It consists of an initial state, a goal and a terminal

state. GDL and all of its extensions like GDL-2, can be natutally applied to board and

logic games with a two dimensional grid system, as these games have a deterministic set

of states and and moves that are expressible as a finite state machine.

We tried to express the game logic of a simple 2D shooting game, given that GDL can

be applied to a 2D grid. We managed to set the basic view definitions and rules such

as the role, initial, goal, terminal and basic legal relations; but the amount of the static

relations such as the definition of each integer or the definition of the successor of each

integer stopped us from further experimentation.

The following table shows the basic keywords[19] of GDL-2 that we used for our attempt.

3.2.2 ViGL

The domain-specific language ViGL stands for Video Game Language. It is mainly used

for rapid prototyping on 2-dimensional games. Expressions in ViGL can be used to

generate the backbone code of a game.

ViGL is based on XML which makes it easy to understand but it also lacks in control

flow features. Thus, at the end, the ViGL designers mixed XML with some embedded

code (XML blocks).Each XML block describes a common component of a video game.

21

role (R) R is a player

init (F) F holds in the initial position

true (F) F holds in the current position

legal (R, M) R can do move M in the current position

does (R,M) Player R does move M

next (F) F holds in the next position

terminal The current position is terminal

goal (R,N) R get N points in the current position

sees (R,P) R perceives P in the next position

random The random player

distinct Is used to require that two terms be syntactically different

Table 2: GDL-2 commands

.

The ViGL specification focuses on the graphical needs of the game and the integrated

game rules of each game object.

In principle, ViGL only targets 2D games, though according to Jeroen Dobbe [8], its

features(see Table 3) can in principle be translated to a 3D setup.

Features Requirements

Graphics Loading of images, texts, etc

Sound Load, Play, Pause and stop music

User Input Keyboard and mouse input handling

Objects The objects of the game(types, shapes, sizes, positions)

World The game world and the rules of the world

Interaction Interaction between object in the game world.

User control The way the user controls the objects in the world

Table 3: features that can be translated to three dimensional environment

.

The table above suggests out that a DSL for games should not only express the high

level game design definitions but also lower level details of graphics, sound, interactivity

etc.

An important aspect of ViGL is that it provides classes and methods for the game

objects, the rules, the world, the events and the actions. On the other hand, game play as-

22

3.2

pects such as the player types, world types, scoring system and levels are missing in ViGL.

3.2.3 Zillions of Games

Zillions of Games is a commercial game package with a universal game engine for board

games and was developed by Jeff Mallet and Mark Lefler in 1998. It was designed to

handle mostly abstract strategy board games or puzzles. After parsing the rules of the

game in the game engine, the system could provide solutions by automatically playing

one or more players with the use of artificial intelligence.

The scripting language of the Zillions of Games uses S-expressions which makes the

code more structured and easy to understand. S-expressions, which stand for symbolic

expressions, are a notation of nested list data, used for the programming language Lisp.

An S-expression is defined as an infinite set of distinguishable atomic symbols or as

an expression of the form (x.y) where x and y are S-expressions and the parenthesis
represents an ordered pair so that S-expressions are effectively binary trees [20].

A game definition by Zillions of Games can be separated into four basic parts. The first

part contains the name of the author, the game description and other metadata of the

game. The second part of the structure contains the definitions of the objects of the world,

the players and its meta information. The third part contains the board information

such as the shape, the grid style and dimensions. The last part of the definition contains

the goal of the game, expressed in just a condition where one of the players wins or when

draw occurs.

23

4
METHODOLOGY

4.1

This chapter presents the methodology chosen to answer the posed research questions

(see Section 1.4). Since we have two research questions, the methodology is split into two

corresponding parts.

The first part of our approach is the design of a DSL to express testing related concepts

for games, and the development of an implementation that facilitates more accurate

and less time-consuming automated tests. It would save us a lot of effort if we could

work on an existing DSL. Unfortunately, all DSLs used in the Game Industry, which we

discovered during our literature study, are used solely for developing games, rather than

for testing them. Therefore, we have to design our own.

A DSL is a small, usually declarative language that offers expressive power, focused

on a particular problem domain ([23], which is a more precise definition of [2]). In a

DSL used for expressing testing goals for games, we will inevitably need to express these

goals in terms of the games' concepts and terms. In addition, pseudo-DSL includes

commands and queries of the domain which can be syntactically expressed with the help

of a programming language. A pseudo-DSL contains pseudo-code which is an informal

high-level description of the operating principle of a computer program or other algorithm

[24]. It uses the structural conventions of a programming language, but is intended for

human reading rather than machine reading.

There are however various types of games, such as first and third person action games,

role-playing games, strategy and massively multi-player online games, that greatly differs

from one another. Despite some common concepts like that of victory and defeat, each

type seems to have a whole range of unique concepts, such as game-play, physics, graphics

and rules; thus essentially defines its own domain. We will therefore focus on one type,

namely 3D First Person Shooter (FPS) games, and our DSL will be one for testing these

types of games.

In order to avoid the development of a new DSL from scratch, an effort to extend an

already existing DSL such as the GDL-2 language was made but without any success.

As already discussed (see Chapter 3.2.1), GDL-2 is not designed to test games but to

develop turn-based strategy games in a two dimensional environment. Thus, our next

25

alternative step was to take advantage of an existing embeddable scripting Language

such Lua and try to express game terms through that. According to [25], an embedded

style language is a kind of computer language whose commands appear intermixed with

those of a base language.

Embedding Lua in the Unity3D Game Engine gave us the opportunity to not only

express the testing goals in game terms but also control the whole game through Lua,

which resulted in the development of a pseudo-DSL instead of a complete DSL.

Concerning the evaluation of the first part of our approach and the answer of RQ2, we

decided to apply experiments by using three different algorithms on four different levels

of difficulty via our pseudo-DSL. The algorithms of the experiments will be presented in

the following sections of this chapter.

Furthermore, it is wise to present the basic structure of the domain in combination

with our implemented pseudo-DSL. Figure 1 shows the architecture of our pseudo-DSL,

and how it is embedded in the Unity game engine.

Figure 1: Basic Unity3d structure

In Unity3D, a game is built by providing scripts and scenes. Scripts express various

functionalities of the game, e.g. the functionality to shoot, and the functionality to save

and load a game in progress. Scripts can be written in C#, JavaScript and Boo. We

extend Unity3D with a LuaInterface, which is implemented as a Unity script, written in

C#. This interface is responsible for the interpretation of Lua and the communication

between the domain and the pseudo-DSL.We also added a so-called "console", which is

26

4.2 3

a graphical user interface that allows the tester to directly query the game when it is

under test. We found this to be a very useful tool. More detailed information will follow

in the following sections.

In Section 4.2, I present the reasons why we used the specific game engine and its

structure as well as the rules and controls of the game, while, in Section 4.7, the reasons

for selecting a more specific domain such as mazes are discussed. Section 4.3 and 4.5

introduce Lua and the console which was used to communicate with the domain. The

implementation of our pseudo-DSL, as well as the algorithms that were used in order to

test the usability and scalability of our language can be found in sections 4.4 and 4.6

respectively. Last but not least, Section 4.8 presents the problems we faced during the

procedure of the research and how we managed to solve them.

4.2 3

We decided to develop our domain using the well known game engine, Unity 3D version

4.0.1 for Windows Operating Systems. Unity3D is one of the most widely used game

engines, and some of its typical features are the following:

• Unity3D is free for personal and commercial use and provides a wide range of
features.

• It provides developers with many examples and features a strong, community-
supported API.

• It is quite easy to use for 3D and 2D game development purposes.
• Developers are free to use any one of a wide range of programming languages, like
C#, JavaScript, or Boo.

• More importantly, as far as this thesis is concerned, many more languages can be
embedded into the engine, like Lua.

• Unity also provides reliable efficiency and frame rate, which is really important
when testing a game.

The next figure presents the important components that Unity 3d consists of, accom-

panied by our domain which will be analyzed later on.

Figure 2 shows the important components of our extended Unity3D, namely: Scripts,

Scenes and LuaInterface. The component Scripts contains C# and Lua scripts which are

responsible for the front-end and back-end domain functionalities. The most important

of them are discussed in the following Sections. The component LuaInterface links and

interprets the programming language Lua to the Unity 3d environment. Last but not

least, the component Scenes contains the front-end GUI and the back-end Maze Generator

27

Figure 2: Unity3d structure

scene which will be explained in Chapter 4.7.

In order to limit the scope of my thesis, I created a basic First Person Shooter (FPS)

game, the primary goal of which is the detection and neutralization of one or more targets

by a player. This way, we could represent a real game, providing basic 3D graphics and

controls.

We tried to set as simple game rules as possible, so that we could relate them to an

FPS game. In the game scene, there is one player and one or more targets - enemies.

The enemy can move randomly across the stage and the player must locate it running

through a maze of a certain size. The game goal is to locate and neutralize the target

as fast as possible. It should also be noted that there is a time limit for every stage of

the game. The game stops when the player has neutralized all targets - goals within the

time limit, when the time limit has been reached, or when the player is found outside the

stage, which means that a certain bug has been detected.

The player's movement in the game can be controlled in three ways. The first one

involves the keyboard: forward ('W'), backwards ('S'), left ('A'), right ('D'), and shooting

can be achieved by left-clicking on the mouse.

The other 2 ways can be accessed through a Quake-like console that was built as part

of our extension of Unity3D?. They provide the player with information about the game

state, as well as complete management of the objects at the current game state. The

console commands were also used in the pseudo-DSL. The console can be activated using

the (`) key, and its functionality will be thoroughly discussed in the following sections.

28

4.3

4.3

The console has been developed, for various reasons, from the beginning of the thesis

research. It was vital to know that it is feasible to interact with the SUT at any time.

That way, the SUT state is fully controllable and provides feedback for bugs and system

errors as well as debugging purposes. Furthermore, the most important feature of the

console is being able to interact with the gameObjects of the current state. That manip-

ulation could be achieved by using our DSL, executing functions directly via the console

or by using Lua scripts which are actually a combination of the syntax of Lua and our DSL.

We did not develop the console from scratch, but instead extend "In-Game Console"

extension [26]; this saves much work.

• The extension is open-source and free to use.
• The code is well-structured and clean.
• It provides pretty straight forward functionality to register custom commands
• It provides a logging system which stores data into log files

Consequently, the only part that was needed to be extended was the registration of our

custom commands which would also interpret Lua syntax commands with our pseudo-DSL.

Figure 3: Console activation example - upper semi transparent box

4.4 - -

The lack of literature in the field of Domain Specific Languages for Game Testing lead

the research to Game Description Languages for logic and board games, which could

only express game terms in a 2D environment. However, these are the reasons which

motivated me to develop a new DSL and contribute an updated approach of Game

29

Testing. It worth mentioning, that the GDL-2 language gained our attention because of

the way it was defined. It describes the state of a game in terms of a set of true facts by

providing keywords to the tester.

Furthermore, by taking advantage of the Lua syntax, we managed to develop the

following pseudo-DSL which can provide the tester with full access to the state of the

game. The DSL we propose is a set of keywords which could be applied to every type of

gameObject in the environment of Unity3D. Keywords can subsequently be composed

using Lua syntax.

 

In the following Figure can be seen an example of that, which was used for creating

test cases using the pseudo-DSL in Lua:

Figure 4: Pseudo-DSL example in Lua

In the script above, we can see a Lua script along with the pseudo-DSL that we have

developed. The use of coroutine enables us to execute script files on the fly without

having to deal with the known continuation issue that goes with script languages. The

coroutine.yield() function can be considered as a combinator. As we can see in the
example, the gameObject-player will try to locate the gameObject-target within an hour.

When either the time is over or the gameObject-target has been located, it will continue

to the next function, where it will try to neutralize it.

The keywords/functions which we used to describe the domain can be found in the

following table:

30

Keyword/
Function

I/O types Location Description

spawn GameObject -> Float -> Float -> Float -> String

String -> Float -> Float -> Float -> String

Console

Lua

Using this particular command,
the user can make any given
object of the game appears in
the map, at the desired
location. If this is successful, a
success message is returned.

moveto GameObject -> Float -> Float -> Float -> String

String -> Float -> Float -> Float -> String

Console

Lua

This command will transfer a
game object to the desired
location (specified by
coordinates) and will return an
appropriate success message.
This kind of transfer ignores all
collisions; so the moved object
may stick of pass through other
objects within the scene.

fire Void -> String

Void

Console

Lua

This command will cast a ray
(raycast) towards the center of
the player's view. If the raycast
collides with an object and this
object is stated as a target, then
it will destroy it and the total
enemies counter will go down
by 1. Following that, a success
message will be returned in the
console.

move GameObject -> Direction -> Int -> String
(Direction = “Left” | “Right” |”Up” |”Down”)
String -> String -> Int -> Void

Console

Lua

The 'move' command is one of
the most useful ones in the
game. As input variables, it
takes the game object we want
moved, the direction toward
which we want it moved and
the time interval for which we
want it moved in space. When
the movement is complete, a
success message is returned
with the new coordinates of the
game object, at its new location.
Similar to the 'moveto'
command, the 'move' command
is not subject to collisions.

whereis GameObject -> String

String -> String

Console

Lua

Using the whereis command,
we can query the position of the
object.

canmove GameObject -> Float ->String

String -> Float -> String

Console

Lua

canmove is another query
command which checks
whether it is possible for an
object to move to the specific
coordinates. More specifically, it
applies a raycast for n distance
and checks if there is an
obstacle in front of it. The
parameters that it needs are the
gameObject and the number of
the steps (width of the raycast).

goto GameObject -> GameObject -> Float -> String Console It takes as parameters two

String -> String -> Float -> Void

Lua

gameObjects and time in
seconds. The first gameObject is
the object that we need to
move towards the second
gameObject for n seconds.

Furthermore, this is a kind of an
AI-Heuristic algorithm where
the first two string parameters
are the gameObject-player and
the gameObject-target. The last
one is the time in seconds. The
specific algorithm “knows” the
position of the gameObject-
target and will always try to
move towards it. Furthermore,
it keeps in list the last 100
coordinates of its position in the
scene, avoiding movement
loops.

shootobject GameObject -> GameObject -> Float -> String

String -> String -> Float -> Void

Console

Lua

Another shooting command
with one more extra
functionality. The first
gameObject is used to look at
the second gameObject in n
seconds and shoot afterwards.

debug A -> String Lua The debug command was
created so that the user can be
informed of the state during an
event, as well as the values of
any parameter in the console.

loadlvl Void Lua Loadlvl will load the last saved
state from file. The save state
will contain only the position
and rotation of the player.

Evomove String -> [String] -> Float -> Void Lua This custom made evolutionary
algorithm takes three
parameters: the gameObject-
player in string; a list of possible
moves such as left, right, up,
down; and the time or steps
necessary for the algorithm. The
use of the list of moves is
important, since it defines the
events of each population

Randomwalk String -> -> String -> Float -> Void Lua This algorithm requires exactly
the same parameters as the
“goto“ algorithm and, also,
every movement in the scene is
random.

4.5 &

The first column shows the name of the function, the second defines the type, and the

third column indicates the way of executing the specific function. As we can see, most of

the functions can be typed and executed from the console which is in the SUT or by a

Lua script. It should be noted that the script can be edited on the fly. The last column

describes the purpose of each function.

It is important to mention that we took full advantage of the Lua language. This way,

we avoided having to define loops, statements and data types, except for a few helper

functions addressed to controlling the game. As mentioned before (see Section 4.1), in

order to prove the usability and scalability of the proposed pseudo-DSL, the functions

“evomove”, “goto” and “randomwalk“ were used to gather the experimental results.

The console, besides its use that was discussed above, was also used to report errors,

warnings and bugs, as well as to keep record of all feedback with regard to executed

commands.

4.5 &

Our pseudo-DSL includes only keywords or functions missing the proper syntax of a

programming language. Hence, Lua comes to fill that gap and provide full access to its

syntactic sugar such as operators, loops, conditions and functions.

Lua is a popular and growing programming language in the game industry. According
to [27], Lua is a dynamically typed language that offers support for object-oriented

programming, functional programming and data-driven programming; and it works

embedded in a host client.

More specifically, Lua provides us with the following elements:

• Error Handling: all Lua actions start from C code in the host program calling a
function right from the Lua library so that, whenever an error occurs, it prints it
out.

• Coroutines: A coroutine in Lua represents an independent thread of execution.Corou-
tines played an interesting role in our research, helping us to open threads in the
same instance of the system and execute functions simultaneously. The Figure 5
presents the proper syntax of a coroutine Results are presented at Figure 4
The function print first calls the coroutine co providing it with the parameters

a = 1 and b = 10. Immediately after, the function foo is called with a = 2. First,
function foo prints the first row of Figure 4 and then yields the coroutine and

returns 4. Once the coroutine is “paused” the print function prints the second row

33

Figure 5: Lua example

foo 2 -

main true 4

Table 4: One run results

.

of Figure 4.

If we executed the function print again two more times, the end result is presented

at Figure 5:

foo 2 - -

main true 4 -

main true 11 -9

main true 10 end

Table 5: Three run results

.

• Standard Lexical Conversions: As the Lua guide implies, Lua is a free-form language
which ignores spaces, new lines and comments between lexical elements (tokens).
The following table presents the keywords that are reserved by Lua and cannot be
used as names and variables:

and break do else elseif end

false for function goto if in

local nil not or repeat return

then true until while

Table 6: Standard Lexical Conversions

.

34

4.5 &

It also provides the standard functionality of the following symbols: +, -, *, /, %, ,̂

#, ==. =, <=, >=, <, > , =, (,), , , [,], ::, ;, :, ,, . , .., … .

• Statements: Lua supports an almost conventional set of statements, similar to those
in Pascal or C. This set includes assignments, control structures, function calls,
and variable declarations.

• Expressions:Last but not least, Lua provides us with the following basic expressions
exp ::= pre f ixexp
exp ::= nil| f alse|true
exp ::= Number
exp ::= String
exp ::= f unctionde f
exp ::= tableconstructor
exp ::= ...
exp ::= expbinopexp
exp ::= unopexp
pre f ixexp ::= var| f unctioncall|(exp)

In order to integrate Lua with Unity3D, LuaInterface was used. LuaInterface, written

by Fabio Mascarenhas from department of Informatics in PUC-Rio, is a library used for

integrating the Lua language with the Microsoft .NET platform's Common Language
Runtime [28]. Additionally, we had to compile 2 DLLs, namely luanet.dll and luainter-

face.dll. Then, programming in Lua was pretty straightforward.

LuaInterface provides 2 different ways of running Lua code:

• After activating the Lua interpreter via C# as follows:

Lualua = newLua();
The coder can call or use any Lua function or variable through the Unity3D platform.

This way was mostly used for coding scripts for the evowalk algorithm on the fly.

Saving files with the scripts and, eventually, automatically keeping those that have

detected a correct solution or a certain bug in the game allows us to claim that we

have partly solved the regression testing problem. With every update in the code,

we can verify the validity, running the specific scripts.

• By executing external Lua scripts.

By developing such scripts, we managed to automate the process of the experiments,

putting these scripts in a simple loop.

35

4.6

Note that we do not necessarily want to use a smart path finding or maze solver algorithm

as a test algorithm. The ultimate goal is to find bugs, which may be lurking in less

optimal or even in wrong paths, which human users can do. For this reason, none of the

algorithms we implemented are aware of the problem's best solution. Furthermore, the

Evowalk algorithm is also used as an automated test generator.

4.6.1 Random Walk Algorithm

This algorithm uses a coroutine which applies 3 surrounding sensors to the gameObject-

player. The gameObject-player starts by applying a forward movement force on itself. In

case of collision with any obstacle but not an obstacle with tag "Target", the algorithm

decides randomly whether to turn left or right, by 90 degrees.

In order to detect the surrounding non-target obstacles, the gameObject-player applies

one forward raycast and two more with an angle of 45 degrees; one on the left side and

one on the right side of the gameObject-player. For the given time, the algorithm will

try to achieve its assigned goal.

Select randomly between left and right and turn

while there is time left do
Start moving the gameObject-player forward (forward force)

if the applied raycast hits an obstacle then
if the obstacle is the gameObject-target then
Exit

end
else
Select randomly between left and right and turn

Select randomly whether to look towards the gameObject-target or not; if

yes then turn till you look towards the gameObject-target

end
if the left side raycast or the right side raycast cannot hit an obstacle then
Rotate the gameObject-player randomly, left or right by 45 degrees

end
end

end
Algorithm 1: R A

36

4.6

4.6.2 Heuristic AI Algorithm

This algorithm uses the coroutine “GoToHelper” which also applies 3 surrounding sensors

to the gameObject-player and a forward force to itself. While the gameObject-player

moves towards the gameObject-target, the algorithm scans for obstacles and already

visited paths which are stored in an array, preventing the gameObject-player to repeat

the same path.

The raycasts work in the exact same way as they work in the Random Walk Algo-

rithm but the left and right raycasts are applied vertically (90 degrees apart) on the

gameObject-player. The specific algorithm holds the knowledge of the position of its goal

and will always try to move towards these coordinates.

Create an empty set for Visited Coordinates

Randomly select between left and right and turn

while there is time left do
Start moving the gameObject-player forward (forward force) only if the next step

is not in the List of visited coordinates

if the applied raycast hits an obstacle then
if the obstacle is the gameObject-target then
Exit

end
else
Select randomly between left and right

Rotate left or right

Select randomly whether to look towards the gameObject-target or not

end
if the left side raycast or the right side raycast cannot hit an obstacle then
Rotate the gameObject-player randomly, left or right by 45 degrees

end
else
Give the possibility to turn towards the gameObject-target 33.3%

end
end

end
Algorithm 2: H-AI A

37

4.6.3 Evowalk Algorithm

The evowalk algorithm uses a genetic algorithm that mimics natural processes in evolu-

tion such as mutation and selection. Like all GAs, it begins with a random population

of solutions, the chromosomes. In our case, the chromosomes are just a sequence of

movements pointing the gameObject-player where to go (left, right, up or down). In

order to calculate the cost, we used our goal as a fitness function. The goal in our case is

to bring gameObject-player to gameObject-target close enough to shoot it.

For that cause, another helper function,which is called calculateCosts, plays an
interesting role. Not only does it calculate the cost of each chromosome but also stores

our test models in an Array making the logging and bug tracing part easy. Afterwards,

it saves the current state of the game and evaluates the population. For each chromo-

some in the population, calculateCosts calculates the cost by executing the movement

sequence and calculating the difference between the position of the gameObject-player

and gameObject-target. At the end, it reloads the initial state to prepare the algorithm

for the next chromosome evaluation. The calculateCosts returns a list of costs to the
Evowalk algorithm.

These costs will be ordered by their value and mated using single point crossover and

mutation. Mutation and crossover will be applied only to the two chromosomes with

the minimum cost which will generate the new population. The new population will be

evaluated by the calculateCosts function again following the same procedure.

The algorithm will finish after a specified amount of iterations, presenting the best

solution for the specified goal.

38

4.7 :

Create random initial population

Call the function calculateCosts
Sort the costs and obtain indices

Sort the population according to costs

Store the best (minimum) cost in a list

Store average cost in a list

while (cost > 0)||(counto f iterations <= prede f inedmaximumnumbero f iterations)
do
Weight chromosomes

Perform mating using single point crossover

Mutate the population

Call again the function calculateCosts in order to evaluate the new offspring and

mutated chromosomes;

end
Return the best solution

Algorithm 3: E A

1.Create an empty table for costs

2.Store the test models and for each model calculate the cost by evaluating the model

Algorithm 4: F0 HELPER

4.7 :

As already mentioned, experiments needed to be run in order to measure the capabilities

of our pseudo-DSL, and prove the fact that game testing goals can be expressed in game

terms and that such a pseudo-DSL can be applied to different scales of the domain

(scalability). Thus, we had to specify a domain which is adjustable to different scales in

respect of difficulty and complexity.

We choose to use perfect mazes as the domain. A perfect maze is defined as a maze

which has one and only one path from any point in the maze to any other point. This

means that the maze has no inaccessible sections, no circular paths and no open areas.

Moreover, a perfect maze can scale up in respect to width and height, is a challenging

environment; they are a challenging enough environment with non-trivial solutions and,

thus, is a perfect host for seeding visual bugs, such as passing through or over a wall.

Perfect mazes will be discussed in more details in Chapter 5.

Last but not least, the simple player controls of the game in the specified domain

resulted to the forming of the following game testing goal: gameObject-player must locate

gameObject-target in N seconds and shoot it.

39

4.8

During the development procedure of the whole game environment, we came across three

basic problems; two of them were unexpected.

4.8.1 LuaInterface

In order to integrate Lua in the Unity game engine, it was required that an interface be

developed but, as already mentioned and due to limited time, an already built interface

was eventually used, which expectedly brought up several issues until it was customized

to fit our needs.

4.8.2 Continuation & coroutines

During the experiments, many issues were observed, with regard to the player's behavior

at the moment it was executing the moves needed to achieve the assigned goal. As a

scripting language, Lua will execute each command line without waiting for any confir-

mation. As a result, any change to the game state (like loading the stage all over) would

be executed, ignoring whatever commands had yet to be fully executed; this would lead

to unexpected bugs.

In order to solve this particular problem, coroutines provided by Lua were applied.

This way, we not only achieved a complete control over the continuation of events but

also get to query the state of the game, as well, such as the player's location or the

player's distance from the goal, at any time. It should also be noted that the coroutines

were partly used as a combinator.

4.8.3 Time consuming algorithm and sub-goals

Above the level of 50% difficulty in a maze, it was observed that the time needed to find

the solution was quite high, meaning that the evowalk algorithm would by far exceed the

given time limits.

However, the above issue constituted the main reason why sub-goals were applied, thus

replied to the second research question, as well as some of the sub-research questions.

Using sub-goals, we managed to exceedingly reduce the experiment time, making it

comparable to the other algorithms.

40

5
EXPERIMENTS

5.1

In order to prove our concept of pseudo-DSL, we carried out a series of experiments,

the results of which are presented in this chapter. The main question we would like

to establish is whether our pseudo-DSL can be applied in a way that enables us to

express game testing goals in different scales with success. Besides the usability of the

pseudo-DSL, an important aspect that we will examine and prove is its scalability; we will

prove that it is suitably efficient and practical when applied to complex conditions such

as a large number of goals or bigger environments. Last but not least, the algorithms

that are tested will also unfold some capabilities of the pseudo-DSL.

As already mentioned, in order to be able to detect the target and accomplish the

goal, the user will have to travel across the whole maze in which each stage takes place.

Using the Recursive Backtracker algorithm that was discussed in Chapter 2, four mazes

of different difficulty levels were developed.

Furthermore, Section 5.2 presents the reason why we choose the specific algorithm and

describes -using pseudo-code- how it produces such mazes. In Section 5.3, I discuss the

way we approached game testing goals and in Section 5.4, I present the experimental

data we used. In Section 5.5, we analyze the results of the experiments and, in Section

5.6, we discuss the findings of these results.

We conducted the experiments using Windows 7 in an Intel® Core™ i7-2630QM

CPU @ 2.00 GHz with 6 GB of RAM. The implementation of the experiments has been

accomplished using the game engine Unity 3D 4.1. In order to use Lua in the environment

of Unity, we used the asset LuaInterface with Lua 5.2

5.2

The specific algorithm was chosen based on the table at the Chapter 2. The Recursive

Backtracker generates perfect Mazes quite fast but not faster than others with low

memory usage. But, above all, the most important characteristic is that it has the lowest

dead end rate (10%) and the highest solution rate (19%). Nevertheless, the complexity

of the Maze sufficiently incommodes our custom made algorithms, forcing them to cover

41

a large enough number of paths on their way to achieve their goal and, thus, helps us

record representative results.

The difficulty is categorized based on the maze size and, thus, its complexity. Therefore,

we developed a 10x10-block maze (level-1), a 15x15-block one (level-2), a 17x17-block

one (level-3) and, last but not least, a 20x20-block maze (level-4).

Figure 6: Maze complexity according to size (left to right) = (easy to difficult)

The mazes were used in the experiments, in which the three algorithms were run using

the pseudo-DSL. The varying difficulty had an obvious impact on the results, especially

on the time elapsed and the number of decisions that were made before the goal was

accomplished.

The logic behind the development of each maze follows the Algorithm 5 that is mostly

used in solving as well as developing such mazes.

In our case, a maze is represented by a network of cells 1x1x1 m3. The surrounding

cells of each cell are recognized as neighbors. Additionally, each cell can be a wall or

a path and during the execution of the algorithm every cell visited cell is stored in an array.

Make the initial cell the current cell and mark it as visited;

while there are unvisited cells do
if the current cell has any neighbors which have not been visited then
Choose randomly one of the unvisited neighbors;

Push the chosen cell to the stack;

Remove the wall between the current cell and the chosen cell;

Make the chosen cell the current cell and mark it as visited;

else
Pop a cell from the stack;

Make it the current cell;

end
end

Algorithm 5: Recursive backtracker algorithm

42

5.3

As I mentioned in Chapter 2, a perfect maze only has one solution to the problem and

no hidden/faulty exits.

5.3

For the sake of the experiments, we obviously need a game. Thus, we decided to imple-

ment a basic 3D shooting game and pass it to System Under Test (SUT) in order to

prove that our pseudo-DSL, which was described in Chapter 4, could express game goals

with respect of game terms.

To achieve that, the three implemented algorithms, namely 'random walk', 'heuristic

AI walk' and 'evowalk', were used to test the system. Suppose we have a 3D dimensional

controlled environment, one gameObject-player, one gameObject-target and one goal.

The main goal of the game is to locate the gameObject-target and shoot it, using the

input controls of the gameObject-player. The term controlled 3D environment implies a

3D environment the difficulty of which can be measured via controlled variables, such as

the height and width of the game environment. For that purpose, we used mazes which

we implemented by using the Recursive Backtracker algorithm, as described in Section 5.2.

A game goal’s complexity varies, depending on the number of parameters of which

the current state consists of and the given freedom to use these parameters in order

to express that goal with regard to game terms. That also means that a goal can

be expressed in multiple ways. In our case, the game goals are quite simple and can

be expressed with one condition, which checks the distance between the gameObject-

player and the gameObject-target in every state. If the distance is below a specified

value then the goal has been achieved. In order to achieve that goal, a Lua script will

control the gameObject-player while constantly checking the condition of the goal. For ex-

ample, if the current goal is to approach the target and not eliminate it, it is expressed by :

I f (|whereis(Player)− whereis(Target)| <= 5) then break endi f

On the other hand, if the goal was to eliminate the gameObject-target, the condition

would check the amount of targets in the state.

The same functionality can be used to check correctness condition at the runtime. In

our case, the assertion that the position of the gameObject-player is always on the terrain

was added.

Assert((Player.Trans f orm.position.y > 1)&&(Player.Trans f orm.position.y < 4))

43

The first part of that condition asserts that the gameObject-player is always over the

terrain, while the second part of the condition asserts that the gameObject-player does

not jump over walls.Such an assertion is interpreted as a game invariant, which should

hold on every frame update.

Furthermore, for the sake of debugging, a bug reporting functionality was added; it

logs and updates -in real time- the console with bugs found during the test. In this

experiment, we will also test for bugs that violate the asserted condition where the player

jumps over a wall. Of course, in practice, we would have to check more than one assertion.

Therefore, each action of the controlled gameObject is considered as a sub-goal. The

assertion can be achieved by asserting a statement immediately after an action or running

a different coroutine at the same time.

The above examples of assertions actually express visual constrains on the game. So,

it is at least possible to express them in our pseudo-DSL. A violation corresponds to a

visual bug, and we will see if our testing algorithms can actually catch such a bug.

5.4

Before analyzing the results of the experiments, let us first present the parameters which

were used to configure the System Under Test. As mentioned before, each state of the

SUT must be fully controllable, so that we are able to measure and compare every

element of the game.

For the graphical interface of the game, we used the four perfect mazes in Figure 6,

of four levels of difficulty. Table 7 lists the exact size of these mazes, according to the

difficulty level.

Difficulty Width Height

level-1 10 10

level-2 15 15

level-3 17 17

level-4 20 20

Table 7: Size of the maze compared to the difficulty level

.

Before the experiments are run, cluster sampling was performed from a sample of 100

runs of each testing algorithm for the level-1. Ten data groups indicated the average

number of experiments that is needed to reach fairly representative results, which was

44

5.5

really convenient, given the limited time. That resulted in running ten experiments

for each testing algorithm, for each level; or, according to Unity terminology, for each scene.

For each experiment we accomplished, we measured the duration of each execution

of the algorithm; the amount of bugs that were found during the test; whether the goal

was achieved or not; the number of the decisions the gameObject-player took during the

execution; and the distance between the gameObject-player from the gameObject-target.

The gameObject-player speed and scale were measured, as well, for debugging purposes.

Raising the speed or the scale of the player could result in bugs deliberately.

5.5

In the following chapter, we present the results of each algorithm that we tested. The

results of the experiments are presented in box plots which show the relation between

the decisions made during the execution of the algorithm or the time needed to run the

algorithm and the difficulty of the maze. More specifically, a box plot displays the range

and distribution of data along a number line. The full reports of the testing algorithms

can be found in the APPENDIX.

Furthermore, it is worth mentioning that during the experiments we located and solved

plenty of visual and programming bugs with the help of our DSL. These bugs were not

planted on purpose and their solution helped to properly continue with the experiments.

One of the most important bugs, which was of course solved, was the continuously

increasing speed of the gameObject-player during the tests. The bug was “hiding” behind

the logic of the testing script which was not terminating the coroutines of each movement

function. That resulted in the gameObject-player’s speed multiplying and allowing the

player to pass or jump over the maze walls.

5.5.1 Random walk results

A random walk algorithm will not provide efficient solutions but it will cover bigger paths

by taking more decisions. The term decision stands for the movement direction on every

state. Furthermore, it is expected that the number of decisions for every second will be

enormous. Therefore, we also test whether our pseudo-DSL can cope with a stressed

environment or not.

The following figure shows example of the relation between the number of decisions

made and the duration (in seconds) for 10 runs of the same testing algorithm, at the

45

level-1. It is quite clear that at the fourth run of the random walk algorithm the

gameObject-player trapped for a while between walls which resulted to a great amount

of decisions.

Figure 7: Relation between the number of decisions made and the duration (in seconds)

for 10 runs of the same testing algorithm

The Figure 8 presents the relation between the difficulty of the maze and the average

duration of the SUT's run in order to achieve the specified goal. The vertical axis

represents the duration in seconds per run with the maximum limit of one hour or 3600

seconds. The horizontal axis shows the difficulty level for each maze.

Figure 8: Relation between the difficulty of the maze and the duration

Looking at the plots from left to right, it is clear there is an abnormality which is

caused by the randomness of the algorithm. The two whiskers, or the first and the

last quartile, of each plot show the minimum and the maximum time spent, while

the middle line defines the median time. Reaching the limit of 3600 seconds implies

the fact that the algorithm could not solve the maze and achieve the goal, either by

blocking itself in a corner or by producing a bug. In the case of the last box plot, the al-

gorithm did not manage to solve the maze and spent the available time blocked in a corner.

46

5.5

The first plot of the next figure presents our first attempt to test level-1 reducing the

scale of the gameObject-player to 50% which can be compared with the second plot

where the scale of the gameObject-player is normal (scale:1). By reducing the scale of

the gameObject-player, we reduce its volume in the 3D environment. It is well noticeable

that a smaller gameObject-player is forced to cover more space by taking more decisions.

Figure 9: Relation between player scale and duration

The Figure 9 suggests that there is a relation between the execution time of the

algorithm and the parameters of the environment.

The Figure 10 presents the relation between the difficulty of the maze and the number

of decisions made to achieve the specified goal on each run of the SUT.

Figure 10: Relation between the difficulty of the maze and the decisions made

Comparing the whiskers of Figure 8 and Figure 10, we may observe the proportion

between the decisions taken and the execution time on an average rate of 6 decisions per

47

second.

5.5.2 Heuristic-AI walk results

The custom made heuristic-AI algorithm will try to solve the specific goal following

logical decisions according to the known position of the target goal. The fact that the

gameObject-player will always try to avoid unimportant obstacles and always try to

approach the target results to an enormous amount of decisions in a short period of time.

A characteristic example of the previous statement can be observed in the next figure

which shows the number of decisions made and the duration of the algorithm, for 10 runs

in a maze level-2. It is calculated that there are made almost 55 decisions per second in

total average.

Figure 11: Relation between the number of decisions made and the duration (in seconds)

for 10 runs of the same testing algorithm

The next two box plots can be considered as the most important figures in my research.

The scaling of the time and decisions according to the level of difficulty can be observed

in the blue box of each plot.

Figure 12 presents the relation between the duration and the difficulty of the maze.

The whiskers, of the first and third plot, imply that the algorithm failed to complete the

goal at least once which was caused by either finding a bug or losing its way to the target

position. The last plot indicates that the algorithm was not able to solve the maze in

the given time (3600 seconds) by 50%. The fact that the algorithm could solve for only

the 50% of the iterations can be observed by the maximum and the second quadrille’s

position which is the same in both cases.

Figure 13 verifies the previous observations which are the two peaks of the first and

third plot, showing the very large amount of decisions and more importantly the gradually

48

5.5

Figure 12: Relation between the difficulty of the maze and the duration

scaling ability of the algorithm.

The maximum of the third box plot indicates the fact that there is possibility of a

bug, which is actually true. At the first iteration of the algorithm in the maze with at

level-3, the algorithm produced a bug by making 51032 decisions in 892 seconds, almost

57 decisions per second, forcing the gameObject-player to jump over a wall and take a

“shortcut” to the goal destination. As mentioned at Chapter 5.3, a bug can be detected

and reported, if the assertion is violated.

Figure 13: Relation between the difficulty of the maze and the decisions made

It is worth noticing that the “heuristic-AI walk” is the fastest algorithm among those

we tested in our experiments. Furthermore, it should be noted that the algorithm is

intentionally stressing the gameObject-player to produce a bug in the SUT by driving

the gameObject-player to go towards the known gameObject-target position even if there

49

is a wall blocking its way.

5.5.3 Evowalk results

The most typical attribute of the evowalk algorithm is the deterministic and low amount of

decisions made for each iteration (see Figure 16). Furthermore, the fact that the algorithm

starts with a list of random decisions and learns how to locate the target during the pro-

cedure implies that the duration till the accomplishment of the goal varies (see Figure 14).

Moreover, it is important to state that the first two difficulty levels of the current

algorithm were tested differently from the last two which is also viewable in Figure 14. In

the case of level-1 and level-2, the evowalk algorithm can solve the puzzle and complete

the goal in a short period of time by 90% success. On the other hand, at level-3 and

level-4, the algorithm cannot achieve the goal even after ten hours.

Figure 14: Relation between the difficulty of the maze and the duration

The logical explanation behind this problematic reaction is that the evowalk produces

a deterministic amount of movements which are completely random during the first

iteration. For example, the gameObject-player might approach the gameObject-target

very closely at the first half of their movement procedure but immediately turn back

to their starting position. The cost of the specific DNA is calculated at the end of the

execution, producing a false result.

In order to solve this misbehavior, I have added certain sub goals in vital places that

serve as milestones for the algorithm. Using sub goals, the algorithm can define the sub

goal position as a starting point -after reaching it for the first time- and start from that

during the next iteration. Of course, following the specified method for the last two

50

5.5

runs, the evowalk algorithm stops behaving as a genetic algorithm and reacts more like a

random one.

Figure 15: The player is the white object on the bottom left. Red cubes with the black

bullet are the sub goals. The red cube is the Goal

According to Figure 14, observing the whiskers of the last two plots where our cus-

tomized approach is used, the evowalk algorithm not only managed to solve the goal

but also accomplished it quite fast. Furthermore, an important fact that arises from the

comparison of the decision box plots of each algorithm and level of difficulty is that the

total number of decisions made by the evowalk algorithm is less than the lower whisker

of the other plots.

The box plots of Figure 16 present the range of the decisions made which are really

low and verify the previous fact.

51

Figure 16: Relation between the difficulty of the maze and the decisions made

5.6

Taking into consideration the Related Work from Chapter 3 and our pseudo-DSL from

Chapter 4, we can answer the first research question; but, in order to prove it, the results

of the experiments were necessary. According to the plots of each experiment, from

section 5.5, all of the test approaches managed to achieve the specified goal most of the

times. The total average of the duration for each algorithm is in a predefined time range

of 3600 seconds. Moreover, a negative result is usually produced when one of the tested

algorithms locates a bug or gets blocked by a wall.

Furthermore, the variation of the tested algorithms implies the high usability of our

pseudo-DSL, concerning the fact that it can be applied with different ways according to

the tester’s judgment. More customization was needed at the last algorithm we tested

where we firstly introduced sub-goals. In order to solve the maze, the updated evowalk

algorithm tried to solve a list of sub-goals first, saving its state every time it would

achieve a sub-goal, and later aimed for the main goal. For this reason, every sub-goal

can be considered equally as a goal.

To conclude, by observing the results of the experiments, we prove that a DSL and

more specifically our pseudo-DSL can not only express game-related testing goals in game

terms, but also break down a game testing goal into sub-goals. Our pseudo-DSL can be

customized according to the specified domain needs, providing a high success rate for the

specified goal. Additionally, the positive results of each level of difficulty from the plots

of section 5.5 prove the fact that our pseudo-DSL can scale up according to the specified

domain.

52

6
CONCLUS ION AND FUTURE WORK

6.1

In this chapter, I will present the conclusions of my research and discuss the results of

my experiments, in order to try to give a straightforward answer to each and every one

of the research questions, as formulated in Chapter 1.

Last but not least, I will suggest potential future work related to both my research

and the Domain Specific Language that was introduced for the purpose of the thesis.

6.2 -

With regards to the first question, the related work that is presented in Chapter 2 implies

that one of the most common ways of expressing game-related testing goals in game terms

could be achieved with the use of a Domain Specific Language. Even though no work of

the presented bibliography contains a proper testing DSL for three-dimensional games, it

should be noted that all of them use a Domain Specific Language which expresses game

terms in terms of higher level concepts. The results of our experiments prove that it is

also possible to express testing goals in a 3D environment by using the related pseudo-DSL.

Hence, we propose a prototype of Game Testing Pseudo Domain Specific Language

(GTP-DSL) which can express game testing goals to game terms. Provided that each ac-

tion of the domain is considered as a sub-goal, we can assume that each main goal can be a

combination of game terms. The current fact answers the following research sub-questions:

Is it possible to break down a game testing goal into sub-goals?

According to [29], Pseudo code is an informal high-level description of the operating

principle of a computer program or other algorithm. The term 'Pseudo DSL' can be

attributed to the fact that the proposed GTP-DSL is a combination of the Lua syntax

and the methods of the specified domain.

Furthermore, the results of the Experiments presented in Chapter 5 demonstrate the

ability of the testing algorithms, which were written in GTP-DSL, to achieve the given

goal. The box plots did not only prove the usability of the pseudo domain specific

53

language but also the scalability in terms of difficulty. In addition, GTP-DSL can also be

considered as a technique with a framework that is adjustable to any given SUT which

answers another research sub-question:

Is it possible to have a DSL for that purpose, and could it be generic for all types of

games?

6.3

As already mentioned in Chapter 4, the luxury of using the syntax of Lua in order to use

GTP-DSL fulfilled an extra purpose, which is the automation of the test cases. While

LuaInterface provides the communication between the programming language Lua and

the game engine, GTP-DSL provides the communication with the SUT. That way, the

test cases can be generated on the fly, according to the given instructions which are

written in a Lua script, using pseudo-DSL; and regression testing can be achieved by

reusing old test cases.

Furthermore, the last testing algorithm -which uses genetic algorithm techniques as

described in Chapter 4- is a tangible example of the automation testing experience. The

current algorithm not only generates the test cases of the SUT automatically but also

takes decisions for the generation of the next test case.

I could not locate relevant work concerning the research sub-question:

Are there other kinds of DSLs that can be used for goal-oriented game testing?

As far as the DSLs I researched and studied are concerned, they have only been used

for game development and particularly for two dimensional logic and turned based games.

Last but not least, it is true that many games involve randomness, concurrency, or

multiple players, contributing to a high degree of non-determinism. Finding ways to

solve testing goals under such conditions requires way more time than we had available.

However, through the experience I have gained while working on my thesis and considering

that every task or action in a SUT can be considered as a goal, I strongly believe that

non-determinism is not affecting the given goal.

54

6.4

6.4

6.4.1 Reduce first, debug later

One of the advantages of GTP-DSL is that a test case can be stored into a Lua script and

re-used later, but in some cases which produce game bugs, the number of events is huge

and a back-tracing utility is not implemented. In order to reduce to the minimum number

of events that reproduce a failure, I propose the implementation of the delta debugging

minimization algorithm ddMin. The Delta Debugging algorithm isolates failure causes

automatically, by systematically narrowing down failure-inducing circumstances until the

minimal set remains[30].

The implementation can be achieved by following the guidelines of the recent paper

“Reduce first, debug later” [31], which proposes the use of two algorithms, ddmin and

rddmin. Therefore, each failure could be minimized with the standard algorithm (ddmin),

and then the minimization procedure can be conducted with rddmin (Minimizing Delta

Debugging Algorithm Complemented with Reduction).

6.4.2 Extending the evowalk algorithm

In order to test the validity, the usability and the scalability of the GTP-DSL, we ex-

perimented with three algorithms which are described in 'Methodology', in Chapter 4,

and analyzed in Chapter 5. The last algorithm, namely the ”evowalk algorithm”, can be

extended and generalized in a way that could afford multiple keywords and test more

complicated cases than just the movement of a player. Currently, the evowalk algorithm

produces test cases (population) which contain a limited amount of movement keywords

such as: move left, move right, move up, move down.

Furthermore, the evowalk generates test cases automatically which makes it more

convenient for testing bigger domains in the future. The extension of the evowalk al-

gorithm can be assisted by the ddmin algorithm which can result in a concrete game

testing solution. Last but not least, the evowalk algorithm uses a helper function for the

generation of the test cases, while the core functionality can remain untouched.

6.4.3 Other Future Work

Additionally, other prospects of future work can be the following:

55

• A Back-end Graphical User Interface which can relate game methods to keywords
for the GTP-DSL. Currently, the GTP-DSL can be connected with functions and
methods of the game engine by defining them in a C# file. That way, GTP-DSL
could be used by testers with no programming background.

• Right now, our implementation is not a standalone asset for Unity3d and requires
customization for each domain. An important asset for the Game Community
could result from our implementation, in order to help game developers to not only
test their domain and simulate object movements, but also tie up procedures to
gameObjects for their game (NPCs, enemies, objects in the scene).

56

7
REFERENCES

7.1

57

BIBL IOGRAPHY

[1] I. C. Mark Buenen, Makarand Teje, ``World quality report 2014,'' 2014. World

Quality Report 2014.

[2] A. van Deursen, P. Klint, and J. Visser, ``Domain-specific languages: An annotated

bibliography,'' SIGPLAN Not., vol. 35, pp. 26--36, June 2000.

[3] Planning and artificial intelligence, 2014. http://en.wikipedia.org/wiki/Graphical_-

user_interface_testing.

[4] ``Ieee standard glossary of software engineering terminology,'' IEEE Std 610.12-1990,
pp. 1--84, Dec 1990.

[5] L. Williams, ``Testing overview and black-box testing techniques.'' unpublished

paper, 2006.

[6] DSL, 2014. http://en.wikipedia.org/wiki/Domain-specific_language.

[7] A. van Deursen, P. Klint, and J. Visser, ``Domain-specific languages: An annotated

bibliography,'' SIGPLAN Not., vol. 35, pp. 26--36, June 2000.

[8] J. Dobbe, ``A domain-specific language for computer games,'' Master's thesis,

TUDelft, 2006.

[9] A. Lua, 2014. http://www.lua.org/about.html.

[10] R. Ierusalimschy, 2014. http://lua-users.org/lists/lua-l/2007-11/msg00248.html.

[11] A. is not a 4-letter word, 2014. http://www.jamisbuck.org/presentations/ruby-

conf2011/.

[12] T. L. M. Classification, 2014. http://www.astrolog.org/labyrnth/algrithm.htm.

[13] E. Algorithm, 2014. http://en.wikipedia.org/wiki/Evolutionary_algorithm.

[14] P. McMinn, ``Search-based software test data generation: A survey: Research

articles,'' Softw. Test. Verif. Reliab., vol. 14, pp. 105--156, June 2004.

[15] DSEL, 2014. http://en.wikipedia.org/wiki/Domain-specific_entertainment_lan-

guage.

[16] G. G. Playing, 2014. http://en.wikipedia.org/wiki/General_Game_Playing.

[17] G. G. Playing, 2014. http://www.general-game-playing.de/.

59

Bibliography

[18] M. G. Nathaniel Love, Timothy Hinrichs, ``General game playing: Game description

language specification,'' tech. rep., Stanford Logic Group, Stanford, CA 94305, 2006.

[19] M. Thielscher, ``A general game description language for incomplete information

games.'' School of Computer Science and Engineering The University of New South

Wales, Australia, mit@cse.unsw.edu.au, 2010.

[20] S-expression, 2014. http://www.territorioscuola.com/wikipedia/en.wikipedia.php?ti-

tle=S-expression.

[21] L. Hayes, The Automated Testing Handbook. Software Testing Institute, 1995.

[22] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Approach. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[23] A. van Deursen, P. Klint, and J. Visser, ``Domain-specific languages: An annotated

bibliography,'' SIGPLAN Not., vol. 35, pp. 26--36, June 2000.

[24] P. code, 2014. http://en.wikipedia.org/wiki/Pseudocode.

[25] E. style language, 2014. http://en.wikipedia.org/wiki/Embedded_style_language.

[26] I. game Console, 2014. https://github.com/mikelovesrobots/unity3d-console.

[27] L. M. Introduction, 2014. http://www.lua.org/manual/5.2/manual.html.

[28] F. Mascarenhas, LuaInterface: User’s Guide. 1Departamento de Inform´atica,
PUC-Rio Rua Marquˆes de S˜ao Vicente, Rio de Janeiro, RJ, Brasil.

[29] P. code, 2014. http://en.wikipedia.org/wiki/Pseudocode.

[30] D. Debugging, 2014. http://en.wikipedia.org/wiki/Delta_Debugging.

[31] A. Elyasov, W. Prasetya, J. Hage, and A. Nikas, ``Reduce first, debug later,'' in

Proceedings of the 9th International Workshop on Automation of Software Test, AST
2014, (New York, NY, USA), pp. 57--63, ACM, 2014.

60

8
APPENDIX

8.1

In this Chapter, you will find terminology which was used in the current research thesis,

code examples and experiment reports.

8.2

In the following Section, we present the full reports of our experiments for each algorithm

that we tested. The maximum time for each iteration is 3600 seconds and the assertion

which is checked on every frame is:

(Player.Trans f orm.position.y >1) && (Player.Trans f orm.position.y<4)

61

Difficulty : level-1 (Maze 10x10) with player.scale=0.5

Try Duration
(seconds)

#bugs
found

Goal
achieved

(0|1)

#decisions
made

Player
speed
(m/s)

Player
scale

Distance from
target

1 730 0 1 4413 8 0.5 2.558213

2 1646 0 1 16890 8 0.5 1.663525

3 826 0 1 5831 8 0.5 2.256318

4 1243 0 1 14438 8 0.5 2.38112

5 159 0 1 1929 8 0.5 2.21715

6 847 0 1 6525 8 0.5 2.248209

7 865 0 1 7503 8 0.5 2.266233

8 1891 0 1 13984 8 0.5 1.499887

9 977 0 1 9283 8 0.5 2.2775

10 1037 0 1 9805 8 0.5 2.273067

Difficulty : level-1 (Maze 10x10) with player.scale=1

Try Duration
(seconds)

#bugs
found

Goal
achieved

(0|1)

#decisions
made

Player
speed

Player
scale

(m/s)

1 47 0 1 252 8 1

2 12 0 1 79 8 1

3 9 0 1 50 8 1

4 131 0 1 1214 8 1

5 24 0 1 142 8 1

6 17 0 1 142 8 1

7 54 0 1 410 8 1

8 13 0 1 62 8 1

9 28 0 1 188 8 1

10 54 0 1 423 8 1

Difficulty : level-2 (Maze 15x15)

Try Duration
(seconds)

#bugs
found

Goal
achieved

(0|1)

#decisions
made

Player
speed
(m/s)

Player
scale

Distance from
target

1 1808 0 1 13497 8 1 2.318712

2 1224 0 1 4543 8 1 2.41458

3 488 0 1 1501 8 1 2.348471

4 550 0 1 1705 8 1 1.99696

5 484 0 1 1810 8 1 2.01847

6 1403 0 1 5604 8 1 2.14816

7 759 0 1 2002 8 1 1.99788

8 478 0 1 1448 8 1 2.34441

9 419 0 1 1592 8 1 2.462137

10 1049 0 1 3644 8 1 2.432867

8.2.1 Random Walk Algorithm full results

62

Difficulty : level-3 (Maze 17x17)

Try Duration
(seconds)

#bugs
found

Goal
achieved

(0|1)

#decisions
made

Player
speed
(m/s)

Player
scale

Distance from
target

1 540 0 1 2043 8 1 1.518213

2 1354 0 1 4826 8 1 1.11438

3 295 0 1 963 8 1 1.141473

4 542 0 1 2121 8 1 1.81612

5 1391 0 1 5272 8 1 2.23547

6 574 0 1 1770 8 1 2.12476

7 1321 0 1 4605 8 1 1.47110

8 645 0 1 2279 8 1 2.30750

9 354 0 1 1273 8 1 2.35421

10 555 0 1 1641 8 1 1.43286

Difficulty : level-4 (Maze 20x20)

Try Duration
(seconds)

#bugs
found

Goal
achieved

(0|1)

#decisions
made

Player
speed
(m/s)

Player
scale

Distance from
target

1 1652 0 1 6928 8 1 2.48713

2 3550 0 1 27384 8 1 2.34417

3 3600 0 0 23087 8 1 18.17718

4 3600 0 0 26474 8 1 23.24874

5 2700 0 1 19821 8 1 2.17445

6 1327 0 1 6031 8 1 1.47448

7 3600 0 0 30154 8 1 19.0157

8 987 0 1 5121 8 1 1.57118

9 440 0 1 1925 8 1 1.47451

10 502 0 1 2404 8 1 1.34847

8.2

8.2.2 Random Walk Algorithm full results

63

Difficulty : level-1 (Maze 10x10)

Try Duration
(seconds)

#bugs
found

Goal
achieved

(0|1)

#decisions
made

Player
speed
(m/s)

Player
scale

Distance from
target

1 7 0 1 225 8 1 1.420209

2 11 0 1 361 8 1 1.355443

3 3600 0 0 77785 8 1 11.39836

4 28 0 1 838 8 1 1.377096

5 50 0 1 1584 8 1 1.461822

6 28 0 1 845 8 1 1.36695

7 18 0 1 569 8 1 1.328511

8 8 0 1 275 8 1 1.398472

9 7 0 1 240 8 1 1.458898

10 21 0 1 648 8 1 1.347177

Difficulty : level-2 (Maze 15x15)

Try Duration
(seconds)

#bugs
found

Goal
achieved

(0|1)

#decisions
made

Player
speed
(m/s)

Player
scale

Distance from
target

1 117 0 1 6468 8 1 1.374443

2 101 0 1 5779 8 1 1.175977

3 207 0 1 11430 8 1 1.404168

4 248 0 1 13718 8 1 1.423365

5 69 0 1 3907 8 1 1.460547

6 538 0 1 28159 8 1 1.492137

7 535 0 1 28766 8 1 0.876626

8 149 0 1 8270 8 1 1.432229

9 382 0 1 22007 8 1 0.844346

10 451 0 1 24717 8 1 1.26811

Difficulty : level-3 (Maze 17x17)

Try Duration
(seconds)

#bugs
found

Goal
achieved

(0|1)

#decisions
made

Player
speed
(m/s)

Player
scale

Distance from
target

1 892 1(out of
map)

0 51032 8 1 21.5143

2 78 0 1 4176 8 1 1.241423

3 68 0 1 3538 8 1 1.972894

4 193 0 1 10519 8 1 1.490372

5 191 0 1 10185 8 1 1.25089

6 3600 0 0 85179 8 1 21.78111

7 237 0 1 12723 8 1 1.441642

8 141 0 1 7522 8 1 1.43584

9 3600 0 0 211791 8 1 17.1871

10 255 0 1 13748 8 1 1.25475

8.2.3 Heuristic AI Algorithm full results

64

Difficulty : level-4 (Maze 20x20)

Try Duration
(seconds)

#bugs
found

Goal
achieved

(0|1)

#decisions
made

Player
speed
(m/s)

Player
scale

Distance from
target

1 183 0 1 10322 8 1 1.36314

2 3600 0 0 89248 8 1 15.57478

3 201 0 1 10758 8 1 1.476289

4 462 0 1 26214 8 1 1.154065

5 3600 0 0 77174 8 1 14.98474

6 3600 0 0 84741 8 1 15.17749

7 665 0 1 26995 8 1 1.423806

8 3600 0 0 75547 8 1 16.54779

9 141 0 1 7432 8 1 1.491711

10 3600 0 0 91271 8 1 8.21571

8.2

8.2.4 Heuristic AI Algorithm full results

65

Difficulty : level-1 (Maze 10x10)

Try Durati
on

(seco
nds)

#bugs
found

Goal
achiev

ed
(0|1)

#decisio
ns made

Playe
r

spee
d

(m/s)

Playe
r

scale

Distance
from

target

Total time DNA no Iterations

1 23 0 1 114 8 1 1.54264 23 1 1

2 47 0 1 236 8 1 1.48871 227 2 1

3 10 0 1 47 8 1 1.57884 10 1 1

4 27 0 1 177 8 1 1.47713 27 1 1

5 15 0 1 75 8 1 1.5741 15 1 1

6 10 1
(wall)

0 52 8 1 12.9597 10 1 1

7 47 0 1 241 8 1 2.10021
4

47 1 1

8 59 0 1 293 8 1 1.39741 59 1 1

9 17 0 1 86 8 1 1.47214
4

377 3 1

10 56 0 1 307 8 1 1.58441
7

56 1 1

Difficulty : level-2 (Maze 15x15)

Try Durati
on

(seco
nds)

#bugs
found

Goal
achiev

ed
(0|1)

#decisio
ns made

Playe
r

spee
d

(m/s)

Playe
r

scale

Distance
from

target

Total time
((DNA-

1)*180+duration+(Iter
ations-1)*10*180)

DNA no Iterations

1 107 0 1 232 8 1 1.54774 2267 3 2

2 131 0 1 308 8 1 1.14745 3191 8 2

3 136 0 1 355 8 1 1.14775 4636 6 3

4 45 0 1 121 8 1 1.15998 3105 8 2

5 120 0 1 261 8 1 1.98471 480 3 1

6 150 0 1 358 8 1 2.51175 870 5 1

7 132 0 1 314 8 1 2.15774 492 3 1

8 154 0 1 361 8 1 2.15476 1261 6 1

9 126 0 1 299 8 1 1.58124 1926 1 2

10 134 0 1 304 8 1 2.47841 1394 8 1

8.2.5 Evowalk Algorithm full results

66

Difficulty : level-3 (Maze 17x17)

Try Durati
on

(seco
nds)

#bugs
found

Goal
achiev

ed
(0|1)

#decisio
ns made

Playe
r

spee
d

(m/s)

Playe
r

scale

Distance
from

target

Total time
((DNA-

1)*60+duration+(Itera
tions-1)*10*60)

DNA no Iterations

1 35 0 1 83 8 1 1.4879 815 4 2

Sub goal no Duration decisions

1 36 93

2 45 118

3 17 51

2 19 0 1 42 8 1 1.32187 619 1 2
Sub goal no Duration decisions

1 16 33

2 50 113

3 41 81

3 23 0 1 56 8 1 1.21248 1043 8 2
Sub goal no Duration decisions

1 46 103

2 35 76

3 44 104

4 29 0 1 72 8 1 1.3997 389 7 1
Sub goal no Duration decisions

1 20 54

2 9 33

3 36 11

5 20 0 1 42 8 1 1.7956 1820 1 4
Sub goal no Duration Decisions

1 54 120

2 56 118

3 43 95

6 23 0 1 46 8 1 1.2344 503 9 1

Sub goal no Duration Decisions

1 43 101

2 48 107

3 39 15

7 13 0 1 40 8 1 2.00472 793 4 2
Sub goal no Duration Decisions

1 25 79

2 40 95

3 51 100

8 28 0 1 65 8 1 1.1843 928 6 2
Sub goal no Duration decisions

1 31 83

2 12 45

3 40 21

9 25 0 1 59 8 1 1.99145 1345 3 3
Sub goal no Duration decisions

1 31 92

2 45 102

3 34 11

10 25 0 1 60 8 1 1.28668 145 3 1
Sub goal no Duration decisions

8.2

8.2.6 Evowalk Algorithm full results

67

1 10 16

2 9 15

3 53 108

Difficulty : level-4 (Maze 20x20)

Try Durati
on

(seco
nds)

#bugs
found

Goal
achiev

ed
(0|1)

#decisio
ns made

Playe
r

spee
d

(m/s)

Playe
r

scale

Distance
from

target

Total time
((DNA-

1)*60+duration+(Itera
tions-1)*10*60)

DNA no Iterations

1 14 0 1 54 8 1 1.14374 914 6 2

Sub goal no Duration decisions

1 21 64

2 5 8

3 24 73

4 27 80

5 16 42

2 28 0 1 21 8 1 1.57745 868 5 2
Sub goal no Duration decisions

1 49 104

2 45 108

3 5 53

4 18 33

5 40 83

3 24 0 1 63 8 1 1.61751 744 3 2
Sub goal no Duration decisions

1 9 21

2 39 83

3 7 25

4 57 116

5 22 39

4 11 0 1 21 8 1 1.54774 371 7 1
Sub goal no Duration decisions

1 40 102

2 10 19

3 15 43

4 24 50

5 48 117

5 43 0 1 106 8 1 1.34748 1003 7 2
Sub goal no Duration decisions

1 9 18

2 30 58

3 13 47

4 20 37

5 14 28

6 25 0 1 52 8 1 1.24315 445 8 1

Sub goal no Duration decisions

1 12 25

2 35 62

3 11 39

4 19 31

5 10 22

7 15 0 1 34 8 1 1.35412 735 3 2

8.2.7 Evowalk Algorithm full results

68

Sub goal no Duration decisions

1 25 64

2 39 68

3 15 55

4 19 37

5 40 119

8 16 0 1 32 8 1 1.41127 736 3 2
Sub goal no Duration decisions

1 12 23

2 32 65

3 16 59

4 18 34

5 21 61

9 26 0 1 55 8 1 2.13125 766 3 2
Sub goal no Duration decisions

1 16 61

2 30 57

3 40 78

4 37 92

5 41 110

10 36 0 1 89 8 1 1.18237 1356 3 3
Sub goal no Duration decisions

1 22 61

2 36 70

3 20 51

4 31 75

5 23 61

8.2

8.2.8 Evowalk Algorithm full results

69

8.3

In the following Section, we present code examples of the known game tic tac toe, written

in GDL, ViGL and Zillions of games.

70

;;;;;;;;;;;;;;;;;;;;;;;;;

;; Tictactoe

;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;

;; Roles

;;;;;;;;;;;;;;;;;;;;;;;;;

 (role x)

 (role o)

;;;;;;;;;;;;;;;;;;;;;;;;;

;; Initial State

;;;;;;;;;;;;;;;;;;;;;;;;;

 (init (cell 1 1 b))

 (init (cell 1 2 b))

 (init (cell 1 3 b))

 (init (cell 2 1 b))

 (init (cell 2 2 b))

 (init (cell 2 3 b))

 (init (cell 3 1 b))

 (init (cell 3 2 b))

 (init (cell 3 3 b))

 (init (control x))

;;;;;;;;;;;;;;;;;;;;;;;;;

;; Dynamic Components

;;;;;;;;;;;;;;;;;;;;;;;;;

;; Cell

 (<= (next (cell ?x ?y ?player))

 (does ?player (mark ?x ?y)))

 (<= (next (cell ?x ?y ?mark))

 (true (cell ?x ?y ?mark))

 (does ?player (mark ?m ?n))

 (distinctCell ?x ?y ?m ?n))

;; Control

 (<= (next (control x))

 (true (control o)))

 (<= (next (control o))

 (true (control x)))

;;;;;;;;;;;;;;;;;;;;;;;;;

;; Views

;;;;;;;;;;;;;;;;;;;;;;;;;

 (<= (row ?x ?player)

 (true (cell ?x 1 ?player))

 (true (cell ?x 2 ?player))

 (true (cell ?x 3 ?player)))

 (<= (column ?y ?player)

 (true (cell 1 ?y ?player))

 (true (cell 2 ?y ?player))

 (true (cell 3 ?y ?player)))

 (<= (diagonal ?player)

 (true (cell 1 1 ?player))

 (true (cell 2 2 ?player))

 (true (cell 3 3 ?player)))

 (<= (diagonal ?player)

 (true (cell 1 3 ?player))

 (true (cell 2 2 ?player))

 (true (cell 3 1 ?player)))

 (<= (line ?player) (row ?x ?player))

 (<= (line ?player) (column ?y ?player))

8.3

8.3.1 GDL

71

 (<= (line ?player) (diagonal ?player))

 (<= open (true (cell ?x ?y b)))

 (<= (distinctCell ?x ?y ?m ?n) (distinct ?x ?m))

 (<= (distinctCell ?x ?y ?m ?n) (distinct ?y ?n))

;;;;;;;;;;;;;;;;;;;;;;;;;

;; Legal Moves

;;;;;;;;;;;;;;;;;;;;;;;;;

 (<= (legal ?player (mark ?x ?y))

 (true (cell ?x ?y b))

 (true (control ?player)))

 (<= (legal x noop)

 (true (control o)))

 (<= (legal o noop)

 (true (control x)))

;;;;;;;;;;;;;;;;;;;;;;;;;

;; Goals

;;;;;;;;;;;;;;;;;;;;;;;;;

 (<= (goal ?player 100)

 (line ?player))

 (<= (goal ?player 50)

 (not (line x))

 (not (line o))

 (not open))

 (<= (goal ?player1 0)

 (line ?player2)

 (distinct ?player1 ?player2))

 (<= (goal ?player 0)

 (not (line x))

 (not (line o))

 open)

;;;;;;;;;;;;;;;;;;;;;;;;;

;; Terminal

;;;;;;;;;;;;;;;;;;;;;;;;;

(<= terminal

 (line ?player))

(<= terminal

 (not open))

8.3.2 GDL

72

<vigl resolution="300x300">

 <code location="begin">

 $TURN = true

 class GameObject

 def inside?(mouseState)

 if(mouseState.button==Mouse::BUTTON_LEFT and

 mouseState.x >= @renderable_object.rectangle_shape.point.x and

 mouseState.y >= @renderable_object.rectangle_shape.point.y and

 mouseState.x < @renderable_object.rectangle_shape.point.x +

 @renderable_object.rectangle_shape.dimensions.width and

 mouseState.y < @renderable_object.rectangle_shape.point.y +

 @renderable_object.rectangle_shape.dimensions.height

)

 true

 else

 false

 end

 end

 end

 </code>

 <objectdef name="Square">

 <shape>

 <square length="100" />

 <graphics border="#000000" color="#ffffff"/>

 </shape>

 <actions>

 <method action="onMouseDown(state)">

 <code>

 if(inside? state and

@renderable_object.renderable_properties.fill == Color::WHITE)

 @renderable_object.renderable_properties.fill =

 if $TURN

 Color::RED

 else

 Color::BLUE

 end

 $TURN = !$TURN

 end

 </code>

 </method>

 </actions>

 </objectdef>

 <world>

 <object parent="Square"><shape><square point="0,0" /></shape></object>

 <object parent="Square"><shape><square point="100,0" /></shape></object>

 <object parent="Square"><shape><square point="200,0" /></shape></object>

 <object parent="Square"><shape><square point="0,100" /></shape></object>

 <object parent="Square"><shape><square point="100,100" /></shape></object>

 <object parent="Square"><shape><square point="200,100" /></shape></object>

 <object parent="Square"><shape><square point="0,200" /></shape></object>

 <object parent="Square"><shape><square point="100,200" /></shape></object>

 <object parent="Square"><shape><square point="200,200" /></shape></object>

 </world>

</vigl>

8.3

8.3.3 ViGL

73

(game

 (title "Tic-Tac-Toe")

 (description "One side takes X’s and the other side takes O’s.

 Players alternate placing their marks on open spots.

 The object is to get three of your marks in a row horizontally,

 vertically, or diagonally. If neither side accomplishes this,

 it’s a cat’s game (a draw).")

 (history "Tic-Tac-Toe was an old adaptation of Three Men’s Morris to

 situations where there were no available pieces. You can draw or

 carve marks and they are never moved. It is played all over the

 world under various names, such as ’Noughts and Crosses’ in

 England.")

 (strategy "With perfect play, Tic-Tac-Toe is a draw. Against less

 than perfect opponents it’s an advantage to go first, as having an

 extra mark on the board never hurts your position. The center is

 the key square as 4 possible wins go through it. The corners are

 next best as 3 wins go through each of them. The remaining

 squares are least valuable, as only 2 wins go through them.

 Try to get in positions where you can ‘trap‘ your opponent by

 threatening two 3-in-a-rows simultaneously with a single move. To

 be a good player, you must not only know how to draw as the second

 player, you must also be able to takes advantage of bad play.")

 (players X O)

 (turn-order X O)

 (board

 (image "images\TicTacToe\TTTbrd.bmp")

 (grid

 (start-rectangle 16 16 112 112) ; top-left position

 (dimensions ;3x3

 ("top-/middle-/bottom-" (0 112)) ; rows

 ("left/middle/right" (112 0))) ; columns

 (directions (n -1 0) (e 0 1) (nw -1 -1) (ne -1 1))

)

)

 (piece

 (name man)

 (help "Man: drops on any empty square")

 (image X "images\TicTacToe\TTTX.bmp"

 O "images\TicTacToe\TTTO.bmp")

 (drops ((verify empty?) add))

)

 (board-setup

 (X (man off 5))

 (O (man off 5))

)

 (draw-condition (X O) stalemated)

 (win-condition (X O)

 (or (relative-config man n man n man)

 (relative-config man e man e man)

 (relative-config man ne man ne man)

 (relative-config man nw man nw man)

)

)

)

8.3.4 Zillions of Games

74

	Introduction
	Context
	Problem Description
	Objective
	Research Questions
	Research approach
	Research Contribution

	Towards Game Testing
	Context
	Testing levels
	Automated software testing techniques
	Capture and Replay
	Script Based Testing
	Keyword Driven Testing
	Data Driven Testing
	Model Based Testing

	Evolutionary algorithms
	Perfect Mazes

	DSL in Games
	Context
	DSL
	GDL & GDL-2
	ViGL
	Zillions of Games

	Methodology
	Context
	Game Development with Unity3D
	Console
	The pseudo-DSL â•ﬁ GTP-DSL
	Lua & LuaInterface
	Testing Algorithms
	Random Walk Algorithm
	Heuristic AI Algorithm
	Evowalk Algorithm

	Mazes: a more specific domain
	Problems and solutions during the implementation
	LuaInterface
	Continuation & coroutines
	Time consuming algorithm and sub-goals

	Experiments
	Context
	Perfect Mazes with the Recursive Backtracker Algorithm
	Expressing testing goals to game terms
	Experimental data
	Results
	Random walk results
	Heuristic-AI walk results
	Evowalk results

	Discussion

	Conclusion and future work
	Context
	Expressing goals and sub-goals in game terms
	Automated game testing and DSLs
	Future work
	Reduce first, debug later
	Extending the evowalk algorithm
	Other Future Work

	References
	Bibliography

	APPENDIX
	Context
	Experiment Reports
	Random Walk Algorithm full results
	Random Walk Algorithm full results
	Heuristic AI Algorithm full results
	Heuristic AI Algorithm full results
	Evowalk Algorithm full results
	Evowalk Algorithm full results
	Evowalk Algorithm full results
	Evowalk Algorithm full results

	Code samples
	GDL
	GDL
	ViGL
	Zillions of Games

