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Abstract

Risk measurement continues to be of the utmost importance in practice. The axiomatic
approach to risk measures of Artzner et all. [3] gave rise to a whole new theory round this
topic. With their axiomatic approach the class of coherent risk measures was completely
characterized. In later years it became evident that coherent risk measures as defined by
these axioms do not posses all of the properties desired in practice, since they are not
necessarily robust. Robustness of risk measures is important to properly determine the
underlying loss distribution through methods like backtesting. In 2013 Gneiting [19]
published an article in which he described elicitable risk measures, this class of risk mea-
sure is robust for (small) changes in the data. He showed that a necessary condition for
elicitability is that of convex level sets, the question whether it is also sufficient still re-
mains open.

In my thesis I shall compare the properties of these two different classes of risk mea-
sures, and argue that a risk measure should be both coherent and elicitable. Whereas
there is a whole class of risk measures that are coherent or that are elicitable, there is
only one such statistical functional that fits both criteria, the expectiles.

Furthermore I will compare special cases of these classes by means of a simple, ran-
dom foreign exchange portfolio. Which will show not only the mathematical differences
but also the practical implications of choosing a risk measure.

Since the practical implications where the key to further research on risk measures,
I take a close look at the risk measures introduced by the Basel Committee on Banking
Supervision and give a comparison to coherent, elicitable risk measures by means of the
axioms they are based upon.
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Preface

Baring’s Bank was the most prestigious bank of the United Kingdom, it collapsed in 1995
due to poor speculative investments in the Asian market done by one of its employers,
Nick Leeson. Leeson falsified his losses, and reported to the bank and the British Tax
Authorities that he was making substantial profits. He could no longer hide the losses
when the Kobe earthquake sent the Asian financial markets into a tailspin. By the time
the bank had discovered the losses made by Leeson, the total amount was more then $1.3
billion and the bank collapsed.

Orange County, a suburban in California USA, had to file for bankruptcy in 1994 after
heavy borrowing and risky investments resulting in a loss of $1.6 billion. This massive
loss was the result of the risky trading strategy of the treasurer at that time, Bob Cit-
ron. His trading strategy resulted in higher returns at first, but when the US government
started a series of six consecutive interest rate hikes his strategy resulted in severe losses.

Because of events such as the ones stated above it became evident that the risky posi-
tions taken by banks should be monitored more accurately.

Since the financial crisis of 2007/2008 the research on risk measures and the mea-
surement of risk has become increasingly popular and the task of risk measurement has
become increasingly complex. As in all situations when modelling complex issues and
translating these into a workable model in practice, the difficulty lies in making a suffi-
ciently realistic, but simple model. To quote Einstein:

“ As simple as possible, but not simpler. ”
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Background
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1Financial Risks

1.1 Introduction

There are many kinds of financial risks against which institutions need to guard them-
selves. In general you could divide them in five groups.

Market Risk The risk of losses due to volatilities and movements of the financial market
prices. These include interest rate risk, exchange rate risk, investment risk and many
more.

Credit Risk The risk of losses due to changes in the credit quality of the counterpar-
ties. Counterparty default is the most extreme case, but losses can already occur when a
counterparty’s credit merely decreases.

Liquidity Risk The risk of losses due to travel-time of securities and assets. In other
words, the risk that a given security or asset cannot be traded quickly enough in the
market to prevent a loss.

Operational Risk The risk of losses due to failed internal processes, the use of a wrong
pricing model for instance. But also the risk of losses due to fraud and human mistakes.

Legal & Regulatory Risk This type of risk includes losses due to changes in tax laws for
instance. But also the risk of losses due to the lacking of appropriate licenses.

Hence it is important to monitor the amount of risk a company is at, this is done by
appointing a measure to a risky position. These risk measures can be classified into two
categories, internal risk measures and external risk measures. Internal risk measurement
is used at a level of individual institutions, in this case any institution is free to choose
a risk model that best fits their beliefs and are allowed to choose which data they use.
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While external risk measurement is used for external regulations and the same models
are imposed for all relevant institutions.

1.2 Introduction Risk Measurement

Since the 1997 article of Artzner et all. [2] risk measurement, and hence risk measures,
have gained enormously in interest under economist, bank regulators and mathemati-
cians, giving rise to a new theory.

In my thesis I shall assume that risk measurement is a decision problem, ie a problem
of the yes or no type as is also assumed in [2]. I find this approach most suitable since
risk is ever present. The question therefore doesn’t concern the magnitude of the risk as
much as the acceptability of the risky position.

Definition 1.2.1 Risk is the future net worth of a position.

At the beginning risk measurement was mainly focussed on the mathematical prop-
erties which reflect the underlying economical meaning, however in the last years the
statistical properties have become of increasing interest. Nowadays it is obvious to all
working with risk, be it in practice or theory, that the procedure of risk measurement in
fact involves two steps.

(1) Estimating the loss distribution of the position.

(2) Constructing a risk measure that summarizes the risk of the position.

The position’s loss distribution in practice is generally unknown, and therefore must
be estimated from (historical) data. The estimation is essentially done by backtesting.
Recall that backtesting is the procedure of periodically comparing the forecasted risk
measure with realized values in the financial market.

Each one of the steps above should be regarded as equally important. Because risk
measurement is of great practical importance, risk measures should be formalized with
the regulations of the practical world in mind. For this reason risk measures are mostly
considered to be single valued, as will I do in this thesis.

Taking a risk to be a single value can be problematic however, for instance a single
number does not give any information about which risk within the position is problem-
atic. But this is only the case when a risk is found to be unacceptable, than the portfolio
should be rebalanced. If on the other hand the risk is found to be acceptable, these sort
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of problems do not play any part. Thus in this setting taking a single valued risk measure
is justified.

Furthermore, I shall assume that the set of all states of the financial world is known at
the time we want to measure risk. This set may consist out of all the prices of assets and
securities and all exchange rates amongst others.
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2Axiomatic Approach to Risk Measures

The axiomatic approach to risk measurement first started with the papers by Artzner et
all [2] and Delbaen [11]. Since these articles awareness has come to mathematicians as
well as banks and regulators that it is of the utmost importance to clearly define what it
means for a functional of portfolio dynamics to be called a “risk measure”. Writing down
axioms is a crucial step in translating the complexity of measuring risk into a mathemat-
ical formulation.

The space of all financial positions will be denoted X and every position X ∈ X is a
real-valued measurable function on a measurable space

(
Ω,Σ

)
with finite first moments.

Here X is the final net worth of a position at the end of a trading period. Let X+ denote
the cone of non-negative elements ofX andX− the negative of X+. Moreover, letX++ and
X−− be the cone op positive elements in X and its negative respectively.

Remark Note that taking X ∈X to be the final net worth of a position already takes into
account the time-value of money.

2.1 Acceptance Sets

It is not enough to simply have a risk measure which gives a single value to a position. We
need also to define the concept of whether this value is acceptable or not, in other words
does it belong to a set of acceptable risks. In Artzner et all [3] the following axioms are
given for such an acceptance set, which I shall adopt for this thesis.

Axiom 2.1 The acceptance set A contains X+.

Axiom 2.2 The acceptance set A does not intersect the set X−−.

The interpretation of these first two axioms is that a final net worth that is always
non-negative does not require extra capital, however a net worth that is always strictly
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negative does. The next axiom is a natural requirement on the set of all acceptable final
net worths and comes from axiom 2.7 for risk measures.

Axiom 2.3 The acceptance set A is a positively homogeneous cone.

And finally the fourth axiom reflects risk aversion.

Axiom 2.4 The acceptance set A is convex.

Risk averse behaviour is mathematically described through utility functions, which
are continuous, strictly increasing and strictly concave functions. The latter is the reason
why axiom 2.4 is needed.

The acceptance setA , defined through the axioms stated above, is an important object
to be considered when describing acceptance or rejection of risk.

2.2 Risk Measures

Recall the definition of a risk measure from section 1.2. I shall now formally define a risk
measure as a mapping defined on the set of all financial positions.

Definition 2.2.1 A measure of risk is a mapping, µ :X →R.

In Acerbi [1] a statistical functional which does not satisfy all the axioms stated in
this section is not called a risk measure at all. I do agree with this line of reasoning, but
in order to avoid confusions I shall refer to those statistical functionals as risk measures
and I shall refer to them as coherent and elicitable risk measures, or true risk measures,
whenever they do satisfy all the axioms. What is meant by coherent risk measures and
elicitiable risk measures will be defined in section 3.1 and 3.2 respectively.

Axiom 2.5 Translation invariance. For all X ∈X and all real number a ∈R, we have

µ (X + a) = µ(X)− a (2.1)

In other words adding the sure amount a to the initial position the risk decreases by
the same amount a.

Axiom 2.6 Reverse monotonicity. For all X1, X2 ∈X such that X1 ≤ X2, we have

µ(X2) ≤ µ(X1) (2.2)
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Axiom 2.7 Positive homogeneity. For all k ≥ 0 and all X ∈X

µ (kX) = kµ(X) (2.3)

This axiom says that if a position is increased in size than the risk of that position
increases with the same factor.

Axiom 2.8 Relevance. For all X ∈X with X ≤ 0 and X , 0 we have

µ(X) > 0 (2.4)

This axiom is necessary (but not sufficient) to rule out that concentration of risk re-
mains undetected. Where X , 0 should be interpreted that the position X is not risk
free.

Axiom 2.9 Subadditivity. For all X1, X2 ∈X , the following inequality holds

µ (X1 +X2) ≤ µ (X1) +µ (X2) (2.5)

This property reflects the general assumption that diversification of assets within a
portfolio leads to a lowering of risk.

So far I have followed the setting of Artzner et all [3] completely, however for this
thesis I shall include a sixth axiom which is on loss distributions rather than positions.

Axiom 2.10 Convex level sets: For all estimated distributions, F1 and F2, of a position X ∈X ,
such that µF1

(X) = µF2
(X) and all λ ∈ [0,1] we have that

µλF1+(1−λ)F2
(X) = µF1

(X) = µF2
(X) (2.6)

I include this axioms because so far the axioms only take into account the second step
of the risk measurement procedure. This last axiom 2.10 is necessary for a risk measure
to give robust results when performing backtests, as shall be explained in section 3.2.

An additional advantage of including this sixth axiom is that the axiomatic approach
to risk measures as done by Artzner et all is not restrictive enough to specify a unique risk
measure, but rather characterizes a whole class of risk measures. Having this extended
list of axioms does give enough restrictions to define a unique risk measure.

In the past years it has been pointed out in many articles ( [13] [15] [17] [26] ) that there
is yet another desirable property of a risk measure; comonotonic additivity. This property
should reflect the worst case scenario for the correlation between risks. The reason that
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I do not include this property is that the mathematical requirements, that future net
worths of different risky assets should be perfect substitutes, is in general not met in
finance. Perfect substitutes in economics are two goods (assets) for which the utility of
the one is the same as the utility of the other, for example one Euro form Company A
which is a FOREX company is equal to one Euro from another FOREX company B. The
following example makes it clear that this is generally not true in practice.

Example 2.2.2 Suppose we have two put-options on the same asset in our portfolio, each one
with the same maturity and the same strike price. One of those put-options we have at Bank
A and the other we have at bank B. Let de default probability of Bank A and Bank B be 0.005
and 0.007 respectively. The riskiness of these two put-options should be equal if they were to
be perfect substitutes of each other, however the default probabilities of both banks are different
and hence this is not the case.

There is natural way to define a measure of risk. The number µ(X), assigned by the
measure µ to the risk X ∈ X shall be interpreted as the minimum that needs to be added
to the risky position in order to make it an acceptable risk. This is formalized in the next
definition.

Definition 2.2.3 A risk measure that is associated with the acceptance set A is the mapping
µA :X →R defined by

µA (X) = inf
{
m : m+X ∈A

}
(2.7)

Thus if we have µ(X) < 0 then the amount −µ(X) may be withdrawn from the position.
In definition 2.2.4 a correspondence between acceptance sets and measures of risk are
given.

Definition 2.2.4 An acceptance set associated with a risk measure µ, denoted Aµ, is defined
by

Aµ =
{
X ∈X : µ(X) ≤ 0

}
(2.8)

Which shows that the acceptance set defines the risk measures just as the risk measure
defines the acceptance set.
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3Classes of Risk Measures

In this chapter I shall discuss two classes of risk measures, coherent risk measures and
elicitable risk measures, and I shall show that these two classes could be regarded to
represent one of the steps within the risk measurement procedure. The emphasis in this
thesis is on risky positions of banks, and hence all risk measures discussed are so-called
monetary risk measures.

Definition 3.0.5 A monetary risk measure is a function µ :X →R such that for all positions
X ∈X

(1) If X ≥ 0 then µ(X) ≤ 0.

(2) For a ∈R it holds that µ(X + a) = µ(X)− a.

(3) For k ∈R, such that k ≥ 0 it holds that µ(kX) = kµ(X).

3.1 Coherent Risk Measures

This class of risk measures was first introduced by Artzner et all. [2]. And was con-
structed to possess all mathematical properties to properly reflect the economy. And
hence the class of coherent risk measures takes the second step within the risk measure-
ment procedure into account. A risk measure is called coherent if it satisfies the axiom
2.5-2.9. We have the following definition.

Definition 3.1.1 A coherent monetary risk measure is a mapping ρ : X → R such that ρ is a
monetary risk measure that is sub-additive. That is for all X1,X2 ∈X

ρ(X1 +X2) ≤ ρ(X1) + ρ(X2) (3.1)

I shall often suppress the term monetary in the definition. A major advantage is that
the properties above completely charaterize the class of coherent risk measures. And
hence the following two propositions on the correspondence between a coherent risk
measure ρ and its associated acceptance set Aρ hold.
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Proposition 3.1.2 If a set C satisfies axioms 2.1-2.4 then the associated risk measure ρC is
coherent. Moreover, the closure of C is the associated acceptance set.

Proof From Rockafeller [34] axioms 2.2 and 2.4 ensure that for a convex function h(·) and
a convex set which is bounded from below, C , the infimum

ρC (X) = inf {h(X) : X ∈C } (3.2)

is attained. Where we take h(X) = X −m. Hence we have ρC (X) <∞ for all X ∈ C . Then
from the equality

inf
{
p : X + (a+ p) ∈C

}
= inf

{
q : X + q ∈C

}
− a (3.3)

it follows that
ρC (X + a) = ρC (X)− a (3.4)

And hence axiom 2.5 is satisfied. The sub-additivity of ρC follows from the fact that if

X1 + b1 ∈C , and X2 + b2 ∈C (3.5)

then from axioms 2.3 and 2.4 we know that

X1 +X2 + (b1 + b2) ∈C (3.6)

Now to tackle positive homogeneity. Let c be such that c ≥ ρC (X) then for all k > 0 we
have

k ·X + k · c ∈C (3.7)

by axiom 2.3 and definition 2.2.4 proving that

ρC (k ·X) ≤ k · c (3.8)

If on the other hand we have that c ≤ ρC (X) then for all k > 0 we have

k ·X + k · c <C (3.9)

proving that
ρC (k ·X) ≥ k · c (3.10)

and hence we conclude equality,

ρC (k ·X) = k · ρC (X) (3.11)

Monotonicity of ρC follows from axiom 2.1 and 2.4 together with definition 2.2.4, since
if we have that

X1 ≤ X2 and X1 + d ∈C ⇒ X2 + d ∈C (3.12)

And finally, for each X ∈ C we have ρC (X) ≤ 0 and hence X ∈ C then all the above
together with definition 2.2.4 ensures that C is closed, which proves that

AρC = C̄ (3.13)

10
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Proposition 3.1.3 If a risk measure ρ is coherent, then the acceptance set Aρ is closed and
satisfies axioms 2.1-2.4.

Proof Subadditivity and positive homogeneity ensure that the risk measure ρ is convex
on the set Aρ and therefore continuous. Hence we see that the set

Aρ =
{
X : ρ(X) ≤ 0

}
(3.14)

is a closed, convex and homogeneous cone. Positive homogeneity also implies that ρ(0) =
0 and together with monotinicity this ensures that the acceptance set Aρ contains the set
X+. Then let X ∈ X−− such that ρA (X) < 0. Axiom 2.6 on monotonicity than states that
ρ(0) < 0, which is a contradiction. If we now take X such that ρ(X) = 0, then we can find
a > 0 such that

X + a ∈X−− (3.15)

again this leads to a contradiction, since by axiom 2.5 on translation invariance we have
that −a > 0. We conclude that we must have ρ(X) > 0, hence

X <Aρ (3.16)

and we have proven axiom 2.2. For each X let b be an arbitrary number such that ρA < b,
then

X + b ∈Aρ (3.17)

and hence
ρ (X + b) ≤ 0 (3.18)

hence ρ(X) ≤ b which proves that

ρ(X) ≤ ρA (X) or equivalently ρ ≤ ρA (3.19)

Also for each X let c be an arbitrary number such that ρ < c, then

X + c ∈Aρ (3.20)

and hence
ρA (X + c) ≤ 0 (3.21)

hence ρA (X) ≤ c which proves that

ρA (X) ≤ ρ(X) or equivalently ρA ≤ ρ (3.22)

And we conclude equality and this proves the proposition.

�

11



3.2 Elicitable Risk Measures

Making forecasts about an uncertain future is essential for measuring risk. Surely these
forecast are probabilistic in nature and take the form of probability distributions. To
evaluate these forecasts, scoring functions may be used. A scoring function S depends
both on the forecasts and on the observations.

Let F be an estimated loss distribution for the current position X ∈ X . Denote by F
the set of all estimated distributions. Furthermore, let Y be a set of verifying (historical)
risks. Assume that we have a monetary risk measure ν :X →R. Then a scoring function,
S : R2 → [0,∞), assigns a score to the accuracy of the estimate t = νF(X). Where νF(X)
should be interpreted as the risk given that the distribution of the position is estimated
by F.

Although scoring functions can be set-valued in this thesis it is enough to look at
single-valued scoring functions, as only single-valued risk measures are considered. I
shall adopt the following definition for a scoring function from Gneiting [19].

Definition 3.2.1 Given a position X ∈ X , a scoring function S :R2→ [0,∞) satisfies for any
estimate t = νF(X) and observation y ∈ Y

(1) S (t,y) ≥ 0 and S (t,y) = 0 if and only if t = y.

(2) S (t,y) is continuous in t.

(3)
∂S(t,y)
∂t

exists and is continuous in t whenever t , y.

There are many considerations to be made in choosing a suitable scoring function, it
should be such that it can be used in practice but also have sound theoretical support. In
this chapter the focus will be on scoring functions that make the corresponding statistical
functional ‘elicitable’. Since this thesis is about risk measures, I shall only focus on these
statistical functionals.

Whenever an estimate receives a distributional feature from a risk measure it is im-
portant that the risk measure is robust for the estimate in the sense that the expected
score is minimized.

Definition 3.2.2 Given a position X ∈ X the scoring function S is weakly-robust for the risk
measure ν, relative to the class F if for all F ∈ F

EFS (t,Y ) ≤ EFS (x,Y ) (3.23)
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for all t = νF(X) and all x ∈ R. Moreover, it is (strictly) robust if it is weakly robust and
equality in equation (3.23) implies that x = νF(X).

This definition of (weak) robustness is used in Gneiting [19], although it is there re-
ferred to as (strict) consistency. I changed the terminology because I believe the term
robustness is more appropriate when describing sensitivity with respect to estimated dis-
tributions from a dataset. Also the term robustness is more accepted in practice.

Definition 3.2.3 The risk measure ν is elicitable relative to the class F if there exits a scoring
function S :R2→ [0,∞) that is robust for ν relative to the class F .

Suppose we wouldn’t have a sstrict robust risk measure in the above sense, then the
risk values given by different distribution could deviate largely from each othere. And a
bank would be able to “choose” a distribution which returns the lowest risk measure. If
Therefore from a regulatory point of view, robustness is significant.

In Krätschmer [27] it is argued that qualitative robustness is not an ideal way to rep-
resent robustness as it makes a division into ‘robust’ and ‘non-robust’ risk measures, they
therefore suggest using a continuum of possible degrees of robustness. However, from
my point of view the dichotomic classification of Gneiting fits very well with the scope of
this thesis: that risk measurement is a decision problem of the yes or no type.

Proposition 3.2.4 Let X ∈ X be given. If a mapping ν : X → R is a monetary elicitable risk
measure then it is a monetary risk measure such that, if F1 and F2 are estimated distribution
functions wich νF1

(X) = νF2
(X), we have for all λ ∈ [0,1] it holds that

νλF1 +(1−λ)F2
(X) = νF1

(X) = νF2
(X) (3.24)

Proof To proof property 3.24, suppose that the risk measure ν is elicitable relative to the
classF . Then there exists a scoring function S :R2→ [0,∞) which is robust for it relative
to F . Also suppose that we have F1, F2 ∈ F and t ∈R such that

t = νF1
(X) , and t = νF2

(X) (3.25)

If we let x ∈ R be arbitrary and λ ∈ [0,1] such that equation (3.23) holds then for the
observations Y we have

EFλS(t,Y ) = (1−λ)EF1
S(t,Y ) + λEF2

S(t,Y )

≤ (1−λ)EF1
S(x,Y ) + λEF2

S(x,Y )

= EFλS(x,Y ) (3.26)

And hence we have x = νFλ(X).

13
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This last property is that of convex level sets. Note that this is different from standard
convexity which applies to sums, but a special case of quasi-convexity (see appendix A).
Convex level sets apply to mixtures, whereas standard convexity applies to sums. The
following is a practical proposition on elicitable risk measures from Osband [33].

Proposition 3.2.5 Let f :R→R be a one-to-one mapping. Then the following two statements
hold.

(1) If ν is elicitable relative to the class F , then the risk measure f ◦ν is elicitable relative to
the class F .

(2) If the scoring function S : R→ [0,∞) is robust for the risk measure ν, then the scoring
function Sf :R2→ [0,∞) defined by

Sf (x,y) = S
(
f −1(x), y

)
(3.27)

is robust for the risk measure f ◦ ν.

Proof The theorem follows directly from the following inequality. Let t̃ = f ◦ ν(F) and
x̃ ∈R. then t̃ = f (t̃) where t = νF(X) and x̃ = f (x), for x ∈R. Hence

EFSf (t̃,Y ) = EFS(t,Y ) ≤ EFSf (x,Y ) = EFSf (x̃,Y ) (3.28)

where the inequality follows from the fact the ν is (weakly) robust. The theorem then
follows from the fact that we have equality if and only if x = νF(X) or equivalently x̃ =
f ◦ νF(X).

�

Note that the class of elicitable risk measures is less conservative then that of coherent
risk measures, since in this case the associated acceptance set,Aν , needs not to be convex,
but we merely require that it is closed under convex level sets.

Lemma 3.2.6 If a risk measure ν is elicitable, then the acceptance setAν is closed under convex
level sets and satisfies axioms 2.1-2.3.

Proof The fact that axiom 2.1 through axiom 2.3 are satisfied has already been done in
the previous chapter. What is left to show is that Aν is closed under convex level sets.
This follows from the fact that positive homogeneity and convex levels sets ensure that ν
is continuous on all level sets.

�
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Part II

Risk Measures
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4Value-at-Risk

Probably the most widely used risk measure at this time is Value-at-Risk, abbreviated
VaR. This risk measure was developed in the 1990’s as a response to financial disasters
like Baring’s Bank and Orange County mentioned in the preface of this thesis. In the
1990’s there was a whole string of financial disasters like these and the VaR risk measure
was developed as a tool to warn investors of the risks they are incurring. Although devel-
oped in the 1990’s, the methodology behind VaR is not new, it can be traced back to 1952
to the basic mean-variance framework of Markowitz [30]. Moreover, the VaR principle
was used in actuarial sciences long before it was reinvented for investment banking. Al-
though, within actuarial sciences the more common phrase was the quantile risk measure
as opposed to Value-at-Risk.

4.1 Definition Value-at-Risk

VaR is a statistical measure of downside risk based on current positions. The great advan-
tage of VaR is that it is simple to compute and easy to understand. Informally, VaR can be
defined as the worst loss over a target horizon such that with a pre-specified probability
that the actual loss will be higher. The formal mathematical definition is the following:

Definition 4.1.1 Given a position X ∈X , and α ∈ [0,1] we define

VaRα(X) = −q(α)(X) (4.1)

where and q(α)(X) is the smallest α-quantile, ie

q(α)(X) = inf
{
x : P [X ≤ x] ≥ α

}
(4.2)

It is then easily seen that the acceptance set for VaRα is given by

AVaRα =
{
X ∈X : P

[
X ≤ 0

]
≥ α

}
(4.3)
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There is another way of defining the acceptance set for VaR, it is easily seen that the above
representation is equivalent to

AVaRα =

X ∈X :
P
[
X ≥ 0

]
P
[
X < 0

] ≥ 1−α
α

 (4.4)

Since VaR is a quantile measure extra attention should be paid to discontinuities and
intervals of the quantiles. Note that the only case in which the choice between using the
largest or the smallest quantile becomes non-arbitrary is whenever q(α) , q(α), where

q(α)(X) = inf
{
x : P [X ≤ x] ≥ α

}
(4.5)

is the smallest quantile. This can only be the case when we are dealing with a discrete
distribution of the loss variable.

Lemma 4.1.2 VaR has the following four properties:

(1) If X ≥ 0, then VaRα(X) ≤ 0.

(2) If X ≥ Y , then VaRα(X) ≤ VaRα(Y ).

(3) For λ ∈R, such that λ ≥ 0, then VaRα(λX) = λVaRα(X).

(4) For k ∈R, it holds that VaRα(X + k) = VaRα(X)− k.

Proof We may rewrite equation 4.1 as

VaRα(X) = inf
{
m ∈R : P [X +m < 0] ≤ α

}
(4.6)

Then all properties of the proposition follow either from this equation or from the defi-
nition of the α-quantile.

�

Thus VaR is a monotonic, homogeneous and translation invariant risk measure by
definition. I shall now show that VaR is an elicitable risk measures, based on the following
proposition from Gneiting [19] on quantiles.

Proposition 4.1.3 The α-quantile is elicitable relative to the class F .
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Proof In Gneiting 2008 [20] it is shown that if g :R→R is a strictly increasing function,
then the scoring function

S (x,y) =
(
1{x≥y} −α

)(
g(x)− g(y)

)
(4.7)

is weakly-robust for qα relative to the class F . Moreover, if the expectation exists and is
finite

EFg(Y ) < ∞ (4.8)

for all F ∈ F , then the scoring function S : R2 → [0,∞) is robust relative to the class
F and hence the risk measure q(α) is then elicitable. Take g : R→ R to be the function
defined by

g(x) =
1

1 + e−x
(4.9)

Then obviously g(·) is bounded and increasing and hence meets the conditions stated
above. Thus the scoring function

S(x,y) =
(
1{x≥y} −α

)( 1
1 + e−x

− 1
1 + e−y

)
=

(
1{x≥y} −α

) e−y − e−x

(1 + e−x)(1 + e−y)
(4.10)

is a robust scoring function which makes q(α) into an elicitable risk measure.

�

Theorem 4.1.4 VaRα is elicitable relative to the class F .

Proof It follows directly from propositions 3.2.5 and 4.1.3 that the function

SVaRα (x,y) =
(
1{−x≥y} −α

) e−y − ex

(1 + ex)(1 + e−y)
(4.11)

elicits VaRα.

�

The scoring function defined in the proof of the theorem above is not one of the most
widely used scoring functions in practice however. I found that in most literature it is
recommended to use the so-called piecewise linear scoring function for the evaluation
of VaR forecasts, or for quantile risk measure in general The piecewise linear scoring
function, S

pl
:R2→ [0,∞) is given by

S
pl

(x,y) =
(
1{x≥y} −α

)(
x − y

)
(4.12)

Obviously the scoring function is of the form from equation (4.7), with g :R→R is taken
to be the identity function

g(x) = x (4.13)
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which is not bounded and hence we cannot guarantee the existence of the expectation of
equation (4.8). In practice this is not a problem since it is mostly assumed that

g : I → [0,∞) (4.14)

where I ⊂R is a bounded subset.

4.2 Limitations of Value-at-Risk

One of the raised limitations of VaR is that it does not say anything about the severity of
the losses after the VaR-value. An even more serious problem with VaR is that it is not
sub-additive. It is commonly thought of that diversification of risk leads to risk reduc-
tion. However, diversification of risk may lead to higher VaR values. In Acerbi [1] this is
illustrated with the following two simple discrete examples.

Example 4.2.1 Suppose a bank loans Company A $100.000,- and that this company will de-
fault on the loan with a probability of 0.8%. Suppose, furthermore, that Company A either
defaults the entire loan, or not at all. Thus if we denote by X1 the default amount of a portfolio
with just this one loan we get

X1 =
{
−$100.00,- if Company A defaults

$0,- otherwise
(4.15)

then the distribution of X1 is discrete and follows

P
[
X1 = −$100.000,-

]
= 0.008 , and P

[
X1 = $0,-

]
= 0.992 (4.16)

And hence if α = 0.01, then the VaR of this portfolio (consisting of this one single loan) satisfies

VaR0.01(X1) = − inf
{
x : P [X1 ≤ x] > 0.01

}
= 0 (4.17)

If the bank would have diversified this amount, say the bank loans $50.000,- to Company A
and another $50.000 to Company B, where both companies have the same default probability
of 0.8% and like in the first scenario both companies either default on their entire loan or not
at all, then, if we denote the default amount in this case by X2, this yields

X2 =


−$100.00,- if Company A and Company B default
−$50.00,- if Company A or Company B defaults

$0,- otherwise
(4.18)

The distribution of X2 is therefore given by

P
[
X2 = −$100.000,-

]
= 0.000064 , P

[
X2 = −$50.000,-

]
= 0.016 , P

[
X2 = 0

]
= 0.983936

(4.19)
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Showing that when taking α = 0.01 the VaR for this portfolio is given by

VaR0.01(X2) = − inf
{
y : P [X2 ≤ y] > 0.01

}
= $50.000,- (4.20)

�

Another important consequence of lacking the sub-additivity property is illustrated
by the next example. Showing that the dangers of concentrating credit risk are also
missed by VaR.

Example 4.2.2 Consider the issue of corporate bonds in a market with zero base rate, all cor-
porate bond spreads equal 2% and the default by any company is set at 1%. Taking α = 0.05,
a loan of $1.000.000,- invested in bonds with a single company thus gives the following VaR:

VaRα(X) = −$20.000 (4.21)

Note that this indicates that this loan is VaR0.05-acceptable and there is no risk.

If we now consider the loan is placed in bonds issued independently by 100 companies at
$10.000,- each. Then the probability that two companies will default is(

100
2

)
(0.01)2 (0.99)98 ≈ 0.185 (4.22)

and hence in this case we see that VaRα > 0. And again diversification does not lead to lower
risk according to VaR. Moreover the portfolio where the loan was invested in a single company
resulted in an acceptable risk according to VaR, but the portfolio when the loan was spread over
100 companies gave an unacceptable value.

�

From the above examples is it clear that VaR doesn’t belong to the class of coherent
risk measures. However, practitioners sometimes argue that the use of Value-at-Risk is
justified by the following proposition which says that VaR is sub-additive under a normal
distribution.

Proposition 4.2.3 If quantiles are computed under a normal distribution, then the quantiles
do satisfy the property of sub-additivity as long as probabilities of exceedence are smaller than
0.5.
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Proof Denote by Var the variance, then indeed VarX+Y ≤ VarX + VarY for each pair
of random variables (X,Y ) such that they are jointly normally distributed. Since for a
normal distributed random variable Z we have the following representation for VaR,

VaRα(Z) = −
[
EZ +Φ−1 (α) ·VarZ

]
(4.23)

where Φ (·) is the cumulative standard normal distribution function and hence we have
that Φ−1(0.5) = 0. If we thus take Z = X +Y the above equation yields the result.

VaRα(X +Y ) = −
[
E(X +Y ) +Φ−1 (α) ·Var(X +Y )

]
≤ −

[
EX +EY +Φ−1 (α) · (VarX +VarY )

]
= −

[
EX +Φ−1 (α) ·VarX

]
−
[
EY +Φ−1 (α) ·VarY

]
= VaRα(X) + VaRα(Y ) (4.24)

�
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5Expected Shortfall

Expected shortfall, sometimes also referred to as Conditional-Value-at-Risk or CVaR, was
at one time the most prominent risk measure as a potential replacement for the VaR risk
measure since it does possess the property of sub-additivity.

5.1 Definition of Expected Shortfall

In chapter 4 its shown that VaR answers the question

What is the minimum loss in the α · 100% worst cases of our portfolio? (5.1)

Due to the term “minimum loss” in the definition VaR is not sub-additive and hence is
not a true risk measure. Moreover, VaR is indifferent of how serious the losses beyond the
VaR-value really are. And hence, it is useful to modify the above question to the following

What is the expected loss incurred in the α · 100% worst cases of our portfolio? (5.2)

Expected Shortfall was constructed in a bottom-up fashion so that it would be sub-
additive. It is easily seen that whenever the profit-loss distribution is continuous the
answers to question 5.2 is given by the conditional expected value beyond the lower α-
quantile. Define the risk measure

TCEα(X) = −E
[
X |X ≤ q(α)(X)

]
(5.3)

where TCE stands for tail conditional expectation and as before q(α)(X) is the α-quantile
of X. For general distribution equation (5.3) does not hold anymore since it could be the
case that the event

{
X ≤ q(α)(X)

}
may have a probability larger that α. Moreover, TCE is a

coherent risk measure only if we restrict ourselves to continuous distributions.

Let
(
Xi

)n
i=1

be n realizations of the loss random variable X, and we define the order
statistics

X1:n,X2:n, . . . ,Xn:n (5.4)
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as the sorted values of the vector (X1, . . . ,Xn). Moreover, if we approximate the α · 100%
elements in the sample by

w = max
{
m : m ≤ nα, m ∈N

}
(5.5)

The set of α · 100% worst outcomes of X1, . . . ,Xn is thus represented by the least w out-
comes

{
X1:n, . . . ,Xw:n

}
. And a natural estimator for the α-quantile q(α) is therefore

q̂(α)(X) = Xw:n (5.6)

where the estimator is dependent on the sample size n. A natural estimator for the ex-
pected loss in the α · 100% of the worst cases then becomes

ÊSα(X) = −
∑w
i=1Xi:n
w

(5.7)

This shall be the α-expected shortfall of the sample. Note that in this case we also have

ˆTCEα(X) = −
∑n
i=1Xi1{Xi≤Xw:n}∑n
i=11{Xi≤Xw:n}

(5.8)

To show that sub-additivity is met, let
(
Xi ,Yi

)n
i=1

be simultaneous realizations then

ÊSα(X +Y ) = −
∑w
i=1(X +Y )i:n

w

≤ −
∑w
i=1 (Xi:n +Yi:n)

w
= ÊSα(X) + ÊSα(Y ) (5.9)

And hence if we understand this estimator, we are most likely to find a coherent risk
measure. If we expand the definition of the estimator

ÊSα(X) = −
∑w
i=1Xi:n
w

= −
∑n
i=1Xi:n1{i≤w}

w

= − 1
w

 n∑
i=1

Xi:n1{Xi:n≤Xw:n} −
n∑
i=1

Xi:n
[
1{Xi:n≤Xw:n} −1{i≤w}

]
= − 1

w

 n∑
i=1

Xi1{Xi:n≤Xw:n} − Xw:n

n∑
i=1

[
1{Xi:n≤Xw:n} −1{i≤w}

]
= − n

w

1
n

n∑
i=1

Xi1{Xi≤Xw:n} − Xw:n

1
n

n∑
i=1

1{Xi≤Xw:n} −
w
n


 (5.10)
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If, with probability one, we would have

lim
n→∞

Xw:n = q(α) (5.11)

Then, also with probability one, we would have

lim
n→∞

ÊSα(X) = −1
α

(
E
[
X1{X≤q(α)(X)}

]
− q(α)(X)

(
P
[
X ≤ q(α)(X)

]
−α

))
(5.12)

While the limit in equation (5.11) does not hold when q(α) , q(α), it is shown by Acerbi
[? ] that the limit in equation (5.12) does hold in full generality. We can then formulate
the following definition.

Definition 5.1.1 Let X ∈X be given and let α ∈ (0,1) be a pre-specified probability level. The
α-expected shortfall of the position is then defined through

ESα(X) = −1
α

(
E
[
X1{X≤q(α)}

]
− q(α)

(
P
[
X ≤ q(α)

]
−α

))
(5.13)

In this definition the term q(α)
(
P [X ≤ VaRα] − α

)
in equation (5.13) should be inter-

preted as the exceeding part to be subtracted from the expected value E
[
X1{X≤q(α)}

]
when

the event
{
X ≤ q(α)

}
has probability larger than α. And hence it is easily seen that when

we have a continuous distribution, ie P
[
X ≤ q(α)

]
= α, then the extra term vanishes and

we have ESα(X) = TCEα(X).

There is a more fundamental definition of equation (5.13) which better reveals the
dependence on both the parameter α and the distribution function F(x) = P

[
X ≤ x

]
. For

this recall the generalized inverse function F←(p),

F←(p) = inf
{
x : F(x) ≥ p

}
(5.14)

The expected shortfall can then be expressed as minus the mean of F←(p) for p ∈ (0,α],
thus

ESα(X) = −1
α

∫ α

0
F←(p)dp (5.15)

In equation (5.15) also continuity in α is made clear directly. This distinguishing
equation of the expected shortfall is not shared which TCE and VaR. We may also define
the expected shortfall through the equation

ESα(X) = TCEα(X) + (λ− 1)
(
TCEα(X)−VaRα(X)

)
(5.16)

from this equation it is easily seen that ESα(X) ≥ TCEα in general. Here λ is defined to be

λ =
P [X ≤ qα]

α
(5.17)
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From the definition of Expected Shortfall we can derive its acceptance set A
esα

.

A
esα

=
{
X ∈X :

1
α

∫ α

0
F←(p)dp ≥ 0

}
(5.18)

From this representation we see that Expected Shortfall is a more conservative risk
measure than Value-at-Risk, since A

esα
⊂AVaRα .

Expected Shortfall is a coherent risk measure and thus by definition is has the prop-
erty of sub-additivity. This is confirmed when we look at the simple discrete example
4.2.1 again, but this time we shall use Expected Shortfall as the risk measure.

Example 5.1.2 Again a bank loans Company A $100.000,- and that this company will default
on the loan with a probability of 0.8%. Suppose, furthermore, that Company A either defaults
the entire loan, or not at all. Thus if we denote by X the default amount we get

X =
{
−$100.00,- if Company A defaults

$0,- otherwise
(5.19)

We have seen that the VaR0.01(X) = 0. In order to compute ES0.01(X) we need the conditional
distribution

X̃ = X |X ≤ q(α) = X |X ≤ 0 (5.20)

Thus X̃ has the following distribution

P
[
X̃ = −$100.000,-

]
= 0.008 , P

[
X̃ = $0,-

]
= 0.992 (5.21)

Thus we get the following for the tail conditional expectation

TCE0.01(X) = −E
[
X̃
]

= 0.008 · $100.000,- = $800,- (5.22)

Moreover we have

λ =
P
[
X ≤ $0,-

]
0.01

=
1

0.01
= 100 (5.23)

And hence the Expected Shortfall for portfolio X is given by

ES0.01(X) = TCE0.01(X) + 99 ·
(
TCE0.01 −VaR0.01(X)

)
= $80.000,- (5.24)

Note that this means that X <AES0.01
.

If we now look at the diversified position, ie the bank loans $50.000,- to Company A and
another $50.000 to Company B, where both companies have the same default probability of

25



0.08% and like in the first scenario both companies either default on their entire loan or not at
all, then, if we denote the default amount in this case by Y , this yields

Y =


−$100.00,- if Company A and Company B default
−$50.00,- if Company A or Company B defaults

0 otherwise
(5.25)

We know that in this case the Value-at-Risk of the position is given by

VaR0.01(Y ) = − inf
{
y : P [Y ≤ y] > 0.01

}
= $50.000,- (5.26)

If we take Ỹ to be the tail conditional distribution of this position, thus Ỹ = Y |Y ≤
−$50.000,-

P
[
Ỹ = −$100.000,-

]
= 0.000064

P
[
Ỹ = −$50.000,-

]
= 0.016

P
[
Ỹ = $0,-

]
= 0 (5.27)

Then we may easily compute the tail conditional expectation

TCE0.01(Y ) = −E
[
Ỹ
]

= 0.008 · $100.000,- + 0.016 · $50.000,-

= $1.600,- (5.28)

In this case we have the following value for λ

λ =
P
[
Y ≤ −$50.000,-

]
0.01

=
0.016064

0.01
= 1.6064 (5.29)

Resulting in an Expected Shortfall

ES0.01(Y ) = −$29.349, 76 (5.30)

Now note that in this case the risk is acceptable, Y ∈AES0.01
.

�

5.2 Limitations of Expected Shortfall

Although ES has the key property of sub-additiviy that is lacking in VaR, it is not a math-
ematically flawless risk measure. It is easily checked that Expected Shortfall does not
belong the class of elicitiable risk measures.
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Theorem 5.2.1 Expected Shortfall is not elicitable relative to any class F of probability dis-
tributions.

Proof Let a,b,c,d be constants such that a < b < c < 1
2 (b+ d) and define the two (esti-

mated) probability measures F1 and F2 of a position X ∈X .

F1 = αδα +
1
2

(1−α) (δb + δb) (5.31)

F2 = αδc + (1−α)δ b+d
2

(5.32)

It is easily seen that for α ≤ 1
3 we have

ESαF1
(X) = ESαF2

=
b+ d

2
(5.33)

The result follows from the fact that in this case we don’t have convex level sets.

ESαF1+F2
2

(X) =
1
4

(b+ c+ 2d) >
b+ d

2
(5.34)

�

There is yet another shortcoming of expected shortfall. That is that the accurate esti-
mation of the tail of the distribution is especially important for expected shortfall. How-
ever, this estimation is quite tricky. For example: the correlation among asset prices
observed in normal market conditions is often very different from the correlation ob-
served in extreme market conditions. Such a correlation breakdown would make it near
to impossible for the risk manager to estimate the tail distribution with the conventional
estimation methods such as Monte Carlo.
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6Expectile Value-at-Risk

In Cont et all [8] and in Kou et all [26] it is shown that there is a conflict between robust
(and hence elicitable) risk measures and coherent risk measures. However, in [8] a more-
restrictive distribution-based approach was chosen and not an axiomatic approach to risk
measurement. And in [26], where an axiomatic approach is taken, the extra property of
law-invariance is added to the set of axioms.

Definition 6.0.2 Distribution-based risk measures, µ, also referred to as law-invariant risk
measures, are such that

µ(X1) = µ(X2) (6.1)

if X1 and X2 have the same distribution.

As mentioned at the beginning, in this setting such a conflict does not arise and there
exists a unique coherent, elicitable risk measure.

6.1 The Expectiles

Newey and Powell first introduced the τ-expectile functional in 1987. This functional is
defined as the unique solution to asymmetric least squares minimization.

Definition 6.1.1 For X ∈X and τ ∈ (0,1), the τ-expectile risk measure is the unique solution
ντ = ντ(X) to the following equation

τ

∫ ∞
ντ

(
y − ντ

)
dX(y) = (1− τ)

∫ ντ

−∞

(
y − ντ

)
dX(y) (6.2)

Note that since it is assumed that for all X ∈ X the first order expectation exists and
is finite, a unique solution to equation (6.2) exists.

In Kuan et all [28] it is shown that from equation (6.2) we may conclude that

ντ(X) = γE
[
X |ντ < X

]
+ (1−γ)E

[
X |X ≤ ντ

]
(6.3)
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where

γ =
τ
(
1−FX

[
ν(τ)

])
τ
(
1−FX

[
ντ

])
+ (1− τ)FX

[
ντ

] (6.4)

Which then shows that the τ-expectile is the weighted sum, balance, between the condi-
tional upside mean, E

[
X |ντ < X

]
and the conditional downside mean, E

[
X |X ≤ ντ

]
. This

is different from Value-at-Risk and Expected Shortfall, which only take the downside loss
into consideration and hence the τ-expectile is less conservative.

6.2 Definition of Expectile Value-at-Risk

The risk measure based on the expectile functional is called Expectile Value-at-Risk and
defined as follows.

Definition 6.2.1 Expectile Value-at-Risk is defined as

EVaRτ(X) = −ντ(X) (6.5)

where ντ(X) is the unique solution to the minimization problem of equation (6.2).

If on the other hand we are looking at a sample rather than a distribution, the ex-
pectiles are quite similar to quantiles and the difference is that the sample expectiles are
determined by tail expectations and not tail probabilities. For a given value of τ the
sample expectile, ν̃τ , is obtained by minimizing the function∣∣∣τ − 1{(xi−ντ )<0}

∣∣∣ (xi − ντ )2 for 0 < τ < 1 (6.6)

It is shown in Bellini [5] that the acceptance set associated with Expectile Value-at-
Risk is given by

AEVaR =
{
X ∈X :

EX+

EX−
≥ 1− τ

τ

}
(6.7)

where X+ = max{X,0} and X− = max{−X,0}. The similarity with VaR is also reflected by
the acceptance sets, see equation (4.4). From the acceptance set it is clear that EVaR can
be thought of as the expected gain-loss ratio which must exceed a certain threshold.

As mentioned at the beginning of this chapter a risk measure that is both coherent
and elicitable will be defined. That EVaR is that risk measure is shown below.

Theorem 6.2.2 EVaRτ(X) is a coherent risk measure.
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Proof Suppose that we a position with final net worth X ≥ 0, then of course the τ-
expectile is positive and hence EVaRτ(X) ≤ 0. Now to show that Expectile Value-at-Risk
is translation invariant and positive homogeneous let X̃ = kX+a, where k ≥ 0. It is shown
in Newey and Powell [32] that

ντ(X̃) = k ντ(X) + a (6.8)

So that it follows that for the Expectile Value-at-Risk for X̃ it holds

EVaRτ
(
X̃
)

= EVaRτ(kX + a) = kEVaRτ(X)− a (6.9)

If we have X1, X2 ∈X such that X1 ≤ X2 then evidently we have that ντ(X1) ≤ ντ(X2) and
hence EVaR(X1) ≥ EVaR(X2), which proofs monotonicity.

To show that EVaR also satisfies the fourth property of a coherent risk measure, I follow
Bellini [5] and rewrite the acceptance set Aν

Aν =
{
X ∈X : E[δX + (1− δ)X+] ≥ 0

}
(6.10)

where δ =
1− τ
τ

. It then follows that for τ ≤ 1
2

the acceptance set is convex. By definitions

2.2.3 and 2.2.4 that this leads to a convex risk measure.

�

That EVaRτ is also a elicitable risk measure, and hence a true risk measure in the sense
that it satisfies the axioms 2.5-2.10 follows from the theorem below.

Theorem 6.2.3 EVaR is an elicitable risk measure relative to the class F .

Proof For the full proof I refer to Gneiting [19], but for completeness I shall give the
main results. A scoring function S : R2 → [0,∞) is weakly-robust for the τ-expectile if
and only if it is of the form

S(x,y) =
∣∣∣1{s≥y} − τ ∣∣∣ · (φ(y)−φ(x)−φ′(x)(x − y)

)
(6.11)

where φ : R → R is a convex function and φ′ is its first derivative. Moreover, if φ is
strictly convex such that

EFφ(Y ) <∞ , EFφ(Y ) < ∞ (6.12)

exist and are finite for all F ∈ F , then S is robust for EVaR. Take φ to be defined by

φ(y) =
y2

1 + |y|
(6.13)
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Note that in this case Eφ(Y ) exists if and only EY exists and if finite. An application of
proposition 3.2.5 then gives the result.

SEVaR(x,y) =
∣∣∣1{s≥y} − τ ∣∣∣ · [ y2

1 + |y|
− x2

1 + |x|
−
(

2x
1 + |x|

− x2

(1 + |x|)2

)
(x − y)

]
(6.14)

�

Moreover, it is shown in Bellini [6] that EVaRτ is the only risk measure that satisfies
axioms 2.5-2.10.
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7Simulation Study:
Random Foreign Exchange Portfolio

So far the mathematical and statistical properties of risk measures have been the main
priority. This chapter is included to gain more insight in the practical implications of
risk measures. On the basis of a randomly chosen foreign exchange portfolio the risk is
calculated using Value-at-Risk, Expected Shortfall en Expectile Value-at-Risk.

7.1 Set-Up and Descriptive Statistics

To construct the random portfolio draw from a U [−1,1] distribution to determine the to-
tal position taken in each currency. Where a draw of -1 stands for a short position of $100
mln in that currency, and likewise a draw of 1 means a position of $100 mln long in the
corresponding currency. The results are shown in table 7.1 together with the equivalent
positions in US Dollars.

The risk of this portfolio is calculated using VaR, ES and EVaR on December 23 2014.

Currency Position
USD

Equivalence

Euro EUR −85 mln −103,5 mln
Britisch Pound GBP 41 mln 63,6 mln
Australian Dollar AUD −32 mln −25,9 mln
Canadian Dollar CAD 74 mln 63,7 mln
Swiss Franc CHF 99 mln 100,3 mln
Japanese Yen JPY −55 mln −0,5 mln
Chinese Yuan Renminbi CNY 40 mln 6,4 mln
Norwegian Kroner NOK −13 mln −1,8 mln
Mexican Peso MXN −22 mln −1,5 mln

Table 7.1: Weighted portfolio of nine currencies. Where the USD equivalence is based on the exchange
rate on 23-12-2014, rounded to one decimal.
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In the case of foreign portfolio’s the risk measurement procedure is quite simple and there
are two main methods to do so. The first, and least complex, method is that of historical
simulation. Within this method it is assumed that a bank’s foreign exchange position will
have the same distribution as it had in the past. The second is based on estimating a loss
distribution. Here I shall analyse the risk measures by the second method, called lda

(Loss Distribution Approach). A time period needs to be set, for exchange-rate risk the
typical so-called holding period is one day.

The descriptive statistics of the historical data can be found in tabel 7.2 and graphs
7.1 and 7.2 show the plots of the portfolio movements and a histogram of the verifying
historical observations. In total there are 13.086 observations corresponding to the time
period taken, that is for each of the nine currencies 1.455 observations. Any missing
values, which accounted for less than 3%, were non-consecutive and were replaced by
linear interpolation.

Figure 7.1: Movements of the weighted portfolio, in USD ·million, over the period 28-05-2009 through
30-10-2014.

Loss Distribution Approach

The compound loss distribution, X, of the foreign exchange rate position as in table 7.1
is the compound distribution of the loss arrival distribution and the loss/profit severity
distribution. For the loss arrival distribution, N , I fitted a Bernoulli distribution, since
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Figure 7.2: Histogram of the verifying historical data over the period 28-05-2009 through 23-12-2014,
in USD · million.

Source
Federal Reserve Bank of St. Louis

(Economic Research Division)
Frequency Daily
Sample period May 28, 2009 - December 23, 2014
Sample size 1.454 observations

Mean $ −0.014 mln

Standard Deviation $ 0.62 mln

Maximum $ 4.16 mln

Minimum $ −5.29 mln

Table 7.2: Descriptive Statistics of the loss data.

every new day can result in either a profit or a loss. For the loss/profit severity distri-
bution, L and P respectively, I follow Mo and Zhou [31] and fit a two parameter Pareto
distribution. The results are shown in table 7.3 and for the calculation of the maximum
likelihood estimates of the Pareto distribution I refer to Appendix C.

Thus the compound loss distribution X is given by

Xi = Ni · Pi − (1−Ni) ·Li (7.1)

34



Parameter Distribution

Loss Arrival Distribution N ∼ Ber(p) p̂ = 0,48

Loss Severity Distribution L ∼ Pareto(β,k) β̂
mle

= 0,482 k̂
mle

= 0,002

Profit Severity Distribution P ∼ Pareto(γ,`) γ̂
mle

= 0,297 ˆ̀
mle

= 0,001

Table 7.3: Estimated distributions of the loss arrival process and the profit/loss severity processes.

The compound loss distribution does not have a closed form expression, as is the mostly
the case in finance. And hence X is approximated by a Monte Carlo simulation, following
Zhou [31] the minimal simulations required is 100 000.

7.2 Results

From the results, see table 7.4, it is directly evident that Expected Shortfall is the most
conservative risk measure and Expectile Value-at-Risk is the least conservative, as was
also seen from the accpetance sets. Given a pre-specified probability of 0.1%, the min-
imum amount that should be added to the position is $ 3,44 mln when using Expected
Shortfall opposed to $2,27 mln when using Expectile Value-at-Risk. It is not hard to
imagine that a difference in the minimal required extra capital of $1,17 mln would make
it difficult to switch from Expectile Value-at-Risk to Expected Shortfall for banks.

It is also obvious that the differences in risk values gets larger when the pre-specified
probabilities, α and τ , get smaller. Which is also what is expected since the risk measures
are based on tail probabilities and tail expectations.

α 5 % 1 % 0,1 %

Value-at-Risk 1,11 mln 1,87 mln 3,01 mln

Expected Shortfall 1,59 mln 2,35 mln 3,44 mln

τ 5 % 1 % 0,1 %

Expectile Value-at Risk 0,84 mln 1,39 mln 2,27 mln

Table 7.4: Results based on Monte Carlo simulation (100 000 simulations).
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Part III

The Basel Accords
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8The Basel Committee

8.1 Disruptions Leading to the Establishment of the
Basel Committee

1973 The Bretton Woods System is an international basis for exchanging one currency
for another and was established in 1944. The system itself collapsed in 1971, when Pres-
ident Nixon severed the link between the US dollar and gold. By 1973 most of the major
world economies had allowed their currencies to float freely against the US dollar, which
led to bank failures amongst others.

June 1974 When West Germany’s Federal Banking Supervisory Office withdrew the li-
cense of Bankhaus Herstatt in June of 1974, because the bank’s foreign exchange expo-
sures amounted to three times is own capital, foreign banks started a race on the remain-
ing assets. As a result of liquidation they took heavy losses on their unsettled trades
which made the debacle not only a German one, gave it an international dimension.

October 1974 Just months later Franklin National Bank of New York also had to close its
doors. Upto that time Franklin National Bank had always been one of the most profitable
banks in the United States, but in 1972, when Michele Sindona (an Italian financier with
suspected connections to the mafia and Vatican Banking) bought controlling interest in
Franklin National Bank. Sindona, in an attempt to recuperate, led the bank into huge
foreign exchange losses which caused the bank to close in 1974.

In response to the these disruptions in the international financial markets, as well as
the ones stated in the preface, the central bank governors of 11 countries established a
Committee on Banking Regulations and Supervisory Practices. This was later renamed
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The United States of America The United States of America
1 Belgium 7 The Netherlands

2 Canada 8 Sweden

3 France 9 Switzerland

4 Germany 10 The United Kingdom

5 Italy 11 The United States of America

6 Japan 12 The United States of America
The United States of America The United States of America

Table 8.1: Members of the G-10.

as the Basel Committee on Banking Supervision.

The 11 countries who joined in on the establishment of the Basel Committee on Bank-
ing Supervision (bcbs), are known as the Group of Ten or G-10 for short. The G-10 have
agreed to participate in the General Arrangement to Borrow (gab), which was founded
in 1962. It seems a bit odd that a group of eleven countries are referred as the G-10, the
reason for this is that the eleventh member, Switzerland, didn’t join the association until
1964 and the name of the association remained unchanged. The full list of the members
can be found in tabel 8.1.

In 2009 the bcbs expanded their memberships and nowadays it includes 27 jurisdic-
tions, a list of which can be found in appendix C.1. The committee now reports an over-
sight body: the Group of Central Bank Governors and Heads of Supervision (ghos).

8.2 The Aim of the Basel Committee

The bcbs was designed as a forum on banking supervisory matters amongst the member
countries. Its aim was, and still is, to enhance financial stability by increased supervisory
knowhow and better supervision of banks worldwide. The bcbs wants to achieve this aim
by setting minimum standards. These aims where conducted on three area’s:

? Improving the effectiveness of techniques for supervising international banking
business.

? Exchanging information on national supervisory arrangements.

? Engage with challenges presented by diversified financial conglomerates.
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From the beginning, one of the most important aims of the committee was to close the
gaps that existed in international supervisory coverage to establish that

(1) No foreign banking organ would escape supervision,

(2) Supervision would be adequate and sufficient across al the 27 members.

8.3 The Future of The Basel Committee

Even before the implementation of Basel III, there was already rumour that the ground-
work for Basel IV was being set ([14] [16]). Moreover, the implementation of Basel III was
not planned until 2019. This points out that the Basel Committee shall keep on updating
the regulatory frameworks to fit the changing financial world.

In the 84th annual report the BIS stated that one of the key initiatives of the Basel
Committee is to further examine the balance between simplicity, comparability and risk
sensitivity in the regulatory framework. This has a great deal to do with the risk mea-
sures that is used. Since there has been a lot of debate about the limitations of VaR, which
the Basel Committee at first set aside but now say are highly relevant, presumably the
Committee will take these limitations into account for Basel IV.
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9Risk Measures of the Basel Accords

The risk measures used in the Basel Accord are used for setting capital requirements for
the banking- and trading books of financial institutions. The risk measures of the Basel
Accords lead to important regulations, naturally there is a lot of debate about which risk
measure should be used.

9.1 Basel I: the Basel Capital Accord

In the 1988 Basel Accord the rule was that the capital charge on commercial loans should
be a uniform 8% of the loan face value. This rule was only risk sensitive in the sense that
certain countries, banks and classes of loans. The foundations of this percentage were not
mathematical, but rather seemed about right on average.

After Value-at-Risk made its appearance in the 1990’s, the percentage rule of 1988
was no longer the benchmark for risk measurement (see [24]). Gordy [21] showed that
under five assumptions on the different exposures within a position the rule of Basel I is
asymptotically equivalent to VaR0.01.

For what I could find there is no direct link between the Quantile Risk Measure as it
was first used in actuarial science and the method of measurement used in the first Basel
Accord. Seemingly these two measures where used separately.

This Basel Accord was valid upto 2004, hence VaR had been the standard for risk
measurement for almost 20 years. Understandably this led to situation that it was very
hard to change this standard, since all people working with it were so used to the measure
by this time.
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9.2 Basel II: the New Capital Framework

Basel II was initially published in 2004, in order to create an international standard for
risk regulation. By that time there had already been done a large amount of discussion
about the risk measure VaR. Expected Shortfall became the number one candidate to re-
place VaR, because it is a coherent risk measure.

However, the Basel Committee decided not to take Expected Shortfall since backtest-
ing is of the utmost importance in practice and ES is not elicitable. Instead the risk
measure used in Basel II is the so-called VaR - With Situation Analysis. This risk measure
specifies that the capital charge for the trading book on a particular day t for banks using
the internal model approach should be calculated by the formula

IIt(X) := max

VaRα(Xt−1),
k

60
·

60∑
i=1

VaRα(Xt−i)

 (9.1)

where k ≥ 3 is a constant. It is easily seen that the measure IIt(X) as stated above is not a
true risk measure in the scope of this thesis.

Theorem 9.2.1 The measure used in the Basel II is not a true risk measure, since it is not a
coherent risk measure.

Proof The proof is trivial, since it is the maximum of two Value-at-Risk measures. And
it was shown in chapter 4 that VaR is not sub-additive.

�

Even though the Basel II risk measure is not a true risk measure since it lacks one of
the properties, note that it remains an elicitable risk measure based on proposition 3.2.5
and the quantile functional.

9.3 Basel III: the Liquidity Coverage Ratio & Liquidity
Risk Monitoring Tools

The banking crisis which started in 2007/2008 made it politically difficult to implement
Basel II and therefore the negiotiations for Basel III started early on. Again the rumour
had it that Value-at-Risk would be replaced by the sub-additive measure Expected Short-
fall. And, again, at the last moment it was decided to cling to VaR with Situation Analysis.
They did however introduce a new version of this measure because there was debate on
the sensitivity to procyclicality with the risk measure of Basel II.
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IIIt(X) := max

VaRα(Xt−1),
k

60

60∑
i=1

VaRα(Xt−i)

 + max

sVaRα(Xt−1),
`

60

60∑
i=1

sVaRα(Xt−i)


(9.2)

Where sVaRα is called stressed VaR. This is the Value-at-Risk risk measure computed
under the scenario that the financial market is under stress, as was the case during the
recent financial crisis. It was added to compensate for procyclicality. Due to this extra
term, this risk measure is mostly referred to as a stress test.

Theorem 9.3.1 The Basel III risk measure is not a true risk measure since it is neither coherent
nor elicitable.

Proof Since VaR is not sub-additive then clearly the Basel III risk measure is not sub-
additive since it is the sum of two VaRs. Moreover the sum of two distinct quantiles is in
general not robust.

The following example illustrates that in general the sum of two distinct quantiles,
like VaR and sVaR, do not have convex level sets.

Take α = 0.01, I will supress the α in the notation from this point on. Suppose the
position X ∈X is estimated by the two discrete distributions F1,F2 ∈ F such that

P1 =
[
X = −$100.000,-

]
= 0,008 P1 =

[
X = 0

]
= 0,992 (9.3)

PS1

[
X = −$100.000,-

]
= 0,05 PS1

[
X = 0

]
= 0,95 (9.4)

where P1 stands for the the standard distribution under F1 and PS1 denotes the estimated
distribution for a stressful market under F1. Likewise we have

P2 =
[
X = −$100.000,-

]
= 0,000064 P2 =

[
X = −$50.000,-

]
= 0,03

P2 =
[
X = 0

]
= 0,969936 (9.5)

PS2

[
X = −$100.000,-

]
= 0,0025 PS2 =

[
X = −$50.000,-

]
= 0,1

PS2

[
X = 0

]
= 0,9875 (9.6)

Then the mixture distribution Fλ ∈ F , for λ = 2
3 is given by

Pλ =
[
X = −$100.000,-

]
= 0,0061 Pλ =

[
X = −$50.000,-

]
= 0,01

Pλ =
[
X = 0

]
= 0,9839 (9.7)

42



PSλ

[
X = −$100.000,-

]
= 0,0338 PSλ =

[
X = −$50.000,-

]
= 0.0067

PSλ

[
X = 0

]
= 0,9595 (9.8)

If we assume that

VaRα(Xt−1) = max

VaRα(Xt−1),
k

60

60∑
i=1

VaRα(Xt−i)


sVaRα(Xt−1) = max

sVaRα(Xt−1),
`

60

60∑
i=1

sVaRα(Xt−i)

 (9.9)

Then in this situation we have IIIF1
(X) = IIIF2

(X) = $100.000,-. And

IIIFλ(X) = VaRFλ(X) + sVaRFλ(X)

= $50.000,- + $100.000,- (9.10)

And we see that there is a λ ∈ [0,1], such that we don’t have convex level sets

IIIF1
(X) = IIIF2

(X) , IIIFλ(X) (9.11)

�
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10Natural Risk Statistics

As stated before, one of the four main goals of the Basel Committee is to further investi-
gate the simplicity, comparabiltiy and sensitivity in the regulatory framework. In order to
say anything about booked success in this area I shall make a comparison with the theory.
In order to do so in this axiomatic setting of risk measures, the risk measures introduced
by the Basel Committee should also be fitted into such a setting. This is exactly what Kou,
Peng and Heyde [26] have done, they have set up an axiomatic approach to define a class
that includes the Basel Risk Measures.

10.1 Axiomatic Approach to Natural Risk Statistics

The risk measure of the Basel III Accords discussed previously do not fit into a class of
measures treated, however Kou, Peng and Heyde [26] formulated a set of axioms which
classifies this risk statistics, the so-called natural risk statistics. Not only the Basel III risk
measure belongs to this class, but the Basel II risk measure does as well.

Definition 10.1.1 A risk statistic is a mapping µ̂ :Rn→R.

A risk statistic is a data-based risk measure. Where a risk measure uses a measurable
function X to define risk, a risk statistic uses x = (x1,x2, . . . ,xn) to represent X.

Definition 10.1.2 x = (x1,x2, . . . ,xn) and y = (y1, y2, . . . , yn) are scenario-wise comonotonic if
for all 1 ≤ j,k ≤ n it holds that (

xj − xk
)(
yj − yk

)
≥ 0 (10.1)

If x, y ∈Rn represent the random losses of position X and Y respectively, then if x and
y are scenario-wise comonotonic means that X and Y move in the same direction.

Axiom 10.1 Positive homogeneity and translation scaling:

µ̂
(
kx + a

)
= k · µ̂(x) + a (10.2)

for all x ∈Rn, k ≥ 0, a ∈R.
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Axiom 10.2 Monotonicity:
µ̂(x) ≤ µ̂(y) , if x ≤ y (10.3)

where x ≤ y means that xi ≤ yi for i = 1, . . . ,n.

Note that these first two axioms are the counterparts of the axioms 2.5 and 2.7 of
monetary risk measures.

Axiom 10.3 Scenario-wise comonotonic sub-additivity:

µ̂ (x + y) ≤ µ̂(x) + µ̂(y) (10.4)

for any x, y ∈Rn that are scenario-wise comonotonic.

Axiom 10.4 Empirical law-invariance: for any permutation (pi,1, . . . ,pi,ni ) of (1,2, . . . ,n) and
i = 1, . . . ,m we have

µ̂(x1, . . . ,xm) = µ̂(xp1,1
1 , . . . ,x

p1,n1
1 ,x

p2,1
2 , . . . ,x

p2,n2
2 , . . . ,x

pm,1
m , . . . ,x

pm,nm
m ) (10.5)

This last axiom is the risk statistic counterpart of law invariance, see definition 6.0.2.

That the risk measure of the Basel II Accord given by equation (9.1) and the risk
measure of the Basel III Accord given by equation (9.2) are special cases of the class of
natural risk measures I refer to [26].

10.2 Risk Measures vs Risk Statistics

Kou, Peng and Heyde [26] have three main arguments on why they use risk statistics
rather than risk measures.

(1) Risk statistics directly measure risk from the available dataset, which greatly re-
duces model misspecification errors since they do not require specifying subjective
models.

(2) Risk statistics can include data subsets generated by models based on forward-
looking views or prior knowledge.

(3) Risk statistics can incorporate multiple prior probabilities which reflect multiple
beliefs about the probabilities of occurrence of different scenario’s.
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α 5 % 1 % 0,1 %

Value-at-Risk 0,88 mln 1,57 mln 4,82 mln

Expected Shortfall 1,90 mln 2,66 mln 5,14 mln

τ 5 % 1 % 0,1 %

Expectile Value-at Risk 0,71 mln 1,36 mln 3,34 mln

Table 10.1: Results based on historical data simulation over the period May 28, 2009 through Decem-
ber 23, 2014.

To make a comparison between risk measures and risk statistics I also calculated the
three main risk measures of this thesis from a risk statistics point of view, hence I calcu-
lated them based solely on the dataset. The results are displayed in table 10.1.

From the results it appears that risk statistics are more sensitive to the tail probabil-
ities and tail expectations. With smaller pre-specified probabilities, the differences with
the loss distribution approach get more significant. Which is not surprising since by defi-
nition risk statistics depend solely on the data en hence the are sensitive to changes. Also
there is a limited dataset that may be used in the analysis. The near history gives a better
picture of the present situation than the distant history. Using a limited dataset makes
that the outliers have a larger contribution to the results.

In my opinion using risk statistics rather than risk measures could be a great practical
advantage when dealing with internal risk management, since they can include differ-
ent beliefs and forward-looking views of banks. However, including subjective beliefs
and/or forward views increases the chances of model misspecification and nullifies the
main advantage. From an external (regulatory) point of view, risk statistics are sensitive
to the ‘choice’ of the data set and hence in this case the preferred method would be risk
measures.

10.3 True Risk Measures Axioms vs Natural Risk Statistic
Axioms

Including convex level sets to the axioms of risk measures was one of the main objectives
of this thesis. A risk measure should belong to both the class of coherent measures and
the elicitable risk measures. Risk statistics are not distribution based and therefore are
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sensitive to changes in the data set. The axioms for natural risk statistics thus do not take
both steps of the risk measurement procedure into account.

An another major difference between the axioms of true risk measures and those for-
mulated by Kou, Peng and Heyde is scenario-wise comonotonicity. As mentioned in chap-
ter 2 I do not think that the comonotonicity property is a suitable mathematical represen-
tation in practice. See example 2.2.2. The example illustrates that the assumption that
the future net worth of different risky financial instruments should be perfect substitutes
is incorrect. The example also applies to scenario-wise comonotonicity.

If you do accept (scenario-wise) comonotonic sub-additivity as an axiom for risk mea-
sures, than of course the axiomatic approach taken by Kou, Peng and Heyde has an ad-
vantage over coherent risk measures. The relaxation of the sub-additivity property to
scenario-wise comonotonic sub-additivity then makes the class of risk measures far less
restrictive. But from a regulatory point of view, coherent risk measures are less suitable
than elicitable risk measures. And thus I believe that for the risk measures of the Basel
Accord elicitability is property of interest.

The axiom on empirical law invariance should take into account the estimation step
within the risk procedure. Since it is data based, there is not estimation done. If you
consider the distribution based equivalent of empirical law invariance, law invariance.
It was shown that including this axiom causes a conflict to arise between coherent risk
measures and elicitability.

In my opinion, the best way to approach the measurement of risky positions remains
the axiomatic approach of Artzner et all. extended with convex level sets which is neces-
sary for the exclusion of non-elicitable risk measures.
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Overview
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11Summary

The procedure of measuring risky positions consists of two equally important parts.

(1) Estimating the loss distribution of the position.

(2) Defining a risk measure that summarizes the risk of the position.

Roughly speaking, the first part of the procedure is represented by the class of elic-
itable risk measures, while the second part is dealt with by the class of coherent risk
measure. I therefore argue that a true risk measure should be both coherent and elic-
itable.

The most widely known, and used, risk measure is the so-called Value-at-Risk mea-
sure. VaR is defined as minus the α-quantile of the loss distribution;

VaRα(X) = −q(α)(X) (11.1)

where q(α)(X) is the largest α-quantile. Since it is based on the quantile functional VaR
is an elicitable risk measure but not a coherent risk measure. It lacks the property of
sub-additivity. Another shortcoming of Value-at-Risk is that it doesn’t take into account
the severity of the risk beyond the VaR-value.

After the article of Artzner et all [3] Thinking Coherently, the most likely candidate to
replace VaR as a practical monetary risk measure was the coherent risk measure Expected
Shortfall.

ESα(X) = −1
α

(
E
[
X1{X≤q(α)}

]
− q(α)

(
P
[
X ≤ q(α)

]
−α

))
(11.2)

Expected Shortfall also has it limitations, the most important being that it is not an
elicitable monetary risk measure. Due to the lack of this property, the Basel Committee
decided not to use Expected Shortfall as the coherent alternative to VaR. That ES is not
elicitable can easily be shown by a simple counterexample which shows that this measure
does not have convex level sets, a necessary condition for elicitability. Another shortcom-
ing of Expected Shortfall is that it is highly sensitive to the tail loss distribution.
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It has been thought for some time that there exists a conflict between elicitability and
the coherent properties. However, Gneiting (amongst others) found that there is indeed
a monetary risk measure that is both coherent and elicitable. This is the risk measure
known as Expectile Value-at-Risk defined by

EVaRτ(X) = −ντ(X) (11.3)

where ντ(X) is the unique solution tot the minimization problem of the following equa-
tion,

τ

∫ ∞
ντ

(
y − ντ

)
dX(y) = (1− τ)

∫ ντ

−∞

(
y − ντ

)
dX(y) (11.4)

Risk measures are of practical importance since they are used in regulatory frame-
works such as the Basel Accords. The first Basel Accord dates back to 1988. This at first
was not a real risk measure but rather a percentage of a position’s face value. However
since the introduction of VaR within risk management of banks it quickly became the
standard. Moreover, it was shown by Gordy that the percentage of the first Basel Accord
is asymptotically equivalent to the 99.9% Value-at-Risk.

Regardless of the comments and limitations the Basel Committee continued using VaR
as the standard risk measure in the second and third framework. Below the risk measure
of Basel II and Basel III, denoted by IIt(X) and IIIt(X) respectively.

IIt(X) := max

VaRα(Xt−1),
k

60
·

60∑
i=1

VaRα(Xt−i)

 (11.5)

IIIt(X) := max

VaRα(Xt−1),
k

60

60∑
i=1

VaRα(Xt−i)

 + max

sVaRα(Xt−1),
`

60

60∑
i=1

sVaRα(Xt−i)


(11.6)

It is widely known that the risk measures used by the bcbs are not coherent, since they
use VaR. Moreover, I showed in this thesis that the risk measure used in the third Basel
Accord is neither coherent nor elicitable, because it is the sum of two VaR’s.
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12Conclusion

Based on the axiomatic approach used in this thesis, I conclude that a true risk measure
which takes into account both the desired mathematical and statical properties should
belong the class of coherent risk measures as well as the class of elicitable risk measures.
And hence, for as far is known at this moment, is a risk measure based on the expectile
functional.

Based on the mathematical properties Expected Shortfall to me is the least suitable
risk measure. From a regulatory point of view it is important that a risk measure is elic-
itable. Moreover, in my conversations with risk managers and risk modellers I found that
it is preferrable that a risk measure isn’t conservative. The reason being that a conserva-
tive risk measure leads to more complex situations in practice because of the additional
restrictions on the required capital.

Like Expected Shortfall the risk measure Expectile Value-at-Risk also takes the tail
loss distribution into consideration, however is it weighted against the tail profits. This is
a more natural manner of looking at risky positions. In most cases positions are entered
according to the risk appetite of banks, the amount and type of risk a bank is willing to
take in order to meet their objectives. And hence earnings should also be included in the
decision making process.

From a mathematical point of view the Basel Committee made a measured decision
when they formulated the measure of the second Basel Accord and they didn’t replace
Var with Expected Shortfall. The realization of the risk measure in the third Basel Ac-
cord cannot be explained by the mathematics of this thesis. The measure IIIt(X) does not
belong to the class of coherent risk measures nor is it elicitable. Moreover, the axioms
that do classify this risk measure are not a valid reflection of the underlying economic
meaning in my opinion.

Hence, if I were to rank the risk measures, from most favorable to least favorable, the
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list would be as the one below.

1. Expectile Value-at-Risk

2. Risk measure of the Basel II Accord

3. Value-at-Risk

4. Expected Shortfall

5. Risk measure of the Basel II Accord

From an implementation point of view it would not be too problematic for banks to
switch from VaR tot Expectile VaR, since the latter is the lesser conservative risk measure.
Unfortunately I found that Expectile Value-at-Risk is virtually unkown in practice. The
only downside to EVaR that I have found so far is that the expectiles are not as simple to
use and easy to understand as quantiles are. Most of the practioners are not mathemati-
cians and a proper understanding of risk measures is necessary in order to avoid (costly)
mistakes.
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13Recommendations

It still remains an open question in risk theory whether it is possible to make a classifi-
cation for elicitable risk measures. Following Gneiting [19] and Bellini [5] for this thesis
I tried to prove that the property of convex level sets is not only necessary for elicitable
risk measure, but it is also sufficient. However, I was not able to prove this hypothesis, or
find a counterexample.

Hypothesis 13.0.1 If a monetary risk measure, ν :X →R has convex level sets in the follow-
ing way, let F1,F2 ∈ F , such that νF1

(X) = νF2
(X). Define

F 3 Fλ = λ ·F1 + (1−λ) ·F2 (13.1)

then for all λ ∈ [0,1] it holds that

νλF1 +(1−λ)F2
(X) = νF1

(X) = νF2
(X) (13.2)

Then ν is an elicitable monetary risk measure.

Based on the article of Gneiting [19] I find that it is plausible to assume that the hy-
pothesis is correct, in this article he shows that besides quantiles and expectiles, als ex-
pectations and ratio’s of expectations (all of which have convex level sets) are elicitable.
Moreover he shows that the mode is asymptotically elicitable, whether or not the mode is
also elicitable in the ‘normal’ sense he wasn’t able to show at that time.

The fact that finding a scoring function that makes the mode elicitable is already a
difficult task may indicate that the hypothesis is not true. The mode is a relatively simple
statistical functional and much more complex functionals, with the property of convex
level sets, could be constructed. However, if the hypothesis is true, then the proof will be
very analytical since it then depends on finding a scoring function that makes an arbitrary
monetary risk measure with convex level sets elicitable. But if it is possible to do so, a
counterpart of theorem 2.2.4 exists.
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Theorem 13.0.2 If a set E satisfies axioms 2.1-2.4 then the associated risk measure νE satisfies
properties ??-3.24 of elicitable monetary risk measures. Moreover, we have that the closure of
E is the associated acceptance set, ie Ē =Aν .

Proof The axioms 2.5 through 2.8 have already been covered in the previous section.
What is left is to proof that the risk measure νE satisfies property 3.24 from definition
3.2.4.

Suppose X1, X2 ∈ E are such that νE (X1) = νE (X2), then

νE (X1) = inf
{
a1 : X1 + a1 ∈ E

}
= inf

{
a2 : X2 + a2 ∈ E

}
= νE (X2) (13.3)

By the definition of νE and the properties of the infimum we get

νE
(
λX1 + (1−λ)X2

)
= inf

{
a : λX1 + (1−λ)X2 + a ∈ E

}
≥ λ · inf

{
a1 : X1 + a1 ∈ E

}
+ (1−λ) · inf

{
a2 : X2 + a2 ∈ E

}
= λνE (X1) + (1−λ)νE (X2)

= νE (X1) = νE (X2) (13.4)

On the other hand by axiom 2.4 and 2.3, if

X1 + a1 ∈ E and X2 + a2 ∈ E (13.5)

Then by convexity, for λ ∈ [0.1]

λ
(
X1 + a1

)
+ (1−λ)

(
X2 + a2

)
∈ E (13.6)

By definition of the infimum, for given ε > 0, there exist x1 ∈ {a1 : X1 + a1 ∈ E } and x2 ∈
{a2 : X2 + a2 ∈ E } such that

x1 < inf {a1 : X1 + a1 ∈ E } +
ε
2

x2 < inf {a2 : X2 + a2 ∈ E } +
ε
2

(13.7)

Hence, for all ε > 0 there exists a summation x1 + x2 such that

x1 + x2 < inf {a1 : X1 + a1 ∈ E } + inf {a2 : X2 + a2 ∈ E } + ε (13.8)

Showing that, together with positive homogeinity, for all λ ∈ [0,1]

νE
(
λ ·X1 + (1−λ) ·X2

)
≤ λ · νE (X1) + (1−λ) · νE (X2)

= νE (X1) = νE (X2) (13.9)

And we conclude equality.
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The main advantage of characterizing elicitable monetary risk measures is that you
can construct a risk measure that is elicitable bottom-up, as in the case of Expected Short-
fall. And hence any characterization of the class of elicitable risk measures, and not just
by convex level sets, would a great contribution to risk theory.
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AAppendix

A.1 Quasi-Convexity

A function f : A→ R defined on a convex subset C ⊂ A is said to be quasi-convex if for
all x,y ∈ C and λ ∈ [0,1] it holds that

f
(
λx + (1−λ)y

)
≤ max

{
f (x), f (y)

}
(A.1)

Note that all convex functions are quasi-convex, but not all quasi-convex functions are
convex. And hence quasi-convexity can be seen as the generalization of convexity.

A.2 Comonotonicity

The measurable function X1 and X2 are said to be comonotonic if and only if

∀ω1,ω2 ∈Ω ⇒
(
X1(ω1)−X1(ω2)

)(
X2(ω1)−X2(ω2)

)
≥ 0 (A.2)

A.3 MLE for Pareto Distribution

Recall that the probability density function of the two parameter Pareto distribution is
given by

f (x |β,k) =
β · kβ

xβ+1 (A.3)

where β,k > 0 and k ≤ x. The likelihood function, L, then has the form

L (β,k |x) =
N∏
i=1

β · kβ

x
β+1
i

(A.4)

Without any further calculations we see that the maximum likelihood estimator for k
must be

k̂
mle

= min {xi} (A.5)
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since L get large when k increases but the restriction on k is that it isn’t larger than the
smallest sample value. Note that the likelihood function is non-negative and hence it is
easier to look at the log-likelihood function.

log(L) = N · logβ + N · β logk − (β − 1)
N∑
i=1

logxi (A.6)

Taking the partial derivative to β and setting it equal to zero yields

∂ log(L)
∂β

=
N
β

+ N · logk −
N∑
i=1

logxi (A.7)

And hence, replacing the parameter k by its maximum likelihood estimator, we arrive
at the maximum likelihood estimate

β̂
mle

=
N∑N

i=1 log
[
xi
k̂
mle

] (A.8)
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BAppendix

B.1 Currency Graphs

The data of the graphs in this appendix are taken from the Federal Reserve Bank of St.
Louis, Economic Research Department. All graphs run from June 28 2013 through Octo-
ber 30 2014.
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CAppendix

C.1 List of All Jurisdictions Included in the BCBS

The United States of America The United States of America
1 Argentina 14 Luxembourg

2 Australia 15 Mexico

3 Belgium 16 The Netherlands

4 Brazil 17 Russia

5 Canada 18 Saudi Arabia

6 China 19 Singapore

7 France 20 South Africa

8 Germany 21 Spain

9 Honk Kong SAR 22 Sweden

10 India 23 Switzerland

11 Indonesia 24 Turkey

12 Italy 25 The United Kingdom

13 Japan 26 The United States of America

14 Korea 26 The United States of America

The United States of America The United States of America

Table C.1: List of all jurisdictions included in the bcbs.
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