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Abstract

Railway simulations have been a useful tool within the railway industry. One
of the simulators that ProRail, the Dutch infrastructure manager for the rail-
ways, uses is the micro-railway simulator FRISO. ProRail wants to find out if
the validity of this simulator could be improved through adding agent based
train drivers. In this thesis the development of these agents will be described.
Different data sources about train driver behaviour were available and could
be used to create a train driver model that could be implemented within the
designed agents. Using this, an agent DLL was written in C++ to work together
with FRISO. Simulations were then done in order to find out if the validity
had improved with the added agents. Through comparing the resulting driv-
ing times with the previous train driver implementation and realisation data,
it was concluded that the agents scored better. When looking at the driving
behaviour of the agents, it was concluded that this lied closer to the realisa-
tion data then that of the FRISO train drivers. It was also noted that certain
aspects of train driver behaviour were not modelled correctly by the agents
and/or FRISO which resulted in deviations seen in driving times and driving
behaviour. The presence of these aspects indicated that a sufficiently accu-
rate model of train driver behaviour is required if reliable simulation results
are desired.
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1 Introduction

1.1 Background

ProRail is the Dutch infrastructure manager for the railways, whose tasks in-
clude researching and improving the time tables of trains. In order to ac-
complish this task multiple simulators are used to look at the effects of dif-
ferent traffic and infrastructure measures. One of these simulators is called
FRISO, a micro-railway simulator, wherein amongst other things the driving
behaviour of train drivers is simulated. ProRail wanted to find out if the valid-
ity of this simulator could be improved through adding an agent based model
of train driver behaviour. Agent based simulation has been noted as a pow-
erful simulation modelling technique [4], providing a parallel between real
drivers and agents [66], and has been applied to many traffic simulation sys-
tems [26, 12, 46, 86]. The project that is described in this thesis was done in or-
der to answer this question about a possible improvement in validity. The va-
lidity in this case denotes the predictive value of the simulations done within
FRISO. ProRail is further interested in a more valid train driver implementa-
tion in order to do future research into the effects of adaptations to security
measures and/or train operation developments. In this thesis the process of
developing and implementing this train driver agent will be lined out, from
modelling to experimentation.

1.2 Problem

In this project a train driver agent was to be developed in order to find out
the effect of this implementation on the predictive value of the simulations
done within FRISO. The research problem that can be formulated from this
goal was:

• How can you add train driver behaviour to a micro-level simulator (FRISO),
using an Agent based approach?

1



1 Introduction

This question could be divided into the following sub-questions:

• How can you model train driver behaviour from data?

• How can you implement train driver behaviour within an Agent?

• How can you implement agents into a micro-level simulator (FRISO)?

After this, the implementation could be used to look into the resulting train
driver behaviour and the predictive value of the simulations. In order to an-
swer these questions, different methodologies were used, as presented within
the next section.

1.3 Methodology

In order to get a better insight into the different aspects involved with answer-
ing the posed questions, a literature study will be done involving: simula-
tion, modelling of human operators, agents and machine learning. A closer
look will also be taken into the different aspects involved when driving a train
through looking at relevant railway literature and interviews with two train
drivers. The first sub-question will be answered through processing and fil-
tering the available data, after which the resulting information will be used
to create a decision making model of a train driver with the help of machine
learning methods. Using this, the second sub-question will be answered through
designing an agent setup that can incorporate this decision making model
and work together with FRISO. Following this, the agent setup will be imple-
mented within FRISO. Finally, this implementation will be used to perform
a number of experiments aimed at looking into the resulting train driver be-
haviour and the predictive value of the simulations.

1.4 Outline

This thesis will be structured as follows: First, some background information
will be given about the processes involved with the driving of a train. This
will be followed by a brief overview of the research that has been done in the
following relevant subjects: simulation, modelling human operators, agents
and machine learning. The third chapter will focus on the describing the pro-
cessing that was done on the available data about train driving, the observa-
tions that were made and will present the model that was created with the
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1.4 Outline

help of machine learning methods. The next chapter will go into presenting
the agent design. Chapter five will go over the implementation of this agent
model within FRISO. In Chapter six the experiments and their results will be
presented. Finally, the conclusion of the findings and suggestions for future
research will be presented in Chapter seven.
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2 Literature review &
background information

In this chapter I will first give some background information about train driv-
ing, in order to make the reader more comfortable with concepts and terms
used later in this thesis. After this I will look into several research fields that
will play an important role within this thesis, namely railway simulation, the
modelling of human operators, software agents, machine learning and statis-
tical methods used. Within these fields I will focus on aspects and research
done that is of relevance to modelling and implementing a train driver soft-
ware agent.

2.1 An overview of Train driving

In this section I will outline some important concepts that have to do with
driving a train, to give a clearer view of these concepts that will come back in
the rest of this thesis. Overall, driving a train can be described as a driving
task where vigilance and concentration are of high importance. It is a visually
guided task with auditory cues to help the train driver. I will elaborate a bit on
the main aspects and concepts used in the task of driving a train that influence
or limit the driving behaviour. I will skip over a lot of rules and procedures that
are of little relevance to this study, more information can be found in [76].

2.1.1 Signalling

Signalling is the term used to describe the main way that instructions and in-
formation about the permitted driving limits are conveyed. This signalling is
done mainly through signals such as coloured light signals, and fixed signs.

Signals are placed between sections of track and usually come in three as-
pects, showing either a green, yellow, or red colour. Each of these express one
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2.1 An overview of Train driving

Figure 2.1: A schematic overview of the signalling system between two stations.
The blue blocks indicate the positions of the trains. The blue curves
indicate the braking curve to a stop before the red signals. The sig-
nals below indicate the signal relations, where red means that there
is a train within the next section of tracks. Yellow indicates that the
next signal will be red and green indicates that the train can drive
according to the speed limit.

main concept. Green signifies that the train driver can safely pass that sig-
nal. A yellow signal indicates that the train driver should limit the speed of
the train in the section after the yellow signal and prepare to stop. A red sig-
nal indicates that the train driver needs to stop in front of that signal. The
order in which signal colours are determined is done through signal relations.
A simple example would be that a yellow signal always comes in front of a red
signal, as seen in Figure 2.1.

The signal relations are specified between sets of signals, this means that
when a train driver sees a certain signal aspect, he can often know which sig-
nal aspect to expect afterwards.

A higher level of meaning to the signals, besides the speed restrictions, is
that they generally indicate which track in front of the train is free to ride
upon or is occupied/not reserved, and subsequently how close it is to the end
of the trains route. In certain situations the signals are linked to the speed
limits of track sections themselves, to enforce that the train does not go into
that section too fast. A common example of this is a section of tracks with a
number of switches. This reserving of blocks of track is either done automati-
cally through a system called Automatische Rijweginstelling/Automatic route
setting (ARI), or through the actions of train traffic controllers. ARI sets the
routes of trains based on a schedule at certain triggers. Due to the set way ARI
works, some freight train drivers use this to influence the system in order to
minimize the amount of times a train needs to brake for a signal. Train traffic
controllers are mainly responsible for dealing with situations that are beyond
ARI’s reach, such as communicating with the train driver when the train has
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2 Literature review & background information

Figure 2.2: A schematic overview of a limiting speed sign indicating that the
train needs to slow down to 60km/h. After that a maximum speed
sign can be seen, indicating that the 60km/h speed limit has to be
reached by that point. This due to the switches that are positioned
behind.

stopped for an unplanned red signal, or changing the routes in unexpected
situations. An unplanned red signal denotes a red signal that the train driver
encounters that is not positioned at a planned stop.

Signs are used to convey either the maximum local speed, called snelheids
borden/speed signs, or to give information about the track. One example of
this is that the train is approaching a section where it needs to lower its pan-
tograph.

Speed signs come in three variations. The first one signifies that the train
driver is allowed to speed up after passing it. The second one signifies that the
train driver needs to limit its speed, and the final ones indicates that the previ-
ously instructed speed limit is supposed to be reached here, see Figure 2.2 for
an example. This means that unlike speed signs for cars, the designated speed
is not to be crossed at the next speed sign, not at the initial one. This is due
to the fact that trains take a lot more time to accelerate or slow down than cars.

2.1.2 Speed limits & ATP

The speed limits are indicated with a single digit which, times ten, indicates
the speed. An example of this is an accelerating sign with 14, which means the
train is allowed to accelerate to 140km/h. For a complete overview of railway
signs see: [77].

The current local speed limit is dictated by the combination of signs and
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2.1 An overview of Train driving

signals. With the lower one taking precedence. One example of this can be
seen in Figure 2.3, where a train driver is approaching a yellow 8 signal, with
next to it a slowdown sign of 6. The driver needs to limit the trains speed to
60km/h, but he also needs to make sure the train has reached 80km/h before
the next signal and 60km/h before the next maximum speed sign of 6. This
interplay of speed limits means that the train driver needs to estimate when it
will have reached a certain speed and at which point.

Figure 2.3: An example of the relationship between the speed limits imposed by
signs and signals. On the x axes the distance the train has travelled
is indicated. On the y axes the velocity is indicated. The black and
red curve represents the velocity of the train. After the train passes
the yellow 8 signal with the speed sign 6 next to it, the train needs to
limit its velocity to 80km/h before passing the next yellow signal. It
also needs to ensure that the 60km/h speed limit has been reached
before passing the maximum speed sign. The points at which these
velocities have to be reached are represented with vertical dotted
lines, for respectively the 80km/h and 60km/h speed limits.

It should be noted that a train driver does not necessarily need to main-
tain the speed limit on the free-track sections in order to arrive on time. The
free-track sections here denote the usually lengthy sections of tracks between
two stops where no switches are present. The largest Dutch railway operator
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2 Literature review & background information

within the Netherlands, the Nederlandse Spoorwegen (NS), has a set of guide-
lines for train drivers in order to drive in an timely and energy efficient man-
ner. This advised method is called Universal Economical driving Idea (UEI),
which is a simple rule set that advises the train driver, based on the planned
driving time and the local speed limit, at which point in time or at which ve-
locity the train driver is to start coasting. Coasting denotes the act of giving
neither traction nor applying the brakes.

Automatic Train Protection (ATP), is the main safety system train drivers
need to deal with when driving the train. The ATP dictates the maximum lo-
cal speeds, described above, with the following five ordinal values: 40, 60, 80,
130 and 140. The ATP indicates on the dashboard of the train what the current
local speed is and reinforces this. It must be noted that this enforcement in ac-
tuality lies a bit higher than the indicated speed with approximately 5km/h, to
deal with the little inaccuracies that come with determining the actual speed
of the train.

Given that the ATP only uses five speed limit values, it means that cer-
tain speeds are not specifically reinforced by the ATP system, like 100 and
120km/h, at these points the ATP simply indicates the next value, in these
cases 130. If the train driver exceeds the ATP indicated speed, there will be an
auditory cue to make the train driver aware he needs to slow down, if the train
driver does not slow down the ATP system forces the train to a complete stop
with an automated braking system. The train driver can prevent this through
braking with the minimal required braking amount called the braking criteria,
which is dependent on the rolling stock. The rolling stock denotes the com-
position of the train, such as the kind of locomotive. An example of the ATP in
use can be describes as follows: A train passes a yellow signal from a section
where it was allowed to go 60km/h, within 2 seconds after the passing of the
yellow signal the maximum speed indication on the ATP will switch to 40, af-
ter which it will give an auditory cue of this. If the train driver does not start
braking with the braking criteria within 2 seconds the train will automatically
be forced to a complete stop.

Combining these systems results in an environment where the train driver
is forced by rules and safety systems to act within certain bounds. This means
that certain parts of the behaviour of a train driver are very reactionary and
dictated by distinct perceptual cues.
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2.2 Literature review

2.2 Literature review

In this section of this chapter I will look into some of the research subjects
which are related to this thesis and give a brief overview of relevant work.
For all of the subjects that will follow, I must note that this is not a complete
overview of each field, but instead aims to give the reader sufficient back-
ground information on the relevant topics and the current state of the field
in question. I will start this chapter by looking into railway simulation and
FRISO, after which I will give a brief overview of modelling human opera-
tors. I will follow that by looking into agents and finish this chapter by giving
some background information of the different machine learning and statisti-
cal methods that will be used.

2.2.1 Railway Simulation & FRISO
Simulation has been a valuable tool over the past 30 years for giving more
insight into real world systems, like railway systems [34]. One of the main rea-
sons for this is that simulations can give more insight into a phenomena due
to the possible abstractions on different levels, which can make it easier for
policy makers to intuitively understand a complex problem. Another main
benefit from simulations is that they can help you see the effects of policies
which are difficult to predict and costly to implement in real life [66].

Kreuger et al [51] identified different key situations in which simulations
can be used to help decision-making within the railway industry. These are:

• Asset based simulation, for managing railway assets like locomotives
and infrastructure.

• Train operation simulations, for insight into dynamic train operations,
like braking distances.

• Line and terminal capacity simulations, for analysing capacity and per-
formance of the railway network, which can help with finding bottle-
necks.

• Traffic/service simulations, for modelling entire railway networks and
operations, to help with testing ’what-if’ scenarios, like with the testing
of time tables.

• Rail/non-rail interface simulations, for getting insight into non-rail ac-
tivities such as terminal design.

9



2 Literature review & background information

Because of the benefits simulations can provide within these areas, a number
of railway simulators have been developed.

An early example of a railway simulator is STRESI [75]. STRESI is a micro-
scopic simulator, which in the case of railway simulation is class of simulator
that simulates the railway and signalling system down to the level of the in-
dividual trains. This to give an accurate representation of the dynamics of
the train and signalling systems working in concert. STRESI together with
OpenTrack [64] and RailSys [69], which are also microscopic simulators, are
examples of simulators used to look at the effects of initial delays on track oc-
cupation and the resulting delays on other trains [16].

SIMONE [61] is a macroscopic simulator, which is a class of simulator that
does not use the signalling system, block length, and other infrastructure re-
lated procedures. Instead a macroscopic simulator models aspects of the sys-
tem in a more general way, using concepts such as average driving times and
the density of traffic on sections of railway in order to research aspects of large
areas of railway.

ProRail has its own set of simulators which it uses for a range of purposes.
One of the most notable usages being the testing of time tables for robustness.
FRISO is one of these simulators. It is a discrete event based microscopic sim-
ulator, which is developed under Enterprise Dynamics, with the purpose of
analysing traffic and infrastructure measures [60, 18].

Within the field of traffic simulation, there has been a rising trend in the use
of Agent Based Simulation, see [57, 12] for an overview and [28, 26, 14, 66, 1]
for some examples. A main reason for this, as mentioned by [18] and [12], is
that the agent computing paradigm is suitable for the development of large
scale dynamic distributed systems. This suitability fits well with railway sim-
ulation, which usually encompasses a large geographical scale with dynamic
distributed systems, like trains and signalling aspects.

2.2.2 Modelling human operators
The modelling of human operators is a field of study that has been approached
from many different directions with many different goals in mind [55], from
modelling combat pilots for military purposes [47], to help with gaining a bet-
ter understanding of the workload of a driver [38], to controlling a model car
[81].
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2.2 Literature review

One approach within the field of modelling human operators is a more cog-
nitive and descriptive approach. Focussing more on the underlying processes
that go on in the operators mind, from sensory input to arousal states and
motor control. One example purpose of such models is human performance
modelling, as seen in Man-Machine Integration Design and Analysis System
(MIDAS) [14]. The usefulness of human performance models comes from
their potential to reveal system vulnerabilities and where human-system er-
rors can occur [35]. This approach has also been successfully used within the
railway domain [38]. See [55, 14, 84] for an overview and some examples.

For a more mathematical approach, [24] lines out some different possible
approaches. These approaches are more functional and are often aimed at
creating a model in order to predict the actions of the operator. One exam-
ple of this is using a rule based fuzzy logic system to model human opera-
tors [24, 89, 33]. Once a valid model is obtained that can predict actions of
a human operator, you can use it for different purposes, such as designing a
warning system to prevent dangerous situations, to test the effect of new im-
plementations to see the effects on the operator, and many more.

When talking about driver models, [58] argues that "We are heading for an
intelligent, knowledge and rule based model of the driver that will be capable of
dealing with a wide variety of realistic, complex situations." He also argues for
a hierarchical cognitive control structure, for which he states that "The gener-
alized problem solving task of the driver-qua road user-may be further divided
in three levels of skills and control: strategical (planning), tactical (maneuver-
ing), and operational (control) respectively".

Within the context of this thesis, decision making is an important part of
modelling a human operator, such as a train driver. Decision making is also a
field with a wide scope on its own, ranging from the descriptive to the func-
tional. I will not go into descriptive methods, which are more aimed at under-
standing how people make decisions, seeing that this is not in-line with the
topic of this thesis, but for an overview and examples see [53, 2].
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2 Literature review & background information

Figure 2.4: A hierarchical structure of a driver [58].

As mentioned by [19], decision making models are sometimes used to:

1. Help the decision makers

2. Represent the decision maker

3. Replace the decision maker

Decision making methods meant as guidelines or aides like [30, 13, 3], that
are aimed at people who need to make decisions fit within the first category.
Another common example is the act of making a list with pros and cons. Deci-
sion making theories and models like [20, 10], that aim to be capable of mak-
ing decisions like the decision makers fit within the second and third category.
One example of this within the railway industry can be found in [38], where
they model a train driver in order to predict the workload, performance time
and errors under different conditions.

2.2.3 Agents

There has been a wide use of the term Agent within literature, with no defini-
tive single definition [29]. Commonly the term is used to describe an au-
tonomous entity within an environment it can execute actions in, often not-
ing interactivity, goal driven, reactive and planning as defining elements. Within
this thesis I will use the definition of [73], which states that an agent is "any-
thing that can be viewed as perceiving its environment through sensors and
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2.2 Literature review

acting upon that environment through actuators".

Within the field of agent based modelling (ABM), the belief-desire-intention
(BDI) [32, 7, 71] architecture has been widely used. The BDI paradigm states a
reasoning approach for rational agents. Rational meaning that the agent does
actions to further its goals based on what information it has about the en-
vironment. Within this architecture, beliefs are an internal representation of
information about the environment the agent finds itself in. Desires are states
that the agent wants to bring about, and intentions are actions that are parts
of a plan. Using these concepts of belief, desire and intention agents perform
actions, based on plans, to further their goals. Examples of implementations
can be found in [49, 42]. For the development and design of these BDI agents,
specific methodologies have been developed, one notable example being [49].
With this methodology the authors aim to give a framework for analysing and
building complex multi-agent systems, based on the BDI paradigm.

Within the field of distributed artificial intelligence (DAI), Multi agent Sys-
tems (MAS) is the sub-discipline where multiple autonomous agents interact
with each other within an environment [80]. [46] notes that MAS can be de-
fined as a loosely coupled network of problem solvers that work together to
solve problems that are beyond the capabilities of the individuals. The cru-
cial aspect being here the interaction between the agents, which brings with
it aspects like communication, norms and roles [5]. [80] notes that this inter-
action can happen also with ’non-communicating’ agents, through sensing
and reasoning about the actions of other agents. Advantages for MAS have
been mentioned by numerous authors. [80] notes scalability, parallelism and
modularity to be among those. [46] refers to MAS as offering powerful rep-
resentational tools, techniques and metaphors for the way people conceptu-
alize and implement many types of software. For an overview of the field of
ABM and MAS, and its issues see [46, 88, 6, 78].

Within the field of simulation, agent based simulation has been noted by [4]
to be a powerful simulation modelling technique, with benefits ranging from
cost effective [26], to providing a clear parallel between real drivers and agent
drivers [66]. [4] mentions four areas of application for ABM within simulation,
namely flow simulation, organization simulation, market simulation and dif-
fusion simulation. Traffic simulation falls under flow simulation.

Another benefit of ABM within the field of traffic simulation is that it cap-
tures emergent phenomena [4, 26]. For example [66], where they look at the
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traffic produced by agents as an emergent behaviour and show the viability
of a multi-agent based simulation of unorganized traffic. This viability is also
noted by [46], when they look at the application of agent based systems on
transportation systems. For a review of applications and examples within traf-
fic simulation see [12, 86].

Within the field of MAS, there has been the recent development of practical
multi-agent programming languages [5]. These languages can be categorized
as being a declarative agent-oriented language, an imperative agent-oriented
language or an hybrid approach.

• Declarative meaning that there is a strict focus on logic and being formal
in nature. One example being DALI [15].

• Imperative agent-oriented languages have more in common with, and
are often built upon, normal imperative languages like Java. One exam-
ple being JACK [41].

• Hybrid approaches define themselves by combining the possibility to
use an declarative approach using logic, while also giving the possibility
for programming imperatively.

One example of a hybrid approach is 2APL (A Practical Agent Programming
Language) [17], which is a BDI agent-oriented programming language that
aims at providing programming constructs to facilitate the implementation
of agent concepts and abstractions. 2APL uses a declarative approach for rep-
resenting and reasoning about an agent’s beliefs and goals, while using an im-
perative approach for the creation of plans and for the agent’s interface to the
environment. For an overview and examples of MAP languages see [5, 40, 17].
[5] notes that there is still much work to be done within the field of multi-
agent programming languages and name a number of major challenges, deal-
ing with:

• Debugging tools

• Integration of agent tools into existing IDEs

• The separation of MAS platforms from agent platforms

• The dissemination of the MAS programming paradigm
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2.2.4 Machine learning & Statistical methods

Machine learning can be defined as the study of computational methods for
the discovery and learning of patterns and other regularities from data [62].
[9] notes that within the field of machine learning, you can distinguish three
primary research foci:

1. Task-Oriented studies: For the development and study of learning sys-
tems aimed at improving their performance within a set of tasks.

2. Cognitive simulation: For simulation and exploration into human learn-
ing processes.

3. Theoretical analysis: For the study of learning methods and algorithms
independent of domain. Like [21]

Besides distinguishing between different research foci, you can also dis-
tinguish different approaches within the field of machine learning, namely
a symbolic approach or a statistical approach [31]. Symbolic approaches use
learning techniques more in line with the learning of symbolic descriptions,
such as rules and trees, while statistical approaches apply techniques that lie
closer to statistics, such as support vector machines and Bayesian classifiers.
Within the field of machine learning, it is also important to note the distinc-
tion between supervised, unsupervised and reinforcement learning. Super-
vised learning meaning that the data set can be seen as a set of examples, with
the correct input and output available. Some general issues with supervised
learning are that data processing, data preparation, feature selection and the
selection of an appropriate algorithm play an important part [50]. Some of
these issues are addressed within research reviews, see [50, 66]. Unsupervised
learning means that there is no specific correct value available, so instead of
linking the correct input and output, it tries to find and learn structures. Data
clustering [45] is an example of this. Data clustering is the process of grouping
together data points based on common characteristics.

Reinforcement learning refers to learning approaches where the algorithm
gets a reinforcement from the environment after each action [48]. An example
of this would be an agent learning how to perform a certain action through
trial and error, adjusting its action in such a way as to maximize the utility
of that action’s result on the environment. One downside to reinforcement
learning is that in most of the cases reinforcement learning methods do not
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Figure 2.5: A simple example of data clustering, where crosses within (a) are
categorised within 7 different categories within (b) [45].

scale well to larger problems.

One important part to note about learning knowledge, is the way this knowl-
edge is represented. [9] notes a number of different types of representations
of knowledge. Amongst these are parameters in algebraic expressions and de-
cision trees.

One way to model and learn a decision tree is in the form of a classification
tree. Classification trees can be seen as a tree that can classify instances based
on feature values [50]. Advantages of this approach are that the resulting de-
cision trees are easy to interpret [23] and are fast to classify input [74].

Classification trees van be learned/built through certain algorithms. One
example of this is the c4.5 decision tree generator algorithm [68]. C4.5 is noted
by [22] to be one of the most commonly used decision tree classifiers within
the machine learning and data mining communities. A main disadvantage of
classification trees is that they are easily over fitted. Over fitting means that
the learned model, in this case a decision tree, fits the training data too much,
which means that it loses its accuracy in classifying entries that do not come
from the training set. Algorithms like c4.5 try to combat this weakness through
methods like pruning the decision tree, in order to remove the branches that
do not add enough distinction value for the classification purpose in ques-
tion. For a more extensive overview of how decision tree classifiers work and
some examples see [67, 74].
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Is the colour of the train yellow?Yes No

Decision tree:

N SRailway company Not N S

As mentioned earlier, using parameters in algebraic expressions is one way
to represent knowledge within a system. One example of this can be found
in [66], where they assign a value to a variable within the system around a
mean value, which was observed from data, within the limits of a distribu-
tion. The distribution is thus used to predict the frequency of occurrence of
certain parameter values. Some distributions have been designed specifically
to facilitate this fitting [70].

Besides fitting distributions to data, fitting a curve to data is a method that
can also be used for predictive purposes. One of the ways to do this is through
using regression analysis. Regression analysis is a method to fit a function to
a plot of points [72]. One possible application for this is that you can use the
resulting function for predicting values. Within regression analysis, there are
two models which are often used, namely linear regression and non-linear re-
gression. As the name implies, linear regression fits the data points to a linear
function. It does this through trying to minimize the distance of the points
to the curve in question. Non-linear regression does not limit the fitting to a
linear function, but can be done to any selected equation [63]. See [54, 36] for
some examples.

It is noted by [80] that machine learning techniques are of much interest
within the application of MAS, due to their inherent complexity. One example
of this is [39], where the authors propose machine learning as a tool for the
construction of agents. More specifically, they use machine learning methods
to teach an agent different high level aircraft manoeuvres by example, to re-
lieve the need of manually coding in these manoeuvres.

2.2.5 Conclusion
Within this chapter I have given an overview of the subjects simulation, hu-
man operator modelling, agents and machine learning, focusing on the as-
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pects of each of those fields which are in close relation to the research ques-
tion: How can you add train driver behaviour to a micro-level simulator (FRISO),
using an Agent based approach. In the following chapters I will go through
using these findings in different steps, starting with describing the data and
formulating a train driver model with the help of it.
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3.1 Introduction

In the previous chapter I have given a brief overview of, amongst others, clas-
sification trees and statistical fitting methods. Within this chapter I will use
these methods to create an implementable model of the decision making pro-
cess of a train driver. I will not attempt to create a general model of a train
driver, as can be seen in [38] and Figure 3.1. Instead I will focus on using
the data available to learn and fit a decision making model which focuses on
a functional reasoning-act cycle. The main reason for not making a general
model of a train driver that includes human capabilities, is due to the large
amount of time this would require and the unavailability of relevant data. Like
data that contains information about the way train drivers perceive, remem-
ber and focus on the different aspects that come in to play when driving a
train. I will first give some background information about the data used, fol-
lowed by a description of the data processing that was done. After this I will
give an overview of the methodology used for further modelling a train drivers
behaviour with the acquired information. I will close this chapter by formal-
izing these findings through presenting an overview of the decision making
model.

3.2 Data

Data plays an important role within simulation [65], often being a crucial
component of the input and output for simulations. In this section I will fo-
cus on the use of data for the creational purpose, to create a component of
the simulation. In order to create a decision making model of train driving
behaviour I mainly used two data sets for exploration, training and fitting pur-
poses. One being data from the ProRail simulator MATRICS, the other being
from GPS data gathered from trains. I will start with describing the two data
sets and their aspects.
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Figure 3.1: A schematic overview of the Human capabilities and the recognise-
act cycle in the CTA model. [38]

3.2.1 MATRICS data

MATRICS is a railway simulator used by ProRail for research purposes. Within
this simulator, the operator can be put into the role of a train driver, where
they need to drive the train within the simulation environment and follow the
time table. The data used within this thesis from MATRICS comes from two
different projects, in both cases the trains within the simulator were operated
by real train drivers. In both projects the operator was sitting behind a con-
trol panel that represented the main controls present within a train cab. The
operator could see a representation of the cab displays and environment on a
projection screen in front.

Besides the setup of the simulations it is important to note the subject of
these projects, this in order to take into account what the acquired data can
and cannot be used for. One of the projects, named DSSU, was done in a sit-
uation characterised by the distances between the signals. These distances
were shortened and the signal relations were adjusted in such a way that the
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train driver would brake over multiple blocks, encountering a yellow number
signal aspect followed by a normal yellow signal more often than before. This
in order to decrease the amount of unnecessary braking that can occur when
the train in front has been delayed, but is starting to speed up again at the
same time the first train sees a yellow signal. This situation is often found at
stations where trains are leaving while the next train is already arriving. The
scenarios used within this project often thus had delayed trains in front of the
operator in order to test the safety of this situation.

The other project was about a device and system called RouteLint. RouteLint
is designed to give train drivers an overview of the seven sections of tracks
ahead of the train, in order to see which sections are occupied by which trains.
This devise is aimed at giving train drivers more information and to help with
pro-active behaviour. Under normal circumstances information about track
occupation that is further away than two or three sections of tracks would be
too far away for the train driver to recognise from the visible signals. This
project was aimed at getting a better insight in the effects of RouteLint, es-
pecially on the safety for using this system when approaching a red signal.
Because of this the scenarios that were driven by the train drivers often in-
cluded delayed trains, this so that the train driver could more often see trains
in front of them with RouteLint. Due to this device influencing the way train
drivers drive and make decisions only the control logs from these experiments
were used. Within these control experiments no RouteLint was used or active.

MATRICS produces logs within an XML format for each time a train is driven.
The main data that comes from these logs is in the form of train states, which
contain the current position of the train, the speed, acceleration, time and
information about the upcoming signals at that moment. Besides the train
states, information is also provided for the ATB functionality and the depar-
ture and arrival times. One sample of a log file is seen in Figure 3.2.

The data available from the MATRICS logs can function as a source of infor-
mation about how the train drivers deal with and react to signals. It was less
practical to look at signs, seeing that the information about the sings are not
stored within the log files themselves. The MATRICS log files come from ex-
periments where a lot of hindering situations have taken place, meaning that
there were very few occasions where the train driver was able to drive accord-
ing to the schedule and without encountering an unplanned yellow and red
signal. In total 956 log files (8.6GB) were used, which were driven by over 65
train drivers, in 7 train series in 29 different scenarios.
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Figure 3.2: Sample of a MATRICS log.
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One notable limitation of the MATRICS log files had to do with the accel-
eration and braking behaviour. Within MATRICS, a number of aspects that
influence these behaviours were missing:

• The simulation does not take into account the possibility of the wheels
skidding. In real trains the train driver cannot always give full throttle
due to the wheels not having enough friction on the railway to produce
momentum, instead they will start to skid.

• The simulation is missing movement information, such as the move-
ment and forces experienced when a train is braking.

Due to these reasons, the precise acceleration and braking behaviour will likely
be not as accurate as in a real train.

3.2.2 GPS data

The GPS data comes from a project where a GPS tracker was attached to an in-
tercity train in order to accurately log its position, velocity and the distance to
the next red signal. Besides this other information was logged like the current
time, the number of satellites, the acceleration and a number of GPS accuracy
measures. The GPS data sets come from an experiment where ProRail tested
an application that warns a train driver if he is approaching a red signal and
is not braking hard enough. The position, velocity and acceleration informa-
tion were logged every second, while the distance to the next red signal was
logged four times a second once the train got within a certain distance to this
red signal.

The usefulness of these logs comes from the facts that:

1. There is a large amount of log files.

2. The trains were logged while travelling over large distances.

The main downsides to this data set were that it needed to be filtered for in-
accuracies, and that in order to get information about stops, delay, stations,
etc, it needed to be linked to other sources of information. One example be-
ing the linking of the time table to the logged arrival and departure times in
order to find out the deviation to the planned times. Another downside was
that it only logged the position of the next red signal, meaning that there was
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no indication available of the location of the speed signs and other signals.

Given that the GPS data gives a better reflection of driving behaviour in
non-obstructed situations and likely gives a better representation of the ac-
celeration and deceleration behaviour, they were used mainly for acquiring
information about these aspects. In turn, the MATRICS data gave a wide array
of information about the signalling environment, and were thus used mainly
for acquiring information about these aspects. The MATRICS data was also
used in cases where information was otherwise unavailable within the GPS
data.

3.3 Processing & preparation

Within the field of machine learning data-processing and preparation play an
important role. A visual representation of this process can be seen in Figure
3.3. Before the data can be used for learning and fitting purposes it needs to go
through this process. Within this project, the data that was available needed
to be pre-processed in a number of ways in order to make it usable for ma-
chine learning and fitting.

The eventual goal of these processes was to get insight and information that
could be used to model and formalize the decision making process of a train
driver. For this purpose I wrote two log processing algorithms in Java, one for
MATRICS and one for GPS, in order to gather and add the desired information.
Within this section I will go over the data processing that was done for the
MATRICS and the GPS files.

3.3.1 MATRICS processing
For the MATRICS files, the first two steps were pre-selecting the logs that could
be used. This was done through the following two steps:

1. Filtering out the logs where RouteLint was used.

2. Filtering out logs where impactful notes were made about during the
projects, either due to simulation errors or remarks by train drivers.

Once there was a usable set of logs the directly available information needed
to be extracted from these. Most of the time the files were ordered based
on time, there were however exceptions, namely when two events happened
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Figure 3.3: The process of supervised machine learning. [50]
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Figure 3.4: A speed-distance diagram of a scenario within MATRICS. On the
x-axes the distance is represented, with the starting point of zero,
on the left. On the y-axes the velocity of the train is indicated in
km/h. Underneath the x-axes the current signal aspects of the up-
coming signals are represented, with the first one being on top. The
blue lines display the allowed ATP speed at that point. The vertical
black lines represent the position of the signals, with the H shape
indicating the estimated visible distance of that signal. The speed-
distance points are filled in with the colours that denote the colours
of the current signal aspects, namely green with a green signal, yel-
low with a yellow signal and red with a red signal. Gold being the
exception that indicates a yellow signal with a number below. The
downwards extended black line indicates the fifth signal encoun-
tered by the train driver.

soon after each other where one event contains more information to print
than the other. This makes it necessary to sort the entries within the data set
if you want to look at driving behaviour over time. The extraction was done
through the following automated processing steps:

1. Read through the log files, sort and store the train state information.

2. Add to the train states information gained from the other entries (brak-
ing, traction, distance to arrival, current delay, signal information, ATP
information).

Once this information was gathered it could be displayed visually on screen,
as can be seen in Figure 3.4.
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Figure 3.5: A speed-distance diagram of a driven scenario within MATRICS.
The content of this graph is the same as in Figure 4, with the excep-
tion of the colours of the speed-distance points. Here they denoting
the current visible or expected signal aspect, rather than the current
signal aspect.

Looking at this information it was still unclear to see why train drivers per-
formed certain actions, namely actions which did not seem to fit with the goal
of driving in a safe and timely manner. One example visible in Figure 3.4 is the
hard braking manoeuvre done after the fifth signal. To expand on this infor-
mation and to give a better intuitive picture of why train drivers do certain
actions information was added about the visibility of signals and signal re-
lations. This in order to better represent the knowledge the train driver has
about the visible and expected signals.

At this stage it was possible to see relations between the action that was
undertaken by the train driver and the reasons for this action. These reasons
stemmed largely from the rules and regulations that are in place. One exam-
ple of this is visible in Figure 3.5 after the fifth signal. Here the train driver is
braking hard due to the expected red signal, once he comes into the viewing
distance of the next signal and sees that this is not currently red he stops brak-
ing and starts to accelerate again. It is now also visible that within this figure
all braking manoeuvres are done either when approaching a red signal, when
approaching a planned stop, or when the current velocity of the train is higher
than the allowed velocity by the ATP.

Given the observations acquired through these visualisations a number of
situational distinctions were made. These distinctions were meant to capture
the overall reasons for the vast majority of actions done by train drivers. These
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Figure 3.6: Similar to Figure 3.5, the x-axes indicates the distance travelled,
the y-axes indicates the velocity of the train. The colours indicate
what the next viewable/expected signal aspect is. The grey verti-
cal lines indicate when the train driver did an action. Below those
lines numbers are added indicating to which situation this action
belongs.

were the following situations:

1. Approaching a signal or sign that indicates a lower allowed velocity than
the expected velocity at the signal or sign in question.

2. Approaching a signal or sign that indicates a higher allowed velocity
than the expected velocity at the signal or sign in question.

3. Approaching a red signal.

4. Approaching a stop.

5. Departure.

6. Significant speed has been reached.

Within Figure 3.6 you can see the decisions linked to the different situa-
tions.

28



3.3 Processing & preparation

The reason for distinguishing between situation 2 and 5 is that choice and
timing did not play a role in 5. The timing part of a train departure will be
done through FRISO, so once it indicates that it is time for departure, the train
driver model should accelerate. The distinction between situations 3 and 4
comes from two main reasons. The first coming from the fact that in order to
drive in a safe and timely fashion, a train driver will approach an unplanned
red signal differently than a planned one. Wanting to not stop unnecessarily
in front of an unplanned red signal, while for a planned one, wanting to stop in
a safe, comfortable and timely fashion. Situation 4 was distinguished further
from situation 3 through the presence of a scout sign, which indicates that the
next station is at the end of the braking curve of the train. Actions that could
not be directly linked to situations 1-5, such as braking from 140km/h towards
120km/h after having just completed an acceleration action from a departure
while the maximum speed is still 140km/h, were grouped within situation 6.
Actions such as these were deemed illogical, seeing that they were not forced
through rules or safety systems, could not be linked to any signal or sign and
do not contribute to driving in a safe and timely fashion.

These distinctions were laid out for a staff member from ProRail, who agreed
with these distinctions while noting some important more detailed points not
to forget. These points had to do with the course of the actions in question
and will come back later in this thesis. After these situational distinctions
were made, they could then be translated into the events the FRISO simulator
would give for the agent to reply to. A more in depth look into the events and
interaction the agent will have with FRISO can be found in Chapter 4, about
the agent design.

With the event based structure of FRISO and these situations in mind, more
specific information was gathered from the MATRICS logs in order to give a
better overview of the decisions that were made by train drivers within these
situations. This was done through first collection information from the deci-
sions made by train drivers within MATRICS, followed by adding hypothetical
FRISO events that could trigger actions through a change of situation. These
hypothetical events were then linked to available decisions that were made
in MATRICS. Thus giving information about, if an event took place in FRISO,
what decisions did real train drivers make. This automated process can be
summarized in the following steps:

1. Add information about each decision made within MATRICS:

• Store the kind of situation the train driver was in.
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• Store aspects of that situation and the following decision.

2. Add information about the situation where events would take place within
FRISO:

• Link the available decisions that happen around these events.

• Note when no action took place.

3. Create logs for each event case and write the information to new log
files.

A specification of the information acquired for each event can be found in
Appendix 1.

3.3.2 GPS processing
In order to get information about the way train drivers accelerate, deceler-
ate and act in normal not obstructed situations the GPS files first needed to
be pre-processed. Compared to the MATRICS files they required more filter-
ing and less processing, this due to GPS data being less reliable than software
logs, and GPS coordinates giving less information about the situation the train
than is available within a MATRICS log file.

The initial steps of this automated process were:

1. Filter out logs where no signal distances at all were logged.

2. Filter out the non-GPS entries.

3. Filter out the GPS entries where the data became unreliable. This oc-
curred either because not enough satellites were available(< 4), or when
the speed became too low (< 1m/s).

4. Filter out unusual entries. An entry was considered unusual when the
speed difference between two entries that are one second apart was >
1m/s. If it was larger than 1m/s, it would mean that the train was accel-
erating unnaturally fast.

5. Smooth the acceleration due to high initial variation.

Step five was taken due to the high variation within the acceleration mea-
surements of the GPS data. This variation made it impossible to use the ac-
celeration for informative purposes when looking at the differences between
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individual successive entries. For this reason the average was taken for four
entries around each entry. Through doing this, it was possible to use the dif-
ference in acceleration found between successive entries in order to deter-
mine an acceleration increase or decrease visible within the velocity and dis-
tance data.

After having acquired this information, meta information was added in or-
der to get a better insight into the state a train finds itself in. This information
was then used to create logs that could be used for machine learning and fit-
ting.

• Add information:

1. Distance travelled since the last entry.

2. If the train has stopped.

3. If it is a stop at a planned station.

4. The distance to the next stop.

5. The delay based on the time table of the NS.

6. If the train is braking or accelerating.

7. If the train is cruising or coasting.

• Make logs for collecting the desired information.

For an overview of the information gathered for each case, see Appendix 2.

3.3.2.1 Difficulties

It proved an unreasonable process to extrapolate the traction and brake lever
position from the GPS data. This due to a combination of factors, most no-
tably the variation in the rolling stock used, combined with real life effects
which also influence the braking, such as the weather conditions, bends, slopes
and train composition. There was also a slight error in the distance to the next
red signal due to the fact that the system was using a GPS distance calculation
between the position of the signal and the train, which resulted in it not tak-
ing into account corners. This difference turned out to be small enough to not
have any significant impact.

The GPS files also include a more frequent logging entry under the name
’Bewaking’, they were used to more accurately give information about the
train once it is approaching a red signal. Entries of this kind were logged four
times a second once the train got within a certain distance of a red signal.
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These entries proved difficult to use correctly, due to the rounding of the po-
sitional data. This rounding of the latitude and longitude meant that the lo-
cation was less accurate than the normal GPS entries. These entries were thus
not possible to use for positional information, and in turn speed and acceler-
ation information.

3.3.3 Conclusion

Processing the data files, exploring them, refining them, and looking at the
results took a significant amount of time. Through it, together with informal
interviews with two train drivers, a better insight was gained into the different
aspects of driving a train and how I could use the data available to create a
model. One notable observation made when looking over the different data
sets that were available was that often a good description of the data were
missing. Only through asking specific questions information about the accu-
racy of certain attributes was acquired. On top of that, often only the aspects
that were relevant to the research project in question were logged. This while
other aspects and attributes could have easily been logged as well. Simply log-
ging all available data that is not derivable from the already present attributes
could significantly improve the usefulness of the data ProRail gathers outside
of the specific projects. Within the next section I will describe how I used this
information to learn and fit aspects of this model.

3.4 Learning methods & results

In the previous sections the data and the data processing steps were described.
Once the desired data is acquired the next step is to use this to help creating
an implementable decision making model of a train driver within FRISO. With
the availability of the GPS and MATRICS data sets the way is opened to use
supervised learning techniques for this purpose. Within this section I will go
through the process of fitting distributions, functions and learning classifica-
tion trees in order to describe certain aspects of this decision making model.
The learning of classification trees is aimed to create a starting point for a deci-
sion tree, while the fitting of functions and distributions is a more mathemat-
ical approach aimed to help creating a more variable predictive model. The
earlier described set of situations will serve as a starting point for this process.
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Figure 3.7: Overview of an action.

3.4.1 Classification trees
After having distinguished different situations which can serve as reasons for
doing actions, there is still the need for the modelled train driver to decide
which action it will perform. Within this section I will go into acquiring a se-
lection process that can select which actions a train driver can perform given
the current situation and state of the environment.

Within this setting actions can be described as consisting of four parts, namely
what kind of action it is, at which point on the tracks the action starts, what
the course of the action looks like and at which point the action stops. One
example of an action that contains these four aspects would be that the train
driver decides to break at the next signal, with the braking lever at the position
that fulfils the braking criteria, until the train is going 40 km/h.

The problem of selecting which action a train driver will do lends itself to be
described as a classification problem, where given a certain situation and the
state of the environment one kind of action needs to be selected amongst a
set of possible actions. Not taking into account a train drivers responsibilities
outside the immediate driving task, the set of possible actions a train driver is
allowed to perform can be described as:

1. Give throttle with a certain amount.

2. Brake with a certain amount.

3. Coast.

I will from now on refer to the point at which such an action selection needs
to take place/has taken place as a decision point. The precise moments at
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which decision points take place within the simulation will be described in
Chapter 4. For this selection problem, I will use a classification tree learning
method on the data acquired from the MATRICS logs. The output of this clas-
sification tree learning method will function as the basis for a decision tree.

Before the learning algorithm could be applied, the learning sets (training
data) needed to be created. These learning sets were based on the data sets ac-
quired from processing the MATRICS log files. The reasons for not being able
to use the processed data sets directly was twofold. One reason being that
certain attributes contained information that could not be known at the de-
cision point, this posterior knowledge of the situation at hand thus needed to
be removed. The other reason was due to the way certain values were logged.
One example being the logging of the decision points when approaching a
planned stop. For these decision points a final velocity attribute was logged,
which indicated until which velocity the train slowed down if a braking ac-
tion started. If no braking action was started, this attribute acquired the value
of -1. This attribute could thus serve as a predictor whether or not a train
started to brake. An overview of the attributes that were used and how the sit-
uations were categorized can be found in Appendix 3. The resulting data sets
contained information about the environment at the moment a train driver
passed a decision point.

The creation of the classification trees was done through the learning algo-
rithm named J48, which is based on the C4.5 algorithm [68], which is usable
through the software application WEKA [37]. The main reasons for using this
algorithm was due to its easy availability and the mention by [22] that it "has
become a de facto community standard against which every new algorithm is
judged", thus indicating that the results acquired with this algorithm can likely
be compared more easily with others. For all learning instances 10 fold cross-
validation was used in order to distinguish between training and test sets. It
also served to make the resulting trees more general, in the sense that the re-
sulting trees would perform more similarly on an unknown data set like the
ones it could encounter during simulations.

The decision trees were learnt for the situations 1 to 4, as described in sec-
tion 3.3.1. Situation 5 was not included due to the train always having to de-
part, thus there not being a choice whether or not to depart. Situation 6 was
not included seeing that this event corresponded with the onset of an action
that could not be linked to a specific change in the environment besides the
velocity of the train.
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An overview of the resulting trees and error rates for situation 1 to 4 can be
seen in Tables 3.1 to 3.4.

Approaching Signal/Sign Lower Speed: [Situation 1]

Number of leaves 71
Size of the tree 132
Correctly Classified Instances 3705 93.5842 %
Incorrectly Classified Instances 254 6.4158 %
Total Number of Instances 3959

Table 3.1: Overview of the classification tree learned within Situation 1.

Approaching Signal/Sign Higher Speed: [Situation 2]

Number of leaves 433
Size of the tree 789
Correctly Classified Instances 8188 87.1899 %
Incorrectly Classified Instances 1203 12.8101 %
Total Number of Instances 9391

Table 3.2: Overview of the classification tree learned within Situation 2.

Approaching Red Signal: [Situation 3]

Number of leaves 9
Size of the tree 14
Correctly Classified Instances 507 93.8889 %
Incorrectly Classified Instances 33 6.1111 %
Total Number of Instances 540

Table 3.3: Overview of the classification tree learned within Situation 3.

Approaching Planned Stop: [Situation 4]

Number of leaves 9
Size of the tree 14
Correctly Classified Instances 3009 97.3786 %
Incorrectly Classified Instances 81 2.6214 %
Total Number of Instances 3090

Table 3.4: Overview of the classification tree learned within Situation 4.
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The resulting classification trees included leaves with little added value.
This also made them quite large, especially in the case of situation 2. Look-
ing closer at the content of these decision trees, even though most rules made
sense, there were at times illogical conditions such as the following section of
a rule within the tree learned from situation 2:

If thr ot t l e = tr ue ∧Del ay > 202.055∧Dpa > 2029.6038→ Start coasting.

Where Dpa indicates the distance to the previous action in meters.

This rule states that if the train is currently accelerating, the current delay of
the train is larger than 202.055 seconds, and the distance to the previous ac-
tion done is larger than 2029.6038 meters, the train driver is to start coasting.

I concluded from this that the trees were overfitting. To combat this a stricter
pruning value was used but resulted in similar results for the larger trees. One
possible reason for this is that the MATRICS data comes heavily from delayed
situations, thus resulting in a train driver that drives as if there is a delayed
train in front. One observation that was possible was that the first node of the
trees all used the same attribute, namely the current action of the train. The
current action could have one of the following values: Giving throttle, brak-
ing or coasting. Given this information, classification trees were made using
only this attribute. The resulting classification trees and their error rates can
be seen in Tables 3.5 to 3.8. Within these classification trees, the values be-
low the leaf nodes indicate the total amount of classified instances and the
amount of wrongly classified instances. Within the tables there are also con-
fusion matrices. A confusion matrix is a table that can represent the classifi-
cation accuracy of a classification method. The meaning of the content of the
cells within a confusion matrix can be seen in Table 3.9.

Cur r ent Acti onIf the

Situation 1

Coastis

Br akethen
(2473.0/290.0)

Br ake

Coast
(300.0/12.0)

T hr ot t l e

Coast
(1186.0/75.0)
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Approaching Signal/Sign Lower Speed: [Situation 1]

Correctly Classified Instances 3582 90.4774 %
Incorrectly Classified Instances 377 9.5226 %

Total Number of Instances 3959

Confusion Matrix:

Predicted outcome:
Braking Coasting Throttle

Actual value:
2183 59 0 Braking

0 1399 0 Coasting
290 28 0 Throttle

Table 3.5: Overview of the classification tree learned within Situation 1.

Cur r ent Acti onIf the

Situation 2

Coastis

T hr ot t lethen
(4419.0/1745.0)

Br ake

Coast
(1711.0/144.0)

T hr ot t l e

Coast
(3261.0/1314.0)

Approaching Signal/Sign Higher Speed: [Situation 2]

Correctly Classified Instances 6188 65.8929 %
Incorrectly Classified Instances 3203 34.1071 %

Total Number of Instances 9391

Confusion Matrix:

Predicted outcome:
Throttle Nothing Coasting Braking

Actual value:
2674 0 258 0 Throttle
1110 0 1187 0 Nothing

0 0 3514 0 Coasting
635 0 13 0 Braking

Table 3.6: Overview of the classification tree learned within Situation 2.
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Cur r ent Acti onIf the

Situation 3

Coastis

Br akethen
(270.0/54.0)

Br ake

Coast
(214.0/2.0)

T hr ot t l e

Coast
(56.0/6.0)

Approaching Red Signal: [Situation 3]

Correctly Classified Instances 478 88.5185 %
Incorrectly Classified Instances 62 11.4815 %

Total Number of Instances 540

Confusion Matrix:

Predicted outcome:
Braking Coasting Throttle

Actual value:
216 5 0 Braking

0 262 0 Coasting
54 3 0 Throttle

Table 3.7: Overview of the classification tree learned within Situation 3.

Cur r ent Acti onIf the

Situation 4

Coastis

Br akethen
(2622.0/149.0)

Br ake

Coast
(380.0/23.0)

T hr ot t le

Coast
(88.0/28.0)

Approaching Planned Stop: [Situation 4]

Correctly Classified Instances 2890 93.5275 %
Incorrectly Classified Instances 200 6.4725 %

Total Number of Instances 3090
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Confusion Matrix:

Predicted outcome:
Braking Coasting Throttle

Actual value:
2473 28 0 Braking

0 417 0 Coasting
149 23 0 Throttle

Table 3.8: Overview of the classification tree learned within Situation 4.

Predicted value:
Class A Class B Class C

Actual values:
As classified as A As classified as B As entries classified as C Class A
Bs classified as A Bs classified as B Bs entries classified as C Class B
Cs classified as A Cs classified as B Cs entries classified as C Class C

Table 3.9: Overview of a confusion matrix.

Within Table 3.6 for situation 2 it can be seen that the act of doing noth-
ing, so not changing the current action, was also incorporated. The main
reason for this was that the act of accelerating within this situation is not en-
forced through any safety systems. This is unlike the other situations, where
in the vast majority of cases the act of braking will be enforced through the
ATP safety system. This, combined with not being able to give throttle and
brake at the same time, also explains why the current action is a good predic-
tor in situations 1, 3 and 4. The only enforcement that a train driver has for
accelerating is the goal to arrive on time, which leaves the train driver with
more flexibility to not act within this situation.

Within these tables it is visible that only Table 3.6 suffers from a significant
performance hit if only the current action is taken into account. From the
confusion matrix in Table 3.6, you can see that the majority of cases that are
classified wrongly occur in one of the following two cases: The train driver is
coasting, and decides to do nothing, thus continuing to coast. The train driver
is giving throttle and decides to do nothing, thus continuing to give throttle.

These cases occur mainly within the first two parts of a ride between two
stations, namely during the initial acceleration after the departure and the
driving behaviour during a non-obstructed free track section. It was observed
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that the initial acceleration curve usually continues until a velocity around the
speed limit is reached. The main exceptions to this are:

• When a delayed train is in front and causes a yellow signal to be seen
before a desired velocity could have been reached.

• When the next stop is close enough to require the train to start braking
towards a planned stop before a desired velocity around the speed limit
could have been reached.

This observation was kept in mind when determining whether a new action
should be taken or not. A more in depth look into the driving behaviour dur-
ing the free-track sections will be presented later in this thesis, in the section
Behaviour variations.

Conclusion

Given the high prediction rates of the classification trees that were based on
the current action attribute for situations 1, 3 and 4, it was concluded that this
could serve as the initial attribute of a decision tree to select which actions can
be done. These actions are in line with the regulations in place, seeing that for
situations 3 and 4 the train driver will eventually need to brake in order to stop.
For situation 1 the train driver will have to slow down to the required velocity
and within situation 2 they will either coast or accelerate.

If I did not use current action as the sole predictor the classification trees,
like for situation 2, tended to overfit and introduce nonsensical rules. Two
possible explanations for this are:

1. The data came from situations where a lot of trains were delayed, thus
increasing the exposure to unplanned red signals, causing rules that re-
flect the driving behaviour under severe delays instead of normal driv-
ing behaviour.

2. The concepts that the learning algorithm tried to capture were too gen-
eral for it to work well given the present attributes.

In order to compensate for the relatively low accurate prediction rate of sit-
uation 2, the final model will take into account the observations made about
the initial acceleration curve and a closer look will be given to the free-track
sections within section Behaviour variations.
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Given the predication rates of situations 1, 2 and 4, respectively 90.4774%,
88.5185% and 93.5275%, it was concluded that the actions done by train drivers
that do not fall within this classification will be seen as exceptions to normal
train driver behaviour. A part of these wrongly classified instances could be
attributed the mislabelling of the situation from the train drivers perspective,
likely due to the use of an estimated viewing distance. The other part of these
instances, the exceptions, will only partially be modelled and noted at the end
of this chapter.

3.4.2 Fitting

3.4.2.1 Introduction

Within the last section the initial decision trees were acquired. With these a
possible action can be selected. Given the kind of action a train driver will do,
the questions that are still remaining are:

1. At which point does an action start?

2. How does the course of an action look like?

3. At which point does an action stop?

Before going into how I approached these questions I will aim to clarify
these three points briefly. The point at which an action starts will be used
in the sense of a position in front of the train where the onset of this action
will take place. The course of an action will be used in the sense of denoting
a specific traction or brake-lever position. The point at which an action stops
will be used in the sense of a specific velocity that has been reached.

In order to answer the three above mentioned questions I looked through
the available data to see which parts were possible to model through either fit-
ting the data to a distribution or function. The main reason for using this ap-
proach was due to the numerical nature of these values. A function was used
in the cases where a clear relation between attributes was visible, a distribu-
tion was used in the cases where this was not. Not every necessary positional
or course specification was acquired through the use of fitting methods. This
due to either simulation restrains, time restrains, or unavailable data. In these
cases I implemented a default value, if possible based on domain knowledge,
if not a value was chosen arbitrarily. Within this section I will go into the cases
where I did use the fitting methods, starting with the distributions, and briefly
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mention the most notable cases where I did not use fitting methods.

The fitting of the distributions was done through one of two methods. One
method used a Generalized Reduced Gradient(GRG) algorithm [52], available
within Microsoft Excel [59]. This GRG algorithm is aimed at optimizing non-
linear problems. In this case, it tries to find the values for the parameters
of a distribution that minimises the Kolmogorov-Smirnov statistic [56]. This
Kolmogorov-Smirnov statistic is a goodness of fit measure, which gives a value
that describes the maximum distance between two sets of values. The idea is
then that if you minimize this value, the maximum distance between the two
sets of values is minimized, thus that the resulting sets are closer to each other.
Within this thesis I will refer to this value as the goodness of fit measure, where
a lower value is better. The mathematical definition of this statistic is:

Dn = sup
x

|Fn(x)−F (x)|

Where Fn(x) is the empirical distribution function and F (x) a cumulative distribution

function.

The other distribution method was done through the maximum likelihood
method implemented in the fitdistr function found in the software R [82] pack-
age MASS [85]. The type of method used was selected depending on the char-
acteristics of the data, with the fitdistr method giving better results if there
were fewer values, or if there were missing values. The type of distributions
that was fitted towards was selected based on the shape of the observed dis-
tribution.

The functions were created through using the linear regression method avail-
able within [59]. In order to indicate the accuracy of these functions I will
mention the coefficient of determination, the R2 value. The closer this value
is to 1, the higher the correlation is between the line and the data. I will go
through the situational distinctions one by one and give an overview of this.

Before the fitting methods could be applied, learning sets needed to be
made. These sets were altered versions of the data sets acquired through the
processing of the MATRICS and GPS log files. They were altered in two ways:

1. Certain filters were applied.

2. If required the data was shifted before fitting.
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With shifting I am referring to moving the value-range of a distribution, mir-
roring the distribution, or to expand or contract the value range of a distribu-
tion. The main reason for shifting the data, was to help the fitting methods.
These actions had the effect of at times increasing the goodness of fit measure
due to making it easier for the algorithm to fit a distribution to the data, or
were required in order for the algorithm to work. There were two main rea-
sons for the application of filters, the first one being to filter the data to corre-
spond with the desired situation or state. One example being the filtering of
approaching a planned stop to only include cases where the train driver did a
continues braking action towards a standstill, starting from a velocity between
the 25 and 45km/h. The second reason for applying filters was to remove data
entries that were out of range, impossible or extreme outliers.

3.4.3 Distributions & Functions
In this section I will go through the situations and give an overview of the dis-
tributions and functions acquired for the purpose of answering the questions
about the onset, course and end point of an action. This to represent the vari-
ety found within the actions of real train drivers. I will not go into the specific
onset, course and end point of each possible action, instead I will focus on
the actions where the acquired distributions and functions play a role. Start-
ing with situation two, Approaching a signal or sign that indicates a higher
allowed velocity.

Situation: Approaching a signal or sign that indicates a higher
allowed velocity

For this situation I will look first into the action where the modelled train
driver will switch from braking to coasting. For the timing of this action I used
the Time since last signal improvement attribute from the data gathered from
MATRICS. Thus timing the onset of the switch from braking to coasting to the
timing of the last signal improvement observed. This empirical distribution
was then fitted to a gamma distribution, seen in table 3.10, through the use of
fitdistr.

43



3 Empirical research

Source: Number of entries: Shape: Scale: Goodness of fit:
MATRICS 77 2.524498 1.368401 0.1012559

Table 3.10: The resulting information acquired through the fitting of the Time
till last signal improvement to a gamma distribution.

The other action I will look into for this situation is arguably the most im-
portant one, namely the acceleration action. The default onset point for this
action was chosen to be right in front of the train, at an arbitrary 10cm.

After having acquired the onset point for the acceleration action, the course
and onset point needs to be specified. For the course of the acceleration ac-
tion the position of the traction lever needed to be specified. This traction
lever position will be represented as a percentage. With 100% indicating the
traction lever being in the maximum position, and 0% indicating that no trac-
tion is given. The main reason for this representation, instead of using the
actual numerical traction lever positions available within trains, is due to the
way FRISO deals with acceleration and requires this percentage.

For determining the position of the traction lever the information acquired
from the passenger train driver interview was used. This mainly because of
not having access to the traction lever positions of the trains within the GPS
data and the questionability of the traction lever positions acquired through
MATRICS. It was however possible to observe the variation of the acceleration
curves from the GPS data, this can be seen in Figure 3.8.

Within the interview with the train driver, he stated that he always acceler-
ates with certain intervals. One example being: Accelerating to a velocity of
≈ 20km/h with the traction lever in position 1. After reaching that velocity,
accelerating to a velocity of ≈ 45km/h with the traction lever in position 2.
Etc.

In order to represent the visible variation within Figure 3.8 better, this method
of acceleration described above was formalized together with three uniform
distributions. Here the first distribution controls the interval between the ve-
locities. The second one controls the gradual increase for the percentage of
the traction lever. The third one controls the variation of the final velocity of
this interval. These three distributions also offer the ability of adjusting the
variation at will.

In order to determine the end point of the acceleration action, I aimed to
answer the following question: If a train driver decides to accelerate, to which
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Figure 3.8: The final velocity of departures, where the velocity difference is at
least 20km/h. Giving an impression of the variation of the accel-
eration behaviour found between train drivers. On the x axes the
traversed distance in meters since the departure is visible. On the y
axes the velocity of the train is visible in km/h.

Figure 3.9: final velocity of accelerations of at least 20km/h from the GPS data.
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velocity does he accelerate given the current maximum velocity?
For this I used the processed GPS data set named traction , this data set con-

tained the final velocity of acceleration sections done by train drivers. In this
case, an acceleration section is defined as a non-stop acceleration manoeu-
vre done by the train driver, where the difference between the onset and final
velocity is higher than 20km/h. Within Figure 3.9, the resulting final velocities
can be seen. Following this, the range of 135km/h to 145km/h was selected as
a representative distribution for the selection of a final velocity given the cur-
rent maximum velocity. This range was selected due to the frequency of the
final velocity being around the 140km/h mark, combined with it being a ve-
locity range that can only be reached when the maximum velocity is either 140
or 160km/ h and as such suffering from less noise. The increment of 5km/h
around the speed limit of 140km/h was taken for the following reasons: When
the maximum velocity is 140km/h, the maximum velocity the train can accel-
erate towards without triggering the ATP safety system is around the 145km/h.
Thus any train that goes above has a maximum velocity that is over 140km/h.
For the same reasons, any train that goes above the 135km/h must have a
speed limit of at least 140km/h.

The fitting of this distribution was done on a normal distribution through
the use of the GRG algorithm. For this the final velocity acquired from the
data was first shifted towards the 0 km/h in order for the algorithm to work
properly. This shifting meant that the lowest value possible within the data,
135km/h, would correspond with 0km/h, while the highest possible value
found, 145km/h, would correspond to 10km/h. After the fitting process, the
resulting normal distribution, specified in table 3.11 and visible in Figure 3.10,
could be used to get an offset velocity. This offset velocity once added to the
speed limit, and then minus 5km/h, will give a final velocity for an accelera-
tion curve.

Source: Number of entries: Mean: Standard deviation: Goodness of fit:
GPS 4334 4.477670043 2.412290644 0.03162978

Table 3.11: The resulting information acquired through the fitting of the final
velocity to a normal distribution.
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Figure 3.10: The resulting accumulative normal distribution specified in table
3.11 is visible in blue and the observed cumulative distribution
can be seen in red.

Situation: Approaching a signal or sign that indicates a lower
allowed velocity

The next situation I will look at is situation 1: Approaching a signal or sign that
indicates a lower allowed velocity. For this situation I will look into the braking
action, starting with acquiring an onset point.

For this I used the timing information acquired from MATRICS, the Time to
relevant signal passage. The reason for using this measure instead of another,
like the distance to the relevant signal passage, is because the ATP system en-
forces a velocity based on the timing of the speed limit change. It thus being
more likely that a train driver estimates when to start braking based on the
time relative to this speed limit change at the sign or signal, rather than the
position of the train. The empirical distribution of the Time to relevant signal
passage was first shifted after being fitted to a gamma distribution through
the use of fitdistr. The resulting distribution can be seen in table 3.12.

Source: Number of entries: Shape: Scale: Goodness of fit:
MATRICS 1650 4.442802 0.8251686 0.06394251

Table 3.12: The resulting information acquired through the fitting of the Time
to relevant signal passage to a gamma distribution.
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After this there are still two question left, what does the course of the ac-
tion look like and when does the action stop. Unlike situation two, these two
are closely related due to the rules that impose that the train has to reach a
certain velocity before a certain point. I will split these rules into two general
cases: One being that the train driver needs to limit its velocity after passing
the yellow signal and prepare to stop for the next red signal. The other being
all the other cases where the train driver only needs to limit its speed to a cer-
tain velocity before reaching a specific signal or sign.

For the first case the train driver is modelled to start braking with the min-
imal braking amount, to just fulfil the braking criteria, after which the rest of
the braking manoeuvre will be done through the situation Approaching a red
signal.

For the second case the train needs to limit its speed to a certain velocity.
This velocity was acquired through fitting a shifted empirical distribution of
this velocity to a gamma distribution. The empirical distribution came from
GPS data, where trains had decelerated to a velocity between the 70 and 90
km/h. This range was selected for similar reasons as the range for the final ve-
locity of situation 2. One reason being that the frequency of braking manoeu-
vres that ended between these velocities was high. The other reason being
that if a train driver brakes to a velocity between the 75 and 85 km/h, it was
likely due to a sign or signal forcing this specific action. The reason for choos-
ing a range between 70 km/h and 90 km/h was due to the gamma distribution
fitting better if it had a larger range to fit to. The final velocity within the im-
plementation described in Chapter 4, limited the range of this distribution to
be between 5km/h more or less than the speed limit. The resulting gamma
distribution acquired through the GRG algorithm can be seen in table 3.13.

Source: Number of entries: Shape: Scale: Goodness of fit:
GPS 4806 3.746256503 0.131907088 0.044319667

Table 3.13: The resulting information acquired through the fitting of the Time
to relevant signal passage to a gamma distribution.

Once a final velocity has been acquired, the last question to answer is what
the course of the braking manoeuvre will look like. This part was modelled
through the assumption that train drivers prefer to brake as little as possible.
Given this assumption, the point where a train driver aims to stop its braking
manoeuvre will be just in front of the signal or sign that requires the speed
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limit to have been reached. Given that FRISO uses a linear model for decel-
eration, the required position of the braking lever can be calculated given the
onset point, a final velocity and a stopping point. These calculations can be
seen in Equations 3.1 and 3.2.

r equi r ed Accel er ati on = f i nalV eloci t y − i ni t i alV el oci t y
di st ance

i ni t i alV el oci t y+ f i nalV el oci t y
2

(3.1)

Where the r equi r ed Accel er ati on is the acceleration needed to reach the f i nalV el oci t y

given the i ni t i alV el oci t y and the di st ance.

br akeSet t i ng = r equi r ed Accel er ati on ∗100

maxi mumDecceler ati on
(3.2)

Where the br akeSet t i ng is the position of the braking lever in a percentage. The

r equi r ed Accel er ati on is the necessary deceleration and the maxi mumDecceler ati on

is the maximum negative acceleration possible of this train type.

Once the required braking setting has been acquired the modelled train
driver will select the maximum between the required braking lever position
and the minimum braking amount. Thus making sure that the train will reach
the required velocity in time, while also making sure that the modelled train
driver is following the braking criteria. This is done in order to follow the as-
sumption of train drivers wanting to brake as few as possible.

Braking

Before going into situation three and four I will line out how the braking to a
stop action has been modelled. The final approach to a planned stop or a red
signal was separated into two separate braking manoeuvres. This was done
to represent the braking behaviour visible in Figure 3.11. Within these ma-
noeuvres it is visible that there are three areas, in grey, where the train driver
often does not brake but instead coasts until he is closer to the stopping po-
sition. These three areas correspond with common speed limitations found
just before a red signal, namely those of 80, 60 and 40km/h. The speed limit of
40km/h is always present before a red signal, while the presence of the 80 and
60km/h speed restrictions depend on the present signals and signs. Situation
one already deals with the braking actions towards the 80 and 60km/h speed
limitations, and the onset of the braking manoeuvre towards the 40km/h speed
limit. The part that is missing is thus the course and endpoint of the braking
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Figure 3.11: Braking manoeuvres when approaching a planned stop. On the x-
axis the distance to the stopping point. On the y-axes the velocity
in km/h. Each line represents the braking manoeuvre of an indi-
vidual train, with the red coloured parts indicating when the train
is braking, and the grey coloured parts indicating when the train
is not braking, as in: when it is accelerating, cruising or coasting.

action towards the 40km/h speed limit, and the braking manoeuvre to a stop.
The only times a speed limit of 40km/h is missing before a stop is when the
train arrives on a green signal, which usually only happens on stations on the
free track sections.

In order to come to a model that can describe these braking manoeuvres for
different types rolling stock and variation in braking behaviour an appropriate
way to model these actions needed to be selected. An approach using classi-
fication trees, to determine whether to brake or not to brake, would result in a
model that is difficult to use when trying to plan the onset and endpoint of an
action and would have resulted in a reasonably uniform braking behaviour.
On top of that was a positional requirement that FRISO imposed on the stop-
ping position for planned stops. This meant that it would be easier to use a
method that could reason back, given the distance to the stopping point, how
a braking manoeuvre would look like. Therefore I chose to combine different
distributions, functions and equations of motion to describe these two brak-
ing manoeuvres.
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Figure 3.12: Visual representation of the Driving time Until Emergency braking
curve.

Situation: Approaching a stop: Braking to a 40 km/h speed limit

The next situation I will go into is situation three: Approaching a stop. As men-
tioned before, the braking manoeuvre to a stop is done in two braking actions.
Starting with the braking action towards the speed limit of 40km/h. For this
braking action an onset point will be set right in front of the train except if
the train is under the maximum allowed velocity and the initial Driving time
Until Emergency braking curve (DUE) is deemed too high, namely above 60
seconds. The DUE refers to the driving time until the train reaches the po-
sition of the emergency brake curve, which refers to the maximum braking
curve a train can do in order to stop before a specific position. This concept is
shown visually in Figure 3.12.

Normally this position refers to the position of a red signal. In this case the
position refers to the planned stopping position of the train next to the plat-
form. This due to the possibility of the train arriving on a green signal. If the
initial DUE is too high, a new initial DUE will be selected from a distribution,
which is the same distribution where this limit of 60 seconds comes from. A
selection of a new initial DUE means that the modelled train driver will wait
with starting the braking manoeuvre until the train is at the position where
the DUE is the same as the selected initial DUE.

The main reason for using this check on the initial DUE, is due to the scout
sign. The scout sign is a sign that indicates that a station is ahead and is at
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Figure 3.13: In blue you can see a density histogram of the Initial DUE found
within the GPS data. In red the fitted gamma function aimed at
representing the data.

the braking distance. Thus indicating to the train driver that he needs to start
braking around that sign. The location of this sign assumes that the trains
velocity is close to the speed limit, if the train is significantly below this, the
onset point of the scout sign would be too early. Thus this check on the initial
DUE ensures that the train does not start braking unnaturally early.

The distribution on the initial DUE was acquired through fitting the em-
pirical distribution of the initial DUE found within the GPS data, to a gamma
distribution with the GRG algorithm, which can be seen in table 3.14 and Fig-
ure 3.13. The main reason for using the initial DUE as a reference point for the
onset of a braking action, is due to the distribution being independent of the
initial velocity. This can be seen in Figure 3.14, where there is no observable
directional influence between the two attributes. This means that regardless
of the random initial DUE drawn from a distribution, it will not clash with the
current velocity of the train.

Source: Number of entries: Shape: Scale: Goodness of fit:
GPS 5032 11.5139083698441 2.69911282219247 0.010799605

Table 3.14: The resulting information acquired through the fitting of the Initial
DUE to a gamma distribution.

Once the onset position has been acquired, a final velocity to brake towards
needs to be selected. Due to the observed range and frequency of braking ma-
noeuvres towards the speed limit of 40km/h, the final velocity will fall within
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Figure 3.14: On the x-axes you can see the initial velocity of a braking action
towards a stop. On the y-axes you can see the initial DUE of this
onset point. Visible are three more densely clustered areas where
a more frequent occurrence of a specific initial velocity has taken
place. These correspond with the speed limits of 60, 80 and 130-
140. No correlation is visible between the initial velocity influenc-
ing the distribution of the initial DUE.

the range of 25 to 45km/h. The distribution of these velocities was acquired
from an adjusted version of the Final velocity attribute found within the pro-
cessed GPS log files for this situation. The main reason for using the final ve-
locity attribute and not the final position, or the final DUE, was because there
seemed to be no correlation between the initial velocity and the final velocity.
This can be seen in Figure 3.15, where there is no directional relation visible
between the initial and final velocity. Thus indicating that regardless of the
initial velocity, a randomly drawn final velocity from the fitted distribution
would be a valid final velocity. The resulting gamma distribution acquired
through the GRG algorithm can be found in table 3.15.

Source: Number of entries: Shape: Scale: Goodness of fit:
GPS 4985 1.887042698 4.278322934 0.045303461

Table 3.15: The resulting information acquired through the fitting of the Final
velocity to a gamma distribution.

Once the onset point and the final velocity are determined, the only thing
left to find is the course of this action. Looking at the data available from the
processed GPS data, it could be seen that there is a correlation between the
final DUE and the distance to the stopping point at the end of the braking
action.
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Figure 3.15: On the x-axes you can see the final velocity of a braking action
towards a stop. On the y-axes you can see the initial velocity of
this braking action. The edge visible on the bottom right is due
to the minimal velocity difference set for the selected braking ac-
tions, namely that of 10km/h. The more dense bandwidths across
the x-axes are due to the frequency of occurrence of different brak-
ing actions, showing similarities with existing speed limits.

This distance to the stopping point can be used to determine the position
of the end of the braking action, and in turn the course of this action. The
correlation between the final DUE and this distance measure can be seen in
Figure 3.16. In order to formalize this correlation, I used linear regression to
come to equation 3.3, with R2 at 0.8767.

Di st ancetostoppi ng poi nt = 10.811∗F i nal DU E +47.09 (3.3)
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Figure 3.16: On the x-axes you can see the final DUE of a braking action to-
wards a stop. On the y-axes you can see the distance to the stopping
point of the end of this braking action. The black line indicates the
fitted function.

In order to get the final DUE I fitted a shifted distribution to the differ-
ences found between the initial and final DUE. The reason for choosing the
difference in DUE to get the final DUE was that the difference in DUE did not
have a clear correlation with any other attributes that can be known at the on-
set of the action. The relation between the initial DUE and the difference in
DUE can be seen in Figure 3.17. The resulting gamma distribution acquired
through the GRG algorithm can be seen in table 3.16.

Source: Number of entries: Shape: Scale: Goodness of fit:
GPS 4985 9.989854391 2.894064959 0.030581005

Table 3.16: The resulting information acquired through the fitting of the differ-
ence in DUE between the initial and final DUE of a braking curve
to a gamma distribution.

After having acquired the difference in DUE, the final DUE can be calcu-
lated through subtracting the difference from the initial, as seen in equation
3.4.

F i nal DU E = Ini t i alDU E −Di f f er enceDU E (3.4)

This can then in turn be used to calculate the distance using Equation 3.3.
Using the distributed final velocity, and the just calculated end position of the
braking manoeuvre the final DUE can be re-calculated. This then gives you
a similar relation between the final DUE and the position of the end of the
braking curve, as seen in Figure 3.18.
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Figure 3.17: On the x-axes you can see the initial DUE of a braking action to-
wards a stop. On the y-axes you can see the difference in the DUE.
The sharp border seen on top of this cluster is due to the final DUE
not going below 0. There is a slight relation visible between the
initial and difference in DUE.

Situation: Approaching a stop. Braking to a stop

Once the first braking manoeuvre has been completed and a velocity between
the 25-45km/h has been reached, the second braking curve still needs to be
specified. Unlike previous actions, only the onset point needs to be formal-
ized. This due to the stopping position already being specified as a specific
position and velocity, namely the stopping position dictated by FRISO and a
velocity of 0m/s. With this stopping point and the onset point, the course of
the action can be acquired through equation 3.1 and 3.2.

In order to acquire an onset position the current velocity, acceleration and
distance to the stopping point were used in combination with an equation.
These data points were acquired from the onset point of braking manoeuvres
to a stop from the GPS data. The equation that was used expressed the corre-
lation found between the onset velocity and the onset distance to the stopping
point. This equation was acquired through using linear regression on the pro-
cessed GPS data, and can be seen in Equation 3.5. The R2 of this equation is
0.4959, which low value was likely caused due to the high variation as visible
in 3.19. The main reason for using the current velocity, acceleration and the

56



3.4 Learning methods & results

Figure 3.18: On the x-axes you can see the final DUE of a braking action to-
wards a stop. On the y-axes you can see the distance to the stop-
ping point at the end of this braking action. The red points in-
dicate observed entries from GPS data. The blue points indicate
a set of simulated entries acquired through the distributions and
functions described above.
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distance was to ensure that the braking manoeuvre fits with the current cir-
cumstances, which would not be the case with a single distribution over the
position.

Di st ancetothestoppi ng poi nt = 6.7139∗Onset vel oci t y −104.51 (3.5)

The missing value within this equation is now the onset velocity. The on-
set velocity of the braking curve can also be described through combining an
equation of motion, if you reason from the current state of the train and cal-
culate the onset of the braking action that lies ahead. When combining Equa-
tion 3.6 with the just presented Equation 3.5 a resulting equation can be seen
in Equation 3.7. Note that the x value within Equation 3.7 is the distance from
the current train position to the stopping position, and thus through subtract-
ing the distance acquired through 3.5, get the distance between the current
position of the train and the onset of the braking curve. Here v f is this the
onset velocity of the braking curve.

v f =
√

v2
c +2ac d (3.6)

Where v f is the final velocity, vc is the current velocity, ac is the constant acceleration

and d is the displacement.

v f =
√

v2
c +2ac (x − (6.7139v f −104.51) (3.7)

Where v f is the final velocity, vc is the current velocity, ac is the constant acceleration

and x is the current distance to the stopping point.

Equation 3.7 can be re-written in order to get the v f , that indicates the onset
point of the braking action, from equation 3.5 to the left side of the equal sign.
This results in equation 3.8 [87].

v f =
√

4,507,645,321a2
c +200,000,000ax +20,902,000,000a +100,000,000v2

c −67,139a

10,000
(3.8)

Where v f is the final velocity, vc is the current velocity, ac is the constant acceleration

and x is the current distance to the stopping point.

With equation 3.8, we can now calculate the onset velocity of the final brak-
ing manoeuvre, which in turn can be used to calculate the position of this
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action through equation 3.5.

Equation 3.5 has the problem of not having any variation between the re-
lation of these attributes, also visible within its R2 value, resulting in a lin-
earity in the results. In order to represent the variation found in the braking
behaviour of real train drivers, a distribution was used to offset the resulting
distance. This distribution was acquired through fitting a normal distribution
to the difference in velocities found between the GPS data and equation 3.5.
This distribution was acquired through fitdistr and can be found in table 3.17.
For implementation purposes, two equations were created manually in order
to prevent the resulting distance to be offset by too much. These two equa-
tions and function 5 can be seen in relation to the data in Figure 3.19.

Source: Number of entries: Mean: Standard deviation: Goodness of fit:
GPS 5442 0.004782357 34.74332178 0.04009126

Table 3.17: The resulting information acquired through the fitting of the differ-
ence in DUE between the initial and final DUE of a braking curve
to a gamma distribution.

After adding that offset distance we have the position where the train should
start braking, given the current velocity, acceleration and distance to stopping
point. The relation between the onset DUE and the distance to the stopping
point, and between the onset velocity and the distance to the stopping point,
has been kept similar through the use of this method. This can be seen in
Figure 3.20 and 3.21.
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Figure 3.19: On the x-axes you can see the initial velocity of a braking action
towards a stop. On the y-axes you can see the distance to the stop-
ping point at the onset of this action.
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Figure 3.20: On the x-axes you can see the initial DUE of a braking action to-
wards a stop. On the y-axes you can see the distance to the stopping
point at the onset of this action. The data points acquired from the
GPS data can be seen in blue. Simulated data points, which were
acquired through the distributions and functions described above,
can be seen in red. The sharp borders between the red and blue
dots is due to the Upper and Lower bound.

Figure 3.21: On the x-axes you can see the initial velocity of a braking action to-
wards a stop. On the y-axes you can see the distance to the stopping
point at the onset of this action. The data points acquired from the
GPS data can be seen in blue. Simulated data points, which were
acquired through the distributions and functions described above,
can be seen in red.
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3.4.3.1 Situation: Approaching a red signal

For approaching a red signal, the same type of distributions and equations
were used as for the previous situation, situation 3, with the exception of the
initial DUE check. This check was not deemed necessary since situation 4
does not use the scout sign. The resulting distributions, corresponding to the
use of those of situation 3, can be seen in table 3.18. The resulting equations
can be seen in equations 3.9-3.11.

Source: Use: Type: Number of entries: Shape: Scale: Goodness of fit:
GPS Final Ve-

locity
gamma 296 2.317 7.025 0.022

GPS Difference
in DUE

gamma 273 13.697 5.764 0.0270

Source: Use: Type: Number of entries: Mean: Std dev: Goodness of fit:
GPS Distance

offset
normal 112 0.009 202.501 0.114

Table 3.18: The resulting information acquired through the fitting of the differ-
ent distributions for Approaching a red signal

Di st ancetostoppi ng poi nt = 7.3813∗F i nal DU E +159.94 (3.9)

equivalent to the use of equation 3, with an R2 of 0.55.

Di st ancetothestoppi ng poi nt = 13.177∗Onset vel oci t y −102.06 (3.10)

equivalent to the use of equation 5, with an R2 of 0.8489.

v f =
√

173,633,329a2
c +200,000,000ax +20,412,000,000a +100,000,000v2

c −13,177a

10,000
(3.11)

Where v f is the final velocity, vc is the current velocity, ac is the constant acceleration

and x is the current distance to the stopping point.
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3.4.4 Behaviour variations
After having formalized the different aspects within the possible actions within
the different situations, one main question that still needs to be answered is:
If the modelled train driver is coasting or giving throttle within situation 2, will
it do an action or will it do nothing? Within the classification trees it was vis-
ible that the current action attribute was not always a very good indicator of
whether to do an action within this situation. In this section GPS data will
be used to look at the free-track behaviour shown by train drivers, in order to
answer this question.

A number of examples of the driving behaviour shown by train drivers can
be found in Figures .1 to .4 in Appendix 4. From these the following three be-
haviours were categorized:

1. Cruise.

2. Coast.

3. Alternating coasting & traction.

Given this classification and the observation that these were often com-
bined by train drivers in free track sections, like in Figure .3, three ways of
combining them will be used.

The first way followed the guidelines of the Universal Economical driving
Idea (UEI) method. This method is taught by the NS to train drivers with the
aim of minimizing the energy usage while still driving on time. The rules of
the UEI method can be summarised as advising the train driver to speed up
to a certain velocity (usually the speed limit), after which the train driver is
advised to start coasting at a certain time after departure, based in the driving
time between the stations. This often results in a driving behaviour where
large sections of coasting are present, similar to (2) within Figure 3.22.

The second way combined the cruising and coasting behaviours, each spec-
ified through a percentage indicating with the distance of the free track sec-
tion where this behaviour will be shown. Starting with cruising, followed by
coasting. The percentage of this distance that would be used to cruise or coast
was acquired through the distribution of these percentages visible within the
GPS data. A normal distribution was chosen for this purpose. It must be
noted that it was difficult to automatically assess accurately whether or not
a train was coasting or cruising, seeing that the acceleration data fluctuated
significantly even after smoothing. On top of that was the observation that
there were at times seemingly rapid switches between coasting and cruising,
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Figure 3.22: An overview of the three categorized free track driving behaviours
based on GPS data. On the x-axes the distance travelled is repre-
sented and on the y-axes the velocity of the train. In (1) the train
driver cruises in-between the departure, indicated in green, and
arrival sections, indicated in red. In (2) the train driver coasts in-
between the departure and arrival sections. In (3) the train driver
alternates between coasting and accelerating between the depar-
ture and arrival sections.
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which made the automatic categorization process more difficult. This could
be not only due to the train drivers actions, but also due to things such as
wind, curves in the track or slopes.

The third way used an alternation between traction and coasting, similair
to (3) within Figure 3.22. The velocity differences between these actions was
based on GPS data. Within the train driver model, the frequency of occur-
rence for each of these three free track behaviours could be specified with a
percentage.

3.5 Overview decision making model

From the findings within the previous sections, the main part of the deci-
sion making model was made. The input of this model would be the situa-
tion where the train finds itself in combined with the beliefs about the en-
vironment. The term belief used here refers to the same term as explained
in Chapter 2. Depending on the situation value a small decision tree would
be traversed. One example of this can be seen in Figure 3.23. These deci-
sion trees were based on the classification trees specified earlier within this
chapter. Within Figure 3.24 the overall model can be seen. Within this model,
based on the situation and current action, an action kind will be selected. This
selection is indicated in with blue arrows between the current action condi-
tion and the allowed action. Besides the classifications acquired through the
classification trees, the decision trees also hold the exception cases which are
indicated with red arrows. These exception cases are only triggered in the fol-
lowing circumstances:

• Situation 1: Approaching signal/sign lower speed:

– Br aki ng → Br aki ng : If new information indicates that the train
is not decelerating hard enough, the agent will adjust the braking
lever position.

• Situation 2: Approaching signal/sign higher speed

– Tr acti on → Tr acti on : If the agent is trying to maintain the ve-
locity of the train, through cruising, but the current acceleration is
above 0, it will lower the position of the traction lever.

• Situation 3 & 4: Approaching a planned stop or a red signal
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Figure 3.23: A decision tree example, where the input is the situation Ap-
proaching signal/sign higher speed. The blue arrows indicate the
allowed actions acquired through the classification trees. The red
arrow indicates an exception case
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Figure 3.24: Within this figure an overview the modelled decision making pro-
cess can be seen. As main input the current situation the modelled
train driver finds itself in, followed by a categorization of the cur-
rent action. After this, the arrows point to the possible actions that
can be done given the current action.
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– Coast → Tr acti on : If you are still far away (>300-500m) from the
stopping point, and your velocity is low (<3-10m/s) the agent can
accelerate.

It is important to note that the specified possible action of the decision tree
will not always be selected. This is mainly due to the fact that the classifica-
tion trees were learnt mostly based around the actions that were performed.
Within the simulation, the agent will receive events also at times that no ac-
tion is deemed necessary. One example is in the situation that the train is
approaching a planned stop and the agent is already braking. If the agent has
already started the braking manoeuvre because of the planned stop, it will not
switch to coasting, but will continue to finish this braking action. Thus not do-
ing any action. If the braking action was not done because of the approach of
a planned stop, the agent will stop that braking manoeuvre and start to coast.
Due to FRISO indicating immediately that the coasting action has been exe-
cuted, the agent will now find itself in the situation of approaching a planned
stop while coasting, and can plan the braking action accordingly.

Within situation 2 the selection process was also influenced by the obser-
vations made. So will the agent not interrupt the traction actions done during
the initial acceleration after a departure until a velocity around the speed limit
has been reached. On top of that, the agent will use the three free-track be-
haviours that were presented in the last section within the action selection
process of situation 2.

If the agent does decide to do an action, the four attributes for this action
will be selected. The onset position, the braking & traction lever position and
the final velocity will be determined. This is done if possible through the use
of the distributions, functions and values specified within this chapter.

3.6 Conclusion

Within this chapter an overview is given of the data and processing done within
this project, followed by the machine learning and statistical fitting meth-
ods used in order to create the structure of a train driver decision making
model. This is to answer the question of how to model train driver behaviour
from data. This model was also created with the goal of being implementable
within an agent while being able to represent the variations found within the
driving behaviour of real train drivers. In the following chapter I will go into
using the findings of this chapter to help with the design of the software agent.
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In the previous chapter I have given an overview of the data processing and
decision making models. In this chapter I will go into the agent setup that will
be used as the basis of the agent implementation of the train driver model
within FRISO. I will first give an outline of the setup with FRISO, after which
I will go into the design choices made and finish this chapter by giving an
overview of the agent model.

4.1 Setup with FRISO, input & output

The agent design was done in different stages. At first the interaction with the
environment through FRISO was specified by formalizing the input and out-
put that would go between the agent and FRISO. Secondly the internal struc-
ture of the agent was determined. The internal structure here refers to the
overall process of getting from input to output. Within this section I will give
an overview of the input and output characteristics.

In order for the agents to work within FRISO the input and output charac-
teristics had to be specified to work in concert with FRISO. Before specifying
these characteristics, it was important to determine the way the agents would
be implemented to work with FRISO. It was decided that the agent model
would be programmed within a dynamic linked library (DLL). The main rea-
sons for choosing this rather than implementing it directly into FRISO were:

1. Reusability by ProRail.

2. Expandability.

3. The programming language within FRISO, 4DScript, not being a gener-
ally well-known language.
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On top of that, it was deemed beneficial that the programming language
for the DLL would be C++, which is a generally well known programming lan-
guage. C++ is also an unmanaged programming language, unlike 4DScript,
which means that the code does not have to be compiled at runtime, which
offers a speed benefit.

For the transition of information between the DLL and FRISO there were
two options:

1. Continuous access.

2. Event based information packages.

Continuous access would mean that the agent would need to monitor the
required information within FRISO in order to act and send information to
FRISO at the appropriate times. This was deemed unnecessary and unpracti-
cal, due to it requiring a larger change to the workings of FRISO , it impacting
performance if it was done continuously and the possibility of doing it within
events on FRISOs side.

After determining that the transmission of information would be done through
events, the link between FRISO and the agents could be defined. In the simu-
lation each agent is to model a different train driver that controls an individ-
ual train, thus requiring one agent per train. Seeing that the DLL was linked to
FRISO once at the start of each simulation run, all the agents had to be situ-
ated within this DLL. In order to facilitate the communication between FRISO
and the agents, a single agent hub was defined to serve as a conduit for these
messages. These messages came in two main categories:

1. Setup information.

2. Messages to and from agents.

Setup information messages either contained the settings of the current sce-
nario, the time table for all the trains or a declaration that a train has been
placed within the model. A more detailed overview of the contents of these
messages can be found in Appendix 5.

Messages to the agents have the function to convey perceptual information
about the environment for the agent. This information needed to be sent to
the agent each time that something significant changed within the environ-
ment. Something was deemed a significant change in one of the following
cases:
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1. A timetable control area (TCA) was passed, signifying that the train
passed a scheduled point on its timetable: A train driver can normally
see its timetable and determines where he is on the route based on the
environment. The time indicated on these points serves as an indication
whether or not the train driver is still on schedule.

2. The train is allowed to depart: Normally a train driver gets a visual sig-
nal in the train cab when all doors have closed and the train is allowed to
depart, or if the departure assistant indicates the train can depart. After
one of these, the train is allowed to depart only if the signal in front of the
train allows this departure, as in, that the first signal is not red. Within
FRISO this procedure is combined into one message to indicate the train
is allowed to depart.

3. The stopping signal has been determined: The stopping signal is the
signal where the train is supposed to stop at for a planned stop. Normally
this signal is not used for determining the stopping position, instead a
blue number sign positioned next to a platform is used to determine this.
These are however not present within FRISO. Due to the variable nature
of the stopping platform, this information is sent to the agent during the
simulation in the form of a stopping signal.

4. A signal aspect of a signal in front of the train has improved: FRISO
keeps the agent informed of the one to three signals in front of the train.
If for one of these the signal aspect improves this is conveyed through this
message. Normally this is a change that the train driver can visually ob-
serve.

5. ATP improved: Although not strictly necessary due to the supportive na-
ture of the ATP system, FRISO will send a signal if the ATP improves due
to a signal aspect improvement.

6. The train has passed a signal: This message indicates that the head of
the train has passed a signal.

7. The train has passed a speed sign: This message indicates that the head
of the train has passed a speed sign.

8. The train has passed a switch: This message indicates that the head of
the train has passed a switch. This is relevant due to the rule that a train
driver is not allowed to start accelerating for a speed sign or signal before
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passing it, if the train has not yet fully passed all the switches between the
train and the speed sign or signal.

As mentioned within the previous chapter, the default onset position of an
acceleration action is set at an arbitrary 10cm in front of the train. One ex-
ception to this can be seen within the 8th case mentioned above. The reason
for both the default onset position and the exception case when switches are
involved, are due to the signal improvement rule [76]. This rule specifies that
when a train driver sees a signal improve its aspect to one that allows a higher
velocity, he needs to maintain the current speed limit until the train has fully
passed the signal. However, the train driver is allowed to start accelerating
directly if he:

• Sees the signal during the day with good sight.

• Is not driving on sight. A train driver drives on sight only in rare cases,
after passing a signal where there is a possibility that the train needs to
be able to stop at any moment. Within FRISO this only occurs if the sim-
ulation scenario is explicitly set to ask for such an occurrence.

• The ATP has also improved. This is relevant for when the signal aspect
improves when the signal is still out of sight.

• All switches have been passed.

• The speed signs allow a higher velocity.

Assuming that the simulations will be situated during the day with good
sight, it thus becomes the exception that the train driver is not allowed to
speed up directly after observing a signal improvement.

In order to limit the size of the messages, not all available information will
be sent within each message, instead only significant information is sent within
each message. In most of the cases this entails the aspects of the environment
which have changed.

The only input missing now is the confirmation that an action has been
completed. In the last chapter actions were defined as starting at a certain
position, having a certain course and ending at a certain velocity. If an agent
has given such an action for a train, and it is completed, FRISO will send a
conformation that the desired velocity has been reached:
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1. The desired velocity has been reached: Here FRISO informs the agent
that the previously given action has been completed and the desired ve-
locity has been reached.

If the agent wants to request information about the environment, specifi-
cally the state of the train such as the velocity and acceleration, it can do this
through a position action. This then serves as a subscription to a perception
event. This position action entails that FRISO will send information to the
agent once the train has reached a specific position:

2. The desired position has been reached: Here FRISO informs the agent
that the position of the previously given sensory update request has been
reached.

A full list of the attributes that are contained in each input message can be
found in Appendix 7.

Output messages sent from the agent to FRISO serve to convey the action
that the agent wants the train to do, or that the agent wants to subscribe to a
perception event. The action messages contain the following information:

1. Position break lever.

2. Position traction lever.

3. Desired end speed.

4. Position start speed assignment.

It is assumed that the agent will never combine the break and traction lever.
The position action contains only one attribute of information, namely a de-
sired position. The agent has a maximum of one action and one position ac-
tion that it can do at a time, with newer actions always taking precedence.
This means that if an action or position action are sent and there is already an
action planned or being executed at that time, that action will be stopped and
replaced by the new action. The agent can also choose to do no new action.
Figure 4.1 shows an example of the message flow between FRISO, the agent
hub and one agent.
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Figure 4.1: A schematic overview of the message passing between FRISO, the
agent hub and the agent. The empty messages serve as a confirma-
tion that a message has been processed.
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4.2 Agent hub

Given that the DLL was to serve as a single entity from FRISO’s point of view,
giving instructions to the trains when FRISO gives updates about their situ-
ation, the DLL itself would need to serve as the base for all the agents. As
mentioned before, the agent hub serves to facilitate this process by passing
on the messages to the correct agents. Within this section I will give a more in
depth view of the agent hub.

The agent hubs main function is to pass the messages to the correct agents.
This is done through keeping a record of which train ID corresponds with
which agent. Through this using this record an incoming message designated
to belong to a specific train can then be forwarded to the corresponding agent.
This agent, after having made a decision of the actions it will do, will send a
reply back to the agent hub through the same channel as the incoming mes-
sage. This message is then passed back to FRISO through the same channel
as the initial incoming message. The term ’same channel’ denotes that the
process will wait for a reply after sending a message.

Besides passing messages, the agent hub stores the settings of the current
scenario and stores, creates and deletes agents when needed. Agents are cre-
ated when the agent hub receives the message that a train has been placed
within the model. Using the information within this message, combined with
the relevant information within the time table and settings, an agent is ini-
tialized. An overview of these functions can be seen in Figure 4.2. Agents are
deleted by the agent hub through checking after each message that indicates
a TCA was passed for a specific train, if all the points on the time table of that
agent have been passed. If this is the case, the agent is deleted.

4.3 Agent design motivation

Before giving an overview of the agents, I will outline the design choices. To
reiterate: this software agent needs to be able to drive a train within FRISO
according to the train driver model. The goal of this agent was also to improve
the predictions done through simulations on the expected effects of adap-
tations within the infrastructure, time table and innovative measures within
safety and control.

Two main limitations and interactions played a role within the designing
process of the internal structure of the agents that fulfil these goals. One be-
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Figure 4.2: A schematic diagram of the agent hub

ing the limitations coming forth from the implementation of the agent within
a software DLL that interacts with FRISO. The second coming from the railway
domain and the train driver decision model.

Given that the agent should be able to drive the train in accordance to the
train driver decision model, the capabilities of this agent should be:

1. Acquire sensory input of the environment.

2. Process and determine what the acquired input information signifies.

3. Use this acquired information to apply the decision rules to come to an
action.

4. Respond to FRISO with the resulting actions.

The first and last capability have already been discussed at the start of this
chapter. For the act of processing the input information I will first go into the
internal representation of this information. For this knowledge representa-
tion the concept of belief was used, this concept was briefly outlined as part of
the BDI paradigm within Chapter 2. Paradigms like this, that use intentional
explanations, lean itself to describe complex systems in an intuitive way [88].
Within this project, the concept of belief was used with the aim of represent-
ing that the agent holds its own internal state of the environment, which does
not necessarily need to correspond with the actual environment. The aspect
of believing that the environment is in a certain state while it is actually in a
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different state often plays a visible role within the actions of train drivers. This
is especially so when a train driver is driving towards a signal they expect to be
of a certain signal aspect, while the signal aspect has improved before it being
visible. This can be seen in Figures 3.4 and 3.5 of Chapter 3.

Often a logic based approach is used when representing and reasoning about
internal notions such as beliefs [88, 71]. However, due to the requirement to
implement the agent within a DLL written in C++ a different approach was
taken. C++ is an imperative object oriented programming language, mean-
ing that a symbolic representation through logic is not readily available. This
means that the deliberation that is necessary when dealing with a logic based
representation cannot natively be done within C++. For this reason, any nec-
essary ’deliberation’ processes about the beliefs will be implemented as func-
tions. One example of this is determining the expected signal after signal X.
Say signal X is a normal yellow signal, the expected signal to come after this is
a red signal. A logic based representation of this could be:

expectedSi g nal (si g nal (yel low),r ed)

And the functional version could be:

Result: Returns the expected colour of the signal after signal
Input: signal
if signal.colour == yellow then

Return red
end

Algorithm 1: Example function: ExpectedSignal

The decision was made to take a reactive approach for the action selection
process, instead of using a planning system such as STRIPS [27]. The main
reason for this was that planning the actions in relation to each other can only
be useful if the modelled train driver knows the route very well and can esti-
mate when he will meet certain signals and speed signs. He could then reason
about these beliefs and use this knowledge of the tracks to plan his actions.

One example of this can be described as follows: The train departs and ac-
celerates towards 130km/h on a section where 140km/h is allowed, this be-
cause the train driver knows that a signal about halfway to the next stop will
be on yellow due to a scheduled crossing train. He knows that if he accelerates
to 140km/h he will have to brake for that yellow signal, but if he just acceler-
ates towards 130km/h the yellow signal will improve to green just before he
reaches it. Thus ensuring that he does not need to brake meaning that he
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saves energy and maintains a higher velocity after that signal which will make
up, or even gain, for the time lost by initially accelerating towards 130km/h
instead of 140km/h.

This whole situation assumes an intimate knowledge of the track in ques-
tion, the time tables and the locations of the nearby trains. Modelling all of
this was beyond the scope of this project and not always possible with the
current version of FRISO. As such, the other two parts of the BDI paradigm,
desire and intention, which are often used for agents to plan a set of actions
to achieve a goal will not be explicitly used. Instead, the intentions and desires
that come with driving a train will be considered intrinsic within the reactive
approach.

One example of a such a reactive approach can be seen in PENGI from Arge
and Chapman [11]. [88] describes this approach as following from the idea
that "most decisions are routine, and can be coded in a low level structure,
which only needs periodic updating perhaps to handle new kinds of problems".
Which is a description that fits with the act of driving a train within this sim-
ulation setting, taking decisions which are of a narrow scope, dictated by the
rules and goals of driving a train.

The resulting low level structure can thus be described as a large set of
input- output conditions, or as a rule-set. The goals, desires and intentions
can be said to be intrinsic into the structure and content of the rule set. Im-
plicitly containing the goals of driving in a safe, timely and energy efficient
manner.

Such a reactive method was also described by Brooks [8], where different
layers of behaviour worked together, with in general lower levels representing
more less abstract behaviours, and higher levels more abstract behaviours.
Such a layering structure can be found in Figure 4.3. A similar approach was
taken in the agent design in cases where a clear action, or no action was re-
quired.

The resulting agent design is similar in structure as a model based reflex
agent [73], with the train drivers goals becoming intrinsic in the course of pro-
cessing perceptions and selecting an appropriate action.

Due to the use of general situations within the decision making model, fu-
ture research into the effects of adaptations to security measures and/or train
operation developments could be done in two ways. This is assuming that the
core functionality of the railway network does not change. The core function-
ality refers to main concepts within the railway network, such as the presence
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Figure 4.3: A vertical layering

of signals, signs and that train drivers do not choose which tracks to ride on.
If the adaptation has to do with the decision making process itself of the train
driver, the low level rules for each situation could be changed to exhibit the
desired behaviour, which makes it possible to simulate a hypothesised end
result. The use of this would be to see the effects of this adaptation if it were
to bring about the desired behaviour. One example of this is giving an indica-
tion of an ’advised speed’ to the train driver to follow. For this, only a new free
track behaviour would need to be defined.

The other case would be where the adaptation does not influence the de-
cision making process directly, but indirectly. For this case it would hold as
well, that ProRail could simulate the effects of this hypothetical situation if it
is assumed that train drivers will still drive in a similar way as the train driver
model. One example of this is shortening the distances between the signals.

It is not possible to simulate what will happen if an adaptation is imple-
mented, it is only possible to see the effects of an adaptation if it is assumed
that adaptation is thought to have a specific effect. One example of this could
be described as follows: Given the observed variation in acceleration behaviour,
the question is asked if a support system of some kind that would reduce this
variation, would also lower the resulting variation in driving times by amount
X . It could then be simulated what the effects could be of this reduced varia-
tion before setting up a project to bring such a change about.

4.4 Agent setup

In the previous section I have given an overview of the overall agent design.
Within this section I will formalize this to give the agent model.
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Figure 4.4: A general overview of the agent structure and the processing flow.

Putting together the concepts of a layered architecture, the capabilities re-
quired from the agent, and the event based concept from 2APL [17], which
uses events to carry information about changes that might make an agent act.
The general structure could be represented as seen in Figure 4.4.

A more detailed overview that also incorporates the aspects of beliefs, can
be found in Figure 4.5. This overview presents the different components within
the agent that will help facilitate the three tasks that can be seen in Figure 4.4.
These components are:

1. Agent communicator: The main functions of this component is to pro-
cess the input and format the output.

2. Event processing: The main function of this component is to see if the
environment has changed in such a way to warrant a possible action to
be undertaken.

3. Decision making: The main function of this component is to apply the
rules from the decision making model to see if an action needs to be un-
dertaken given the current situation, and if so, to create such an action.

4. Belief Base: This component serves as a storage place for the information
required by the agent in order to function. This includes the information
and beliefs about the current environment.

These components interact with each other in the following way:
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Figure 4.5: An overview of the components within the Agent.

1. Agent communicator:

• Input & Processing: Once a message has been received and pro-
cessed, the resulting information is incorporated within the belief
base. After this the message type is passed to the Event processing
component. This component can also receive actions from other
components.

• Output: If this component receives an action from a component, it
can format this into a message which then can be send to the Agent
Hub.

2. Event Processing:

• Input & Processing: Given a message type, certain conditions are
checked to see if the environment has changed significantly in a way
that could possibly warrant an action. One example being: If the
agent gets the message that a signal aspect has improved, a check is
made if this signal aspect visible for the agent, if this is not visible
and would not give an ATP signal, it is deemed as not a significant
change.

• Output: If the environmental change is deemed significant, the cur-
rent situation (as described in Chapter 3) of the train is determined
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and passed on to the Decision making component. If a change is
deemed not significant, an empty action is send back to the Agent
communicator component.

3. Decision making:

• Input & Processing: Given a situation, the rules from the decision
making model are used to come to a specific action. It is also possi-
ble that no action will be done, in which case an empty action will
be returned.

• Output: The output actions are passed to the Agent communicator
component.

For both the Agent communicator and the Event processing component,
there area handful or rare cases where they can create a default action them-
selves and then pass it to the output of the Agent communicator. One exam-
ple of such a default action is the action to change nothing when the agent
receives a message that a stop signal has been determined. The reason for al-
ways returning a non-action is because the determining of a stop signal can
never influence anything within the observable environment of the agent. A
schematic overview of these components can be found in Appendix 8.

The belief base, which is not considered an interactive component, is made
up of various variables and data structures used to represent concepts within
the agents mind. On top of this are a number of functions that can use the
input from the Agent communicator to determine a variety of concepts. One
of these functions determines the expected aspect of a signal that is currently
out of sight. These functions fall under the processing of the input gathered
from the messages. The beliefs that are acquired can then be used by the other
components.

4.5 conclusion

Within this chapter the findings of Chapter 3 are combined with concepts of-
ten found within agent literature, in order to come to an agent model that can
be implemented to work with FRISO. In the following chapter I will use this
model and the findings from Chapter 3 to implement a DLL that can be used
with FRISO.
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In the previous chapter the agent setup was formalized. The next step is to
use this setup and the findings of the previous chapters to implement a train
driving software agent. In this chapter I will go over the implementation of
the agent setup within the DLL that will be linked to FRISO. I will first give
an overview of the implemented components, followed by an overview of the
assumptions that were made during this implementation process. I will con-
clude this chapter by giving an overview of the difficulties that were encoun-
tered during the implementation process and present the final implemented
structure.

5.1 Components

In this section I will go over the implementation of components that were de-
scribed in the previous chapter, starting with the agent hub. Due to the DLL
being written in C++, an object oriented approach was taken when imple-
menting the different components. At the end of this section an overview of
these components can be seen in a class diagram in Figure 5.1.

5.1.1 Agent hub

Besides the functionalities discussed in the previous chapter, such as storing
instances of the agents, the implemented agent hub stores a number of other
objects. Most notably, the agent hub stores the objects that represent the fol-
lowing agent components:

• Agent communicator

• Event processing

• Decision making

83



5 Implementation

Figure 5.1: A collapsed class diagram of the DLL, containing the agent hub, the
different components and the agent. A more detailed class diagram
can be found within Appendix 9
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The main reason for storing these three components within the agent hub,
rather than the agent itself, is due to the possibility within C++ to pass a ref-
erence to these objects to each agent. Through passing a reference and only
storing the components within the agent hub a performance benefit is gained
by not having to create and delete identical components each time an agent
is created or deleted. Passing just a reference to these objects means that each
agent will be able to use these components directly even though they are ac-
tually located within the agent hub. The fact of only having one instance of
each component is not a problem since they do not need to be unique for
each agent. The lack of need for uniqueness does not hold for the belief base
component, because it stores the beliefs for that agent.

The agent hub further contains two extra components, namely a unique
random generator and a logging component. The unique random generator
serves the purpose of generating pseudo random numbers for the entire DLL,
this ensures that simulations can be repeated identically by using the same
seed. This random generator is mainly used during the creation of actions,
where the distributions presented in Chapter 3 are used to select values such
as the final velocity for an acceleration action. The logging component can be
used to log information about the DLL and the individual agents. Within the
implementation, the agent hub will pass the received messages from FRISO
onto the agent communicator, regardless of content.

5.1.2 Agent communicator

The agent communicator object contains all the message processing func-
tionalities detailed within the previous chapter. Due to the agent communi-
cator being stored within the agent hub it will also do the message processing
task for the agent hub. The messages that FRISO sends to the agent hub are
contained within an XML format. After receiving a message the agent com-
municator will extract the relevant information, depending on the message
type, and either store it within the agent hub or pas the acquired information
on to the designated agent. If a message requires the updating of the internal
state of an agent, functions within this agent are called to update specific parts
of its internal state and belief base. These functions update: the train state,
signals, signs, switch, train plan and realization time (delay). After the infor-
mation is passed to an agent, the agent communicator will notify the event
processing component about the message type that has been received and
processed.
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5.1.3 Event processing
As stated in Chapter 4, the main task of the event processing component was
to see if the environment has changed in such a way to warrant a possible ac-
tion given the message type and the information available within the agent.
In order to facilitate this process, a number of functions are contained in the
event processing component. The main function within this component de-
termines the current situation the agent is in. During this process the maxi-
mum allowed velocities of the signs and signals are also analysed. This is not
only to determine whether or not, for example, the agent is approaching a
sign or signal that indicates a lower allowed velocity, but also to select the sig-
nificant sign/signal. The significant sign/signal refers to the sign/signal the
agent needs to react to. There are five distinctions made between possible
combinations of signs and signals.

1. Sign on the signal

2. Sign, with further on a signal

3. Signal, with further on a sign

4. A single sign

5. A single signal

A sign is considered to be on the signal if it is placed within 25m of the sig-
nal. This is according to the specifications train drivers need to follow. If a
speed sign and signal are placed closely next to each other, the speed limit
indicated on the sign is set to start at the place of the signal. A sign/signal is
considered to be placed further on, if it is currently visible but further away
than 25m of the visible sign/signal that comes before.

One important aspect to note about the selection process of the significant
sign/signal, is that it is possible for the agent to have multiple signs and sig-
nals within viewing distance. Due to this a selection needs to be made. The
sign in question here always refers to the first visible sign. The signal refers to
the closest visible limiting signal, with a default of the first signal if no limit-
ing signal is present. A limiting signal here denotes a signal that restricts the
velocity of the train in any way, such as a yellow or red signal.

The reason for making the five distinctions based on possible sign and sig-
nal combinations, is that it needs to be determined which sign or signal the

86



5.1 Components

agent needs to react to first. For example: within the situation where the agent
is approaching a signal/sign that indicates a lower allowed velocity, it is cur-
rently not specified which visible signal or sign gets the priority. This priority
can be deduced based on the order and the meaning of the signals and signs
in question.

One example of this, as first seen in Chapter 2 and now in Figure 5.2, is the
case where the agent is approaching a yellow signal 8, with next to it a speed
sign with a 6, while going 130km/h. This means that starting from the signal
position the train needs to start braking towards 60, while making sure that
the 80km/h will be reached before passing the next yellow signal and making
sure that the 60km/h will be reached before the next maximum speed sign.
Within the implemented agent this is ensured through first doing the brak-
ing action for the most limiting indicator, while during the braking curve it is
checked that this braking action does not violate the requirements of the least
limiting indicator. If it is observed that the current braking action will violate
the requirements of the least limiting indicator, the braking action is adjusted
accordingly.

5.1.4 Decision making
Within the decision making component, the decision making model has been
implemented. As in the overview presented in Chapter 4, an initial decision
tree is traversed based on the situation given by the Event processing com-
ponent. After this, based on the current action, a section of code is entered
that selects and creates an action. All traction actions use the traction lever
position method as described in section 3.4.3. The braking actions that are
created take into account the significant sign/signal that was identified in the
event processing object.

One notable aspect of these braking actions is that it is assumed that the
train drivers know the distances between the signs and signals. This assump-
tion is founded in the fact that train drivers have to have knowledge about a
route if they are to be allowed to drive it. For the agent, this means that if
available, it will use the distance information acquired from FRISO to set the
braking lever appropriately.

The onset of the braking action towards a stop was initially set to be at the
observation point of the scout sign (verkenbord), which indicates that there is
a station ahead at the end of the braking curve ot the train. It turned out how-
ever that this could cause unnatural behaviour in sections where the stops
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Figure 5.2: An example of the relationship between the speed limits imposed by
signs and signals. On the x axes the distance the train has travelled
is indicated. On the y axes the velocity is indicated. The black and
red curve represents the velocity of the train. After the train passes
the yellow 8 signal with the speed sign 6 next to it, the train needs to
limit its velocity to 80km/h before passing the next yellow signal. It
also needs to ensure that the 60km/h speed limit has been reached
before passing the maximum speed sign. The points at which these
velocities have to be reached are represented with vertical dotted
lines, for respectively the 80km/h and 60km/h speed limits.

are close to each other. The reason for this unnatural behaviour was due to
the train not having the time to reach the speed limit before reacting to the
scout sign. This meant that the train would starts its braking too soon, seeing
that the positioning of the scout sign assumes a velocity close to the speed
limit, even if a check was made on the initial DUE. The distribution of initial
DUE was thus becoming skewed to a higher degree than initially observed.
To counter this, an offset was determined through using the observed rela-
tion between the onset velocity and the onset distance to the stopping point
from the braking actions within the GPS data. This was used then to change
the point at which a train would react to the scout sign, depending on the lo-
cal speed limit. The functions for this can be seen in Figure 5.3 and Equation
5.1 and 5.2. Complete linearity was prevented through the already present
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variation of the initial velocity due to the different free-track behaviours. This
resulted in a more varied and more accurate onset point for braking action
towards a stop. The fitted distributions were also stored within this decision
making object. These distributions included the required transformation in-
formation, to undo the shifting that was done when fitting the distributions,
and were reinforced to be within set limits of their minimum and maximum
allowed value.

Figure 5.3: A visual representation of the correlation between the initial veloc-
ity and the initial distance to the stopping point of the first braking
action towards a planned stop. On the x axes the initial velocity
can be seen. On the y axes the initial distance to the stopping point
can be seen. In blue the GPS data points are visible. The black line
represents the fitted function of Equation 5.1.

Di st anceToStop = 4.939∗ Ini t i alV el oci t y1.212 (5.1)

The function used to determine the onset point, the distance to the stop, given the

initial velocity.
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O f f setdi st ance = 4.939∗ speedLi mi t 1.212 −ScoutSi g nDi st ance (5.2)

The function used to determine the offset distance for the point at which an agent

reacts to the scout sign.

5.1.5 Agent

The agent object serves as a connecting part of the software agent. It con-
tains references to the other components, stores the belief base and main-
tains its own set of information. The functions that are present within this
object mostly facilitate the updating of the belief base and the setting of the
free-track behaviour. The braking criteria of a train is also determined here.
Besides storing the belief base, the agent stores information about intrinsic
characteristics of the train and certain parts of the environment of which be-
liefs are held within the belief base. Intrinsic characteristics refers to aspects
of the train that the agent cannot change, such as the name of the train, the
train length, the train ID, the viewing distance, maximum deceleration of the
train, etc. It also stores a list of the actual signals that are in front of the agent
in order to be able to update the belief base with that information when re-
quired. Lastly, the agent object also stores information used for the creation
of logs.

5.1.6 Belief base

The implemented belief base component mainly serves as the data storage
compartment of the agent, maintaining the information about the environ-
ment and internal state that are used for the decision making process. On
top of storing information, the belief base has a number of small functions
to facilitate determining the expected signals and the attributes that belong
to specific kinds of signals. One example of acquiring the attributes of a sig-
nal is translating the received information ’yellow signal’ to: A signal that is
not blinking, that does not have a number, that indicates a maximum allowed
velocity of 40km/h after passing it, while not requiring a maximum allowed
velocity in order to pass it.
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5.2 Assumptions

During the implementation process certain assumptions were made. These
can roughly be divided into two categories: Value based or Process based. Be-
low I have listed the most notable assumptions that were made within these
two categories that haven’t been mentioned yet, and the reasons why:
Value based:

• The signal view distance was set to be uniform for all train drivers at 801
meters.

– It was initially set at 800 meters as indicated by a staff member of
ProRail. This is double the maximum minimum distance that a
signal has to be visible at according to the signal specifications [44].
As in, the minimum distance a signal has to be visible at the max-
imum speed limit of 160km/h is set at 400m, thus indicating the
maximum minimum distance. The 1 was added to prevent round-
ing errors.

• The sign view distance was set to be uniform for all train drivers at 201
meters.

– It was set at 200 due to that being the minimal viewing distance of
signs where the local speed limit is > 80km/h [43]. The 1 was added
to prevent rounding errors.

• The desired velocity, dv , selected through a distribution when accelerat-
ing under a certain speed limit, sl , in km/h is set to be: sl −5 ≤ dv ≤ sl +5

– The reason for this was the assumption that the train driver cannot
go faster than 5km/h above the speed limit and that the train driver
would not initially stay a lot under the speed limit, unless he is driv-
ing under UEI specifications, due to the goal of arriving on time.

• The timing for the onset of a braking action is the same for signals as for
signs.

• The simulations done are set to be during the day, with good sight.

– This was mainly done to keep the implementation simpler, seeing
that a train driver needs to follow different rules if this is not the
case. Such as the rule dictating that if a train driver is not driving
with good sight during the day, he is only allowed to start accelerat-
ing after passing the signal or sign that indicates a higher allowed
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velocity. On top of that was the fact that the MATRICS data used for
the classification trees comes from such an environment.

Process based:

• The principles and values used to determine the actions of the agent are
similar for both intercity and stop trains.

– This was mainly done due to the lack of information about stop
trains, and the assumption that the goals and driving material of
these trains are similar enough to model both within one model.
For freight trains it was determined that the driving behaviour dif-
fers significantly from passenger trains, this was concluded due to
the information acquired from a former freight train driver and a
GPS data set of freight trains.

• The agent always observes the signs and signals if they are within the
viewing distance, as in, he cannot miss observing a sign or signal.

– It was deemed not desirable for this implementation that the agents
would be able to make mistakes, as such the possibility for that was
not included within this implementation.

5.3 Difficulties

During the process of implementing this structure within the DLL and FRISO
a number of difficulties were encountered. A number of these had to do with
the way FRISO works and with the interactivity between the agents and FRISO.
Within this section I will go over a number of these to give an impression of the
kinds of hindrances encountered and how implementation can bring forward
exceptions which are hard to predict beforehand without intimate knowledge
of all the aspects involved.

• The acceleration of a train would be set to 0 if the agent is trying to ac-
celerate above the rolling stocks maximum speed. This would result in
very uniform driving behaviour, due to the agent trying to get the trains
velocity closer to the speed limit.

– This issue was dealt with through adding an internal parameter
that contains the maximum velocity of the train, such that when
this acceleration value of 0 is encountered, the agent recognizes it
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as the maximum velocity of the train, and takes that as the maxi-
mum speed limit possible. Thus ensuring that there is variation in
the behaviour.

• Rounding errors occurred through the message passing process between
FRISO and the DLL. One example of this is the case that the agent asks
FRISO for a position action at a distance that is 800m in front of the
next signal, when the viewing distance is set at 800m. At a distance
of 800.0001m FRISO tells the agent that the desired position has been
reached, the agent then checks if it can see the next signal, which it
checks though (distance ≤ viewdistance), which tells the agent that it
cannot see the next signal yet. The agent then asks FRISO again for a
position action at a distance of 800m in front of the next signal. FRISO
immediately tells the agent again that it has reached that position, etc.
Resulting in an endless loop. Such endless loops occurred also in dif-
ferent situations, such as for FRISO telling the agent that the desired
velocity has been reached, while it is 0.0001m/s less than the desired
velocity.

– This issue was mostly dealt with through placing +1 in cases where
this occurred.

• Due to the default onset distance for an acceleration action being at
10cm in front of the train, it was possible for the train to get stuck. This
occurred when the train is approaching a red signal and the agent starts
to brake towards a stop. Nearing a full stop, the agent receives a message
from FRISO that the signal aspect has improved, indicating that he can
now accelerate again. The agent then tells FRISO to start accelerating at
a position of 10cm in front of the train, however, during that 10cm the
train can reach a full stop due to coasting resistance, thus never reach-
ing the onset position for accelerating.

– The possibility of this is still present in the current implementation
due to the low occurrence rate. In order to ensure that this could
never happen aspects within FRISO would need to be changed, such
as adding a message that informs the agent any time the train reaches
0m/s.

• The stopping position of a train gets dictated through a suggested po-
sition that is contained within the stopping signals information. The
agent is allowed to stop within 100m of that stopping point, which FRISO
will recognise it as a stop next to the platform. However, with short stops
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it could occur that the stopping signal is far away from the head of the
train, thus resulting in another signal being present within that 100m
range. If the train stopped in front of that other signal, FRISO will check
if the next signal is the stopping signal, which it is not, and thus deter-
mining that the train has not stopped next to the station even though it
is within the 100m range of the stopping point.

– This issue was partially solved through the agent checking if there is
a signal within that 100m range. If there is another signal, the agent
will aim to stop 18m after that signal. It is set at 18m due to the er-
rors that occur when estimating the velocities and distances for a
braking curve. If the agent needs to coast for a relatively long time
before the onset of the final braking manoeuvre, the simulated re-
sistance will slow down the train, resulting in a slightly earlier stop-
ping point. If the agent overshoots the relevant signal by too much,
it is possible that the agent stops outside of the 100m range, and thus
it will not be recognised as a valid stop. Due to the different rolling
stock characteristics, and the inability to estimate completely accu-
rately the coasting deceleration, this possibility is still there.

• In certain occurrences the train needs to turn around at a station (this
excludes a short stop). In this case the entirety of the train needs to be
positioned between the stopping signal and the previous signal. Due
to the variation in the braking behaviour it could occur that the agent
stops with the end of the train just next to the previous signal, which
would stop FRISO from turning the train around, while the agent would
patiently wait for it to be turned around and the message that allows it
to depart.

– This issue was solved through checking if the estimated distance be-
tween the stopping point and the previous signal would be larger
than the length of the train. If this is the case, the agent will aim to
stop at a position such that the end of the train has just passed the
previous signal. This action is also depended on estimations, and
due to the limited accuracy of estimating the coasting deceleration,
it is still possible for this to go wrong.

Other difficulties had to do with errors or bugs that were present within
FRISO, such as:

• Not all maximum speed signs being present within the infrastructure
model that FRISO uses. This could mean that the agent will try to decel-
erate for a speed sign that forces the train to slow down, but that it will
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not have reached the allowed velocity in the correct location due to the
missing maximum speed sign.

• More straightforward bugs such as: Wrong position data for signals,
which would change depending on the message type received. Trains
not being removed from the model after completing their time table,
and more.

• Limitations within FRISO for passing signal information. FRISO is sup-
posed to send the agent the data of the 3 signals ahead, as long as the
route has been set. Within the railway network this information is avail-
able until the next red signal. Within FRISO, at times only information of
the first signal was passed through even though it is a green signal. This
issue was partially solved through re-checking the situation and action
after passing a signal if there was only 1 available at the time of creating
the action. One example use is in the case of approaching a yellow sig-
nal indicating a 6. This means that the train driver needs to decelerate
towards 60 and needs to have reached this velocity before the next sig-
nal. The agent will assume that the distance between those two signals
will be large enough to brake from the current velocity to 60km/h if start-
ing the braking action at the first signal. After passing the yellow 6, the
agent checks the current braking lever position, and sets it appropriately
now that the position of the signal where the train needs to have reached
60km/h is known.

There were also difficulties due to certain exception cases present within
the infrastructure. One example of this is can be seen in Figure 5.4. Here it
can be seen that after the departure the first speed sign dictates a maximum
speed of 110km/h, after which there are 3 successive green signals with an 8,
indicating a passing speed limit of 80km/h. This means that the train is not
allowed to pass these with a velocity higher than 80km/h. After these there
is a long section without any specification, where according to the rules the
train driver is allowed to accelerate towards the 110km/h. There is however
another maximum speed sign that dictates 80km/h, without there being a
limiting speed sign before. Within the implementation this caused problems,
seeing that the agent had already started to accelerate towards the 110km/h,
and when seeing the 80km/h sign at the minimum view distance, had to brake
harder than was possible. After consulting an employee at ProRail who looked
at the infrastructure of that section, it turned out that the ATP safety system
was implemented differently than normal on that section of track. The ad-
justed version dictated that the maximum velocity was 80km/h, even though
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there was a speed sign indicating 110km/h before.

Figure 5.4: A visual representation of an infrastructure exception. On the x axes
the distance is indicated. On the y axes the velocity of the train is in-
dicated. The green and black line represents the driving behaviour
of the agent. In red the required braking manoeuvre is represented,
starting at the observation of the speed signal. In blue, the max-
imum speed limit is indicated according to normal rules within
the simulation. In brown the exception case for the ATP setting is
shown, which forces the speed limit to be at 80km/h within the in-
frastructure.
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5.4 Conclusion

Within this chapter an overview is given about the implementation and the
differences with the model described in Chapter 4. The assumptions that were
made during the implementation process are also outlined, and a selection
of difficulties that were encountered were discussed. The next chapter will
go into using this DLL within simulations in order to assess the effects of an
agent based approach to modelling train driver behaviour.
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6.1 Introduction

In the previous chapter the implementation of the agent setup within the DLL
was presented. In this chapter the implemented DLL has been used together
with FRISO to conduct a number of experiments. First the setup of these ex-
periments will be discussed, after which the results of these experiments will
be presented and discussed. Before the setup of the experiments was deter-
mined, the goal and research question were used to come to two questions
around which these experiments could be set up. The goal was to find out if
the predictive value of the simulations done within FRISO could be improved
through a software agent implementation that models train driver behaviour.
The research question that came with this goal was:

• How can you add train driver behaviour to a micro-level simulator (FRISO),
using an Agent based approach?

This question has largely been answered throughout the previous chapters.
Covering the steps from modelling train driver behaviour, to designing the
agent, to implementing the agents within a DLL that can be used by FRISO.
The main aspect that has not been covered yet is the result of this implemen-
tation. In order to look into this two questions were posed:

1. How well does the implemented agent, model the behaviour of real train
drivers?

2. Is there an improvement in the predictive value compared to the present
train driver model within FRISO, using this agent based approach?

Within the next section the experimental setup will be laid out in order to
answer these questions.
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6.2 Experiment setup

Before going into the setup of the experiments that were used to answer the
posed questions some notable concepts will be further explained.

Currently, the overall aim of the simulations within FIRSIO is to give more
insight into the results of traffic and infrastructure measures. For this it is de-
sired that the processes within the simulation are close in likeness to reality,
this to give a more accurate representation of the effects of these measures.
One way to find out how close in likeness the simulations are to reality, is
through looking at the realized times of the trains within the simulation and
comparing these with the realized times of real trains.

After talking with several employees at ProRail it was advised to not look at
the punctuality of the trains. Instead, it was suggested to look at the driving
times between stations. The main reason for this was that the driving times
are mainly influenced by the train drivers themselves. If you were to use the
punctuality instead, the following factors would play a notable role on these
times:

• Halting times at stations: Train drivers do not have influence on these
halting times, seeing that they are dependent on the conductor for the
timing of the departure, and that the waiting time at a station is influ-
enced heavily by the amount and movement of people getting in and
out of the train.

• Previous punctuality: If a train departs delayed at a station it is possible
that the train driver is not able to compensate for that delay and thus
arrives also delayed at the next station.

Another method to compare the realism of the simulations mentioned by
ProRail was to look at the amount of red signals a train driver encounters dur-
ing a ride. If a realistic image of the number of red signals is desired it is nec-
essary to simulate every train within a model. This was not feasible for two
reasons:

• The exceptions found within the implementation, some of which were
discussed within the previous chapter, prevented that all trains would
be able to drive all the time without getting stuck and interrupting the
simulation.

• Freight trains were not explicitly modelled, meaning that freight trains
within the model would very likely drive significantly different than can
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be observed from data. Thus influencing the amount of red signals a
train encounters.

If not all trains are present within a model that are present on the railway, it
would likely significantly impact the amount of red signals encountered due
to the knock-on effects train delays can have.

The knock-on effects refers to the effects that a delay of a single train can
have upon the delays of all other trains that are present. One example of this
is when a train arrives at a station 5 minutes delayed. Due to this delay, the
train that was supposed to arrive afterwards, now arrives at the same time at
the station as the delayed train. Due to the limited number of platforms avail-
able, and the limitations of the amount of trains that can fit on one section of
track, choices need to be made which train arrives first, departs first, etc. This
can subsequently delay the second train, which can delay other trains, etc.
When creating the time table these knock-on effects are taken into account,
and slack-time is added to counter these.

Within this process the choices that are made by traffic controllers also
come into play. Traffic controllers can for example give priority to trains arriv-
ing, departing or crossing. This influences the overall flow of railway traffic.
Within FRISO there are some automated methods to deal with these issues,
such as:

• First come first serve: The train that arrives first at a crucial point gets
priority.

• Set order: If there is a conflict, the train that is supposed to arrive first gets
priority, regardless of the delay.

• According to plan: The paths are reserved according to plan. It is as-
sumed within this setting that no trains are ever delayed and as such no
conflicts will arise.

It was decided that the experiments would only look at one train series at a
time, thus ensuring that the traffic control method no longer plays an impact-
ing role. Thus, in order to compare the realism of the simulations numerically,
the driving times of trains between two stations was taken as a measurement.
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Figure 6.1: A scatter plot indicating the relation between the delay a train has
at its departure and the driving time it has to the next station com-
pared to the planned driving time. On the x-axes the delay at depar-
ture can be seen in minutes. On the y-axes the difference between
the driving time to the next station and the planned driving time
can be seen in seconds. A positive value on the y-axes indicates how
much faster the train went compared to the planned driving time.

One notable point about using the driving times is that it does not take
into account the possible influence of departure delays. The departure de-
lay refers to the delay a train can have at the moment of departure, which for
example can be caused by having arrived too late just before. This departure
delay could influence the driving behaviour over the next ride between two
stations. The train driver could for example think that he needs to catch up,
and thus drive a bit faster than normally. This effect can be seen in Figure
6.1, where there is a slight visible speed-up of the trains as the departure delay
increases, this however seems to reach a limit at some point around 2.5 min-
utes. This limit also seems to be very much dependent on the location, which
likely comes from the slack-time that is available and planned for in between
stations. A visualisation of this can be found in Appendix 10. The downwards
deviation that can be seen as the departure delay increases from 0 is likely
due to subsequent obstructions encountered from trains in front of the train.
It must be noted that the planned driving time does not always indicate well
the realistic fastest driving time between two stations, thus introducing noise
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into Figure 6.1.
It is possible within FRISO to use realized departure delays to set the initial

departure timing of a train has within a model. The same goes for stopping
time deviations. However, seeing that the agent currently does not model this
concept in an accurate fashion, these aspects were not used.

After it was determined to use the driving times between stations as a mea-
sure of likeness, the next step was to acquire the driving times from realisation
data. The main source of this data came from the performance analysis bu-
reau (PAB) of ProRail, which stores and maintains the official realisation times
of the time table. The PAB data used came from the month of February 2014.
This month was chosen due to it being within the year 2014, thus using the
same time table as were available within the simulation models of FRISO. A
simulation model within FRISO denotes a model that is used by FRISO, where
the locations, time tables, settings, simulation runs and other aspects of a sim-
ulation are specified. The month of February was also chosen because it had
a relatively low amount of rain and other adverse weather effects [79]. Seeing
that the models do not take into account weather effects, this was deemed de-
sirable. Given the availability of extensive GPS data for the 1900 train series,
this was also used as a reference for realized driving times.

Due to not having other trains within the model that could cause delays,
the agents would drive within a situation with no hindrance. This is unlike
the trains from the realisation data. In order to counter this the trains that
took more than three minutes longer than the planned driving times between
two stops were considered delayed and subsequently removed from the PAB
data. Exceptions to this can be found in Appendix 11.

One important thing to note is the definition of the driving times. Officially
a train is considered departed if it has started to move and a train is considered
arrived if it has stopped moving. Due to the lack of available information for
measuring this point precisely within normal operations, ProRail estimates
this point using an estimated velocity and deceleration at the last measuring
point before a stop, or the first after departure. This measuring point comes
in the form of a weld that is located between sections. This same system is
used to locate the trains position at a section on the railway. At times this
meant that there was no detection possible between two stations, this resulted
within the logs for a uniform arrival and/or departure times. At times impossi-
ble driving times were encountered within the PAB data, such as a case where
the train drove between two stations with a planned time of 3 minutes in 7
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seconds, according to the logs.

Within FRISO the arrival and departure point can be measured precisely.
For the GPS data these points are identified as soon as it can be distinguished
given the accuracy of the GPS measurements. In this case it meant that a train
was considered stopped if it was going slower than 1m/s. Due to the use of
these different methods to determine the arrival and departure times there
will be some influence on the eventual resulting driving times. It is assumed
that these differences will mostly be the same across the different rides. Thus,
for example, if the results show that every stop there is a 5 second difference
between the GPS times and the PAB times, this could be explained to a cer-
tain extend due to the different measures used. If there was a non-uniform
difference, it could be a strong indicator that this is likely due to the different
driving behaviour or due to a severe deviation in the estimation done.

Also note that the models within FRISO use the basic hour pattern (basis
uur patroon) as their time table, which is different from the actual time table
used every day. It is different in the sense that it only uses the basic hourly
pattern seen throughout the day, it does not use the different times that are
scheduled for, for example, nights. This could influence the driving times seen
within the realisation data. So could the train have a minute more or less to
drive between two stations. These differences however, only occur a few times
compared to the overall rides that occur during the entire day. It was thus de-
cided to not filter out the cases where this occurs.

Because the agents were designed with a number of adjustable parame-
ters, discussed within the previous chapters, a selection of values for these
parameters were used within the experiments. A number of different relevant
parameters with respect to driving were also available for the default FRISO
train drivers. These were:

1. Maximum speed. This parameter determines the maximum velocity a
train will go at.

2. Deposit speed. This parameter can be used to set a lower bound for se-
lecting a maximum velocity. FRISO can use this parameter to determine
a velocity between this value and the speed limit in order to arrive more
on time.

3. Braking variation. This Boolean parameter determines whether or not
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a distributed braking action is done. Within FRISO this means that the
train will pick a random number from a uniform distribution that re-
sults in a braking curve between the braking criteria and the emergency
braking curve.

4. Acceleration deviation. This parameter can be used to change the default
acceleration curve by multiplying the acceleration by a value. On default,
this acceleration is set at the maximum possible acceleration.

FRISO also has the option to change the braking criteria, which on default
is set to −0.33m/s2. Note however that this cannot be set uniquely for the
rolling stock that is used, it is set for all trains that are present within the sim-
ulation model. For this reason, the default setting will be used normally, with
one experiment using the appropriate setting for the specific train series that
will be driven. This in order to look at the effect of this setting, while also tak-
ing into account that normally when a simulation will be done within FRISO,
it is not possible to set this parameter uniquely for each train present within
a simulation model. In order to answer the other question about how well
the implemented agent models the behaviour of real train drivers, the driving
behaviour of the agents found within the previously lined out experiments
were compared with the driving behaviour from the GPS data. This could be
done for the train series where GPS data was available, namely the 1900 series.
The main way of comparing the driving behaviour was done through compar-
ing the speed-distance diagrams. The reason for using these diagrams was to
show the different aspects and effects of the driving behaviour locally.

The train series that were selected for these experiments were selected in
such a way as to ensure that they did not have the same station order in com-
mon. In Table 6.1 and 6.2, an overview is given of the train series used within
the experiments:
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Train series Train type Number of stations
within models

Number of agent
setting variations

Number of FRISO
setting variations

1900 Intercity 7 8 6
4300 Sprinter 15 1 1
12700 Intercity 1 1 1
700 Intercity 5 1 1
2600 Intercity 6 1 1
3600 Intercity 2 1 1
5600 Sprinter 4 1 1

Table 6.1: Overview of the experiments that were done.

Train type Number of stations

Intercity 21
Sprinter 19

Table 6.2: Overview of the amount of stations per train type.

In Table 6.3, an overview is given of the amount of train rides that were
simulated and observed. These amounts denote the lowest number of trains
and the highest number of trains that were observed for a ride between two
stations. The numbers for the agents are the result of doing simulations of 600
minutes 7-8 times.

Train series: Agents lowest
count

Agent highest
count

Realisation lowest
count

Realisation highest
count

1900 119 152 947 988
4300 102 140 159 1078
12700 72 72 431 457
700 140 160 378 434
2600 94 140 766 952
3600 133 140 965 1005
5600 133 140 976 1040

Table 6.3: Overview of the amount of rides for the rides for each train series.

The models that were used were models that have been used by ProRail
before, which use the timetable for 2014.
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6.3 Results

In this section the results of the experiments will be presented. This will be
done for each of the questions posed at the start of this chapter, starting with
the question aimed at looking into the predictive value of the agent imple-
mentation compared to the current implementation. The results presented
here will be further discussed within the section: Discussion.

6.3.1 Driving times
In order to make a comparison between the agents and the FRISO train drivers,
different settings were tried out and compared. The resulting experiments can
be divided into two categories:

1. Default settings

2. Adjusted settings

The first category was used to compare the agents and the FRISO train driver
with the realisation data across different train series. The second category
of experiments were used to see the results of using different settings for the
agents and FRISO.

In order to compare the driving times between two stations and their dis-
tribution, the differences between the 5th, 50th and 95th percentile and the
mode were used. This was done through subtracting the numerical value
found for the agents or FRISO, from the value found within the realisation
data. This will be from now on referred to as the error rate. For example the
error rate between the 50th percentile values can be expressed as:

er r or Rate = Medi an r eal i sati on dr i vi ng ti me−Medi an ag ent dr i vi ng ti me
(6.1)

This was calculated for each ride between two stations, after which an av-
erage absolute error rate was calculated over each of these error rates. This
average absolute error rate will be denoted as E . The function for this can be
seen in equation 6.2, where in this case the 50th percentile is used:
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E = 1

n

n∑
i=0

|mri −mai | (6.2)

Where mr is the median realisation driving time between two stations, and ma is

the median agent driving time between two stations. n is the number of stations that

has been travelled to. E is the average absolute error rate for the median driving time

between stations.

6.3.1.1 Default settings

The overall results of first category of experiments, where the agents and FRISO
trains were driven with their default settings, can be seen in Table 6.4. In the
top rows of this table the total number of rides between two stations are di-
vided to include only rides of train series that go in one direction. This di-
rection selection was done based on the direction category present within the
time tables of the simulation models used. These categories were H and T.
In the third row, these two sets are combined to show the overall error rates
of all the driving time distributions. The error rates are calculated as shown
above. The last two columns show the E values for FRISO. In the second col-
umn of this table the total number of rides can be seen. A ride here denotes
that one train drove from one station to the next station, of which there were
on average 130 between each two stations in each direction. Due to there be-
ing no deviation with the FRISO train driver with default settings, this is only
compared to the observed 50th percentile and the mode. In the bottom row
the standard deviations for the different error rates are shown, for all direc-
tions. The standard deviations given an indication of the range and number
of outliers that were present when comparing the driving times.

Direction
Number of Agents FRISO
rides 5th P E 50th P E 95th P E Mode E 50th P E Mode E

H 5266 56.92 59.85 78.08 74.70 75.10 84.88
T 5101 53.03 54.06 75.36 56.60 61.55 62.80
All 10367 54.97 56.96 76.71 65.65 68.33 73.84

std Dev std Dev std Dev std Dev std Dev std Dev
All 10367 63.86 72.49 96.13 85.23 70.75 78.47

Table 6.4: Overview of the error rates E for the different percentiles (P) and
mode, of the different directions.
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In Figure 6.2 the driving times and their distributions are visualised of the
4300, 2600 and 1900 series, in order to give a better insight into the source of
the results shown in Table 6.4. The error rates that correspond to the distribu-
tions shown in Figure 6.2 can be found in Table 6.5.

Agents FRISO
Train series 5th P E 50th P E 95th P E Mode E 50th P E Mode E

1900 21.81 26.36 61.55 38.14 78.71 83.86
2600 46.23 64.25 109.43 71.83 96.33 99.67
4300 70.12 69.03 70.48 77.87 74.80 79.80

Table 6.5: Overview of the error rates E for the different percentiles (P) and
mode, of the different train series.

6.3.1.2 Adjusted settings

The second category of experiments was done in order to assess the effects of
the parameters available for the agents and FRISO. These were done using the
same train series, namely the 1900 series. The main reason for choosing this
series was that the GPS data was available to also be used to compare the driv-
ing times to the ones observed within the GPS data, and to make it possible to
compare the speed-distance diagrams. Within Table 6.6 the different settings
that were used for the agents are presented. The first three columns indicate
the free-track behaviour settings and the percentage of rides where they were
used. These correspond with the behaviours described at the end of Chapter
3 as such:

• Cruise & Coast: Combines the cruising and coasting behaviours, each
specified through a percentage indicating the percentage of the free track
where this behaviour was shown. Starting with cruising, followed by
coasting.

• UEI: Follows the guidelines as indicated through the UEI method.

• Alternation: Uses an alternation between traction and coasting based on
velocity interval.

The Maintain Max parameter indicates whether or not the agent tried to
arrive on time through maintaining a velocity close to the maximum velocity
if the time of the last TCA indicates a delay of more than 60 seconds.
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Figure 6.2: Within this figure an overview can be seen of the driving times for the 1900,
2600 and 4300 train series for direction H. On the x-axes the arrival sta-
tions can be seen, with on the left the first arrival station. On the y-axes
the driving time can be seen between the departure and the arrival station.
The red line represents the planned driving time. The green line represents
the driving time of FRISO. The blue violin plots represent the density of
the driving times found within the realisation data. The black violin plots
represent the density of the driving times for the agents.
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The Max velocity indicates the maximum velocity that was allowed for that
train. The reason for adding this parameter, is that the ATP of the trains driven
by the NS have a maximum velocity limit of 140km/h, which is of importance
if the train is driving over a section of track that allows 160km/h.

The last parameter indicates the acceleration version that was used. The
acceleration version refers to the setting of the traction lever if the train is to
accelerate. As discussed in Chapter 3, this was done through a set of uniform
distributions that control the interval and frequency of increasing the position
of the traction lever depending on the velocity. Two versions of this were used,
with the second one resulting in a slightly steeper acceleration curve than the
first one.

Name C & C UEI Alternation Maintain Max Max velocity Accel version

A 55% 20% 25% Yes 160 1
AV 100% 0% 0% Yes 160 1
AU 0% 100% 0% Yes 160 1
AS 0% 0% 100% Yes 160 1
A NM 55% 20% 25% No 160 1
AV NM 100% 0% 0% No 160 1
A NM Ac 55% 20% 25% No 160 2
A NM M 55% 20% 25% No 140 1

Table 6.6: Overview of the setting types that were used for the agents.

Different settings were also used for FRISO, an overview of these can be
seen in Table 6.7. The reason for setting the deposit speed at 140 and 110
was that 140 is the default setting and 110 is around 20% below the maxi-
mum speed, which was advised to take by an employee at ProRail. The reason
for setting the acceleration deviation at 0.8 was also because it was advised
by an employee at ProRail. These settings have been used before at ProRail
in order to bring the driving times of FRISO closer to the realisation driving
times. In the last row the FRISO DBA version is used with a braking criteria of
−0.19m/s2 instead of−0.33m/s2, which is the same that is used for the agents.

Name Maximum speed Deposit speed Braking variation Acceleration
deviation

F 140 140 False False
F 125 125 140 False False
F B 140 140 True False
F A 140 140 False 0.8
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F D 140 110 False False
F DBA 140 110 True 0.8
F DBA -0.19 140 110 True 0.8

Table 6.7: Overview of the setting types that were used for FRISO.

The experiments were done using the same simulation model within FRISO,
of the 1900 series in direction H. The error rates of these experiments with the
adjusted settings can be seen within Table 6.8. The results of the GPS driving
times are also added within this table, in order to compare those driving times
with the times acquired from the PAB data.

Experiment 5th P E 50th P E 95th P E Mode E

A 21.81 26.36 61.55 38.14
AV 21.40 27.00 57.38 36.00
AU 23.70 23.71 57.16 30.71
AS 18.45 27.71 63.28 38.00
A NM 24.52 26.57 46.61 31.71
AV NM 28.43 32.00 47.49 27.29
A NM Ac 27.10 24.93 40.11 31.71
A NM M 25.22 29.36 39.76 32.14
F - 78.71 - 83.86
F 125 - 59.57 - 59.00
F B 49.09 75.00 126.30 83.43
F A - 71.14 - 76.29
F D - 56.43 - 55.57
F DBA 56.81 55.07 83.91 54.14
F DBA -0.19 55.08 53.57 72.93 53.71
GPS 46.97 73.17 80.44 79.00

Table 6.8: Overview of the error rates E for the different percentiles (P) and
mode, of the different settings used.

Seeing the error rates attributed to the GPS data, the overall best scoring
settings driving times were compared with different realisation data sets and
with the planned driving times, which can be seen in Table 6.9. This was done
to gain a better insight into the differences between the simulated driving
times and the different realisation data sets and the planned driving times.
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Based on these results, the settings that resulted in the overall lowest error
rates for the agents and FRISO are compared within Figure 6.3 with the differ-
ent realisation data. The results present within this figure came from:

• The agents with setting ’A NM Ac’

• The FRISO train drivers with setting ’F DBA’

• The GPS driving times

• The PAB driving times

• The planned driving times

Finally, in order to give a better insight into the differences found between
the PAB and GPS driving times, the driving times for each ride are presented in
Table 6.10. Here the PAB data serves as the ’realisation’ entry when calculating
the error rates. This Table most notably shows the at times large differences
between the two realisation data sets.

A NM Ac F DBA
Arrival station Planned PAB GPS Planned PAB GPS

Br: -7 13 - 53 73 -
Hrt: -27.5 3.5 8.5 13 44 49
Dn: 92 -2 82 49.5 -44.5 39.5
Hm: 8 34 36 40 66 68
Ehv: -22 -71 23.5 -50 -99 -4.5
Tb: 4 -23 151.5 57 30 204.5
Bd: -3 -28 51 -4 -29 50
50th percentile E 23.357 24.929 58.75 38.071 55.071 69.25

Table 6.9: Overview of the error rates for the agents and FRISO with the speci-
fied settings, when using three different data sets as the ’realisation’
data when calculating the error rates.

5th percentile 50th percentile 95th percentile Mode

Hrt: 0.8 -5 -26.6 -6
Dn: -75.5 -84 -88.9 -84
Hm: -0.05 -2 3.05 -39
Ehv: -74.75 -94.5 -114.2 -81
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Tb: -70.7 -174.5 -195.85 -184
Bd: -60 -79 -54.05 -80

Table 6.10: Overview of the error rates acquired when comparing the GPS data
to the PAB data. Here the PAB data is used as the realisation data
when calculating the differences.

Figure 6.3: Within this figure a comparison can be seen forthe driving times for the
1900 series. On the x-axes the arrival stations can be seen, with on the left
the first arrival station. On the y axes the driving time can be seen. The
red line represents the planned driving time. The green violin plot repre-
sents the density of the driving times for FRISO DBA. The blue violin plots
represent the density of the driving times found within the PAB realisa-
tion data. The black violin plots represent the density of the driving times
for the agents. The purple violin plots represent the density of the driving
times found within the GPS realisation data.
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6.3.2 Driving behaviour
In order to answer the question about how well the agents model train driver
behaviour, the speed-distance diagrams of the 1900 series were compared.
The reason for using the 1900 series was that GPS data was available for that
train series. In Figures 6.4 to 6.6 the speed-distance diagrams are shown for
a number of sections. Before describing the figures it must be noted that the
straight deceleration lines at times seen for the agents and for FRISO are due
to the logging not registering anything in between, thus causing a straight in-
stead of a curved line. The agents used the settings A NM Ac M, meaning that
they did not try to maintain their velocity if they were delayed more than 60
seconds, used the second acceleration variant and had a maximum velocity of
140km/h. These settings were chosen based on the results of the previous ex-
periments where different settings were used. The sections that are displayed
within the figures below were chosen based on their error rates, seen in Table
6.11, and their characteristics. The section to Bd showing a steps wise braking
curve within the GPS data, Ehv having the highest negative difference and Hm
having the highest positive difference.

Section: 50th percentile difference

Tb to Bd -29
Hm to Ehv -72
Dn to Hm 19

Table 6.11: Overview of the different error rates for the selected sections, com-
pared to PAB data.
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Figure 6.4: The speed way diagram from Tilburg (Tb) to Breda (Bd). On the x-axes the
distance in meters. On the y-axes the velocity in km/h. The blue lines rep-
resent the GPS data. The gold lines represent the agents driving behaviour.
The red line represents the default FRISO driving behaviour and the green
lines represents the FRISO DBA driving behaviour.
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Figure 6.5: The speed way diagram from Helmond (Hm) to Eindhoven (Ehv). On the
x-axes the distance in meters. On the y-axes the velocity in km/h. The blue
lines represent the GPS data. The gold lines represent the agents driving
behaviour. The red line represents the default FRISO driving behaviour
and the green lines represents the FRISO DBA driving behaviour.
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Figure 6.6: The speed way diagram from Deurne (Dn) to Helmond (Hm). On the x-
axes the distance in meters. On the y-axes the velocity in km/h. The blue
lines represent the GPS data. The gold lines represent the agents driving
behaviour. The red line represents the default FRISO driving behaviour
and the green lines represents the FRISO DBA driving behaviour.
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6.4 Discussion

Within this section the results will further be discussed and related to the
questions posed. Starting with the experiments aimed at looking into the
predictive value of the agent implementation compared to the current im-
plementation.

6.4.1 Default settings

To reiterate, one of the questions posed at the start of this chapter was:

1. Is there an improvement in the predictive value compared to the present
train driver model within FRISO, using this agent based approach?

For this, experiments with default settings were used. Looking at the results
within Table 6.4, it could be seen that the distribution of driving times ac-
quired with the agents lie closer to the distribution of observed driving times
of the PAB data, compared to FRISO. This for both the mean and modus com-
parison. This is an indication that the agents with default settings give a bet-
ter predictive value compared to the present default train driver model within
FRISO. It can also be seen that the standard deviations of the error rates for
both FRISO and the agents are quite large. This is an indication that there are
a significant amount of outliers present, where there is a large difference in
driving time between the realisation data and the simulated train drivers.

In order to get a better insight into the how and why of this, a closer look
was taken at three train series, namely the 1900, 2600 and 4300. Overall, it
can be seen in Table 6.5 and Figure 6.2 that the agents in all three cases have
a better predictive result. Notable is that the agents for the 1900 series have
the best scores for E, which is likely due to the fact that they are modelled
for a large part based on that train series. This is a possible indication that
the information acquired from the GPS data about train driver behaviour is
significantly influenced by the location. The location here refers to the tracks
that are traversed by the 1900 series which could have influenced aspects such
as the distribution of the final DUE of a braking action towards a stop, due to
the distances between signs and signals present on these tracks.

It can also be seen that for the 5th, 50th percentile and Mode error rates
that overall, the agents score better than the default FRISO train drivers. No-
table is the high error rate for the 4300 series compared to the 2600 and 1900
series. This is an indication that the agent model is worse at modelling stop
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trains than intercity trains. One explanation for this could be that stop trains
encounter significantly different situations which the agent model does not
correctly take into account. Another explanation for this could be that train
driver behaviour in stop trains is significantly different from that of intercity
trains.

The high error rates of the agents for the 95th percentile for the 2600 and
1900 series, compared to the 50th percentile rates is likely influenced by the
fact that trains that have encountered obstructions due to other trains, are still
present within the realisation data that the model is being compared to. These
obstructed trains do not always have a driving time delay higher than 3 min-
utes, which would have resulted in them not having been taken into account.
This driving time delay effect can also partially be seen in the realisation data
of the 4300 series at the stop of Schiphol (Shl), where there is a relatively large
amount of trains arriving late with a very spread out density curve. This could
also have been caused due to Schiphol having flexible arriving and departure
platforms, meaning that a train will only be assigned a platform some min-
utes before arrival, instead of it being planned within the time table.

Another notable aspect of the driving times visible within Figure 6.2, is that
FRISO nearly always drives faster than planned, with two exceptions of Shl
and Hfd. Both of these exceptions are likely due to the ’early’ restriction of
40km/h, which causes FRISO to brake hard and early, resulting in a longer
time of driving at 40km/h than is necessary. Figures of this can be seen in Ap-
pendix 12. It is also visible within Figure 6.2 that there is a lot more deviation
between the realisation and the planned times for shorter driving times. This
likely has to do with the way the times are planned, seeing that these are not
always based on an estimated driving time. An in depth look into planning
will not be made within this thesis, but a possible simplified explanation will
be given for two deviations for the 4300 series. The trains within the realisa-
tion always have a larger driving time than the planned time at Ampo, while
for the next stop, Wp, the trains are able to make up for that delay due to being
able to always drive faster than the planned driving time. This could be due
to the planning on whole minutes that is done for small stations like Ampo
which could have rounded down an initial estimated driving time. Also, it
could be due to a larger amount of slack-time being desired for the larger and
more busy stations like Wp.

A closer look was taken at the very large deviations between the agents and
the realisation data for the 4300 series. Mainly for the arrival times for Alm,
Dvd and Asdz. Within the simulations it was visible that the agents observed

119



6 Experiments

relatively soon after departure the next yellow signal that is positioned in front
of the red signal at the next stop. This means that the agent would stop accel-
erating towards the speed limit as soon as it observed this signal and start
coasting. This coasting then resulted in a very long coasting distance due to
the distances between the signals. A likely explanation for the faster arrival
times of real trains is that the train drivers keep accelerating towards the yel-
low signal and only starts to brake when the ATP requires the train driver to
do so. Another thing to note about this behaviour is that it is likely influenced
by whether or not a train driver will be on time if he were to not continue to
increase the trains velocity. This because the same scenario is also found be-
fore the arrival at the station Almb, but did not cause a large deviation. This
can be seen within Figure .10 in Appendix 12. These findings serve as a possi-
ble indication that stop trains encounter significantly different situations than
intercity trains, which could be a cause for the agent model being worse at
modelling stop trains than intercity trains.

The large deviation between the agents driving times and the realisation
data found at the station of Wp, can partially be explained to the fact that the
agent preferred to do a normal braking manoeuvre to a planned stop over fol-
lowing the signal limitations first. This behaviour can also be seen in Figure
6.5. It was assumed that the modelled braking manoeuvre to a planned stop
would result in a braking curve with a later onset point than if it were to follow
the signals, which would mean that if there are signals the agent would give
those priority seeing that it would be too early to start a ’normal’ braking ma-
noeuvre to a planned stop. However, it turned out that this was not true and
resulted in this case that the agents took longer to arrive.

For both FRISO and the agents, the early arrival compared to the realisa-
tion data at station Dmnz, could be partially explained due to the temporary
increased speed limits that are present there. A plot of this can be found in Ap-
pendix 12 in Figure .11. These temporary speed limit increases would results
in both the agents and FRISO accelerating unnecessarily. A likely explanation
for larger driving times found within the realisation data is that train drivers
do not use those short speed limit increases if it is not necessary to arrive on
time, which was not the case here.

Taking all of these aspects together, it can be concluded that there are cer-
tain aspects of train driving which are not modelled correctly within the agent
model and/or within FRISO. It is most notably these aspects which results
in the large deviations between the realisation data and the agents and/or
FRISO.
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6.4.2 Adjusted settings

In order to get insight into the effects of the parameters present for both the
agents and FRISO, experiments with different settings were done. Within Ta-
ble 6.8 the overall results of these experiments can be seen. It can be seen that
the different settings have different effects on the distributions of behaviour.

For the agents it can be seen that with NM on for the agents, the 95th per-
centile error rate becomes lower due to the agents no longer trying to com-
pensate for delays. Note that the 95th percentile of the realisation data is likely
influenced by trains who encountered obstacles like delayed trains in front. It
can be seen that the UEI setting improved mainly the 50th and mode error
rates. Likely due to this free track behaviour resulting in longer driving times,
which are more in line with the realisation data.

For FRISO, it can be seen that the D setting and the maximum velocity lim-
iting setting have the largest effects. It can also be seen that the FRISO DBA
-0.19 setting scores the best when comparing it to the realisation data. This is
a slight improvement over the FRISO DBA version, which is likely due to there
being more trains that brake slower, causing the bandwith of braking curves
from FRISO to move closer to that of the GPS data. This can be seen when
comparing the braking curves in Figure 6.4 with Figure .12 in Appendix 12.

The GPS driving times are here also compared to the realisation data from
PAB and has a large deviation to the PAB driving times compared to the agents
and the FRISO train drivers. Within Table 6.10, the differences between PAB
and the GPS data were further highlighted, indicating that there is non-uniform
difference. Indicating that in certain places the PAB prediction is less accurate
than others in a significant way, like for Tb.

The results from Table 6.9, where the driving times of the agents and FRISO
were compared to those found within the GPS data. It can be seen here both
the agents and FRISO score worse when comparing it to GPS driving times
compared to the PAB driving times, with the agents scoring better than FRISO
for the 1900 series.

In order to give a better insight into the distributions of the observations
from Table 6.9, these results were plotted and compared within Figure 6.3. For
the GPS data it could be seen that the distribution mostly has the same shape
as the one from the PAB data, with the exception of Tb. The fact that they
usually have the same shape of distribution but are at times shifted, indicates
a prediction error in the way the PAB times are calculated, but one that does
keep the relative driving times similar.
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For the Agents it can be seen that the shape of the distributions is similar to
both the PAB and GPS data. For the distributions visible for FRISO, it can be
seen that they usually have the same shape. Within Figure 6.5 it can be seen
that the larger driving times for Ehv visible in Figure 6.3 are likely caused due
to the steep braking curve, which causes the FRISO train drivers to maintain
a lower velocity than necessary, resulting in a delayed arrival time.

These findings indicate that the comparison between just the driving times
does not tell the whole story about an accurate representation of driving be-
haviour. The findings from the GPS driving times indicate that the PAB data
is not always an accurate enough measure to compare and validate simulated
driving times with.

6.4.3 Driving behaviour
This section will go into the other question posed at the start of this chapter,
namely:

1. How well does the implemented agent, model the behaviour of real train
drivers?

The results of the experiments done for this question have been presented
within a previous section. Here I will go into the different aspects that can be
observed from these results, shown in Figures 6.4 to 6.6, starting with some
notes about the graphs.

Within Figure 6.6 it can be seen that the stopping position within FRISO can
differ from the one seen within the GPS data. In this case this is due to FRISO
not having direct access to the location of the platforms, which resulted here
in a wrongly indicated position of the platform. It can also be seen that the
coasting lines for the agents differ from the ones seen within the GPS data,
which are a bit steeper.

Starting with the acceleration curves, it can be seen that the agents more
often accelerate slower than found within the GPS data. Possible reasons for
this are:

1. The material used within the FRISO simulation, ICM, for the 1900 is only
1 of the types that is used on within this train series. It could be that this
is a slower rolling stock than the others that are used. This could then
also be seen due to FRISO accelerating with 100% traction being slower
than some other trains. This could be resolved through using different
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rolling stock within the simulation, which is currently not a dynamic fea-
ture within FRISO, as in, you can switch, but only per simulation, not
within 1 simulation.

2. The distributions and intervals used to set the traction lever are set to
conservatively. Thus resulting in a lower acceleration curve. This could
be changed through changing these distributions.

On top of this it can be seen that the final velocity of the initial accelera-
tion curve of the agents is less varied than that visible within the GPS data,
indicating that train drivers also accelerate below and above the range of +-5
of the maximum velocity. Some of this deviation could also be explained due
to inaccuracies within the GPS measurements. One possible reason for train
drivers accelerating towards a velocity below this limit is that it is not required
in order to arrive on time.

For the two different FRISO versions shown, it is visible that the initial ac-
celeration curves are within the bandwidth of the GPS acceleration curves.
There is a switch in acceleration visible around the 40km/h, possibly due to
the way FRISO models acceleration curves. Notable is the fact that the accel-
eration curve of the default FRISO train driver, in red, is not above the ones
seen within the GPS data while the default FRISO train driver accelerates with
the highest possible traction lever position. One possible explanation for this
is that within the GPS data different rolling stock can have been used, which
could have a higher maximum acceleration curve.

Continuing the initial acceleration curve, it can be seen that the agents fol-
low the bandwidth of the GPS data throughout the free-track section. The de-
viation within the agents behaviour can be seen here as well. For the default
FRISO version, it can be seen that the train maintains the maximum veloc-
ity and is thus often above the majority of the observed speed-distance lines.
Within Figure 6.5 and 6.6 the FRISO DBA version maintains a velocity well be-
low the speed limit until the final braking manoeuvre. In Figure 6.4 the FRISO
DBA trains first accelerate towards the speed limit, after which they brake to-
wards a lower velocity while there is no obligation from the speed limit to do
so. These behaviours are likely caused due to the fact that the D setting sets
the FRISO trains to choose a velocity that would minimise the difference with
the planned arrival time.

At the start of the braking manoeuvre to the stop, the agents seem to initiate
it around the same position as the trains observed from the GPS data. They do
however do this with less variation, as is most notable within Figures 6.5 and
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6.6. For both FRISO versions it can be seen that the onset point can be late in
comparison to the GPS data if the arrival is on a green signal, as in Figure 6.6.
For the FRISO DBA version this is slightly better due to the variation towards
more gradual braking curves.

Within the braking curves it can also be seen that the agents seem to prefer
a single gradual braking curve instead of a steps wise one, as seen in Figure 6.4.
This is likely due to the same reason for the large deviation from the realised
driving times seen earlier for the Wp arrival discussed before. To reiterate, "It
was assumed that the modelled braking manoeuvre to a planned stop would
result in a braking curve with a later onset point than if it were to follow the
signals, which would mean that if there are signals the agent would give those
priority seeing that it would be too early to start a ’normal’ braking manoeuvre
to a planned stop". Notable is that the observed step wise braking in 6.5 was
caused due to a yellow signal 4 being present within the simulation model,
which is not present within the infrastructure, otherwise the train drivers ob-
served within the GPS data would not be able to coast for sections above the
40km/h. Both the default FRISO version and the FRISO DBA version follow
the steps wise braking curve as seen in Figure 6.4. With the DBA version be-
ing closer to the GPS braking curves due to the variation. In both cases these
braking curves are still often below the GPS braking curves, which for the DBA
version could be mitigated through using a less strict braking criteria. Within
Figure 6.4 it is also visible within the GPS data that trains at times arrive on
green, which is due to the action of traffic controllers, which caused more de-
viation within the observed behaviour seeing that the arrival situations can be
different. This possibility for deviation is currently not available within FRISO.
Within Figures 6.5 and 6.6 it is visible that the default FRISO and the DBA ver-
sion perform less accurately due to often setting a strict braking curve. Within
Figure 6.5 this results in a larger driving time due to reaching a lower velocity
sooner than is required. Within Figure 6.6 this steeper braking curve results in
a late onset time and a decrease in driving time due to this.

These findings indicate that overall the driving behaviour of the agents lies
closer to that observed within the GPS data, with similar deviations. The
FRISO versions deviate from the observed behaviour mainly in the follow-
ing ways: No deviation for the default implementation, a non-realistic free-
track behaviour for the FRISO DBA version, and for both versions a very strong
braking curve. The notable less well performing aspects of the agents model
were the more gradual acceleration curves and the assumption made about
the strength of the braking manoeuvre towards a planned stop.
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6.4.4 Performance

After having looked into answering the questions posed at the start of this
chapter, this final section will look into the programs performance computa-
tion wise.

During the running of the experiments, it was found out that a FRISO sim-
ulation with 4 trains took around twice as long with the agents DLL activated
compared to without, if ran at the maximum simulation speed. Due to this
observation a performance report was made using Visual Studio 2012. Within
this, it could be seen in the Call Tree that 2.18% of the running time was spent
within the agents DLL as described in Chapter 5. 97.63% of the running time
was spent within FRISO itself. This indicated that the encountered delay was
not caused by the runtime of the DLL. Besides the percentages, it could be
seen in the call tree that a significant amount of time within the DLL was taken
by the processing of the XML messages itself.

A likely explanation of the simulation time taking around twice as long with
the DLL enabled is the number of events FRISO has to process compared to
the default implementation. It could be seen within the agent logs that there
could be more than 10 messages within 1 simulation minute per train, which
each could cause the scheduling or re-scheduling of events within FRISO. This
could happen in the case where there were a relative quick succession of sig-
nals and signs that required the agent to adjust its previous action based on
new information. Due to the simulation being able to run sped up, this could
result in a significant increase in the amount of events FRISO needed to pro-
cess compared to the default implementation.

This slowdown is thus the result of an implementation that uses frequent
events to acquire information and do actions within the simulation environ-
ment. The runtime could be improved slightly through a more efficient use
of messages, and in turn events, this would however not relieve the need for
more frequent events than the current implementation. After discussing this
with people at ProRail, the conclusion was that the current use of a DLL and a
messaging system is the safest implementation method possible and that the
decrease in performance would not impact the usefulness of the simulations.

6.5 Conclusion

Within this chapter an overview of the experiments is given, followed by their
results and a discussion of these. The goal of these experiments was to answer
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the questions posed at the start of this chapter.

The results of the experiments showed that the default agents gave a better
predictive value than the default FRISO train drivers. It was also seen within
the results of the experiments done with the adjusted settings, that the FRISO
DBA version scored better than the default FRSIO version. The adjusted agent
version scored better than the FRISO DBA version. It must be noted again,
that the agents scored significantly better on that specific train series. It was
also concluded that there are certain aspects of train driving which are not
modelled correctly within the agent model and/or within FRISO. It was most
notably these aspects which resulted in the large deviations between the real-
isation data and the agents and/or FRISO.

Within the experiments that used the alternate settings, the findings indi-
cated that a closer look at the driving behaviour was desirable and that the
PAB data was not always accurate enough measure to compare and validate
the simulated driving times.

When looking at the driving behaviours through comparing the speed-distance
diagrams, it was observed that overall the driving behaviour of the agents
lies closer to that observed within the GPS data, with more similar deviations
compared to the FRISO versions. Some notable aspects that deviated between
the agents driving behaviour and the GPS data was also observed.

It was also seen, that improvements can be made on the agents predic-
tive value of the driving times through adjusting the different parameters.
This was also observed when comparing default FRISO settings with adjusted
ones. The fact that the agent implementation has more adjustable parameters
and values adds to the possible variation in research that can be done with the
FRISO simulator.

To summarize, due to the capabilities of the agents to take into account
their environment and taking into account the relations between aspects like
velocity and the onset point of a braking curve that is close to empirical obser-
vations they were better able to model train driver behaviour than the FRISO
and FRISO DBA versions. On top of that the agents included more possibil-
ities for adjustment due to the amount of parameters available. The perfor-
mance decrease in the running time was deemed to originate from the ap-
proach taken to simulate the agents through the event based system available
within FRISO.
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The results and conclusions of the previous chapters can be combined to for-
mulate answers to the main research question and its sub-questions posed at
the start of this thesis. The main research question was:

• How can you add train driver behaviour to a micro-level simulator (FRISO),
using an Agent based approach?

Which was divided into the following sub-questions:

• How can you model train driver behaviour from data?

• How can you implement train driver behaviour within an Agent?

• How can you implement agents into a micro-level simulator (FRISO)?

The answer to the first sub-question was acquired through processing and
visualizing the available data, which revealed important aspects about the
actions done when driving a train. The most notable aspects that were ob-
served based on domain knowledge, were the importance of the expectations
of the train driver related to the order of the signal aspects and a set of overall
reasons for which train drivers do the majority of their actions. Using these
aspects and the other information available within the data, decision trees
could be learned which served to select which kind of action the modelled
train driver is allowed to perform given the state of the environment.

This could then be combined with distributions and functions that spec-
ified the onset point, course and endpoint of a selected action. Combining
these elements the behaviour of train drivers could be modelled from the
available data.

In order to answer the second sub-question and incorporate the train driver
model within an agent, an agent setup was designed. The resulting agents
were similar in design to a model-based reflex agent [73] and used other con-
cepts found within agent literature. This agent receives input information
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from FRISO about the environment, which is processed and stored as be-
liefs. Using beliefs and incorporated domain knowledge, the agent could de-
termine whether or not this new information could warrant an action. If this
was the case, the model of the train driver behaviour could then be used to
select an action.

The last sub-question was aimed at the implementation of this agent setup
and the integration with FRISO. This was done through programming the agent
setup within a DLL in C++ that could be attached to FRISO. Within this DLL an
agent hub served as the connecting component between FRISO and the indi-
vidual agents through passing on the relevant inputs and outputs between the
agent that is in control of the specified train. During the implementation of
this DLL certain assumptions needed to be made and certain difficulties were
encountered. These difficulties either had to do with exception cases, bugs or
shortcomings related to the interaction with FRISO.

After answering the different sub-questions, the next step was to find out
what the effects were of this implementation. The goal here was to find out if
the predictive value of the simulations done within FRISO could be improved
through a software agent implementation that models train driver behaviour.
Looking at the results of the experiments it could be seen that when compar-
ing both the default FRISO train drivers with the default agents to realisation
data from PAB, that the agents gave a better predictive value of the driving
times. A closer look was taken at the outliers that were present for both FRISO
and the agents model. It was concluded that certain aspects of train driving
behaviour which were not modelled correctly within FRISO and/or the agents,
were the cause of these outliers.

Looking at the results of the experiments done with adjusted settings, it
could be seen that improvements could be made through changing the pa-
rameters available within the agent implementation and FRISO. It was also
concluded that driving times alone were not always a good indication about
whether or not the driving behaviour is similar. This was concluded partially
due to the differences found between the PAB realisation data and the GPS
realisation data. The differences found here also reinforce the importance of
knowing the accuracy of the data that is being used.

When looking at the driving behaviours shown through the speed-distance
diagrams, it could be seen that there were at times differences between the
infrastructure model within FRISO and the actual infrastructure causing dif-
ferent driving behaviour and/or driving times than were seen within the GPS
data. It was also seen that differences in driving behaviour and driving times
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could be caused due to the way traffic control is done within FRISO. More
notably, the results in the speed-distance diagrams showed that overall the
varied driving behaviour of the agents were closer to the GPS realisation data
than FRISO. Indicating that an agent based approach is better able to model
and simulate the variation visible in train driver behaviour compared to the
current FRISO implementation.

Within both the driving times and the speed-distance diagrams it could be
seen that there were deviations. From these it was concluded that certain
aspects of train driver behaviour were not modelled correctly by the agents
and/or FRISO. Resulting in at times large deviations from the realisation data.
When looking closer into these cases the cause could usually be identified.
The cases that were looked at often had to do with the following aspects that
influenced the driving behaviour:

• The punctuality of the driving time to the stop.

• Differences between the infrastructure present in FRISO and the actual
infrastructure.

• Knowledge about the tracks, such as the distance for which a speed limit
increase is present.

It was also noted that the used braking criteria and rolling stock can play a
significant role on both the driving behaviour and in turn the driving times.
The fact that there are outliers which are caused by the above mentioned char-
acteristics, indicates that an approach that is not aimed at re-producing train
driver behaviour that can deal with these aspects, has the disadvantage of not
having a stable method to deal with outliers. Indicating that if the goal of the
simulation process is to acquire results that give a reliable indication of reality,
certain significant aspects of train driving behaviour, such as the ones men-
tioned above, need to be taken into account in a sufficiently accurate manner.

To summarize, an agent based approach to modelling train driver behaviour
resulted in the ability to individually and variously represent the behaviour of
the trains. This in turn resulted in the simulations done with default agents
giving a better predictive value of the driving times than the current default
FRISO implementation. It was concluded that driving times alone are not
enough when comparing driving behaviour. Due to the agents taking into ac-
count their environment and the concepts and expectations that come with
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it, combined with the empirically based creation of actions, the driving be-
haviour of the agents lied closer to the behaviour found within the GPS data
when compared with the FRISO train drivers. The driving time and driving
behaviour results showed that an agent-based approach to modelling train
driver behaviour is a viable approach that resulted in more valid simulation
method for train driving behaviour within FRISO for ProRail.

The outliers that were found in the driving time results showed that cer-
tain aspects of train driver behaviour were not modelled correctly within the
agents and/or FRISO. The nature of these aspects indicated that an approach
aimed at sufficiently modelling real train driver behaviour, of which the pre-
sented agent-based train driver model is a start, is needed if the simulation
results are aimed at giving a reliable indication of reality.

7.1 Future research

The findings of this thesis are of course not the endpoint of research into the
topic of an agent based approach to modelling train driver behaviour. In this
section I will go over some possible future work that could be done, divided
into two categories. One category will go into possible improvements and re-
search subjects related to the developed train driver agent. The other category
will go into work that is less directly related to the developed train driver agent,
but presents possible future research subjects which could be of interest.

7.1.1 Improvements

In the previous section three aspects were presented that form a likely expla-
nation for the at times large deviations found within the driving times and
driving behaviour. For two of these, the punctuality aspect and the knowl-
edge of the track aspect, a more in depth look could be taken to find out the
influence they have on the driving behaviour and improve the agent model of
a train driver. One example of an aspect that could be involved here is the cur-
rent lack of information regarding the punctuality that the agents have. A real
train driver has the ability to view where the train is supposed to be at with
a greater precision than is currently modelled within FRISO. In FRISO this is
done only at the main time table points that indicate the stations, while a real
train driver can also see the time table points in-between the main points, giv-
ing thus more detailed information about the current punctuality of the train.

It was noted before that freight trains would need to be explicitly modelled
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7.1 Future research

before a full simulation model could be run where freight trains are present.
The modelling of freight train drivers would thus enable an improvement in
the range of simulations that are possible to do with the agents. A closer look
could also be taken at high speed trains and stop-trains in order to improve
the agent model. From the results of the experiments it was visible that the
results of the 1900 series were closer to the realisation data than other train
series. This was an indication that the creation of the agent model was influ-
enced by the location and possibly the rolling stock it was trained upon. A
better look at these aspect could be taken through using GPS data from other
train series and looking at the differences in the empirical distributions that
were used when creating the agent train driver model. From this, it could be
possible to look into a way to deal with this possible location and rolling-stock
bias.

Looking at the fitted function for the approach to a red stop, it was visi-
ble that the Distance to the stopping point value was not very accurate. This
was likely caused partially due to a low number of observations that were
available within the data. Another reason could be due to the braking be-
haviour towards a red signal already being influenced by the previous braking
behaviours. For example, a train driver likely knows when a yellow signal is
an indication of an obstructed train in front of it, or if it is just the indication
of the next planned stop. This could influence the way the train driver reacts
and approaches the yellow signal and in turn the red signal. A more in depth
look into this could be done through also taking into account the onset point
of the braking manoeuvre caused by the yellow signal before.

Likely not only the Distance to the stopping point value could be improved
upon through looking more in depth into other aspects that come into play
and could influence local behaviours, such as the aspects of punctuality, knowl-
edge about the track and previously experienced obstructions.

7.1.2 Future subjects
As mentioned in Chapter 4, a reactive approach was taken towards the agent
design rather than one utilizing desires, intentions and planning. It was noted,
that an approach that does plan actions in relation to each other can only be
useful the train driver knows the track well. It could be interesting to look into
an agent based approach that does utilize the concepts of desires and inten-
tions for planning. For this it would be required that FRISO sends all relevant
information to the agent of the expected track sections, such as the signal and
sign aspects and location. The inherent variability of the reserving of these
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track sections would not be a problem due to the agent being able to re-plan
its course of action if it observes a deviation from his expectation. The ad-
dition of information about the expected track sections would thus also be
a way to model the knowledge of a track that a real train driver has. With
such an implementation, it would also be possible to let the agents drive to
achieve goals such as driving in a safe, timely and energy efficient manner,
or other combinations thereof. Another interesting addition could be to have
the agents learn from their experiences, to have them take into account of-
ten encountered situations like a train in front of a certain station that often
causes obstructions.

Research has been done in teams of agents working together with other
agents or humans [1, 25, 83]. It could be interesting to see if these concepts
could be used for train drivers and traffic controllers. The effects could be
studied of having agent train drivers work together through communicating
and negotiating with each other to reach their goals [80]. It could also be pos-
sible to look into mixed human-agent teams where the agents could help de-
cision making processes that traffic controllers need to do, such as simulating
the effects of their actions or suggesting courses of action.

A more in depth study could be done into the possible differences in driving
behaviour that exist between different train drivers. Interesting here could be
in which aspects their behaviour is different, such as timing, reaction to de-
lays, the influence of the rolling stock, location, etc.

Using an agent based approach, it would also be possible to look into the
effects and influence that different aspects of train driving have on the overall
punctuality, safety and energy use. One example being the effect of a stricter
braking criteria for certain rolling stock series. For this a more accurate way to
incorporate the braking criteria for different rolling stock within FRISO would
also be desirable. Another improvement within FRISO here would be to use
a traction and braking lever positioning method that corresponds with the
rolling stock, instead of using a percentage that might not be possible to use
within the actual train.

Lastly, more research could be done into using human performance mod-
elling within simulations for assessing aspects like the workload a train driver
has to deal with. One example for this can be seen in [38], where they used
a cognitive task analysis approach to assess infrastructure and cab drivability.
Aspects of this could also be worked into an agent based train driver model,
such as the reaction times for doing actions such as moving the traction and
braking lever.

132



Bibliography

[1] Erwin JW Abbink, David GA Mobach, Pieter J Fioole, Leo G Kroon,
Eddy HT van der Heijden, and Niek JE Wijngaards. Real-time train driver
rescheduling by actor-agent techniques. Public Transport, 2(3):249–268,
2010.

[2] Icek Ajzen. The theory of planned behavior. Organizational behavior
and human decision processes, 50(2):179–211, 1991.

[3] Dennis Baker, Donald Bridges, Regina Hunter, Gregory Johnson,
Joseph Krupa, James Murphy, and Ken Sorenson. Guidebook to
decision-making methods. Retrieved from Department of Energy, USA:
http://emiweb. inel. gov/Nissmg/Guidebook_2002. pdf, 2002.

[4] Eric Bonabeau. Agent-based modeling: Methods and techniques for
simulating human systems. Proceedings of the National Academy of Sci-
ences of the United States of America, 99(Suppl 3):7280–7287, 2002.

[5] Rafael H Bordini, Lars Braubach, Mehdi Dastani, Amal El Fallah-
Seghrouchni, Jorge J Gomez-Sanz, Joao Leite, Gregory MP O’Hare,
Alexander Pokahr, and Alessandro Ricci. A survey of programming lan-
guages and platforms for multi-agent systems. Informatica (Slovenia),
30(1):33–44, 2006.

[6] Rafael H Bordini, Mehdi Dastani, and Michael Winikoff. Current issues in
multi-agent systems development. In Engineering Societies in the Agents
World VII, pages 38–61. Springer, 2007.

[7] Michael E Bratman, David J Israel, and Martha E Pollack. Plans and
resource-bounded practical reasoning. Computational intelligence,
4(3):349–355, 1988.

[8] Rodney A Brooks. A robust layered control system for a mobile robot.
Robotics and Automation, IEEE Journal of, 2(1):14–23, 1986.

133



Bibliography

[9] Jaime G Carbonell, Ryszard S Michalski, and Tom M Mitchell. An
overview of machine learning. In Machine learning, pages 3–23.
Springer, 1983.

[10] Ozkan Celik and Seniz Ertugrul. Predictive human operator model to be
utilized as a controller using linear, neuro-fuzzy and fuzzy-arx modeling
techniques. Engineering Applications of Artificial Intelligence, 23(4):595–
603, 2010.

[11] David Chapman. Abstract reasoning as emergent from concrete activity.
Reasoning about actions and plans, pages 411–424, 1987.

[12] Bo Chen and Harry H Cheng. A review of the applications of agent tech-
nology in traffic and transportation systems. Intelligent Transportation
Systems, IEEE Transactions on, 11(2):485–497, 2010.

[13] Zarrin K Chua and Karen M Feigh. Pilot decision making during landing
point designation. Cognition, technology & work, 15(3):297–311, 2013.

[14] KM Corker. Human performance simulation in the analysis of advanced
air traffic management. In Simulation Conference Proceedings, 1999
Winter, volume 1, pages 821–828. IEEE, 1999.

[15] Stefania Costantini and Arianna Tocchio. A logic programming language
for multi-agent systems. In Logics in Artificial Intelligence, pages 1–13.
Springer, 2002.

[16] Andrea D’Ariano. Improving real-time train dispatching: models, algo-
rithms and applications. Number T2008/6. Netherlands TRAIL Research
School, 2008.

[17] Mehdi Dastani. 2apl: a practical agent programming language. Au-
tonomous agents and multi-agent systems, 16(3):214–248, 2008.

[18] Paul Davidsson, Lawrence Henesey, Linda Ramstedt, Johanna Törnquist,
and Fredrik Wernstedt. An analysis of agent-based approaches to trans-
port logistics. Transportation Research part C: emerging technologies,
13(4):255–271, 2005.

[19] Robyn M Dawes and Bernard Corrigan. Linear models in decision mak-
ing. Psychological bulletin, 81(2):95, 1974.

134



Bibliography

[20] Hussein Dia. An agent-based approach to modelling driver route choice
behaviour under the influence of real-time information. Transportation
Research Part C: Emerging Technologies, 10(5):331–349, 2002.

[21] Thomas G Dietterich and Ryszard S Michalski. A comparative review
of selected methods for learning from examples. In Machine Learning,
pages 41–81. Springer, 1983.

[22] Chris Drummond, Robert C Holte, et al. C4. 5, class imbalance, and cost
sensitivity: why under-sampling beats over sampling. In Workshop on
Learning from Imbalanced Datasets II, volume 11. Citeseer, 2003.

[23] Zied Elouedi, Khaled Mellouli, and Philippe Smets. Belief decision trees:
theoretical foundations. International Journal of Approximate Reason-
ing, 28(2):91–124, 2001.

[24] Seniz Ertugrul. Predictive modeling of human operators using paramet-
ric and neuro-fuzzy models by means of computer-based identification
experiment. Engineering Applications of Artificial Intelligence, 21(2):259–
268, 2008.

[25] Xiaocong Fan and John Yen. Modeling and simulating human teamwork
behaviors using intelligent agents. Physics of life reviews, 1(3):173–201,
2004.

[26] Karen M Feigh, Amy R Pritchett, AP Shah, SA Kalaver, A Jadhav, DM Holl,
RC Bea, and AZ Gilgur. Analyzing air traffic management systems using
agent-based modeling and simulation. 2005.

[27] Richard E Fikes and Nils J Nilsson. Strips: A new approach to the ap-
plication of theorem proving to problem solving. Artificial intelligence,
2(3):189–208, 1972.

[28] Klaus Fischer, Jorg P Muller, and Markus Pischel. Cooperative trans-
portation scheduling: an application domain for dai. Applied Artificial
Intelligence, 10(1):1–34, 1996.

[29] Stan Franklin and Art Graesser. Is it an agent, or just a program?: A tax-
onomy for autonomous agents. In Intelligent agents III agent theories,
architectures, and languages, pages 21–35. Springer, 1997.

[30] János Fülöp. Introduction to decision making methods. In BDEI-3 Work-
shop, Washington, 2005.

135



Bibliography

[31] Johannes Fürnkranz, Dragan Gamberger, and Nada Lavrač. Foundations
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Glossary

Automatic Train
Protection (ATP)

Automatische trein-
beïnvloeding (ATB)

A safety system that dictates the speed
limit with the following values: 40, 60,
80, 130 and 140.

Braking criteria Remcriterium The minimum deceleration required for
the ATP to register a braking manoeuvre.
If the train is required to slow down, but
does not meet this criteria, the train will
be forced to a top.

Cab Cabine The part of the train where the train
driver controls the train from.

Coast Uitrollen The situation where neither traction nor
braking lever are activated, and the train
is moving only based on its momentum.

Cruise Cruise The situation where the train driver po-
sitions the traction lever in a way to
maintain the current velocity.

Driving time Until
Emergency brak-
ing curve (DUE)

Rijtijd Tot Snelrem-
curve (RTS), ook
bekend als: Time to
STS

The driving time until the train reaches
the position of the emergency brake
curve, which refers to the maximum
braking curve a train can do in order to
stop before a specific position.

Free track Vrije baan The sections of tracks between two
TCA’s.

Rolling stock Railvoertuigen Vehicle that can move over the railway

Scout sign Verkenbord A railway sign that indicates that the
next platform is at braking distance.
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Signal aspect Sein aspect The indication that is given by a railway
signal, such as a green 8 indication.

Time table Dienstregeling The planned times for all trains to arrive,
depart, passage, etc, at specified TCA’s.

Timetable control
area (TCA)

Dienstregelpunt A specified area or point that is involved
with the time table. Serving as aiming
points and indicators for the punctuality
of the trains.

Pantograph Pantograaf A common type of current collector
mounted atop of the train that makes
contact with the overhead power lines.

Traction/brake
lever

Tractie/rem hendel The two levers that are present in most
passenger rolling stock that control the
amount of traction or braking that is ap-
plied. Each of these have a set of pos-
sible positions indicating the amount of
traction or braking that is applied.

Traffic control Verkeersleiding The department of ProRail that is tasked
with directing train traffic through con-
trolling switches and signals where
necessary.

Universal Econom-
ical driving Idea
(UEI)

Univerzeel Zuinig
rijden Idee (UZI)

A train driver method that is focussed on
driving energy efficient through follow-
ing a set of rules.
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Appendix 1: MATRICS logs

In this appendix, the different logs that were created from the MATRICS data
are outlined, with their attributes described.

Log: Approaching signal/sign lower speed:
Entry ID: Unit Description

Signal One Signal ID What kind of signal aspect (Colour and number) is
currently in front of the train.

Signal Two Signal ID What kind of signal aspect (Colour and number) is
after the current signal in front of the train

Current velocity Km/h The current velocity of the train.
Distance to rele-
vant signal

Meter The distance to the signal that forces the speed re-
striction in question. Note that this can also be
negative.

ATP current veloc-
ity difference

Km/h The difference between the current velocity and
the current velocity allowed by the ATP.

ATP expected ve-
locity difference

Km/h The difference between the current velocity and
the expected velocity allowed by the ATP after the
next signal passage.

Distance to view
point

Meter The distance to the point where the signal was vis-
ible.

Current action Action ID What action the train is currently doing. Either
traction, braking or coasting.

Time to relevant
signal passage

Seconds The time to the signal that forces the speed restric-
tion in question. Note that this can also be nega-
tive.

Signal one blink-
ing

Boolean Whether signal one is blinking.

Final velocity Km/h If the train starts to brake at this point, until which
speed the train brakes.

Final velocity
compared to
expected max

Km/h If the train starts to brake at this point, how the
final velocity compares to the current expected
maximum velocity.
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Final velocity
compared to ATP

Km/h If the train starts to brake at this point, how the fi-
nal velocity compares to the maximum velocity al-
lowed at the point the train stops braking.

Expected max Km/h The expected maximum allowed velocity after the
next signal passage.

Final ATP Km/h If the train starts to brake at this point, the max-
imum allowed velocity by the ATP at the point
where the train stops braking.

Previous action
time passed

Seconds The time that has passed since the train driver last
did an action.

Previous action
distance

Meter The distance to the last action the train driver did.

Previous action
kind

Action ID The kind of action the train driver last did.

Second signal
colour when pass-
ing

Colour ID The signal aspect of the second signal when the
train passes it.

Velocity at second
signal

Km/h The velocity of the train at the second signal.

ATP at second sig-
nal

Km/h The ATP maximum allowed velocity after the sec-
ond signal.

Velocity at second
signal compared
to max

Km/h The velocity of the train at the second signal com-
pared to the maximum allowed velocity after the
second signal.

Braking Traction ID Whether the train driver decided to give throttle, to
start braking, or to start coasting at this point.

Log: Approaching signal/sign higher speed & Departure:
Entry ID: Unit Description

Signal One Signal ID What kind of signal aspect (Colour and number) is
currently in front of the train.

Signal Two Signal ID What kind of signal aspect (Colour and number) is
after the current signal in front of the train

Current velocity Km/h The current velocity of the train.
Distance to rele-
vant signal

Meter The distance to the signal that forces the speed re-
striction in question. Note that this can also be
negative.

ATP current veloc-
ity difference

Km/h The difference between the current velocity and
the current velocity allowed by the ATP.

144



ATP expected ve-
locity difference

Km/h The difference between the current velocity and
the expected velocity allowed by the ATP after the
next signal passage.

Current action Action ID What action the train is currently doing. Either
traction, braking or coasting.

UZI value differ-
ence

Km/h What the difference in velocity is between the cur-
rent velocity and the UZI value.

UZI final differ-
ence

Km/h If the train starts to give throttle at this point, what
the difference in velocity is between the final ve-
locity after speeding up and the UZI value.

Delay Seconds What the current delay is, timed from the last time
table control area.

Velocity compared
to previous coast-
ing onset

Km/h What the difference is between the current veloc-
ity, and the velocity at the last point where the train
started coasting.

Previous action
time passed

Seconds The time that has passed since the train driver last
did an action.

Time since last sig-
nal improvement

Seconds The time that has passed between now and the last
time the train driver saw a signal aspect improve.

Expected max Km/h The expected maximum allowed velocity after the
next signal passage.

Final velocity Km/h If the train starts to give throttle at this point, until
which speed the train accelerates.

Final velocity
compared to
expected max

Km/h If the train starts to give throttle at this point, how
the final velocity compares to the current expected
maximum velocity.

Final velocity
compared to
current max

Km/h If the train starts to give throttle at this point, how
the final velocity compares to the current maxi-
mum velocity allowed.

Velocity difference Km/h If the train starts to give throttle at this point, how
the onset and final velocity compare.

Time compared to
event

Seconds If the train does an action, how the time of that
action compares to the time when the signal/sign
first became visible.

Previous action
distance

Meter The distance to the last action the train driver did.

Previous action
kind

Action ID The kind of action the train driver last did.

Throttle Traction ID Whether the train driver decided to give throttle, to
start braking, or to start coasting at this point.
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Log: Approaching a red signal & Approaching a planned stop:
Entry ID: Unit Description

Signal One Signal ID What kind of signal aspect (Colour and number) is
currently in front of the train.

Current velocity Km/h The current velocity of the train.
ATP current veloc-
ity difference

Km/h The difference between the current velocity and
the current velocity allowed by the ATP.

Current action Action ID What action the train is currently doing. Either
traction, braking or coasting.

Situation Situation ID An ID to tell whether this action was done while
approaching a red signal or a planned stop.

Distance to red
signal / Distance
to arrival

Meters In the situation of approaching a red signal: Dis-
tance to the next red signal. In the situation of ap-
proaching a planned stop: Distance to arrival.

Driving time Un-
til Safety braking
curve

Seconds The time until the critical point where, if the train
were to break fully, it would stop at the position of
the red signal.

Braking number Integer How many times the train has already braked
while in the current situation.

Previous action
kind

Action ID The kind of action the train driver last did.

Previous action
time passed

Seconds The time that has passed since the train driver last
did an action.

Previous action
velocity difference

Km/h The difference in velocity between the current
point and the last time the train driver did an ac-
tion.

Braking Traction ID Whether the train driver decided to give throttle, to
start braking, or to start coasting at this point.
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Appendix 2: GPS logs

In this appendix, the different logs that were created from the GPS data are
outlined, with their attributes described. The following attributes were logged
with the intent of using them to acquire the desired information within the
desired circumstances.

Log: Braking for a stop:
Entry ID: Unit Description

Initial velocity m/s The velocity of the train at the onset of the braking
action.

Final velocity m/s The velocity of the train at the end of the braking
action.

Diff velocity m/s The difference in velocity between the initial and
final velocity.

Average accelera-
tion

m/s2 The average acceleration between the onset and
end of the braking action.

Max deceleration m/s2 The maximum deceleration that was logged be-
tween the onset and end of the braking action.

Distance travelled Meter The distance between the onset and end of the
braking action.

Initial Driving
time Until Emer-
gency braking
curve

Seconds The DUE at the onset of the braking action.

Final Driving time
Until Emergency
braking curve

Seconds The DUE at the end of the braking action.

Initial distance to
red

Meter The distance to the next red signal at the onset of
the braking action.

Initial distance to
stop

Meter The distance to the stopping position of the train.

Braking number Integer The number of times the train has already done a
braking action during this approach.
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Log: Braking to red:
Entry ID: Unit Description

Initial velocity m/s The velocity of the train at the onset of the braking
action.

Final velocity m/s The velocity of the train at the end of the braking
action.

Diff velocity m/s The difference in velocity between the initial and
final velocity.

Average accelera-
tion

m/s2 The average acceleration between the onset and
end of the braking action.

Max deceleration m/s2 The maximum deceleration that was logged be-
tween the onset and end of the braking action.

Distance travelled Meter The distance between the onset and end of the
braking action.

Initial Driving
time Until Emer-
gency braking
curve

Seconds The DUE at the onset of the braking action.

Final Driving time
Until Emergency
braking curve

Seconds The DUE at the end of the braking action.

Initial distance to
red

Meter The distance to the next red signal at the onset of
the braking action.

Initial distance to
stop

Meter The distance to the stopping position of the train.

Log: Braking:
Entry ID: Unit Description

Initial velocity m/s The velocity of the train at the onset of the braking
action.

Final velocity m/s The velocity of the train at the end of the braking
action.

Diff velocity m/s The difference in velocity between the initial and
final velocity.

Average accelera-
tion

m/s2 The average acceleration between the onset and
end of the braking action.

Max deceleration m/s2 The maximum deceleration that was logged be-
tween the onset and end of the braking action.

Distance travelled Meter The distance between the onset and end of the
braking action.
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Log: Traction:
Entry ID: Unit Description

Initial velocity m/s The velocity of the train at the onset of the braking
action.

Final velocity m/s The velocity of the train at the end of the braking
action.

Diff velocity m/s The difference in velocity between the initial and
final velocity.

Average accelera-
tion

m/s2 The average acceleration between the onset and
end of the braking action.

Max acceleration m/s2 The maximum acceleration that was logged be-
tween the onset and end of the braking action.

Distance travelled Meter The distance between the onset and end of the
braking action.

Log: Traction behaviour:
Entry ID: Unit Description

Number of trac-
tion sections

Integer The number of traction sections that are distin-
guished.

Average velocity
difference

m/s The average velocity difference between the onset
and end of the traction actions.

Percentage dis-
tance traction
sections

% The percentage of travelled the distance where the
train has given traction.

Number of braking
sections

Integer The number of braking sections that are distin-
guished.

Average speed
difference braking
sections

m/s The average speed difference within the braking
sections.

Total speed differ-
ence braking sec-
tions

m/s The total speed difference within the braking sec-
tions.

Number of cruise
sections

Integer The number of cruise sections that are distin-
guished.

Total distance
cruise sections

Meter The total distance covered by the cruise sections.

Percentage dis-
tance cruise sec-
tions

% The percentage of the travelled distance where the
train was cruising.
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Average distance
cruise sections

Meter The average distance covered by a cruise section.

Number of coast
sections

Integer The number of coast sections that are distin-
guished.

Total distance
coast sections

Meter The total distance covered by the coast sections.

Average distance
coast sections

Meter The average distance covered by a coast section.

Average speed dif-
ference coast sec-
tions

m/s The average speed difference within the coast sec-
tions.

Percentage dis-
tance coast sec-
tions

% The percentage of the travelled distance where the
train was coasting.

Time difference
departure arrival

Seconds The time between the departure and arrival points.

Distance differ-
ence departure
arrival

Meter The distance between the departure and arrival
points.

Arrival location String The name of the arrival location.
Departure loca-
tion

String The name of the departure location.

Arrival time Minute The time of arrival.
Total logged dis-
tance

Meter The total distance over which the sections are
logged.

Arrival delay Minute The arrival time of this train compared to the
planned time.

Departure delay Minute The departure time of this train compared to the
planned time.

Average speed
logged distance

m/s The average velocity over the logged section.
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Appendix 3: Classification logs

In this appendix an overview of the classification logs is given. The logging
conditions for determining in which situation the train finds itself, is described
above the tables that contain the used attributes. A description of these at-
tributes can be found in Appendix 2 Note that the viewing distance is set at
500 meters, given that within the MATRICS version used for the data acquisi-
tion, the viewing distance was close to this number.

Logging conditions Approaching signal/sign lower speed:

• The train driver can see a new signal

• The colour aspect of this signal is not equal to red

• The velocity of the train will be higher than the maximum speed allowed
by that signal at the time of passing that signal.

Log: Approaching signal/sign lower speed:
Entry ID:

Signal One.
Signal Two.
Current velocity.
Distance to relevant signal.
ATP current velocity difference.
ATP expected velocity difference.
Distance to view point.
Current action.
Time to relevant signal passage.
Signal one blinking.
Expected max.
Previous action time passed.
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Previous action distance.
Previous action kind.
Braking.

Logging conditions Approaching signal/sign higher speed:

• The train driver can see a new signal

• The colour aspect of this signal is green, or: The colour aspect of this
signal is neither green nor red and the velocity of the train will be lower
than the maximum speed allowed by that signal at the time of passing
that signal.

Log: Approaching signal/sign higher speed & Departure:
Entry ID:

Signal One.
Signal Two.
Current velocity.
ATP current velocity difference.
ATP expected velocity difference.
Current action.
UZI value difference.
Delay.
Previous action time passed.
Time since last signal improvement.
Expected max.
Previous action distance.
Previous action kind.
Throttle.

Logging conditions Approaching a red signal:

• The train driver can see a new signal, that signals colour aspect is red
and it is not a red signal for a planned stop.
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Logging conditions Approaching a planned stop:

• The train is within 1000 meters of the next stopping position and there
is no red signal present before the stopping position.

Log: Approaching a red signal & Approaching a planned stop:
Entry ID:

Signal One.
Current velocity.
ATP current velocity difference.
Current action.
Situation.
Distance to red signal / Distance to arrival.
DUE.
Braking number.
Previous action kind.
Previous action time passed.
Previous action velocity difference.
Braking.
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Appendix 4: Driving behaviours

In this appendix some examples of driving behaviour can be seen. The data
used for these graphs comes from the GPS data. On the x-axes of the graphs
the distance the train has travelled since the start of the logging can be seen in
kilometres. On the y-axes the velocity can be seen in km/h. The colours rep-
resent the categorization of the action attributed by the processing algorithm
used. With green indicating a section where significant traction was given. In
red a section where the train was braking. In black a section where the train
was coasting and in white a section where the train was cruising or slightly
accelerating.

Figure .1: Here the train driver coasts for a large percentage of the distance be-
fore its first stop. After accelerating again, he maintains the speed
limit.

Figure .2: Here the train driver coasts for before its first stop. After accelerating
again, he maintains the speed limit.
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Figure .3: Here the train driver switches between accelerating slowly and coast-
ing around the speed limits, after which he coasts a while before the
first stop. In the second section the train driver seems to switch be-
tween maintaining the trains velocity around the speed limit and
coasting.

Figure .4: Here the train driver coasts for before its first stop. After accelerat-
ing again, he maintains the maximum allowed velocity through al-
ternating a slow acceleration and coasting, after which he coasts to-
wards the final braking manoeuvre.
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Appendix 5: Setup messages

In this appendix a table can be seen which contains the information that can
be within the setup messages sent from FRISO to the DLL. For an overview of
the data types within the below mentioned attributes, see Appendix 6.

Message Attribute Description
Scenario Settings: DepartsOnBetterThanYellow Whether or not the train is allowed

to depart on a yellow signal.
Time Table: TrainList An array of the trains that will be

present within the model, with the
time table of the trains included.

PlaceTrainInModel:

CurrentSimulationTime The current simulation time.
TrainState The current state of the train.
SignalList A list of the signals in front of the

train.
SpeedSignList A list of the speed signs in front of

the train.
Switch The location of the last passed

switch.
MaxSpeedSignals The speed limit according to the

signals.
MaxSpeedSpeedSigns The speed limit according to the

speed signs.
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Appendix 6: Precept input data
types

In this appendix an overview is given of the data types that are present within
the messages between FRISO and the agents.

Simple data types:
Attribute Data type

CurrentSimulationTime String
TrainState TrainState
SignalList SignalArray

SpeedSignList SpeedSignArray
Switch Switch

MaxSpeedSignals Double
MaxSpeedSpeedSigns Double

NextSignal Signal
TrainID Integer

TrainName String
ReplicationNumber Integer

RealisationType String
ActivityType String

TCA String
OriginalSignal ID Integer

OriginalSignal Name String
DeterminedSignal Signal

ATBSpeed Double
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Complex data types:
Name Attribute Data type

TrainState

TrainID Integer
TrainName String

ReplicationNumber Integer
CurrentPosition Double

CurrentSpeed Double
CurrentAcceleration Double
PositionBrakeLever Integer

PositionTractionLever Integer

Signal

SignalID Integer
SignalName String

Type Integer
Height Integer

DistanceFromStartPoint Double
CurrentSignalAspect String

SpeedSign

SpeedSignID Integer
SpeedSignName String

Type String
DistanceFromStartPoint Double

Speed Double

Switch
SwitchID Integer

SwitchName String
DistanceFromStartPoint Double

Train

Train ID Integer
TrainName String

ReplicationNumber Integer
TrainPlan PlanActivityArray

TrainLength Double
Maximum Deceleration Double

TrainType String

PlanActivity

ActivityType String
SequenceNumber Integer

PlannedTime String
ActivityTCA String
StopSignal Signal
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Appendix 7: Agent input
messages

Below a table containing a specification of the content of the messages re-
ceived from FRISO by the agent. A specification of the attributes can be found
in Appendix 6.

Message Attribute

RealisationTrainActivity

CurrentSimulationTime
TrainID

TrainName
ReplicationNumber

RealisationType
ActivityType

TCA

DepartureAllowed
CurrentSimulationTime

TrainState

StopSignalDetermined

CurrentSimulationTime
TrainState

OriginalSignal ID
OriginalSignal Name

DeterminedSignal

SignalAspectImprovedOfNextSignal
CurrentSimulationTime

TrainState
SignalList

DesiredSpeedReached
CurrentSimulationTime

TrainState

DesiredPositionReached
CurrentSimulationTime

TrainState

SignalPassageFrontTrain
CurrentSimulationTime

TrainState
SignalList
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SpeedSignPassageFrontTrain
CurrentSimulationTime

TrainState
SpeedSignList

SwitchPassageFrontTrain
CurrentSimulationTime

TrainState
Switch
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Appendix 8: Agent components

In this appendix schematic overviews of the components of the agent can be
seen. An overview of the decision making component can be found in Chap-
ter 3.

Figure .5: A schematic overview of the workings of the Agent communicator
component of the agent.

Figure .6: A schematic overview of the workings of the Event processing compo-
nent of the agent.
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Appendix 9: Class diagram

In this appendix the structure of the agents DLL can be seen through two UML
class diagrams.

Figure .7: A UML class diagram of the structure of a part of the DLL.
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Figure .8: A UML class diagram of the structure of a part of the DLL.
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Appendix 10: Effect of
departure delays

In this appendix the effect of the arrival location is shown on the driving time
delay. The driving time delay indicates the delay that is acquired between
two stations compared to the planned driving time, where a positive value
indicates a faster driving time then planned. Note that for simplicities sake
the departure location is not taken into account here.

Figure .9: A scatter plot indicating the relation between the delay a train has at
its departure, the driving time it has to the next station compared to
the planned driving time, and the arrival location. On the x-axes the
delay at departure can be seen. On the y-axes the difference between
the driving time to the next station and the planned driving time can
be seen in seconds. The colour indicates the arrival location.
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Appendix 11: Delay exceptions

In this appendix the exceptions to the filtering of the PAB driving times are
noted. The norm was to exclude trains which deviated from the planned time
with more than 180 seconds (3 minutes).

Train series: Direction Exceptions

1900 T Trains that were more than 180 seconds early were not ex-
cluded from Tb to Ehv, due to this happening quite often.

1900 T The delay time was set at 210 seconds between Ehv and
Hm due to trains frequently taking more than 180 seconds
longer than the planned time.

4300 T The delay time was set at 240 seconds between Wp and
Ampo due to trains frequently taking more than 180 sec-
onds longer than the planned time.

2600 H The delay time was set at 380 seconds between Ledn and
Shl due to trains frequently taking more than 180 seconds
longer than the planned time.

2600 T Trains that were more than 180 seconds early were not ex-
cluded from Tb to Ehv, due to this happening quite often.

2600 T Trains that were more than 180 seconds early were not ex-
cluded from Tb to Ehv, due to this happening quite often.

5600 T Trains that were more than 180 seconds early were not ex-
cluded from Wz to Zl, due to this happening quite often.

Table .17: Overview of the exceptions that were made when filtering PAB driv-
ing times.
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Appendix 12: Speed-distance
diagrams

In this appendix a collection of speed-distance diagrams are shown, indicat-
ing differences in the driving behaviour between FRISO and the agents imple-
mentation.

Figure .10: Two speed-distance diagrams are shown here for the 4300 train se-
ries. In the top figure the speed-distance diagram of the agents
can be seen, with default settings. In the bottom figure the speed-
distance diagram can be seen for the default FRISO train driver.
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Figure .11: A section of the top Figure .10, where the spikes in the speed limit
can be seen, which resulted in an earlier arrival time than found
within the realisation data

Figure .12: The speed way diagram for the arrival at Breda (BD) from Tilburg
(Tb). On the x-axes the distance in meters. On the y-axes the veloc-
ity in km/h. The blue lines represent the GPS data. The gold lines
represent the agents driving behaviour. The red line represents the
default FRISO driving behaviour and the green lines represents the
FRISO DBA driving behaviour with a braking criteria of -0.19.
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