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1 INTRODUCTION

“From late antiquity to the 17th century, astronomy had two related goals: to show that the
movements of the planets were not haphazard but regular and therefore predictable, and to

predict them with accuracy. All else that concerned astronomers was peripheral.”*

Heraclides of Pontos established already in the fourth century B.C. that the Earth rotates on
its axis2. This movement is certainly not the only movement of the Earth and in this thesis |
will discuss several of these movements. In particular the precession of the equinoxes, which
is one of the Milankovitch cycles. Milankovitch cycles are astronomical units that create
cyclic variations in the Earth’s movement. These cycles influence the global climate. Due to
time constraints | could not cover all cycles, so | decided to pick one representative example.

The goal of my thesis is to explain precession from Hipparchus (second century B.C.) until
Newton (18th century A.D.). Hipparchus was the first one to note the existence of precession
and Newton was the first one to find its cause. In the next chapter | will describe some basic
phenomena needed to read this thesis. The chapters that follow describe precession from
Hipparchus till Newton.

! Hoskin, Cambridge lllustrated History of Astronomy, p. 22
2 Ptolemy, p. 44n41



2 BASIC PHENOMENA

Before starting the story on the Milankovitch cycles, we need to familiarize ourselves with
the various heavenly phenomena that lie at the basis of these cycles. In this thesis | will
describe a system of the Sun, the Earth and its Moon, the five planets (Mars, Jupiter, Saturn,
Pluto and Venus) and the sphere of the fixed stars. The astronomers of antiquity thought
that the Earth stood still in the centre of the universe and that the heavenly bodies moved
around it. Based on these ideas they were able to derive a system to describe the heavenly
phenomena based on philosophical and mathematical ideas.

In antiquity astronomers made use of a gnomon,

Conjunction

which is a primitive Sundial consisting of a stick
placed vertically on a horizontal surface.® With this
! stick they could measure the length and direction of
Sun 3 e h the Sun’s shadow during the day. Of course the

i (stationary) wesen _length will vary, but the direction of the shortest

quadrature  shadow will be the same every day. After observing

Eastern
quadrature

these shadows long enough, astronomers noticed

Opposition

that these variations repeated itself and when
FIGURE 2-1 combined with weather data this lead to the concept
of seasons.

A heavenly body is in conjunction if it lies on a straight line from the Earth through the Sun
and in opposition if it lies on the same line as the Sun with the Earth on the other side of the
Sun (see figure 2-1). Collectively
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called the celestial poles. The
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FIGURE 2-2 celestial
celestial equator, the line pole

connecting these poles is called the Earth’s rotation axis. The celestial equator lies in the
same plane as the Earth’s equator and divides the Earth in a northern and southern
hemisphere (see figure 2-2). The celestial sphere itself completes a revolution about the

3 Linton, p. 2



poles in 23 hours and 56 minutes, which is called a sidereal day. “A sidereal year is the time
»na

it takes for the Sun to return to the same position with respect to the stars.
Another circle on the starry vault is the ecliptic on
Ce.e';'ﬁ;',"po,e which the Sun always appears to be located
Descending Node —._ during a year. The ecliptic cuts the celestial
) equator twice, at the equinoxes (see figure 2-2),
and makes an angle of € = 23.5° with the celestial
equator at these points. This angle is called the
obliquity of the ecliptic and is not a constant, as
we will see later on. At the event of an equinox
the lengths of the day and night are equal. The

equinoxes are the two moments when the Sun
Ascending Node crosses the celestial equator, a spring equinox in
March and an autumn equinox in September.

FIGURE 2-3

Some other lines on Earth: the lines that connect
the celestial poles are called lines of longitude, whereas the circles parallel to the celestial
equator are called lines of latitude. There is also the longitude on the sky; this is the angle of
an object measured eastwards along the ecliptic from the spring equinox points.’

Besides the Earth’s and Sun’s orbit, there is also the orbit of the Moon which inclines 5
degrees with the ecliptic. The points where the orbit of the Moon cuts the ecliptic are called
the ascending and descending nodes. These points are situated on the line of nodes and
have a retrograde motion of 18,6 years. In special cases, the Sun aligns with the line of
nodes, which causes a solar or lunar eclipse, also referred to as a syzygy.

2.1 SYSTEMS

Now that | have introduced the necessary terminology | can explain the world systems of
several astronomers from antiquity. Although they had different theories to explain the
motions of the universe, they all had similar goals: to show that the movements of the
planets were not haphazard but regular and therefore predictable, and to predict them with
accuracy. All else that concerned astronomers was peripheral.®

However, this turned out to be more complicated than
expected. Already in antiquity, astronomers observed that the
planets did not move in a uniform circular motion. So the simple
system of Aristotle, in which all heavenly bodies moved in
concentric circles about the Earth, did not suffice. To explain
these irregular observations they came up with several ideas.
One of these ideas was an eccentric circle by Apollonius from
Perga (ca. 262 — ca. 190 B.C.). This is still a perfect circle but
without the central body being in the middle of the circle. The

FIGURE 2-4

4 http://astro.unl.edu/naap/motion3/sidereal_synodic.html
> Hoskin, Cambridge lllustrated History of Astronomy, p. 376
e Hoskin, Cambridge lllustrated History of Astronomy, p. 22



difference between the central body and the centre of the circle is called the eccentricity of
the eccentric circle. If a Sun-centred system is assumed, in this orbit there is point of
greatest distance from the Sun, the aphelion and the point of least distance, the perihelion.
Collectively they are called the apsides. If an Earth-centred view is taken, these points are
called apogee and perigee respectively (but of course the distance is then taken from the
Earth instead of the Sun). Another idea by Apollonius was the epicyclic hypothesis (as in
figure 2-4). In this case the circle ABCD is concentric to E, but the body moves on the circle
ZHOK about E. The main idea behind these hypothesises was to explain the observed
irregular movements of the orbiting bodies by developing a model that had the bodies move
uniform but only make them appear non-uniform.

2.2  MILANKOVITCH CYCLES

Milutin Milankovitch was a Serbian astronomer in the mid-twentieth century and he was the
first one to calculate the impact of astronomical changes on the climate. He based this on
three sorts of astronomical changes: eccentricity, obliquity and precession, as seen in the
figure 2-5. These three astronomical changes together make up the Milankovitch cycles. In
this section | will explain what these cycles are.

Eccentricity Obliquity Precession
FIGURE 2-5
Orbital Eccentricity

Eccentricity was already discussed in section 2.1 as a parameter

that defined the difference between the actual centre of the e b \\\
circle and the central body. If the circle is not a perfect circle, { a }
but for instance an ellipse, eccentricity is defined slightly S
. \\ —~— — /
differently.
FIGURE 2-6

An ellipse is a curve with two focal points that lie on the ellipse’s

semi major axis, the longest axis in the ellipse. The semi minor axis is the longest axis
perpendicular to the semi major axis, they are respectively a and b in the figure 2-6. In the
case of planets orbiting each other, the Sun is at one of the two focal points, whereas the
planet moves on the curve about the Sun.

Eccentricity is then the parameter that determines the amount by which its orbit about a
body deviates from a perfect circle. In case of an ellipse this values lies strictly between 0
and 1.

The eccentricity is calculated by the following formula:



b2
e= [1-—=

here a is the semi major axis and b the semi minor axis.

The eccentricity of the Earth has a period of 100.000 years and its value now is around
0.0167, but it varies between 0.0034 and 0.058. If this elliptical orbit would have been
drawn to scale on this piece of paper it would look like a perfect circle, due to its very small
eccentricity.

Obliquity

The angle of the Earth’s obliquity is the angle between its rotational axis and its orbital axis
(the axis perpendicular to the ecliptic). Obliquity has a period of 41.000 years and its current
value is 23.4°, the value varies between 22° and 24.5°.

Precession

There are two types of precession, the axial precession and the precession of the ellipse,
which make up the precession of the equinoxes. Axial precession (see figure 2-5) is where
the Earth’s axis makes a wobbling motion and has a period of about 26.000 years. Nowadays
the northern hemisphere is pointed towards the Sun at perihelion in the summer. 13.000
years ago, the northern hemisphere was pointed towards the Sun in aphelion (see figure 2-
7).

The period of the other type of precession is much slower, it has a period of about 134.000
years, and was not explained well until the 19" century, and so it is beyond the scope of this
thesis. In the rest of the thesis | will use the term precession of the equinoxes for the axial

precession, since this is what Hipparchus and Newton did as well.

The minimal and maximal values of the Milankovitch cycles were obtained by numerical
integration methods. The methods of the French astronomer Laskar could obtain these
values for a time period of 250 Myr.”

Yy Polaris < Vega

North North
South South
Present ~ 13,000 years ago
FIGURE 2-7

7 Laskar et al. 2011



2.2.1 EFFECT ON CLIMATE

Figure 2-7 shows the present situation and the situation 13.000 years ago. During the
northern hemisphere summer, the Earth stands in aphelion and the northern hemisphere is
tilted towards the Sun, while in the winter the Earth stands in perihelion and the northern
hemisphere is tilted away from the Sun. This means that Earth gains more solar radiation
during the northern hemisphere winter, because it stands closer to the Sun than during the
northern hemisphere summer. However, during northern hemisphere summer, the
northern hemisphere is tilted towards the Sun. This means that the angle of the incoming
radiation is much smaller, so it receives more of the incoming radiation. During northern
hemisphere winter, this effect is opposite. For the southern hemisphere, timing of summer
and winter are exactly opposite, which has the consequence that Earth is closest to the Sun
during southern hemisphere summer while it is furthest from the Sun during southern
hemisphere winter. The result of this situation is that climate on the southern hemisphere is
more extreme than on the northern hemisphere. 13.000 year ago, this situation was exactly

opposite.8
An example: ice ages

Contrary to the expectation, the growth of ice caps is determined by the summer
temperature instead of the winter temperatures. When there are hot summers, ice caps
will melt faster than during mild summers and cold winters will not be able to restore the
loss of ice. Ice caps will melt slower during mild summers, while mild winters are still cold
enough for the ice to grow back. As a result of this, ice caps keep shrinking during these
years of hot summers, which result in minima in ice volumes. The years of mild summers and
mild winter, could result in "ice ages", especially when eccentricity is in a minimum.

® Ruddiman. p. 157



3 CLASSIC ANTIQUITY — SCIENTIFIC REVOLUTION

3.1 CiAssic ANTIQUITY: HIPPARCHUS

In the second century B.C. an astronomical observatory was built by one of the greatest
astronomers of antiquity, Hipparchus of Nicea (ca. 190 — ca. 120 B.C.), on the island of
Rhodes. From all the observations and retrieved data astronomical problems arose and from
these, lots of calculations. Mostly, they involved triangles and it was for this reason that the
subject of trigonometry was developed. Hipparchus is nowadays still considered to be the
founder of trigonometry. Without us knowing how he did it, he constructed a table of
chords, which is equivalent to a table of sines. Like we still do, he subdivided the circle into
360 degrees, an idea that came from the Babylonians and was brought to him by the On
Ascensions of Hypsicles of Alexandria (ca. 180 B.C.):’

Although, sometimes it is difficult to distinguish between the discoveries of Hipparchus and
Ptolemy, since most of the works of Hipparchus were lost and everything we know about
him now was brought to us by Ptolemy’s Almagest. In On the Length of the Year™,
Hipparchus calculated very precisely the length of the tropical year. The tropical year is the
time between identical equinoxes, which was already set to 365.25 days by Aristotle.
Hipparchus corrected this value to 365.247 days or equivalently 365 days 5 hours 55 minutes
andO0 12 seconds. This exceeds the modern value by only 6 and a half minutes. After having
determined this exact value, he could calculate the parameters needed for the eccentric
circle (or epicycle-deferent system) theory by Apollonius of Perga (ca. 240 — ca. 190 B.C.) as
explained in chapter 2.

About 150 years earlier, two other astronomers lived, Timocharis and Aristillos. Their
observations of the longitude of certain stars were read and compared by Hipparchus, who
used this to discover the precession of the equinoxes. He discovered this by comparing the
length of the tropical year (slightly less than 365.25 days) to the length of the sidereal year
(which is slightly greater than 365.25 days). Hence, Hipparchus came to the idea that the
sphere of the fixed stars too has a very slow motion. This is just like that of the planets,
towards the rear with respect to the revolution producing the first daily motion, which is
that of a great circle drawn through the poles of both equator and ecliptic.'! The value of
this rearward motion was set to 1° per century by both Hipparchus and Ptolemy (the
modern value is 1° per 72 years).

Ptolemy (ca. 90 — 160 A.D.) was a great successor of Hipparchus. He wrote the famous
Almagest, which was originally called Mathematical Synthesis or Mathematical Collection
and the work. It was written around 150 A.D. after Ptolemy had made a lot of observations
in the years before. However, as already said before, it is really hard and sometimes even
impossible to distinguish between Hipparchus’ and Ptolemy’s discoveries, because all of
Hipparchus’ his work was lost due to the huge success of the AImagest. The AImagest (and

° Gow, p. 275
10 Linton, p. 55
" ptolemy, 1.1



its geocentric system) would dominate mathematical astronomy for almost 1500 years, until
De Revolutionibus from Copernicus in 1543.

In the AlImagest Ptolemy also discusses the obliquity of the ecliptic and he contributes this
discovery to Eratosthenes of Alexandria (276 B.C. — 196 B.C.). His value for the obliquity was
22/83 of a right angle:

22
— Xx90° = 23°51".
83

Which only was wrong by less than 1 percent of the true value at the time. Ptolemy did not
explain how he found this value.

3.2 POST-PTOLEMAIC IDEAS

After Ptolemy the Greek made few advances in the field of astronomy. In Europe, the
Western Roman Empire fell (around 476 A.D.) which marked the beginning of the Middle
Ages and astronomical science was continued in the Islamic world (around 622 A.D.). They
had a slow start, because they began with reading and translating the significant
astronomical Greek and Indian works into the Arabic language. After they had studied this
material they tried to establish their own, new theories of astronomy. The most significant
theory was the one on trepidation, which says that the precession of the equinoxes is a
variable that changes periodically. Consequently the obliquity of the ecliptic is also a
periodic variable. This theory held until the invention of the telescope and then Giovanni
Magini refuted the theory.™

In the 14" century there was a revival of science in Western Europe, the beginning of the
renaissance. Copernicus changed the geocentric model to a heliocentric one with the Sun at
the centre of the universe. He explained his theory in De Revolutionibus ** (1543), which is a
revision of Ptolemy’s Almagest. He kept Ptolemy’s system, but he put the Sun in the centre
and made the Earth move about it.

After Copernicus came Tycho Brahe who built an
observatory, the Uraniborg, at the island Hven in
OreSund, Denmark in 1576. He did this, because Brahe
had studied astronomical tables and had discovered that
these data were far from exact. So he made it his life goal
to collect very precise data. At this observatory he
collected very much valuable data on the motions of the

heavenly bodies. He even came up with his own model,
the Tychonic system; the Earth with its orbiting Moon was  FIGURE 3-1 - TYCHONIC SYSTEM

set at the centre of the system and all the other planets

orbited the Sun, which then orbited the Earth (see figure 3-1). He tried to make this system

12 Linton, p. 208. | also read somewhere that Girolamo Fracastoro already in the Renaissance refuted
this theory of trepidation, however I could not find back the source.
> De Revolutionibus Orbium Coelestium (On the Revolutions of the Heavenly Spheres)

10



work by using his collected data, but he could not do this on his own and required help from
the very intelligent Johannes Kepler (1571 — 1630). So, from 1600 until his death in 1601
Tycho Brahe was assisted by Kepler. Brahe made Kepler promise to work out the Tychonic
system, but Kepler could not make this work and was more a “Copernicus guy”. Also, he
knew that the data was very exact and that he needed to find a working system instead of
trying to make a system work with the data. By using all this data and his excellent skills,
Kepler tried to work with ellipses instead of circular orbits and he succeeded.

Kepler was not satisfied yet, because he did not only want to find a model that fitted the
seemingly irregular movements, but he also wanted to find a cause for it. He attempted this
by using magnetism and a force coming from the Sun, but this did not work out. In this
attempt he was motivated by God, everything had to be driven by the same force.

3.3 JOHANNES KEPLER

Kepler was maybe one of last the astronomers who practiced the science of ancient
astronomy™®, but he was also the first one to confront planetary motions as a physical
problem. The most important contributions of Kepler are his laws of planetary motion,
which were the foundations of Newton’s Principia. The first two of his laws were published
in the Astronomia nova (1609) and the third one in Harmonices Mundi (1619).

Laws

The planets move in elliptical orbits, with the Sun at one of the foci.

2. “The line connecting the planet and the Sun sweeps out equal areas in equal
intervals of time.”™

3. The ratio of the period of revolution of a planet squared over the semi major axis

cubed is the same for all planets. Also called: the law of harmonies.
Motivations for the laws

Law 1 - Kepler thought the Sun’s centrality to be essential, because he wanted one driving
force for the planetary motions. As already mentioned, Kepler was motivated by God. Kepler
concluded from Brahe’s data that distant planets were slower in absolute speeds and so he
searched for a connection between the period and the distances of the planets. He tried to
show this by using simple systems, “because often a single cause will produce many

»16

effects”™ (also inspired by God). An ellipse was simple and it showed the desired results.

Law 2 - A result of this law is that a planet close to the Sun moves faster than if its less close
to the Sun. Hence, a planet moves quickest around perihelion and slowest around aphelion,
when it’s close to its driving force.

Law 3 - The third law becomes clearer if you look at it in the form of a formula:

" Voelkel, p. 1
15 Voelkel, p. 65
1o Hoskin, The General History of Astronomy, part 2A, p. 57
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P R}

P} R}
here P;, P, are the revolution times of two planets and R4, R, the lengths of their semi
major axis. In the table below are the data from Brahe that Kepler used for his calculations.

The periods are given relatively to the Earth’s period (in days), and the distances in
astronomical units. Astronomical units are given in Earth-Sun distance.

Mercury | Venus | Earth Mars | Jupiter | Saturn
Period 0,241 0,616 1,000 1,882 11,871 29,477
Distance 0,388 0,724 1,000 1,524 5,200 9,510
)
_Period” 0,99 1,00 | 1,00 | 1,00 1,00 1,01
Distance3

3.4 THE SCIENTIFIC REVOLUTION

The scientific revolution is referred to as the time span of the lives of two great scientists;
Galileo Galilei (1564 — 1642)" and Sir Isaac Newton (1642 — 1727)"®. Astronomy has always
been divided, there was a mathematical side and a philosophical side and the latter one
dominated. The scientific revolution changed this division.

Galileo, sometimes referred to as the founder of modern astronomylg, devoted much of his
life to the movement of bodies in a mathematical way. From 1609 on he used a telescope
for his research. Galileo was not the discoverer of the telescope, but probably the first one
to use this apparatus to change the worldview. For instance, he observed that the Moon was
not as smooth as people used to think and that Jupiter was surrounded by small “satellites”.
The observations Galileo made by using the telescope denied about all of Aristotle’s ideas.
Also the Ptolemaic worldview was finally set aside and the Copernican theory took over.
During his research, Galileo was in contact with Kepler, who was very pleased with the
telescopic observations since they confirmed his theories.

Next to Galileo, Descartes and Huygens were also of important in the scientific revolution.
Descartes (1596 — 1650) tried to explain the movements of the planets by the vortex theory:
“The fundamental idea of his theory was that the space between the planets was filled with
fluid matter containing a number of rotating vortices that carried the planets around in their

“2% Huygens (1629 — 1695) tried to work on gravity and explained the movements of

orbits.
the planets by circular motion. Huygens had a good run, but Newton saw how circular

motion actually worked and he finished Huygens’ work.

3.5 SUMMARY: ANCIENT GREEK — SCIENTIFIC REVOLUTION

The ancient Greek were able to discover the precession of the equinoxes (Hipparchus) and
the obliquity of the ecliptic (Eratosthenes). They even did a very good job on calculating
their values and Johannes Kepler in the Renaissance discovered that the Earth did not move

7n England the Julian calendar was still in use at this time.

%n Italy they were already using the Gregorian calendar, so actually Galileo did not die in the same
year as Newton.

9 Linton, p. 201

20 Linton, p. 241
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in a circular orbit but in an elliptical one. Hipparchus already worked with eccentric circles,
but he did not use elliptical orbits, Kepler was the first to do so. Though, what these
astronomers did not know were the variations in the values of the precession, obliquity and
eccentricity. Of course it was very difficult and maybe even impossible for them to know,
because the rate of change is so slow. Nowadays, we calculate this by using numerical
methods. Though, scientists could have known that there was variation in these values by
knowing exactly why the Earth moves that way it does.

13



4 NEWTON

At this point Sir Isaac Newton comes into the picture, the man behind the Universal
Gravitation Theory. He wrote the Philosophiae Naturalis Principia Mathematica or in English
Mathematical Principles of Natural Philosophy®. The first edition was published in 1687 and
it was revised twice in 1713 and 1726. Hereafter | will refer to this work as the Principia. The
Principia is split into three books; the first two on the Motion of Bodies and the third one on
the System of the World. The books on the Motion of Bodies develop a lot of theory. The
book on the System of the World applies this theoretical knowledge to the actual universe.

.. . 22
Newton’s Principia had two main goals:

1. To prove Kepler’s laws of planetary motion
2. To apply these laws in the observed universe and to take the perturbations of the
planets and their Moons into account.

At first, the Principia would be just an expanded version of De Motu Corporum in Gyrum
(“On the motion of bodies in an orbit”). De Motu was a manuscript of Newton, sent to
Edmond Halley in November 1684. Halley was a clerk to the Royal Society when Newton, a
member of the Royal Society then, was working on his Principia. Although he certainly was
not paid well, Halley did pay for the Principia to be printed.

With help of the Principia, | will explain why the Earth moves in the Universe the way it does.
Newton was not able to explain every detail, simply because he did not possess all the
mathematics necessary.

4.1 PREPARATIONS

Before consulting book three to explain Precession, we need some definitions, propositions
and laws that Newton uses regularly in his proofs.

Centripetal force

At first, the definition of centripetal force is needed. Centripetal force was not entirely
discovered by Newton, Christiaan Huygens (around 1659) preceded him in this field, but
Newton finished it up in a nice definition, which will be cited next:

“Centripetal force is the force by which bodies are drawn from all sides, are
»23

impelled, or in any way tend, toward some point as to a centre.
Newton explains here that there are three kinds of centripetal force, namely gravity,
magnetic force and the force that makes the planets move in circular orbits instead of
rectilinear ones. Nowadays we wouldn’t make a difference between the first and last force.
There is no need to discuss these forces separately, however it might be helpful to give the
modern notation for a better understanding of Newton’s definition of centripetal force:

" In this thesis | will be using the English translation by I. Bernard Cohen and Anne Whitman of the
third edition.

2 Newton, p. 20

2 Newton, p. 405
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here F_ is the centripetal force, m is the mass, v the velocity of the object and r the distance
to the fixed centre of force. So this force depends not only on the body’s distance from the
centre, but also on its mass and velocity.

Besides the law of centripetal force, Newton’s law of universal gravitation is stated in the
Principia. Though, it surprises me that this very important law of him was not stated until
book Ill. Since in my opinion, universal gravitation is Newton’s most important discovery.
With this law it could finally be explained why bodies move about each other and do not fall
out of their orbits.

This law was preceded by the Moon test in the system of the world. It says that the Moon
gravitates toward the Earth and is being kept in his orbit by the force of gravity, otherwise it
would continue a rectilinear motion. A simple idea, but it has some important consequence,
namely that gravity does not only work on the Earth but also to the Moon. Now, the law can
be extended to something universal.

Law of Universal Gravitation

This law states that: “Gravity exists in all bodies universally and is proportional to the

h n24

guantity of matter in eac A corollary to this law is “the gravitation toward each of the

individual equal particles of a body is inversely as the square of the distance of places from
those particles.“*

The proof of universal gravitation is mostly physical. Consider two planets, A and B. The
main idea of this proof is that all the parts of planet A gravitate toward all the parts of planet
B. And because to every action there is an equal reaction (by Law 3 in the next section) it
follows that also the reverse holds.

The universal law of gravitation contrasts sharply with Aristotle’s worldview. Aristotle
thought that all objects were to be at rest, in his theory the planets moved independently of
each other in concentric circles. In the universal law of gravitation the planets gravitate
towards each other, so they are most certainly not at rest.

Newton’s Laws of motion

The basics for Newton’s dynamics were stated in the laws of motion and their corollaries.
We will now look at these three laws:

Law 1

“Every body perseveres in its state of being at rest or of moving uniformly straight forward,

except insofar as it is compelled to change its state by forces impressed.”%®

2 Newton, p. 810
> Newton, p. 810
26 Newton, p. 416
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It means that: an object that is at rest will stay at rest and an object that is in motion will
continue doing so in the same direction and with the same velocity unless it is being
disturbed by an external force.

Law 2

“A change in motion is proportional to the motive force impressed and takes place along the
straight line in which that force is impressed.”?’

A more modern interpretation would be that force (F) implies a change in motion and
motion equals mass (m) times velocity, and change in velocity is acceleration (a):

F = mXa.
This formula only holds for objects with a constant mass.
Law 3

“To any action there is always an opposite and equal reaction; in other words, the actions of

two bodies upon each other are always equal and always opposite in direction.”?®

Nowadays we would write this like:

Faction = —Freaction-

Newton thought of this more philosophically, namely that if you press a stone with your
finger, the finger is also pressed by the stone. He then clarifies that this equal reaction is in
motion and not in velocity.

A corollary to the laws is then formed. If a body is acted on A B

by two forces that are acting jointly on it and these forces
make the body describe a diagonal of parallelogram (see
figure 4-1), in the same time the body could describe its two

Cc D

sides if the forces were acting separately on the body. FIGURE 4-1

Proof. Let these two forces be F,, and F, acting on the body

in A, then if F,, and F, would act separately, F,, m will send the body from A to B and F, will
send the body from A to C in a uniform motion. The force F,, could also work on the body in
point C and will then send it to D, and likewise F, could send the body from B to D. When the
forces would act jointly on the body in A, they will send A also to D, but then in a straight
line with uniform motion by Law 1 and this will be done in the same time as the forces acting
separately.m

Given these definitions, propositions and laws we are now ready to study book IIl of the
Principia on the System of the World to explain precession.

7 Newton, p. 416
28 Newton, p. 417
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4.2 PrRINCIPIA—BooK IlI

In book IlI, the System of the World, of the Principia, Isaac Newton explains how the Earth
and all the other bodies are driven by universal gravitation. Books | and Il are on the motion
of bodies and they provide the necessary theorems to accomplish this. Newton begins the
propositions in this book by explaining the centripetal force, a key ingredient for universal
gravitation and therefore essential to explain precession. In the second proposition he states

the operation of this force and its magnitude:

Prop 111.2 - “The forces by which the primary planets are continually drawn away from
rectilinear motions and are maintained in their respective orbits are directed to the Sun
and are inversely as the squares of their distances from its centre.”

To prove this proposition, | will start with the first two propositions of the Principia and then
| will separate the above proposition into two parts, the first part being the direction of the
force and the second part being that this force is inversely as the squares of the distances.

Section two of book | is called: to find the centripetal
forces, in this section he proves Kepler’s area law. This

law is proved in two steps.

i
1
i
'
i
i
i
!
i
1

First step

—

Newton says that: “The areas which bodies made to
move in orbits describe by radii drawn to an unmoving

centre of forces lie in unmoving planes and are
» 29

proportional to the times.

S
Proof. Let ABCDEF be a polygonal (see figure 4-2) FIGURE 4-2
divided into equal intervals of times (AB =BC = ... and
AB=Bc=..)andlet Cc//SB, Dd // SC etc. Also let CV // Bc and AV // BC.

Let a body at A move in a rectilinear motion to B in the first part of time by its inherent force
—so the force it possesses to move in a constant velocity. When no other forces would
interact with the body, in the second part of time it would continue to move to cin a
rectilinear motion by Law 1. However, when the body arrives at B the centripetal force
interacts with the body and gives a single but great impulse to the body which makes the
body deflect from its rectilinear motion to c and instead moves to C. By a corollary to the

laws, this point C is reached in the same timeframe.

Since SB // Cgc, it follows that,

area ASBC = area ASBc = area ASAB

One could continue this for the rest of the polygonal. Therefore, in equal times, equal areas

are described in this unmoving plane.m

A corollary to this proposition:

2 Newton, p. 444
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If arcs AB and BC are successively described by the same body in equal time frame and they
lie in the parallelogram ABCV with the diagonal BV, the diagonal will pass through the centre
of forces, S.

Second step

Newton says that: “Every body that moves in some curved line described in a plane and, by a
radius drawn to a point, either unmoving or moving uniformly forward with a rectilinear
motion, describes areas around that point proportional to the times, is urged by a
centripetal force tending toward that same point.”*°

Proof. This proposition states the inverse of proposition 1. Together the two propositions
say that a force is central if and only if the area law holds.m

Proof of proposition 111.2

The first part (that the primary planets are directed to the Sun) is proven by the two steps
above and the second part (about the distances) is proven by the following proposition:

Prop 1.4 - “The centripetal forces of bodies that describe different circles with uniform

motion tend toward the centres of those circles and are to one another as the squares of

the arcs described in the same time divided by the radii of the circles.*!

Proof. Let B and b be bodies revolving around an unmoving b X
centre S (see figure 4-3) with centripetal forces CD and cd // , \*‘\
by the propositions in the steps above. Let BD and bd be // /‘/}‘_\\1{\
their arcs and let figure tkb be similar to figure DCB. Let BD / ) i \.\ \
and bt be travelled in the same amount of time. '/ (/ l \ ‘l
| gt |
Newton refers to lemma 1.5%? to state the following, \ l",\ /)
\\ \. / /
CD : Kt =BD : bt \ /
\\ ~— e //

The lemma says that BCD and bKt are similar figures and in S~—
similar figures the corresponding sides are proportional to  figure 4-3
each other, this also holds for curvilinear sides.

He also refers to another lemma, 1.11°3, to state that,
Kt : cd = bt? : bd?

From the combination of ratios, it follows that,

30 Newton, p. 446

3 Newton, p. 803

32 upl the mutually corresponding sides — curvilinear as well as rectilinear — of similar figures are
proportional, and the areas of such figures are as the squares of their sides.” Principia Book | Lemma 5
> “In all curves having a finite curvature at the point of contact, the vanishing sub tense of the angle
of contact is ultimately in the squared ratio of the sub tense of the conterminous arc.” Principia Book |
Lemma 11. | do not quite understand this lemma, but Newton uses this one to prove his proposition,
as do lin this thesis.
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CD : cd = BD X bt : bd?
Or equivalently,

D d_BDxbt.bdZ
YT s T bs

From the equality of ratios bt/bS and BD /BS it follows that,

D ed BD? bd?
red =——: ——
BS  bS
So, the centripetal forces CD and cd are to one another as the squares of the arcs BD and bd
described in the same time divided by the radii BS and bS of the circles.m

By combining all the steps above, prop 11l.2 has been proven.

4.3 PRECESSION EXPLAINED BY NEWTON

Next to his explanations of eccentricity and obliquity (which are not in this thesis due to a
lack of time), Newton explains the precession of the equinoxes. Precession would not occur
if there was no obliquity or if the Earth would be a perfect spheroid. It is then explained in
three lemmas followed by a proposition in the system of the world.

In book I, Newton treated the three body problem and added 22 corollaries to this problem.
Several of these corollaries are used by him to explain the precession of the equinoxes.

The conclusion of corollary 11 of the three-body problem

/ Apparent orbit descending node
of the Sun

Ecliptic

Plane of the orbit of the Moon™ . PRoeiig bk

5.1 ° to the ecliptic

\ line of nodes

astronoo.com

FIGURE 4-4

In figure 4-4 can be seen that the plane of the orbit of the Moon is not equal to the ecliptic
but inclines with it, with angle of about 5 degrees, as already mentioned before.

If the Moon is positioned between the Earth and the Sun the Moon is new, if the Moon is
positioned on the other side of the Earth as seen from the Sun, the Moon is full. Notice in
these two cases that the Moon will be slightly above or under the Sun-Earth line. If the
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Moon is positioned perpendicular to the line through the Sun and the Earth it is in one of its
guadratures. In figure 4-4 there is a special case visible, namely a syzygy. A syzygy occurs
when the Sun, Moon and Earth are aligned on a straight line. However, keep in mind that
the Sun will not always align with the line of nodes, this figure represents a very special case.

Since the ecliptic makes an angle with the orbit plane of the Moon, the Sun wants to correct
for this angle. This correction takes place because of the gravity and pulls at the Moon. The
effect of this pull is concluded by Newton as follows: “and therefore, since the nodes always
either have a retrograde motion or are stationary, they are carried backward in each

n34

revolution.””” This effect is a kind of wobbling motion, so the result of the Sun’s gravitational

perturbation is a sort of precession and makes the nodes regress.
The use of the last corollaries of the three-body problem

In the last corollaries Newton assumes there are many little, fluid Moons orbiting the Earth
at equal distances. Then he imagines the little, fluid Moons to form a fluid ring, the motion
of this ring obeys by the same laws of motion as the actual Moon orbiting the Earth, namely
that its nodes will regress (by corollary 11). The next step is that the Earth grows and grows
until it touches the ring, this ring then solidifies and makes a so called equatorial bulge to
the Earth (see the shades area in figure 4-5). Hence, the Earth has to obey by the same
motions as the equatorial bulge and this results in precession.

After Newton explained the cause of the precession of the equinoxes, he calculates its
period. Before | begin with this calculation, some preparations are needed.

3 Newton, p. 579
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4.3.1 PREPARATIONS TO CALCULATE THE PRECESSION
Figures

Let APEp represent the Earth (see figure 11-
2) with uniform density with centre C, poles
P and p and equator AE. The sphere Pape is
inscribed in the Earth, also with centre C and
a radius CP. Let QR be the plane that stands
perpendicular on the Earth-Sun line. Let
PApaPepE be the equatorial bulge to the
sphere.

FIGURE 4-5
Some values

Newton does not clarify how he obtained the distances in the table below. In the guide to
Newton’s Principia, 19.658.600 feet and 19.573.000 feet® are taken for the Earth’s radii and
Newton remarks that 5000 feet are approximately a mile.3¢ However, he does use the values

in the table below for his calculations.

Orbital period®” | Radius of the globe Radius bulge
Earth 1.436 minutes 52.4438 4.590%
Moon 39.343 minutes NA NA
Lemmas

“In Lemmas | and Il, Newton introduces the concepts of the moment of momentum and of

n40

the moments of inertia.””” Moment of momentum is a measure of the amount of rotation

an object has, whereas “the moment of inertia measures a body’s response to efforts to

n4l

rotate it.””” These concepts are modern interpretations of what Newton described in the

two lemmas that follow.

Note: efficacy

In the following lemma, Newton uses the term efficacy multiple times. In figure 4-6
the efficacy of the particle F (to turn the Earth around its centre) equals the force FG
multiplied by the distance CG. Based on this given definition, one could describe the
word efficacy better with the term moment or torque. The formula for torque is:

» Newton, p. 234

3 Newton, p. 234n8§50.

3 Newton, p. 820

38 Newton, p. 886

39 Newton, p. 886

40 Chandrasekhar, p. 466

* Marsden and Tromba, p. 400
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T=1rXF,
here T is the torque vector, 1 is the displacement vector and F is the force vector.
Lemma 1l

Let the equatorial bulge exist of many individual particles, uniformly scattered. Then only
consider the particles that form a ring around the equator AE. Newton then states the
following:

Force and efficacy of N particles around AE : Force and efficacy of N particlesat A=1:2,

where the force is the force to rotate the Earth around its
centre and N is a huge number of particles. This force will

be performed around the common section of the equator //;;
and the plane QR. '7’{/ 3

[ [ F~_
Proof. Now, let these particles be spread evenly over the [. |I e
perimeter of the circle AE. From all these particles let '\\'\\

point, but are all the particles from a till C. Do the same

perpendiculars FG drop to the plane QR. So F is not a fixed \\/
/

for AH to the plane QR.

F 4-6
The force by which the particle at F recedes from the eURE

plane QR is equal to the perpendicular FG. If FG is
multiplied by CG, you will get the efficacy of that particle to turn the Earth around its centre.
For the particle at A, this efficacy is AH times HC. So,

efficacy of F : efficacy A = FG X GC : AH XHC.

Here F and A are not fixed points, but particles in the places F and A.
Since AAHC and AFGC are similar,

FG:AH =FC: AC
and

GC:HC =FC: AC,
it follows that

FG x GC : AH x HC = FC? : AC>.
So,
efficacy of F : efficacy A = FC? : AC2.

At the beginning of this lemma was stated:

Force and efficacy of N particles around AE : Force and efficacy of N particlesat A=1: 2.
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By combining these last two equations, Newton concluded the following:
efficacy of F : efficacy A =1 : 2.

Hence, the total force of the particles around the equator are to the total force of the
particles around Aaslisto 2. m

Lemma 2
Under the same conditions as the previous lemma, Newton now states that:
Force of N particles outside globe : force of N particles uniformly at equator=2:5,
here these forces around the equator are disposed uniformly in a ring around the equator.

This proof is even less clear than the previous one. So here | will just give the result: The
total force of the particles around the Earth is to the total force of the particles around the
equatoras 2isto 5.

Lemma 3

This lemma, | think, is very unclear. The motion of a cylinder revolving around its axis is
compared to the motion of a very thin ring surrounding the sphere.

“Under the same conditions, | say, thirdly, that the motion of the whole Earth around the
axis described above, a motion that is composed of the motions of all the particles, will be to
the motion of the above-mentioned ring around the same axis in a ratio that is compounded
of the ratio of the matter in the Earth to the matter in the ring and the ratio of three times
the square of the quadrantal arc of any circle to two times the square of the diameter — that
is, in the ratio of the matter to the matter and of the number 925.275 to the number
1.000.000.”*

The noteworthy thing about the proof that he gives here is that he does not use any
numbers at all. It is more of a reasoning that he gives. When you try to interpret this lemma
the modern way, circulation comes to mind. Mathematically, circulation is defined as the
line integral of the velocity along a closed curve of a velocity field.

4.3.2 TO FIND THE PRECESSION OF THE EQUINOXES

Newton takes the annual rate of regression of the nodes of the lunar orbit to be 20°11'46" .
This follows from:

mean hourly motion of the nodes in an orbitx 24" xlength sidereal year43

817'"'38W18Yx24x365,256360417 = 20°11'46"

4 Newton, p. 884
* See Principia, p. 852 (end of corol. 2 to prop. 30)
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As already established, we are dealing with a ring of Moons (attached to the Earth) instead
of just one Moon. From corol. 16 to the three body problem (prop. 1.66) he uses that “the
motion of the nodes of each would be as the periodic times”*".

Hence, if the ring of Moons revolves near the Earth, in the space of a sidereal day, the
annual motion of the nodes of the ring is to the annual rate of regression of the nodes of the
lunar orbit as a sidereal day is to the orbital period of the Moon.

The following equation is obtained:
annual motion of the nodes : —20°11'46" « sidereal day : orbital period of the Moon

(o< means that the left side is proportional to the right side, but not equal, there will be some
extra factors to equal the equation)

This can also be written as:
1436

39.343

annual motion of the nodes « — 20°11'46"' x

It does not matter for the above theory whether those Moons touch one another and are
solid or if they become liquid bodies and form a continuous ring.

To obtain the final equation some factors are needed, one of them being the correct shape
of the Earth. This ring around the Earth can be seen as two bulges at each side of the Earth
(see figure 9-2). Let this bulge PapAPepE (the shaded area) lie outside of the globe Pape.

Newton then calculates the ratio bulge : Earth the following way:*

He assumes that the globe is to the bulges as the radius squared of the globe is to
the absolute distance of the semi major axis squared minus the radius squared.

So, this gives the following ratio:

Pape ~ aC*  PC* = 524417
PapAPepE  AC? —aC? AC?2—PC? 4592

Hence, if this ring adheres to the Earth along the equator and they both revolve
about the diameter of the ring, the motion of the ring would be to the motion of
Pape (by lemma 3) as AC — PC = Aa to PC and 1.000.000 to 925.275 jointly, that is;

459  1.000.000 4.590
X =
52441  925.275 485.223

motionring : Pape =

However, personally | think this is very unclear. Another way to obtain this factor — the ratio

bulge : Earth — is by using the ratio from lemma 3 and the oblateness of the Earth. The

. PC 459 2 . .
oblateness of the Earth is — = = — (from prop. I11.19). Hence, this results in the
Aa 52441 230

following ratio:

4 Newton, p. 885
* The calculations are directly from the Principia, p. 885 -7
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PapaPepE 1.000.000 2 4.590
= X ~
Pape 925.275 230 485.223

Slightly different, but gaining the same result as Newton and with the same factors.
At this point, Newton generalizes the result:

“Hence, if the ring adheres to the globe and communicates to the globe its own motion with
which its nodes or equinoctial points regress, the motion that will remain in the ring will be
to its former motion as 4.590 to 485.223 (485.223 — 4.590 = 489.813), and therefore the

motion of the equinoctial points will be diminished in the same ratio.”*®

Upon inclusion of this factor, the equation becomes:

1436 4.590

annual motion of the nodes « — 20°11'46"' x X
39.343 489.813

100

annual motion of the nodes «x — 20°11'46"'Xx ————
292.369

However PapAPepE is not just a ring around the equator, but its matter is scattered over the
whole surface of Pape. So, by lemma 2, the forces of these particles act in the ratio 2 : 5.

100 2
annual motion of the nodes «x — 20°11'46"'X ————— x —
292.369 5
Rewrite by using that 20°11'46"" = 72.706"":
100 2
annual motion of the nodes x — 72.706"' X ———— X —
292369 5

annual motion of the nodes x — 9"'56"'50%

This equation would hold if the plane of the equator was equal to the plane of the ecliptic,
but there is an inclination of 23.5°. Therefore, to complete the equation, it has to be
multiplied by cos 23.5.

annual motion of the nodes from the Sun = — 9”"56""'50%x cos 23.5 = 9”'7"""20%,

which is the annual precession of the equinoxes based on the perturbations of the Sun. Then
there are also the perturbations of the Moon. Newton calculated the force of the Moon as
4,4815 times as large as the force of the Sun, by studying the tides at Bristol.

annual motion of the nodes from the Moon = 9"'7""'20% x4.4815 = 40"'52'"'52%

Adding the perturbations of the Sun and the Moon results in:

4 Newton, p. 886
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9"7""20% + 40"'52""'52% = 50”0012
This value, about 50 arc seconds, agrees with the accepted value in Newton’s time.

4.3.3 DIScUsSION

The obtained value, about 50 arc seconds agreed with the accepted value in his time, but
there are some flaws in his calculations. For instance, he used 4,815 as the force of the
Moon on the Earth in comparison with the Sun by studying the tides of Bristol. Firstly, | think
it is strange that he believed that studying tides at a bay would be representative for the
force of the Moon on the (open) seas. Secondly, this value should be about 2.18, so it would
mess up his values. Perturbations by the Moon then would be:

2.18%9"7""20% = 19"'53/""11%
Instead of 40”5252,

Also, when he made this error but ended up with the correct end value, he should have
made at least one other error to compensate for he first one. Some other errors | could
think of that he made are:

The oblateness of the Earth: Newton takes % as the oblateness of the Earth, but it should

1
haven been about —.
298

Inclination angles: Newton uses the angle of 23.5° (cos(23.5) = 0.917) for the calculation
for the force of the Sun, but he also uses this value for the Moon which is inclined at

5° (cos(5) =~ 0.996) with the ecliptic and so should have a different value than the
inclination of the ecliptic with the equator. However, this difference is very small.

If we adapt the formulation with the errors made by Newton, we get the following results:

annual motion of the nodes from the Sun =

1.436 1 2 .
72.706 X ———— X —— X = X cos 5° = 3''32'"'55"
39.343 298 5

annual motion of the nodes form the Moon = 3"32""'55¥x2.18 ~ 7''44'"'8v

Sums up to 11""17"'3% instead of about 50 arc seconds. So, | think it can be concluded that
his theory was incorrect.

Newton cannot really be blamed for his miscalculations, the gravitational theory that he
used was completely new. Also he lacked mathematical techniques, differential equations
and vectors were not available to Newton in his time. Vectors would have made his
calculations on forces much easier and differential equations would have made the values
more precise. So, given the amount of ingredients he had to work with, | think he did quite
well.
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5 CONCLUSION

Hipparchus discovered precession by noticing that the lengths of the tropical year and the
sidereal year differed slightly and concluded that the sphere of the fixed stars should have a
movement as well as the Sun. Ptolemy recalculated this discovery and published it in his
Almagest.

Johannes Kepler was very lucky to have the valuable data of Tycho Brahe at his hands, he
knew that the data was very precise and so his model should honour this data. Kepler’s
three laws of planetary motion lay the foundations for Newton’s Principia. Kepler attempted
to explain his laws of planetary motion by a central force, the Sun, but he did not succeed.
Several others tried this as well, but it wasn’t until Newton and his theory of Universal
Gravitation that planetary motions were explained.

Newton was even able to explain the motion of precession of the equinoxes. He attempted
this by using the three-body problem applied to the Sun-Earth-Moon system. He imagined
many little, fluid Moons orbiting the Earth around the equator and forming a concentric ring.
The Earth then grew and grew, until it attached to the ring, which then created a bulge to
the Earth. This bulge then had to obey by the same laws of motion as the Moon did. Also the
Sun affects the motion of the Earth, by pulling on the bulges of the Earth to correct them
into the right orbit. Although he was able to explain precession, calculating it was a different
story. He made quite a few mistakes, and when correct values were used, he came nowhere
near the correct value for precession. In further research it would be interesting to find out
where Newton went wrong and why.

More research is required to explain all of the Milankovitch cycles by Newton, also it would
be very interesting to learn more about how Johannes Kepler obtained his three laws of

planetary motion.
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