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Abstract

We develop a new function space theoretic weighted Lq-Lp-maximal regularity approach for
linear vector-valued parabolic initial-boundary value problems with inhomogeneous boundary
conditions of static type. The weights we consider are power weights in time and in space,
and yield flexibility in the optimal regularity of the initial-boundary data. The novelty of our
approach is the use of weighted anisotropic mixed-norm Banach space-valued function spaces
of Sobolev, Bessel potential, Triebel-Lizorkin, and Besov type. The main tools are maximal
functions and Fourier multipliers, of which we also give a detailed treatment.
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Notations and Conventions

• � = {0, 1, 2, . . .};

• �+ =]0,∞[ and �d
+ = �+ ×�

d−1;

• We write X ↪→ Y if a topological space X embeds continuously into another topological
space Y in the sense that X is canonically included in Y with a continuous inclusion
mapping;

• Let X and Y be two Banach spaces which are continuously included in a common Haus-
dorff topological vector space Z. Then X ∩ Y is a Banach space for the norm ||z||X∩Y =

||z||X + ||z||Y ;

• We write a .p1,...,pn b if a ≤ Cb holds with a constant C only depending on p1, . . . , pn.
We write a hp1,...,pn b when both a .p1,...,pn b and b .p1,...,pn a hold;

• Throughout this thesis we fix a field� ∈ {�,�}. However, except for Sections 3.1-3.3 of
Chapter 3 and for Appendices A and B, we only consider the case� = � (as is customary
in Fourier analysis).

• As is customary in Fourier analysis, for a multi-index α ∈ �d we write Dα = 1
ı|α|
∂α;

• (εn)n∈� denotes a (fixed) Rademacher sequence on some probablility space (Ω,F ,�), see
Appendix E.1.
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Chapter 1

Introduction

1.1 Introduction to the Subject
During the last 20 years, the theory of maximal Lq-Lp-regularity turned out to be an impor-
tant tool in the theory of nonlinear parabolic partial differential equations (PDE’s). Maximal
regularity means that there is an isomorphism between the data and the solution of the linear
problem in suitable function spaces. Having established such sharp estimates for the linearized
problem (in fact the best possible), the nonlinear problem can be treated with quite simple tools
as the contraction principle and the implicit function theorem. Let us mention [5, 17, 81] in
the direction of abstract parabolic problems, and [36] in the direction of parabolic PDE’s with
inhomogeneous boundary conditions. The full range q, p ∈]1,∞[ enables one to treat more
nonlinearities, where q is the integrability in time and p the integrability in space. For instance,
one often requires large q and p due to better Sobolev embeddings, and q , p due to scaling
invariance of PDE’s (see e.g. [43]).

An abstract Cauchy problem

u̇(t) + Au(t) = f (t) (t ∈ J), u(0) = 0, (1.1)

in a Banach space E on a time interval J = [0,T ] with T ∈]0,∞], where A is a densely
defined closed linear operator on E with domain D(A), is said to have the property of maximal
Lq-regularity, q ∈]1,∞[, if for each function f ∈ Lq(J; E) there exists a unique solution u ∈
W1

q (J; E) ∩ Lq(J; D(A)) of (1.1). Having maximal Lq-regularity for (1.1), the corresponding
version

u̇(t) + Au(t) = f (t) (t ∈ J), u(0) = u0, (1.2)

with a non-zero initial value can be easily treated via an application of related trace theo-
rems. As a consequence of the closed graph theorem, an equivalent formulation of maximal
Lq-regularity for (1.1) is that the map

d
dt

+ A : 0W1
q (J; E) ∩ Lq(J; D(A)) −→ Lq(J; E)

is an isomorphism of Banach spaces, where 0W1
q (J; E) denotes the closed subspace of W1

q (J; E)
consisting of all functions which have a vanishing time trace at t = 0. It was already ob-
served in [91] that (1.1) has maximal Lq-regularity for some q ∈]1,∞[ if and only if it has
maximal Lq-regularity for every q ∈]1,∞[. As an application of its operator-valued Fourier
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multiplier theorem, Weis [102] characterized maximal Lq-regularity in terms of R-sectoriality
in the setting of Banach spaces E which are of class UMD1. A second approach to the maxi-
mal Lq-regularity problem is via the operator sum method, as initiated by Da Prato & Grisvard
[20] and extended by Dore & Venni [31] and Kalton & Weis [63]. For more details on these
approaches and for more information on (the history of) the maximal Lq-regularity problem in
general, we refer to [64].

Many concrete linear parabolic PDE’s can be formulated as an abstract Cauchy problem
(1.1) (or (1.2)). For this thesis an important class of examples are the autonomous vector-valued
parabolic initial-boundary value problems with boundary conditions of static type subject to
homogeneous initial-boundary data, i.e. problems of the form

∂tu(x, t) +A(x,D)u(x, t) = f (x, t), x ∈ Ω, t ∈ J,
B j(x,D)u(x, t) = 0, x ∈ ∂Ω, t ∈ J, j = 1, . . . , n,

u(x, 0) = 0, x ∈ Ω,
(1.3)

where J = [0,T ] for some T ∈]0,∞], Ω is a domain in�d with a compact smooth boundary ∂Ω,
A(x,D) is a partial differential operator of order 2n having B(X)-valued variable coefficients,
and the B j(x,D) are partial boundary differential operators of order n j < 2n having B(X)-
valued variable coefficients, with X a fixed Banach space. For these problems an abstract
formulation of the form (1.1) is possible in the Lp-setting, p ∈]1,∞[: just take A to be the Lp-
realization of the corresponding differential boundary value problem, i.e., consider the Banach
space E = Lp(Ω; X) and the operator A on E given by

D(A) = {v ∈ W2n
p (Ω; X) : B jv = 0 (on ∂Ω), j = 1, . . . , n},

Av = Av.

Then the associated abstract Cauchy problem (1.1) has maximal Lq-regularity if and only if for
each f ∈ Lq(J; Lp(Ω; X)) there exists a unique solution u ∈ W1

q (J; Lp(Ω; X))∩ Lq(J; W2n
p (Ω; X))

of (1.3), in which case we say that (1.3) enjoys the property of maximal Lq-Lp-regularity. With
normal ellipticity and conditions of Lopatinskii-Shapiro type as the basic structural assump-
tions, Denk, Hieber & Prüss [25] proved maximal Lq-Lp-regularity for a large class of prob-
lems of the form (1.3) in the setting of UMD spaces; in fact, also non-autonomous versions
were treated in which the top order coefficients of the operators are assumed to be bounded and
uniformly continuous (allowing for perturbation arguments). Earlier works in this direction
include [33, 32, 83, 34, 50, 51, 24], all concerning scalar-valued 2nd order problems having
special boundary conditions (mainly Dirichlet).

The linear parabolic initial-boundary value problems (1.3) include linearizations of reaction-
diffusion systems and of phase field models with Dirichlet, Neumann and Robin conditions.
However, if one wants to use linearization techniques to treat such problems with non-linear
boundary conditions, then one needs to study a versions (1.3) with boundary inhomogeneities.
It is in fact crucial to have a sharp theory for the fully inhomogeneous version of the linear
problem (1.3): The problem

∂tu(x, t) +A(x,D)u(x, t) = f (x, t), x ∈ Ω, t ∈ J,
B j(x,D)u(x, t) = g j(x, t), x ∈ ∂Ω, t ∈ J, j = 1, . . . , n,

u(x, 0) = u0(x), x ∈ Ω,
(1.4)

1The class of UMD Banach spaces is defined in Appendix E.5, where UMD stands for the unconditionality of
martingale differences.
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is said to enjoy the property of maximal Lq-Lp-regularity if there exists a (necessarily unique)
space of initial-boundary data Di.b. ⊂ Lq(J; Lp(∂Ω; X))n × Lp(Ω; X) such that for every f ∈
Lq(J; Lp(Ω; X)) it holds that (1.4) has a unique solution u ∈ W1

q (J; Lp(Ω; X))∩Lq(J; W2n
p (Ω; X))

if and only if (g = (g1, . . . , gn), u0) ∈ Di.b.. In this situation there exists a Banach norm on Di.b.,
unique up to equivalence, with

Di.b. ↪→ Lq(J; Lp(∂Ω; X))n ⊕ Lp(Ω; X)

which makes the associated solution operator a topological linear isomorphism between the
data space Lq(J; Lp(Ω; X)) ⊕ Di.b. and the solution space W1

q (J; Lp(Ω; X)) ∩ Lq(J; W2n
p (Ω; X)).

The maximal Lq-Lp-regularity problem for (1.4) consists of establishing maximal Lq-Lp-regularity
for (1.4) and explicitly determining the space Di.b. together with a Banach norm as above.

Combining operator sum methods with tools from vector-valued harmonic analysis, Denk,
Hieber & Prüss [26] solved the maximal Lq-Lp-regularity problem for (1.4); as in [25], also
non-autonomous versions were considered in which the top order coefficient of the operators
are assumed to be bounded and uniformly continuous. Earlier works on this problem are [66]
(q = p) and [101] (p ≤ q) for scalar-valued 2nd order problems with Dirichlet and Neumann
boundary conditions. Later, Denk, Prüss & Zacher [28] solved the maximal Lq-Lp-regularity
problem, in case q = p, for a large class of linear vector-valued parabolic initial-boundary
problems with inhomogeneous boundary conditions of relaxation type, which include dynamic
boundary conditions as well as problems arising as linearizations of free boundary value prob-
lems that are transformed to a fixed domain.

The above mentioned results of [26, 28] have been extended by Meyries & Schnaubelt [76]
to the setting of temporal power weights vµ(t) = tµ, µ ∈ [0, q − 1[, for the case that q = p; also
see [73]. The weighted framework allows to reduce the initial regularity and to avoid compati-
bility conditions at the boundary, and it provides an inherent smoothing effect of the solutions.
Here the main tools are interpolation and trace theory for anisotropic fractional Sobolev spaces
(of intersection type) with temporal weights, operator-valued functional calculus, as well as
localization and perturbation arguments, of which the required interpolation and trace theory
was already studied systematically in an earlier paper [75]. In [73, 74], this weighted maximal
regularity approach was used to establish convergence to equilibria and the existence of global
attractors in high norms.

Preceding the weighted maximal regularity approach in [76], Prüss & Simonett [82] ini-
tiated a weighted maximal Lq-regularity approach for abstract Cauchy problems (1.1)/(1.2).
Here it is proposed to work in the weighted Lebesgue-Bochner spaces2

Lq(�+, vµ; E) =

{
u ∈ L0(�+; E) :

∫
�+

||u(t)||qE vµ(t)dt < ∞
}
,

equipped with the natural norm, for the power weights vµ(t) = tµ, µ ∈ [0, q − 1[.3 The abstract
Cauchy problem (1.1) (for J = �+) then is said to enjoy the property of maximal Lq

µ-regularity
if for each function f ∈ Lq(�+, vµ; E) there exists a unique solution u ∈ W1

q (�+, vµ; E) ∩
Lq(�+, vµ; D(A)) of (1.1), where W1

q (�+, vµ; E) stands for the 1st order weighted Sobolev space

2E-valued Lebesgue-Bochner spaces on �+ are subspaces of L0(�+; E) determined by certain integrability
conditions, where L0(�+; E) stands for the space of equivalence classes of strongly measurable functions �+ −→

E; see Appendix A.1.
3The authors actually use a different parametrization of the weights.
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on�+ associated with Lq(�+, vµ; E). Having maximal Lq
µ-regularity for (1.1), the problem (1.2)

can be solved for initial values u0 belonging to the real interpolation space (E,D(A))1− 1
q (1+µ),q.4

The space (E,D(A))1− 1
q (1+µ),q gets closer to the space E when µ gets closer to q − 1, giving a

reduction in the required initial regularity.
It is the main purpose of the present thesis to extend the results of [26, 76], concerning

the maximal Lq-Lp-regularity problem for (1.4), to the setting of power weights in time and in
space for the full range q, p ∈]1,∞[, using a different approach on the function space theoretic
part of the problem. Here we do not only aim at giving a systematic treatment of the maximal
weighted Lq-Lp-regularity problem for (1.4) itself, but also of the required function space theory
(in which maximal functions play a crucial role) and Fourier multiplier theory. The weights we
consider are the power weights

vµ(t) = tµ, µ ∈] − 1, q − 1[, and wγ(x) = dist(x, ∂Ω)γ, γ ∈] − 1, p − 1[.

The main feature of this weighted approach is the flexibility for regularity of the initial-boundary
data as µ and γ vary in ]−1, q−1[ and ]−1, p−1[, respectively. For simplicity (and for reasons of
time and size of this thesis), we in fact restrict ourselves to model problems with homogeneous
constant coefficient operators on the half space Ω = �d

+ = �+×�
d−1, which are very important

because the general case can be reduced to them using standard PDE-techniques (which may
be quite technically involved) as freezing the coefficients, localization and perturbation; such a
reduction is worked out in great detail in Sections 2.3 and 2.4 of [73].

1.2 Our Function Space Theoretic Approach
The aim of this section and the next section is to give an overview of this thesis. In this section
we start with giving a description of the main idea behind our approach to the weighted maximal
Lq-Lp-regularity problem for the model problems for (1.4) on the half-space, for which we also
need to rigorously formulate this maximal regularity problem and to briefly comment on the
existing literature in this direction. Having this description, we give an outline of the contents of
this thesis, together with a description of the structure and the organization, in the next section.

In order to settle ideas, we just consider the following ’simple’ vector-valued parabolic
initial-boundary value problem on the half-space �d

+ = �+ ×�
d−1:

∂tu(y, x′, t) + (1 − ∆)u(y, x′, t) = f (y, x′, t), (y, x′) ∈ �d
+, t ≥ 0

u(0, x′, t) = g(x′, t), x′ ∈ �d−1, t ≥ 0,
u(y, x′, 0) = u0(y, x′), (y, x′) ∈ �d

+.
(1.5)

Let X be a Banach space, q, p ∈]1,∞[, µ ∈] − 1, q − 1[, γ ∈] − 1, p − 1[, and consider the
weights

vµ(t) := |t|µ (t ∈ �), wγ(y, x′) := |y|γ ((y, x′) ∈ � ×�d−1 = �d). (1.6)

In order to give a rigorous description of the maximal Lq
µ-L

p
γ-regularity problem for (1.5),

we need the concept of trace operator. Given a Banach space E, we have W1
q (�+, vµ; E) ↪→

C([0,∞[; E) and we can define the trace in 0 as the continuous linear operator

trt=0 : W1
q (�+, vµ; E) −→ E, u 7→ u(0). (1.7)

4An elementary introduction to interpolation theory can be found in [69].
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Furthermore, it can be shown that there exists a (necessarily unique) continuous linear operator

try=0 : W1
p(�d

+,wγ; E) −→ Lp(�d−1; E) (1.8)

which maps continuous functions on �d
+ = [0,∞[×�d−1 to their restriction with respect to the

boundary {0} ×�d−1 of �d
+ (which we identify with �d−1). Taking E = Lp(�d−1; X) and E = X,

respectively, these two trace operators induce (in the natural way) operators

trt=0 ∈ B
(
W1

q (�+, vµ; Lp(�d
+,wγ; X)) ∩ Lq(�+, vµ; W2

p(�d
+,wγ; X)), Lp(�d

+,wγ; X)
)

(1.9)

and

try=0 ∈ B
(
W1

q (�+, vµ; Lp(�d
+,wγ; X)) ∩ Lq(�+, vµ; W2

p(�d
+,wγ; X)), Lq(�+, vµ; Lp(�d−1; X))

)
.

(1.10)
In the maximal Lq

µ-L
p
γ-regularity approach to (1.5) we want to uniquely solve the problem

∂tu + (1 − ∆)u = f ,
try=0u = g,
trt=0u = u0.

(1.11)

in the solution space W1
q (�+; Lp(�d

+,wγ; X)) ∩ Lq(�+; W2
p(�d

+,wγ; X)); to be more precise, we
want to find5 a Banach space of initial-boundary data

Di.b. ↪→ Lq(�+, vµ; Lp(�d−1; X)) ⊕ Lp(�d; X),

which is necessarily unique up to an equivalence of norms, such that the problem (1.5) admits,
for each f ∈ Lq(J; Lp(Ω; X)), a unique solution u ∈ W1

q (�+; Lp(�d
+,wγ; X))∩Lq(�+; W2

p(�d
+,wγ; X))

if and only if the data g, u0 satisfy (g, u0) ∈ Di.b..
Having available a rich theory of maximal regularity for abstract Cauchy problems (for

which we need X to be a UMD space), the main difficulty in (1.11) is the boundary inho-
mogeneity g. A very important step in treating treating this boundary inhomogeneity is to
determine the trace space of

� := W1
q (�+, vµ; Lp(�d

+,wγ; X)) ∩ Lq(�+, vµ; W2
p(�d

+,wγ; X))

for the trace operator try=0, that is, to determine a Banach space

� ↪→ Lq(�+, vµ; Lp(�d−1; X)),

which is necessarily unique up to an equivalence of norms, such that try=0 is a continuous
surjection � −→ � having a continuous right-inverse.

In [26] it was established that, as a byproduct of one of the main results (concerning the
solution to the maximal Lq-Lp-regularity problem [26, Theorem 2.3]),

� = F
1− 1

2p (1+γ)
q,p (�+, vµ; Lp(�d−1; X)) ∩ Lq(�+, vµ; B

2− 1
p (1+γ)

p,p (�d−1; X)) (1.12)

for the unweighted case µ = γ = 0 under the restriction that X is a UMD space, where F
1− 1

2p (1+γ)
q,p

denotes a Triebel-Lizorkin space and B
2− 1

p (1+γ)
p,p denotes a Besov space; for the case p ≤ q,

5Establish its existence and determine it explicitly.
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µ = γ = 0, X = �, this was already known in [101]. Whereas Denk, Hieber & Prüss [26] solved
the maximal Lq-Lp-regularity problem for the general case q, p ∈]1,∞[ [26, Theorem 2.3] by
using very clever ad hoc arguments (in an operator theoretic way), they solved the special
case q = p [26, Theorem 2.1] in a more systematic way making use of (1.12) with a specific
choice of right-inverse. The latter was later extended and worked out in more detail, in a
more systematic way, for the case q = p, µ ∈ [0, q − 1[, γ = 0 in [73, 75, 76]. Here the
approach to the trace problem under consideration is operator theoretic, making use of operators
with a bounded H∞-calculus, interpolation theory, and operator sums. Whereas this approach
heavily relies on the equality q = p, we will follow a different approach, based on distribution
theory and harmonic analysis, which works for the general case q, p ∈]1,∞[, µ ∈] − 1, q − 1[,
γ ∈] − 1, p − 1[. Our approach roughly consists of viewing intersection spaces like � and
� not only as intersection spaces but also as ’concrete’ spaces of X-valued distributions on
�d

+ × �+ and �d−1 × �+, respectively, and study these spaces via their versions on the full
Euclidean spaces �d × � and �d−1 × �, respectively. The main advantage of this approach
is the availability of tools from Euclidean harmonic analysis. In this approach, � and � are
identified with so called weighted anisotropic mixed-norm function spaces, where anisotropic
has to be interpreted as different ’smoothness’ in the different coordinate directions, and where
mixed-norm comes from the fact that these spaces are defined in terms of (weighted) mixed-
norm Lebesgue-Bochner spaces which consist of (equivalence classes of) Lebesgue-strongly
measurable functions having different integrability in the different coordinate directions (in a
certain order of integration).

1.3 Outline

Let us now describe the organization of this thesis. Besides this introductory chapter, this the-
sis consists of five chapters and an appendix. Each of these five chapters ends with a section
called "Notes", in which we provide some historical background on the subject under consid-
eration (or at least give references doing so) and in which we give a description of the literature
used. In the appendix we present some material from measure theory, Banach function spaces,
distribution theory, harmonic analysis, and Banach space theory, which is used throughout the
thesis. Some part of this material forms a prerequisite for some of the chapters of the thesis and
some part of this material is just for convenience of reference in the main text of the thesis; this
is described in the appendix itself. Before we comment on the relations between the next five
chapters of the thesis, let us first describe the contents of these chapters.

The title of Chapter 2 is "Preliminaries". Besides presenting some material which is needed
for the rest of the thesis, the main aim of this chapter is to give an efficient introduction to some
concepts needed to understand the maximal Lq

µ-L
p
γ-regularity problem discussed in Section 1.2

(and in Section 6.1.1) and (in combination with the reference given to Section 5.1 and Section
5.2.1.a of Chapter 5) to get an idea of our approach based on weighted anisotropic mixed-norm
function spaces.

In Chapter 3 we prove a generalization of the boundedness of the Hardy-Littlewood maxi-
mal function operator on the Ap-weighted Lebesgue space Lp(�d,w), p ∈]1,∞[, (see Appendix
D) to the UMD Banach function space valued setting, which is of independent interest. Here
the main tools are martingale theory and the theory of mixed-norm spaces (see Appendix B.2).
As a consequence of this general result we obtain several more concrete maximal and weighted
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norm inequalities, which are very important for Chapter 5.
In Chapter 4 we prove several anisotropic Mikhlin Fourier multiplier theorems on the

weighted mixed-norm Lebesgue-Bochner spaces for operator-valued symbols. We proceed
via the abstract theory of unconditional Schauder decompositions and via extrapolation theory
for Caldéron-Zygmund operators.

Chapter 5 is concerned with the theory of weighted anisotropic mixed-norm Banach space-
valued function spaces, with as one of the main interests trace theory. We study function spaces
of Sobolev, Bessel potential, Triebel-Lizorkin, and Besov type, first on the full Euclidean space
and then on the domains �d

+ × �+, �d−1 × �+ and �d
+ via a restriction procedure. The main

tools are the anisotropic Mikhlin theorem from Chapter 4 and the maximal and weighted norm
inequalities from Chapter 4, where the first is used to treat Bessel potential spaces and where
the second is used to treat Triebel-Lizorkin and Besov spaces.

In the final chapter, Chapter 6, we use the developed function space theory from Chap-
ter 5 in combination with isotropic non-mixed-norm versions of the Mikhlin Fourier multiplier
theorems from Chapter 4 in order to solve the maximal Lq

µ-L
p
γ-regularity problem for (1.5).

Having described the structure of this thesis and the contents of each chapter separately,
for convenience of the reader we finally would like to give a brief description for each of the
Chapters 2 - 5 which material will be needed in later chapters:

• Chapter 2: Except for a large part of Chapter 4 (see below), this chapter forms an impor-
tant basis for the rest of the thesis. Here we need to remark that Section 2.1 is not needed
for Chapters 3 and 4.

• Chapter 3: Besides Theorem 3.1.4 and Section 3.4, which are very important for Chap-
ter 5, this chapter is independent of the rest of the thesis.

• Chapter 4: For applications in Chapters 5 and 6, the material in this chapter up to (and
including) Proposition 4.2.4 is sufficient. In Chapter 6 we in fact even only directly use
the isotropic non-mixed-norm case.

• Chapter 5: The results needed for direct application in Chapter 6 are all contained in
Section 5.3, which is about function spaces on domains. However, Section 5.3 heavily
relies on Section 5.2, which is about function spaces on the full Euclidean space; not only
for the proofs of essentially all the stated results but also for the definition via restriction
of Bessel potential, Triebel-Lizorkin, and Besov spaces.
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Chapter 2

Preliminaries

2.1 Weighted Sobolev Spaces

2.1.1 Definitions and Basic Properties
Let X be a Banach space, let U ⊂ �d be an open subset, let p ∈]1,∞[, and let w ∈ Ap(�d).
Recall that Ap(�d) stands for the class of Muckenhaupt Ap-weights on�d, see Definition D.2.1.
We define the weighted Lebesgue-Bochner space

Lp(U,w; X) :=
{

f ∈ L0(U; X) :
∫

U
|| f (x)||pX w(x) dx < ∞

}
,

which becomes a Banach space when equipped with the norm

|| f ||Lp(U,w;X) :=
(∫

U
|| f ||pX w dλU

)1/p

.

Note that
Lp(U,w; X) ↪→ L1

loc(U; X) ↪→ D′(U; X), (2.1)

which can be seen in the same way as (D.4). For k ∈ � we define the corresponding weighted
Sobolev space

Wk
p(U,w; X) := { f ∈ D′(U; X) : Dα f ∈ Lp(U, x; X), |α| ≤ k},

which becomes a Banach space when equipped with the norm

|| f ||Wk
p(U,w;X) :=

∑
|α|≤k

||Dα f ||Lp(U,w;X .

The following characterization of weighted Sobolev spaces on intervals will be the basis
for the definition of the trace operators below (in Section 2.1.3).

Lemma 2.1.1. Let X be a Banach space, J =]a, b[ with −∞ < a < b < ∞, p ∈]1,∞[, and
w ∈ Ap(�). Then we have

W1
p(J,w; X) ↪→ C(J; X).

Moreover,

W1
p(J,w; X) =

{
f ∈ C(J; X) : f (x) = f (a) +

∫ x

a
g(t)dt, g ∈ Lp(J,w; X)

}
.
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The proof of this lemma is analogous to the proof of the unweighted case, see for instance
[46, Theorem 4.13].

A linear map E : L1
loc(U; X) −→ L1

loc(�
d; X) is called an extension operator from U to �d

if it satisfies
(E f )|U = f , f ∈ L1

loc(U; X).

An extension operator from U to�d which restricts to a bounded linear operator from Wn
p(U,w; X)

to Wn
p(�d,w; X) is very useful to derive many properties of Wn

p(U,w; X) from that of Wn
p(�d,w; X),

the latter having the advantage of the availability of many tools from Euclidean harmonic anal-
ysis. For the half space U = �d

+ we have:

Lemma 2.1.2. Let E be a Banach space and let k ∈ �. Then there exists an extension op-
erator EE,k : L1

loc(�
d
+; E) −→ L1

loc(�
d; E) which restricts to a bounded linear operator from

Wn
p(�d

+,w; E) to Wn
p(�d,w; E) for each n ∈ {0, . . . , k}, p ∈]1,∞[, and w ∈ Ap(�d) which is

symmetric with respect to reflection in {0} × �d−1 (i.e. satisfying w(x, y) = w(−x, y) for almost
all (x, y) ∈ �×�d−1) and for which, in case k ≥ 1, there exist C ∈]0,∞[ and λ ∈]0,∞[\{1} such
that w(λx, y) ≤ Cw(x, y) for almost all (x, y) ∈ �×�d−1. Moreover, if F is a Banach space with
F ↪→ E, then EF,k is the restriction of EE,k to L1

loc(�
d
+; F).

Comments on the proof: For the proof of this lemma we can simply follow the construction
in [1, Theorem 5.19], which is based on successive reflections in {0} ×�d−1; such an approach
is standard and is also followed in [46, Theorem 4.12] and [98, Theorem 4.5.2]. We would like
to remark that the existence of an extension operator EE,K (as in the statement of the lemma)
for some K ∈ �≥1 implies the existence of EE,k for all k ∈ {0, . . . ,K}; indeed, we could simply
take EE,k := EE,K for k ∈ {0, . . . ,K − 1}. However, the construction of EE,k in [1, Theorem 5.19]
follows for each k ∈ � the same procedure, yielding an extension operator EE,k which does not
restrict to a bounded linear operator from Wn

p(�d
+,w; E) to Wn

p(�d,w; E) when n ≥ k + 1.

Lemma 2.1.3. Let X be a Banach space, n ∈ �, p ∈]1,∞[, and w ∈ Ap(�d).

(i) C∞c (�d; X) is dense in Wn
p(�d,w; X).

(ii) If w is symmetric with respect to reflection in {0} × �d−1 (as in Lemma 2.1.2), then
C∞(c)(�

d
+; X) = { f|�d

+
: f ∈ C∞c (�d; X)} is dense in Wn

p(�d
+,w; X).

Proof. Since (ii) follows directly from (i) thanks to Lemma 2.1.2, we only need to prove (i).
Let f ∈ Wn

p(�d,w; X) be given. Pick a φ ∈ C∞c (�d) such that φ ≥ 0 and
∫
�d φ(x)dx = 1. In

accordance with (D.2), for each n ∈ � we write φn = ndφ(n · ). By Proposition D.2.5 and
the basic properties of the convolution product (see Proposition C.5.2), we have (φn ∗ f )n∈� ⊂

C∞(�d; X)∩Wn
p(�d,w; X) and f = limn→∞ φn∗ f in Wn

p(�d,w; X). This shows that C∞(�d; X)∩
Wn

p(�d,w; X) is dense in Wn
p(�d,w; X). With a standard truncation argument, this can be im-

proved to the denseness of C∞c (�d; X) in Wn
p(�d,w; X); see for instance [46, Theorem 4.10]. �

2.1.2 Anisotropic Sobolev Spaces
Let us now turn to the weighted anisotropic Sobolev space of the intersection type

W1
q (�+, vµ; Lp(�d

+,wγ; X)) ∩ Lq(�+, vµ; W2
p(�d

+,wγ; X)) (2.2)
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from Section 1.2. Viewed as a subspace of D′(�+;D′(�d
+; X)), this is just the space of all

u ∈ D′(�+;D′(�d
+; X)) with

u, ∂tu,Dα
x ∈ Lq(�+, vµ; Lp(�d

+,wγ; X)) ⊂ D′(�+;D′(�d
+; X)), |α| ≤ 2,

having

u 7→ ||u||Lq(�+,vµ;Lp(�d
+,wγ;X)) + ||∂tu||Lq(�+,vµ;Lp(�d

+,wγ;X)) +
∑
|α|≤2

∣∣∣∣∣∣Dα
x

∣∣∣∣∣∣
Lq(�+,vµ;Lp(�d

+,wγ;X))

as an equivalent norm. Under the canonical identification D′(�+;D′(�d
+; X)) = D′(�d

+ ×

�+; X) from Appendix C.7, Lq(�+, vµ; Lp(�d
+,wγ; X)) corresponds to the weighted mixed-norm

Lebesgue-Bochner space L(p,q),(d,1)(�d
+ × �+, (wγ, vµ); X) consisting of all f ∈ L0(�d

+ × �+; X)
with

|| f ||L(p,q),(d,1)(�d
+×�+,(wγ,vµ);X) :=

∫
�+

(∫
�d

+

|| f (x, t)||pX dx
)q/p

dt
1/q

< ∞.

As a consequence we have that, under the canonical identificationD′(�+;D′(�d
+; X)) = D′(�d

+×

�+; X), the intersection space (2.2) corresponds with the weighted anisotropic mixed-norm
Sobolev space W (2,1)

(p,q),(d,1)(�
d
+ × �+, (wγ, vµ); X) consisting of all u ∈ D′(�d

+ × �+; X) with
D(α,β)u ∈ L(p,q),(d,1)(�d

+ × �+, (wγ, vµ); X) for every (α, β) ∈ �d × � satisfying α = 0 & |β| ≤ 1
or |α| ≤ 2 & β = 0; here we equip W (2,1)

(p,q),(d,1)(�
d
+ × �+, (wγ, vµ); X) with its natural norm, which

turns it into a Banach space. The same can of course be done with �+ replaced by � and/or
with �d

+ replaced by �d.

Lemma 2.1.4. The restriction operator

r�d×�,�d
+×�+;X ∈ L

(
D′(�d ×�; X),D′(�d

+ ×�+; X)
)
, u 7→ u|�d

+×�+

restricts to a continuous surjection

W (2,1)
(p,q),(d,1)(�

d ×�, (wγ, vµ); X) −→ W (2,1)
(p,q),(d,1)(�

d
+ ×�+, (wγ, vµ); X)

with a continuous right-inverse E .

Proof. It is enough to prove this statement for restriction from �d × � to �d × �+ and for
restriction from �d ×�+ to �d

+ ×�+. Let us only do the first: Let EE,1 and EF,1 be the extension
operators from Lemma 2.1.2 for the Banach spaces E = Lp(�d,wγ; X) and F = W2

p(�d,wγ; X).
Since the weight vµ ∈ Aq(�) (1.6) is symmetric with respect to reflections in the origin, we in
particular have EE,1 ∈ B(W1

q (�+, vµ; E),W1
q (�, vµ; E)) and EF,1 ∈ B(Lq(�+, vµ; F), Lq(�, vµ; F))

(after restriction). Furthermore, EE,1 extends EF,1 as F ↪→ E. As a consequence,

EE,1 ∈ B
(
W1

q (�+, vµ; E),W1
q (�, vµ; E)

)
∩ B

(
Lq(�+, vµ; F), Lq(�, vµ; F)

)
,

from which it follows that EE,1 restricts to a bounded linear operator

Et : W1
q (�+, vµ; E) ∩ Lq(�+, vµ; F) −→ W1

q (�, vµ; E) ∩ Lq(�, vµ; F)

satisfying (Etu)|�+
= u. Identifying these intersection spaces with the corresponding weighted

anisotropic mixed-norm Sobolev spaces, we obtain the desired result. �
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2.1.3 Trace Operators

Let X be a Banach space, p ∈]1,∞[, and w ∈ Ap(�). Recall that

W1
p(�+,w; X) ↪→ C([0,∞[; X) (2.3)

by Lemma 2.1.1. So the boundary value f|∂�+
= f|{0} can just be defined in the classical sense of

evaluation of continuous functions when f ∈ W1
p(�+,w; X), giving rise to the continuous linear

operator
tr{0} : W1

p(�+,w; X) −→ X, f 7→ f (0).

This operator is called the trace in 0.
We would also like to give a precise meaning to the boundary value f|∂�d

+
= f|{0}×�d−1 when

f ∈ W1
p(�d

+,w; X) for general d, at least for the weight w = wγ from (1.6). But it does not hold

that W1
p(�d

+,w; X) ⊂ C(�d
+; X) when d > 1. However, the concept of boundary value can be

introduced in the sense of traces:

Lemma 2.1.5. Let X be a Banach space, p ∈]1,∞[, w+ ∈ Ap(�), and w′ ∈ Ap(�d−1). Let
w := w+ ⊗ w′ ∈ Ap(�d), i.e. w(x) := w+(x1)w′(x2, . . . , xd) for x = (x1, . . . , xd) ∈ �d. Then we
have

W1
p(�d

+,w; X) ↪→ W1(�d
+,w+; Lp(�d−1,w′; X)) ↪→ C([0,∞[; Lp(�d−1,w′; X)) (2.4)

under the canonical identificationD′(�d
+; X) = D′(�+;D′(�d−1; X)) from Appendix C.7. More-

over, the induced continuous linear operator

tr{0}×�d−1 : W1
p(�d

+,w; X) ↪→ C([0,∞[; Lp(�d−1,w′; X)) −→ Lp(�d−1,w′; X), f 7→ f (0), (2.5)

is on the dense subspace C(�d
+; X) ∩ W1

p(�d
+,w; X) of W1

p(�d
+,w; X) just given by restriction

with respect to the hyperplane {0} ×�d−1 (which we identify with �d−1). This operator is called
the trace operator on W1

p(�d
+,w; X) with respect to {0} ×�d−1.

Proof. We only need to show the last assertion, the first inclusion in (2.4) being trivial and the
second inclusion in (2.4) being a special case of Lemma 2.1.1. Viewing Lp(�d−1,w′; X) as a
linear subspace of D′(�d−1; X) and accordingly viewing W1

p(�d
+,w; X) as a linear subspace of

C([0,∞[;D′(�d−1; X)), the operator tr = tr{0}×�d−1 is obtained by restricting the evaluation in 0
map

ev0 : C([0,∞[;D′(�d−1; X)) −→ D′(�d−1; X), f 7→ f (0) (2.6)

to the subspace W1
p(�d

+,w; X). On the other hand, viewing C(�d−1; X) as a linear subspace of

D′(�d−1; X) and accordingly viewing C(�d
+; X) as the linear subspace C([0,∞[; C(�d−1; X)) of

C([0,∞[;D′(�d−1; X)), the restriction map

C(�d
+; X) −→ C(�d−1; X), f 7→ f|{0}×�d−1 ,

is obtained by restricting the evaluation in 0 map ev0 (2.6) to the subspace C(�d
+; X). Hence we

obtain the desired result. �
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In the notation from Section 1.2, the above applies to the weights vµ ∈ Aq(�) and wγ ∈

Ap(�d) (1.6); see Example D.2.12. Given a Banach space E, we can thus define the trace
operators trt=0 (1.7) and try=0 (1.8) from Section 1.2. Taking E = Lp(�d−1; X) and E = X,
respectively, these two trace operators induce (in the natural way) the operators trt=0 (1.9) and
try=0 (1.10), which are needed in the formulation of the maximal Lq

µ-L
p
γ-regularity problem

for (1.5).
Just as in the proof of Lemma 2.1.5 concerning the trace operator (2.5), the just defined

trace operators trt=0 (1.9) and try=0 (1.10) can also naturally be viewed as restrictions of ’distri-
butional’ trace operators. Indeed, concerning trace operator trt=0 (1.9), we have

W1
q (�+, vµ; Lp(�d

+,wγ; X)) ∩ Lq(�+, vµ; W2
p(�d

+,wγ; X)) ↪→ W1
q (�+, vµ; Lp(�d

+,wγ; X))

↪→ C([0,∞[; Lp(�d
+,wγ; X)) ↪→ C([0,∞[;D′(�d

+; X)),

Lp(�d
+,wγ; X) ↪→ D′(�d

+; X),

and trt=0 (1.9) is accordingly the restriction of the evaluation in 0 map

C([0,∞[;D′(�d
+; X)) −→ D′(�d

+; X), f 7→ f (0), (2.7)

where the intersection space (2.3) and C([0,∞[;D′(�d
+; X)) may also be viewed as subspaces

ofD′(�d
+ ×�+; X) via the canonical identificationD′(�+;D′(�d

+; X)) = D′(�d
+ ×�+; X); also

see Section 2.1.2. Furthermore, concerning the trace operator try=0 (1.10), we have

W1
q (�+, vµ; Lp(�d

+,wγ; X)) ∩ Lq(�+, vµ; W2
p(�d

+,wγ; X)) ↪→ Lq(�+, vµ; W2
p(�+ ×�

d−1,wγ; X))

↪→ Lq(�, vµ; W1
p(�, | · |γ; Lp(�d−1; X))) ↪→ D′(�+; C([0,∞[;D′(�d−1; X)))

!
= C([0,∞[;D′(�d−1 ×�+; X)),

Lq(�+, vµ; Lp(�d−1; X)) ↪→ D′(�+;D′(�d−1; X)) = D′(�d−1 ×�+; X),

and try=0 is accordingly the restriction of the evaluation in 0 map

C([0,∞[;D′(�d−1 ×�+; X)) −→ D′(�d−1 ×�+; X), f 7→ f (0); (2.8)

here we again did the usual identifications as in Appendix C.7, where the identification in ’ !
=’

is based on a combination of Lemma C.7.4 and the canonical isomorphism. This motivates us
to define the distributional trace operators

trt=0 : D(trt=0) ⊂ D′(�d
+ ×�+) −→ D′(�d

+; X)

and
trt=0 : D(try=0) ⊂ D′(�d

+ ×�+) −→ D′(�d−1 ×�+; X)

simply as the mappings (2.7) and (2.8), respectively.
In Chapter 5 we will determine the trace spaces of trt=0 (1.9) and try=0 (1.10) by making use

of weighted anisotropic Triebel-Lizorkin spaces; see Section 5.1.
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2.2 Weighted Mixed-Norm Lebesgue-Bochner Spaces
Convention 2.2.1 (d -decomposition of �d.). Let d = |d |1 = d1 + . . .+ dl with d = (d1, . . . , dl) ∈
(�≥1)l. The decomposition

�
d = �d1 × . . . ×�dl .

is called the d -decomposition of �d. For x ∈ �d we accordingly write x = (x1, . . . , xl) and
x j = (x j,1, . . . , x j,d j), where x j ∈ �

d j and x j,i ∈ � ( j = 1, . . . , l; i = 1, . . . , d j). We also say
that we view �d as being d -decomposed. Furthermore, for each k ∈ {1, . . . , l} we define the
inclusion map

ιk = ι[d ;k] : �dk −→ �d, xk 7→ (0, . . . , 0, xk, 0, . . . , 0), (2.9)

and the projection map

πk = π[d ;k] : �d −→ �dk , x = (x1, . . . , xl) 7→ xk. (2.10)

Definition 2.2.2. Suppose that �d is d -decomposed as above. Let X be a Banach space, U j ⊂

�d j , j = 1, . . . , l, open subsets, p = (p1, . . . , pl) ∈ [1,∞[l, and w = (w1, . . . ,wl) ∈
∏l

j=1 W(�d j).
We define the weighted mixed-norm Lebesgue-Bochner space Lp,d (U1 × . . . × Ul,w; X) as the
space of all f ∈ L0(U1 × . . . × Ul; X) satisfying

|| f ||Lp,d (U1×...×Ul,w;X) :=

∫
Ul

. . .

∫
U2

(∫
U1

|| f (x)||p1
X w1(x1)dx1

)p2/p1

w2(x2)dx2

p3/p2

. . .wl(xl)dxl


1/pl

< ∞.

We equip Lp,d (U1×. . .×Ul,w; X) with the norm || · ||Lp,d (U1×...×Ul,w;X), which turns it into a Banach
space. For X = � we simply write Lp,d (U1 × . . . × Ul,w) = Lp,d (U1 × . . . × Ul,w;�).

We would like to remark that Lp,d (U1 × . . . × Ul,w; X) is just the Köthe-Bochner space
E(X) associated with the mixed-norm Banach function space E = Lp,d (U1 × . . . × Ul,w) on
U1× . . .×Ul and the Banach space X; see Appendix B for the notions of Banach function space
and Köthe-Bochner space. Furthermore, there is a canonical isometric isomorphism

Lp,d (U1 × . . . × Ul,w; X) � Lpl(Ul,wl; . . . Lp1(U1,w1; X) . . .),

where Lpl(Ul,wl; . . . Lp1(U1,w1; X) . . .) stands for the iterated weighted Lebesgue-Bochner space.

Lemma 2.2.3. Suppose that �d is d -decomposed as above. Let X be a Banach space, p ∈
[1,∞[l, and w ∈

∏l
j=1 A∞(�d j). Then

S(�d; X)
d
↪→ Lp,d (�d,w; X).

Moreover, there in fact exists an L ∈ � and a constant C > 0 such that

|| f ||Lp,d (�d ,w;X) ≤ C

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

l∏
j=1

(1 + |π[d ; j]( · )|2)L f

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L∞(�d;X)

(2.11)

for all strongly measurable functions f : �d −→ X.
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Proof. The inequality (2.11), thereby the continuous inclusion part of this lemma, follows eas-
ily from l applications of Corollary D.2.8. Finally, the density follows from the denseness of
Lpl(�dl ,wl) ⊗ . . . ⊗ Lp1,w1(�d1) ⊗ X in Lp,d (�d,w; X) � Lpl(�dl ,wl; . . . Lp1(�d1 ,w1; X) . . .) and
Lemma D.2.6. �

Lemma 2.2.4. Suppose that �d is d -decomposed as above. Let X be a Banach space, p ∈
]1,∞[l, and w ∈

∏l
j=1 Ap j(�

d j). Then it holds that

S(�d; X)
d
↪→ Lp,d (�d,w; X) ↪→ L1

loc(�
d; X),S′(�d,w; X).

Proof. By Lemma 2.2.3, we only need to show the second inclusion. Denoting by p′ =

(p′1, . . . , p′l) ∈]1,∞[l the vector of Hölder conjugates and by w′ = (w
− 1

p1−1

1 , . . . ,w
− 1

pl−1

l ) ∈
∏l

j=1 Ap′j(�
d j)

the vector of associated dual weights, we have S(�d) ↪→ Lp′,d (�d,w′) by Lemma 2.2.3. Since

Lp′,d (�d,w′) × Lp,d (�d,w; X) −→ X, (φ, f ) 7→
∫
�d
φ f dx

is a well-defined bounded bilinear mapping, we thus obtain the continuous inclusions

Lp,d (�d,w; X) ↪→ B(Lp′,d (�d,w′), X) = L(Lp′,d (�d,w′), X) ↪→ L(S(�d), X) = S′(�d; X).

Finally, the denseness of S(�d; X) in Lp,d (�d,w; X) follows from Lemma 2.2.3. �

2.3 Anisotropic Distance Functions
Throughout this section we suppose that �d is d -decomposed as in Convention 2.2.1. In our
study of anisotropic function spaces in Chapter 5 we will need the notions of anisotropic dila-
tion and anisotropic distance function (with respect to this d -decomposition); see for example
Section 5.2.1.a for anisotropic Bessel potential spaces.

Given a ∈]0,∞[l, we define the (d , a)-anisotropic dilation δ[d ,a]
λ on �d by λ > 0 to be the

mapping δ[d ,a]
λ on �d given by the formula

δ[d ,a]
λ x := (λa1 x1, . . . , λ

al xl), x ∈ �d. (2.12)

We shall furthermore frequently use the notation

b ·d y :=
l∑

j=1

d j∑
i=1

b jy j,i, b ∈ �l, y ∈ �d; (2.13)

mostly with b = a ∈]0,∞[l.

Definition 2.3.1. A (d , a)-anisotropic distance function on �d is a function u : �d −→ [0,∞[
satisfying

(i) u(x) = 0 if and only if x = 0.

(ii) u(δ[d ,a]
λ x) = λu(x) for all x ∈ �d and λ > 0.
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(iii) There exists a c > 0 such that u(x + y) ≤ c(u(x) + u(y)) for all x, y ∈ �d.

In this thesis we will mainly use two (d , a)-anisotropic distance functions on �d, namely
ρd ,a and | · |d ,a, to be defined below. The advantage of ρd ,a is that it allows us to define (d , a)-
anisotropic polar coordinates and the advantage of | · |d ,a is that it is explicitly given by a
formula, so that it is (in most situations) more suitable for doing computations and estimations.

The (d , a)-anisotropic distance function | · |d ,a : �d −→ [0,∞[ is given by the formula

|x|d ,a :=

 l∑
j=1

|x j|
2/a j


1/2

(x ∈ �d), (2.14)

and the (d , a)-anisotropic distance function ρd ,a : �d −→ [0,∞[ is defined as follows: For
x ∈ �d \ {0} we define ρd ,a(x) to be the unique number ρd ,a(x) = λ > 0 for which we have
δ[d ,a]
λ−1 x ∈ S d−1, and we put ρd ,a(0) := 0. Observe that ρd ,a(x) = 1 if and only if x ∈ S d−1.

Via the (d , a)-anisotropic distance function ρd ,a we can define (d , a)-anisotropic polar co-
ordinates on �d \ {0}: For every x ∈ �d \ {0} there is a unique (u, λ) ∈ S d−1 × �>0 so that
x = δ[d ,a]

λ u; just take λ = ρd ,a(x) and u = δ[d ,a]
ρd ,a(x)−1 x.

For the coordinate transformation �d \ {0} 3 x 7→ (u, λ) (the change to (d , a)-anisotropic
polar coordinates), the following associated change-of-variables formula for integration can be
obtained via a standard calculus computation (which we omit):

dx = λd ·a−1
l∑

j=1

a j|u j|
2dσ(u)dλ, (2.15)

where dσ is the surface measure on S d−1.
It is not difficult to show that the two (d , a)-anisotropic distance functions ρd ,a and | · |d ,a

are equivalent. Similar to the fact that all norms on �d are equivalent, it can in fact be shown
that:

Lemma 2.3.2. All (d , a)-anisotropic distance functions on�d are equivalent: Given two (d , a)-
anisotropic distance functions u and v on �d, there exist constants m,M > 0 such that mu(x) ≤
v(x) ≤ Mu(x) for all x ∈ �d

The statement of the above lemma is of course equivalent with the statement that every
(d , a)-anisotropic distance function on�d is equivalent with | · |d ,a (which is the way to proceed
in the proof of this lemma). Using an argument based on compactness, it is not difficult to see
that a function u : �d −→ [0,∞[, which satisfies (i) and (ii) of Definition 2.3.1, is continuous
if and only if it is equivalent with | · |d ,a. As a consequence, the (d , a)-anisotropic distance
functions on �d are precisely the continuous functions u : �d −→ [0,∞[ satisfying (i) and (ii)
of Definition 2.3.1; also see [29] and [104].
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Chapter 3

Maximal and Weighted Norm Inequalities

In this chapter we prove the boundedness (and well-definedness) of the Hardy-Littlewood max-
imal function operator taking values in a UMD Banach function space, which is defined by
taking the supremumum in the order of the Banach function space, in the corresponding Ap-
weighted Lp-Bochner spaces (p ∈]1,∞[). Reformulating this result in terms of mixed-norm
spaces, it is a small step to obtain the boundedness of partial Hardy-Littlewood maximal func-
tion operators, which are defined by taking the Hardy-Littlewood maximal operator in the sep-
arate variables, in the weighted mixed-norm Lebesgue spaces Lp,d (�d,w) plus corresponding
Fefferman-Stein inequalities. In Section 3.1 we state the main results and in Section 3.4 we
collect several important consequences.

3.1 Introduction
Recall from Appendix D.2 that the Hardy-Littlewood maximal function operator M (D.1) is
bounded on the weighted space Lp(�n,w), where w ∈ W(�n) and p ∈]1,∞[, if and only if
w ∈ Ap(�n). Here the reverse implication, i.e. the sufficiency of the Ap-condition for the
boundedness of M on Lp(�n,w), can be interpreted as follows: Let p ∈]1,∞[ and w ∈ Ap(�n)
be given. For each f ∈ Lp(�n,w;�) we have:

(i) for almost all x ∈ �n, the supremum

M( f )(x) = sup
δ>0

?
B(x,δ)
| f (y)|dy = sup

δ>0

1
|B(x, δ)|

∫
B(x,δ)
| f (y)|dy

exists in � (or in �+);

(ii) the function �n 3 x 7→ M( f )(x) ∈ �, which is almost everywhere well-defined, defines
an element of Lp(�n,w;�).

Moreover, the resulting sublinear operator

M : Lp(�n,w;�) −→ Lp(�n,w;�) f 7→ M( f ),

is bounded.
It is a natural question whether the above remains valid when we replace the Banach lattice

� by a general Banach lattice F; note here that
{>

B(x,δ)
| f (y)|dy : δ > 0

}
⊂ F+ because | f | ∈
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Lp(�n,w; F)+ ⊂ L1
loc(�

n; F)+ (whenever f ∈ Lp(�n,w; F)). In this chapter we will give a
positive answer in the case that F is a UMD Banach function space on a σ-finite measure space
(from which the case of a general Banach lattice can be derived, see Remark 3.1.2.(v)). This is
one of the main results of this chapter and is stated as the next theorem:

Theorem 3.1.1. Let F be a UMD Banach function space on a σ-finite measure space, let
p ∈]1,∞[, and let w ∈ Ap(�n). Then the formula

M( f )(x) := sup
δ>0

?
B(x,δ)
| f (y)| dy, x ∈ �n,

gives rise to a well-defined bounded sublinear operator M on Lp(�n,w; F), where the well-
definedness of M on Lp(�n,w; F) means that, for each f ∈ Lp(�n,w; F), (i) and (ii) above hold
with � replaced by F. Moreover, the implicit constant in ||M( f )||Lp(�n,w;F) . || f ||Lp(�n,w;F) only
depends on n, p, w and the UMD-constant βF = β2,F of F in an Ap-consistent way, i.e. there
exists an increasing function Cn,p,βF : [1,∞[−→ [1,∞[ (only depending on n, p and βF) such
that ||M( f )||Lp(�n,w;F) ≤ Cp,βF ([w]Ap) || f ||Lp(�n,w;F) for all f ∈ Lp(�n,w; F).

The statement of this theorem also makes sense for general Banach lattices. Although
Banach function spaces are enough for our purposes, for the interested reader we give several
reformulations (depending on certain properties of the Banach lattice under consideration) of
this statement, allowing us to derive the case of general UMD Banach lattices from the case of
UMD Banach function spaces:

Remark 3.1.2. Let E be a Banach lattice.

(i) Let f ∈ L1
loc(�

n; E) and x ∈ �n be given. Then the two sets{?
B(x,δ)
| f (y)|dy : δ ∈ �+

}
,

{?
B(x,δ)
| f (y)|dy : δ > 0

}
⊂ E+ (3.1)

have the same upper bounds in the Banach lattice E (as can be seen similarly to the last part
of the proof of Lemma 3.2.1). Therefore, the first set has a supremum in E if and only if the
second set has a supremum in E, in which case the two suprema coincide.

(ii) Let f ∈ L1
loc(�

n; E) be such that, for almost every x ∈ �n, the first set (or equivalently the
second set) in (3.1) has a supremum M( f )(x) in E. Furthermore, suppose that the function
�n 3 x 7→ M( f )(x) ∈ E, which is almost everywhere well-defined, defines an element of
L0(�n; E). Then M( f ) is the supremum of both of the sets{

x 7→
?

B(x,δ)
| f (y)|dy : δ ∈ �+

}
,

{
x 7→

?
B(x,δ)
| f (y)|dy : δ > 0

}
⊂ L0(�n; E)+ (3.2)

in L0(�n; E).

(iii) Suppose that E has an order continuous norm, or equivalently that E is σ-Dedekind com-
plete and has a σ-order continuous norm. Given f ∈ L1

loc(�
n; E), the following are equivalent:

(a) For almost every x ∈ �n, the first set (or equivalently the second set) in (3.1) has a
supremum M( f )(x) in E.

(b) The first set in (3.2) a supremum M( f ) in L0(�n; E).

22



(c) The second set in (3.2) a supremum M( f ) in L0(�n; E).

Moreover, x 7→ M( f )(x) is the same mapping in (a)/(b)/(c).
For the implications (a)⇒(b)/(c) it enough to show that the function �n 3 x 7→ M( f )(x) ∈

E+, which is almost everywhere well-defined, defines an element of L0(�n; E) (see (ii)), which
can be done using the σ-order continuity of E1, whereas the reverse implications (b)/(c)⇒(a)
follow from the σ-Dedekind completes of E.

(iv) Suppose that E is a Kantorovich-Banach space (a KB-space); so E in particularly satisfies
the hypotheses of (iii). Let p ∈]1,∞[, w ∈ Ap(�n), and f ∈ Lp(�n,w; E). Then Lp(�n,w; E) is
a KB-space, so that (a)/(b)/(c) from (iii) hold with M( f ) ∈ Lp(�n,w; E), if and only if,{

MJ( f ) := sup
δ∈J

[
x 7→

?
B(x,δ)
| f (y)|dy

]
: J ⊂ �+ finite

}
⊂ L0(�n; E)+

is a norm bounded set in Lp(�n,w; E), if and only if,{
MJ( f ) = sup

δ∈J

[
x 7→

?
B(x,δ)
| f (y)|dy

]
: J ⊂ �+ finite

}
⊂ L0(�n; E)+ (3.3)

is a norm bounded set in Lp(�n,w; E), in which case M( f ) is the supremum of each of these
two sets in Lp(�n,w; E).

(v) Suppose that E is a UMD Banach lattice (so E is in particularly a KB-space). Let p ∈]1,∞[
and w ∈ Ap(�n). Then there exists a constant C ≥ 0, depending on E, n, p and w in the same
way as in Theorem 3.1.1, such that, for every f ∈ Lp(�n,w; F), the equivalent conditions of
(iv) are satisfied with the norm estimate ||M( f )||Lp(�n,w;E) ≤ C || f ||Lp(�n,w;E, which can be seen
as follows: Given f ∈ Lp(�n,w; E), it can be shown that there exists a separable closed Riesz
subspace E0 of E in which f takes its values almost everywhere (so we may view f as an
element of Lp(�n,w; E0)). By [67, Theorem 1.b.14] there exists a Banach function space F
on some probability space which is isometrically isomorphic with E0 as Banach lattices. But
then F is a UMD Banach function space on a probability space with UMD-constant β2,F =

β2,E0 ≤ β2,E, so that the desired result now easily follows from Theorem 3.1.1 (reformulated as
in (iii)/(iv)).

We reduce Theorem 3.1.1 to a martingale theoretic problem (which is in fact equivalent to
the original problem), which we solve by using the UMD property of F in combination with
the theory of mixed-norm spaces from Appendix B.2 (mainly via the canonical isomorphism
Lp(�n,w; F) ' Lp(�n,w)[F]).

Corollary 3.1.3. Let F be a Banach function space on a σ-finite measure space, p ∈ [1,∞[,
and w ∈ A∞(�n). Suppose that r ∈]0,∞[ is such that Fr, as defined in (B.1), is a Banach
function space2 with the UMD property and such that w ∈ Ap/r(�n). Then the formula

Mr( f )(x) := sup
δ>0

(?
B(x,δ)
| f (y)|r dy

)1/r

, x ∈ �n,

gives rise to a well-defined bounded sublinear operator Mr on Lp(�n,w; F).
1Instead of the σ-order continuity of E, here we could also assume that E is a separable σ-normal Banach

lattice (e.g. a separable Banach function space on a σ-finite measure space); we just have to use the Pettis
measurability theorem. We call a Riesz space σ-normal if its σ-order continuous dual is point separating.

2Fr is always a Banach function space for r ∈]0, 1].
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Reformulating this corollary in terms of mixed-norm spaces, it is a small step to obtain the
next theorem, which (together with its consequences in Section 3.4) will be one of the crucial
ingredients in Chapter 5.

Theorem 3.1.4. Suppose that �d is d -decomposed as in Convention 2.2.1 and let a ∈]0,∞[l

and w ∈
∏l

j=1W(�d j). Let j0 ∈ {1, . . . , l} and r j0 ∈]0,min{p j0 , . . . , pl}[ be such that w j0 ∈

Ap j0/r j0
(�d j0 ). Then the formula

M[d ; j0],r j0
( f )(x) := sup

δ>0

?
B(x j0 ,δ)

| f (x1, . . . , x j0−1, y, x j0+1, . . . , xl)|r j0 dy
1/r j0

, x ∈ �d,

gives rise to a well-defined bounded sublinear operator M[d ; j0],r j0
on Lp,d (�d,w). Moreover,

there holds a Fefferman-Stein inequality for M[d ; j0],r j0
: for every q ∈] max{1, r},∞] there exists

a constant C ∈]0,∞[ such that, for all sequences ( fi∈I)i∈� ⊂ Lp,d (�d,w),∣∣∣∣∣∣∣∣∣∣∣∣∣∣(M[d ; j0],r j0
( fi))i∈�

∣∣∣∣∣∣
`q(I)

∣∣∣∣∣∣∣∣
Lp,d (�d ,w)

≤ C
∣∣∣∣∣∣||( fi)i∈�||`q(�)

∣∣∣∣∣∣
Lp,d (�d ,w)

.

We shall write M[d ; j0] := M[d ; j0],1.

Corollary 3.1.5. Suppose that �d is d -decomposed as in Convention 2.2.1, and let p ∈]1,∞[l

and w ∈
∏l

j=1 Ap j(�
d j). Then

M[d ,a]( f )(x) := sup
δ>0

?
|y−x|d ,a<δ

| f (y)| dy, x ∈ �d,

defines a bounded sublinear operator M[d ,a] on Lp,d (�d,w).

3.2 Maximal Funtions on Mixed-Norm Spaces

Let us first focus on Theorem 3.1.1. To this end, let F be a UMD Banach function space on
the σ-finite measure space (T,B, ν) and let w ∈ Ap(�n), p ∈]1,∞[. Then, being a UMD space,
F is reflexive and thus has a σ-order continuous norm (see Propositions E.5.5 and B.1.8). So,
by Theorem B.2.7, we have a canonical isometric isomorphism Lp(�d,w; F) � Lp(�n,w)[F]
of Banach lattices. Moreover, if f ∈ Lp(�n,w; F) corresponds to f̃ ∈ Lp(�d,w)[F] under this
isomorphism, then we have, for ν-a.a. t ∈ T ,(?

B(x,δ)
| f | dλ

)
(t) =

?
B(x,δ)
| f̃ (y, t)| dy, δ > 0; (3.4)

see Corollary B.2.3. This suggests to reformulate Theorem 3.1.1 in terms of the mixed-norm
space Lp(�d,w)[F], having the advantage that we can work with (equivalence classes) of �-
valued measurable functions on the product measure space (�n × T,B(�n)⊗B, λ⊗ ν) and that
we can always take suprema in the extended positive real numbers [0,∞].

Recall the definitions ofM(S ),M+(S ), L0(S ) and L0
+(S ) from Appendix A.1.
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Lemma 3.2.1. Let (T,B, ν) be a σ-finite measure space. For each function f ∈ M(�n × T ),

M f (x, t) := sup
δ>0

?
B(x,δ)
| f (y, t)|dy = sup

δ∈�+

?
B(x,δ)
| f (y, t)|dy, (x, t) ∈ �n × T, (3.5)

defines an element ofM+(�n × T ). Moreover, we obtain a mapping

M : L0(�n × T ) −→ L0
+(�n × T ).

Proof. Let f ∈ M(�n × T ). For each δ > 0 we have, by Tonelli’s theorem (cf. Theorem A.1.1)
and the fact that �n admits an exhaustion by compacts, that (x, t) 7→

>
B(x,r)
| f (y, t)|dy defines

a measurable function �n × T −→ [0,∞] whose equivalence class does not depend on the
equivalence class of the given f . By Tonelli’s theorem we furthermore have

B := {t ∈ T : [y 7→ f (y, t)] ∈ L1
loc(�

n)} ∈ B.

Therefore, as both suprema in (3.5) are equal to ∞ for (x, t) ∈ �n × [T \ B] ∈ B(�n) ⊗ B,
it remains to establish equality of the two suprema in (3.5) for (x, t) ∈ �n × B.

Let (x, t) ∈ �n×B. The inequality ’≥’ in (3.5) holds trivially. For the reverse inequality ’≤’,
let ε > 0 and δ > 0 be arbitrary. Then we can pick a δ′ ∈ �>0 such that δ′ < δ and

1
|B(x, δ)|

∫
B(x,δ)\B(x,δ′)

| f (y, t)|dy ≤ ε;

here we use [y 7→ f (y, t)] ∈ L1
loc(�

d) in combination with the Lebesgue dominated convergence
theorem. So?

B(x,δ)
| f (y, t)|dy =

1
|B(x, δ)|

∫
B(x,δ)\B(x,δ′)

| f (y, t)|dy +
1

|B(x, δ)|

∫
B(x,δ′)

| f (y, t)|dy

≤ ε +
1

|B(x, δ′)|

∫
B(x,δ′)

| f (y, t)|dy

≤ ε + sup
δ′′∈�>0

?
B(x,δ′′)

| f (y, t)|dy.

First taking the supremum over δ > 0 and then letting ε → 0, we obtain the desired inequal-
ity ’≤’. �

In view of Remark 3.1.2.(iii)/(iv) (and the discussion preceding this lemma), Theorem 3.1.1
can now be reformulated in terms of the mixed-norm space Lp(�d,w)[F], as follows.

Theorem 3.2.2. Let F be a UMD Banach function space on theσ-finite measure space (T,B, ν),
p ∈]1,∞[, and w ∈ Ap(�n). Then M, defined by (3.5), restricts to a bounded sublinear operator
on Lp(�n,w)[F] with norm bound only depending on n, p, w and the UMD-constant of F in an
Ap-consistent way (see Theorem 3.1.1).

Remark 3.2.3. Let F be a Banach function space on the σ-finite measure space (T,B, ν), p ∈
]1,∞[, and w ∈ Ap(�n). Suppose that F has a σ-Levi norm (which is certainly the case when
F is a KB space). By Theorem B.2.7, we can view Lp(�n,w; F) as a closed Riesz subspace of
Lp(�n,w)[F]. Moreover, if f ∈ Lp(�n,w; F) gets identified with f̃ ∈ Lp(�n,w)[F], then for
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ν-a.a. t ∈ T we have that (3.4) holds true. Since Lp(�n,w)[F] is easily seen to have a σ-Levi
norm as well, it follows that the set in (3.3) is norm bounded in Lp(�n,w; F) if and only if
M( f ) ∈ Lp(�n,w)[F], in which case ||M( f )||Lp(�n,w)[F] coincides with the smallest norm bound
of this set.

Every UMD Banach function space being a reflexive Banach lattice and thus a KB space,
a combination of the above and Remark 3.1.2.(iii)/(iv) shows that Theorem 3.2.2 is indeed a
reformulation of Theorem 3.1.1.

We will prove Theorem 3.2.2 in the next section. Let us first look at some consequences.

Corollary 3.2.4. Let F a Banach function space on the σ-finite measure space (T,B, ν), p ∈
[1,∞[, w ∈ A∞(�n), and ∅ , I ⊂ �. Suppose that r ∈]0, p[ is such that w ∈ Ap/r and such that
Fr (see (B.1)) is a Banach function space3 with the UMD property. Then

Mr( fi)i∈I := ([M| fi|
r]1/r)i∈I

defines a bounded sublinear operator on [Lp(�n,w)[F]][`∞(I)].

Proof. We first consider the case I = {0}; so we just have `∞(I) = �, [Lp(�n,w)[F]][`∞(I)] =

Lp(�n,w)[F], and Mr f = [M| f |r]1/r for f ∈ Lp(�n,w)[F]. Since

||Mr f ||Lp(�n,w)[F] =
∣∣∣∣∣∣[M| f |r]1/r

∣∣∣∣∣∣
Lp(�n,w)[F]

= ||M| f |r||r(Lp(�n,w)[F])r

= ||M| f |r||rLp/r(�n,w)[Fr] ,

it follows from Theorem 3.2.2 that

||Mr f ||Lp(�n,w)[F] ≤ Cr || | f |r ||rLp/r(�n,w)[Fr] = Cr || f ||Lp(�n,w)[F] .

Finally, the general case now follows from the observation that

||Mr( fi)i∈I ||`∞(I) ≤ Mr ||( fi)i∈I ||`∞(I)

for all f ∈ [Lp(�n,w)[F]][`∞(I)]. �

Let (S ,A , µ) and (T,B, ν) be two σ-finite measure spaces. Then the formula

M( f )(s, x, t) := sup
δ>0

?
B(x,δ)
| f (s, y, t)| dy, (s, x, t) ∈ S ×�n × T,

gives rise to a well defined mapping

M : L0(S ×�n × T ) −→ L0
+(S ×�n × T );

just apply Lemma 3.2.1 to the σ-finite measure space (S × T,A ⊗B, µ ⊗ ν).

Corollary 3.2.5. Let E and F be Banach function spaces on the σ-finite measures space
(S ,A , µ) and (T,B, ν), respectively, p ∈ [1,∞[, q ∈ [1,∞], w ∈ A∞(�n), and ∅ , I ⊂ �.
Suppose that r ∈]0,min{p, q}[ is such that w ∈ Ap/r and such that Fr (see (B.1)) is a Banach
function space3 with the UMD property. Then

Mr( fi)i∈I := ([M| fi|
r]1/r)i∈I

defines a bounded sublinear operator on E[Lp(�n,w)[F]][`q(I)]
3Fr is always a Banach function space for r ∈]0, 1].
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Proof. This follows easily from Corollary 3.2.4. Note here that, in case q < ∞, F[`q(I)] is
a Banach function space on the σ-finite measure space T × I, for which we have F[`q(I)]r =

Fr[`q/r(I)]; so, if Fr is a Banach function space with the UMD property, then so is F[`q(I)]r =

Fr[`q/r(I)] ' Fr(`q/r(I)) by Proposition E.5.6. �

Corollary 3.1.3 and Theorem 3.1.4 are easy consequences of this corollary. For Corollary
3.1.3 we just have to reformulate this corollary in terms of the Lebesgue-Bochner space for the
special case that E = � and I = {0}.

Let us finally give the proof of Corollary 3.1.5:

Proof of Corollary 3.1.5. That M[d ,a] is well defined as a sublinear operator L1
loc(�

d) −→ L0(�d)
can be shown as in Lemma 3.2.1 (but easier). So it remains to be shown that M[d ,a] is bounded
on Lp,d (�d,w). From the equivalence |x|′d ,a := max{|x1|

1/a1 , . . . , |xl|
1/al} h |x|d ,a (x ∈ �d) it

follows that, for every f ∈ L1
loc(�

d), x ∈ �d and δ > 0,?
|y−x|d ,a<δ

| f (y)|dy h
?
|y−x|′d ,a<δ

| f (y)|dy =

?
|y1−x1 |<δ

a1

. . .

?
|yl−xl |<δ

al

| f (y)| dyl . . . dy1

≤ M[d ;1] . . . M[d ;l] f .

By Theorem 3.1.4 we thus obtain that, for every f ∈ Lp,d (�d,w),

0 ≤ M[d ,a]( f ) ≤ M[d ;1] . . . M[d ;l] f ∈ Lp,d (�d,w) and
∣∣∣∣∣∣M[d ;1] . . . M[d ;l] f

∣∣∣∣∣∣
Lp,d (�d ,w)

. || f ||Lp,d (�d ,w) ,

yielding the boundedness of M[d ,a] on Lp,d (�d,w). �

3.3 Proof of Theorem 3.2.2
In this Section we prove Theorem 3.2.2. The strategy is to reduce this theorem to a problem
in martingale theory (Theorem 3.3.5), which gives an explanation for the assumption that the
Banach function space under consideration is of class UMD. This reduction we carry out in
Section 3.3.1. In Section 3.3.2 we subsequently prove the reduced problem, for which we need
two extra martingale theoretic results (Proposition 3.3.6 and Lemma 3.3.9), whose proofs we
give in Section 3.3.3.

3.3.1 Reduction to a Martingale Theoretic Problem
Let the notations be as in Theorem 3.2.2. As a first step in the proof of Theorem 3.2.2, we
reduce the boundedness of M to a problem in martingale theory.

Below we often make use of the identifications between Köthe-Bochner spaces and mixed-
norm space from Appendix B.2.

Denote by Q the collection of all cubes Q in �n with sides parallel to the coordinate axes.
Then it is elementary to see that there exist constants c, c′ ≥ 1 such that:

(i) for every x ∈ �d and δ > 0 there exists a cube Q ∈ Q containing x such that

|Q| ≤ c|B(x, δ)| and B(x, δ) ⊂ Q;
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(ii) for every x ∈ �n and every cube Q ∈ Q containing x there exists a δ > 0 such that

|B(x, δ)| ≤ c′|Q| and Q ⊂ B(x, δ).

This motivates to define, similarly to Lemma 3.2.1, the maximal function operator

M′ : L0(�n × T ) −→ L0
+(�n × T ).

by

(M′ f )(x, t) := sup
Q3Q3x

?
Q
| f (y, t)|dy, (x, t) ∈ �n × T.

By (i) and (ii) above we then have M f ≤ cM′ f and M′ f ≤ c′M f for all f ∈ L0(�n × T ).
Accordingly, the boundedness of M on Lp(�n,w)[F] is equivalent to the boundedness of M′ on
Lp(�d,w)[F].

As next step we relate the maximal function operator M′ to maximal function operators
associated with certain dyadic systems, for which we have a natural martingale interpretation.
We call D a dyadic system (of cubes) in �n if D =

⋃
k∈�Dk is a collection of cubes, where

each where each Dk is a partition of �n consisting of cubes of the form x + [0, 2−k[n (for some
x ∈ �n), and each cube D ∈ Dk is a union of 2n cubes from Dk+1. The most easiest example of
a dyadic system is standard dyadic system D0, which is defined as

D0 =
⋃
k∈�

D0
k , D0

k :=
{
2−k([0, 1[n+m) : m ∈ �

}
;

also see Example A.3.17. It is not difficult to see that each dyadic system D has to be of the
form D =

⋃
k∈�[D0

k + bk] for some sequence (b[k])k ⊂ �
n satisfying b[k] − b[k+1] ∈ 2−k�n for all

k, and reversely that each such system defines a dyadic system. Here it is of course enough to
consider (b[k])k ⊂ �

n with b[k] ∈ [0, 2−k[n. Via binary expansions we thus see that

Dω =
⋃
k∈�

Dω
k , Dω

k := D0
k +

∑
i>k

2−iωi, ω ∈ ({0, 1}n)�,

constitute all the dyadic systems.

Lemma 3.3.1 (Covering lemma). Define ωodd = (ωodd
i )i∈� ∈ {0, 1}� and ωeven = (ωeven

i )i∈� ∈

{0, 1}� by

ωodd
i :=

{
0 , if i is even
1 , if i is odd and ωeven

i :=
{

1 , if i is even
0 , if i is odd.

For every cube Q ∈ Q there exists an ω ∈ {0, ωodd, ωeven}n and a dyadic cube D ∈ Dω such that

5n|Q| ≤ |D| ≤ 10n|Q| and Q ⊂ D.

Proof. This is not very difficult and can be proved analogously to the covering lemma from [57]. �

For ω ∈ {0, ωodd, ωeven}d, we define the shifted dyadic maximal function operator (or the
maximal function operator with respect to the dyadic system Dω)

M′
ω : L0(�n × T ) −→ L0

+(�n × T )
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by

(M′
ω f )(x, t) := sup

Dω3D3x

?
D
| f (y, t)|dy, (x, t) ∈ �n × T.

It is an easy consequence of the covering lemma that

M′ f ≤ 10d sup
ω∈{0,ωodd ,ωeven}n

M′
ω f ≤ 10n

∑
ω∈{0,ωodd ,ωeven}n

M′
ω f ≤ 10n

∑
ω∈{0,ωodd ,ωeven}n

M′ f = 30nM′ f

for all f . Therefore, M is bounded on Lp(�n,w)[F] if and only if each M′
ω is bounded on

Lp(�n,w)[F].
For ω ∈ {0, ωodd, ωeven}n, let (Fω

k )k∈Z := (σ(Dω
k ))k∈� be the filtration generated by the

the dyadic system (Dω
k )k∈�; then Fω,atom

k = Dω
k . To each f ∈ L1

loc(�
n; F) we associate the

martingale F | f |,ω = (F | f |,ωk )k∈� ⊂ L1
loc(�

n; F) (with respect to this filtration) given by

F | f |,ωk := �(| f | | Fω
k ) =

∑
D∈Dω

k

1D

?
D
| f (y)|dy, k ∈ �;

see Examples A.3.16 and A.3.4.(v). Then, under the identifications from Corollary B.2.3, we
have

F | f |,ωk (x, t) =
∑

D∈Dω
k

1D(x)
?

D
| f (y, t)|dy, k ∈ �,

and thus
M′

ω f = sup
k∈�

F | f |,ωk a.e. on �
n × T.

Since Lp(�d,w)[F] ' Lp(�n,w; F) as Banach lattices (with as ordering in Lp(�d,w)[F] the
induced one from L0(�n × T ), which is the pointwise a.e. ordering), it follows that the bound-
edness of M on Lp(�n,w)[F] is equivalent to: for each ω ∈ {0, ωodd, ωeven}n, (F | f |,ωk )k∈� be-
longs to Lp(�n,w; F) and has a supremum supk∈� F | f |,ωk in Lp(�n,w; F) which is of norm
≤ C || f ||Lp(�n,w;F) for some constant independent of f . We will in fact consider this martingale
theoretic problem in a more general setting.

Let ω ∈ {0, ωodd, ωeven}n be arbitrary. Observe that the σ-finite measure space (Σ,F , µ) =

(�n,B(�n), λ) and the filtration (Fk)k∈� = (Fω
k )k∈� in particular satisfy the following proper-

ties:

• (Fk)k∈� generates F : F = F∞

de f
= σ (

⋃
k∈�Fk);

• (Fk)k∈� it is regular with respect to µ: each Fk is countably-atomic with respect to µ (in
the sense of Definition A.1.2) and there exists a θ ≥ 1 such that

µ(A) ≤ θµ(B), k ∈ �, A ∈ F atom
k−1 , B ∈ F atom

k , B ⊂ A. (3.6)

It is not difficult to see that the latter condition is equivalent to

�( f | Fk) ≤ θ�( f | Fk−1), k ∈ �, f ∈ M+(Σ,F ). (3.7)
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Furthermore, as w ∈ Ap(�n), the weight W = w ∈ W(Σ,F , µ) in particular satisfies the Ap-
condition (D.3) with the supremum just taken over all dyadic cubes D ∈ Dω =

⋃
k∈�F atom

k .
Since

1D�[W | Fk]
(
�[W−1/(p−1) | Fk

)p−1
= 1D

(?
D

W dµ
) (?

D
W−1/(p−1) dµ

)p−1

for all atoms D in Fk, the Ap condition over these dyadic cubes is equivalent to the existence
of a constant C ∈ [1,∞[ for which we have

sup
k∈�
�[W | Fk]

(
�[W−1/(p−1) | Fk

)p−1
≤ C a.e.. (3.8)

This motivates to define the class Ap((Fk)k∈�) as the set of all weights W ∈ W(Σ,F , µ) with
W,W−1/(p−1) ∈ L1

σ((Fk)k∈�) satisfying (3.8) for some C ∈ [1,∞[; we denote by [W]Ap the least
possible constant C ∈ [1,∞[.

Given a weight W ∈ W(Σ,F , µ), we will use the following notation: We write Lp(W; X) :=
Lp((Σ,F ,Wµ); X), which we view as subspace of L0(Σ; X). Furthermore, given a measurable
set F ∈ F , we write W(F) := Wµ(F). Finally, we write�W( · | Fk) for the conditional operator
with respect to the weighted measure Wµ. Then we have f ∈ L1

σ(Wµ, (Fk)k∈�; X) if and only
if f W ∈ L1

σ(µ,Fk; X), in which case we have the following relation between the conditional
expectations:

�W( f | Fk) =
1

�(W | Fk)
�( f W | Fk), k ∈ �. (3.9)

This identity also holds true for arbitrary f ∈ M+(Σ,F ) in the sense of extended conditional
expectation. Since this is a very important identity which will be used frequently, let us prove
it: We just fix an atom D of Fk and compute

1D�( f W | Fk) = 1D
1

µ(D)

∫
D

f W dµ = 1D

∫
D

W dµ

µ(D)
1

W(D)

∫
f Wdµ

= 1D�(W | F )�W( f | Fk).

Let X be a Banach space. To each f ∈ L1
σ((Fk)k∈�; X) = L1

σ((Σ,F , µ)(Fk)k∈�; X) we
associate the X-valued martingale F f = (F f

k )k∈� (with respect to the filtration (Fk)k∈�) given by

F f
k := �( f | Fk) =

∑
D∈F atom

k

1D

?
D

f dµ. (3.10)

Given a weight W ∈ Ap((Fk)k∈�), in the next proposition we in particularly show that Lp(W; X) ⊂
L1
σ((Fk)k∈�; X) and that (F f

k )k∈� is a bounded sequence in Lp(W; X) whenever f ∈ Lp(W; X).

Proposition 3.3.2. Suppose (Σ,F , µ) is a σ-finite measure space equipped with a regular fil-
tration (Fk)k∈� generating F ; let θ ≥ 1 be the constant in (3.6). Let X be a Banach space,
W ∈ W(Σ,F , µ), and p ∈]1,∞[.

(i) W ∈ Ap((Fk)k∈�) if and only if W− 1
p−1 ∈ Ap′((Fk)k∈�) ( 1

p + 1
p′ = 1).

(ii) W ∈ Ap((Fk)k∈�) if and only if there exists a constant C ∈ [1,∞[ such that, for every
f ∈ M+(Σ,F ),

�( f | Fk) ≤ C1/p (�W[ f p | Fk])1/p , k ∈ �. (3.11)

Moreover, in this situation the smallest such constant C equals [W]Ap .
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(iii) Let W ∈ Ap((Fk)k∈�). Then Lp(W; X) ⊂ L1
σ((Fk)k∈�; X) and �( · | Fk) is a contraction

on Lp(W; X) for each k ∈ �.

(iv) For every W ∈ Ap((Fk)k∈�) there exists a q ∈]1, p[ such that W ∈ Aq((Fk)k∈�). If
[W]Ap ≤ C ∈ [1,∞[, then q and [W]Aq only depend on C, p and θ.

(v) Let W ∈ Ap((Fk)k∈�) with [W]Ap ≤ C̃ ∈ [1,∞[. Given an f ∈ Lp(W; X) with associated
X-valued martingale F f = (F f

k )k∈� (as in (3.10)), let (F f )∗ := supk∈�

∣∣∣∣∣∣F f
k

∣∣∣∣∣∣
X

be the corre-
sponding maximal function. Then there exists a constant C ∈ [0,∞[, only depending on
C̃, p and θ, such that, for all f ∈ Lp(W; X),∣∣∣∣∣∣(F f )∗

∣∣∣∣∣∣
Lp(W)

≤ C || f ||Lp(W;X) .

(vi) Let W ∈ Ap((Fk)k∈�). For every f ∈ Lp(W; X) with generated martingale F f = (F f
k )k∈� ⊂

Lp(W; X) we have the convergence

lim
k→∞

F f
k = f in Lp(W; X).

Proof.

(i) This follows easily from the definition.

(ii) This can be shown completely analogously to [45, Proposition 9.1.5.(8)] (which is Propo-
sition D.2.2.(iv)). Let us just treat the direct implication. Given f ∈ M+(Σ,F ), we use
Hölder (with 1

p + 1
p′ = 1) and the definition of Ap((Fk)k∈�), to estimate

(�[ f | Fk])p =
(
�( f W

1
p W− 1

p | Fk)
)p

≤ �[ f pW | Fk]
(
�[W−

p′
p | Fk]

) p
p′

(3.9)
= �W[ f p | Fk]�[W | Fk]

(
�[W− 1

p−1 | Fk]
)p−1

≤ �W[ f p | Fk][W]Ap .

(iii) This follows from Proposition A.3.11 as W− 1
p−1 ∈ L1

σ((Fk)k∈�).

(iv) This can be shown as in [45, Corollary 9.2.6] (which is about the usual Ap weights on
�n).

(v) By (iii) we can pick a q ∈]1, p[ such that W ∈ Aq((Fk)k∈�). Then we can estimate

∣∣∣∣∣∣F f
k

∣∣∣∣∣∣q
X
≤ ||�[ f | Fk]||

q
X ≤ �[|| f ||X | Fk]q (ii)

≤ [W]Aq�W[|| f ||qX | Fk].
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Applying Corollary A.3.19 to || f ||qX ∈ Lp/q(W), we finally get

∣∣∣∣∣∣(F f )∗
∣∣∣∣∣∣

Lp(W)
=

∣∣∣∣∣∣
∣∣∣∣∣∣sup

k∈�

∣∣∣∣∣∣F f
k

∣∣∣∣∣∣q
X

∣∣∣∣∣∣
∣∣∣∣∣∣1/q
Lp/q(W)

≤ [W]1/q
Aq

∣∣∣∣∣∣
∣∣∣∣∣∣sup

k∈�
�W(|| f ||qX | Fk)

∣∣∣∣∣∣
∣∣∣∣∣∣1/q
Lp/q(W)

≤ [W]1/q
Aq

(
[p/q]′

∣∣∣∣∣∣|| f ||qX ∣∣∣∣∣∣Lp/q(W)

)1/q

= [W]1/q
Aq

(
1 −

q
p

)−1/q

|| f ||Lp(W;X) .

(vi) Let ε > 0. Then, in view of the hypothesis F = F∞ and Lemma A.3.26 (applied
to the weighted measure Wµ), we can find K ∈ � and f̃ ∈ Lp(W; FK; X) such that∣∣∣∣∣∣ f − f̃

∣∣∣∣∣∣
Lp(W;X)

< ε/2; Observing that f̃ = �( f̃ | Fk) for all k ≥ K, we obtain

∣∣∣∣∣∣ f − g f
k

∣∣∣∣∣∣
Lp(W;X)

=
∣∣∣∣∣∣ f − f̃ + �( f̃ − f | Fk)

∣∣∣∣∣∣
Lp(W;X)

(iv)
≤ 2

∣∣∣∣∣∣ f − f̃
∣∣∣∣∣∣

Lp(W;X)
< ε

for all k ≥ K.

�

Let the notations be as in the proposition. We denote by M (X) = M ((Fk)k∈�; X) the vector
space of all X-valued martingales on Σ with respect to the filtration (Fk)k∈�. We write 00M (X)
for the linear subspace of M (X) consisting of all g = (gk)k∈� with the property that gk = 0 for
all k ≤ K for some K ∈ �. GivenW(Σ,F , µ), we define

MLp(W)(X) := M (X) ∩ `∞(�; Lp(W; X)) and 00MLp(W)(X) := 00M (X) ∩ `∞(�; Lp(W; X)).

In case W ∈ Ap((Fk)k∈�) the following holds true:

Lemma 3.3.3. Let the notations be as in Proposition 3.3.2 and suppose that W ∈ Ap((Fk)k∈�).
Then MLp(W)(X) is a Banach space when equipped with the norm

||g||MLp(W)(X) := sup
k∈�
||gk||Lp(W;X) = lim

k→∞
||gk||Lp(W;X) , (g = (gk)k∈� ∈MLp(W)(X)), (3.12)

for which we have the isometric embedding

Lp(W; X) −→MLp(W)(X), f 7→ F f = (F f
k )k∈� = (�[ f | Fk])k∈�. (3.13)

Moreover, g 7→
∣∣∣∣∣∣supk∈� ||gk||X

∣∣∣∣∣∣
Lp(W)

defines an equivalent norm on MLp(W)(X); in fact, there
exists an increasing function Cp,θ : [1,∞[−→ [1,∞[ (only depending on p and θ) such that

||g||MLp(W)(X) ≤

∣∣∣∣∣∣
∣∣∣∣∣∣sup

k∈�
||gk||X

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp(W)

≤ Cp,θ([W]Ap) ||g||MLp(W)(X) , g ∈MLp(W)(X).
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Remark 3.3.4. When X has the Radon-Nikodým property (RNP) it can be shown (at least in
the unweighted case [57]) that every Lp(W)-bounded martingale g with respect to (Fk)k∈� is
generated by some f ∈ Lp(W), i.e. g = (�[ f | Fk])k∈�. The latter just means that the iso-
metric embedding (3.13) is surjective, or equivalently, that (3.13) is an isometric isomorphism.
Reflexive Banach spaces (and thus in particular UMD spaces) and separable dual spaces are
examples of Banach spaces having the RNP property; see [57].

Proof. First observe that, given g ∈ MLp(W)(X), (||gk||Lp(W;X))k∈� is an increasing sequence. In-
deed, from the martingale property gk = �(gk+1 | Fk) and the contractivity of �( · | Fk)
on Lp(W; X) (see Lemma 3.3.2.(ii)) it follows that ||gk||Lp(W;X) = ||�|| (gk+1 | Fk)Lp(W;X) ≤

||gk+1||Lp(W;X). Therefore, we have limk→∞ ||gk||Lp(W;X) = supk∈� ||gk||Lp(W;X).
To show that MLp(W)(X) is a Banach space we must show that MLp(W)(X) is a closed sub-

space of `∞(�; Lp(W; X)). To this end, let (g[n])n∈� be a sequence in MLp(W)(X) converging
to some g = (gk)k∈� in `∞(�; Lp(W; X)). Then we have gk = limn→∞ g[n]

k in Lp(W; X) for all
k ∈ �. From the martingale property of each g[n] and the fact that �( · | Fk) ∈ B(Lp(W; X))
(see Lemma 3.3.2.(ii)) it follows that

gk = lim
n→∞

g[n]
k = lim

n→∞
�(g[n]

k+1 | Fk) = �( lim
n→∞

g[n]
k+1 | Fk) = �(gk+1 | Fk), ∀k ∈ �,

showing that g ∈M (X) and thus that g ∈MLp(W)(X).
The isometric embedding part in the last part of the lemma is immediate from (vi) of Propo-

sition 3.3.2. So it remains to be shown that g 7→
∣∣∣∣∣∣supk∈� ||gk||X

∣∣∣∣∣∣
Lp(W)

defines an equivalent norm
on MLp(W)(X). For this we just need to show that

∣∣∣∣∣∣supk∈� ||gk||X

∣∣∣∣∣∣
Lp(W)

. ||g||MLp(W)(X) for all
g ∈MLp(W)(X); then it is easily seen that g 7→

∣∣∣∣∣∣supk∈� ||gk||X

∣∣∣∣∣∣
Lp(W)

defines a norm on MLp(W)(X)
which of course also satisfies the reverse inequality. So let g ∈ MLp(W)(X) be given. Choose
an arbitrary K ∈ � and consider the stopped martingale gK = (gK∧k)k∈� = FgK . By Proposi-
tion 3.3.2.(v) we have∣∣∣∣∣∣

∣∣∣∣∣∣sup
k≤K
||gk||X

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp(W)

=

∣∣∣∣∣∣
∣∣∣∣∣∣sup

k∈�

∣∣∣∣∣∣FgK
k

∣∣∣∣∣∣
X

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp(W)

≤ C ||gK ||Lp(W) ≤ C ||g||`∞(�;Lp(W;X)) = C ||g||MLp(W)(X) .

Letting K → ∞ we get the desired inequality. �

From the lemma it follows that

Lp(W; X) −→MLp(W)(X), f 7→ F | f | = (F | f |k )k∈�

defines an isometric sublinear operator. For the proof of Theorem 3.2.2 is thus suffices to prove
the following result, which is an immediate consequence of the lemma in case F = �.

Theorem 3.3.5. Suppose (Σ,F , µ) is a σ-finite measure space equipped with a regular filtra-
tion (Fk)k∈� generating F ; let θ ≥ 1 be the constant in (3.6). Let F be a UMD Banach function
space over the σ-finite measure space (T,B, ν) and let W ∈ Ap((Fk)k∈�), p ∈]1,∞[. For all
g ∈MLp(W)(F) it holds that supk∈� |gk| exists in Lp(W; F). Moreover, the induced operator

M : MLp(W)(F) −→ Lp(W; F), g 7→ sup
k∈�
|gk|

is bounded, with norm bound only depending on p, W, θ and the UMD constant of F in an
Ap-consistent way (which is defined as in Theorem 3.1.1)
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Proof. We will give the proof of this theorem in Section 3.3.2. �

Explicitly writing out the boundedness ofM gives the visually attractive inequality∣∣∣∣∣∣
∣∣∣∣∣∣sup

k∈�
|gk|

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp(W;F)

. sup
k∈�
||gk||Lp(W;F) , g ∈MLp(W)(F),

which says that we can take the supremum outside at the cost of an inequality (for some constant
independent of the martingale g under consideration).

3.3.2 Proof of Theorem 3.3.5

Throughout this subsection we assume that (Σ,F , µ) is a σ-finite measure space equipped with
a regular filtration (Fk)k∈� generating F ; we let θ ≥ 1 be the constant in (3.6).

Before we can start with the proof of Theorem 3.3.5, we need to do some preparations.
Let F be a Banach function space on the σ-finite measure space (T,B, ν). For each F-

valued martingale g = (gk)k∈� on Σ with respect to the filtration (Fk)k∈� (in symbols g ∈M (F))
we define the partial square function S K(g) ∈ L0(Σ; F) by

S K(g) :=

 K∑
k=−K

|dgk|
2

1/2

(K ∈ �);

here dg = (dgk)k∈� is the difference sequence corresponding to g (dgk = gk − gk−1). We write
S ( f ) := S (F f ) when f ∈ L1

σ((Fk)k∈�; F); here F f is the martingale associated with f as in
(3.10). In the scalar case F = � we can define, for each g ∈ M (�), the square function
S (g) ∈ L0

+(Σ) by

S (g) := sup
K∈�

S Kg =

∑
k∈�

|dg
k |

2

1/2

. (3.14)

If p ∈]1,∞[ and W ∈ Ap((Fk)k∈�), then we have, for each g ∈ MLp(W)(F), S K(g) ∈ Lp(W; F).
In case that F has the UMD-property we can take the supremum over K ∈ � in Lp(W; F):

Proposition 3.3.6. Suppose that F is a UMD Banach function space on the σ-finite measure
space (T,B, ν). Let p ∈]1,∞[ and W ∈ Ap((Fk)k∈�). Then supK∈� S K(g) exists in Lp(W; F) for
all g ∈MLp(W)(F), and the induced sublinear operator

S : MLp(W)(F) −→ Lp(W; F), g 7→ sup
K∈�

S K(g)

is bounded. Moreover, we have

||S (g)||Lp(W;F) h ||g||MLp(W)(F) , g ∈ 00MLp(W)(F). (3.15)

Here all the implicit constants only depend on p, W, θ and the UMD constant of F in an
Ap-consistent way (which is defined as in Theorem 3.1.1).

Proof. We will give the proof in Section 3.3.3. �
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Remark 3.3.7. Let the notations be as in the proposition. For each Banach space X we define

0MLp(W)(X) :=
{
g ∈MLp(W)(X) : lim

k→−∞
gk = 0 in Lp(W; X)

}
.

(i) The the equivalence (3.15) can be improved to hold for all martingales g ∈ 0MLp(W)(F)
(with the same implicit constants). Indeed, given g ∈ 0MLp(W)(F), it is not difficult to see
that

||g||MLp(W)(F) = lim
l→−∞

∣∣∣∣∣∣lg∣∣∣∣∣∣
MLp(W)(F)

h lim
l→−∞

∣∣∣∣∣∣S (lg)
∣∣∣∣∣∣

Lp(W;F)
= ||S (g)||Lp(W;F) ;

where, for each l ∈ �, lg = (gk − gk∧l)k∈� ∈ 00MLp(W)(F) denotes the started martingale.

(ii) As a consequence of the representation of Lp-functions in terms of their martingale dif-
ferences from [57], we have the topological direct sum

MLp(W)(X) = Lp(W,F−∞; X) ⊕ 0MLp(W)(X)

for any Banach space X (at least in the unweighted case W = 1), where F−∞ =
⋂

k∈�Fk.
Accordingly, given a g ∈ MLp(W)(X), we denote by g−∞ the corresponding projection
of g onto Lp(W,F−∞; X). Note that Lp(W,F−∞; X) = {0} when µ is purely infinite on
F−∞ (i.e. µ(F) ∈ {0,∞} for all F ∈ F−∞). Defining the square function operator S̃ on
MLp(W)(F) by

S̃ (g) :=
(
|g−∞|2 + |S (g)|2

)1/2
=

(
|g−∞|2 + |S (g − g−∞)|2

)1/2
, g ∈MLp(W)(F),

we have the following equivalence of norms on MLp(W)(F):

||g||MLp(W)(F)
(i)
h

(
||g−∞||

p
Lp(W,F−∞;F) + ||S (g − g−∞)||pLp(W;F)

)1/p
h

∣∣∣∣∣∣S̃ (g)
∣∣∣∣∣∣

Lp(W;F)
.

Remark 3.3.8. In the unweighted case W = 1 this proposition is a consequence of Khintchine-
Maurey (Theorem E.2.2/Proposition E.1.4), the UMD-property of F, and some basic martin-
gale theory.

Proof. Let g ∈ MLp(F). Since the Banach function space Lp(Σ; F) ' Lp(Σ)[F] is of class
UMD and thus has finite cotype (see Propositions E.5.6 and E.5.5), it follows from Khintchine-
Maurey (cf. Theorem E.2.2) that

||S K(g)||Lp(Σ;F) =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
 K∑

k=−K

|dgk|
2

1/2
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(Σ;F)

h �

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

K∑
k=−K

εkdgk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Σ;F)

.

Invoking the UMD-property of F (in the form of Lemma E.5.2), we thus get

||S K(g)||Lp(Σ;F) h

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

K∑
k=−K

dgk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Σ;F)

= ||gK − g−K−1||Lp(Σ;F) . (3.16)

From (3.16) and the Lp-contractivity of conditional expectations it follows that there is
some constant C > 0 such that, for all g ∈ MLp(F), the increasing sequence of partial square
functions (S K(g))K∈� is norm bounded by C ||g||MLp (F). Being a UMD-space and thus a reflexive
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space, Lp(Σ; F) is a KB-space (see Propositions E.5.6 and E.5.5). Hence S (g) := supK∈� S K(g)
exists in Lp(Σ; F), is of norm ||S (g)||Lp(Σ;F) ≤ C ||g||MLp (F), and is given as the limit S (g) =

limK→∞ S K(g) in Lp(Σ; F).
It remains to establish the estimate from below for g ∈ 00MLp(W)(F). Pick K0 ∈ � such that

gk = 0 for all k ≤ −K0. Then then LHS of (3.16) equals ||gK ||Lp(Σ;F) for all K ≥ K0. Letting the
K → ∞ on both sides of (3.16) we get the desired inequality. �

Lemma 3.3.9. Let G be a collection of positive functions Z ∈ L1
σ((Fk)k∈�)+ such that Z > 0

and S (Z) ≤ cZ a.e. for all Z ∈ G and some constant c > 0. Then there exists a constant C > 0,
only depending on c, such that ∫

Σ

g∗Z dµ ≤ C
∫

Σ

S (g)Z dµ

for every Z ∈ G and each g ∈ 00M (�). Here g∗ := supk∈� |gk|.

Proof. We will prove this in Section 3.3.3. �

Remark 3.3.10. The proof of this lemma will be a combination of Lemma 3.3.20, Lemma
3.3.12 and inequality (3.43) from Theorem 3.3.19 (with F = � and r = 1): from the two
lemmas it follows that G belongs uniformly to some Ap, so that we can use inequality (3.43)
(with F = � and r = 1) uniformly in W = Z ∈ G .

The inequality (3.43) from Theorem 3.3.19 (with F = � and r = 1) will also be used in
the proof of Lemma 3.3.12. The motivation for having both inequalities in Theorem 3.3.19
in its full generality is that it will be the main ingredient for the proof of Proposition 3.3.6 in
the weighted case (in which we have r = p). However, for the reader which is only interested
in the unweighted case W = 1 in Theorem 3.3.5, it suffices to have inequality (3.43) from
Theorem 3.3.19 in the special case F = � and r = 1. This inequality can be obtained by
modifying a classical result of Gundy and Wheeden [47, Theorem 2] concerning the case of
Σ = [0, 1] with the dyadic filtration. The latter result is in the unweighted case also known as
Davis’ inequality [21].

We are now ready to give the proof of Theorem 3.3.5.

Proof of Theorem 3.3.5. In this proof we identify Lp(W; F) with the mixed-norm space Lp(W)[F];
here we use Theorem B.2.7 and the fact that F has a σ-order continuous norm (being a
UMD space and thus a reflexive space). Then note that Lp(W)[F] ' Lp(W; F) is a KB-
space (being a UMD and thus a reflexive Banach lattice, see Propositions E.5.6, E.5.5 and
B.1.8) Furthermore, we without loss of generality assume that supp(F) = T and we denote
by W ′ := W− 1

p−1 ∈ Ap′((Fk)k∈�) the p-dual weight of W ∈ Ap((Fk)k∈�). Then we have
Lp(W)[F]∗ ' Lp(W)×[F×] = Lp′(W ′)[F×] by Proposition B.2.8; in particular, Lp′(W ′)[F×]
is norming for Lp(W)[F] via the natural pairing

〈 f , φ〉 =

∫
Σ×T

fφ d(µ ⊗ ν), f ∈ Lp(W)[F], φ ∈ Lp′(W ′)[F×].

From this it easily follows that

|| f ||Lp(W)[F] = sup
{
〈 f , φ〉 : φ ∈ Lp′(W ′)[F×]+, ||φ||Lp′ (W′)[F×] ≤ 1

}
, f ∈ Lp(W)[F]+. (3.17)
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Let g ∈ MLp(W)(F) be given. It is enough to find a constant C, only depending on p, W,
θ and the UMD constant of F in an Ap-consistent way, such that

∣∣∣∣∣∣supk=−K,...,K |g|k
∣∣∣∣∣∣

Lp(W)[F]
≤

C ||g||MLp(W)(F) for all K ∈ �. Indeed, since Lp(W)[F] is a KB-space, it then follows that
M(g) := supk∈� |gk| = supK∈� supk=−K,...,K |g|k exists in Lp(W)[F] and satisfies the norm esti-
mate ||M(g)||Lp(W)[F] ≤ C ||g||MLp(W)(F). In view of (3.17), it actually suffices to find a constant C
(with dependence as above) such that

〈 sup
k=−K,...,K

|gk| , φ〉 ≤ C ||g||MLp(W)(F) ||φ||Lp′ (W′)[F×] , K ∈ �, φ ∈ Lp′(W ′)[F×]+. (3.18)

We first show that it is enough to establish (3.18) for g ∈ 00MLp(W)(F) (with a different
constant C): Let K ∈ � and denote by −Kg = (−Kgk)k∈� ∈ 00MLp(W)(F) the started martingale
corresponding to the constant stopping time −K, i.e. −Kgk = gk − g−K∧k. For each K ∈ � and
every φ ∈ Lp′(W ′)[F×]+, we then have

〈 sup
k=−K,...,K

|gk| , φ〉 = 〈 sup
k=−K,...,K

|gk − g−K + g−K | , φ〉

≤ 〈 sup
k=−K,...,K

|gk − g−K | , φ〉 + 〈|g−K |, φ〉

≤ 〈 sup
k=−K,...,K

|−Kgk| , φ〉 + ||g−K ||Lp(W)[F] ||φ||Lp′ (W′)[F×]

≤ 〈 sup
k=−K,...,K

|−Kgk| , φ〉 + ||g||MLp(W)(F) ||φ||Lp′ (W′)[F×] .

and ∣∣∣∣∣∣−Kg
∣∣∣∣∣∣

MLp(W)(F)
≤ ||g||MLp(W)(F) + ||g−K ||Lp(W)[F] ≤ 2 ||g||MLp(W)(F) .

Therefore, it is indeed enough to consider the case g ∈ 00MLp(W)(F).
In order to establish (3.18) for g ∈ 00MLp(W)(F), to each φ ∈ Lp′(W ′)[F×]+ we will associate

a function Φφ ∈ Lp′(W ′)[F×]+ such that

(i) φ ≤ Φφ;

(ii)
∣∣∣∣∣∣Φφ

∣∣∣∣∣∣
Lp′ (W′)[F×]

≤ 4 ||φ||Lp′ (W′)[F×];

(iii) S (Φφ) ≤ cΦφ in Lp′(W ′)[F×];

(iv) Φφ(ς, t) > 0 for µ ⊗ ν-a.e. (ς, t) ∈ Σ × T ,

for some constant c > 0 only depending on p, W, θ and the UMD constant of F in an Ap-
consistent way. Before we describe the construction of Φφ, let us first continue with (3.18)
(using the function Φφ). The idea is to apply, for ν-a.a. t ∈ T , Lemma 3.3.9 to the family
Gt := {Φφ( · , t) : φ ∈ Lp′(W ′)[F×]+}: Let g ∈ 00MLp(W)(F), φ ∈ Lp′(W ′)[F×]+, and K ∈ � be
given. Then we have, by Corollary B.2.3, for ν-a.a. t ∈ T , g̃( · , t) := (gk( · , t))k∈� ∈ 00M (�),
and we can compute

〈 sup
k=−K,...,K

|gk| , φ〉 =

∫
Σ×T

(
sup

k=−K,...,K
|gk|

)
φ d(µ ⊗ ν)

=
(i)
≤

∫
Σ×T

[g̃( · , t)]∗(ς) Φφ(ς, t) d(µ ⊗ ν)(ς, t)

=

∫
T

∫
Σ

[g̃( · , t)]∗(ς) Φφ(ς, t) dµ(ς)dν(t).
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Furthermore, for ν-a.a. t ∈ T we have S (g)(t) = S (g̃( · , t)) as a consequence of Corollary B.2.3,
where S is both the square function operator on MLp(W)(F) from Proposition 3.3.6 as the square
function operator on M (�) from (3.14). By (iii) and (iv), for ν-a.a. t ∈ T we may thus apply
Lemma 3.3.9 to the martingale g̃( · , t) ∈ 00M (�) and the family Gt, to obtain

〈 sup
k=−K,...,K

|gk| , φ〉 .

∫
T

∫
Σ

S (g̃( · , t))(ς) Φφ(ς, t) dµ(ς)dν(t)

=

∫
Σ×T

S (g)(ς, t) Φφ(ς, t) d(µ ⊗ ν)(ς, t)

Using Proposition 3.3.6 and (ii), we find

〈 sup
k=−K,...,K

|gk| , φ〉 . ||S (g)||Lp(W)[F]

∣∣∣∣∣∣Φφ

∣∣∣∣∣∣
Lp′ (W′)[F×]

. ||g||MLp(W)(F) ||φ||Lp′ (W′)[F×] .

Finally, to finish the proof, we provide the construction of Φφ: From the identification
F× ' F∗ (see Theorem B.1.12) and the fact that duals of UMD spaces are again UMD (see
Proposition E.5.5), it follows that F× is a UMD Banach function space. Accordingly, we de-
note by B = Bp′,F× the operator norm of the square function operator S on Lp′(W ′)[F×] �
Lp′(W ′; F×); here we use Proposition 3.3.6 and identify Lp′(W ′)[F×] � Lp′(W ′; F×) with a
closed subspace of MLp′ (W′)(F×) in the natural way (see Lemma 3.3.3). By Lemma B.1.11 there
exists a u ∈ Lp′(W ′)[F×]+ of norm ||u|| = 1 such that u(ς, t) > 0 for µ ⊗ ν-a.e. (ς, t) ∈ Σ × T . So,
to each φ ∈ Lp′(W ′)[F×]+ we can associate the function Φφ ∈ Lp′(W ′)[F×]+ defined by

Φφ :=
∞∑

n=0

(2B)−nS n(φ + ||φ|| u),

where S n = S ◦ . . . ◦ S (n times) for each n ∈ �. Then Φφ clearly satisfies (i)-(iv). �

3.3.3 Proofs of Proposition 3.3.6 and Lemma 3.3.9
In this subsection we prove Proposition 3.3.6 and Lemma 3.3.9.

3.3.3.a Outline

Let (Σ,F , µ) and (Fk)k∈� be as Sections 3.3.1 and 3.3.2 (also see Theorem 3.3.5). For Propo-
sition 3.3.6 we could try to get a generalization with weights of the UMD inequality and then
simply proceed as in the unweighted case W = 1 (which is in Remark 3.3.8). However, we
follow a different approach, which simultaneously gives a part of Lemma 3.3.9.

Let F be a UMD Banach function space. Given r ∈ [1,∞[ and

W ∈ A∞((Fk)k∈�) :=
⋃

p∈]1,∞[

Ap((Fk)k∈�),

we show that ∣∣∣∣∣∣
∣∣∣∣∣∣sup
K∈�
||S K(g)||F

∣∣∣∣∣∣
∣∣∣∣∣∣
Lr(W)

. ||g∗||Lr(W) , ∀g ∈M (F), (3.19)

and

||g∗||Lr(W) .

∣∣∣∣∣∣
∣∣∣∣∣∣sup
K∈�
||S K(g)||F

∣∣∣∣∣∣
∣∣∣∣∣∣
Lr(W)

, ∀g ∈ 00M (F); (3.20)
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here g∗ = supk∈� ||gk||F . Moreover, we show that the implicit constants in these inequalities only
depend on [W]Ap (with W ∈ Ap((Fk)k∈�), p ∈]1,∞[,), r ∈ [1,∞[, the UMD constant of F, and
the constant θ ≥ 1 from (3.6); see Theorem 3.3.19. Proposition 3.3.6 then follows by taking
r = p and applying Lemma 3.3.3. And, by taking r = 1 and G = �, for Lemma 3.3.9 it then
"just" remains to be shown that G belongs uniformly to some Ap((Fk)k∈�), p ∈]1,∞[ (Lemma
3.3.20 and Lemma 3.3.12).

The idea behind the proof of (3.19) and (3.20) (Theorem 3.3.19) is to first derive the two
inequalities for r = 2 and W = 1 from Remark 3.3.8 and Lemma 3.3.3, and next to extrapolate
these two inequalities for g ∈ 00M (F) to all r and W (via an application of Corollary 3.3.16); for
the first inequality (3.19), the case g ∈M (F) is then easily derived from the case g ∈ 00M (F).

3.3.3.b Some Ap((Fk)k∈�)-Theory

Recall that, for p ∈]1,∞[, the class Ap((Fk)k∈�) is defined as the set of all weights W ∈

W(Σ,F , µ) with W,W−1/(p−1) ∈ L1
σ((Fk)k∈�) for which there exists a constant C > 0 such

that

sup
k∈�
�(W | Fk)

(
�(W−1/(p−1) | Fk)

)p−1
≤ C a.e.,

and that [W]Ap denotes the least possible constant C > 0. Moreover, we write

A∞((Fk)k∈�) =
⋃

p∈]1,∞[

Ap((Fk)k∈�).

For convenience of notation we from now on write Ap = Ap((Fk)k∈�) (p ∈]1,∞]).
An alternative definition of the class Ap((Fk)k∈�), p ∈]1,∞[, is given in Proposition 3.3.2.(ii).

Interchanging the roles of �[ · | Fk] and �[ · | Fk] in (3.11) gives the inequality

�W[ f | Fk] ≤ C1/p
�[ f p | Fk]1/p, f ∈ M+(Σ,F ), k ∈ �. (3.21)

If we would like to modify the definition of Ap in order to be able to follow the proof of
Proposition 3.3.2.(ii) with the inequality (3.11) replaced by the inequality (3.21), we naturally
come to the class Âp, which is defined as follows: Given p ∈]1,∞[, we define Âp as the class of
all weights W ∈ W(Σ,F , µ) with W ∈ L1

σ((Fk)k∈�) and W1/(p−1) ∈ L1
σ(W, (Fk)k∈�) for which

there exists a constant C > 0 such that

sup
k∈�
�(W | Fk)−1

(
�W[W1/(p−1) | Fk

)p−1
≤ C a.e.; (3.22)

we denote by [W]Âp
the least possible constant C > 0. Moreover, we write

Â∞ :=
⋃

p∈]1,∞[

Âp.

Lemma 3.3.11. Let p ∈]1,∞[ and W ∈ Âp. Then (3.21) holds true with C ≤ [W]Âp
.
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Proof. As in the proof of Proposition 3.3.2.(ii), we use Hölder’s inequality (with 1
p + 1

p′ = 1)

and the definition of Âp, to estimate

�W[ f | Fτ]p = �W[ f W− 1
p ·W

1
p | Fk]p

≤ �W[ f pW−1 | Fk]�W[W
1

p−1 | Fk]p−1

(3.9)
= �[ f p | Fk]

1
�[W | Fk]

�W[W
1

p−1 | Fk]p−1

≤ �[ f p | Fk] [W]Âp
.

�

The following characterization of the class A∞ constitutes an important part of the proof of
Lemma 3.3.9.

Lemma 3.3.12. The following are equivalent:

(i) W ∈ A∞.

(ii) There exist p ∈]1,∞[ and C ∈]0,∞[ such that W ∈ Ap with [W]Ap ≤ C.

(iii) W ∈ W(Σ,F , µ) and there exist α, β ∈]0, 1[ such that

�(1A | Fk) ≤ α =⇒ �W(1A | Fk) ≤ β

for all A ∈ F , k ∈ �.

Moreover, the constants in (ii) (resp. (iii)) only depend on the constants in (iii) (resp. (ii)) and
θ.

Proof. Because of our definition of A∞, we only need to show that (ii) and (iii) are equivalent
(plus dependence of the involved constants). For this we observe that (iii) can be reformulated
as:

(iii)’ W ∈ W(Σ,F , µ) and there exist α, β ∈]0, 1[ such that for all k ∈ � and all atoms D of
Fk it holds that

∀E ⊂ D, E ∈ F : µ(E) ≤ αµ(D) =⇒ W(E) ≤ βW(D)

Indeed, for every A ∈ F and k ∈ � it holds that

�(1A | Fk) =
∑

D atom of Fk

1D

?
D

1A dµ =
∑

D atom of Fk

1D
µ(A ∩ D)
µ(D)

and, similarly,

�W(1A | Fk) =
∑

D atom of Fk

1D
W(A ∩ D)

W(D)
.

The equivalence between (ii) and (iii)’ (plus dependence of the involved constants) can now
be derived as in [45, Theorem 9.3.3] (which is about the usual Ap-weights on �n). �
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Lemma 3.3.13. Let W ∈ A∞, say W ∈ Ap with [W]Ap ≤ C, p ∈]1,∞[, C ∈ [1,∞[. Then
W ∈ Â∞; in fact, W ∈ Âq for some q ∈]1,∞[, with q and [W]Âq

only depending on p, C and θ.
Furthermore, for l := θpC ≥ 1 we have

W(A) ≤ lW(B), A ∈ F atom
k−1 , B ∈ F atom

k , B ⊂ A, k ∈ �. (3.23)

As a consequence, for each F ∈ Fk−1 there exists a G ∈ Fk with F ⊂ G and W(G) ≤ lW(F).

Proof. It can be shown that the reverse Hölder inequality holds true for Ap((Fk)k∈�) weights,
just as for the usual Ap weights on�n [45, Theorem 9.2.2]. This reverse Hölder inequality says
that there exist γ, C̃ ∈]0,∞[, only depending on C, p and θ, such that

�(W | Fk)−1
�(W1+γ | Fk)

1
1+γ ≤ C̃ a.e.

Now it is not difficult to see that, for q := 1 + 1
γ
, we have W ∈ Âq with [W]Âq

≤ C̃.
Next we establish the inequality (3.23). Applying Proposition 3.3.2.(ii) to f = 1B, we find

�[1B | Fk−1]p ≤ [W]Ap�W[1B | Fk−1].

This implies that

1A

(
µ(B)
µ(A)

)p

= 1A�[1B | Fk−1]p ≤ [W]Ap1A�W[1B | Fk−1] = [W]Ap1A
W(B)
W(A)

.

Since µ(A) ≤ θµ(B) by the hypothesis (3.6), it follows that w(A) ≤ θp[W]Ap ≤ θ
pC.

Finally, let us treat the last statement. In case F ∈ Fk is contained in a single atom A of
Fk−1, we can simply take G = A, for F certainly contains an atom B of Fk. Each element of
Fk being a countable union of such F, the general case follows. �

Lemma 3.3.14. Let q ∈]1,∞[, c > 0, and W ∈ Âq with [W]Âq
≤ c. Then, for any stopping time

τ : Σ −→ � ∪ {∞} and F ∈ F , F ⊂ {τ < ∞}, we have

�W(1F | Fτ) ≤ c1/q (�(1F | Fτ))1/q a.e.

Proof. As F ∈ F , F ⊂ {τ < ∞}, it suffices to show that

1{τ=k} (�W(1F | Fτ))q
≤ 1{τ=k}c�(1F | Fτ) a.e.

for all k ∈ �. Since 1{τ=k} (�W(1F | Fτ))q = 1{τ=k} (�W(1F | Fk))q and 1{τ=k}c�(1F | Fτ) =

1{τ=k}c�(1F | Fk) (see Lemma A.3.22), this follows from Lemma 3.3.11. �

3.3.3.c Weighted Inequalities Between Maximal Operators

We write P+ = P+((Fk)k∈�) for the set of all positive processes V = (Vk)k∈� on Σ which
are adapted to the filtration (Fk)k∈�. We define 00P+ to be the set of all V = (Vk)k∈� ∈ P+

with the property that there exists a K ∈ � for which Vk = 0 for all k ≤ K. For a process
V = (Vk)k∈� ∈P+ and a stopping times τ, σ : Σ −→ � ∪ {∞} we write

V∗ := sup
k∈�

Vk, V∗τ = sup
k≤τ

Vk,
σV∗τ = V∗τ − V∗τ∩σ.
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Theorem 3.3.15. Let X be a Banach space, r ∈ [1,∞[, and W ∈ A∞. Let U and V be mappings
00M (X) −→ 00P+ with the property that, for some constant c > 0,

U∗τ∧σ(g) = U∗τ(g
σ) and V∗τ∧σ(g) = V∗τ (gσ) (3.24)

and
�([τU∗k (g)]2 | Fτ) ≤ c�([V∗k (g)]2 | Fτ) (3.25)

for all g ∈ 00M (X), all stopping times τ, σ : Σ −→ � ∪ ∞, and all k ∈ �. Furthermore, for
each g ∈ 00M (X) let Lg ∈ � be such that gk = 0 for all k ≤ Lg and such that

1AU∗k (g) = U∗k (1Ag), k ∈ �, A ∈ FLg , (3.26)

where 1Ag = (1Agk)k∈� = (�[1Agk | Fk])k∈� ∈ 00M (X). Then there exists a constant C > 0
such that

||U∗(g)||Lr(W) ≤ C ||V∗(g)||Lr(W)

for all g ∈ 00M (X). Moreover, if p, q ∈]1,∞[ are such that W ∈ Ap ∩ Âq (see Lemma 3.3.13),
then the constant C can be chosen in such a way that C .c,r θ

p(q/2+1/r)[W]1/2
Âq

[W]q/2+1/r
Ap

.

We will really explicitly use the exponent 2 from condition (3.25) in some computation in
the proof of this theorem. However, in the next corollary the exponent 2 will be irrelevant in
the sense that the argumentation remains valid for other exponents for which the above theorem
holds as well.

Before we can state the next corollary, we first need to observe the following: Given g ∈
00M (X), a stopping time τ : Σ −→ � ∪ {∞}, and A ∈ Fτ, we have (1A

τgn)n∈�. Indeed, since

1A
τgn − 1A

τgn−1 = 1A∩{τ≤n−1}dτgn and A ∩ {τ ≤ n − 1} ∈ Fn−1, n ∈ �,

and since τg ∈ 00M (X), this is a consequence of Proposition A.3.12 (and Remark A.3.15.(i)).

Corollary 3.3.16. Let X be a Banach space, r ∈ [1,∞[, and W ∈ A∞. Let U and V be
mappings 00M (X) −→ 00P+ satisfying (3.24). Furthermore, suppose that there exist constants
c1, c2, c3 > 0 such that

|τU∗k (g)| ≤ c1U∗k (τg), (3.27)

V∗k (τg) ≤ c2V∗k (g), (3.28)

U∗k ((1A
τgn)n∈�) = 1AU∗k (τg) and V∗k ((1A

τgn)n∈�) = 1AV∗k (τg), (3.29)

and
||U∗(g)||L2 ≤ c3 ||V∗(g)||L2 (3.30)

for all g ∈ 00M (X), all stopping times τ : Σ −→ � ∪ {∞}, A ∈ Fτ, and all k ∈ �. Then there
exists a constant C > 0 such that

||U∗(g)||Lr(W) ≤ C ||V∗(g)||Lr(W) , g ∈ 00M (X).

Moreover, if p, q ∈]1,∞[ are such that W ∈ Ap ∩ Âq (see Lemma 3.3.13), then the constant C
can be chosen in such a way that C .c1c2c3,r θ

p(q/2+1/r)[W]1/2
Âq

[W]q/2+1/r
Ap

.
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Proof. We must check that U and V satisfy (3.25), (3.26) being an immediate consequence of
(3.29). So let be given: g ∈ 00M (X), τ : Σ −→ � ∪ {∞} a stopping time, and k ∈ �. Choose an
arbitrary A ∈ Fτ and consider the martingale f = ( fn)n∈� := (1A

τgn)n∈� ∈ 00M (X). Applying
(3.30) to the stopped martingale f k, we obtain

∣∣∣∣∣∣U∗k ( f )
∣∣∣∣∣∣

L2

(3.24)
=

∣∣∣∣∣∣U∗( f k)
∣∣∣∣∣∣

L2 ≤ c3

∣∣∣∣∣∣V∗( f k)
∣∣∣∣∣∣

L2

(3.24)
= c3

∣∣∣∣∣∣V∗k ( f )
∣∣∣∣∣∣

L2 .

Recalling the definition of f and invoking the identities in (3.29), we just have the inequality∣∣∣∣∣∣1AU∗k (τg)
∣∣∣∣∣∣

L2 ≤ c3

∣∣∣∣∣∣1AV∗k (τg)
∣∣∣∣∣∣

L2 .

Via the pointwise inequalities (3.27) and (3.28), we can now estimate∣∣∣∣∣∣1A
τU∗k (g)

∣∣∣∣∣∣
L2 ≤ c1c2c3

∣∣∣∣∣∣1AV∗k (g)
∣∣∣∣∣∣

L2 .

As A ∈ Fτ was arbitrarily given, we obtain the desired (3.25) with c := c1c2c3. �

In the proof of the inequality (3.19) we will apply this extrapolation result to the mappings
U,V : 00M (F) −→ 00P+ given by

Uk(g) =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
 k∑

n=−∞

|dgn|
2

1/2
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
F

and Vk(g) = sup
n≤k
||gn||F ,

and for the inequality (3.20) we will apply this corollary to the same mappings with the roles
interchanged; see Theorem 3.3.19.

For the proof of Theorem 3.3.15 we need two lemmata. The first lemma is a so called good
λ inequality.

Lemma 3.3.17. Let u, v ∈ M+(Σ) be two positive measurable functions on Σ such that W(u >
λ) < ∞ for every λ > 0. Suppose that there exist constants α > 1 and β, ε, δ > 0 such that

W(u > αλ) ≤ εW(u > λ) + δW(v > βλ), λ > 0. (3.31)

Let r ∈ [1,∞[ and write γ := αr and η := β−r. If γε < 1, then we have

||u||rLr(W) ≤
γηδ

1 − γε
||v||rLr(W) . (3.32)

Proof. It suffices to show that, for each n ∈ �, (3.32) holds true with u replaced by u ∧ n =

min{u, n}. As (3.31) is also satisfied with u replaced by u ∧ n, we may as well without loss of
generality assume that u is bounded. For each n ∈ �>0 we then have u1{u≥ 1

n }
∈ Lr(W) because
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W({u ≥ 1
n }) < ∞ (in view of (3.31)), for which we compute∣∣∣∣∣∣∣∣u1{u≥ 1

n }

∣∣∣∣∣∣∣∣r
Lr(W)

(A.3)
= αr

∫ ∞

0
rλr−1W

(
u1{u≥ 1

n }
> αλ

)
dλ

= αr
∫ ∞

α
n

rλr−1W(u > αλ)dλ

(3.31)
≤ αr

ε ∫ ∞

α
n

rλr−1W(u > λ)dλ + δ

∫ ∞

0
rλr−1W(v > βλ)dλ


= αr

(
ε

∫ ∞

0
rλr−1W

(
u1{u≥ αn } > λ

)
dλ + δβrβ−r

∫ ∞

0
rλr−1W(v > βλ)dλ

)
(A.3)
= γε

∣∣∣∣∣∣u1{u≥ αn }
∣∣∣∣∣∣r

Lr(W)
+ γδη ||v||rLr(W)

≤ γε
∣∣∣∣∣∣∣∣u1{u≥ 1

n }

∣∣∣∣∣∣∣∣r
Lr(W)

+ γδη ||v||rLr(W)

Since γε < 1, it follows that (3.32) is satisfies with u replaced by u1{u≥ 1
n }

. The desired result
now follows by letting n→ ∞. �

The second lemma produces a stopping time satisfying certain useful properties.

Lemma 3.3.18. Let W ∈ A∞ and let l ≥ 1 be as in (3.23). For every V = (Vk)k∈� ∈ 00P+ and
λ > 0 there exists a stopping time τ : Σ −→ � ∪ {∞} such that

W({τ < ∞}) ≤ lW({V∗ > λ})

and
V∗τ ≤ λ a.e., {V∗ > λ} ⊂ {τ < ∞}.

Proof. We define the stopping time σ : Σ −→ � ∪ {∞} by

σ := inf{k | Vk > λ} = inf{k | Vk ∈]λ,∞[},

that is, σ is the first hitting time of ]λ,∞[ associated with the adapted process V ∈ 00P+ (see
Example A.3.21). By the last part of Lemma 3.3.13, as {σ = k} ∈ Fk, there exists a Gk ∈ Fk−1

such that {σ = k} ⊂ Gk and W(Gk) ≤ lW({σ = k}); indeed, Now we can define the stopping
time τ : Σ −→ � ∪ {∞} by

τ := inf{k | 1Gk+1 = 1},

that is, τ is the first hitting time of {1} corresponding to the adapted process (1Gk+1)k∈�. To finish
the proof we show that τ is as desired.

Firstly, since it clearly holds that {τ = k} ⊂ Gk+1, we have

W({τ < ∞}) =
∑
k∈�

W({τ = k}) ≤
∑
k∈�

W(Gk+1) ≤ l
∑
k∈�

W({σ = k}) = lW({σ < ∞}) = lW({V∗ > λ}).

Secondly, since

{k ≤ τ} ⊂
⋂
j≤k

Σ \G j ⊂
⋂
j≤k

Σ \ {σ = j} = {σ > k} ⊂
⋂
j≤k

{V j ≤ λ},
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we have
V∗τ = sup

k≤τ
Vk ≤ λ.

Finally, if V∗(ς) > λ, then there exists a smallest k ∈ � such that Vk(ς) > λ, implying that
ς ∈ {σ = k} ⊂ Gk and thus that τ(ς) ≤ k − 1 < ∞. �

We are now ready to prove Theorem 3.3.15.

Proof of Theorem 3.3.15. It suffices to find a constant C > 0 such that∣∣∣∣∣∣U∗k (g)
∣∣∣∣∣∣r

Lr(W)
≤ Cr

∣∣∣∣∣∣V∗k (g)
∣∣∣∣∣∣r

Lr(W)
, k ∈ �, g ∈ 00M (X),

or equivalently, such that∣∣∣∣∣∣1DU∗k (g)
∣∣∣∣∣∣r

Lr(W)
≤ Cr

∣∣∣∣∣∣V∗k (g)
∣∣∣∣∣∣r

Lr(W)
, k ∈ �, g ∈ 00M (X),D ∈ F atom

Lg
. (3.33)

For the positive measurable functions u = 1DU∗k (g)
(3.26)
= U∗(1Dg) and v = V∗(g) on Σ we have

W(u > λ) ≤ W(D) < ∞ for every λ > 0. By Lemma 3.3.17 it thus suffices to find constants
α > 1 and β, ε, δ > 0 such that αrε < 1 and such that (3.31) is satisfied for this choice of u and
v; then, in the notation of this lemma, (3.33) is satisfied for the constant C = [γηδ/(1− γε)]1/r.4

Since 1Dg ∈ 00M (X) for all g ∈ 00M (X) and D ∈ F atom
Lg

, for this it is certainly enough to find
constants α > 1 and β, ε, δ > 0 such that αrε < 1 and such that

W({U∗k (g) > αλ}) ≤ εW({U∗k (g) > λ}) + δW({V∗k (g) > βλ}), k ∈ �, g ∈ 00M (X). (3.34)

Let p ∈]1,∞[ be such that W ∈ Ap and let q ∈]1,∞[ be such that W ∈ Âq (see Lemma 3.3.13),
put Cq,W := [W]1/q

Âq
, and let l = θp[W]Ap ≥ 1 be as in Lemma 3.3.13.5 Fix α > 1 and write δ := l.

Put γ := αr > 1, choose β > 0 so small that, for the constant ε := Cq,W l(cβ2/(1 − α)2)1/q > 0,
we have γε < 1, and put η := β−r. We will show that (3.34) is satisfied for these choices of
constants. Here we have to check that

C =

(
γηδ

1 − γε

)1/r

= β−1l1/rα(1 − γε)−1/r > 0

can be chosen as in the last statement of the theorem: we just note that we can take

β :=

2−q/2α−rq
Cq

q,W lqc

1 − α2

−1/2

hα,c (2αr)q/2C−q/2
q,W l−q/2 = (2αr)q/2[W]−1/2

Âq
l−q/2,

for which we have γε = 1
2 < 1, so that

C hα,c,r (2αr)−q/2[W]1/2
Âq

lq/2+r ≤ (2αr)−1/2[W]1/2
Âq

(θp[W]Ap)
q/2+1/r .α,r θ

p(q/2+1/r)[W]1/2
Âq

[W]q/2+1/r
Ap

.

Fix g ∈ 00M (X) and k ∈ �. Let λ > 0. First, applying Lemma 3.3.18 to the stopped process
Vk(g) = (Vk∧n(g))n∈� ∈ 00P+ and the constant βλ > 0, we get a stopping timeσ : Σ −→ �∪{∞}

such that
W({σ < ∞}) ≤ lW({V∗k (g) > βλ}) (3.35)

4Here we also have to pay attention on the dependence of the obtained constant C = [γηδ/(1− γε)]1/r as in the
statement of the theorem.

5Here the definition of the constant Cq,W is motivated by Lemma 3.3.14.
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and
V∗k∧σ(g) ≤ βλ a.e., {V∗k (g) > βλ} ⊂ {σ < ∞}. (3.36)

Next, applying Lemma 3.3.18 to the stopped process Uk∧σ(g) = (Uk∧σ∧n(g))n∈� ∈ 00P+ and
the constant λ > 0 we get a stopping time τ : Σ −→ � ∪ {∞} such that

W({τ < ∞}) ≤ lW({U∗k∧σ(g) > λ}) (3.37)

and
U∗k∧σ∧τ(g) ≤ λ a.e., {U∗k∧σ(g) > λ} ⊂ {τ < ∞}. (3.38)

For later, let us observe that

{U∗k (g) > αλ} ⊂ {U∗k∧σ(g) > αλ} ∪ {σ < ∞}; (3.39)

for this we just have to note that the complement of the RHS is contained in the complement of
the LHS.

Since U∗k∧σ∧τ(g) ≤ λ almost everywhere by (3.38), it follows that

{U∗k∧σ(g) > αλ} ⊂
{

[U∗k∧σ(g) − U∗k∧σ∧τ(g)]2 > λ2(α − 1)2
}

a.e..

This implies that, for all A ∈ Fτ,∫
A

1{U∗k∧σ(g)>αλ} dµ ≤
1

λ2(α − 1)2

∫
A
[U∗k∧σ(g) − U∗k∧σ∧τ(g)]2 dµ,

or equivalently, that

�(1{U∗k∧σ(g)>αλ} | Fτ) ≤
1

λ2(α − 1)2�([U∗k∧σ(g) − U∗k∧σ∧τ(g)]2 | Fτ)

(3.24)
=

1
λ2(α − 1)2�([τU∗k (gσ)]2 | Fτ).

Via the inequality (3.25), the identity V∗k (gσ) = V∗k∧σ(g) (see (3.24)), and the first inequality in
(3.36), this can be further estimated as

�(1{U∗k∧σ(g)>αλ} | Fτ) ≤
cβ2

(α − 1)2 . (3.40)

From

{U∗k∧σ(g) > αλ} ⊂ {U∗k∧σ(g) > λ}
(3.38)
⊂ {τ < ∞} ∈ Fτ (3.41)

it follows that

W({U∗k∧σ(g) > αλ}) =

∫
{τ<∞}

1{U∗k∧σ(g)>αλ}Wdµ

=

∫
{τ<∞}

�W(1{U∗k∧σ(g)>αλ} | Fτ) Wdµ.
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Using Lemma 3.3.14 (for which we need to recall W ∈ Âq with [A]Âq
≤ Cq,W and (3.41)),

(3.40), and (3.37), we can estimate this as

W({U∗k∧σ(g) > αλ}) ≤ Cq,W

∫
{τ<∞}

(
�(1{U∗k∧σ(g)>αλ} | Fτ)

)1/q
Wdµ

≤ Cq,W

(
cβ2

(α − 1)2

)1/q

W({τ < ∞})

≤ Cq,W l
(

cβ2

(α − 1)2

)1/q

W({U∗k (g) > λ}). (3.42)

Combining (3.39), (3.42), and (3.35), we find

W({U∗k (g) > αλ}) ≤ W({U∗k∧σ > αλ}) + W({σ < ∞})

≤ Cq,W l
(

cβ2

(α − 1)2

)1/q

W({U∗k (g) > λ}) + lW({V∗k (g) > βλ})

= εW({U∗k (g) > λ}) + δW({V∗k (g) > βλ})

for every λ > 0. This proves the desired inequality (3.34). �

3.3.3.d Weighted Inequalities for the Square Function Operator

Theorem 3.3.19. Let F be a UMD Banach function space, W ∈ A∞, and r ∈ [1,∞[. Then∣∣∣∣∣∣
∣∣∣∣∣∣sup
K∈�
||S K(g)||F

∣∣∣∣∣∣
∣∣∣∣∣∣
Lr(W)

. ||g∗||Lr(W) , ∀g ∈M (F), (3.43)

and

||g∗||Lr(W) .

∣∣∣∣∣∣
∣∣∣∣∣∣sup
K∈�
||S K(g)||F

∣∣∣∣∣∣
∣∣∣∣∣∣
Lr(W)

, ∀g ∈ 00M (F). (3.44)

Moreover, if W ∈ Ap, p ∈]1,∞[, with [W]Ap ≤ C ∈ [1,∞[, then the implicit constants only
depend on C, p, r ∈ [1,∞[, the UMD(2) constant of F, and the constant θ ≥ 1 from (3.6).

Proof. We first show the two inequalities (3.43),(3.44) for g ∈ 00M (F). Note that for such g it
holds that

S K(g) =

 K∑
k=−∞

|dgk|
2

1/2

for large enough K ∈ �. So, defining the mappings S̄ ,M : 00M (F) −→ 00P+ by

S̄ k(g) :=

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
 k∑

n=−∞

|dgn|
2

1/2
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
F

and Mk(g) := sup
n≤k
||gn||F ,

the two inequalities (3.43),(3.44) for g ∈ 00M (F) can be reformulated as∣∣∣∣∣∣S̄ ∗(g)
∣∣∣∣∣∣

Lr(W)
h ||M∗(g)||Lr(W) , ∀g ∈ 00M (F). (3.45)
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To prove these inequalities, we check the conditions of Corollary 3.3.16 for (U,V) ∈ {(S̄ ,M), (M, S̄ )};
note that the dependence of the implicit constants in (3.45) as in the statement of the theorem
then follow from the last statement of Corollary 3.3.16 in combination with Lemma 3.3.13.

First we check the L2-inequalities. For g ∈ 00ML2(F) we have, using Remark 3.3.8 and
Lemma 3.3.3,

∣∣∣∣∣∣S̄ ∗(g)
∣∣∣∣∣∣

L2 =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣sup
K∈�

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
 K∑

k=−∞

|dgk|
2

1/2
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
F

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
L2

=

∣∣∣∣∣∣
∣∣∣∣∣∣sup
K∈�
||S K(g)||F

∣∣∣∣∣∣
∣∣∣∣∣∣
L2

= ||S (g)||L2(Σ;F) h ||g||ML2 (F) h

∣∣∣∣∣∣
∣∣∣∣∣∣sup

k∈�
||gk||F

∣∣∣∣∣∣
∣∣∣∣∣∣
L2

= ||M∗(g)||L2 .

To extend this to all g ∈ 00M (F), it suffices to show that
∣∣∣∣∣∣S̄ ∗(g)

∣∣∣∣∣∣
L2 = ∞ implies that ||M∗(g)||L2 =

∞ whenever g ∈ 00M (F). For this we may assume that (gk)k∈� ∈ L2(Σ; F); otherwise it cer-
tainly holds that ||M∗(g)||L2 = ∞. Then, for each N ∈ �, we have gN = (gk∧N)k∈� = ggN ∈

00ML2(F) for the stopped sequence. Hence,∣∣∣∣∣∣S̄ ∗N(g)
∣∣∣∣∣∣

L2 =
∣∣∣∣∣∣S̄ ∗(gN)

∣∣∣∣∣∣
L2 .

∣∣∣∣∣∣M∗(gN)
∣∣∣∣∣∣ =

∣∣∣∣∣∣M∗
N(g)

∣∣∣∣∣∣
L2 .

Letting N → ∞ we obtain ∞ =
∣∣∣∣∣∣S̄ ∗(g)

∣∣∣∣∣∣ . ||M∗(g)||L2 , as desired. Therefore, (U,V) ∈
{(S̄ ,M), (M, S̄ )} satisfy the L2-estimate (3.30). We next check the other conditions of Corollary
3.3.16 in order to extrapolate these L2-estimates to the weighted inequalities (3.45).

First we look at S̄ : From S k(g) ≥ S k∧τ(g) ≥ 0 it follows that

0 ≤ S k(g) − S k∧τ(g) ≤
(
S k(g)2 − S k∧τ(g)2

)1/2
= S k(τg)

in the Banach function space F. Since S̄ j(g) = S̄ ∗j(g) for all j ∈ �, it follows that

|τS̄ ∗k(g)| =
∣∣∣||S k(g)||F − ||S k∧τ(g)||F

∣∣∣ ≤ ||S k(g) − S k∧τ(g)||F ≤ ||S k(τg)||F = S̄ k(τg),

that is, (3.27) is satisfied for U = S̄ . That U = V = S̄ satisfies (3.24), (3.29) and that V = S̄
satisfies (3.28) are both trivial.

Next we look at M: That U = M and V = M satisfy (3.27) and (3.28), respectively, are
easy consequence of the triangle inequality. That U = V = M satisfies (3.24), (3.29) and that
V = M satisfies (3.28) are both trivial.

We may thus apply Corollary 3.3.16 (with (U,V) ∈ {(S̄ ,M), (M, S̄ )}) to obtain (3.45), which
in turn implies the two inequalities (3.43),(3.44) for g ∈ 00M (F).

To finish we show that (3.43) is also valid for g ∈ M (F). For each K ∈ � we consider
the started martingale −(K+1)g = (gk − gk∧−(K+1))k∈� ∈ 00M (F), for which we already know that
(3.43) is valid. Then∣∣∣∣∣∣||S K(g)||F

∣∣∣∣∣∣
Lr(W)

=
∣∣∣∣∣∣ ∣∣∣∣∣∣S K(−(K+1)g)

∣∣∣∣∣∣
F

∣∣∣∣∣∣
Lr(W)

≤

∣∣∣∣∣∣
∣∣∣∣∣∣sup
N∈�

∣∣∣∣∣∣S N(−(K+1)g)
∣∣∣∣∣∣

F

∣∣∣∣∣∣
∣∣∣∣∣∣
Lr(W)

.
∣∣∣∣∣∣(−(K+1)g)∗

∣∣∣∣∣∣
Lr(W)

≤ ||g∗||Lr(W) +
∣∣∣∣∣∣ ∣∣∣∣∣∣g−(K+1)

∣∣∣∣∣∣
F

∣∣∣∣∣∣
Lr(W)

≤ 2 ||g∗||Lr(W) .

As (||S K(g)||F)K∈� is an increasing sequence in L0
+(Σ), taking the supremum over K ∈ � gives

the desired inequality. �
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3.3.3.e A Lemma due to Bourgain

For the proof of Lemma 3.3.9 we need the following lemma.

Lemma 3.3.20. Suppose Z ∈ L1
σ((Fk)k∈�)+ satisfies Z > 0 and S (Z) ≤ cZ a.e. for some

constant c > 0. Then there exist α, β ∈]0, 1[, only depending on c and the constant θ ≥ 1 from
(3.6), such that Z ∈ A∞ with α, β as in Lemma 3.3.12.(iii).

Proof. I) In the proof of Lemma 3.3.12 we saw that it is equivalent to show the following:
There exist α, β ∈]0, 1[ such that for all k ∈ � and all atoms D of Fk it holds that

∀E ⊂ D, E ∈ F : µ(E) ≤ αµ(D) =⇒

∫
E

Z dµ ≤ β
∫

D
Z dµ.

To this end, we fix a k ∈ � and an atom D of Fk. We define Z̃ := Z|D, F̃ := F ∩ D,
(F̃n)n∈� := (Fn ∩ D)n∈�, and we let µ̃ be the normalized restricted measure on F̃ , that is,

µ̃(A) :=
1

µ(D)
µ(A) (A ∈ F̃ );

then note that Z̃ ∈ L1(D, F̃ , µ̃)+ and F̃n = {∅,D} for n ≤ k. In this notation we must establish
the existence of α, β ∈]0, 1[, independent of k and D, such that

∀E ∈ F̃ : µ̃(E) ≤ α =⇒

∫
E

Z̃ dµ̃ ≤ β
∫

E
Z̃ dµ̃. (3.46)

II) Let Φ,Ψ : [0,∞[−→ [0,∞[ be the complementary Young’s functions from Appendix
A.2, Example A.2.3:

Φ(t) = t log(1 + t) and Ψ(t) = exp(t) − 1.

By Hölder’s inequality for Orlicz spaces (cf. Lemma A.2.2),∫
E

Z̃ dµ̃ =

∣∣∣∣∣∫
D

Z̃1E dµ̃
∣∣∣∣∣ ≤ 2

∣∣∣∣∣∣Z̃∣∣∣∣∣∣
Φ(µ̃) ||1E ||Ψ(µ̃) , ∀E ∈ F̃ .

Given α ∈]0, 1] and E ∈ F̃ with µ̃(E) ≤ α, for λ = log(1/α)−1 > 0 we have∫
D

Ψ(1E/λ) dµ̃ =

∫
D

1E

(
1
α
− 1

)
dµ̃ = µ̃(E)

(
1
α
− 1

)
≤ 1 − α ≤ 1,

and thus ||1E ||Ψ(µ̃) ≤ log(1/α)−1. Therefore,

∀α ∈]0, 1],∀E ∈ F̃ : µ̃(E) ≤ α =⇒

∫
E

Z̃ dµ̃ ≤ 2 log(1/α)−1
∣∣∣∣∣∣Z̃∣∣∣∣∣∣

Φ(µ̃)
. (3.47)

III) We claim that, for every f ∈ L1(µ̃)+ and γ ≥
∫

f dµ̃,

1
γ

∫
{ f>γ}

f dµ̃ ≤ θµ̃({ f ∗ > γ}), (3.48)
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where f ∗ := supn∈��( f | F̃n) = supn≥k �( f | F̃n) and where θ ≥ 1 is the constant from (3.6).
To see this, let τ : D −→ �≥k+1 ∪ {∞} be the first hitting time of ]γ,∞[ corresponding to the

martingale (�( f | F̃n))n∈�, that is,

τ := inf{n | �( f | F̃n) > γ};

note here that �( f | F̃n) =
∫

f dµ̃ ≤ γ for n ≤ k. On the one hand, as f = limn→∞�( f | F̃n)
pointwise a.e. by Theorem A.3.25, we have

1{τ=∞} f ≤ 1{τ=∞}γ

and

1{τ<∞} f ∗ ≥
∞∑

n=k+1

1{τ=n}�( f | F̃n) >
∞∑

n=k+1

1{τ=n}γ = 1{τ<∞}γ,

implying that
{ f > γ} ⊂ {τ < ∞} ⊂ { f ∗ > γ}.

On the other hand,

1{τ<∞}�( f | F̃τ) =

∞∑
n=k+1

1{τ=n}�( f | F̃n)
(3.7)
≤ θ

∞∑
n=k+1

1{τ=n}�( f | F̃n−1) ≤ θ
∞∑

n=k+1

1{τ=n}γ ≤ θγ1{τ<∞}.

Therefore,

1
γ

∫
{ f>γ}

f dµ̃ ≤
1
γ

∫
{τ<∞}

f dµ̃ =
1
γ

∫
{τ<∞}

�( f | F̃τ) dµ̃ ≤ θµ̃({τ < ∞}) ≤ θµ̃({ f ∗ > γ}),

proving the claim.
IV) We show that

||g||Φ(µ̃) .θ

∫
D

g∗ dµ̃, ∀g ∈ L1(µ̃)+. (3.49)

Let g ∈ L1(µ̃)+ \ {0}. For every C > 0 we define

λC := C
∫

D
g∗ dµ̃ > 0

and f = fC := g/λC ∈ L1(µ̃)+. Then note that 0 ≤
∫

D
f dµ̃ ≤ 1/C in view of f ≤ f ∗ (which

follows from Theorem A.3.25). Using the identity (A.3) for the function φ(t) = log(1 + t) and
the measure space (D, F̂ , f µ̃), we obtain∫

D
Ψ(g/λC) dµ̃ =

∫
D

log(1 + f ) f dµ̃

=

∫ ∞

0

1
1 + t

(∫
{ f>t}

f dµ̃
)

dt

=

∫ ∫
D f dµ̃

0

1
1 + t

(∫
{ f>t}

f dµ̃
)

dt +

∫ ∞

∫
D f dµ̃

1
1 + t

(∫
{ f>t}

f dµ̃
)

dt
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The first term on the RHS of the last inequality can be estimated by (
∫

D
f dµ̃)2 ≤ 1/C2, whereas

the second can be estimated as∫ ∞

∫
D f dµ̃

1
1 + t

(∫
{ f>t}

f dµ̃
)

dt
(3.48)
≤ θ

∫ ∞

∫
D f dµ̃

t
1 + t

µ̃({ f ∗ > γ})dt

≤ θ

∫ ∞

0
µ̃({ f ∗ > γ})dt

= θ

∫
D

f ∗ dµ̃

= θ
1
λC

∫
D

g∗ dµ̃

=
θ

C
.

It thus follows that ∫
D

Ψ(g/λC) dµ̃ ≤
1

C2 +
θ

C
.

Choosing C so large that the RHS becomes ≤ 1, we obtain (3.49).
V) Combining (3.47) and (3.49) yields

∀α ∈]0, 1],∀E ∈ F̃ : µ̃(E) ≤ α =⇒

∫
E

Z̃ dµ̃ . log(1/α)−1
∫

D
Z̃∗ dµ̃

Note that (D, F̃ , µ̃) and (F̃n)n∈� satisfy the same hypotheses as (Σ,F , µ) and (Fn)n∈�. So,
letting m :=

∫
D

Z̃ d µ̃, we may apply Theorem 3.3.19 to (D, F̃ , µ̃), (F̃n)n∈�, W = 1, r = 1, and
(�(Z − m | F̃n))n∈� ∈ 00M ((F̃n)n∈�) (note �(Z | F̃n) = m for n ≤ k), to obtain that∫

D
Z̃∗ dµ̃ ≤ m +

∫
D

(Z̃ − m)∗ dµ̃ .θ m +

∫
D

S (Z̃ − m) dµ̃.

Using the hypothesis that S (Z) ≤ cZ, we can dominate the integrand of the second term on the
RHS as follows:

S (Z̃ − m) =

 ∞∑
n=k+1

|�(Z̃ | F̂n) − �(Z̃ | F̂n−1)|2
1/2

= 1D

 ∞∑
n=k+1

|�(Z | Fn) − �(Z | Fn−1)|2
1/2

≤ 1DS (Z)
≤ 1DcZ.

We thus find that

∀α ∈]0, 1],∀E ∈ F̃ : µ̃(E) ≤ α =⇒

∫
E

Z̃ dµ̃ .θ,c log(1/α)−1
∫

D
Z̃ dµ̃.

Choosing α ∈]0, 1[ sufficiently small we obtain (3.46), as desired. �
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3.3.3.f The Proofs of Proposition 3.3.6 and Lemma 3.3.9.

Proof of Proposition 3.3.6. This is immediate from Theorem 3.3.19 (taking r = p) and the
fact (from Lemma 3.3.3) that g 7→ ||g∗||Lp(W) =

∣∣∣∣∣∣supk∈� ||gk||F

∣∣∣∣∣∣
Lp(W)

defines an equivalent norm
on MLp(W)(F) when W ∈ Ap (with implicit constants only depending on [W]Ap , p and θ as
in Lemma 3.3.3). Here we of course use that (S K)K∈� is an increasing sequence in the KB-
space Lp(W; F). �

Proof of Lemma 3.3.9. By a combination of Lemma 3.3.20 and Lemma 3.3.12, G belongs uni-
formly to some Ap in the sense that there exist p ∈]1,∞[ and C1 > 0 such that Z ∈ Ap with
[Z]Ap ≤ C1 for each Z ∈ G . Invoking Theorem 3.3.19 (with r = 1) we obtain the desired
result. �

3.4 Several Maximal and Weighted Norm Inequalities
Suppose that �d is d -decomposed as in Convention 2.2.1. In this section we collect several
important consequences (mainly inequalities) of the main results of this chapter (which are
stated in Section 3.1).

Lemma 3.4.1. Let X be a Banach space, p ∈]1,∞[l, and w ∈
∏l

j=1 Ap j(�
d j). Suppose φ ∈

L1(�d) is such that
ψ[d ,a](x) := sup{ |φ(y)| : |y|d ,a ≥ |x|d ,a }

defines a function ψ[d ,a] ∈ L1(�d). Then there exists a constant Cp,w,d ,a > 0 (only depending on
p, w, d , and a) such that, for all f ∈ Lp,d (�d,w; X),∣∣∣∣∣∣

∣∣∣∣∣∣sup
t>0

∣∣∣∣∣∣φ[d ,a]
t ∗ f

∣∣∣∣∣∣
X

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp,d (�d ,w)

≤ Cp,w,d ,a ||ψ||L1(�d) || f ||Lp,d (�d ,w;X) .

Here φ[d ,a]
t ∈ L1(�d) is defined by φ[d ,a]

t := ta·d φ(δ[d ,a]
t x).

Proof. A straightforward modification of Lemma D.1.2 yields the pointwise domination∣∣∣∣∣∣φ[d ,a]
t ∗ f (x)

∣∣∣∣∣∣
X
≤

∣∣∣∣∣∣ψ[d ,a]
∣∣∣∣∣∣

L1(�d)
M

[d ,a]
|| f ||X (x), x ∈ �d.

The desired result now follows from Corollary 3.1.5. �

Lemma 3.4.2. Let X be a Banach space, p ∈]1,∞[l, and w ∈
∏l

j=1 Ap j(�
d j). Suppose that

φ ∈ Cc(�d) is such that φ ≥ 0 and
∫
�d φ(x)dx = 1. For f ∈ Lp,d (�d,w; X) we have φt ∗ f

t→∞
−→ f

both in Lp,d (�d,w; X) and pointwise almost everywhere, where φt is given by φt = tdφ(t · ).

Proof. The pointwise almost everywhere convergence is a consequence of Lemma D.1.4 and
Theorem D.1.5; recall here that Lp,d (�d,w; X) ↪→ L1

loc(�
d; X) (see Lemma 2.2.4). For the con-

vergence in Lp,d (�d,w; X) we pick (tk)k∈� ⊂]0,∞[ such that tk ↗ ∞ (as k → ∞). Since we have
the domination

∣∣∣∣∣∣φtk ∗ f
∣∣∣∣∣∣

X
. M(|| f ||X) by Lemma D.1.2, and since M(|| f ||X) ∈ Lp,d (�d,w; X)

by Corollary 3.1.5, the Lebesgue dominated convergence theorem tells us that φtk ∗ f
k→∞
−→ f in

Lp,d (�d,w; X). �

52



Lemma 3.4.3. Let X be a Banach space, p ∈]1,∞[l, and w ∈
∏l

j=1 Ap j(�
d j). Then

S0(�d; X) := { f ∈ S(�d; X) : 0 < supp f̂ compact}

is dense in Lp,d (�d,w; X).

Proof. In view of F −1C∞c (�d; X)
d
↪→ S(�d; X) (see Appendix C.3) andS(�d; X)

d
↪→ Lp,d (�d,w; X)

(see Lemma 2.2.4), it suffices to approximate an f ∈ F −1C∞c (�d; X) with a sequence from
S0(�d; X) in the Lp,d (�d,w; X)-norm. So fix such an f . Let φ ∈ F −1C∞c (�d) be such that φ̂ is
1 on a neighborhood of 0. Then we have

f − φt ∗ f = F −1[(1 − φ̂t) f̂ ] = F −1
[
(1 − φ̂(t−1 · )) f̂

]
∈ S0(�d; X), t > 0,

where φt = tdφ(t · ). So it suffices to find a sequence (tk)k∈� ⊂]0,∞[ such that limk→∞ φtk ∗ f = 0
in Lp,d (�d,w; X). By the Lebesgue dominated convergence theorem, since ||φt ∗ f ||X . M(|| f ||X)
by Lemma D.1.2, and since M(|| f ||X) ∈ Lp,d (�d,w; X) by Corollary 3.1.5, for this it is in
turn enough to find a sequence (tk)k∈� ⊂]0,∞[ such that limk→∞ φtk ∗ f = 0 pointwise almost
everywhere. To this end, let q ∈]1,∞[. Then, by Young’s inequality (cf. Theorem A.1.4),

lim sup
t→0

||φt ∗ f ||Lq(�d;X) ≤ lim sup
t→0

||φt||Lq(�d) || f ||L1(�d;X) = lim sup
t→0

td(1− 1
q )
||φ||Lq(�d) || f ||L1(�d;X) = 0.

Hence, limt→0 φt ∗ f = 0 in Lq(�d; X). In particular, there exists a sequence (tk)k∈� ⊂]0,∞[ with

tk
k→∞
−→ 0 such that φt ∗ f

k→∞
−→ 0 pointwise almost everywhere. �

Corollary 3.4.4. Let X be a Banach space, p ∈]1,∞[l, and w ∈
∏l

j=1 Ap j(�
d j). Then S0(�d1)⊗

. . . ⊗ S0(�dl) ⊗ X is dense in Lp,d (�d,w; X). As a consequence,

S0,d (�d; X) :=

 f ∈ S(�d; X) : supp f̂ compact, supp f̂ ∩
l∏

j=1

[�d j \ {0}] = ∅

 .
is dense in Lp,d (�d,w; X).

We next present some inequalities (which are very important for Chapter 5). For this we
first need to introduce the following notation:

Notation 3.4.5. Let X be a Banach space, p ∈ [1,∞[l and w ∈
∏l

j=1W(�d j). For a sequence
( fk)k∈� of (equivalence classes of) strongly measurable functions �d −→ X we use the nota-
tions:

||( fk)k∈�||`q(�)[Lp,d (�d ,w)](X) :=
∣∣∣∣∣∣∣∣(∣∣∣∣∣∣|| fk||X

∣∣∣∣∣∣
Lp,d (�d ,w)

)
k∈�

∣∣∣∣∣∣∣∣
`q(�)

||( fk)k∈�||Lp,d (�d ,w)[`q(�)](X) :=
∣∣∣∣∣∣∣∣∣∣∣∣∣∣(|| fk||X)k∈�

∣∣∣∣∣∣
`q(�)

∣∣∣∣∣∣∣∣
Lp,d (�d ,w)

.

Remark 3.4.6. Let ( fk)k∈� be a sequence of (equivalence classes of) strongly measurable func-
tions �d −→ X with ||( fk)k∈�||`q(�)[Lp,d (�d ,w)](X) < ∞. If q < ∞, then ( fk)k∈� can be identified with
an element F of Lp,d (�d,w; `q(�; X)) in the natural way. This can be shown in an elementary
way, but can also be seen as a special case of Theorem B.2.7.
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Given a function f : �d −→ X, r ∈]0,∞[l and b ∈]0,∞[l, we define the maximal function
of Peetre-Fefferman-Stein type f ∗(r, b, d ; · ) by

f ∗(r, b, d ; x) := sup
z∈�d

|| f (x − z)||X
(1 + |b1z1|

d1/r1) . . . (1 + |blzl|
dl/rl)

, x ∈ �d. (3.50)

Proposition 3.4.7. Let X be a Banach space, p ∈ [1,∞[l, q ∈ [1,∞], and w ∈
∏l

j=1 A∞(�d j).
Let r ∈]0, 1[l be such that w j ∈ Ap j/r j(�

d j) for j = 1, . . . , l. Then there exists a constant C > 0
such that, for all ( fn)n∈� ∈ Lp,d (�d,w; `q(�; X)) and (b[n])n∈� ⊂]0,∞[l with fn ∈ S

′(�d; X) and
supp f̂ ⊂ Qd ,b[n] for all n ∈ �, we have the inequalities∣∣∣∣∣∣( f ∗n (r, b[n], d ; · ))n≥0

∣∣∣∣∣∣
Lp,d (�d ,w;`q(�)

≤ C ||( fn)n||Lp,d (�d ,w;`q(�;X))

and ∣∣∣∣∣∣( f ∗n (r, b[n], d ; · ))n≥0

∣∣∣∣∣∣
`q(�;Lp,d (�d ,w))

≤ C ||( fn)n||`q(�;Lp,d (�d ,w)) .

Proof. We only treat the first inequality, the second one being similar (and easier). As in the
proof of [62, Proposition 3.12], it can be shown that

f ∗n (r, b, d ; x) ≤ c
[
M[d ;l],rl(. . . M[d ;1],r1(|| fn||X) . . .)

]
(x), n ∈ �, x ∈ �d

for some constant c > 0 only depending on r. The desired result now follows from Theorem
3.1.4. �

Proposition 3.4.8. Let X and Y be Banach spaces, p ∈ [1,∞[l, q ∈ [1,∞], and w ∈
∏l

j=1 A∞(�d j).
Let r ∈]0,∞[l be such that r j < min{p1, . . . , p j, q} and w j ∈ Ap j/r j(�

d j) for j = 1, . . . , l. Then, for
each c > 0, there exists a constant C > 0 such that, for all (Mn)n∈� ⊂ F L1(�d;L(X,Y)) and all
( fn)n∈� ∈ Lp,d (�d,w; `q(�; X)) and (b[n])n∈� ⊂]0,∞[l with fn ∈ S

′(�d; X) and supp f̂ ∈ Qd ,cb[n]

for all n ∈ �, it holds that∣∣∣∣∣∣(F −1(MnF fn))n∈�

∣∣∣∣∣∣
Lp,d (�d ,w;`q(�;Y))

≤ C sup
k≥0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

l∏
j=1

(1 + | · |d j/r j))F −1Mk(b
[k]
1 · , . . . , b

[k]
l · )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L1(�d;L(X,Y))

||( fn)n∈�||Lp,d (�d ,w;`q(�;X))

and ∣∣∣∣∣∣(F −1(MnF fn))n∈�

∣∣∣∣∣∣
`q(�;Lp,d (�d ,w))

≤ C sup
k≥0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

l∏
j=1

(1 + | · |d j/r j))F −1Mk(b
[k]
1 · , . . . , b

[k]
l · )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L1(�d;L(X,Y))

||( fn)n∈�||`q(�;Lp,d (�d ,w)) .

Proof. First we observe that, for all x ∈ �d and n ∈ �,

∣∣∣∣∣∣F −1(MnF fn)(x)
∣∣∣∣∣∣

Y
≤ sup

z∈�d

∣∣∣∣∣∣F −1(MnF fn)(x − z)
∣∣∣∣∣∣

Y

(1 + |cb[n]
1 z1|

d1/r1) . . . (1 + |cb[n]
m zm|

dm/rm)
. (3.51)
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Next we estimate∣∣∣∣∣∣F −1(MnF fn)(x − z)
∣∣∣∣∣∣

Y
≤

∫
�d

∣∣∣∣∣∣F −1Mn(x − z − y)
∣∣∣∣∣∣
L(X,Y) || fn(y)||X dy

≤

∫
�d

∣∣∣∣∣∣F −1Mn(x − z − y)
∣∣∣∣∣∣
L(X,Y)

m∏
j=1

(1 + |cb[n]
j (x j − y j)|d j/r j)dy

· sup
u∈�d

|| fn(u)||X∏m
j=1(1 + |cb[n]

j (x j − u j)|d j/r j)

=

∫
�d

∣∣∣∣∣∣F −1Mn(x − z − y)
∣∣∣∣∣∣
L(X,Y)

m∏
j=1

(1 + |cb[n]
j (x j − y j)|d j/r j)dy

· f ∗n (r, cb[n], d ; x),

and note that
m∏

j=1

(1 + |cb[n]
j (x j − y j)|d j/r j) ≤ C1

m∏
j=1

[
(1 + |b[n]

j (x j − z j − y j)|d j/r j)(1 + |cb[n]
j z j)|d j/r j)

]
for some constant C1 > 0 independent of n, x, y, z. Combining this with (3.51) we obtain

∣∣∣∣∣∣F −1(MnF fn)(x)
∣∣∣∣∣∣

Y
≤ C1 sup

z∈�d

∫
�d

∣∣∣∣∣∣F −1Mn(x − z − y)
∣∣∣∣∣∣
L(X,Y)

m∏
j=1

(1 + |b[n]
j (x j − z j − y j)|d j/r j)dy

· f ∗n (r, b[n], d ; x)

= C1

∫
�d

∣∣∣∣∣∣F −1Mn(y)
∣∣∣∣∣∣
L(X,Y)

m∏
j=1

(1 + |b[n]
j y j|

d j/r j)dy f ∗n (r, cb[n], d ; x).

The proof is now completed by observing that∫
�d

∣∣∣∣∣∣F −1Mn(y)
∣∣∣∣∣∣
L(X,Y)

m∏
j=1

(1 + |b[n]
j (y j)|d j/r j)dy

=

∫
�d

m∏
j=1

(1 + |y j|
d j/r j)

∣∣∣∣∣∣(F −1[Mn(b[n]
1 · , . . . , b

[n]
m · )])(y)

∣∣∣∣∣∣
L(X,Y)

dy

≤ sup
k≥0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

m∏
j=1

(1 + | · |d j/r j))F −1[Mk(b
[k]
1 · , . . . , b

[k]
m · )]

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L1(�d;L(X,Y))

and applying Proposition 3.4.7 to ( fn)n∈�. �

Proposition 3.4.9. Let X be a Banach space, p ∈ [1,∞[l, q ∈ [1,∞], and w ∈
∏l

j=1 A∞(�d j).
Suppose r ∈]0, 1[l is such that w j ∈ Ap j/r j(�

d j) for j = 1, . . . , l. Let ψ ∈ S(�d) be such that
supp ψ̂ ⊂ {ξ ∈ �d | |ξ|d ,a ≤ 2}, and set ψn := ψ(δ[d ,a]

2n · ) for each n ∈ �. Then there exists a
constant C > 0 such that, for all ( fn)n∈� ⊂ S

′(�d; X) with supp f̂n ⊂
∏l

j=1[−R2na j ,R2na j]d j for
some R ≥ 1, the following inequality holds true:

||(ψn ∗ fn)n≥0||Lp,d (�d ,w;`q(�;X)) ≤ CR
∑l

j=1 a jd j( 1
r j
−1)
||( fn)n≥0||Lp,d (�d ,w;`q(�;X)) .
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Proof. As in the proof of [62, Proposition 3.14], it can be shown that

||(ψn ∗ fn)(x)||X ≤ cR
∑m

j=1 a jd j( 1
r j
−1) [M[d ;l],rl(. . . M[d ;1],r1(|| fn||X) . . .)

]
(x), n ∈ �, x ∈ �d,

for some constant c > 0 independent of n. The desired result now follows from Theorem
3.1.4. �

Lemma 3.4.10. Fix m ∈ � and r ∈]0, 1]. Let X be a Banach space, E a UMD Banach function
space, p ∈]1,∞[, and w ∈ Ap(�d). For each c > 0 there exists a constant C > 0 such that, for
all f ∈ Lp(�d,w; E(X)) ⊂ S′(�d; E(X)) with supp f̂ ⊂ B(0,R) for some R > 0, the following
inequality holds for all x, h ∈ �d:

∣∣∣∣∣∣∆m
h f (x)

∣∣∣∣∣∣
X
≤ C

(
Mr || f ||X

)
(x)

{
(R|h|)m, if |h| ≤ R−1;
(R|h j0 |)

d/r, if |h| > R−1.

Here we write

∆m
h f (x) =

m∑
k=0

(−1)k

(
m
k

)
f (x + (m − k)h), x, h ∈ �d.

Proof. This can be shown similarly to [88, Lemma 4]; here we just have to do some of the
computations pointwise in the Banach function space E. �

3.5 Notes

3.5.1 General Notes
The unweighted version of Theorem 3.1.1 is basically due to Bourgain [11]. Actually, Bour-
gain considered a UMD Banach space X with a normalized unconditional basis and defines
the Hardy-Littlewood maximal function operator coordinatewise (which can be interpreted as
a generalization of the classical Feffermann-Stein inequality for X = `q(�), q ∈]1,∞[). How-
ever, such a Banach space can be naturally viewed as a Banach function space on the σ-finite
measure space (�,P, #), and in this way the coordinatewise defined Hardy-Littlewood maximal
function coincides with the one from Theorem 3.1.1. This was extended by Rubio de Francia
[84] to general UMD Banach function spaces (on σ-finite measure spaces) for the case n = 1
by basically following the argumentation of Bourgain pointwise in the Banach function space
instead of coordinatewise in the Banach space X (which of course can be viewed as pointwise
in �). Here one simplification is made which explains the restriction n = 1, but without this
simplification the argumentation of Bourgain can be extended to general n; also see below
(Section 3.5.2). Motivated by [11, 84], Garcia-Cuerva, Macias & Torrea [41] introduced the
Hardy-Littlewood (H.L.) property for Banach lattices: a Banach lattice E is said to have the
H.L. property if there exists a constant C ≥ 0 and a p ∈]1,∞[ for which the sets (3.3) (with
f ranging over Lp(�n; E)) are norm bounded by C || f ||Lp(�d;E) in Lp(�n; E); here it is shown
that the H.L. property does not depend on the dimension n (so that it is a well-defined notion).
We would like to remark that in [41] it is only mentioned that every UMD Banach function
space on a σ-finite measure space has the H.L. property but that nothing is said about general
UMD Banach lattices (as in Remark3.1.2). The main idea in [41] is to pass, for each J, to a
smooth version Mφ,J of MJ (which is equivalent to MJ in the sense of domination), to which
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a Caldéron-Zygmun operator can be associated in a natural way, which allows the authors to
apply the theory of vector-valued singular integrals to obtain several characterizations of the
H.L. property (amongst which the irrelevance of the exponent p ∈]1,∞[ in the definition).
As a direct consequence of one of these characterizations, we find that the H.L. property im-
plies its Ap-weighted version H.L.w (which is defined by replacing Lp(�n; E) by Lp(�n,w; E)
in the definition of H.L. plus stating the dependence of the constant C on the Ap-weight w).
Therefore, as every UMD Banach function space has the H.L. property [84, 41] (also see Re-
mark 3.1.2), we obtain Theorem 3.1.1 as a consequence of Remark 3.1.2 (at least without the
precise dependence of the constant). Combining the ideas from [41] with [49, Corollary 2.10]
(see Theorem 4.4.3), it can in fact be shown that the constant C ≥ 0 in Theorem 3.1.1 can be
chosen in such a way that C ≤ [w]max{1,1/(p−1)}

Ap
C′ for some constant C′ only depending on p

and F (via the UMD constant of F). For a more elementary approach to Theorem 3.1.1 in the
special case that F is a mixed-norm Lq-space, we would like to mention [40]

Further works in this direction include [95],[39], [42], and [71].
Finally, we would like to mention that unweighted version of Theorem 3.1.4 (in the case

r j0 = 1) is a classical result due to Bagby [7].

3.5.2 Comparison to the Literature
• Section 3.1: As already mentioned above, Theorem 3.1.1 can be obtained by a combi-

nation of [84], [41] and Remark 3.1.2. However, we have decided to follow a different
strategy (see the discussions of Sections 3.2 and 3.3 below): we prove a more general
maximal inequality for martingales with values in a UMD Banach function space (The-
orem 3.3.5) from which Theorem 3.1.1 can be deduced. An important tool is the theory
of mixed-norm spaces from Appendix B.2. In this chapter we aim at giving a reason-
ably self-contained systematic treatment. For example, we have (explicitly) included
Remark 3.1.2 for more transparency in the relations between the several possible defini-
tions of M.

• Section 3.2: In [84, 41], (equivalence classes of) functions f ∈ Lp(�n,w; F), or more gen-
erally f ∈ L1

loc(�
n; F), are also viewed as (equivalence classes of) measurable functions

on the product �n × T (without explicit reference to the mixed norm space Lp(�n,w)[F]
and the canonical identification Lp(�n,w; F) ' Lp(�n,w)[F], for which we need re-
strictions on F). For example, in [41] it was already observed that, a Banach function
space F on a σ-Finite measure space having the σ-Fatou property satisfies the H.L. prop-
erty (see Section 3.5.1) if and only if M (defined by the RHS of (3.5)) is bounded on
Lp(�n,w)[F]; a detailed description of this equivalence can be found in Remark 3.2.3.
The maximal inequality in UMD Banach function spaces due to Rubio de Francia [84]
basically corresponds to (the formulation of) Theorem 3.2.2; in [84], M is actually de-
fined on Lp(�) ⊗ F, and Lp(�; F) is identified with a Banach function space (without
explicit mentioning Lp(�)[F]). For convenience of the reader, in this section (and also in
Section 3.3) we have tried to be more detailed on and explicit in these identifications (for
which the required theory is documented in Appendix B.2).

Theorem 3.2.2 is for us not just a convenient reformulation of Theorem 3.1.1 (in terms
of abstract mixed-norm spaces), but is actually (more or less) the abstraction of the main
motivation for this chapter, Theorem 3.1.4. As already mentioned before, this theorem is
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an extension to the weighted setting of a classical result of Bagby [7], which was obtained
in a completely different and more elementary way (before the start of UMD-theory).

Finally, we would like to mention that the argumentation used in the proof of Lemma
3.2.1 is a straightforward extension (of a slight modification) of the argumentation used
in the proof of [87, Lemma 19.16] (about the ordinary Hardy-Littlewood maximal func-
tion).

• Section 3.3: The most important references for this section are [57],[12, 84], [94, 95],
and [44, 45].

– Section 3.3.1: The reduction of Theorem 3.2.2 to the boundedness of the shifted
dyadic maximal function operators M′

ω, ω ∈ {0, ωodd, ωeven}n, (which is in fact an
equivalent problem) is based on [57], where such a reduction is performed for
(basically) the ordinary Hardy-Littlewood maximal function operator (in the un-
weighted setting). Here we have made a minor modification in the covering lemma,
Lemma 3.3.1, in order that the corresponding filtrations (Fω

k )k∈� get the right struc-
ture (the property of being regular).
The abstract setting (concerning the measure space (Σ,F , µ), the filtration (Fk)k∈�,
and the weight W) can be seen as an extension of the weighted setting considered
by Tozoni [94, 95] (where the measure space is a probability space and the filtra-
tion is indexed by the natural numbers �). Proposition 3.3.2.(v) corresponds to
[94, Lemma 4.1] and we follow the proof of the reference given there, which is
[59, Theorem 2]. The proof of Proposition 3.3.2.(vi) is taken from [57] (which is
about the unweighted case). Surprisingly, Proposition 3.3.2.(iii), or in fact Propo-
sition A.3.11, is new; it is also not treated in the probabilistic setting of To-
zoni [94, 95] (and predecessors). The main advantage of having this Lp(W; X)-
contractivity of the conditional expectation is that it allows us to define the Banach
space MLp(W)(X) of all Lp(W)-bounded X-valued martingales with its natural norm
|| · ||MLp(W)(X) (3.12), in which Lp(W; X) is isometrically contained in the natural way
(3.13).6 This space is (at least implicitly) also in the work of Burkholder in the
unweighted probabilistic setting; see the survey article [22]. Finally, Theorem 3.3.5
is new and should be interpreted as a natural (abstract martingale theoretic) gener-
alization of the well-definedness and boundedness of the (shifted) dyadic Banach
lattice Hardy-Littlewood maximal function operators on Lp(�n,w; F); see the dis-
cussions about Sections 3.3.2 and 3.3.3 below for more information on the proof
of this theorem. For a similar observation we refer to [71, Remark 6], which is
concerned with the probilistic Hardy-Littlewood property of Banach lattices.

– Section 3.3.2: The idea of the proof of Theorem 3.3.5 given in this subsection is ba-
sically due to Bourgain [12] (who restricts itself to the dyadic filtration on [0, 1] for
simplicity). Actually, our proof is an extension and an adaption of a slight modifica-
tion of the proof of [84, Theorem 3.i)⇒iii)], in which the argumentation of Bourgain
was already extended to Banach function spaces; also see the beginning of Section
3.5.1 above and [95, Theorem 3.1]. We would like to mention that one modifica-
tion of Bourgain’s proof made by Rubio de Francia [84] is the use of the Hilbert

6Without this contractivity we could take ||g||MLp (W)(X) := lim supk→∞ ||gk ||Lp(W;X) in order to have the isometric
embedding (3.13), which is less elegant.
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transform H followed by the modulus in place of the square function operator S
in the construction of Φφ; for clarity, here the dyadic Hardy-Littlewood maximal
function operator Md on the 1-dimensional torus � is considered (as the main part
of the proof). The main advantage of this modification is that Lemma 3.3.9 can be
replaced by a much simpler variant for the Hilbert transform. However, this modi-
fication can only be made in the 1-dimensional case (which was enough for Rubio
de Francia’s purposes anyway) and certainly cannot be done in our abstract setting.
In the improved form of Remark 3.3.7.(ii), Proposition 3.3.6 can be seen as a natural
generalization of the weighted-Lp square function estimates of Tozoni [94, 95] (see
especially the formulation given in [95, Theorem III]) concerning the probabilistic
setting with one-sided filtrations (i.e. filtrations indexed by �). The unweighted
version of Proposition 3.3.6 is due to Bourgain [12]; we present a slightly different
more modern proof of this unweighted version (as Remark 3.3.8) using the notion
of finite cotype together with the Khintchine-Maurey theorem (cf. Theorem E.2.2).
For more information on (the weighted version of) Proposition 3.3.6 and on Lemma 3.3.9,
we refer to the discussion about Section 3.3.3 below; also see Remark 3.3.10.

– Section 3.3.3: The main point of this subsection is to prove Proposition 3.3.19 and
Lemma 3.3.20, the desired Proposition 3.3.6 and Lemma 3.3.9 being easy conse-
quences of these two results.
Proposition 3.3.19 is (together with the required preparations) mainly based on the
work of Tozoni [94, 95], which in turn was to a large extend based on [10, 14, 68,
59]. In fact, besides some technical modifications (mostly required for our setting)
and a slightly different presentation, Sections 3.3.3.b-3.3.3.d are completely based
on [94] (and on some of the references given therein).
As should be clear from the title of Subsubsection 3.3.3.e, Lemma 3.3.9 is due to
Bourgain [12]. Actually, Bourgain only proved this result for the dyadic filtration
on [0, 1], but the same proof can be used to establish (3.46) (which corresponds to
the reduced situation obtained in Step I of our proof); also see [95, Theorem I] and
the comments after it. This is worked out in a detailed self-contained way in Steps
II-V, where we replaced the application of the L log L result in Bourgain’s proof by
Steps III&IV. The argumentation used in Steps III&IV is inspired by the proofs of
[45, Lemma 7.5.4] and [44, Corollary 2.1.21].

• Section 3.4: Proposition 3.4.8 and Lemma 3.4.3 are extensions of [77, Proposition 2.4]
and [105, Lemma 2.3], respectively. For the remaining literature used in this section, see
the references given in the main text.
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Chapter 4

Fourier Multipliers

In this chapter we prove several (d , a)-anisotropic Mikhlin Fourier multiplier theorems on the
weighted mixed-norm Lebesgue-Bochner spaces Lp,d (�d,w; X) for UMD spaces X.

4.1 Introduction
Unless stated otherwise or unless clear from the context, throughout this chapter we view �d

as being d -decomposed as in Convention 2.2.1.
Let X be a Banach space, p ∈]1,∞[l, and w ∈

∏l
j=1 Ap j(�

d j). A function m ∈ L∞(�d;B(X))
is called a Fourier multiplier on Lp,d (�d,w; X) if the Fourier multiplier operator

Tm : S(�d; X) −→ C∞0 (�d; X) ↪→ S′(�d; X), f 7→ F −1[m f̂ ]

(takes its values in Lp,d (�d,w; X) and) extends to a bounded linear operator Tm on Lp,d (�d,w; X).
The classical Mikhlin theorem says that for m ∈ L∞(�d) to be a Fourier multiplier on Lp(�d)

(p ∈]1,∞[), it is sufficient that m belongs to CN(�d \ {0}), where N = Nd := [d/2] + 1 ∈ �, and
satisfies the Mikhlin condition

Cm := sup{|ξ||θ| |Dθm(ξ)| : ξ ∈ �d \ {0}, |θ| ≤ N} < ∞, (4.1)

in which case we have ||Tm||B(Lp(�d)) .p,d Cm.
The classical Mikhlin theorem can, for example, be used to prove that

Wk
p(�d) = Hk

p(�d), p ∈]1,∞[, k ∈ �, (4.2)

with an equivalence of norms. Here H s
p(�d) stands for the Bessel potential space of order

s ∈ �, which is defined as follows: Since ξ 7→ (1 + |ξ|2)s/2 belongs to OM(�d), we may define
the Bessel potential operator Js ∈ L(S′(�d)) of order s by

Js f := F −1[(1 + | · |2)s/2 f̂ ], f ∈ S′(�d).

Having this Bessel potential operator, we define

H s
p(�d) := { f ∈ S′(�d) : Js f ∈ Lp(�d)}, || f ||Hs

p(�d) := ||Js f ||Lp(�d) . (4.3)

For Chapter 6 it will be important to generalize the identity (4.2) to the weighted anisotropic
vector-valued setting. This requires a (d , a)-anisotropic version of the Mikhlin theorem on
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the weighted mixed-norm Lebesgue-Bochner space Lp,d (�d,w; X) for scalar-valued symbols.
In Chapter 6 we will furthermore need a version of the Mikhlin theorem on the weighted
Lebesgue-Bochner space Lp(�d,w; X) for operator-valued symbols. This motivates to in-
vestigate a (d , a)-anisotropic version of the Mikhlin theorem on the weighted mixed-norm
Lebesgue-Bochner space Lp,d (�d,w; X) for operator-valued symbols, containing both situa-
tions as special cases.

The following theorem is roughly a (non sharp) collection of all the operator-valued Mikhlin
theorems from this chapter. Here the appropriate version of the classical Mikhlin condi-
tion (4.1) is an R-boundedness (d , a)-anisotropic Mikhlin condition. For the notion of R-
boundedness we refer to Appendix E.3 and for more background on operator-valued Fourier
multiplier theorems we refer to the notes of this chapter (and mainly the references given
therein). For property (α) we refer to Appendix E.4; here we only need that property (α) is
sufficient condition for Proposition E.4.4.

Theorem 4.1.1. Suppose that �d is d -decomposed as in Convention 2.2.1. Let X be a UMD
space, a ∈]0,∞[l, p ∈]1,∞[l, and

w ∈
{ ∏l

j=1 Arec
p j

(�d j), l > 1;∏l
j=1 Ap j(�

d j), l = 1 or X has property (α).
(4.4)

Then there exists an N ∈ � such that, for every m ∈ L∞(�d;B(X)) ∩ CN(�d \ {0};B(X))
satisfying the anisotropic R-boundedness Mikhlin condition

κm := R{ |ξ|a·d θd ,a Dθm(ξ) : ξ ∈ �d \ {0}, |θ| ≤ N } < ∞, (4.5)

we have that the linear operator

Tm : S(�d; X) −→ L∞(�d; X) ↪→ S′(�d; X), f 7→ F −1[m f̂ ],

takes its values in Lp,d (�d,w; X) and extends to a (necessarily unique) bounded linear operator
Tm ∈ B(Lp,d (�d,w; X)) of norm ||Tm||B(Lp,d (�d ,w;X)) .X,d ,a,p,w κm. Moreover, if in addition X has
property (α), then for every collection of symbols M ⊂ L∞(�d;B(X)) ∩ CN(�d \ {0};B(X))
satisfying

κM := R{ |ξ|a·d θd ,a Dθm(ξ) : ξ ∈ �d \ {0}, |θ| ≤ N,m ∈M } < ∞, (4.6)

we have
R{Tm : m ∈M } .X,d ,a,p,w CM in B(Lp,d (�d,w; X)).

For scalar-valued symbols m the R-bound in (4.5) coincides with the uniform bound of
the set under consideration (see Example 4.5). As a consequence, we obtain the following
anisotropic Mikhlin theorem for scalar-valued symbols:

Corollary 4.1.2. Let X be a UMD space, a ∈]0,∞[l, p ∈]1,∞[l, and

w ∈
{ ∏l

j=1 Arec
p j

(�d j), l > 1;∏l
j=1 Ap j(�

d j), l = 1 or X has property (α).

Then there exists an N ∈ � such that, for every m ∈ L∞(�d) ∩ CN(�d \ {0}) satisfying the
anisotropic Mikhlin condition

Cm := sup{ |ξ|a·d θd ,a |D
θm(ξ)| : ξ ∈ �d \ {0}, |θ| ≤ N } < ∞, (4.7)
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we have that the linear operator

Tm : S(�d; X) −→ L∞(�d; X) ↪→ S′(�d; X), f 7→ F −1[m f̂ ],

takes its values in Lp,d (�d,w; X) and extends to a (necessarily unique) bounded linear operator
Tm ∈ B(Lp,d (�d,w; X)) of norm ||Tm||B(Lp,d (�d ,w;X)) .X,d ,a,p,w Cm. Moreover, if in addition X has
property (α), then for every collection of symbols M ⊂ L∞(�d) ∩CN(�d \ {0}) satisfying

CM := sup{ |ξ|a·d θd ,a |D
θm(ξ)| : ξ ∈ �d \ {0}, |θ| ≤ N,m ∈M } < ∞, (4.8)

we have
R{Tm : m ∈M } .X,d ,a,p,w CM in B(Lp,d (�d,w; X)).

Remark 4.1.3. We expect that Theorem 4.1.1 (and therefore also its corollary) remains valid
for general weight-vectors w ∈

∏l
j=1 Ap j(�

d j). The reason for the restriction (4.4) is as follows:
First of all, we will see that it is only possible to follow a proof via unconditional Schauder
decompositions (as in the unweighted case) for weight-vectors w ∈

∏l
j=1 Arec

p j
(�d j) (Theorem

4.5.16). Second of all, having in particularly the unweighted case, the case of general weight-
vectors w ∈

∏l
j=1 Ap j(�

d j) could be obtained via extrapolation. However, we will only be
able to do an extrapolation argument in the isotropic non-mixed norm case l = 1, a = 1
(Theorem 4.5.20). The only problem for the general case is that we do not have a (d , a)-
anisotropic version of the extrapolation result for Caldéron-Zygmund operators, Theorem 4.4.2;
the rest of the computations (Lemma 4.4.7) and arguments still work. Finally, in case that X
has property (α), we can bootstrap this weighted isotropic non-mixed norm case, yielding a
sufficient condition which is weaker than the condition from Theorem 4.1.1 (Theorem 4.5.21)

4.2 Definitions and Basic Properties
In this chapter our interest is Fourier multipliers on the mixed-norm weighted Lebesgue-Bochner
spaces Lp,d (�d,w; X) with p ∈]1,∞[l and w ∈

∏l
j=1 Ap j(�

d j). In order to give a meaningful def-
inition of a Fourier multiplier m on Lp,d (�d,w; X), i.e. which symbols m to allow and on which
dense space to initially define the associated Fourier multiplier operator Tm, let us first look at
the possibility of locally integrable symbols. Since

L1
loc(�

d;B(X)) ×C∞c (�d; X) −→ L1(�d; X), (m, g) 7→ mg

is a continuous bilinear map and since the inverse Fourier transform F −1 is continuous from
L1(�d; X) to C0(�d; X) ⊂ L∞(�d; X) (by the Riemann-Lebesgue Theorem), it follows that

L1
loc(�

d;B(X)) ×F −1C∞c (�d; X) −→ C0(�d; X), (m, f ) 7→ F −1[m f̂ ]

is a continuous bilinear map when we equip F −1C∞c (�d; X) with the locally convex topol-
ogy which makes F a topological linear isomorphism from F −1C∞c (�d; X) onto C∞c (�d; X) =

D(�d; X). In particular, given a function m ∈ L1
loc(�

d;B(X)) we can define the continuous
linear operator

Tm : F −1(C∞c (�d; X)) −→ C0(�d; X) ↪→ S′(�d; X), f 7→ F −1[m f̂ ]. (4.9)
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The linear space F −1(C∞c (�d; X)) being a dense subspace of Lp,d (�d,w; X), it makes sense to
call m a Fourier multiplier on Lp,d (�d,w; X) provided that Tm (takes its values in Lp,d (�d,w; X)
and) satisfies the norm estimate ||Tm f ||Lp,d (�d ,w;X) ≤ Cm || f ||Lp,d (�d ,w;X) for some constant Cm > 0
and all f ∈ F −1(C∞c (�d; X)), so that Tm extends to a bounded linear operator Tm on Lp,d (�d,w; X),
called the associated Fourier multiplier operator. The following lemma says that for this to be
the case it is necessary that m ∈ L∞(�d; X):

Lemma 4.2.1. Let X be a Banach space, p ∈]1,∞[l, and w ∈
∏l

j=1 Ap j(�
d j). If m ∈ L1

loc(�
d;B(X))

is a Fourier multiplier on Lp,d (�d,w; X) (in the sense discussed above), then m ∈ L∞(�d;B(X))
and ||m||L∞(�d;B(X)) . ||Tm||B(Lp,d (�d ,w;X)).

Proof. Pick two Schwartz functions φ, ψ ∈ S(�d) such that
∫
�d φ̂(ξ)ψ̂(ξ)dξ = 1 and φ̂, ψ̂ ∈

C∞c (�d; X). Let ξ0 ∈ �
d be a Lebesgue point of m (see Definition D.1.3) and let x ∈ BX. Then,

by Proposition D.1.4 and the basic properties of the Fourier transform, we have

m(ξ0)x = lim
ε↘0

1
εd

∫
�d

m(ξ)φ̂
(
ξ − ξ0

ε

)
x ψ̂

(
ξ − ξ0

ε

)
dξ

= lim
ε↘0

εd
∫
�d

m(ξ)F [eξ0φ(ε · )](ξ)x F [e−ξ0ψ(ε · )]dξ

= lim
ε↘0

εd
∫
�d

Tm[eξ0φ(ε · )x](y) e−ξ0(y)ψ(εy)dy.

Denoting be w′ = (w′1, . . . ,w
′
l) ∈

∏l
j Ap′j the vector of p-dual weights, we can estimate

||m(ξ0)x||X ≤ lim inf
ε↘0

εd
∫
�d

∣∣∣∣∣∣Tm[eξ0φ(ε · )x](y)
∣∣∣∣∣∣

X
|ψ(εy)|dy

≤ lim inf
ε↘0

εd
∣∣∣∣∣∣Tm[eξ0φ(ε · )x]

∣∣∣∣∣∣
Lp,d (�d ,w;X) ||ψ(ε · )||Lp′ ,d (�d ,w′)

≤ lim inf
ε↘0

εd ||Tm||B(Lp,d (�d ,w;X))

∣∣∣∣∣∣eξ0φ(ε · )x
∣∣∣∣∣∣

Lp,d (�d ,w;X) ||ψ(ε · )||Lp′ ,d (�d ,w′)

≤ ||Tm||B(Lp,d (�d ,w;X)) lim inf
ε↘0

εd ||φ(ε · )||Lp,d (�d ,w) ||ψ(ε · )||Lp′ ,d (�d ,w′)

Since
εd ||φ(ε · )||Lp,d (�d ,w) ||ψ(ε · )||Lp′ ,d (�d ,w′) = ||φ||Lp,d (�d ,w;X) ||ψ||Lp′ ,d (�d ,w′)

by a change of variables, it follows that

||m(ξ0)x||X ≤ ||φ||Lp,d (�d ,w;X) ||ψ||Lp′ ,d (�d ,w′) .

Almost every point ξ0 in �d being a Lebesgue point of m (see Theorem D.1.5), this shows that
m ∈ L∞(�d;B(X)) with ||m||L∞(�d;B(X)) ≤ ||φ||Lp,d (�d ,w;X) ||ψ||Lp′ ,d (�d ,w′) ||Tm||B(Lp,d (�d ,w;X)). �

In view of the lemma, for Fourier multipliers on Lp,d (�d,w; X) we only need to focus
on symbols m from L∞(�d;B(X)). To this end we note that, similarly to (4.9), given m ∈
L∞(�d;B(X)),

Tm : S(�d; X) −→ C0(�d; X) ↪→ S′(�d; X), f 7→ F −1[m f̂ ] (4.10)

defines a continuous linear operator. The linear space S(�d; X) being a dense subspace of
Lp,d (�d,w; X), we may define the notion of Fourier multiplier on Lp,d (�d,w; X) as follows:
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Definition 4.2.2. Let X be a Banach space, p ∈]1,∞[l, and w ∈
∏l

j=1 Ap j(�
d j). A func-

tion m ∈ L∞(�d;B(X)) is called a Fourier multiplier on Lp,d (�d,w; X) if the linear operator
from (4.10) (takes its values in Lp,d (�d,w; X) and) extends to a bounded linear operator Tm

on Lp,d (�d,w; X), which is then called the Fourier multiplier operator associated with m. We
denote by Mp,d ,w(X) the space of all Fourier multipliers on Lp,d (�d,w; X) equipped with the
norm ||m||Mp,d ,w(X) := ||Tm||B(Lp,d (�d ,w;X)).

Proposition 4.2.3. Let X be a Banach space, p ∈]1,∞[l, and w ∈
∏l

j=1 Ap j(�
d j).

(i) Suppose m ∈ L∞(�d;B(X)) ⊂ L1
loc(�

d;B(X)). Then m is a Fourier multiplier on Lp,d (�d,w; X)
in the sense of Definition 4.2.2 if and only if it is a Fourier multiplier on Lp,d (�d,w; X)
in the sense discussed before Lemma 4.2.1, in which case the bounded linear exten-
sions of (4.9) and (4.10) of course yield the same associated Fourier multiplier operator
Tm ∈ B(Lp,d (�d,w; X)).

(ii) Suppose m ∈ L∞(�d;B(X))∩OM(�d;B(X)). Then m is a Fourier multiplier on Lp,d (�d,w; X)
if and only if the continuous linear operator

T̃m : S′(�d; X) −→ S′(�d; X), f 7→ F −1[m f̂ ] (4.11)

restricts to a bounded linear operator on Lp,d (�d,w; X), in which case T̃m extends the
associated Fourier multiplier operator Tm ∈ B(Lp,d (�d,w; X)).

(iii) Suppose m ∈ L∞(�d;B(X))∩OM(�d;B(X)) and let D be a dense subspace of Lp,d (�d,w; X).
Then the operator T̃m from (4.11) restricts to a bounded linear operator on Lp,d (�d,w; X)
if and only if T̃mD ⊂ Lp,d (�d,w; X) and

∣∣∣∣∣∣T̃m f
∣∣∣∣∣∣

Lp,d (�d ,w;X)
. || f ||Lp,d (�d ,w;X) for all f ∈ D.

Proof. (i) We only need to show that, if (4.9) extends to a bounded linear operator on
Lp,d (�d,w; X), then so does (4.10). To this end we denote, for obvious reasons of no-
tation, by T̃m both the operator from (4.9) as its bounded extension to an operator on
Lp,d (�d,w; X). Then it suffices to show that T̃m coincides on S(�d; X) with the operator
Tm from (4.10). As S(�d; X) ↪→ Lp,d (�d,w; X) and Lp,d (�d,w; X) ↪→ S′(�d; X), we
may view T̃m as a continuous linear operator

T̃m : S(�d; X) −→ S′(�d; X). (4.12)

Since the operator Tm from (4.10) may also be viewed as a continuous linear operator

Tm : S(�d; X) −→ S′(�d; X) (4.13)

and since T̃m and Tm coincide on the dense subspace F −1C∞c (�d; X) of S(�d; X), it fol-
lows that (4.12) and (4.13) are the same operators.

(ii) Since T̃m extends the operator Tm from (4.10), we only need to show that, if m is a Fourier
multiplier operator on Lp,d (�d,w; X), then T̃m restricts to a bounded linear operator on
Lp,d (�d,w; X). As in (i), we may view the associated Fourier multiplier operator Tm ∈

B(Lp,d (�d,w; X)) as a continuous linear operator

Tm : Lp,d (�d,w; X) −→ S′(�d; X) (4.14)
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and we may view T̃m as a continuous linear operator

T̃m : Lp,d (�d,w; X) −→ S′(�d; X). (4.15)

Now note that it is enough to show that the operators (4.14) and (4.15) coincide, for which
it is already enough that they coincide on the dense subspace S(�d; X) of Lp,d (�d,w; X).
But this is immediate from the original definitions (4.10) and (4.11).

(iii) We only need to establish the reverse implication. So suppose T̃mD ⊂ Lp,d (�d,w; X) and∣∣∣∣∣∣T̃m f
∣∣∣∣∣∣

Lp,d (�d ,w;X)
. || f ||Lp,d (�d ,w;X) for all f ∈ D. Then, by denseness of D in Lp,d (�d,w; X),

the restriction of T̃m to D extends to a bounded linear operator T on Lp,d (�d,w; X). To
finish, we show that T f = T̃m for all f ∈ Lp,d (�d,w; X). As in (i), we may view T̃m

and T as continuous linear operators Lp,d (�d,w; X) −→ S′(�d; X). Since these operators
coincide on the dense space D of Lp,d (�d,w; X), it follows that T f = T̃m for all f ∈
Lp,d (�d,w; X), as desired.

�

The following proposition contains the basic properties of the space of Fourier multipliers
Mp,d ,w(X).

Proposition 4.2.4. Let X be a Banach space, p ∈]1,∞[l, and w ∈
∏l

j=1 Ap j(�
d j).

(i) Mp,d ,w(X) is a Banach algebra (w.r.t. the pointwise a.e. operations). Moreover,

Mp,d ,w(X) ↪→ B(Lp,d (�d,w; X)), m 7→ Tm (4.16)

is an isometric algebra homomorphism and

Mp,d ,w(X) ↪→ L∞(�d;B(X)), m 7→ m (4.17)

is a homomorphism of Banach algebras

(ii) If m ∈ Mp,d ,w(X) and b ∈ �d, then mb(ξ) := m(ξ − b) defines a Fourier multiplier
mb ∈ Mp,d ,w(X) with ||m||Mp,d ,w(X) = ||mb||Mp,d ,w(X), which is given by Tmb = MeıbTmMe−ıb .
Recall here that, given a g ∈ L∞(�d), we denote by Mg the associated multiplication
operator.

(iii) Suppose that m ∈ Mp,d ,w(X). Let p′ = (p′1, . . . , p′l) ∈]1,∞[l be the vector of Hölder
conjugates of p = (p1, . . . , pl) and denote by w′ = (w′1, . . . ,w

′
l) ∈

∏l
j=1 Ap′j(�

d j) the p-
dual weight vector of w = (w1, . . . ,wl). Then m̃∗(ξ) := m(−ξ)∗ defines a Fourier multiplier
m̃∗ ∈ Mp′,d ,w′(X∗) which is the restriction of the adjoint operator T ∗m to Lp′,d (�d,w′; X∗) ⊂
(Lp,d (�d,w; X))∗.

(iv) Let m ∈ L∞(�d;B(X)) and {mk}k∈� ⊂ Mp,d ,w(X) be such that, for almost all ξ ∈ �d and
every x ∈ X,

m(ξ)x = lim
k→∞

mk(ξ)x, sup
k∈�
||mk||Mp,d ,w(X) < ∞.

Then we have m ∈ Mp,d ,w(X) with ||m||Mp,d ,w(X) ≤ supk∈� ||mk||Mp,d ,w(X).
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(v) Let m ∈ L∞(�d;B(X)) and let {mk}k∈� be a Cauchy sequence inMp,d ,w(X). Suppose that,
for almost all ξ ∈ �d and every x ∈ X,

m(ξ)x = lim
k→∞

mk(ξ)x.

Then we have m = limk→∞mk inMp,d ,w(X).

Proof. (ii) This follows easily from Lemma C.6.2.

(iii) This is for instance proved in [57] in the setting of unweighed Lebesgue-Bochner spaces,
using arguments which can be extended to our setting.

(iv) Let f ∈ S(�d; X). Observe that, in view of supk∈� ||mk||Mp,d ,w(X) < ∞ and the continuous
inclusionMp,d ,w(X) ↪→ L∞(�d;B(X)) (see Lemma 4.2.1 and Remark 4.2.3.(i)),

sup
k∈�
||mk||L∞(�d;B(X)) < ∞.

By Lebesgue’s dominated convergence theorem we thus obtain that m f̂ = limk→∞mk f̂
in L1(�d; X), from which it follows that Tm f = limk→∞ Tmk f in C0(�d; X) ⊂ L∞(�d; X)
because the inverse Fourier transform F −1 is continuous from L1(�d; X) to C0(�d; X).
By Fatou’s lemma (applied l times) we thus get

||Tm f ||Lp,d (�d ,w;X) ≤ lim inf
k→∞

∣∣∣∣∣∣Tmk f
∣∣∣∣∣∣

Lp,d (�d ,w;X)
≤ C || f ||Lp,d (�d ,w;X)

for the constant C := supk∈� ||mk||Mp,d ,w(X) ∈ [0,∞[.

(v) From (iv) and the fact the Cauchy sequence are bounded it follows that m ∈ Mp,d ,w(X).
To show that m = limk→∞mk inMp,d ,w(X), let ε > 0 be arbitrary and pick an N ∈ � such
that ||mk − mN ||Mp,d ,w(X) ≤ ε for all k ≥ N. Then, applying (iii) to the function m − mN ∈

L∞(�d;B(X)) and the sequence {mk−mN}k≥N ⊂ Mp,d ,w(X), we find ||m − mN ||Mp,d ,w(X) ≤ ε.

(i) We first show that Mp,d ,w(X) is complete. For this suppose we are given a Cauchy se-
quence (mk)k∈� in Mp,d ,w(X). Then (mk)k∈� also is a Cauchy sequence in the Banach
space L∞(�d;B(X)) because of the continuous inclusion Mp,d ,w(X) ↪→ L∞(�d;B(X)).
Denote by m the limit of (mk)k∈� in L∞(�d;B(X)). Via (v) we then obtain that also
m = limk→∞mk inMp,d ,w(X).

A proof of the remaining assertions can be found in [57].
�

For convenience of later reference, we state two observations about multiplier symbols
which only depend on a single variable as the following simple lemma, of which we do not
give a proof.

Lemma 4.2.5.

(i) Let j ∈ {1, . . . , l} and m ∈ L∞(�d j;B(X)). Define M ∈ L∞(�d;B(X)) by M(ξ) := m(ξ j),
that is, M = m ◦ π[d ; j]. Then the following are equivalent:

(a) M ∈ Mp,d ,w(X).
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(b) m ∈ Mp j,d j,w j(Y j,w).

(c) m ∈ Mp j,d j,w j(Y j).

Moreover, in this situation we have ||M||Mp,d ,w(X) = ||m||Mp j ,d j ,w j (Y j,w) = ||m||Mp j ,d j ,w j (Y j).

(ii) Suppose that l = 1. Let m ∈ L∞(�;B(X)) be a symbol for which there exists an increasing
function C : [0,∞[−→ [0,∞[ such that, for all weights v ∈ Ap(�), it holds that m ∈
Mp,1,v(X) with norm ||m||Mp,1,v(X) ≤ C([v]Ap). Then for all i ∈ {1, . . . , d} and all w ∈
Arec

p (�d), we have that Mi := [ξ 7→ m(ξi)] ∈ L∞(�d) belongs to Mp,d,w(X) with norm
||Mi||Mp,d,w(X) ≤ C([w]Arec

p ).

We will see that a very wide class of symbols can be built from the single symbol 1]0,∞[d .
So, in order to prove Fourier multiplier theorems, it is natural to pay special attention to those
Banach spaces X for which 1]0,∞[d ∈ Mp,d ,w(X) holds true, i.e., for which the Fourier multiplier
operator

R : S(�d; X) −→ C0(�d; X) ↪→ S′(�d; X), f 7→ F −1[1]0,∞[d f̂ ]

takes its values in Lp,d (�d,w; X) and extends to a bounded linear operator R on Lp,d (�d,w; X).
As R is known under the name Riesz projection, this motivates the following definition (and the
chosen terminology therein).

Definition 4.2.6. Let p ∈]1,∞[l and w ∈
∏l

j=1 Ap j(�
d j). We say that a Banach space X is

of class RPp,d ,w if 1]0,∞[d ∈ Mp,d ,w(X), in which case we write αp,d ,w,X :=
∣∣∣∣∣∣1]0,∞[d

∣∣∣∣∣∣
Mp,d ,w(X)

=

||R||B(Lp,d (�d ,w;X)). In the unweighted case w = 1 we just write RPp,d = RPp,d ,w.

We denote by J d the collection of all rectangles in�d with sides parallel to the coordinate
axes, i.e., rectangles in �d of the form I1 × . . . × Id for some intervals I1, . . . , Id ⊂ �.

Lemma 4.2.7. Let X be a Banach space, p ∈]1,∞[l, and w ∈
∏l

j=1 Ap j(�
d j).

(i) The following are equivalent:

(a) X is of class RPp,d ,w.

(b) 1�d−1×]0,∞[, 1�d−2×]0,∞[×�, . . . , 1]0,∞[×�d−1 ∈ Mp,d ,w(X).

(c) {1J : J ∈J d} ⊂ Mp,d ,w(X)

Moreover, if (a)/(b)/(c) hold, then we have ||1J ||Mp,d ,w(X) ≤ (2αp,d ,w,X)d for all J ∈ J d. In
this situation we write, for each J ∈J d, ∆(J) := T1J ∈ B(Lp,d (�d,w; X)) for the Fourier
multiplier operator associated with 1J.

(ii) Suppose l = 1. Then X = � is of class RPp,d,w if and only if w ∈ Arec
p (�d).

(iii) If X , {0} is of class RPp,d ,w, then w ∈
∏l

j=1 Arec
p j

(�d j).

(iv) X is of class RPp,d if and only if X is a UMD space.

(v) Let p′ = (p′1, . . . , p′l) ∈]1,∞[l be the vector of Hölder conjugates of p = (p1, . . . , pl)
and denote by w′ = (w′1, . . . ,w

′
l) ∈

∏l
j=1 Ap′j(�

d j) the p-dual weight vector of w =

(w1, . . . ,wl). Then X is of class RPp,d ,w if and only if X∗ is of class RPp′,d ,w′ .
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Proof. (i) ’(a)⇒(b)’: By Proposition 4.2.4.(ii), 1]−n,∞[×]0,∞[d−1 ∈ Mp,d ,w(X) of norm αp,d ,w,X

for all n ∈ �. Since 1�×]0,∞[d−1 = limn→∞ 1]−n,∞[×]0,∞[d−1 pointwise, it follows from Propo-
sition 4.2.4.(iv) that 1�×]0,∞[d−1 ∈ Mp,d ,w(X) of norm ≤ αp,d ,w,X. Repeating this argument
d − 2 times, we find 1�d−1×]0,∞[ ∈ Mp,d ,w(X) of norm ≤ αp,d ,w,X. The remaining symbols
1�×]0,∞[×�d−1 , . . . , 1]0,∞[×�d−1 can be treated similarly.

’(b)⇒(c)’: Let J = I1 × . . . Id be a product of bounded non-empty intervals. If I1 =]b, c]
(up to measure zero) with b < c, then we have 1I1×�d−1 = 1]b,∞[×�d−1 − 1]c,∞[×�d−1 ∈

Mp,d ,w(X) of norm ≤ 2
∣∣∣∣∣∣1]0,∞[×�d−1

∣∣∣∣∣∣
Mp,d ,w(X)

by (i) and (ii) of Proposition 4.2.4. Similarly

we have 1�i−1×Ii×�d−i ∈ Mp,d ,w(X) of norm ≤ 2
∣∣∣∣∣∣1�i−1×]0,∞[×�d−i

∣∣∣∣∣∣
Mp,d ,w(X)

for i = 1, . . . , d.

From this it follows that 1J =
∏d

i=1 1�i−1×Ii×�d−i ∈ Mp,d ,w(X) with

||1J ||Mp,d ,w(X) ≤

d∏
i=1

2
∣∣∣∣∣∣1�i−1×]0,∞[×�d−i

∣∣∣∣∣∣
Mp,d ,w(X)

. (4.18)

Since for a general rectangle J ∈ J d it holds that the indicator function 1J can be
written as the pointwise limit of indicator functions of bounded rectangles from J d, it
follows from Proposition 4.2.4.(iv) that 1J ∈ Mp,d ,w(X) with norm estimate (4.18) for
each J ∈J d.

(ii) This follows immediately from Proposition D.2.14.

(iii) Suppose X , {0} is of class RPp,d ,w. Then we have 1
�

d1+...+d j−1×]0,∞[d j×�
d j+1+...+dl ∈ Mp,d ,w(X)

for each j ∈ {1, . . . , l} by (i). From Lemma 4.2.5.(i) it follows that 1]0,∞[d j ∈ Mp j,d j,w j(Y j)
for each j ∈ {1, . . . , l}, where Y j := L(p j+1,...,pl),(d j+1,...,dl)(�d j+1+...+dl , (w j+1, . . . ,wl); X). Since
Y j , {0} (as X , {0}), it follows that 1]0,∞[d j ∈ Mp j,d j,w j(�), that is, � is of class RPp j,d j,w j

for each j ∈ {1, . . . , l}. By (ii) we conclude that w ∈
∏l

j=1 Arec
p j

(�d j).

(iv) Writing
q := (p1, . . . , p1︸     ︷︷     ︸

d1 times

, p2, . . . , p2︸     ︷︷     ︸
d2 times

, . . . , pl, . . . , pl︸    ︷︷    ︸
dl times

) ∈]1,∞[d

and d̃ := 1 ∈ �d, we have Lp,d (�d; X) = Lq,d̃ (�d; X). Therefore, X is of class RPp,d if
and only if it is of class RPq,d̃ . By (i), this is equivalent with

1�d−1×]0,∞[, 1�×]0,∞[×�d−1 , . . . , 1]0,∞[×�d−1 ∈ Mp,d (X).

Writing, for each i ∈ {1, . . . , d},

Yi := L(qi+1,...,qd),(1,...,1)(�d−i; X),

the latter is equivalent with Yi being of class RPqi,1 for each i ∈ {1, . . . , d}; see Lemma
4.2.5. By Theorem E.5.7, this is in turn is equivalent with Yi being a UMD space for each
i ∈ {1, . . . , d}, for which it is necessary and sufficient that X is a UMD space (see E.5.6).

(v) This follows from a combination of Proposition 4.2.4.(iii) and (the proof of) (i).
�
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Lemma 4.2.8. Let X be a Banach space, p ∈]1,∞[l, and w ∈
∏l

j=1 Ap j(�
d j) such that X is of

class RPp,d ,w. Then we have

R{∆([y, ∞̄[) : y ∈ �d} ≤ αp,d ,w,X and R{∆(J) : J ∈J d} ≤ (2αp,d ,w,X)d (4.19)

in B(Lp,d (�d,w; X)). Here we write [y, ∞̄[= y + [0,∞[d.

Proof. The first R-bound is immediate from a combination of Proposition 4.2.4.(ii) and Lemma
E.3.8. For the second R-bound, we write S := {∆([y, ∞̄[) : y ∈ �d} ⊂ B(Lp,d (�d,w; X)).
Then, using the denseness of F −1C∞c (�d; X) in Lp,d (�d,w; X) and the uniform boundedness of
{∆(J) : J ∈J d} in B(Lp,d (�d,w; X)), it is not difficult to see that

{∆(J) : J ∈J d} = clSOT
([

clSOT(S ) − clSOT(S )
]d
)

;

the steps are basically the same as in Lemma 4.2.7.(i) (where we have to replace pointwise
limits of symbols with limits of the associated Fourier multiplier operators in the SOT topol-
ogy). �

Besides indicator functions of rectangles from J d and linear combinations thereof, we
now turn to a more wide class of symbols which can be built out of 1]0,∞[d .

Lemma 4.2.9. Let X be a Banach space, p ∈]1,∞[l, and w ∈
∏l

j=1 Arec
p j

(�d j), such that X is
of class RPp,d ,w. Suppose that m ∈ L∞(�d;B(X)) has the following representation: there exist
a complex Borel measure µ on �d and a bounded WOT-measurable function τ : �d −→ B(X)
such that, for all x ∈ X and x∗ ∈ X∗,

〈m(ξ)x, x∗〉 =

∫
]−∞̄,ξ]

〈τ(y)x, x∗〉dµ(y). (4.20)

Then we have m ∈ Mp,d ,w(X) with ||m||Mp,d ,w(X) ≤ ||τ||∞ αp,d ,w,X ||µ||. In fact, for every f ∈
Lp,d (�d,w; X) and g ∈ Lp′,d (�d,w′; X∗), it holds that �d 3 y 7→ 〈g, τ(y)∆([y, ∞̄[) f 〉 ∈ � is a
Borel measurable function which is uniformly bounded by ||τ||∞ αp,d ,w,X || f || ||g||, and the Fourier
multiplier operator Tm ∈ B(Lp,d (�d,w; X)) satisfies

〈Tm f , g〉 =

∫
�d
〈τ(y)∆([y, ∞̄[) f , g〉dµ(y). (4.21)

Proof. Let’s first prove the measurabilty of �d 3 y 7→ 〈g, τ(y)∆([y, ∞̄[) f 〉 ∈ � for every f ∈
Lp,d (�d,w; X) and g ∈ Lp′,d (�d,w′; X∗). For each fixed y ∈ �d it holds that

Lp,d (�d,w; X) × Lp′,d (�d,w′; X∗) −→ �, ( f , g) 7→ 〈τ(y)∆([y, ∞̄[) f , g〉

is a continuous bilinear map. Since Lp,d (�d,w)⊗X and Lp′,d (�d,w′)⊗X∗ are dense in Lp,d (�d,w; X)
and Lp′,d (�d,w′; X∗), respectively, it thus is enough to consider f = φ ⊗ x and g = ψ ⊗ x∗ with
φ ∈ Lp,d (�d,w), ψ ∈ Lp′,d (�d,w′), x ∈ X, and x∗ ∈ X∗. Then y 7→ 〈τ(y),∆([y,∞[) f 〉 =

〈∆([y,∞[)φ, ψ〉〈τ(y)x, x∗〉 is measurable, being the product of two measurable functions.
Since the measurable function y 7→ 〈τ(y)∆([y, ∞̄[) f , g〉 is uniformly bounded by

||τ||∞ || f || ||g|| ,
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it follows that y 7→ 〈τ(y)∆([y, ∞̄[) f , g〉 is integrable with respect to the positive finite Borel
measure µ. Hence, the expression on the right hand-side of (4.21) is well defined and, in fact,
gives rise to a bounded bilinear form

Bτ,µ : Lp,d (�d,w; X) × Lp′,d (�d,w′; X∗) −→ �, ( f , g) 7→
∫
�d
〈τ(y),∆([y, ∞̄[) f 〉dµ(y) (4.22)

of norm ≤ ||τ||∞ αp,d ,w,X ||µ||. Since S(�d; X) is dense in Lp,d (�d,w; X), since S(�d; X∗) is dense
in Lp′,d (�d,w′; X∗), and since Lp′,d (�d,w′; X∗) is norming for Lp,d (�d,w; X), it is thus enough
to show that (4.21) holds for all f ∈ S(�d; X) and g ∈ S(�d; X∗); here Tm is at this moment of
course still the operator from (4.10). So let f ∈ S(�d; X) and g ∈ S(�d; X∗). Then

〈Tm f , g〉 = 〈m f̂ , ǧ〉 =

∫
�d

∫
]−∞̄,ξ]

〈τ(y) f̂ (ξ), ǧ(ξ)〉dµ(y)dξ

Fubini
=

∫
�d

∫
[y,∞̄[
〈τ(y) f̂ (ξ), ǧ(ξ)〉dξdµ(y)

=

∫
�d

∫
�d
〈τ(y)1[y,∞̄[ f̂ (ξ), ǧ(ξ)〉dξdµ(y)

=

∫
�d
〈τ(y)∆([y, ∞̄[) f , g〉dµ(y).

�

We finally come to a concrete example of a symbol admitting a representation as in the
lemma. This example will be an important ingredient in the proof of the operator-valued
Mikhlin theorem for the case that d = 1, where we apply it to m1I for appropriate compact
intervals I not containing 0; see Theorem 4.5.5 and Theorem 4.5.13.

Example 4.2.10. Let X be a Banach space and let 0 < a < b < ∞. Suppose that we have a
function m : � −→ B(X) which is C1 on the interval [a, b]. Then m1[a,b[ has the representation
(4.20) from the above lemma for the positive finite Borel measure µ := δa + 1[a,b]

dy
y + δb and the

integrand τ(y) := m(a)1a(y)+ym′(y)1]a,b[(y)−m(b)1b(y). Note ||µ|| = µ(�d) = µ(�d) ≤ 2+log
(

b
a

)
and ||τ||∞ ≤ Cm := sup{|m(ξ)|, |ξm′(ξ)| | ξ ∈ [a, b]}. So, in case that X is of class RPp,w for some
p ∈]1,∞[ and w ∈ Ap(�), we find m1[a,b[ ∈ Mp,w(X) with ||m||Mp,w(X) ≤ αp,w,XCm

[
2 + log

(
b
a

)]
Remark 4.2.11. Let −∞ < a < b < 0. For every function m : � −→ B(X) which is C1 on the
interval [a, b] we have a similar representation for m1]a,b]; just do a reflection argument.

Proof. We check that m1[a,b[ has indeed the claimed representation (4.20): For ξ ∈ � \ [a, b[
we have (m1[a,b[)(ξ) = 0 =

∫
]−∞,ξ]

τ(y)dµ(y), and for ξ ∈ [a, b[ we have

(m1[a,b[)(ξ) = m(a) +

∫ ξ

a
m′(y)dy

=

∫
]−∞,ξ]

m(a)dδa(y) +

∫
]−∞,ξ]

ym′(y)1]a,b[(y)
dy
y
−

∫
]−∞,ξ]

m(b)dδb(y)

=

∫
]−∞,ξ]

τ(y)dµ(y).

�
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4.3 Unconditional Schauder Decompositions
In this section we discuss the notion of (unconditional) Schauder decomposition of a Banach
space, with as goal to get an abstract framework to prove Fourier multiplier theorems. The
notion of (unconditional) Schauder decomposition is a generalization of the notion of (uncon-
ditional) Schauder basis (of which orthonormal bases in Hilbert space are a special case), and
the idea is to decompose vectors x of a Banach space X into convergent sums x =

∑
k xk, where

xk ∈ Xk and Xk are certain distinct subspaces of X. The connection with Fourier multiplier oper-
ators and multiplier operators with respect to unconditional Schauder decompositions, leading
naturally to the notion of R-boundedness of a set of operators on a Banach space (as defined in
Appendix E.3).

4.3.1 Introduction
The first approach to Fourier multiplier theorems on Lp,d (�d,w; X) taken in this chapter consists
of decomposing�d, possibly op to a set of measure zero, into a collection of disjoint rectangles
(En)n∈�, proving estimates for the operators Tm1En

associated with the compactly supported
pieces m1En of m, and assembling the pieces together in a way which gives the desired norm
estimate for Tm.

In order to give a more precise description of this approach, which can be more easily
translated into an abstract functional analytic problem, let X be Banach space, p ∈]1,∞[l, and
w ∈

∏l
j=1 Arec

p j
(�d j), such that X is of class RPp,d ,w. Suppose that we have a decomposition,

possibly up to a set of measure zero, of �d into a collection of disjoint intervals (En)n∈� with
1En ∈ Mp,d ,w for each n ∈ �, in such a way that the projections Dn := ∆(En) = T1En

∈

B(Lp,d (�d,w; X)) (see Lemma 4.2.7.(i)) give a decomposition of Lp,d (�d,w; X) in the sense
that f =

∑∞
n=0 Dn f for all f ∈ Lp,d (�d,w; X). The idea is to represent Tm as a ’multiplier

operator’ with respect to this decomposition (Dn)n∈�. Note that

E0 :=
∞⋃

N=0

Ran

 N∑
n=0

Dn

 (4.23)

is a dense subspace of Lp,d (�d,w; X). So, by Remark 4.2.3.(ii)/(iii), in order to show that a
symbol m ∈ L∞(�d;B(X)) ∩ OM(�d;B(X)) belongs to Mp,d ,w(X), it is necessary and suffi-
cient that the operator from (4.11) maps E0 into Lp,d (�d,w; X) and satisfies the norm estimate∣∣∣∣∣∣T̃m f

∣∣∣∣∣∣
Lp,d (�d ,w;X)

. || f ||Lp,d (�d ,w;X) for all f ∈ E0. Now suppose that we are able to show that

mn := m1En ∈ Mp,d ,w(X), ∀n ∈ �, (4.24)

by using for instance Lemma 4.2.9, something which is necessary for m ∈ Mp,d ,w(X) to hold
true in light of Proposition 4.2.4.(i) (as 1En ∈ Mp,d ,w(X)). Writing Tn := Tmn ∈ B(Lp,d (�d,w; X))
for every n ∈ �, we have TnDn = DnTnDn by Proposition 4.2.4.(i), i.e. the operator Tn leaves
the subspace Ran(Dn) invariant. Since T̃mDn = Tmn for each n ∈ �, which can be easily seen on
the dense space of Schwartz functions, it follows that T̃m restricts to the ’multiplier operator’
T : E0 −→ E0 (with respect to the decomposition (Dn)n∈�) given by

T f :=
N∑

n=0

TnDn f , ∀ f ∈ E0, f ∈ Ran

 N∑
n=0

Dn

 . (4.25)
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Therefore, having (4.24), for m ∈ Mp,d ,w(X) it is necessary and sufficient that T is bounded
with respect to the Lp,d (�d,w; X)-norm, in which case this operator has Tm as its bounded
linear extension to Lp,d (�d,w; X). For a general symbol m ∈ L∞(�d;B(X)) satisfying (4.24),
the last statement remains valid: If m ∈ Mp,d ,w(X), then it is easy to see that Tm extends the
operator T : E0 −→ E0 (use Proposition 4.2.4.(i)); in particular, T is bounded (with respect
to the Lp,d (�d,w; X)-norm). Conversely, assume that T is bounded. Now observe that the
boundedness of T is equivalent with {

∑N
n=0 TnDn | N ∈ �} being uniformly bounded, which

(by Proposition 4.2.4.(i)) in turn is equivalent with (
∑N

n=0 m1En)N∈� being a bounded sequence
in Mp,d ,w(X). So, in view of Proposition 4.2.4.(iv) and the pointwise a.e. convergence m =∑∞

n=0 m1En , for m ∈ Mp,d ,w(X) it is indeed sufficient that T is bounded.
This approach can be translated into the following abstract functional analytic problem: Let

E be a Banach space with a Schauder decomposition D = (Dn)n∈�, that is, D = (Dn)n∈� is a
sequence of bounded linear projections in E satisfying (i) DkDn = 0 whenever k , n, and (ii)
x =

∑∞
n=0 Dnx for all x ∈ E. Suppose we are given a collection of bounded linear operators

(Tn)n∈� ⊂ B(E) with the property that DnTnDn = TnDn for every n ∈ �. Then the problem is
to determine whether the linear operator T : E0 −→ E0 given in (4.25), where E0 is the dense
subspace of E defined in (4.23), extends to a bounded linear operator on E.

Let’s first consider the case that E = H is a Hilbert space and the Dn are orthogonal projec-
tions. Then we have Ran(Dk) ⊥ Ran(Dn) whenever k , n because of the assumption DkDn = 0
whenever k , n. Since Tn leaves Ran(Dn) invariant for every n ∈ �, it follows that∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
N∑

n=0

TnDnx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
H

=

 N∑
n=0

||TnDnx||2H

1/2

≤ sup
n=0,...,N

||Tn||

 N∑
n=0

||Dnx||2H

1/2

= sup
n=0,...,N

||Tn||

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

Dnx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
H

(4.26)
for all N ∈ � and x ∈ H. Hence, the operator T : E0 −→ E0 from (4.25) satisfies the norm
estimate ||T x||H ≤ supn∈� ||Tn|| ||x|| for all x in the dense space E0 of H. So, if we assume that
M := supn∈� ||Tn|| < ∞, then we obtain that T extends to a bounded linear operator T on H of
norm ≤ M.

In order to find an appropriate substitute for this orthogonality for a general Banach space
E, first recall that  N∑

n=0

||xn||H

1/2
(E.3)
=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

εnxn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω;H)

for all N ∈ � and x0, . . . , xN ∈ H, where (εn)n∈� denotes a Rademacher sequence on some
probability space (Ω,F ,�). So the orthogonality of the subspaces (Ran(Dn))n∈� is equivalent
with ∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
N∑

n=0

xn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
H

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

εnxn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω;H)

for all N ∈ � and x0, . . . , xN ∈ H with xn ∈ Ran(Dn) for each n ∈ {0, . . . ,N}, which is of course
equivalent with ∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
N∑

n=0

Dnx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
H

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

εnDnx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω;H)

(4.27)

for all N ∈ N and x ∈ H. This suggests to study Schauder decompositions D of general Banach
spaces E which satisfy (4.27) with equality ’=’ replaced by equivalence ’h’. In order to do a
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computation similar to (4.26) for such Schauder decompositions, we have to replace the uni-
form bounded of the family {Tn :, n ∈ �} ⊂ B(E) with its R-bound (see Definition E.3.1). This
notion of R-boundedness then will provide a sufficient condition on the (Tn)n∈� for the operator
T : E0 −→ E0 given in (4.25) to extend to a bounded linear operator on E; see Theorem 4.3.14.
We will see that there are several characterizations of Schauder decompositions D satisfying
(4.27) with equality ’=’ replaced by equivalence ’h’, of which unconditional convergence of
x =

∑∞
n=0 Dnx for every x ∈ X will be our starting point.

4.3.2 Unconditional Schauder Decompositions
Throughout this subsection we let E be a Banach space. We furthermore shall use the following
notation: Let D = (Dn)n∈� be a of bounded linear projections in E with the property that
DnDk = 0 whenever n , k. Then we define the sequence of partial sum projections (PN)N∈� by

PN :=
N∑

n=0

Dn,

and we define the linear subspace Ran(D) of E by

Ran(D) :=
⋃
N∈�

Ran(PN).

4.3.2.a Definitions and Basic Properties

Definition 4.3.1. A sequence D = (Dn)n∈� of bounded linear projections in E is called a
Schauder decomposition of E if

(i) DkDn = 0 whenever k , n,

(ii) x =
∑∞

n=0 Dnx for all x ∈ E.

From the strong convergence PN
N→∞
−→ I and the Principle of Uniform Boundedness it

follows that the sequence of partial sum projections (PN)N∈� is uniformly bounded. Since
Dn = Pn−Pn−1 for all n ≥ 1, it follows that the sequence (Dn)n∈� is uniformly bounded as well.

Let D = (Dn)n∈� be a sequence of bounded linear projections in E satisfying (i). Then note
that D is a Schauder decomposition of E if and only if

⋃
N∈� Ran(

∑N
n=0 Dn) is dense in E and

{
∑N

n=0 Dn | N ∈ �} is uniformly bounded.
Before we define the notion of unconditional Schauder decomposition, we first state a stan-

dard fact about unconditional convergence of series as the following lemma:

Lemma 4.3.2. Let E be a Banach space and let (xn)n∈� ⊂ E. The following statements are
equivalent:

(i) For every (λn)n∈� ∈ `
∞(�), the series

∑∞
n=0 λnxn converges.

(ii) The series
∑∞

k=0 xk is unconditionally convergent, i.e., for any permutation σ of � the
series

∑∞
n=0 xσ(n) is convergent.

(iii) The series
∑∞

k=0 xk is summable, i.e., there exits an x ∈ E such that for every ε > 0 there
exists an N ∈ � such that for all finite subsets F ⊂ {N,N + 1, . . .} we have ||

∑
n∈F xn|| < ε.
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(iv) For every sequence of unimodular scalars (εn)n∈�, the series
∑∞

n=0 εnxn converges.

(v) For every sequence of signs (εn)n∈� ∈ {−1, 1}�, the series
∑∞

n=0 εnxn converges.

(vi) For every sequence (αn)n∈� ∈ {0, 1}�, the series
∑∞

n=0 αnxn converges.

Furthermore, if the series is unconditionally convergent, then the sum is independent of the
order of summation.

Proof. See for example [103, Lemma 1.2.5] or [54, Lemma 2.2]. �

Example 4.3.3.

(i) Every absolutely convergent series
∑

n∈� xn (in the Banach space E) converges uncondi-
tionally.

(ii) Let (en)n∈� be an orthonormal system in a Hilbert space H. Then the series
∑

n∈�
1

n+1en

converges unconditionally but not absolutely.

(iii) It is a classical result of Dvoretzky & Rogers [35] that the Banach spaces E in which
the unconditionally convergent series coincide with the absolutely convergent series are
precisely the finite dimensional Banach spaces E.

Given a countable collection (xγ)γ∈Γ ⊂ E it makes sense to call the series unconditionally
convergent with limit x if we have x =

∑∞
n=0 xγn for any enumeration � −→ Γ, n 7→ γn, or

equivalently, if we have x =
∑∞

n=0 xγn unconditionally for some/any enumeration � −→ Γ, n 7→
γn. In this situation we write x =

∑
γ∈Γ xγ. Using this terminology, we define:

Definition 4.3.4. A countable collection D = (Dγ)γ∈Γ of bounded linear projections in E is
called an unconditional Schauder decomposition of E if

(i) DγDγ′ = 0 whenever γ , γ′,

(ii) x =
∑
γ Dγx unconditionally for all x ∈ E.

A Schauder decomposition D = (Dn)n∈� is said to be unconditional if D = (Dn)n∈� is an
unconditional Schauder decomposition.

We next come to several characterizations of unconditionallity for a Schauder decomposi-
tion D = (Dn)n∈� of E. In order to state some of these characterizations in a notionally compact
way, we define, for each λ ∈ ��, the linear operator Tλ : Ran(D) −→ Ran(D) by

Tλx :=
N∑

n=0

TnDnx, ∀x ∈ Ran(D), x ∈ Ran

 N∑
n=0

Dn

 .
Lemma 4.3.5. Let D = (Dn)n∈� be a Schauder decomposition of E. The following statements
are equivalent:

(i) D is unconditional.

(ii) There exists a constant C1 > 0 such that ||Tε||B(Ran(D)) ≤ C1 for all ε = (εn)n∈� ∈ {−1, 1}�.
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(iii) There exists a constant C2 > 0 such that ||Tα||B(Ran(D)) ≤ C2 for all all α = (αn)n∈� ∈

{0, 1}�.

(iv) There exists a constant C3 > 0 such that ||Tε||B(Ran(D)) ≤ C3 for all sequences of unimodu-
lar scalars ε = (εn)n∈�.

(v) There exists a constant C4 > 0 such that ||Tλ||B(Ran(D)) ≤ C4 ||λ||∞ for all λ = (λn)n∈� ∈

`∞(�).

The smallest constant such that (iv) holds is called the unconditional constant of the decompo-
sition D and will be denoted by CD.1

Proof. "(i)⇒(v)": Using the characterization (i) of Lemma 4.3.2 of unconditional convergence,
we see that, for each λ = (λn)n∈� ∈ `∞, the sequence (

∑N
n=0 λnDn)N∈� ⊂ B(E) converges

pointwise, i.e., the limit limN→∞
∑N

n=0 λnDnx exists for all x ∈ E. By the uniform boundedness
principle, these poitwise limits define a bounded linear operator T̃λ ∈ B(X), which clearly
extends Tλ : Ran(D) −→ Ran(D). To get (iv), it thus suffices to show that

`∞(�) −→ B(E), λ 7→ T̃λ

defines a bounded linear operator. By the closded graph theorem, for this we may show that

λ 7→ T̃λ is a closed operator: Suppose that λ[i] i→∞
−→ 0 in `∞(�) and Tλ[i]

i→∞
−→ T in B(E). In order

to show that T = 0, it is enough to show that DkT Dn = 0 for all k, n ∈ �, which can be seen as
follows:

DkT Dn = lim
i→∞

DkTλ[i] Dn = lim
i→∞

Dkλ
[i]
n Dn = Dk0Dn = 0.

"(v)⇒(iv)⇒(ii)" & "(v)⇒(iii)": These implications are trivial.
"(iii)⇒(ii)": Given (εn)n∈� ∈ {−1, 1}� there exists a unique (αn)n∈� ∈ {0, 1}� such that

εn = 2αn − 1 for each n ∈ �. From this it easily follows that we can take C1 = 2C2 + 1.
"(ii)⇒(i)": We just have to check the characterization (iii) of Lemma 4.3.2 of unconditional

convergence, which is not difficult (and can be found in [103, Lemma 1.2.5]). �

Based on the characterization (iii) of unconditionallity from this lemma, we can take infinite
sums (in the strong operator topology) of (distinct) projections from an unconditional Schauder
decomposition:

Corollary 4.3.6. Let D = (Dγ)γ∈Γ be an unconditional Schauder decomposition. For each
G ⊂ Γ,

∑
γ∈G Dγ is unconditionally convergent/summable with respect to the SOT; we denote by

DG the associated limit. In this way we obtain a collection {DG : G ⊂ Γ} of bounded linear
projections in E with the property that DGDG′ = 0 whenever G ∩G′ , ∅. Moreover, given any
partition (Gk)k∈� of Γ, ∆ := (DGk)k∈� defines an unconditional Schauder decomposition of E
with unconditional constant C∆ ≤ CD.

Proof. Let’s fix an enumeration � −→ Γ, n 7→ γn of Γ. For each G ⊂ Γ, we define αG =

(αG
n )n∈� ∈ {−1, 1}� by αG

n := 1 if γn ∈ G and αG
n := 0 if γn < G. Then TαG : Ran(D) −→ Ran(D)

extends to a bounded linear projection ∆G on E, which coincides with the SOT-limit
∑∞

n=0 Dγn .

1In the literature the unconditional constant is usually defined as the smallest constant such that (ii) holds.
The reason to choose for unimodular scalars instead of just signs is that it is more convenient when working with
�-Rademacher sequences (εn)n∈� instead of real-Rademacher sequences (rn)n∈�.
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Since TαG is independent of the chosen enumeration, it follows that
∑
γ∈G Dγ is unconditionally

convergent/summable with limit ∆G. From this construction it is clear that DGDG′ = 0 whenever
G ∩G′ , ∅. We skip the proof of the last statement since we will not need it later on. �

Note that (iv) of Lemma 4.3.5 is equivalent with the existence of a constant C > 0 such that∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

εnDnx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
E

≤ C

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

Dnx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
E

(4.28)

holds for all (εn)N
n=0 ∈ �

N+1, N ∈ �, and x ∈ E, in which case the smallest such constant
coincides with the unconditional constant CD of D. Recall that we denote by (εn)n∈� a fixed
Rademacher sequence on some probability space (Ω,F ,�); see Appendix E.1. Just as the
UMD property of Banach spaces has a randomized characterization in terms of (εn)n∈� (see
Lemma E.5.2), we have:

Lemma 4.3.7. Let D = (Dn)n∈� be a sequence of bounded linear projections in E with the
property that DnDk = 0 for all n , k. Then the following statements are equivalent:

(i) There exists a constant C > 0 such that (4.28) holds for all (εn)N
n=0 ∈ �

N+1, N ∈ �, and
x ∈ E.

(ii) There exists a p ∈ [1,∞[ and constants C+
p ,C

−
p > 0 such that

1
C−p

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

Dnx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
E

≤

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

εnDnx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Ω;E)

≤ Cp

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

Dnx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
E

(4.29)

holds for all x ∈ E and N ∈ �.

(iii) For every p ∈ [1,∞[ there exist constants C+
p ,C

−
p > 0 such that

1
C−p

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

Dnx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
E

≤

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

εnDnx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Ω;E)

≤ Cp

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

Dnx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
E

(4.30)

holds for all x ∈ E and N ∈ �.

Moreover, in this situation we can take C−p ,C
+
p ≤ C ≤ C+

pC−p .
As a consequence, a Schauder decomposition D = (Dn)n∈� of E is unconditional if and only

if it satisfies one of the equivalent conditions (i),(ii),(iii), in which case the smallest constant
C ≥ 1 for which (i) holds coincides with the unconditional constant CD of D; in particular, we
can take C−p ,C

+
p ≤ CD ≤ C+

pC−p .

Proof. First note that (4.28) holds true if and only if the reverse inequality holds true (with a
different constant of course); just replace x by

∑N
n=0 εnDnx in (4.28). With this in mind, the

statement follows simply from the fact that, for any (αn)n∈� ∈ �
�, (αnεn)n∈� is identically

distributed with (εn)n∈�. For more details we refer to [103, Lemma 1.3.6]. �

The following definition is motivated by the above lemma.
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Definition 4.3.8. A sequence D = (Dn)n∈� ⊂ B(E) is called U+ if there exists a constant C+ > 0
such that ∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
N∑

n=0

εnDnx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω;E)

≤ C+

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

Dnx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
E

for all N ∈ � and x ∈ E, and is called called U− if there exists a constant C− > 0 such that∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

Dnx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
E

≤ C−
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

εnDnx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω;E)

for all N ∈ � and x ∈ E. We denote the smallest such constants C+ > 0 and C− > 0 by C+
D > 0

and C−D > 0, respectively.

Note that, by Lemma 4.3.7, a Schauder decomposition D = (Dn)n∈� of E is unconditional
if and only if it is both U+ and U−.

Example 4.3.9. Let X be a Banach space, (S ,A , µ) a measure space with a σ-finite filtration
(Fn)n∈�, and p ∈]1,∞[. By Theorem A.3.25, D = (Dn)n∈� defined by

Dn :=
{
�( · | F0) n = 0;
�( · | Fn) − �( · | Fn−1) n ≥ 1,

defines a Schauder decomposition of Lp(S ; X). Then X has the UMDp property with respect to
(S ,A , (Fn)n∈�, µ), if and only if D is unconditional, if and only if D is U+ and U−.

Let D = (Dγ)γ∈Γ be a countable collection of bounded linear operators in E with the property
that DγDγ′ = 0 whenever γ , γ′. Then note that there exists a constant C+ > 0 such that∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∑
γ∈F

εγDγx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω;E)

≤ C+

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑
γ∈Γ

Dγx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
E

holds for all finite subsets F ⊂ Γ and all x ∈ E, if and only if, for any enumeration � −→
Γ, n 7→ γn, ∆ = (Dγn)n∈� is U+, in which case the smallest such constant C+ coincides with C+

∆
.

This allows us say that D = (Dγ)γ∈Γ is U+ provided that there exists such a constant C+ > 0, in
which case we denote by C+

D the smallest such constant. We do a similar thing for the notion
of U−.

Let D = (Dn)n∈� be a sequence of bounded linear projections in E with the property that
DnDk = 0 whenever n , k. By Proposition E.1.1 (or by the Kahane contraction principle,
Proposition E.1.2), if D is U+, then we have∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
N∑

n=0

εnDnx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω;E)

≤ C

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

M∑
n=0

Dnx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
E

for all N,M ∈ �,N ≤ M and x ∈ E for the constant C = C+
D, which is of course equivalent

with ∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

εnDnx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω;E)

≤ C ||x||E (4.31)

for all N ∈ � and x ∈ Ran(D). Conversely, if (4.31) holds for some constant C > 0, then D is
U+ with C+

D ≤ C (just replace x by
∑N

n=0 Dnx).
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Lemma 4.3.10. Let D = (Dn)n∈� be an unconditional Schauder decomposition of E. Then the
sequence of adjoint operators D∗ = (D∗n)n∈� satisfies the inequality∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
N∑

n=0

εnD∗nx∗
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ CD ||x∗||

for all (εn)N
n=0 ∈ �

N+1, N ∈ �, and x∗ ∈ E∗. As consequence, D∗ is U+ with C+
D∗ ≤ CD.

Proof. Let (εn)N
n=0 ∈ �

N+1, N ∈ �, and x∗ ∈ E∗. Then we have, for every x in the dense
subspace Ran(D) of E (and thus norming for E∗),∣∣∣∣∣∣∣〈

N∑
n=0

εnD∗nx∗, x〉

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣〈x∗,
N∑

n=0

εnDnx〉

∣∣∣∣∣∣∣ ≤ ||x∗||
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

εnDnx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ CD ||x∗|| ||x|| .

This gives the desired norm inequality. �

Lemma 4.3.11. Let D = (Dn)n∈� be a sequence of bounded linear projections in E with the
property that DkDn = 0 whenever k , n. Denote by D∗ the sequence of adjoints D∗ = (D∗n)n∈�.
If there exists a constant C > 0 such that∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
N∑

n=0

εnD∗nx∗
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω;E∗)

≤ ||x∗||

for all N ∈ � and x∗ ∈ Z for some linear subspace Z of E∗ which is norming for Ran(D), then
D is U− with C−D ≤ C. In particular, if D∗ is U+ and Ran(D∗) is norming for Ran(D), then D is
U− with C−D ≤ C+

D∗; see (4.31). Moreover, the same statement holds true with the roles of D and
D∗ interchanged.

Proof. We only prove the first part, the second part (with the roles of D and D∗ interchanged)
being completely similar. Let x ∈ E and x∗ ∈ Z. Then we have∣∣∣∣∣∣∣〈

N∑
n=0

Dnx, x∗〉

∣∣∣∣∣∣∣ =

∫
Ω
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N∑
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Dnx, x∗〉

∣∣∣∣∣∣∣ dω =

∫
Ω

∣∣∣∣∣∣∣〈
N∑

n=0

|εn(ω)|2D2
nx, x∗〉

∣∣∣∣∣∣∣ dω
=

∫
Ω

∣∣∣∣∣∣∣〈
 N∑

k=0

εk(ω)Dk

  N∑
n=0

εn(ω)Dn

 x, x∗〉

∣∣∣∣∣∣∣ dω
=

∫
Ω
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εn(ω)Dnx,
N∑

k=0
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||x∗|| .

Since Z is norming for Ran(D), it follows that D is U− with C−D ≤ C. �
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Corollary 4.3.12. Let D = (Dn)n∈� be a Schauder decomposition of E. Then D is unconditional
if and only if both D and D∗ are U+. In this situation we have C−D ≤ C+

D∗ .

Proof. We only need to show that Ran(D∗) is norming for Ran(D); then the statement follows
immediately from Lemma’s 4.3.10 and 4.3.11. To this end, let x ∈ Ran(D) \ {0}, say x ∈
Ran(PN). By Hahn-Banach, there exists a functional x∗ ∈ S E∗ such that 〈x, x∗〉 = ||x|| and which
vanishes on the closed subspace Ran(1 − PN). Then, for all y ∈ E,

〈y, x∗〉 = 〈y, x∗〉 − 〈(1 − PN)y, x∗〉 = 〈PNy, x∗〉 = 〈y, (PN)∗x∗〉,

whence x∗ = (PN)∗x∗; in particular, x∗ ∈ Ran(D∗). �

Corollary 4.3.13. Let D = (Dγ)γ∈Γ be countable collection of bounded linear projections in E
such that DγDγ′ = 0 whenever γ , γ′. Then D is an unconditional Schauder decomposition
provided that Ran(D) is dense in E and that there exist constants C,C∗ > 0 such that∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∑
γ∈F

εγDγx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω;E)

≤ C ||x||E (4.32)

holds for all finite subsets F ⊂ Γ and all x ∈ E, and∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑
γ∈F

εγDγx∗
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω;E)

≤ C∗ ||x∗||E (4.33)

holds for all finite subsets F ⊂ Γ and all x∗ ∈ E∗. Moreover, in this situation we have C+
D ≤ C

and C−D ≤ C+
D∗ ≤ C∗.

Proof. Let � −→ Γ, n 7→ γn be any enumeration of Γ and write ∆ := (Dγn)n∈�. From (4.33)
and Lemma 4.3.11 it follows that ∆ is U− with C−

∆
≤ C∗. Combining this with (4.32), we in

particular obtain that the sequence of partial sum projections associated with ∆ is uniformly
bounded. Since Ran(∆) = Ran(D) is dense in E by assumption, it follows that ∆ is a Schauder
decomposition of E. By (4.32) and (4.33), both ∆ and ∆∗ are U+ with C+

D ≤ C and C+
D∗ ≤ C∗.

The result now follows from Corollary 4.3.12. �

4.3.2.b A Multiplier Theorem

We now turn back to the multiplier problem considered in Section 4.3.1. In view of the ran-
domized characterization of unconditional Schauder decomposition given in Lemma 4.3.7, a
solution to this problem would be to restrict to unconditional Schauder decompositions D and
require the sequence of operators (Tn)n∈� to act boundedly on Rademacher sums. The latter is
precisely the defining property of R-boundedness, see Appendix E.3.

Theorem 4.3.14. Let D = (Dn)n∈� be an unconditional Schauder decomposition of E, with
unconditional constant CD. Suppose that (Tn)n∈� ⊂ B(E) is R-bounded, with R-bound M =

R ((Tn)n∈�), and has the property that TnDn = DnTnDn for every n ∈ �. Then

S x :=
∞∑

n=0

TnDnx, x ∈ E,

gives rise to a well-defined bounded linear operator S ∈ B(E) of norm ||S || ≤ C2
DM.
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Proof. We just have to combine the characterization of unconditional Schauder decomposition
given in Lemma 4.3.7 with the definition of R-boundedness, Definition E.3.1. For a detailed
proof we refer to [103, Theorem 2.2.4]. �

4.3.2.c Unconditional Blockings of Product Decompositions

In our application to Fourier multipliers we want to use a Schauder decomposition D = (Dγ)γ∈Γ
of Lp,d (�d,w; X) corresponding to an appropriate decomposition of �d, possibly up to a set
of measure zero, by a countable collection of disjoint rectangles (Eγ)γ∈Γ; here X is a UMD
Banach space, p ∈]1,∞[l, and w ∈

∏l
j=1 Arec

p j
(�d j). In order to find such an unconditional

Schauder decomposition, we would like to use the case d = 1. To settle ideas, suppose that
d = 2 and d = (1, 1). Then we have

Lp,d (�d,w; X) = L(p1,p2),(1,1)(�2, (w1,w2); X) � Lp2(�,w2; Lp1(�,w2; X)). (4.34)

Now suppose that we have two decompositions of � \ {0}, possibly up to a set of measure
zero, by countable collections of disjoint intervals (Ii)i∈I and (J j) j∈J, respectively, in such a
way that, for any q ∈]1,∞[ and v ∈ Aq(�), it holds that the collections of Fourier multi-
plier operators on Lq(�, v; Y) associated with (1Ii)i∈I and (1J j) j∈J both define unconditional
Schauder decompositions of Lq(�, v; Y). Then, using (4.34), it is not difficult to see that
(1Ii×�)i∈I , (1�×J j) j∈J ⊂ Mp,d ,w(X), with the sequences of associated Fourier multiplier operators
D1 = (D1

i )i∈I := (T1Ii×�
)i∈I and D2 = (D2

j) j∈J := (T1�×J j
) j∈J defining two commuting uncon-

ditional Schauder decompositions of Lp,d (�d,w; X). Furthermore, we have (D1
i D2

j)(i, j)∈I×J =

(T1Ii×J j
)(i, j)∈I×J, the collection of Fourier multiplier operators on Lp,d (�d,w; X) corresponding to

the decomposition of �2, possibly up to a set of measure zero, by the rectangles (Ii × J j)(i, j)∈I×J.
This raises the question whether (D1

i D2
j)(i, j)∈I×J is an unconditional Schauder decomposition of

Lp,d (�d,w; X), so that we can take Eγ := Ii × J j for γ = (i, j) ∈ Γ := I × J. However, in the
literature it is well known that the answer to this is not ’yes’ unless we impose further condi-
tions, in addition to UMD, on the Banach space X; see Remark 4.5.19. Since we want to prove
Fourier multiplier theorems in the generality of all UMD spaces, we will construct a different
partition (Eγ)γ∈Γ out of (Ii × J j)(i, j)∈I×J.

In Lemma 4.5.18, Section 4.5.3, we will construct a decomposition (Eγ)γ∈Γ of (� \ {0})2,
consisting of countably many rectangles, using the collection of rectangles (Ii × J j)(i, j)∈I×J in
which (Ii)i∈I and (J j) j∈J are dyadic partitions of � \ {0}. A key ingredient will be the following
abstract result about unconditional blockings of product decompositions:

Theorem 4.3.15. Let D1 = (D1
i )i∈� and D2 = (D2

i )i∈� be two commuting unconditional Schauder
decompositions of E. Suppose that the following R-boundedness condition holds true:

κk := R

 N∑
i=M

Dk
i : M,N ∈ �

 < ∞, κ∗k := R

 N∑
i=M

(Dk
i )
∗ : M,N ∈ �

 < ∞, k = 1, 2.

(4.35)
Define the partition (In)n∈� of the index set �2 by

In :=
{
{r + 1} × {. . . , r − 1, r}, n = 2r + 1, r ∈ �
{. . . , r, r + 1} × {r + 1}, n = 2r + 2, r ∈ �.
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For each n ∈ � we define the bounded linear projection

∆n := SOT −
∑

(i1,i2)∈In

D1
i1 D2

i2 =

{
D1

r+1D2
{...,r−1,r} n = 2r + 1, r ∈ �

D1
{...,r,r+1}D

2
r+1 n = 2r + 2, r ∈ �

in E, where D2
{...,r−1,r} and D1

{...,r,r+1} are as in Corollary 4.3.6. Then ∆ = (∆n)n∈� is an uncondi-
tional Schauder decomposition of E for which we have

C+
∆ ≤ C+

D1κ2 + C+

D2κ1, C−∆ ≤ C+
∆∗ ≤ C+

[D1]∗κ
∗
2 + C+

[D2]∗κ
∗
1 (4.36)

and

R

 N∑
n=M

∆n : N,M ∈ �

 ≤ 2κ1κ2, R

 N∑
n=M

∆∗n : N,M ∈ �

 ≤ 2κ∗1κ
∗
2. (4.37)

Proof. We start with observing the following: Defining for each k ∈ {1, 2} and n ∈ � the
bounded linear projection Pk

n := Dk
{...,n−1,n} ∈ B(E), where Dk

{...,n−1,n} is as in Corollary 4.3.6, we
have

R{Pk
n : n ∈ �} ≤ κk and R{(Pk

n)∗ : n ∈ �} ≤ κ∗k, k = 1, 2. (4.38)

Indeed, it holds that

Pk
n = SOT − lim

M→−∞

n∑
ik=M

Dk
n and (Pk

n)∗ = W∗OT − lim
M→−∞

n∑
ik=M

(Dk
n)∗,

whence

{Pk
n : n ∈ �} ⊂ SOT − cl

 N∑
i=M

D1
n : M,N ∈ �


and

{(Pk
n)∗ : n ∈ �} ⊂W∗OT − cl

 N∑
i=M

(D1
n)∗ : M,N ∈ �

 .
By theR-boundedness assumption (4.35) and the basic properties ofR-boundedness (see Propo-
sition E.3.5), we obtain (4.38).

Now, let’s show that (∆γn)n∈� is a Schauder decomposition, where � −→ �, n 7→ γn is any
enumeration of � with the property that, for every h ∈ �, {γn : n = 0, . . . , h} = {Mh, . . . ,Nh}

for some Mh,Nh ∈ �: Since D1 = (D1
i )i∈� and D2 = (D2

i )i∈� are both unconditional Schauder
decompositions of E, it is easy to see that

Ran(∆) =
⋃ Ran

∑
i1∈F1

∑
i2∈F2

D1
i1 D2

i2

 : F1, F2 ⊂ � finite


is dense in E. In order to show that partial sum projections associated with (∆γn)n∈� form a
uniformly bounded family, we may show the stronger statement (4.37). To this end, we define
(Πn)n∈� by Πn := ∆{...,n−1,n}. Then we have

∑N
n=M ∆n = ΠN − ΠM−1 for N ≥ M and

∑N
n=M ∆n = 0

otherwise, so that by the basic properties of R-bounds (see Proposition E.3.5), it is enough to
show that

R{Πn : n ∈ �} ≤ κ1κ2, R{Π∗n : n ∈ �} ≤ κ∗1κ
∗
2. (4.39)
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For this we note that

Πn =

{
P1

r+1P2
r n = 2r + 1, r ∈ �,

P1
r+1P2

r+1 n = 2r + 2, r ∈ �.

In particular, (Πn)n∈� ⊂ {P1
k : n ∈ �} · {P2

n : n ∈ �} and thus (Π∗n)n∈� ⊂ {(P2
k)∗ : n ∈

�} · {(P1
n)∗ : n ∈ �}. From (4.38) and the basic properties of R-boundeds (see Proposition

E.3.5) we obtain (4.39), as desired.
By Corollary 4.3.12, to finish the proof it remains to be shown that ∆ and ∆∗ are both U+,

C+
∆
≤ C+

D1κ2+C+

D2κ1, C+
∆∗
≤ C+

[D1]∗κ
∗
2+C+

[D2]∗κ
∗
1. We only consider ∆, the case ∆∗ being completely

similar. To this end, let x ∈ Ran(∆) and a finite subset F of � be given. Writing F = F1 ∪ F2

with Fk := F ∩ {2r + k | r ∈ �} for k ∈ {1, 2}, it suffices to show that∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈F1

εn∆nx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω;E)

≤ C+

D1κ2,

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈F2

εn∆nx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω;E)

≤ C+

D2κ1.

We only treat the random sum over F1, the sum over F2 being similar. Using that∑
n∈F1

∆n =
∑
r∈F̃1

D1
r+1P2

r+1 =
∑
r∈F̃1

P2
r+1D1

r+1,

where F̃1 := {r ∈ � : 2r + 1 ∈ F1}, and that x ∈ Ran(∆) ⊂ Ran(D1), we find∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈F1

εn∆nx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω;E)

=

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑
r∈F̃1

ε2r+1P2
r+1D1

r+1x

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
L2(Ω;E)

≤ κ2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑
r∈F̃1

ε2r+1D1
r+1x

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
L2(Ω;E)

≤ κ2C+

D1 ||x||E ,

as desired. �

Remark 4.3.16.

(i) The R-boundedness of the first two collections in (4.35) is automatic when the space E
has the so-called property weak-(α); see [103, Definition 2.4.1], [103, Corollary 2.4.3].2

Having the R-boundedness of the first two collections, the R-boundedness of the last two
collections then is a consequence when the space E has non-trivial type; see Theorem
E.3.7. In particular, as the UMD property implies property weak-(α) and non-trivial
type, the R-boundedness of (4.35) is automatic when E is a UMD space; see [103], [57].

In the next subsection we will apply the above theorem to a concrete situation (in the
setting of Fourier multipliers) in which the R-boundedness of (4.35) can be checked
directly, with explicit bounds, so that we do not have to rely on the just mentioned abstract
results.

(ii) If we assume {
∑

n∈G D1
n | G ⊂ � finite}, {

∑
n∈G D2

n | G ⊂ � finite}, {
∑

n∈G(D1
n)∗ | G ⊂

� finite}, and {
∑

n∈G(D2
n)∗ | G ⊂ � finite} to be R-bounded, then we can follow (a slightly

modified version of) the above proof to get the result that (D1
i1 D2

i2)(i1,i2)∈�2 is an uncon-
ditional Schauder decomposition. A sufficient condition for the R-boundedness of the
first two collections is that E has property (α), and, having the R-boundedness of the first

2Property weak-(α) is in the literature also known under the name triangular contraction property; see [57].

83



two, a sufficient condition for the R-boundedness of the last two collections then is that
E is has non-trivial type; see [103, Corollary 2.3.5] and Theorem E.3.7. In particular, the
R-boundedness of these collections is automatic when E is UMD space with (α).

In the context of Fourier multipliers it even occurs that property (α) is not only sufficient
for the above, but also necessary; see Remark 4.5.19.

Corollary 4.3.17. Let D1 = (D1
i )i∈� and D2 = (D2

i )i∈� be two commuting unconditional
Schauder decompositions of E, with corresponding collections of partial sum projections {P1

N}N∈�

and {P2
N}N∈�, respectively. Suppose that

κk := R
{
Pk

N : N ∈ �
}
< ∞, κ∗k := R

{
(Pk

N)∗ : N ∈ �
}
< ∞, k = 1, 2. (4.40)

Define the partition (In)n∈� of the index set �2 by

In :=


{(0, 0)}, n = 0
{r + 1} × {0, . . . , r}, n = 2r + 1, r ∈ �
{0, . . . , r + 1} × {r + 1}, n = 2r + 2, r ∈ �

.

For each n ∈ � we define the bounded linear projection

∆n :=
∑

(i1,i2)∈In

D1
i1 D2

i2

in E. Let (ΠN)N∈� be the associated family of partial sum projections. Then ∆ = (∆n)n∈� is an
unconditional Schauder decomposition of E for which we have

C+
∆ ≤ C+

D1κ2 + C+

D2κ1, C−∆ ≤ C+
∆∗ ≤ C+

[D1]∗κ
∗
2 + C+

[D2]∗κ
∗
1 (4.41)

and

R {ΠN : N ∈ �} ≤ 2κ1κ2, R {(ΠN)∗ : N ∈ �} ≤ 2κ∗1κ
∗
2. (4.42)

Proof. Just define Dk
n := 0 for every n ∈ �<0 and k ∈ {1, 2}, and apply Theorem 4.3.15 to the

commuting unconditional Schauder decompositions (D1
n)n∈� and (D2

n)n∈�. �

4.4 Calderón-Zygmund Operators

In this section we state the Ap theorem for vector-valued Calderón-Zygmund operators due
to Hänninen and Hytönen [49], which says that a bounded linear operator on the unweighted
Lebesgue-Bochner space Lp(�d; X) corresponding to a singular kernel K also acts boundedly
on the weighted Lebesgue-Bochner spaces Lp(�d,w; X) for weights w from the class Ap. We
furthermore give sufficient conditions on a symbol m in order that the associated Fourier multi-
plier operator Tm is a Calderón-Zygmund operator with corresponding singular kernel estimates
depending on concrete estimates for m.
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4.4.1 Introduction
Our first approach to Fourier multipliers on Lp,d (�d,w; X) taken in this chapter will be based
on the abstract theory of unconditional Schauder decompositions discussed in the previous
section and requires the Banach space X to be of class RPp,w, for which it is necessary that
w ∈

∏l
j=1 Arec

p j
(�d j) by Lemma 4.2.7.(iii) . In order to also get Fourier multiplier results for

general weight-vectors w ∈
∏l

j=1 Ap j(�
d j), our second approach to Fourier multipliers consists

of extrapolation from the unweighted case (for sufficiently regular symbols and then obtain
more general symbols via approximation). The idea is to view Fourier multiplier operators
(associated with sufficiently regular symbols) as integral operators of convolution type, so that
we can apply the theory of (singular) integral operators.

In order to describe the connection between Fourier multiplier operators and integral op-
erators of convolution type for symbols from the Schwartz class, let X be a Banach space,
p ∈]1,∞[l, and w ∈

∏l
j=1 Ap j(�

d j), and suppose that we are given a symbol m ∈ S(�d;B(X)).
Then, recall that m ∈ Mp,d ,w(X) with ||m||Mp,d ,w(X) ≤ C if and only if the operator

Tm : S′(�d; X) −→ S′(�d; X), f 7→ F −1[m f̂ ] = m̌ ∗ f

maps some dense subspace D of Lp,d (�d,w; X) into Lp,d (�d,w; X) with the norm estimate
||Tm f ||Lp,d (�d ,w;X) ≤ C || f ||Lp,d (�d ,w;X) for all f ∈ D; see Remark 4.2.3.(iii). By Young’s inequality,
since m̌ ∈ S(�d;B(X)) ⊂ L1(�d;B(X)), we have that Tm restricts to a bounded linear operator
on Lp,d (�d; X) of norm ||m̌||L1(�d;B(X)), which is given by convolution with m̌ in the classical
sense (of measure theory):

Tm f (x) =

∫
�d

m̌(x − y) f (y) dy, f ∈ Lp,d (�d; X), x ∈ �d. (4.43)

Now the idea is to obtain the boundedness of Tm on Lp,d (�d,w; X) by proving a norm estimate
on the dense space D := L∞c (�d; X) of Lp,d (�d,w; X) via an extrapolation theorem for bounded
linear operators on Lp,d (�d,w; X) corresponding to a singular kernel; see Definition 4.4.1,
Definition 4.4.2, and Theorem 4.4.3. This norm estimate will depend on [w1]Ap1

, . . . , [wl]Apl
,

||m||Mp,d (X)
, and the implicit constants in the definition of a singular kernel. In Lemma 4.4.7

we will give explicit bounds for these implicit constants in terms of estimates on the sym-
bol m, and in the next section we will prove Fourier multiplier theorems for Lp,d (�d; X), also
giving bounds for ||m||Mp,d (X)

in terms of a certain R-boundedness condition for the symbol m.
We will see that these estimates/bounds on m are well suited to treat more general symbols,
which also satisfy such estimates/bounds, using approximation arguments; see (the proofs) of
Proposition 4.5.8 and Theorem 4.5.20.

4.4.2 An Extrapolation Theorem
We start with (d , a)-anisotropic generalizations of the definitions of singular kernel and Calderón-
Zygmund operator given in [49].

Definition 4.4.1. Let a ∈]0,∞[l and let c ≥ 1 be the smallest constant for which the c-relaxed
triangle inequality

|x + y|d ,a ≤ c(|x|d ,a + |y|d ,a), x, y ∈ �d, (4.44)

is fulfilled. Then a Lebesgue strongly measurable function K : �d ×�d \ {(x, x) | x ∈ �d} −→

B(X) is called a (d , a)-anisotropic singular kernel if
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(i) K satisfies the decay estimate

||K(x, y)|| .
1

|x − y|a·d 1
d ,a

for x , y.

(ii) K satisfies the Hölder-type estimates

||K(x, y) − K(x′, y)|| .
(
|x − x′|d ,a
|x − y|d ,a

)ε 1

|x − y|a·d 1
d ,a

, 0 < |x − x′|d ,a <
1
2c
|y − y′|d ,a

and

||K(x, y) − K(x, y′)|| .
(
|y − y′|d ,a
|x − y|d ,a

)ε 1

|x − y|a·d 1
d ,a

, 0 < |x − x′|d ,a <
1
2c
|y − y′|d ,a

for some Hölder exponent ε ∈]0, 1].

Definition 4.4.2. Let p ∈]1,∞[l. A linear operator T : Lp,d (�d; X) −→ Lp,d (�d; X) is called a
(d , a)-anisotropic Calderón-Zygmund operator with Hölder exponent ε ∈]0, 1] if

(i) T ∈ B(Lp,d (�d; X)).

(ii) There exists a (d , a)-anisotropic singular kernel K : �d ×�d \ {(x, x) | x ∈ �d} −→ B(X)
with Hölder exponent ε ∈]0, 1] such that

T f (x) =

∫
�d

K(x, y) f (y)dy

for every f ∈ L∞c (�d; X) and x < supp( f ).

In case l = 1 and a = 1 we just speak of singular kernel and Calderón-Zygmund operator.
Using this terminology, we now state the vector-valued Ap theorem.

Theorem 4.4.3 (Ap theorem for vector-valued Calderón-Zygmund operators). Let X be a Ba-
nach space. Suppose that T is a Calderón-Zygmund operator on Lp(�d; X). Then we have

||T f ||Lp(�d ,w;X) . [w]max{1,1/(p−1)}
Ap

|| f ||Lp(�d ,w;X)

for all f ∈ L∞c (�d; X) and w ∈ Ap(�d).

Proof. This result is [49, Corollary 2.10]; also see [53]. �

Example 4.4.4. Let X be a UMD space, l = 1, d = 1, a = 1, and p ∈]1,∞[. Then the Hilbert
transform H = HX is a Calderón-Zygmund operator with scalar-valued kernel K(x, y) = 1

π
1

x−y .
This operator coincides with the Fourier multiplier operator with symbol m(ξ) = −ısign(ξ),
where sign is the signum function.

Due to restrictions of time and size of this thesis we have decided not to investigate a (d , a)-
anisotropic version of the theorem.

Recall that it is our aim of applying this extrapolation result in the context of Fourier
multipliers. So let us take a look at kernels of convolution type, i.e., kernels K̄ of the form
K̄(x, y) := K(x − y) form some K : �d \ {0} −→ B(X).
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Example 4.4.5. Let K : �d \ {0} −→ B(X) be a strongly measurable function and let c ≥ 1
be as in Definition 4.4.1. Then we have that K̄(x, y) := K(x − y) defines a (d , a)-anisotropic
singular kernel with Hölder exponent ε ∈]0, 1] if and only if

(i’) K satisfies the decay estimate

||K(x)|| .
1

|x|a·d 1
d ,a

for x , 0.

(ii’) K satisfies the Hölder-type estimate

||K(x − y) − K(x)|| .
(
|y|d ,a
|x|d ,a

)ε 1

|x|a·d 1
d ,a

, 0 < |y|d ,a <
1
2c
|x|d ,a

for the Hölder exponent ε ∈]0, 1].

Moreover, if (i’) and (ii’) hold we can take the for implicit constants in (i) and (ii) the implicit
constants from (i’) and (ii’), respectively. In this situation we call K a (d , a)-anisotropic singular
kernel of convolution type with Hölder exponent ε ∈]0, 1].

Lemma 4.4.6. Let K ∈ C1(�d \ {0};B(X)) be a function satisfying the estimates

||∂αK(x)|| ≤ C|x|−a ·d [1+α]
d ,a , |α| ≤ 1, x ∈ �d \ {0}

for some constant C > 0. Then K is a (d , a)-anisotropic singular kernel of convolution type
with Hölder exponent ε = amin ∈]0, 1]. Moreover, the implicit constant in the estimate (ii’) of
Example 4.4.5 can be chosen .d ,a C.

Proof. Let x, y ∈ �d satisfy 0 < |y|d ,a < 1
2c |x|d ,a. Then we have

||K(x − y) − K(x)|| =

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ 1

0

∂

∂t
K(x − ty)dt

∣∣∣∣∣∣
∣∣∣∣∣∣

≤

d∑
j=1

d j∑
i=1

∫ 1

0

∣∣∣∣∣∣∂x j,i K(x − ty)y j

∣∣∣∣∣∣ dt

≤ C
d∑

j=1

d j∑
i=1

∫ 1

0

1

|x − ty|a ·d 1+a j

d ,a

|y j,i|dt.

For every t ∈ [0, 1] it holds that

|x − ty|d ,a ≥
1
c
|x|d ,a − |ty|d ,a ≥

1
c
|x|d ,a − |y|d ,a >

1
2c
|x|d ,a.
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Therefore,

||K(x − y) − K(x)|| .d ,a C
d∑

j=1

d j∑
i=1

∫ 1

0

1

|x|a ·d 1+a j

d ,a

|y j,i|dt

≤ C
d∑

j=1

d j∑
i=1

1

|x|a ·d 1
d ,a

·
|y|a j

d ,a

|x|a j

d ,a

.d C
d∑

j=1

1

|x|a ·d 1
d ,a

(
|y|d ,a
|x|d ,a

)a j

|y|d ,a
|x|d ,a

< 1
2c<1

.d C
1

|x|a ·d 1
d ,a

(
|y|d ,a
|x|d ,a

)amin

.

�

4.4.3 From Multiplier Symbol to Singular Kernel
Lemma 4.4.7. Let Y be a Banach space and suppose that m ∈ L∞(�d; Y) is such that, for
all θ ∈ �d with a ·d θ ≤ a ·d 1 + amax + 1, Dθm ∈ D′(�d; Y) coincides on �d \ {0} with a
function mθ ∈ C(�d \ {0}; Y) satisfying ||mθ(ξ)||Y ≤ Cm|ξ|

−a ·d θ
d ,a for some constant Cm > 0. Then

F −1m|�d\{0} ∈ D
′(�d \ {0}; Y) can be represented by a function K ∈ C1(�d \ {0}; Y) satisfying

the estimates
||∂αK(x)|| .d ,a Cm|x|

−a ·d [1+α]
d ,a , |α| ≤ 1, x ∈ �d \ {0}. (4.45)

Proof. We pick a ψ ∈ S(�d) such that

0 ≤ ψ̂ ≤ 1, ψ̂(ξ) = 1 if |ξ|d ,a ≤ 1, ψ̂(ξ) = 0 if |ξ|d ,a ≥
3
2
,

and we define (ψk)k∈� ⊂ S(�d) via the relation

ψ̂k(ξ) = ψ̂(δ[d ,a]
2−k ξ) − ψ̂(δ[d ,a]

2−k+1ξ), ξ ∈ �d.

Then it holds that ∑
k∈�

ψ̂k(ξ) = 1 with

∣∣∣∣∣∣∣∑k∈I

ψ̂k(ξ)

∣∣∣∣∣∣∣ ≤ 1, ξ ∈ �d, I ⊂ �, (4.46)

and

supp ψ̂k ⊂

{
ξ ∈ �d | 2k−1 ≤ |ξ|d ,a ≤

3
2

2k

}
, k ∈ �. (4.47)

For each k ∈ � we define

Kk := ψk ∗F −1m = F [ψ̂km] ∈ S′(�d) ∩C∞(�d; Y).

Since
∑

k∈� ψ̂km = m in S′(�d; Y) as a consequence of (4.46), m ∈ L∞(�d; Y) and the Lebesgue
dominated convergence theorem, it follows that

F −1m =
∑
k∈�

Kk in S′(�d; Y).
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Hence,

K := F −1m|�d\{0} =
∑
k∈�

Kk|�d\{0} in D′(�d \ {0}; Y). (4.48)

In order to show that K belongs to C1(�d \ {0}; Y) and satisfies the estimates (4.45), we
claim that each Kk ∈ C∞(�d; Y) satisfies, for every M ∈ � with M ≤ a ·d 1 + amax + 1, the
estimates

|x|Md ,a ||∂
αKk(x)|| .d ,a C2k(a ·d [1+α]−M), |α| ≤ 1, x , 0. (4.49)

Then (4.45) can be derived as follows: Fix an arbitrary |α| ≤ 1. Let M ∈ � be the smallest
natural number such that M > a ·d [1 + α]; so M ≤ a ·d [1 + α] + 1 ≤ a ·d [1] + amax + 1. Then
we have, for x , 0,

|x|Md ,a
∑

k: 2k>|x|−1
d ,a

|∂αKk(x)|
(4.49)
. d ,a C

∑
k: 2k>|x|−1

d ,a

2k(a ·d [1+α]−M)

= C|x|−a ·d [1+α]+M
d ,a

∑
k>log2

(
|x|−1

d ,a

) 2
(
k−log2

(
|x|−1

d ,a

))
(a ·d [1+α]−M)

≤ C|x|−a ·d [1+α]+M
d ,a

∑
n≥0

2n(a ·d [1+α]−M)

.d ,a C|x|−a ·d [1+α]+M
d ,a

and ∑
k: 2k≤|x|−1

d ,a

|∂αKk(x)|
(4.49)
. d ,a C

∑
k: 2k≤|x|−1

d ,a

2k(a ·d [1+α])

= C|x|−a ·d [1+α]
d ,a

∑
k≤log2

(
|x|−1

d ,a

) 2
(
k−log2

(
|x|−1

d ,a

))
(a ·d [1+α])

≤ C|x|−a ·d [1+α]
d ,a

∑
n≤0

2n(a ·d [1+α])

.d ,a C|x|−a ·d [1+α]
d ,a ,

implying that ∑
k∈�

|∂αKk(x)| .d ,a C|x|−a ·d [1+α]
d ,a .

This implies that
∑

k∈� ∂
αKk|�d\{0} converges in C(�d\{0}; Y) ↪→ D′(�d\{0}; Y) to some function

K̃α satisfying

|K̃α(x)| .d ,a C|x|−a ·d [1+α]
d ,a , x ∈ �d \ {0}.

In view of (4.48) ∂αK = K̃α we must then have ∂αK = K̃α. This proves the claim.
To finish the proof it remains to establish the claim, that is, given M ∈ � with M ≤

a ·d 1 + amax + 1, it remains to establish the estimates (4.49). To this end, fix |α| ≤ 1 and x , 0.
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We first estimate

|x|Md ,a ||∂
αKk(x)|| .d ,a

∑
β∈�d: a·d β=M

∣∣∣∣∣∣xβ∂αKk(x)
∣∣∣∣∣∣

=
∑

β∈�d: a·d β=M

∣∣∣∣∣∣∣∣[F −1∂
β
ξξ

α(ψ̂km)](x)
∣∣∣∣∣∣∣∣

= (2π)−d
∑

β∈�d: a·d β=M

∣∣∣∣∣∣∣∣∣∣∫
�d

eıx·ξ
[
∂
β
ξMξαψ̂km

]
(ξ)dξ

∣∣∣∣∣∣∣∣∣∣
.d

∑
β∈�d: a·d β=M

∫
�d

∣∣∣∣∣∣∣∣∂βξMξαψ̂km(ξ)
∣∣∣∣∣∣∣∣ dξ

(4.47)
=

∑
β∈�d: a·d β=M

∫
{ξ∈�d:2k−1≤|ξ|d ,a≤

3
2 2k}

∣∣∣∣∣∣∣∣∂βξMξαψ̂km(ξ)
∣∣∣∣∣∣∣∣ dξ

.d ,a Vol

 l∏
j=1

[−2(k+1)a j , 2(k+1)a j]d j

 sup
β∈�d: a·d β=M

sup
2k−1≤|ξ|d ,a≤2k+1

∣∣∣∣∣∣∣∣∂βξMξαψ̂km(ξ)
∣∣∣∣∣∣∣∣

≤ 2(k+1)a·d 1 sup
β∈�d: a·d β=M

sup
2k−1≤|ξ|d ,a≤2k+1

∣∣∣∣∣∣∣∣∂βξMξαψ̂km(ξ)
∣∣∣∣∣∣∣∣ . (4.50)

Since

∂
β
ξMξα =

∑
γ≤β

(
β

γ

)
M∂

γ
ξ ξ

α∂
β−γ
ξ =

∑
γ≤α,β

cγ,βMξα−γ∂
β−γ
ξ (4.51)

by the Leibiz’ rule, the estimate (4.50) motivates to estimate, for α̃, β̃ ∈ �d with |α̃| ≤ 1 and
β̃ ≤ a ·d 1 + amax + 1 and ξ ∈ �d with 2k−1 ≤ |ξ|d ,a ≤ 2k+1,

∣∣∣∣∣∣∣∣ξα̃∂β̃ξψ̂km(ξ)
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ξα

∑
γ̃≤β̃

(
β̃

γ̃

)
2−k(a·d γ̃)(∂γ̃ξ ψ̂)(δ[d ,a]

2−k ξ)∂
β̃−γ̃
ξ m(ξ)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

.d ,a

∑
γ̃≤β̃

2−k(a·d γ̃)|ξ|
a·d α̃−a·d [β̃−γ̃]
d ,a |ξ|

a·d [β̃−γ̃]
d ,a

∣∣∣∣∣∣mβ̃−γ̃(ξ)
∣∣∣∣∣∣

β̃−γ̃≤a·d 1+amax+1
≤ C

∑
γ̃≤β̃

2−k(a·d γ̃)|ξ|
a·d α̃−a·d [β̃−γ̃]
d ,a

≈ C
∑
γ̃≤β̃

2−k(a·d γ̃)2k(a·d α̃−a·d [β̃−γ̃])

= C
∑
γ̃≤β̃

2k(a·d α̃−a·d β̃)

.d ,a C2k(a·d α̃−a·d β̃). (4.52)

Combining (4.50), (4.51), and (4.52), we arrive at (4.49), as desired. �
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4.5 Fourier Multiplier Theorems

4.5.1 A Generic Fourier Multiplier Theorem
Let X be a Banach space, p ∈]1,∞[l, and w ∈

∏l
j=1 Arec

p j
(�d j), such that X is of class RPp,d ,w.

Suppose that we have a decomposition of �d, possibly up to a set of measure zero, into rectan-
gles (En)n∈� ⊂ J d, in such a way that ∆ = (∆(En))n∈� forms an unconditional Schauder de-
composition of Lp,d (�d,w; X); see Lemma 4.5.4. for the dyadic Schauder decomposition that
we will be using in practice. Consider a symbol m ∈ L∞(�d;B(X)) for which we have, for each
n ∈ �, a Borel measure µn on �d and a bounded WOT-measurable function τn : �d −→ B(X)
such that mn := 1Enm ∈ L∞(�d;B(X)) has the representation (4.20). Then we have (4.24) by
Lemma 4.2.9. Therefore, in order that m ∈ Mp,d ,w(X), it is necessary and sufficient that the lin-
ear operator T : E0 −→ E0 given in (4.25) is bounded with respect to the Lp,d (�d,w; X)-norm;
see the discussion from the beginning of Section 4.3.1. In view of Theorem 4.3.14, for this it
suffices that (Tn)n∈� = (Tmn)n∈� is an R-bounded collection in B(Lp,d (�d,w; X)). We will see
that the notion of uniformly R-bounded variation, to be introduced in the following definition,
provides a sufficient condition (on the µn and τn) for this R-boundedness.

Definition 4.5.1. Let X be a Banach space. We say that a set of functions M ⊂ L∞(�d;B(X))
is of uniformly R-bounded variation if there exist a constant C > 0, an R-bounded set T ,
and for each m ∈ M a Borel measure µm on �d and a bounded WOT-measurable function
τm : �d −→ B(X), with ||µm|| ≤ C and τm(�d) ⊂ T , such that, for all ξ ∈ �d, x ∈ X, and
x ∈ X∗,

〈m(ξ)x, x∗〉 =

∫
]−∞,ξ]

〈τ(y)x, x∗〉dµ(y).

For each q ∈ [1,∞[ we define

varRq(M ) := inf{CRq(T ) | C > 0,T ⊂ B(X) as above}

Proposition 4.5.2. Let X be a Banach space, p ∈]1,∞[l, and w ∈
∏l

j=1 Arec
p j

(�d j), such that
X has property Rp,d ,w. Suppose that M ⊂ L∞(�d;B(X)) is of uniformly R-bounded variation.
Then we have m ∈ Mp,d ,w(X) for all m ∈M , and moreover,

Rq{Tm | m ∈M } ≤ αp,d ,w,X varRq(M ) < ∞ in B(Lp,d (�d,w; X)),

for every q ∈ [1,∞[.

Proof. Let C > 0 and T as in the definition of uniformly R-bounded variation for M , and
define S := {∆([y,∞[) | y ∈ �d} ⊂ B(Lp,d (�d,w; X)). Each m ∈ M in particular satisfies
the hypotheses of Lemma 4.2.9. Hence, for each m ∈ M we have m ∈ Mp,d ,w(X), with the
associated Fourier multiplier operator Tm ∈ B(Lp,d (�d,w; X)) having the representation (4.21).
This representation yields that

Tm ∈ C abs conv(T S );

this is similar to Proposition A.1.3. From the basic properties of Rq-bounds (see Proposition
E.3.5) it thus follows that

Rq{Tm | m ∈M } ≤ CRq(T )Rq(S )
(4.19)
≤ αp,d ,w,XCRq(T ) < ∞.

Taking the infimum over all admissible C > 0 and T , we obtain the desired result. �
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Combining the discussion from the beginning of this subsection with the above proposition,
we arrive at the following generic Fourier multiplier theorem:

Theorem 4.5.3. Let X be a Banach space, p ∈]1,∞[l, and w ∈
∏l

j=1 Arec
p j

(�d j), such that
X is of class RPp,d ,w. Suppose that we have a decomposition of �d, possibly up to a set of
measure zero, into rectangles (En)n∈� ⊂ J d, in such a way that ∆ = (∆(En))n∈� forms an
unconditional Schauder decomposition of Lp,d (�d,w; X). Let m ∈ L∞(�d;B(X)) be a symbol
with the property that (m1En)n∈� is of uniformly R-bounded variation. Then we have m ∈
Mp,d ,w(X) with ||m||Mp,d ,w(X) ≤ αp,d ,w,XC2

∆
varRq(M ), where C∆ is the unconditional constant of

∆.

4.5.2 Fourier Multipliers in One Variable
In this section we consider the case d = 1. We will obtain operator-valued Mikhlin Fourier
multiplier theorems for the weighted spaces Lp(�d,w; X), p ∈]1,∞[, w ∈ Ap(�), as a con-
sequence of the generic Fourier multiplier theorem of Theorem 4.5.3. We will start with the
unweighted case, which we will subsequently use to treat the weighted case by using the theory
from Section 4.4.

Let us consider the dyadic partition (I(k,ε))(k,ε)∈�×{−1,1} of � \ {0}, which is defined by

I(k,ε) := ε[2k, 2k+1[, k ∈ �, ε ∈ {−1, 1}. (4.53)

Since 2k+1

2k = 2 and −2k

−2k+1 = 1
2 for all k ∈ �, we have control of

∣∣∣∣∣∣µk,ε

∣∣∣∣∣∣ for the measures µk,ε from
Example 4.2.10/Remark 4.2.11 corresponding to the compact intervals I(k,ε). Furthermore, in
case X is a UMD space, this partition gives rise to an unconditional Schauder decomposition
of the unweighted Lebesgue-Bochner space Lp(R; X):

Lemma 4.5.4. Let X be a UMD Banach space and p ∈]1,∞[. Then we have that ∆ =

(∆(I(k,ε)))(k,ε)∈�×{−1,1} defines an unconditional Schauder decomposition of Lp(�; X), with un-
conditional constant C∆ depending only on p and X.

Comments on the proof: This result is due to Bourgain [12]; also see [57]. The proof
is martingale theoretic and exploits the direct definition of UMD ( Definition E.5.3). For a
similar result in case of the one-dimensional torus � we refer to [103, Theorem 3.3.3]. We
furthermore refer to [64, 3.14] for a proof for the special case of X being a closed subspace
of an Lq(S ;�)-space, with (S ,B, ν) a σ-finite measure space and q ∈]1,∞[. These spaces are
easier to treat, because here it is possible to use many tools from classical harmonic analysis
instead of martingale transforms.

Having available this unconditional Schauder decomposition, the following operator-valued
Mikhlin theorem can now be obtained as a consequence of the generic Fourier multiplier theo-
rem of Theorem 4.5.3:

Theorem 4.5.5. Let X be a UMD Banach space and p ∈]1,∞[. Suppose that the symbol
m ∈ L∞(�;B(X)) ∩ C1(� \ {0};B(X)) satisfies the following R-boundedness version of the
classical Mikhlin condition:

κm := R{ ξ jm[ j](ξ) : j ∈ {0, 1}, ξ ∈ � \ {0} } = R{ m(ξ), ξm′(ξ) : ξ ∈ � \ {0} } < ∞. (4.54)

Then we have m ∈ Mp,1(X) with ||m||Mp,1(X) .p,X κm.
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The R-boundedness of the range of the multiplier symbol is in fact a necessary condition:

Remark 4.5.6. Let m ∈ Mp,d ,w(X) with p ∈]1,∞[l and w ∈
∏l

j=1 Ap j(�
d j). Pick a representative

m of m ∈ L∞(�d;B(X)) ⊂ L1
loc(�

d;B(X)). Then, similarly to Lemma 4.2.1, it can be shown
that

R{m(ξ) : ξ is a Lebesgue point of m} .p,w ||m||Mp,d ,w(X) ;

see [57].

Proof. By Theorem 4.5.3 and Lemma 4.5.4, it suffices to show that

M := { m1Ik,ε : (k, ε) ∈ � × {−1, 1} } ⊂ L∞(�d;B(X))

is of uniformly R-bounded variation with varR2(M ) . κm. Using Example 4.2.10 we find, for
each k ∈ � and ε ∈ {−1, 1}, a Borel measures µk,ε on� and a bounded measurable function τk,ε :
� −→ B(X) such that m1Ik,ε has the representation (4.20). Moreover, we have supk,ε

∣∣∣∣∣∣µk,ε

∣∣∣∣∣∣ ≤
2 + log(2) ≤ 3 and

T := { τk,ε : (k, ε) ∈ � × {−1, 1} } ⊂ abs conv{m(ξ), ξm′(ξ) : ξ ∈ � \ {0}}.

Therefore, M is indeed of R-bounded variation with

varR2(M ) ≤ sup
k,ε

∣∣∣∣∣∣µk,ε

∣∣∣∣∣∣R(T ) ≤ 3 · 2κm;

see Proposition E.3.5. �

By Proposition E.3.4, for scalar valued symbols m the R-boundedness of the set in (4.62) is
equivalent to the uniform boundedness of this set. As a consequence, we obtain the following
Mikhlin theorem for scalar-valued symbols:

Corollary 4.5.7. Let X be a UMD Banach space and p ∈]1,∞[. Suppose that the symbol
m ∈ L∞(�) ∩C1(� \ {0}) satisfies the Mikhlin condition:

Cm := sup{ |m(ξ)|, |ξm′(ξ)| : ξ ∈ � \ {0} } < ∞.

Then we have m ∈ Mp,1(X) with ||m||Mp,1(X) .p,X Cm.

We now turn to the weighted setting. As a first step to get a generalization of the above
theorem with Ap-weights, we first prove the following version in which we in addition assume
an extra Mikhlin condition on the symbol in order to be able to apply the extrapolation result
of Theorem 4.4.3:

Proposition 4.5.8. Let X be a UMD space, p ∈]1,∞[, and w ∈ Ap(�). Suppose that m ∈
L∞(�;B(X)) ∩C3(� \ {0};B(X)) satisfies

κm := R{ m(ξ), ξm′(ξ) : ξ ∈ � \ {0} } < ∞.

and
Cm := sup{ |ξk|

∣∣∣∣∣∣m(k)(ξ)
∣∣∣∣∣∣ : k ∈ {0, 1, 2, 3}, ξ ∈ � \ {0} } < ∞. (4.55)

Then we have m ∈ Mp,1(X) with ||m||Mp,1(X) .p,X [w]max{1,1/(p−1)}
Ap

max{κm,Cm}.
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Recall that R-bounded sets are also uniformly bounded with uniform bound less than or
equal the R-bound; see Remark E.3.2. In particular, we have

max{κm,Cm} = max{κm,C′m},

where C′m := sup{ |ξkm(k)(ξ)| : k ∈ {2, 3}, ξ ∈ � \ {0} }.

Proof. Step I: m ∈ S(�;B(X)).
We may without loss of generality assume that max{κm,Cm} ≤ 1. Then, in order to prove

that m ∈ Mp,1(X) with ||m||Mp,1(X) .p,X [w]max{1,1/(p−1)}
Ap

, we may show that

Tm : S′(�d; X) −→ S′(�d; X), f 7→ F −1[m f ] = m̌ ∗ f

maps the dense space D := L∞c (�; X) of Lp(�,w; X) into Lp(�,w; X) and satisfies a norm
estimate

||Tm f ||Lp(�,w;X) .p,X [w]max{1,1/(p−1)}
Ap

|| f ||Lp(�,w;X) , f ∈ D; (4.56)

see Remark 4.2.3.(iii). By the Mikhlin theorem of Theorem 4.5.5 and Remark 4.2.3, Tm restricts
to a bounded linear operator on the unweighted space Lp(�; X) of norm .p,X κm ≤ 1, which is
in fact given by convolution with m̌ ∈ S(�;B) in the classical sense (4.43). Furthermore, by
Lemma 4.4.7 and Lemma 4.4.6, K := m̌|�\{0} ∈ C∞(� \ {0};B(X)) is a singular kernel of convo-
lution type with implicit constants . Cm ≤ 1 and with Hölder exponent ε = 1. In particular, Tm

is a Calderón-Zygmund operator on Lp(�; X) of norm ||Tm||B(Lp(�;X)) .p,X 1, with K as singular
kernel of convolution type having implicit constants . 1 and Hölder exponent ε = 1. So we
may apply the extrapolation result of Theorem 4.4.3 to obtain the desired estimate (4.56).

Step II: m ∈ C∞(�;B(X)).
Using Proposition 4.2.4.(iv), this can derived from Step I as in Step 2 in the proof of [93,

Theorem 4.4].
Step III: m arbitrary as in the assumption.
Using Proposition 4.2.4.(iv), this can derived from Step II as in Step 3 in the proof of [93,

Theorem 4.4]. �

Corollary 4.5.9. Let p ∈]1,∞[ and w ∈ Ap(�). Then every UMD space X is of class Rp,1,w

with αp,1,w,X .p,X [w]max{1,1/(p−1)}
Ap

.

Proof. The symbol m := 1]0,∞[ certainly satisfies the conditions of the above proposition with
κm = Cm = 1, whence 1]0,∞[ ∈ Mp,1,w(X) with

∣∣∣∣∣∣1]0,∞[

∣∣∣∣∣∣
Mp,1,w(X)

.X,p [w]max{1,1/(p−1)}
Ap

.
We can also establish 1]0,∞[ ∈ Mp,1,w(X) in a more direct way from Theorem 4.4.3, as

follows: Since −ısign ∈ Mp,1,w(X) with norm
∣∣∣∣∣∣−ısign

∣∣∣∣∣∣
Mp,1,w(X)

.p,X [w]max{1,1/(p−1)}
Ap

by Exam-
ple 4.4.4 (which is an application of Theorem 4.4.3), it follows that

1]0,∞[ =
1
2

(ı · −ısign + 1) ∈ Mp,1,w(X)

with norm
∣∣∣∣∣∣1]0,∞[

∣∣∣∣∣∣
Mp,1,w(X

.p,X
1
2 ([w]max{1,1/(p−1)}

Ap
+ 1). �

Using the Mikhlin theorem from Proposition 4.5.8 (in combination with its corollary), we
can now prove a weighted version of Lemma 4.5.4.
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Lemma 4.5.10. Let X be a UMD Banach space, p ∈]1,∞[, and w ∈ Ap(�). Then we have that
∆ = (∆(I(k,ε)))(k,ε)∈�×{−1,1} defines an unconditional Schauder decomposition of Lp(�; X), with
C+

∆,p,w,X .p,X [w]2 max{1,1/(p−1)}
Ap

and C−
∆,p,w,X ≤ C+

∆∗,p′,w′,X∗ .p,X [w]2 max{1,1/(p′−1)}
Ap

.

We will use the following denseness result in order to prove that Ran(∆) is dense in Lp(�,w; X):

Lemma 4.5.11. Lp
0(�,w) := { f ∈ Lp(�,w) | 0 < supp( f̂ ) compact} is dense in Lp(�,w).

Remark 4.5.12. This lemma is an immediate consequence of special case of Lemma 3.4.3.
However, we give a different proof which straightforwardly extends to a proof of the more
general denseness result: Given p ∈]1, l[ and w ∈

∏l
j=1 Arec

p j
(�d j),{

f ∈ Lp,d (�d,w) : supp( f̂ ) compact, supp( f̂ ) ∩ [�d \ {0}]d = ∅
}

is dense in Lp,d (�d,w). This will be needed in Step III of the proof of Lemma 4.5.17.

Proof. In view of denseness of F −1C∞c (�) in Lp(�,w), it suffices to show that F −1C∞c (�)
is contained in the closure of Lp

0(�,w) in Lp(�,w). So fix an f ∈ F −1C∞c (�) and denote
by R ∈ B(Lp(�,w)) the Riesz projection in Lp(�,w). Then we have f = f + + f −, where
f + := R f ∈ Lp(�,w) and f − := (1−R) f ∈ Lp(�,w) have compact Fourier support contained in
[0,∞[ and ] − ∞, 0], respectively. Then ( f +

n )n∈� := (e 1
1+n

f+)n∈� and ( f −n )n∈� := (e− 1
1+n

f+)n∈� are
sequences in Lp

0(�,w) which converge to f + and f − in Lp(�,w) as n → ∞, respectively, from
which the desired result follows. �

Proof of Lemma 4.5.10. Let us check the conditions of Corollary 4.3.13. We start with dense-
ness of Ran(∆) in Lp(�,w; X). Since Lp

0(�,w)⊗X is contained in Ran(∆), and since Lp(�,w)⊗X
is dense in Lp(�,w; X), this follows from Lemma 4.5.11. So it remains to be shown that (4.32)
and (4.33) are satisfied with C .p,X [w]2 max{1,1/(p−1)}

Ap
and C∗ .p,X [w]2 max{1,1/(p′−1)}

Ap
. We shall only

treat ∆, the collection of dual operators ∆∗ ⊂ B(Lp′(�,w′; X∗)) being of a similar form thanks
to Proposition 4.2.4.(iii) while [w]Ap = [w′]Ap′ ; note here that X∗ has the RNP because X is re-
flexive (being a UMD space). To this end, we pick a ρ ∈ C∞c (�) such that ρ ≡ 1 on I0,1 = [1, 2[
and supp(ρ) ⊂ I−1,1 ∪ I0,1 ∪ I1,1 = [ 1

2 , 4[, and subsequently define (ρ(k,ε))(k,ε)∈�×{−1,1} ⊂ C∞c (�) by
ρ(k,ε)(ξ) := ρ(ε2−kξ); then note that

ρ(k,ε) ≡ 1 on Ik,ε, supp(ρ(k,ε)) ⊂ I(k−1,ε) ∪ I(k,ε) ∪ I(k+1,ε). (4.57)

Given η = (η(k,ε))(k,ε)∈�×{−1,1} ∈ {−1, 1}�×{−1,1} and a finite subset F ⊂ � × {−1, 1}, we define the
symbol mη,F ∈ C∞(�) by

mη,F :=
∑

(k,ε)∈F

η(k,ε)ρ(k,ε).

Since each ξ ∈ � \ {0} is contained in an open neighborhood on which at most of three of the
ρ(k,ε) do not vanish (see (4.57)), and since the Mikhlin condition is invariant under dilations, it
follows from Proposition 4.5.8 that mη,F ∈ Mp,1,w(X) with

∣∣∣∣∣∣mη,F

∣∣∣∣∣∣
Mp,1,w(X)

.p,X [w]max{1,1/(p−1)}
Ap

M
for some constant M ∈]0,∞[ independent of η and F. Therefore, we have (ρ(k,ε))(k,ε)∈�×{−1,1} ⊂

Mp,1,w(X) with the property that∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
(k,ε)∈F

η(k,ε)Tρ(k,ε)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
B(Lp(�,w;X))

.p,X M[w]max{1,1/(p−1)}
Ap
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holds true for all η = (η(k,ε))(k,ε)∈�×{−1,1} ∈ {−1, 1}�×{−1,1} and all finite subsets F ⊂ � × {−1, 1}.
As a consequence,∣∣∣∣∣∣∣

∣∣∣∣∣∣∣ ∑
(k,ε)∈F

ε(k,ε)Tρ(k,ε) f

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω;Lp(�,w;X))

.p,X M[w]max{1,1/(p−1)}
Ap

|| f ||Lp(�,w;X))

holds true for all finite subsets F ⊂ � × {−1, 1} and f ∈ Lp(�,w; X). Since

R{∆(k,ε) : (k, ε) ∈ � × {−1, 1}} ≤ 2αp,1,w,X .p,X [w]max{1,1/(p−1)}
Ap

in B(Lp(�,w; X)) (4.58)

by Lemma 4.2.8 and Corollary 4.5.9, and since ∆(k,ε) = ∆(k,ε)Tρ(k,ε) in view of (4.57), it follows
that (4.32) is satisfied with C .p,X [w]2 max{1,1/(p−1)}

Ap
, as desired. �

Having this unconditional Schauder decomposition, the following weighted version of The-
orem 4.5.5 now also is a consequence of the generic Fourier multiplier theorem of Theorem
4.5.3.

Theorem 4.5.13. Let X be a UMD Banach space, p ∈]1,∞[, and w ∈ Ap(�). Suppose that the
symbol m ∈ L∞(�;B(X)) ∩C1(� \ {0};B(X)) satisfies

κm := R{ m(ξ), ξm′(ξ) : ξ ∈ � \ {0} } < ∞. (4.59)

Then we have m ∈ Mp,1(X) with ||m||Mp,1(X) .p,X [w]2(1+max{1/(p−1),1/(p′−1)})
Ap

κm.

Proof. The proof is completely analogous to the proof of Theorem 4.5.5. Of course, now we
have to use Lemma 4.5.10 instead of Lemma 4.5.4, and we furthermore have to note that

C+
∆,p,w,XC−∆,p,w,X .p,X [w]2 max{1,1/(p−1)}

Ap
[w]2 max{1,1/(p′−1)}

Ap
= [w]2(1+max{1/(p−1),1/(p′−1)})

Ap
.

�

In case our space X possesses property (α), we can bootstrap the R-boundedness to obtain
the following result:

Corollary 4.5.14. Let X be an (α)-UMD Banach space, p ∈]1,∞[, and w ∈ Ap(�). Suppose
that M ⊂ L∞(�;B(X)) ∩C1(� \ {0};B(X)) is a collection of symbols with the property that

κM := R{ m(ξ), ξm′(ξ) : ξ ∈ � \ {0},m ∈M } < ∞. (4.60)

Then we have M ⊂ Mp,1,w(X) with

R{Tm : m ∈M } .p,X [w]2(1+max{1/(p−1),1/(p′−1)})
Ap

κM in B(Lp(�,w; X)).

Proof. By Theorem 4.5.13 we have M ⊂ Mp,1,w(X). Let us accordingly write T := {Tm :
m ∈M } ⊂ B(Lp(�,w; X)). By Lemma E.3.6, in order to show the required R-bound, we must
show that

sup
T̃∈T̃

∣∣∣∣∣∣T̃ ∣∣∣∣∣∣
B(Rad(Lp(�,w;X)))

.p,X [w]2(1+max{1/(p−1),1/(p′−1)})
Ap

κM .
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This can done as in [64, 5.2] or [57]. The idea is basically that, under the canonical isometric
isomorphism Radp(Lp(�,w; X)) ' Lp(�,w; Radp(X)) (E.2), each T̃ = (Tm j)n∈� ∈ T̃ corre-
sponds to the Fourier multiplier operator Tm associated with the symbol m ∈ L∞(�;B(Radp(X)))∩
C1(� \ {0};B(Radp(X))) given by

[m(ξ)] ((xn)n∈�) := (mn(ξ)xn)n∈�, ξ ∈ �,

for which it can be shown, by checking the conditions of Theorem 4.5.13 with the help of
Proposition E.4.4 (which requires property (α)), that

m ∈ Mp,1,w(Radp(X)) with ||m||Mp,1,w(Radp(X)) .p,X [w]2(1+max{1/(p−1),1/(p′−1)})
Ap

κM .

�

View �d as being d -decomposed as in Convention 2.2.1. We write

�
d
∗d := [�d1 \ {0}] × . . . × [�dl \ {0}].

In case d = 1 = (1, . . . , 1), we just write �d
∗ = �d

∗d . Given a Banach space Y and n ∈ �l, we
denote by Cn,d

∗ (Y) the space of all functions f : �d
∗d −→ Y whose partial derivatives Dθ f exist

and are continuous for all multi-indices α ∈ �d with |α j| ≤ n j, j = 1, . . . , l. In this notation we
have:

Corollary 4.5.15. Let X be an (α)-UMD Banach space, d = 1, p ∈]1,∞[l, and w ∈
∏l

j=1 Ap j(�).
Suppose that M ⊂ L∞(�d;B(X))∩C1,1

∗ (B(X)) is a collection of symbols with the property that

κM := R{ ξθDθm(ξ) : ξ ∈ �d
∗ , θ ≤ 1,m ∈M } < ∞. (4.61)

Then we have M ⊂ Mp,1,w(X) with

R{Tm : m ∈M } .p,X

 l∏
j=1

[w j]
2(1+max{1/(p j−1),1/(p′j−1)})
Ap j

 κM in B(Lp,1(�d,w; X)).

Proof. This can be shown via an induction on l ≥ 1, for which we refer to [57]. Let us indicate
the main idea for the case l = 2: First note that it is enough to consider the case that M consists
of a single symbol m; the desired result can then be derived via a bootstrap argument as in
Corollary 4.5.14. So, given a symbol m ∈ C1,1(B(X)) satisfying

κm := R{ ξθDθm(ξ) : ξ ∈ �2
∗, θ ≤ 1 } < ∞,

we must show that m ∈ Mp,1,w(X) with ||m||Mp,1,w(X) .p,X

(∏2
j=1[w j]

2(1+max{1/(p j−1),1/(p′j−1)})
Ap j

)
κm.

Clearly, the collection of symbols M := {m( · , ξ2), ξ2∂2m( · , ξ2) : ξ2 ∈ � \ {0}} satisfies the
conditions of Corollary 4.5.14 with κM ≤ κm, so M ⊂ Mp1,1,w1 with

R
{
Tm( · ,ξ2), ξ2T∂2m( · ,ξ2) : ξ2 ∈ � \ {0}

}
.p,X [w j]

2(1+max{1/(p j−1),1/(p′j−1)})
Ap j

κm in B(Lp1(�,w1; X)).

Now the idea is that
� \ {0} 3 ξ2 7→ Tm( · ,ξ2) ∈ B(Lp1(�,w1; X))

defines a C1-function with M′(ξ2) = T∂2m( · ,ξ2), so that M satisfies the R-boundedness Mikhlin

condition from Theorem 4.5.13 with κM .p,X [w j]
2(1+max{1/(p j−1),1/(p′j−1)})
Ap j

κm, whose associated

Fourier multiplier operator coincides with Tm on S(�2; X) (under the usual identifications).
Here we have to note that Lp1(�,w1; X) is a UMD space (see Proposition E.5.6) which is iso-
metrically isomorphic with Lp1(�; X). �
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4.5.3 Fourier Multipliers in Several Variables
In this subsection we prove several Mikhlin Fourier multiplier theorems in several variables.
We start with an extension of Theorem 4.5.13. Recall that this theorem was obtained as a
consequence of the generic Fourier multiplier theorem, Theorem 4.5.3. For this generic Fourier
multiplier theorem it is required that X is of class RPp,d ,w, for which it is in turn necessary that
w ∈

∏l
j=1 Arec

p j
(�d j) (see Lemma 4.2.7).

Theorem 4.5.16. Let X be a UMD space, a ∈]0,∞[l, p ∈]1,∞[l, and w ∈
∏l

j=1 Arec
p j

(�d j).
Suppose that the symbol m ∈ L∞(�d;B(X)) ∩ C1(� \ {0};B(X)) satisfies the anisotropic R-
boundedness Mikhlin condition

κm := R{|ξ|a·d θd ,a Dθm(ξ) : ξ ∈ � \ {0}, θ ≤ 1 } < ∞. (4.62)

Then we have m ∈ Mp,d ,w(X) with ||m||Mp,d ,w(X) .d ,p,X,w κm.

In order to derive this theorem from the generic Fourier multiplier theorem, Theorem 4.5.3,
we must show that X is of class RPp,d ,w and we must find a suitable unconditional Schauder
decomposition corresponding to a decomposition of �d, possibly up to measure zero, by a
countable collection of rectangles. The idea it to exploit the one variable case from the previous
subsection by using the fact that Arec

p j
(�d j) consists precisely of those weights on �d j which are

uniformly Ap j in each of their variables. As a first step we have the following lemma.

Lemma 4.5.17. Let X be a UMD space, b ∈]1,∞[l, Ib j

k := [−bk+1
j ,−bk

j[∪]bk
j, b

k+1
j ] p ∈]1,∞[l,

and w ∈
∏l

j=1 Arec
p j

(�d j). Then X is of class RPp,d ,w with αp,d ,w,X .p,X
∏l

j=1[w j]
d j max{1,1/(p j−1)}
Arec

p j
.

For each j ∈ {1, . . . , l} and i ∈ {1, . . . , d j}, we have that

∆( j,i) = (∆( j,i)
k )k∈� :=

(
∆

[
�

d1+...+d j−1+(i−1) × Ib j

k ×�
(d j−i)+d j+1+...+dl

])
k∈�

defines an unconditional Schauder decomposition of Lp,d (�d,w; X) with C+

∆( j,i) .p,X [w j]
2 max{1,1/(p j−1)}
Arec

p j

and C−
∆( j,i) ≤ C+

[∆( j,i)]∗ .p,X [w j]
2 max{1,1/(p′j−1)}

Arec
p j

. Furthermore, we have

R

 N∑
k=M

∆
( j,i)
k : M,N ∈ �

 .p,X [w j]
max{1,1/(p j−1)}
Arec

p j
, R

 N∑
k=M

[∆( j,i)
k ]∗ : M,N ∈ �

 .p,X [w j]
max{1,1/(p′j−1)}

Arec
p j

Proof. Step I: Let j ∈ {1, . . . , l} and i ∈ {1, . . . , d j}. Suppose that m ∈ L∞(�) ∩ C3(� \ {0})
satisfies the Mikhlin condition (4.55) and define M ∈ L∞(�d) by M(ξ) := m(ξ j,i). Then we have
M ∈ Mp,w,d (X) with ||M||Mp,w,d (X) .p,X [w j]

max{1,1/(p j−1)}
Arec

pk
.

This follows from a combination of Lemma 4.2.5 and Proposition 4.5.8.
Step II: X is of class RPp,d ,w with αp,d ,w,X .p,X

∏l
j=1[w j]

d j max{1,1/(p j−1)}
Arec

p j
.

From Step I it follows that, for all j ∈ {1, . . . , l} and i ∈ {1, . . . , d j},

1
�

d1+...+d j−1+(i−1)
×[0,∞[×�(d j−i)+d j+1+...+dl ∈ Mp,d ,w(X) of norm .p,X [w j]

max{1,1/(p j−1)}
Arec

p j
.

The desired result now follows with the help of Proposition 4.2.4.(i).
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Step III: For all j ∈ {1, . . . , l} and i ∈ {1, . . . , d j}, ∆( j,i) defines an unconditional Schauder
decomposition of Lp,d (�d,w; X) with C+

∆( j,i) .p,X [w j]
2 max{1,1/(p j−1)}
Arec

p j
and C−

∆( j,i) ≤ C+

[∆( j,i)]∗ .p,X

[w j]
2 max{1,1/(p′j−1)}

Arec
p j

.
This can be derived from Step I by using the argumentation from the proof of Lemma 4.5.10;

see Remark 4.5.12.
Step IV: We finally prove the R-bounds in the last statement. The first R-bound can be

shown as in Lemma 4.2.8 (and Proposition E.3.5), and the second R-bound can be derived in
the same way since the collection of adjoint operators is of the same form in view of Proposi-
tion 4.2.4.(iii). �

Using the abstract result about unconditional blockings of product decompositions from
Theorem 4.3.15, we can now construct an unconditional Schauder decomposition of Lp,d (�d,w; X)
out of the unconditional Schauder decompositions from the above lemma. For simplicity of no-
tation we restrict ourselves to the case d = (1, 1), the general case being completely similar.

Lemma 4.5.18. Let X be a UMD space, d = (1, 1), b ∈]1,∞[2, p ∈]1,∞[2, and w ∈
∏2

j=1 Arec
p j

(�).

Define (En)n∈� by En :=
(
[−br+1

1 ,−br
1[∪]br

1, b
r+1
1 ]

)
× [−br

2, b
r
2] for n = 2r + 1, r ∈ � and

En := [−br+1
1 , br+1

1 ] ×
(
[−br+1

2 ,−br
2[∪]b2

1, b
r+1
2 ]

)
for n = 2r + 2, r ∈ �. Then ∆ := (∆[En])n∈�

is an unconditional Schauder decomposition of Lp,d (�d,w; X) with C+
∆

and C+
∆∗

only depending
on d , p, X and w.

Proof. This can be shown by combining Lemma 4.5.17 with Theorem 4.3.15: Let D1 :=
∆(1,1) and D2 := ∆(2,1) be the unconditional Schauder decompositions of Lp,d (�d,w; X) from
Lemma 4.5.17. Then D1 and D2 clearly commute. Furthermore, it is not difficult to see that
∆ = (∆[En])n∈� coincides with the ∆ defined in Theorem 4.3.15. By Theorem 4.3.15, as D1

and D2 satisfy the R-boundedness contition (4.35) (see the last statement of Lemma 4.5.17),
we may thus conclude that ∆ is an unconditional Schauder decomposition of Lp,d (�d,w; X).
Moreover,

C+
∆ .p,X [w1]2 max{1,1/(p1−1)}

Arec
p1

[w2]max{1,1/(p2−1)}
Arec

p2
+ [w1]max{1,1/(p1−1)}

Arec
p1

[w2]2 max{1,1/(p2−1)}
Arec

p2

=

l∑
k=1

dk

l∏
j=1

[w j]
(d j+δk, j) max{1,1/(p j−1)}
Arec

p j

and

C−∆ ≤ C+
∆∗ .p,X [w1]2 max{1,1/(p′1−1)}

Arec
p1

[w2]max{1,1/(p′2−1)}
Arec

p2
+ [w1]max{1,1/(p′1−1)}

Arec
p1

[w2]2 max{1,1/(p′2−1)}
Arec

p2

=

l∑
k=1

dk

l∏
j=1

[w j]
(d j+δk, j) max{1,1/(p′j−1)}

Arec
p j

.

�

Remark 4.5.19. In case X is a UMD space with property (α), we could just take the product
decomposition ∆ = (∆(1,1)

k ∆
(2,1)
k )k∈� above; see Remark 4.3.16.(ii). In [58] is was shown that,

in the unweighted non-mixed-norm case, for the product decomposition to be an unconditional
Schauder decomposition it is even necessary that X is an (α)-UMD space.
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Having available this unconditional Schauder decomposition, the Theorem 4.5.16 now also
is a consequence of the generic Fourier multiplier theorem of Theorem 4.5.3:

Proof of Theorem 4.5.16. The proof is essentially the same as the proof of Theorem 4.5.5. For
detailed computations (in the isotropic case) we refer to [57]. �

We next come to general Ap-weights. As already observed several times, in this situation
we cannot proceed via an unconditional Schauder decomposition corresponding to a decompo-
sition of �d, possibly up to measure zero, by a countable collection of rectangles. Instead, we
proceed via an extrapolation argument from the unweighted case.

Theorem 4.5.20. Let X be a UMD space, p ∈]1,∞[, and w ∈ Ap(�d). Suppose that the symbol
m ∈ L∞(�d;B(X)) ∩Cd+2(�d \ {0};B(X)) satisfies

κm := R{|ξ||θ|Dθm(ξ) : ξ ∈ � \ {0}, θ ≤ 1 } < ∞.

and
Cm := sup{|ξ||θ|

∣∣∣∣∣∣Dθm(ξ)
∣∣∣∣∣∣ : ξ ∈ � \ {0}, |θ| ≤ d + 2 } < ∞.

Then we have m ∈ Mp,d,w(X) with ||m||Mp,d,w(X) .d,p,X [w]max{1,1/(p−1)}
Ap

max{κm,Cm}.

Proof. This can be shown completely similar to the proof of Proposition 4.5.8. Of course, now
we have to use (the isotropic case of) Theorem 4.5.16 instead of Theorem 4.5.5. �

Since
max{κm,Cm} ≤ R{|ξ|

|θ|Dθm(ξ) : ξ ∈ � \ {0}, |θ| ≤ d + 2 },

we can use the same bootstrapping procedure as in Corollary 4.5.15. In the notation introduced
before Corollary 4.5.15, we accordingly obtain:

Corollary 4.5.21. Let X be an (α)-UMD space, p ∈]1,∞[l, and w ∈
∏l

j=1 Ap(�d j). Suppose
that M ⊂ L∞(�d;B(X)) ∩Cd +2

∗ (B(X)) is a collection of symbols satisfying

κM := R
{
|ξ1|
|θ1 | . . . |ξl|

|θl |Dθm(ξ) : ξ ∈ �d
∗d , θ ∈ �

d, θ j ≤ d j + 2, j = 1, . . . , l,m ∈M
}
< ∞.

Then we have M ⊂ Mp,d,w(X) with

R{Tm : m ∈M } .d ,p,X

 l∏
j=1

[w j]
max{1,1/(p j−1)}
Ap j

 κM in B(Lp,d (�d,w; X)).

4.6 Notes

4.6.1 General Notes
For a nice survey of Banach-valued Fourier multipliers (in the unweighted setting) we refer
to [56]; also see the notes of [64, 25, 57]. Let us mention that the unweighted version of
Theorem 4.5.16 is due to Hytonen [55] (as a consequence of a slightly stronger anisotropic
Fourier multiplier theorem); also see [57]. Concerning the weighted setting, the isotropic non-
mixed-norm scalar-valued (l = 1,a = 1, X = �) version of this theorem is due to Kurtz [65]. For
Banach-valued Fourier multiplier theorems in the Ap-weighted setting we refer to [73, 76, 78];
also see below (Section 4.6.2).
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4.6.2 Comparison to the Literature
• Section 4.2: Except for Proposition 4.2.3, Lemma 4.2.5 and Lemma 4.2.7, which are

very basic, this section is completely based on a combination of [64] and [57] (which are
about the unweighted case). Here the definition of the Banach spaces of class RPp,d ,w

(cf. Definition 4.2.6) is new and is a natural replacement of the UMD property in the
unweighted case (see Lemma 4.2.7.(iv)).

• Section 4.3: This section is based on the PhD thesis [103] (mostly some slight modifi-
cations); also see the articles [23, 16]. We would like to comment on Theorem 4.3.15
(and Corollary 4.3.6, which its needed for the formulation of this theorem). First of all,
Theorem 4.3.15 can be seen as a version of its corollary, Corollary 4.3.17, for Schauder
decompositions indexed by � instead of �. This corollary in turn corresponds to [103,
Theorem 2.5.1], where the UMD property is taken as a hypothesis in place of the R-
boundedness condition (4.40) (see Remark 4.3.16). Whereas the inspiration for the con-
struction in [103, Theorem 2.5.1] comes from the work in [105] on multi-dimensional
Fourier multipliers on the torus �d, Theorem 4.3.15 was inspired by the case �d in [105]
and was in fact already implicitly used in [55] (with reference to [103]). Finally, the
simple Corollary 4.3.6 is motivated by the construction in Theorem 4.3.15.

• Section 4.4: The inspiration for this section comes from [78] (also see [73, 76]), where
[49, Corollary 2.10] was already used to derive an isotropic Mikhlin Fourier multiplier
theorem on Lp(�d,w; X) for X a UMD space, p ∈]1,∞[, and w ∈ Ap(�d) (also see
the discussion about Proposition 4.5.8 and Theorem 4.5.20 below). The inspiration for
the (computations in the proof of) Lemma 4.4.7 comes from (the computations in the
proofs of) [92, V.I.4.Lemma & V.I.4.Proposition.2], which (via Section 4.4.1) forms the
motivation for Section 4.4.2, where Definition 4.4.1 is new.

• Section 4.5: This section is mainly based on [57] (which is about the unweighted non-
mixed-norm case). Here Section 4.5.1 is directly based on [57] (and [56] regarding the
terminology introduced in Definition 4.5.1). In Section 4.5.2 and 4.5.3, the proofs of
Theorem 4.5.5, Corollary 4.5.14, and Corollary 4.5.15/Corollary 4.5.21, are taken from
[57]. The idea to use [49, Corollary 2.10] (cf. Theorem 4.4.3) in order to derive Propo-
sition 4.5.8 and Theorem 4.5.20 from the unweighted case is taken from [78] (also see
[73, 76]). The argumentation in the proof of Lemma 4.5.10 is directly based on [105],
where it is used to derive Lemma 4.5.18 in the unweighted non-mixed-norm case (for
a general dimension d ≥ 1) from the multi-dimensional Mikhlin theorem on Lp(�d; X)
for scalar-valued symbols, which was in turn obtained from the case �d via a so-called
transference argument. The unweighted version of Theorem 4.5.16 can be found in [56],
where it actually is a consequence of a slightly stronger anisotropic Fourier multiplier the-
orem (whose proof also works in the weighted setting). The most crucial ingredient for
Theorem 4.5.16 is the unconditional Schauder decomposition from Lemma 4.5.18, which
is also used in [56] (and which is actually just an anisotropic version of the unconditional
Schauder decomposition of Lp(�d; X) used in [105]). Here it was our main aim to give
a detailed and self-contained proof of Lemma 4.5.18 by a doing a blocking argument,
similar to the approach in [103, Remark 3.5.2] to the unconditionality of the Schauder
decomposition of Lp(�d; X) from [105]. As a first step we have Lemma 4.5.17. In or-
der to derive Lemma 4.5.18 from it, we naturally come to the abstract Theorem 4.3.15
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about unconditional blockings of product decompositions; also see the discussion about
Section 4.3 above.
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Chapter 5

Anisotropic Function Spaces

In this chapter we study weighted anisotropic mixed-norm Banach space-valued function spaces,
which naturally occur in the theory of maximal weighted Lq-Lp-regularity for parabolic initial-
boundary value problems. We start with spaces on the full Euclidean space�d, where we follow
a Fourier analytic approach with as main tools maximal functions and Fourier multipliers, and
subsequently treat spaces on domains (open subsets of �d) via their versions on �d.

5.1 Introduction
As already mentioned in Section 1.2, a very important step in the solution of the maximal Lq

µ-L
p
γ

problem for the parabolic initial-boundary value problem (1.5) is to determine the spatial trace
space of the weighted anisotropic Sobolev space of intersection type

W1
q (�+, vµ; Lp(�d

+,wγ; X)) ∩ Lq(�+, vµ; W2
p(�d

+,wγ; X)),

where the weights vµ and wγ are as in (1.6). In Section 2.1 we saw that this intersection space
can be naturally identified with the weighted anisotropic Sobolev space of distribution type

W (2,1)
(p,q),(d,1)(�

d
+ ×�+, (wγ, vµ); X) ↪→ D′(�d

+ ×�+; X).

In view of Lemma 2.1.4, in order to determine the trace space of this anisotropic Sobolev space
we may proceed via its version on �d ×�, W (2,1)

(p,q),(d,1)(�
d ×�, (wγ, vµ); X). The main advantage

of this strategy is that it opens the door to Euclidean harmonic analysis.
In [86] Scharf, Schmeißer & Sickel characterized the trace space of vector-valued Sobolev

spaces Wn
p(�d; X), where p ∈]1,∞[ and X is an arbitrary Banach space. Here the strategy was

to use a sandwich argument, based on the embeddings

Fn
p,1(�d; X) ↪→ Wn

p(�d; X) ↪→ Fn
p,∞(�d; X) (5.1)

and the independence of the trace space of the vector-valued Triebel-Lizorkin space Fn
p,q(�d; X)

on the microscopic parameter q ∈ [1,∞]. In this chapter we will extend this to the weighted
anisotropic mixed-norm Banach space-valued setting, to a large extend based on the work of
Johnsen & Sickel [62] concerning the trace problem for unweighted anisotropic scalar-valued
Triebel-Lizorkin spaces; also see the notes of this chapter.
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5.2 Function Spaces on �d

Throughout this section we view �d as being d -decomposed as in Convention 2.2.1 unless
otherwise stated, where d = (d1, . . . , dl) ∈ (�>0)l.

5.2.1 Definitions and Basic Properties
5.2.1.a Definition Anisotropic Sobolev and Bessel-Potential Spaces

Definition 5.2.1. Let X be a Banach space, n ∈ �l, p ∈]1,∞[l, and w ∈
∏l

j=1 Ap j(�
d j). Put

Jn,d :=

α ∈ l⋃
j=1

ι[d ; j]�
d j : |α j| ≤ n j

 ; (5.2)

note here that ι[d ; j]�
d j = {n ∈ �d : n = (0, . . . , 0, n j, 0, . . . , 0)}, see Convention 2.2.1. We

define the weighted anisotropic mixed-norm Sobolev space Wn
p,d (�d,w; X) as the space of all

f ∈ S′(�d; X) for which Dα f ∈ Lp,d (�d,w; X) for all α ∈ Jn,d . We equip this space with the
norm

|| f ||Wn
p,d (�d ,w;X) :=

∑
α∈Jn,d

||Dα f ||Lp,d (�d ,w;X) .

It will be convenient to have a Fourier analytic description of the weighted anisotropic
mixed-norm Sobolev space Wn

p,d (�d,w; X). In Chapter 4 we already mentioned the identity
Wn

p(�d) = Hn
p(�d), p ∈]1,∞[, (4.2) in the scalar-valued unweighted isotropic setting, where

Hn
p(�d) (4.3) stands for the Bessel potential space of order n ∈ �. This identity also has a

vector-valued analogue, but under a restriction on the Banach space under consideration. In
fact, it is well known that the identity Wn

p(�d; X) = Hn
p(�d; X), p ∈]1,∞[, n�≥1, holds true if

and only if X is a UMD space; see for instance [3]. Below we will define a weighted anisotropic
mixed-norm version H s,a

p,d (�d,w; X) (see Definition 5.2.2), for which we will prove the identity
Wn

p,d (�d,w; X) = H s,a
p,d (�d,w; X) in Proposition 5.2.45. Before we do this, we first give a

motivation for its definition in a simple situation: Suppose that X = H is a Hilbert space,
n ∈ (�>0)l, p = (2, . . . , 2), and w = (1, . . . , 1). Furthermore, pick s > 0 and a ∈

(
1
�>0

)l
such that

a j = s
n j

(so s = a jn j) for each j ∈ {1, . . . , l}. By the equivalence∑
α∈Jn,d

|ξα| h (1 + |ξ|2d ,a)s/2, ξ ∈ �d,

the Plancherel theorem (see Theorem C.6.3), and the fact that (1 + | · |2d ,a)s/2 ∈ OM(�d), for
every f ∈ S′(�d; X) we then have:

f ∈ Wn
p,d (�d,w; X) ⇔ Dα f ∈ Lp,d (�d,w; X), α ∈ Jn,d

⇔ F −1[ξα f̂ ] ∈ Lp,d (�d,w; X) = L2(�d; H), α ∈ Jn,d

⇔ ξα f̂ ∈ L2(�d; H), α ∈ Jn,d

⇔
∑
α∈Jn,d

|ξα| f̂ ∈ L2(�d; H)

⇔ (1 + | · |2d ,a)s/2 f̂ ∈ L2(�d; H)

⇔ F −1[(1 + | · |2d ,a)s/2 f̂ ] ∈ L2(�d; H) = Lp,d (�d,w; X),
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in which case
|| f ||Wn

p,d (�d ,w;X) h
∣∣∣∣∣∣F −1[(1 + | · |2d ,a)s/2 f̂ ]

∣∣∣∣∣∣
Lp,d (�d ,w;X)

.

For an arbitrary anisotropy a ∈ ( 1
�≥1

)l it holds that (1 + | · |2d ,a)σ/2 belongs to OM(�d) for all
σ ∈ �. We may thus define the Fourier multiplier operator J d ,a

σ ∈ L(S′(�d; X)) by

Jd ,a
σ f := F −1[(1 + | · |2d ,a)σ/2 f̂ ] ( f ∈ S′(�d; X)). (5.3)

The operator J d ,a
σ and is called the (d , a)-anisotropic Bessel potential operator of order σ.

Definition 5.2.2. Let X be a Banach space, a ∈ ( 1
�≥1

)l, p ∈]1,∞[l, s ∈ �, and w ∈
∏l

j=1 Ap j(�
d j).

We define the weighted anisotropic mixed-norm Bessel-potential space H s,a
p,d (�d,w; X) as the

space of all f ∈ S′(�d; X) for which Jd ,a
s f ∈ Lp,d (�d,w; X). We equip this space with the

norm
|| f ||Hs,a

p,d (�d ,w;X) :=
∣∣∣∣∣∣J d ,a

s f
∣∣∣∣∣∣

Lp,d (�d ,w;X)
.

Remark 5.2.3. For a ∈]0,∞[l\( 1
�≥1

)l, | · |2d ,a is not smooth in the origin, so that we cannot define
the Bessel potential operator J d ,a

σ via (5.3). In order to overcome this problem, we could also
define the Bessel potential operator by

Jd ,a
σ : f 7→ F −1

 l∑
j=1

(1 + |π[d ; j]( · )|2)σ/2ak f̂

 ;

this is the definition taken in [37]. Since we will only need the case a ∈ ( 1
�≥1

)l, we decide to
just stay with (5.3).

5.2.1.b Motivation for Triebel-Lizorkin Spaces

Since the definitions of Triebel-Lizorkin spaces and Besov spaces may look somewhat compli-
cated at first glance, we now first give some motivation for the Triebel-Lizorkin case before we
give the formal definitions; also see [97, Section 2.2.4].

For doing estimates of functions it is often convenient to split the function into pieces, esti-
mate the several pieces separately, and assemble these together. In Chapter 4 we have seen that
in the context of Fourier multipliers on Lp,d (�d,w; X) (with p ∈]1,∞[l, w ∈

∏l
j=1 Ap j(�

d j) and
X UMD) this can be succesfully done in the framework of unconditional Schauder decomposi-
tions. In the one-dimensional case d = 1, the operator-valued Mikhlin theorem on Lp(�,w; X)
was proved by using the unconditional Schauder decomposition from Lemmas 4.5.4 and 4.5.10.
Consider the blocking (∆k)k∈� of this unconditional Schauder decomposition given by

∆k f := F −1[1Jk f̂ ] with Jk :=
{

] − 1, 1[, k = 0
] − 2k,−2k−1] ∪ [2k−1, 2k[, k ≥ 1.

Recall that (εk)k∈� denotes a fixed Rademacher sequence on some probability space (Ω,F ,�);
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see Appendix E.1. For every f ∈ Lp(�,w; X) we have f =
∑∞

k=0 ∆k f in Lp(�,w; X) and

|| f ||Lp(�,w;X) = lim
K→∞

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

K∑
k=0

∆k f

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

(4.30)
h lim

K→∞

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

K∑
k=0

εk∆k f

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Ω;Lp(�,w;X))

Prop.E.1.1
= sup

K∈�

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

K∑
k=0

εk∆k f

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Ω;Lp(�,w;X))

. (5.4)

Now let us look what the equivalence of norms (5.4) means for the Bessel potential space
H s

p(�d,w; X), s ∈ �. Given a g in the dense space F −1C∞c (�; X) of H s
p(�,w; X)1 we can take

f = Jkg ∈ Lp(�,w; X) in (5.4), to obtain

||g||Hs
p(�d ,w;X) = ||Jsg||Lp(�,w;X) h sup

K∈�

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

K∑
k=0

εk∆kJkg

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Ω;Lp(�,w;X))

.

As (1 + |ξ|2)s/21Ik(ξ) h 2ks1Ik(ξ) for all k ∈ � and ξ ∈ �, this suggests that (perhaps)

||g||Hs
p(�d ,w;X) h sup

K∈�

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

K∑
k=0

εk2ks∆kg

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Ω;Lp(�,w;X))

. (5.5)

Note the RHS of (5.5) defines a norm on F −1C∞c (�; X). So we could try to define an extended
norm ||| · |||s,p,w : S′(�d; X) −→ [0,∞] (in some reasonable way) which on F −1C∞c (�; X) is
given by the expression on the RHS of (5.5), and define a space consisting of all f ∈ S′(�d; X)
with ||| f |||s,p,w < ∞. However, we will not do this. We instead replace the multiplier symbols
(1Ik)k∈� corresponding to (∆k)k∈� = (∆[Ik])k∈� by smooth symbols (ψk)k∈� ⊂ C∞c (�). The
advantage of this is that it allows us to define S k ∈ L(S′(�; X)) by

S k f := F −1[ψk f̂ ] = ψ̌k ∗ f , f ∈ S′(�; X).

Moreover, by the Paley-Wiener-Schwartz theorem (cf. Theorem C.6.4), each S k f is an analytic
function; in particular, we have S k f ∈ S′(�; X)∩C∞(�; X) for every k ∈ �. So we may define
an extended norm ||| · |||s,p,w : S′(�d; X) −→ [0,∞] by

|||g|||s,p,w := sup
K∈�

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

K∑
k=0

εk2ksS kg

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Ω;Lp(�,w;X))

, g ∈ S′(�; X). (5.6)

In order to relate ||| · |||s,p,w to the Bessel potential space H s
p(�,w; X) in the same heuristic way

as for the RHS of (5.5), we have to pick (ψk)k∈� in such a way that || · ||Lp(�,w;X) h ||| · |||0,p,w on
Lp(�,w; X) and that (1 + |ξ|2)s/2ψk(ξ) h 2ksψk(ξ) for all k ∈ � and ξ ∈ �. In fact, in order to try
to get the characterization

H s
p(�,w; X) = { f ∈ S′(�; X) : ||| f |||s,p,w < ∞} with || f ||Hs

p(�,w;X) h ||| f |||s,p,w , ∀ f ∈ H s
p(�,w; X),

(5.7)
we would like to take a sequence (ψk)k∈� ⊂ C∞c (�) having the properties that

1This denseness will be proven in Proposition 5.2.14.
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(i) Lp(�,w; X) = { f ∈ S′(�; X) : ||| f |||0,p,w < ∞} plus || f ||Lp(�,w;X) h ||| f |||0,p,w for all f ∈
Lp(�,w; X);

(ii) suppψ0 ⊂ {ξ ∈ � : |ξ| ≤ 2}, suppψk ⊂ {ξ ∈ � : 2k−1 ≤ |ξ| ≤ 2k+1} for k ≥ 1;

(iii) f =
∑∞

k=0 S k f in S′(�; X) for all f ∈ S′(�; X).

For (iii) it is sufficient that
∞∑

k=0

ψk = 1 in OM(�) (5.8)

because of the facts the pointwise multiplication map OM(�) × S′(�; X) −→ S′(�; X) is con-
tinuous in its first variable (see Appendix C.4) and that the Fourier transform F is a topological
linear isomorphism of S′(�d; X) (see Appendix C.6). For the inequality ’.’ in (i) we could try
to modify the proof of Lemma 4.5.10. Since this proof is based on the dilation invariance of
the Mikhlin condition, the support condition (ii) suggests to require

ψk(ξ) = ψ1(2(−k+1)ξ), ξ ∈ �, k ≥ 1. (5.9)

For the reverse inequality ’&’ we could then try to proceed via a duality argument (similar to
Lemma 4.3.11).

Now suppose we have successfully established the characterization (5.7). Then the Rademacher
sequence (εk)k∈� in (5.6) may not be very convenient for doing estimates. If X is a Hilbert space,
then we have the non-random description

|||g|||s,p,w
Fubini

= sup
K∈�

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

K∑
k=0

εk2ksS kg

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(�,w;Lp(Ω;X))

(E.3)
= sup

K∈�

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
 K∑

k=0

∣∣∣∣∣∣2ksS kg
∣∣∣∣∣∣2

X

1/2
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp(�,w)

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 ∞∑

k=0

∣∣∣∣∣∣2ksS kg
∣∣∣∣∣∣2

X

1/2∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(�,w)

,

that is,
H s

p(�,w; X) � F s
p,2(�,w; X),

where

F s
p,q(�,w; X) :=

g ∈ S′(�; X) : ||g||F s
p,q(�,w;X) :=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 ∞∑

k=0

∣∣∣∣∣∣2ksS kg
∣∣∣∣∣∣q

X

1/q∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(�,w)

< ∞

 , q ∈ [1,∞],

is a Triebel-Lizorkin space (to be defined rigorously below). For a general Banach space X, say
with type τ ∈ [1, 2] and cotype q ∈ [2,∞] (see Appendix E.2), replacing the identity (E.3) by
the type and cotype inequalities, we only have the embeddings

F s
p,τ(�,w; X) ↪→ H s

p(�,w; X) ↪→ F s
p,q(�,w; X). (5.10)

However, we will see that a lot of properties of F s
p,q(�,w; X) are independent of the microscopic

parameter q ∈ [1,∞].
In Section 5.2.1.c we will define Littlewood-Paley sequences ϕ = (ϕk)k∈�, for which the

Fourier transformed sequence (ϕ̂k)k∈� will play the role of (ψk)k∈� in the definition of the
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(weighted anisotropic mixed-norm) Triebel-Lizorkin space, for which we do not require (i)
from above. In Proposition 5.2.31 we will see that, for arbitrary Banach spaces X, the embed-
ding (5.10) holds true with τ = 1 and q = ∞, and similarly for Sobolev spaces (s ∈ �).

Before we give the definition of Littlewood-Paley sequence in Section 5.2.1.c, let us first
have a look at an arbitrary sequence (ψk)k∈� ⊂ C∞c (�) satisfying (ii), (5.8), and (5.9). First note
that (5.8) implies the pointwise convergence

∑∞
k=0 ψk(ξ) = 1 for ξ ∈ �d. In view of the support

condition (ii), we must thus in particular have

K∑
k=0

ψk ≡ 1 on {ξ ∈ � : |ξ| ≤ 2K}, K ∈ �.

From this it follows that

2∑
k=0

ψk = 1{|ξ|≤22} + ψ21{|ξ|>22}

(5.9)
= 1{|ξ|≤2}(2−1 · ) + ψ1(2−1 · )1{|ξ|>2}(2−1 · )

=

 1∑
k=0

ψk1{|ξ|≤2}

 (2−1 · ) + ψ1(2−1 · )1{|ξ|>2}(2−1 · ) =

1∑
k=0

ψk(2−1 · ),

implying that

ψ1 =

2∑
k=0

ψk − ψ0 − ψ2 = ψ0(2−1 · ) + ψ1(2−1 · ) − ψ0 − ψ2
(5.9)
= ψ0(2−1 · ) − ψ0.

In conclusion, the given sequence (ψk)k∈� ⊂ C∞c (�) must in particular satisfy ψ0 ≡ 1 on {ξ ∈
� : |ξ| ≤ 2} and ψ1 = ψ0(2−1 · ) − ψ0.

5.2.1.c Anisotropic Littlewood-Paley Sequences

Let a ∈]0,∞[l be fixed. Recall the definition of the associated anisotropic dilation δ[d ,a]
λ by

λ > 0 (2.12) and the associated anisotropic distance function | · |d ,a (2.14).

Definition 5.2.4. For 0 < A < B < ∞ we define Φd ,a
A,B(�d) as the set of all sequences ϕ =

(ϕn)n∈� ⊂ S(�d) which are constructed in the following way: given a ϕ0 ∈ S(�d) satisfying

0 ≤ ϕ̂0 ≤ 1, ϕ̂0(ξ) = 1 if |ξ|d ,a ≤ A, ϕ̂0(ξ) = 0 if |ξ|d ,a ≥ B, (5.11)

(ϕn)n≥1 ⊂ S(�d) is defined via the relations

ϕ̂n(ξ) = ϕ̂1(δ[d ,a]
2−n+1ξ) = ϕ̂0(δ[d ,a]

2−n ξ) − ϕ̂0(δ[d ,a]
2−n+1ξ), ξ ∈ �d, n ≥ 1. (5.12)

We put Φd ,a(�d) :=
⋃

0<A<B<∞Φd ,a
A,B(�d) and we call a sequence ϕ ∈ Φd ,a(�d) a (d , a)-

anisotropic Littlewood-Paley sequence.
In case l = 1 we write Φa(�d) = Φd ,a(�d), Φ(�d) = Φ1(�d), Φa

A,B(�d) = Φd ,a
A,B(�d), and

ΦA,B(�d) = Φ1
A,B(�d).

The flexibility in 0 < A < B < ∞ can in some situations be very useful. However, in most
situations it will be enough to consider the specific choice A = 1 and B = 3

2 , for which the
structure of a Littlewood-Paley sequence becomes a little bit simpler:
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Example 5.2.5. Let ϕ = (ϕn)n∈� ∈ Φd ,a
1, 3

2
(�d) be given and put ϕ−1 := 0. Then we have

supp ϕ̂0 ⊂

{
ξ | |ξ|d ,a ≤

3
2

}
and supp ϕ̂n ⊂

{
ξ | 2n−1 ≤ |ξ|d ,a ≤ 2n 3

2

}
, n ≥ 1;

in particular, supp ϕ̂n ∩ supp ϕ̂n , ∅ if and only if |n − m| ≤ 1. Furthermore,

ϕ̂n−1 + ϕ̂n + ϕ̂n+1 ≡ 1 on
{
ξ | 2n−2 3

2
≤ |ξ|d ,a ≤ 2n+1

}
⊃ supp ϕ̂n, n ∈ �.

Let ϕ = (ϕn)n∈� be a general (d , a)-anisotropic Littlewood-Paley sequence. Observe that∑∞
n=0 ϕ̂n(ξ) = 1 for all ξ ∈ �d and that

supp ϕ̂0 ⊂ {ξ | |ξ|d ,a ≤ B} and supp ϕ̂n ⊂ {ξ | 2n−1A ≤ |ξ|d ,a ≤ 2nB}, n ≥ 1; (5.13)

in particular, there exists an h ∈ � such that supp ϕ̂n ∩ supp ϕ̂m = ∅ whenever |n −m| > h. To ϕ
we associate the family of convolution operators (S n)n∈� = (S ϕ

n)n∈� ⊂ L(S′(�d; X)) given by

S n f = S ϕ
n f := ϕn ∗ f = F −1[ϕ̂n f̂ ] ( f ∈ S′(�d; X)). (5.14)

By the Paley-Wiener-Schwartz Theorem (cf. Theorem C.6.4), S n f belongs to C∞(�d; X) ∩
S′(�d; X) and has an extension to an entire analytic function on �d for all f ∈ S′(�d; X). More-
over, we have f =

∑∞
n=0 S n f in S′(�d; X) respectively in S(�d; X) whenever f ∈ S′(�d; X)

respectively f ∈ S(�d; X). Recalling that the pointwise multiplication maps

OM(�d) × S(�d; X) −→ S(�d; X) and OM(�d) × S′(�d; X) −→ S′(�d; X)

are continuous in their first variable and that the Fourier transform F is a topological linear
isomorphism of both S(�d; X) and S′(�d; X), this is immediate from the following lemma.

Lemma 5.2.6.
∑∞

n=0 ϕ̂n = 1 with convergence in OM(�d).

Proof. In light of the pointwise convergence
∑∞

n=0 ϕ̂n = 1 on�d, we must show that
∑∞

n=N ϕ̂n
N→∞
−→

0 in OM(�d); here
∑∞

n=N ϕ̂n(ξ) is defined in the pointwise sense and is in fact given by

∞∑
n=N

ϕ̂n(ξ) =

{
1 if |x|d ,a ≥ 2N A;
ϕ̂N(ξ) if |x|d ,a ≤ 2N B.

To establish this convergence, let ψ ∈ S(�d) and α ∈ �d be arbitrary. Then∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ψDα

 ∞∑
n=N

ϕ̂n


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

≤ ||ψDαϕ̂N ||∞
N→∞
−→ 0,

where the limit follows from ψ ∈ S(�d), supp Dαϕ̂N ⊂ {ξ | 2N−1A ≤ |ξ|d ,a ≤ 2N B} and
||Dαϕ̂N ||∞ = 2(−N+1)a·d α

∣∣∣∣∣∣(Dαϕ̂1)(δ[d ,a]
2−N+1 · )

∣∣∣∣∣∣
∞
≤ C (for some C ∈]0,∞[) for N ≥ 1. �

The following lemma provides a sufficient condition for the convergence of series inS′(�d; X)
and covers the convergence of

∑
n∈� S n f with some extra information on the speed of conver-

gence.
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Lemma 5.2.7. (i) Let ( fn)n∈� ⊂ S
′(�d; X) be such that

supp f̂0 ⊂ {ξ | |ξ|d ,a ≤ c} and supp f̂n ⊂ {ξ | c−12n ≤ |ξ|d ,a ≤ c2n} ∀n ≥ 1 (5.15)

and
|| fn(x)||X ≤ c̃bnN(1 + |x|)N (x ∈ �d, n ∈ �) (5.16)

for some c, c̃, b > 1 and N ∈ �. Then
∑

n∈� fn is a convergent series in S′(�d; X); in fact, for
every φ ∈ S(�d) and K ∈ �>0 there is a constant Cφ,K > 0 such that

|| fn(φ)||X ≤ Cφ,K[bN2−(N+K)]n (n ∈ �). (5.17)

(ii) For every f ∈ S′(�d; X), the sequence ( fn)n∈� = (S n f )n∈� ⊂ S
′(�d; X) satisfies the

hypotheses of (i).

Proof. (i) It is enough to establish convergence of the series
∑

n∈� fn in the topology of point-
wise convergence on S′(�d; X); see Proposition C.2.1. Pick a ψ ∈ S(�d) with ψ̂(ξ) ≡ 1
for c−1 ≤ |ξ|d ,a ≤ c and supp ψ̂ ⊂ {ξ ∈ �d : |ξ|d ,a ≥ 1

2c−1}, and define ψn ∈ S(�d) via
ψ̂n := ψ̂(δ[d ,a]

2n · ). Now let φ ∈ S(�d). Then we have

fn(φ) = fn(ψn ∗ φ) =

∫
�d

fn(x)(ψn ∗ φ)(x)dx,

so that

||〈 fn, φ〉||X ≤

∫
�d
|| fn(x)||X |(ψn ∗ φ)(x)|dx

≤
∣∣∣∣∣∣(1 + | · |)−(N+d) || fn||X

∣∣∣∣∣∣
2

∣∣∣∣∣∣(1 + | · |)N+dψn ∗ φ
∣∣∣∣∣∣

2
(5.16)
≤ c̃bnN

∣∣∣∣∣∣(1 + | · |)−d
∣∣∣∣∣∣

2

∣∣∣∣∣∣(1 + | · |)N+dψn ∗ φ
∣∣∣∣∣∣

2

≤ C1bnN
∣∣∣∣∣∣(1 + | · |)N+dF −1[ψ̂nφ̂]

∣∣∣∣∣∣
2
. (5.18)

Using that
(1 + |x|)N+d ≤ (1 + |x|1)N+d =

∑
|α|≤N+d

cα|xα| (x ∈ �d)

for some {cα : α ∈ �d, |α| ≤ N + d} ⊂ �, xα ◦F −1 = (−1)|α|F −1 ◦Dα, the Plancherel theorem,
the Leibniz rule, supp ψ̂n ⊂ {ξ : |ξ|d ,a ≥ c−12n−1}, and φ̂ ∈ S(�d), we can estimate, for every
k ∈ �>0,∣∣∣∣∣∣(1 + | · |)N+dF −1[ψ̂nφ̂]

∣∣∣∣∣∣
2

≤
∑
|α|≤N+d

cα
∣∣∣∣∣∣xαF −1[ψ̂nφ̂]

∣∣∣∣∣∣
2

=
∑
|α|≤N+d

cα
∣∣∣∣∣∣Dα[ψ̂nφ̂]

∣∣∣∣∣∣
2

≤ C2

∑
|β|+|γ|≤N+d

∣∣∣∣∣∣(Dβψ̂n)(Dγφ̂)
∣∣∣∣∣∣

2

≤ C2

∑
|β|+|γ|≤N+d

∣∣∣∣∣∣Dβψ̂n

∣∣∣∣∣∣
∞

∣∣∣∣∣∣∣∣ | · |k+ 1
2 a·d

d ,a Dγφ̂
∣∣∣∣∣∣∣∣
∞

∣∣∣∣∣∣∣∣1{ξ | |ξ|d ,a≥c−12n−1}| · |
−(k+ 1

2 a·d )
d ,a

∣∣∣∣∣∣∣∣
2

= C2

∑
|β|+|γ|≤N+d

2−n(a·d β)
∣∣∣∣∣∣Dβψ̂

∣∣∣∣∣∣
∞

∣∣∣∣∣∣∣∣ | · |k+ 1
2 a·d

d ,a Dγφ̂
∣∣∣∣∣∣∣∣
∞

∣∣∣∣∣∣∣∣1{ξ | |ξ|d ,a≥c−12n−1}| · |
−(k+ 1

2 a·d )
d ,a

∣∣∣∣∣∣∣∣
2

≤ C̃φ,k

∣∣∣∣∣∣∣∣1{ξ | |ξ|d ,a≥c−12n−1}| · |
−(k+ 1

2 a·d )
d ,a

∣∣∣∣∣∣∣∣
2
.
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Via the inequality ρd ,a . | · |d ,a (see Lemma 2.3.2), say µρd ,a ≤ | · |d ,a, and a computation
in (d , a)-anisotropic polar coordinates (see Section 2.3, formula (2.15)), this can be further
estimated as∣∣∣∣∣∣(1 + | · |)N+dF −1[ψ̂nφ̂]

∣∣∣∣∣∣
2
≤ C̃φ,kµ

−(k+ 1
2 a·d )

∣∣∣∣∣∣∣∣1{ξ | ρd ,a(ξ)≥(µc)−12n−1} ρ
−(k+ 1

2 a·d )
d ,a

∣∣∣∣∣∣∣∣
2

≤ C̃φ,kµ
−(k+ 1

2 a·d )C3
(µc)k

√
2k

2−(n−1)k. (5.19)

Finally, combining the estimates (5.18) and (5.19), we get that for every φ ∈ S(�d) and
K ∈ �>0 (K = k − N, N > k) there is a constant Cφ,K > 0 for which (5.17) holds. Choosing K
such that bN2−(N+K) < 1, the desired convergence now follows from the sequential completeness
of S′(�d; X) with respect to the topology of pointwise convergence.

(ii) From (5.13) it is immediate that ( fn)n fulfills (5.15). For the growth condition (5.16),
we first observe that

fn(x)
(C.11)
= (2π)−d f̂n(eıx) = (2π)−d[ϕ̂n f̂ ](eıx) = (2π)−d f̂ (ϕ̂neıx), x ∈ �d.

For f̂ ∈ S′(�d; X) there exist a constant cN > 0 and a seminorm pN on S(�d) from the gener-
ating family (C.1) as in (C.3):

∣∣∣∣∣∣〈 f̂ , φ〉∣∣∣∣∣∣
X
≤ cN pN(φ) for all φ ∈ S(�d). We can thus estimate

|| fn(x)||X ≤ (2π)−dcN pN(ϕ̂neıx)
= (2π)−dcN sup

|α|≤N,|β|≤N,ξ∈�d
|ξβDα(ϕ̂neıx)(ξ)|.

Using ϕ̂n = ϕ̂1(δ[d ,a]
2−n+1 · ) (for n ≥ 1), the Leibniz rule, and the chain rule, for n ≥ 1 we can

estimate this as

|| fn(x)||X ≤ (2π)−dcN sup
|α|≤N,|β|≤N,ξ∈�d

|ξβ|
∑
γ≤α

(
α

γ

)
2(−n+1)a·d γ|(Dγϕ̂1)(δ[d ,a]

2−n+1ξ)| |(ıx)|α−γ|eıx(ξ)|

≤ c̃1 sup
|γ|≤N,|β|≤N,ξ∈�d

|ξβ| |(Dγϕ̂1)(δ[d ,a]
2−n+1ξ)|(1 + |x|)N

≤ c̃1 sup
|γ|≤N,|β|≤N,ζ∈�d

2(n−1)a·d β|ζβ| |Dγϕ̂1(ζ)|(1 + |x|)N

≤ c̃2(2|a|∞)nN(1 + |x|)N .

For n = 0 this estimate can be obtained similarly. �

5.2.1.d Definition Anisotropic Besov and Triebel-Lizorkin Spaces

We first define the weighted anisotropic mixed-norm Besov and Triebel-Lizorkin spaces with
respect to a ϕ ∈ Φd ,a(�d), and then show that they actually do not depend on this chosen ϕ. For
these definitions we need to recall the notation from Notation 3.4.5.

Definition 5.2.8. Let X be a Banach space, a ∈]0,∞[l, p ∈ [1,∞[l, q ∈ [1,∞], s ∈ �, and
w ∈

∏l
j=1 A∞(�d j). Given ϕ ∈ Φd ,a(�d) with associated (S ϕ

n)n∈� given by (5.14), we define the
weighted anisotropic mixed-norm Besov space Bs,a

p,q,d ,ϕ(�d,w; X) with respect to ϕ as the space
of all f ∈ S′(�d; X) for which

|| f ||Bs,a
p,q,d ,ϕ(�d ,w;X) :=

∣∣∣∣∣∣(2nsS ϕ
n f )n∈�

∣∣∣∣∣∣
`q(�)[Lp,d (�d ,w)](X)

< ∞.
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Definition 5.2.9. Let X be a Banach space, a ∈]0,∞[l, p ∈ [1,∞[l, q ∈ [1,∞], s ∈ �, and
w ∈

∏l
j=1 A∞(�d j). Given ϕ ∈ Φd ,a(�d) with associated (S ϕ

n)n∈� given by (5.14), we define the
anisotropic mixed-norm Triebel-Lizorkin space F s,a

p,q,d ,ϕ(�d,w; X) with respect to ϕ as the space
of all f ∈ S′(�d; X) for which

|| f ||F s,a
p,q,d ,ϕ(�d ,w;X) :=

∣∣∣∣∣∣(2nsS ϕ
n f )n∈�

∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)](X)

< ∞.

It is easy to see that (Bs,a
p,q,d ,ϕ(�d,w; X), || · ||Bs,a

p,q,d ,ϕ(�d ,w;X)) and (F s,a
p,q,d ,ϕ(�d,w; X), || · ||F s,a

p,q,d ,ϕ(�d ,w;X))
define normed linear spaces. To show that Bs,a

p,q,d ,ϕ(�d,w; X) (resp. F s,a
p,q,d ,ϕ(�d,w; X)) does not

depend, as topological vector spaces, on the chosen ϕ, or equivalently, Bs,a
p,q,d ,ϕ(�d,w; X) (resp.

F s,a
p,q,d ,ϕ(�d,w; X)) defines the same linear subspaces of S′(�d; X) with equivalent norms, we

need the following lemma.

Lemma 5.2.10. Let X be a Banach space, a ∈]0,∞[l, p ∈ [1,∞[l, q ∈ [1,∞], s ∈ �, and
w ∈

∏l
j=1 A∞(�d j). For every ϕ ∈ Φd ,a(�d) and c > 1 there exists a constant C > 0 such that,

for all ( fk)k∈� ⊂ S
′(�d; X) with

supp f̂0 ⊂ {ξ ∈ �
d | |ξ|d ,a ≤ c} and supp f̂k ⊂ {ξ ∈ �

d | c−12k ≤ |ξ|d ,a ≤ c2k} (k ≥ 1) (5.20)

and for which we have convergence of f :=
∑

k∈� fk in S′(�d; X), it holds that

|| f ||Bs,a
p,q,d ,ϕ(�d ,w;X) ≤ C

∣∣∣∣∣∣(2sk fk)k∈�

∣∣∣∣∣∣
`q(�)[Lp,d (�d ,w)](X)

,

|| f ||F s,a
p,q,d ,ϕ(�d ,w;X) ≤ C

∣∣∣∣∣∣(2sk fk)k∈�

∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)](X)

.

Proof. We only treat the Triebel-Lizorkin case, the Besov case being completely similar. Let
(S n)n∈� ⊂ L(S′(�d; X)) be the family of convolution operators associated with ϕ and put fk := 0
for k ∈ �<0. In view of the Fourier supports of the ϕn (5.13) and the Fourier support assumption
(5.20), there exists a fixed h ∈ � such that S n fk = 0 for all n ∈ � and k ∈ � \ {n− h, . . . , n + h}.
From the convergence f =

∑
k∈� fk in S′(�d; X) and S n ∈ L(S′(�d; X)) it follows that

S n f =
∑
k∈�

S n fk =

n+h∑
k=n−h

S n fk =

h∑
m=−h

S n fm+n, ∀n ∈ �. (5.21)

We pick an r ∈]0, 1[l such that w j ∈ Ap j/r j(�
d j) for each j = 1, . . . , l. Then, for each

m ∈ {−h, . . . , h}, an application of Proposition 3.4.8 to (2ns fm+n)n∈� yields the existence of a
constant C1 > 0 independent of m and ( fk)k such that

||(2nsS n fm+n)n∈�||Lp,d (�d ,w)[`q(�)](X) =
∣∣∣∣∣∣(F −1ϕ̂nF [2ns fm+n])n∈�

∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)](X)

≤ C1 sup
n≥0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

l∏
j=1

(1 + |π j( · )|d j/r j)F −1[ϕ̂n(δ[d ,a]
2m+n · )]

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L1(�d)

·
∣∣∣∣∣∣(2ks fm+k)k∈�

∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)](X)

. (5.22)

For each m ∈ {−h, . . . , h} it holds that

F −1[ϕ̂n(δ[d ,a]
2m+n · )] =

{
F −1[ϕ̂1(δ[d ,a]

2m−1 · )] =: φm ∈ S(�d) if n ≥ 1;
F −1[ϕ̂0(δ[d ,a]

2m · )] =: ψm ∈ S(�d) if n = 0.
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Hence

sup
m∈{−h,...,h}

sup
n≥0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

l∏
j=1

(1 + |π j( · )|d j/r j)F −1[ϕ̂n(δ[d ,a]
2m+n · )]

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L1(�d)

= max
g∈{φm,ψm : m∈{−h,...,h}}

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

l∏
j=1

(1 + |π j( · )|d j/r j)g

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L1(�d)

=: C2 ∈]0,∞[.

Combining (5.21), (5.22) and (5.23), we obtain

|| f ||F s,a
p,q,d ,ϕ(�d ,w;X) ≤

h∑
m=−h

||(2nsS n fm+n)n∈�||Lp,d (�d ,w)[`q(�)](X)

≤ C3

h∑
m=−h

∣∣∣∣∣∣(2ks fm+k)k∈�

∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)](X)

= C3

h∑
m=−h

2−ms
∣∣∣∣∣∣(2(m+k)s fm+k)k∈�

∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)](X)

≤ C4

∣∣∣∣∣∣(2sk fk)k∈�

∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)](X)

.

�

From this lemma (and the Fourier supports of the ϕn (5.13)) the independence of ϕ is im-
mediate:

Proposition 5.2.11 (Independence of ϕ). Let X be a Banach space, a ∈]0,∞[l, p ∈ [1,∞[l,
q ∈ [1,∞], s ∈ �, and w ∈

∏l
j=1 A∞(�d j).

(i) Bs,a
p,q,d ,ϕ(�d,w; X) does not depend on the choice of ϕ ∈ Φd ,a(�d), up to an equivalence of

norms.

(ii) F s,a
p,q,d ,ϕ(�d,w; X) does not depend on the choice of ϕ ∈ Φd ,a(�d), up to an equivalence of

norms.

Now we may define the anisotropic mixed-norm weighted Besov and Triebel-Lizorkin
spaces:

Definition/Convention 5.2.12. Let X be a Banach space, a ∈]0,∞[l, p ∈ [1,∞[l, q ∈ [1,∞],
s ∈ �, and w ∈

∏l
j=1 A∞(�d j).

(i) We define the anisotropic mixed-norm Besov space Bs,a
p,q,d (�d,w; X) as the locally convex

space Bs,a
p,q,d (�d,w; X) := Bs,a

p,q,d ,ϕ(�d,w; X), where ϕ ∈ Φd ,a(�d) is arbitrary, with the
topology generated by the norm || · ||Bs,a

p,q,d ,ϕ(�d ,w;X).

(ii) We define the anisotropic mixed-norm Triebel-Lizorkin space F s,a
p,q,d (�d,w; X) as the lo-

cally convex space F s,a
p,q,d (�d,w; X) := F s,a

p,q,d ,ϕ(�d,w; X), where ϕ ∈ Φd ,a(�d) is arbitrary,
with the topology generated by the norm || · ||F s,a

p,q,d ,ϕ(�d ,w;X).
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We will always assume that there is a fixed choice of ϕ ∈ Φd ,a(�d) (which may be specified
in specific situations) and view Bs,a

p,q,d (�d,w; X) respectively F s,a
p,q,d (�d,w; X) as a normed linear

space with the norm || · ||Bs,a
p,q,d (�d ,w;X) = || · ||Bs,a

p,q,d ,ϕ(�d ,w;X) respectively || · ||F s,a
p,q,d (�d ,w;X) = || · ||F s,a

p,q,d ,ϕ(�d ,w;X).
In case l = 1 we drop the d from the notation, and in case l = 1 and a = 1 we both drop

d and a from the notation. In the latter case we have the usual weighted isotropic Besov and
Triebel-Lizorkin spaces, Bs

p,q(�d,w; X) and F s
p,q(�d,w; X), respectively.

Remark 5.2.13. Let p ∈ [1,∞[l and a ∈]0,∞[l be such that p j0 = p j0+1 and a j0 = a j0+1 for some
j0 ∈ {1, . . . , l − 1}. Furthermore, let A ∈ {B, F}, s ∈ �, q ∈ [1,∞], and w ∈

∏l
j=1 A∞(�d j).

Define
d̃ := (d1, . . . , d j0−1, d j0 + d j0+1, d j0+2, . . . , dl) ∈ (�>0)l−1,
ã := (a1, . . . , a j0 , a j0+2, . . . , al) ∈]0,∞[l−1,
p̃ := (p1, . . . , p j0 , p j0+2, . . . , pl) ∈ [1,∞[l−1

w̃ := (w1, . . . ,w j0−1,w j0 ⊗ w j0+1,w j0+2, . . . ,wl) ∈
∏l−1

j=1 A∞(�d̃ j).

Then we have
A

s,a
p,q,d (�d,w; X) = As,ã

p̃,q,d̃
(�d, w̃; X).

5.2.1.e Basic Properties

Sobolev and Bessel Potential Spaces Recall Definition 5.2.1 of the weighted anisotropic
Sobolev space Wn

p,d (�d,w; X) and Definition 5.2.2 of the weighted anisotropic Bessel potential
space H s,a

p,d (�d,w; X).

Proposition 5.2.14. (i) Let X be a Banach space, n ∈ �l, p ∈]1,∞[l, and w ∈
∏l

j=1 Ap j(�
d j).

Then Wn
p,d (�d,w; X) is a Banach space with

S(�d; X)
d
↪→ Wn

p,d (�d,w; X) ↪→ S′(�d; X). (5.23)

As a consequence, it also holds that

C∞(�d; X),F −1C∞(�d; X)
d
↪→ Wn

p,d (�d,w; X).

(ii) Let X be a Banach space, a ∈
(

1
�>0

)l
, p ∈]1,∞[l, and w ∈

∏l
j=1 Ap j(�

d j). Then H s,a
p,d (�d,w; X)

is a Banach space with

S(�d; X)
d
↪→ H s,a

p,d (�d,w; X) ↪→ S′(�d; X).

As a consequence, it also holds that

C∞(�d; X),F −1C∞(�d; X)
d
↪→ H s,a

p,d (�d,w; X).

Proof. (i) Completeness of Wn
p,d (�d,w; X) and the continuous inclusions in (5.23) (without

the denseness) can be easily derived from the corresponding assertions for Lp,d (�d,w; X)
(which are stated in Lemma 2.2.4). In the same way as in Lemma 2.1.3, it can be shown
that C∞c (�d; X) (and thus S(�d; X)) is dense in Wn

p,d (�d,w; X); of course, now we have
to use Lemma 3.4.2 instead of Proposition D.2.5.

114



(ii) From the definition of H s,a
p,d (�d,w; X) it is clear that the Bessel potential operatorJd ,a

s re-
stricts to a topological linear isomorphism from H s,a

p,d (�d,w; X) to Lp,d (�d,w; X). Since
the Bessel potential operator Jd ,a

s also is a topological linear isomorphism on S(�d; X)
andS′(�d; X), the desired result follows from the corresponding assertions for Lp,d (�d,w; X)
(which are stated in Lemma 2.2.4).

�

Proposition 5.2.15. Let X be a UMD space, a ∈
(

1
�>0

)l
, p ∈]1,∞[l, s ∈ �, and

w ∈
{ ∏l

j=1 Arec
p j

(�d j), l > 1;∏l
j=1 Ap j(�

d j), l = 1 or X has (α).

Then, for each multi-index α ∈ �d, the partial derivative operator Dα ∈ L(S′(�d; X)) restricts
to a bounded linear operator

Dα : H s,a
p,d (�d,w; X) −→ H s−a·d α,a

p,d (�d,w; X).

Proof. We just need to check that ξ 7→ ξαJd ,a
−k = ξα(1+ |ξ|2d ,a)−k/2 is a Mikhlin Fourier multiplier

as in Corollary 4.1.2, which is an easy but tedious computation which we omit. �

Remark 5.2.16. We expect that (i) of the above proposition remains true under the assumption
w ∈

∏l
j=1 Ap j(�

d j), also see Remark 4.1.3.

Triebel-Lizorkin and Besov Spaces Recall the definition of anisotropic weighted Triebel-
Lizorkin and Besov spaces, F s,a

p,q,d (�d,w; X) and Bs,a
p,q,d (�d,w; X), respectively, in our conven-

tions concerning these spaces; see Definition/Convention 5.2.12.

Proposition 5.2.17. Let X be a Banach space, a ∈]0,∞[l, p ∈ [1,∞[l, q ∈ [1,∞], s ∈ �, and
w ∈

∏l
j=1 A∞(�d j). LetA ∈ {B, F}. ThenAs,a

p,q,d (�d,w; X) is a Banach space with

S(�d; X) ↪→ As,a
p,q,d (�d,w; X) ↪→ S′(�d; X). (5.24)

Moreover, if q < ∞, then the following spaces are dense in As,a
p,q,d (�d,w; X): C∞c (�d; X),

S(�d; X), F −1C∞c (�d; X), F −1E′(�d; X) ∩As,a
p,q,d (�d,w; X).

We will prove the completeness part in the proposition via the Fatou property, which in
case q = ∞ also serves a useful substitute for the denseness of the Schwartz space S(�d; X).
A normed space E ⊂ D′(�d; X) is said to have the Fatou property if for all ( fn)n∈� ⊂ E the
following implication holds:

lim
n→∞

fn = f inD′(�d; X), lim inf
n→∞

|| fn||E < ∞ =⇒ f ∈ E, || f ||E ≤ lim inf
n→∞

|| fn||E .

Proposition 5.2.18. Let X be a Banach space, a ∈]0,∞[l, p ∈ [1,∞[l, q ∈ [1,∞], s ∈ � and
w ∈

∏l
j=1 A∞(�d j). Then Bs,a

p,q,d (�d,w; X) and F s,a
p,q,d (�d,w; X) have the Fatou property.

Proof. This can be shown using Fatou’s lemma (from measure theory). For a detailed proof of
this in the unweighted isotropic case, which can be extended to our situation, we refer to [88,
Proposition 4]. �
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Lemma 5.2.19. Let X be a Banach space. Every normed space E ↪→ D′(�d; X) with the Fatou
property is a Banach space.

Proof. Suppose that ( fn)n∈� is a Cauchy sequence in E. Then, on the one hand, lim infn→∞ || fn||E ≤

supn || fn||E < ∞. On the other hand, ( fn)n∈� is also a Cauchy sequence in the sequentially com-
plete space D′(�d; X) because of E ↪→ D′(�d; X), whence converges to some f in D′(�d; X).
By the Fatou property of E, f ∈ E. To finish the proof we show that we also have convergence
fn

n→∞
−→ f in the norm topology of E. To this end, let ε > 0. Choose N ∈ � such that || fl − fk|| ≤ ε

for all l, k ≥ N. Then, for all k ≥ N, it holds that fl − fk ∈ E, lim infl→∞ || fl − fk||E ≤ ε and

fl − fk
l→∞
−→ f − fk in D′(�d; X). So applying, for each k ≥ N, the Fatou property of E to the

sequence of differences ( fl − fk)l∈� we obtain that || f − fk||E ≤ ε for all k ≥ N. �

Proof of Proposition 5.2.17. We start with the first inclusion in (5.24). In view of the ele-
mentary embedding Bs+1,a

p,∞,d (�d,w; X) ↪→ Bs,a
p,1,d (�d,w; X) ↪→ As,a

p,q,d (�d,w; X) (see Proposition
5.2.30.(ii)&(iii), which is proven directly from the definition of Besov and Triebel-Lizorkin
spaces; so no circularities occur in the argumentation), we may without loss of generality as-
sume thatA = B and q = ∞. Let f ∈ S(�d; X). Then

|| f ||Bs,a
p,∞,d (�d ,w;X) = sup

k∈�
2ks ||S k f ||Lp,d (�d ,w;X)

(2.11)
≤ C1 sup

k∈�
2ks

∑
|α|≤L

||x 7→ xαS k f (x)||L∞(�d;X)

for some L ∈ � and C1 > 0 independent of f ; see Lemma 2.2.3. Using xα◦F −1 = (−1)|α|F −1◦

Dα and the boundedness of F −1 from L1(�d; X) to L∞(�d; X), we can estimate this as

|| f ||Bs,a
p,q,d (�d ,w;X) ≤ C1 sup

k∈�
2ks

∑
|α|≤L

∣∣∣∣∣∣F −1(DαF [S k f ])
∣∣∣∣∣∣

L∞(�d;X)

≤ C2 sup
k∈�

2ks
∑
|α|≤L

∣∣∣∣∣∣Dα[ϕ̂k f̂ ]
∣∣∣∣∣∣

L1(�d;X)
. (5.25)

Using ϕ̂k = ϕ̂1(δ[d ,a]
2−k+1 · ) (for k ≥ 1), the Leibniz rule, the chain rule, and ϕ1 ∈ S(�d), we can

estimate, for all k ≥ 1 and |α| ≤ L,∣∣∣∣∣∣Dα[ϕ̂k f̂ ]
∣∣∣∣∣∣

X
≤ C3

∑
β≤α

1supp ϕ̂k

∣∣∣∣∣∣Dα−β f̂
∣∣∣∣∣∣

X
≤ C4 sup

|β|≤L
1{ξ | 2k−1A≤|ξ|d ,a≤2k B}

∣∣∣∣∣∣Dβ f̂
∣∣∣∣∣∣

X
.

Similarly we have, for k = 0 and |α| ≤ L,∣∣∣∣∣∣Dα[ϕ̂k f̂ ]
∣∣∣∣∣∣

X
≤ C5 sup

|β|≤L

∣∣∣∣∣∣Dβ f̂
∣∣∣∣∣∣

X
.

Combining these two estimates with (5.25), we obtain

|| f ||Bs,a
p,q,d (�d ,w;X) ≤ C6 sup

|β|≤L

∣∣∣∣∣∣Dβ f̂
∣∣∣∣∣∣

L1(�d;X)

+ sup
k≥1

2ks
∣∣∣∣∣∣(1 + | · |d ,a)−M1{ξ | 2k−1A≤|ξ|d ,a≤2k B}

∣∣∣∣∣∣
L∞(�d)

sup
|β|≤L

∣∣∣∣∣∣(1 + | · |d ,a)MDβ f̂
∣∣∣∣∣∣

L1(�d;X)
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for all M ∈ �. Since S(�d; X) ↪→ L1(�d; X), since (1 + | · |d ,a)M is of polynomial growth, and
since F is a continuous linear operator on S(�d; X), this can in turn be further estimated as

|| f ||Bs,a
p,q,d (�d ,w;X) ≤ cM pNM ( f )

(
1 + sup

k≥1
2ks(1 + 2−k+1A)−M

)
for some cM > 0 and NM ∈ � depending on M; here pNM is a seminorm on S(�d; X) from the
generating family (C.1). Choosing M ∈ � big enough now gives the desired estimate.

We now continue with the second inclusion in (5.24). We only need to establish the con-
tinuity of this inclusion with respect to the topology of pointwise convergence on S′(�d; X);
see Proposition C.2.1. For simplicity we only treat the case p ∈]1,∞[l and w ∈

∏l
j=1 Ap j(�

d j)2;
for general p ∈ [1,∞[l and w ∈

∏l
j=1 A∞(�d j) a proof can be found in [52] for the case that

l = 1, a = 1, and X = �, which we expect to extend to our situation. So suppose that
w ∈

∏l
j=1 Ap j(�

d j). We may again assume without loss of generality that q = ∞ and A = B.
Let’s pick an h ∈ � such that S k+nS k = 0 for all k ∈ � and n ∈ � with |n| > h; here we write
S k := 0 for k < 0. Now let f ∈ Bs,a

p,∞,d (�d,w; X) and φ ∈ S(�d) be given. From the convergence
f =

∑∞
k=0 S k f in S′(�d; X) it then follows that

f (φ) =

∞∑
k=0

S k f (φ) =

∞∑
k=0

[
h∑

n=−h

S k+nS k f ](φ) =

h∑
n=−h

∞∑
k=0

S k f (S k+nφ).

Denoting by p′ = (p′1, . . . , p′l) ∈]1,∞[l the vector of Hölder conjugates and by w′ = (w
− 1

p1−1

1 , . . . ,w
− 1

pl−1

l ) ∈∏l
j=1 Ap′j(�

d j) the p-dual weight vector, we obtain

|| f (φ)||X
(C.10)
≤

h∑
n=−h

∞∑
k=0

∫
�d
||S k f (x)||X |φ(x)| dx

≤

h∑
n=−h

∞∑
k=0

||S k f ||Lp,d (�d ,w;X) ||S k+nφ||Lp′ ,d (�d ,w′;X)

≤

h∑
n=−h

2ns
∣∣∣∣∣∣(2ks ||S k f ||Lp,d (�d ,w;X))k∈�

∣∣∣∣∣∣
`∞(�)

∣∣∣∣∣∣(2−(k+n)s ||S k+nφ||Lp′ ,d (�d ,w′;X))k∈�

∣∣∣∣∣∣
`1(�)

≤

h∑
n=−h

2ns || f ||Bs,a
p,∞,d (�d ,w;X) ||φ||B−s,a

p′ ,1,d (�d ,w′)

≤ Cφ || f ||Bs,a
p,∞,d (�d ,w;X) ;

here we used S(�d) ↪→ B−s,a
p′,1,d (�d,w′) in the last step.

That As,a
p,q,d (�d,w; X) is a Banach space now follows from a combination of the second

inclusion in (5.24), Proposition 5.2.18, and Lemma 5.2.19.
Finally, we must establish the denseness of the listed spaces in the case q < ∞. Let us first

treat the subspace F −1E′(�d; X) ∩ As,a
p,q,d (�d,w; X). For this we fix an f ∈ As,a

p,q,d (�d,w; X).
From Lemma 5.2.10 (and the hypothesis q < ∞ in combination with the Lebesgue dominated

2This is the case needed for applications in Chapter 6 anyway.
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convergence theorem) it then follows that (
∑K

k=0 S K f ) is a Cauchy sequence in the Banach space
A

s,a
p,q,d (�d,w; X) ↪→ S′(�d; X). Since f =

∑∞
k=0 S k f in S′(�d; X), it thus follows that

f = lim
K→∞

K∑
k=0

S k f in A
s,a
p,q,d (�d,w; X),

which proves the desired denseness. In view of

C∞c (�d; X) = D(�d; X),F −1C∞c (�d; X) = F −1D(�d; X)
d
↪→ S(�d; X),

to finish it suffices to approximate an f ∈ F −1E′(�d; X) ∩ As,a
p,q,d (�d,w; X) by a sequence of

Schwartz functions (in the norm ofAs,a
p,q,d (�d,w; X)). To this end we fix an f ∈ F −1E′(�d; X)∩

A
s,a
p,q,d (�d,w; X), say f =

∑K
k=0 S k f , K ∈ �. Picking η ∈ F −1C∞c (�d) with η(0) = 1 and with

small enough support and using Lemma 5.2.10, we can find a constant C > 0 independent of
r ∈]0, 1] such that∣∣∣∣∣∣ f − η(δ[d ,a]

r ( · ) f
∣∣∣∣∣∣
A

s,a
p,q,d (�d ,w;X)

≤ C
∣∣∣∣∣∣ f − η(δ[d ,a]

r ( · ) f
∣∣∣∣∣∣

Lp,d (�d ,w;X)
, r ∈]0, 1];

for more details we refer to the proof of [77, Lemma 3.8] and the reference given therein.
Since the RHS tends to 0 as r → 0, and since η(δ[d ,a]

r ( · ) f ∈ S(�d; X) as a consequence of the
Paley-Wiener-Schwartz theorem (cf. TheoremC.6.4), the desired denseness result follows. �

Proposition 5.2.20. Let X be a Banach space, a ∈]0,∞[l, p ∈]1,∞[l, q ∈ [1,∞[, s ∈ �, and
w ∈

∏l
j=1 Ap j(�

d j). Suppose that φ ∈ C∞c (�d) is such that φ ≥ 0 and
∫
�d φ(x)dx = 1. Let

A ∈ {B, F}. For f ∈ As,a
p,q,d (�d,w; X) we have φt ∗ f

t→∞
−→ f inAs,a

p,q,d (�d,w; X), where φt is as in
(D.2)

Proof. We first consider the Besov case A = B. Let’s fix an f ∈ Bs,a
p,q,d (�d,w; X) and choose a

sequence (tn)n∈� ⊂]0,∞[ satisfying tn ↗ ∞ (as n→ ∞). We need to show that

(φt ∗ 2skS k f )k∈� = (2skS k(φt ∗ f ))k∈�
t→∞
−→ (2skS k f )k∈� in `q(�; Lp,d (�d,w; X)). (5.26)

From Lemma 3.4.2 we know that φt ∗ 2skS k f
t→∞
−→ 2skS k f in Lp,d (�d,w; X) for every k ∈ �.

Since
∣∣∣∣∣∣φt ∗ 2skS k f

∣∣∣∣∣∣
Lp,d (�d ,w;X)

.
∣∣∣∣∣∣2skS k f

∣∣∣∣∣∣
Lp,d (�d ,w;X)

for every k ∈ � by Lemma 3.4.1, while of
course (2skS k f )k∈� ∈ `

q(�; Lp,d (�d,w; X)), the required convergence (5.26) follows from the
Lebesgue dominated convergence theorem.

Next we consider the Triebel-Lizorkin caseA = F. Given f ∈ F s,a
p,q,d (�d,w; X), we need to

show that

(φt ∗ 2skS k f )k∈� = (2skS k(φt ∗ f ))k∈�
t→∞
−→ (2skS k f )k∈� in Lp,d (�d,w)[`q(�)](X). (5.27)

To this end we view (2skS k f )k∈� ∈ Lp,d (�d,w)[`q(�)](X) as a strongly measurable function
F : �d −→ `q(�; X) belonging to Lp,d (�d,w; `q(�; X)); see Remark 3.4.6.3 By Lemma 3.4.2,
φt ∗ F

t→∞
−→ F in Lp,d (�d,w; `q(�; X)). The convolution φt ∗ F corresponding to (φt ∗ 2skS k f )k∈�

under the identification Lp,d (�d,w; `q(�; X)) = Lp,d (�d,w)[`q(�)](X), this proves the required
convergence (5.27). �

3Here we really use q ∈ [1,∞[.
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Proposition 5.2.21. Let X be a Banach space, a ∈]0,∞[l, p ∈ [1,∞[l, q ∈ [1,∞], s ∈ � and
w ∈

∏l
j=1 A∞(�d j). Let A ∈ {B, F}. Then, for each multi-index α ∈ �d, the partial derivative

operator Dα ∈ S′(�d; X) restricts to a bounded linear operator

Dα : As,a
p,q,d (�d,w; X) −→ As−a·d α,a

p,q,d (�d,w; X)

Proof. We only treat the Triebel-Lizorkin case A = F, the Besov case being completely sim-
ilar. Writing ϕ−1 := 0, we define (Mk)k ∈ S(�d) by Mk := ϕ̂k−1 + ϕ̂k + ϕ̂k+1. Then we have
ϕ̂k = Mkϕ̂k by construction. Hence

Dα f = Dα
∞∑

k=0

S k f =

∞∑
k=0

DαF −1F [S k f ] =

∞∑
k=0

F −1ξαMkF [S k f ] in S′(�d; X).

Since ξαMkF [S k f ] has support contained in supp F [S k f ] ⊂ supp ϕ̂k, and since the ϕk satisfy
the Fourier support condition (5.13), it follows from Lemma 5.2.10 that

||Dα f ||F s−a·d α,a
p,q,d (�d ,w;X) .

∣∣∣∣∣∣(2(s−a·d α)kF −1ξαMkF [S k f ])k∈�

∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)](X)

=
∣∣∣∣∣∣(F −1(2−(a·d α)kξαMk)F [2skS k f ])k∈�

∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)](X)

. (5.28)

Since
[2−(a·d α)kξαMk](δ

[d ,a]
2k · ) = φ, k ≥ 3,

for some φ ∈ S(�d), it follows from Proposition 3.4.8 that∣∣∣∣∣∣(F −1(2−(a·d α)kξαMk)F [2skS k f ])k∈�

∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)](X)

.
∣∣∣∣∣∣(2skS k f )k∈�

∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)](X)

. (5.29)

Combining (5.28) and (5.29), we obtain

||Dα f ||F s−a·d α,a
p,q,d (�d ,w;X) . || f ||F s,a

p,q,d (�d ,w;X) .

�

5.2.1.f Convergence Criteria for Series

We now present some technical lemmas giving sufficient conditions for convergence of series
in S′(�d; X) plus norm estimations in weighted anisotropic Triebel-Lizorkin and Besov spaces.
In each of these results we impose some kind of Fourier support condition on the given series.

Lemma 5.2.22. Let X be a Banach space, a ∈]0,∞[l, p ∈ [1,∞[l, q ∈ [1,∞], s > 0, and
w ∈

∏l
j=1 A∞(�d j). Suppose that there exists an r ∈]0, 1[l such that s >

∑l
j=1 a jd j( 1

r j
− 1) and

w ∈
∏l

j=1 Ap j/r j(�
d j). Then, for every c > 0, there exists a constant C > 0 such that, for all

( fk)k∈� ⊂ S
′(�d; X) satisfying supp f̂k ⊂

∏l
j=1[−c2ka j , c2ka j]d j and

B :=
∣∣∣∣∣∣(2ks fk)k≥0

∣∣∣∣∣∣
`q(�)[Lp,d (�d ,w)](X)

< ∞,

it holds that
∑

k∈� fk defines a convergent series in S′(�d; X) with limit f ∈ Bs,a
p,q,d (�d,w; X) of

norm ≤ CB.
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Proof. We write Tn := 2na·d ϕ0(δ[d ,a]
2n · )∗ for each n ∈ �; then S 0 = T0 and S n = Tn − Tn+1

for n ≥ 1. Furthermore, we put fk := 0 for each k ∈ �<0. In view of the support condition
supp f̂k ⊂

∏l
j=1[−c2ka j ,−c2ka j]d j for k ≥ 0, there exists a fixed h ∈ � such that S n fk = 0 for all

n ∈ � and k ∈ �<n−h. As a consequence,

S n

K∑
k=0

fk =

K∑
k=n−h

S n fk =

K−n∑
l=−h

S n fl+n,

implying that∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

K∑
k=0

fk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Bs,a

p,q,d (�d ,w;X)

≤

K∑
l=−h

||(2nsS n fl+n)n≥0||`q(�)[Lp,d (�d ,w)](X)

≤

K∑
l=−h

(
||(2nsTn fl+n)n≥0||`q(�)[Lp,d (�d ,w)](X) + ||(2nsTn+1 fl+n)n≥1||`q(�)[Lp,d (�d ,w)](X)

)
.

Applying Proposition 3.4.9 with R = 2l+ , we can estimate∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

K∑
k=0

fk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
F s,a

p,q,d (�d ,w;X)

≤ C1

K∑
l=−h

2l+
∑m

j=1 a jd j( 1
r j
−1)
||(2ns fl+n)n≥0||`q(�)[Lp,d (�d ,w)](X)

≤ C2

K∑
l=−h

2l+(−s+
∑m

j=1 a jd j( 1
r j
−1)) ∣∣∣∣∣∣(2(l+n)s fl+n)n≥0

∣∣∣∣∣∣
`q(�)[Lp,d (�d ,w)](X)

≤ C3B;

here we used s >
∑m

j=1 a jd j( 1
r j
− 1) for the last estimate. This shows that (

∑K
k=0 fk)K∈� is a

sequence in Bs,a
p,q,d (�d,w; X) which is bounded by C3B. In light of the Fatou property of

Bs,a
p,q,d (�d,w; X) (cf. Proposition 5.2.18), it remains to be shown that

∑
k∈� fk is a convergent

series in S′(�d; X).
To finish, we establish the convergence of

∑
k∈� fk in S′(�d; X). To this end we fix an

s̃ ∈]
∑l

j=1 a jd j( 1
r j
− 1), s[. By Proposition 5.2.17, it is enough that (

∑K
k=0 fk)K∈� is a Cauchy

sequence in Bs̃,a
p,1,d (�d,w; X). So let ε > 0. We observe that∣∣∣∣∣∣(2ks̃ fk)k≥0

∣∣∣∣∣∣
`1(�)[Lp,d (�d ,w)](X)

≤ C4B < ∞, (5.30)

which can be shown as in the proof of Proposition 5.2.30(ii). For each κ ∈ � we define the
sequence ( f κk )k∈� by f κk := fk for k ≥ κ and f κk := 0 for k < κ. In this notation we can derive, as
in the first part of the proof, that∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
K∑

k=κ

fk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Bs̃,a

p,1,d (�d ,w;X)

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

K∑
k=0

f κk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Bs̃,a

p,1,d (�d ,w;X)

≤ C5

K∑
l=−h

2`+(−s̃+
∑l

j=1 a jd j( 1
r j
−1)) ∣∣∣∣∣∣2(l+n)s̃ f κl+n)n≥0

∣∣∣∣∣∣
`1(�)[Lp,d (�d ,w)](X)

. (5.31)
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Now we first choose L ∈ � such that

C5

∞∑
l=L+1

2`+(−s̃+
∑l

j=1 a jd j( 1
r j
−1))

<
ε

2(C4B + 1)
, (5.32)

and next pick κ0 ∈ � such that, for all κ ≥ κ0,

C5

L∑
l=−h

2`+(−s̃+
∑l

j=1 a jd j( 1
r j
−1)) ∣∣∣∣∣∣2(l+n)s̃ f κl+n)n≥0

∣∣∣∣∣∣
`1(�)[Lp,d (�d ,w)](X)

<
ε

2
; (5.33)

note that the existence of L and κ0 are assured by s̃ >
∑l

j=1 a jd j( 1
r j
− 1) and (5.30), respectively.

Finally, combining (5.31), (5.33), (5.32), and (5.30), we obtain, for all K ≥ κ ≥ κ0,∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

K∑
k=κ

fk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Bs̃,a

p,1,d (�d ,w;X)

<
ε

2
+

ε

2(C4B + 1)
C4B < ε.

�

Lemma 5.2.23. Let X be a Banach space, a ∈]0,∞[l, p ∈ [1,∞[l, q ∈ [1,∞], s > 0, and
w ∈

∏l
j=1 A∞(�d j). Suppose that there exists an r ∈]0, 1[l such that s >

∑l
j=1 a jd j( 1

r j
− 1) and

w ∈
∏l

j=1 Ap j/r j(�
d j). Then, for every c > 0, there exists a constant C > 0 such that, for all

( fk)k∈� ⊂ S
′(�d; X) satisfying supp f̂k ⊂

∏l
j=1[−c2ka j ,−c2ka j]d j and

F :=
∣∣∣∣∣∣(2ks fk)k≥0

∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)](X)

< ∞,

it holds that
∑

k∈� fk defines a convergent series in S′(�d; X) with limit f ∈ F s,a
p,q,d (�d,w; X) of

norm ≤ CF.

Proof. The proof goes completely analogous to the proof of Lemma 5.2.22. �

Lemma 5.2.24. Let X be a Banach space, a ∈]0,∞[l, p ∈ [1,∞[l, q ∈ [1,∞], s ∈ �, and
w ∈

∏l
j=1 A∞(�d j). For every λ > 0 and c > 1 there exists a constant C > 0 such that, for all

( fk)k∈� ⊂ S
′(�d; X) satisfying

supp f̂0 ⊂ {ξ ∈ �
d | |ξ|d ,a ≤ c}, supp f̂k ⊂ {ξ ∈ �

d | c−12λk ≤ |ξ|d ,a ≤ c2λk} (k ≥ 1), (5.34)

and
B :=

∣∣∣∣∣∣(2λsk fk)k≥0

∣∣∣∣∣∣
`q(�)[Lp,d (�d ,w)](X)

< ∞,

it holds that
∑

k∈� fk defines a convergent series in S′(�d; X) with limit f ∈ Bs,a
p,q,d (�d,w; X) of

norm ≤ CB.

Proof. We claim that there exists a constant C > 0 independent of ( fk)k∈� such that∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

K∑
k=0

fk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Bs,a

p,q,d (�d ,w;X)

≤ C
∣∣∣∣∣∣(2λsk fk)k≥0

∣∣∣∣∣∣
`q(�)[Lp,d (�d ,w)](X)

, K ∈ �. (5.35)
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By the Fatou property of Bs,a
p,q,d (�d,w; X) (cf. Proposition 5.2.18), it then remains to be shown

that
∑

k∈� fk defines a convergent series inS′(�d; X). This can be shown via the space Bs̃,a
p,1,d (�d,w; X),

s̃ < s, in the same spirit as in the end of the proof of Lemma 5.2.22 (but a lot easier).
To finish the proof we must establish the claim (5.35): For convenience of notation we put

fk := 0 for k ∈ �<0. Then, in view of the Fourier support condition (5.34) and the Fourier
supports of the ϕn (5.13), there exists a h ∈ � such that S n f = 0 for all n ∈ � and k ∈
� \

{⌊
n
λ

⌋
− h, . . . ,

⌊
n
λ

⌋
+ h

}
; here

⌊
n
λ

⌋
∈ � denotes the least integer part of n

λ
; we shall write

n
λ

=
⌊

n
λ

⌋
+ νn with νn ∈ [0, 1[. As a consequence, we have

S n

K∑
k=0

fk =

h∑
m=−h

S n fm+b n
λc
, n,K ∈ �. (5.36)

We pick r ∈]0, 1[l such that w j ∈ Ap j/r j(�
d j) for j = 1, . . . , l. Then, for each m ∈ {−h, . . . , h},

an application of Proposition 3.4.8 to (2ns fm+b n
λc

)n∈� yields the existence of a constant C1 > 0
independent of m and ( fk)k such that∣∣∣∣∣∣∣∣(2nsS n fm+b n

λc
)n∈�

∣∣∣∣∣∣∣∣
`q(�)[Lp,d (�d ,w)](X)

=
∣∣∣∣∣∣∣∣(F −1ϕ̂nF [2ns fm+b n

λc
])n∈�

∣∣∣∣∣∣∣∣
`q(�)[Lp,d (�d ,w)](X)

≤ C1 sup
n≥0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

l∏
j=1

(1 + |π j( · )|d j/r j)F −1[ϕ̂n(δ[d ,a]
2λ(m+bn/λc) · )]

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L1(�d)

·

∣∣∣∣∣∣∣∣(2ks fm+b k
λc

)k∈�

∣∣∣∣∣∣∣∣
`q(�)[Lp,d (�d ,w)](X)

. (5.37)

In order to estimate the term
∣∣∣∣∣∣∣∣(2sk fm+b k

λc
)k∈�

∣∣∣∣∣∣∣∣
`q(�)[Lp,d (�d ,w)](X)

in (5.37), we first have a look
at the mapping iλ : � −→ �, k 7→ bk/λc. We observe that

• if λ ∈]0, 1], then iλ is an injection;

• if λ ∈ [1,∞[, then iλ is a surjection with #i−1
λ (n) ∈ {bλc, bλc + 1} for all n ∈ �;

in particular, for all n ∈ � it holds that #i−1
λ (n) ≤ bλc+ 1. Since it furthermore clearly holds that

2ks . 2λsb k
λc for k ∈ �, it follows that∣∣∣∣∣∣∣∣(2sk fm+b k

λc
)k∈�

∣∣∣∣∣∣∣∣
Lp,d (�d ,w;`q(�;X))

≤ C2

∣∣∣∣∣∣(2λsn fm+n)n∈�

∣∣∣∣∣∣
Lp,d (�d ,w;`q(�;X))

(5.38)

For each m ∈ {−h, . . . , h} we have

F −1[ϕ̂n(δ[d ,a]
2λ(m+bn/λc) · )] =

{
F −1[ϕ̂1(δ[d ,a]

2λ(m−νn)−1 · )] if n ≥ 1;
F −1[ϕ̂0(δ[d ,a]

2λm · )] if n = 0.

Defining φm := F −1[ϕ̂1(δ[d ,a]
2λm−1 · )] ∈ S(�d) and ψm := F −1[ϕ̂0(δ[d ,a]

2λm · )], this can be rewritten as

F −1[ϕ̂n(δ[d ,a]
2λ(m+bn/λc) · )] =

{
2(a·d 1)λνnφm(δ[d ,a]

2λνn · ) if n ≥ 1;
ψm if n = 0.

122



Therefore, as νn ∈ [0, 1[ for all n, we get

sup
m∈{−h,...,h}

sup
n≥0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

l∏
j=1

(1 + |π j( · )|d j/r j)F −1[ϕ̂n(δ[d ,a]
2m+n · )]

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L1(�d)

≤ max
g∈{φm,ψm : m∈{−h,...,h}}

sup
b∈[1,2λ[

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

l∏
j=1

(1 + |π j( · )|d j/r j)ba·d 1g(δ[d ,a]
b · )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L1(�d)

= max
g∈{φm,ψm : m∈{−h,...,h}}

sup
b∈[1,2λ[

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

l∏
j=1

(1 + b−a j |π j( · )|d j/r j)g

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L1(�d)

= max
g∈{φm,ψm : m∈{−h,...,h}}

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

l∏
j=1

(1 + |π j( · )|d j/r j)g

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L1(�d)

=: C3 ∈]0,∞[ (5.39)

Finally, as in the end of the proof of Lemma 5.2.10, a combination of (5.36), (5.38), (5.37)
and (5.39) gives (5.35), as desired. �

Lemma 5.2.25. Let X be a Banach space, a ∈]0,∞[l, p ∈ [1,∞[l, q ∈ [1,∞], s ∈ �, and
w ∈

∏l
j=1 A∞(�d j). For every λ > 0 and c > 1 there exists a constant C > 0 such that, for all

( fk)k∈� ⊂ S
′(�d; X) satisfying

supp f̂0 ⊂ {ξ ∈ �
d | |ξ|d ,a ≤ c}, supp f̂k ⊂ {ξ ∈ �

d | c−12λk ≤ |ξ|d ,a ≤ c2λk} (k ≥ 1), (5.40)

and
F :=

∣∣∣∣∣∣(2λsk fk)k≥0

∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)](X)

< ∞,

it holds that
∑

k∈� fk defines a convergent series in S′(�d; X) with limit f ∈ F s,a
p,q,d (�d,w; X) of

norm ≤ CF.

Proof. The proof goes completely analogous to the proof of Lemma 5.2.24. �

5.2.1.g A Fourier Multiplier Theorem

Recall that each m in OM(�d;L(X,Y)), the space of slowly increasing L(X,Y)-valued func-
tions, defines a multiplication operator f 7→ m f which maps S′(�d; X) continuously into
S′(�d; Y); see Appendix C.4. As a consequence, we may associate to such an m the Fourier
multiplier operator Tm ∈ L(S′(�d; X),S′(�d; Y)) given by Tm f := F −1[m f̂ ]. The next proposi-
tion says that for m it is sufficient to satisfy some kind of anisotropic Mikhlin condition in order
that this Fourier multiplier operator Tm restricts to a bounded linear operator on anisotropic
mixed-norm weighted Besov and Triebel-Lizorkin spaces.

Proposition 5.2.26. Let X and Y be Banach spaces, a ∈]0,∞[l, p ∈]1,∞[l, q ∈ [1,∞], s ∈ �,
and w ∈

∏l
j=1 A∞(�d j). Let r ∈]0,∞[l be such that r j < min{p1, . . . , p j, q} and w j ∈ Ap j/r j(�

d j)
for j = 1, . . . , l. Let A ∈ {B, F}. Then there exists a constant C > 0 such that, for all
m ∈ OM(�d;L(X,Y)) satisfying

sup
α∈�d:|α j |<d j+

d j
r j

+1

sup
ξ∈�d

∣∣∣∣∣∣(1 + |ξ|d ,a)a·d αDαm(ξ)
∣∣∣∣∣∣
L(X,Y)

=: κm < ∞, (5.41)

the associated Fourier multiplier operator Tm ∈ L(S′(�d; X),S′(�d; Y)) restricts to a bounded
linear operator fromAs,a

p,q,d (�d,w; X) toAs,a
p,q,d (�d,w; Y) of norm ≤ Cκm.
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Proof. We only consider the case A = F, the case A = B being completely similar. Put
fk := F −1ϕ̂k f̂ for k ∈ �≥0 and fk := 0 for k ∈ �<0. For each n ∈ � we have S nTm f =∑

k∈� S nTm fk in S′(�d; Y) because f =
∑

k∈� fk in S′(�d; Y), Tm ∈ L(S′(�d; X),S′(�d; Y)) and
S n ∈ L(S′(�d; Y)). But, in view of the Fourier supports (5.13) of the ϕn, there is some fixed
h ∈ � independent of m and f such that S nTmS k f = 0 for all n ∈ � and k < � \ {−h, . . . , h},
implying that S nTm f =

∑h
κ=−h S nTm fκ+n. We thus obtain

||Tm f ||F s,a
p,q,d (�d ,w;Y) ≤

h∑
κ=−h

∣∣∣∣∣∣(F −1[(ϕ̂nmF (2ns fn+κ)])n∈�

∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)](X)

. (5.42)

For each κ ∈ {−h, . . . , h} we invoke Proposition 3.4.8 to obtain a constant C1 > 0 (indepen-
dent of m, κ, and ( fk)k) for which have the following estimate:∣∣∣∣∣∣(F −1[ϕ̂nm]F2sn fn+κ)n∈�

∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)](X)

≤ C1 sup
n≥0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

l∏
j=1

(1 + | · |d j/r j))F −1[(ϕ̂nm)(δ[d ,a]
2κ+n · )]

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L1(�d;L(X,Y))

·
∣∣∣∣∣∣(2ks fκ+k)k∈�

∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)](X)

. (5.43)

Since ϕ̂n = ϕ1(δ[d ,a]
2n · ) for n ≥ 1, for each κ ∈ {−h, . . . , h} we have

ϕ̂n(δ[d ,a]
2κ+n · ) =

{
ϕ̂1(δ[d ,a]

2κ+n · ) =: φκ ∈ C∞c (�d) if n ≥ 1;
ϕ̂0(δ[d ,a]

2κ · ) =: ψκ ∈ C∞c (�d) if n = 0.

Now we define i ∈ (�)l by setting each i j to be the smallest natural number satisfying i j > d j+
d j

r j
.

Then we can estimate

sup
n≥0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

l∏
j=1

(1 + | · |d j/r j)F −1[(ϕ̂nm)(δ[d ,a]
2κ+n · )]

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L1(�d;L(X,Y))

≤ sup
(n,g) ∈�>0×{φκ}∪{0}×{ψκ}

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

l∏
j=1

(1 + | · |d j/r j)F −1[g m(δ[d ,a]
2κ+n · )]

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L1(�d;L(X,Y))

≤ sup
(n,g) ∈�>0×{φκ}∪{0}×{ψκ}

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

l∏
j=1

(1 + | · |i j)F −1[g m(δ[d ,a]
2κ+n · )]

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L∞(�d;L(X,Y))

·

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

l∏
j=1

(1 + | · |−i j+d j/r j)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L1(�d)

≤ C2 sup
(n,g) ∈�>0×{φκ}∪{0}×{ψκ}

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

l∏
j=1

(1 + | · |i j)F −1[g m(δ[d ,a]
2κ+n · )]

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L∞(�d;L(X,Y))

Since
l∏

j=1

(1 + |x j|
i j) ≤

l∏
j=1

(1 + |x j|
i j

1 ) =
∑
α∈J

cα|xα|
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for some J ⊂ �d and (cα)α∈J ⊂ � with the property that |α j| ≤ i j ( j = 1, . . . , l) for all α ∈ J, and
since the inverse Fourier transform F −1 is bounded from L1(�d;L(X,Y)) to L∞(�d;L(X,Y)),
this can be further estimated as

sup
n≥0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

l∏
j=1

(1 + | · |d j/r j)F −1[(ϕ̂nm)(δ[d ,a]
2κ+n · )]

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L1(�d;L(X,Y))

≤ C2

∑
α∈J

cα sup
(n,g) ∈�>0×{φκ}∪{0}×{ψκ}

∣∣∣∣∣∣∣∣F −1
(
Dα[g m(δ[d ,a]

2κ+n · )]
)∣∣∣∣∣∣∣∣

L∞(�d;L(X,Y))

≤ C3

∑
α∈J

sup
(n,g) ∈�>0×{φκ}∪{0}×{ψκ}

∣∣∣∣∣∣Dα[g m(δ[d ,a]
2κ+n · )]

∣∣∣∣∣∣
L1(�d;L(X,Y))

. (5.44)

By a combination of the Leibniz rule and the chain rule,

Dα[g m(δ[d ,a]
2κ+n · )] =

∑
β≤α

(
α

β

)
(Dα−βg) 2(κ+n)a·d β(Dβm)(δ[d ,a]

2κ+n · ).

Since φκ, ψκ ∈ C∞c (�d) and since supp φκ ⊂ {ξ | |ξ|d ,a ≥ R} for some R > 0, we can thus estimate,
for all κ ∈ {−h, . . . , h} and α ∈ J,

sup
(n,g) ∈�>0×{φκ}∪{0}×{ψκ}

∣∣∣∣∣∣Dα[g m(δ[d ,a]
2κ+n · )]

∣∣∣∣∣∣
L1(�d;L(X,Y))

≤ C4 sup
n∈�

∑
β≤α

sup
ξ∈�d

∣∣∣∣∣∣(1 + 2κ+n|ξ|d ,a)a·d β(Dβm)(δ[d ,a]
2κ+n ξ)

∣∣∣∣∣∣
L(X,Y)

= C4

∑
β≤α

sup
ζ∈�d

∣∣∣∣∣∣(1 + |ζ |d ,a)a·d β(Dβm)(ζ)
∣∣∣∣∣∣
L(X,Y)

. (5.45)

Finally, combining (5.42), (5.43), (5.44), (5.45) and (5.41), we obtain

||Tm f ||F s,a
p,q,d (�d ,w;Y) ≤

h∑
κ=−h

C5

∑
α∈J

∑
β≤α

κm

∣∣∣∣∣∣(2ks fκ+k)k∈�

∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)](X)

≤ C6κµ || f ||F s,a
p,q,d (�d ,w;X) .

�

Example 5.2.27. Let m ∈ C∞(�d;L(X,Y)) be such that m(δ[d ,a]
λ ξ) = m(ξ) for all ξ ∈ �d with

|ξ|d ,a ≥ R for some fixed R > 0 and λ > 1. Then m satisfies the condition of the theorem.

Proof. Inductively we see that m(δ[d ,a]
λk ξ) = m(ξ) for all k ∈ � and ξ ∈ �d with |ξ|d ,a ≥ R.

Differentiation yields

λka·d αDαm(δ[d ,a]
λk ξ) = Dαm(ξ) (|ξ|d ,a ≥ R + 1)

for all α ∈ �d. Since each ζ ∈ �d with |ζ |d ,a ≥ R + 1 can be written as ζ = δ[d ,a]
λk ξ for some
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k ∈ � and ξ ∈ �d with R + 1 ≤ |ξ|d ,a ≤ λ(R + 1), it follows that

sup
ζ∈�d

∣∣∣∣∣∣(1 + |ζ |d ,a)a·d αDαm(ζ)
∣∣∣∣∣∣
L(X,Y)

≤ sup
|ζ |d ,a≤R+1

∣∣∣∣∣∣(1 + |ζ |d ,a)a·d αDαm(ζ)
∣∣∣∣∣∣
L(X,Y)

+ sup
|ζ |d ,a≥R+1

∣∣∣∣∣∣(1 + |ζ |d ,a)a·d αDαm(ζ)
∣∣∣∣∣∣
L(X,Y)

≤ C1,α + 2a·d α sup
|ζ |d ,a≥R+1

∣∣∣∣∣∣|ζ |a·d αd ,a Dαm(ζ)
∣∣∣∣∣∣
L(X,Y)

= C1,α + 2a·d α sup
R+1≤|ξ|d ,a≤λ(R+1)

∣∣∣∣∣∣|ξ|a·d αd ,a Dαm(δ[d ,a]
λk ξ)

∣∣∣∣∣∣
L(X,Y)

≤ C2,α.

This shows that m belongs to OM(�d;L(X,Y)) and satisfies condition (5.41) �

5.2.2 Isomorphisms and Embeddings
5.2.2.a Lifting Property and Equivalent Norms involving Derivatives

The isomorphisms in the next two propositions will be crucial to relate the Bessel potential and
Sobolev spaces with the Besov and Triebel-Lizorkin spaces (see Proposition 5.2.31).

The first proposition basically says that F s,a
p,q,d (�d,w; X) can be defined out of F0,a

p,q,d (�d,w; X)
via the Bessel potential operator Jd ,a

a in the same way as H s,a
p,d (�d,w; X) is defined out of

Lp,d (�d,w; X).

Proposition 5.2.28. Let X be a Banach space, a ∈
(

1
�≥1

)l
, p ∈ [1,∞[l, q ∈ [1,∞], s ∈ �,

and w ∈
∏l

j=1 A∞(�d j). Then for all σ ∈ �, the (d , a)-anisotropic Bessel-potential operator
J

d ,a
σ ∈ L(S′(�d; X)) restricts to isomorphisms of Banach spaces

Jd ,a
σ : Bs,a

p,q,d (�d,w; X)
'
−→ Bs−σ,a

p,q,d (�d,w; X)

Jd ,a
σ : F s,a

p,q,d (�d,w; X)
'
−→ F s−σ,a

p,q,d (�d,w; X).

Proof. We only treat the Triebel-Lizorkin case, the Besov case being completely similar. It suf-
fices to show thatJd ,a

σ restricts to a bounded linear operator from F s,a
p,q,d (�d,w; X) to F s−σ,a

p,q,d (�d,w; X)
(for arbitrary s and σ), the inverse of Jd ,a

σ being Jd ,a
−σ (as operators on S′(�d; X)). We assume

that ϕ ∈ Φd ,a(�d) is such that supp ϕ̂k∩ , ∅ supp ϕ̂n implies |n − k| ≤ 1; this can for example
be achieved by taking A = 1 and B = 3

2 in Definition 5.2.4, see Example 5.2.5. Now let us put
ϕ−1 := 0 and define ψk := ϕk−1 + ϕk + ϕk+1 for each k ∈ �. Then note that

ϕ̂k = ψ̂kϕ̂k ∀k ≥ 0 and ψ̂k = φ(δ[d ,a]
2−k · ) ∀k ≥ 3

for some φ ∈ S(�d) with φ ≡ 0 in a neighborhood of 0. For each k ∈ � we furthermore define
µk ∈ C∞c (�d) by

mk(ξ) := 2−σk(1 + |ξ|2d ,a)σ/2ψ̂k(ξ) (ξ ∈ �d).

Then, for all f ∈ F s,a
p,q,d (�d,w; X),∣∣∣∣∣∣Jd ,a
σ f

∣∣∣∣∣∣
F s−σ,a

p,q,d (�d ,w;X)
=

∣∣∣∣∣∣(F −1mkF2skS k f )k≥0

∣∣∣∣∣∣
Lp,d (�d ,w;`q(�;X))

,
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which by Proposition 3.4.8 can be estimated as

∣∣∣∣∣∣Jd ,a
σ f

∣∣∣∣∣∣
F s−σ,a

p,q,d (�d ,w;X)
≤ C1 sup

k≥0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

l∏
j=1

(1 + |π[d ; j]( · )|d j/r j)F −1[mk(δ
[d ,a]
2k · )]

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L1(�d)

|| f ||F s,a
p,q,d (�d ,w;X) ,

where r ∈]0,∞[l is as in this proposition. Choosing i ∈ (2�)l such that i j > d j +
d j

r j
( j =

1, . . . ,m), this can be further estimated as∣∣∣∣∣∣J d ,a
σ f

∣∣∣∣∣∣
F s−σ,a

p,q,d (�d ,w;X)

≤ C1 sup
k≥0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣F −1

l∏
j=1

(1 − (−∆[d ; j])i j/2)[mk(δ
[d ,a]
2k · )]

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L∞(�d)

|| f ||F s,a
p,q,d (�d ,w;X)

· sup
k≥0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

l∏
j=1

(1 + |π[d ; j]( · )|−i j+d j/r j)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L1(�d)

≤ C2 sup
k≥0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣F −1

 l∏
j=1

(1 + (−∆[d ; j])i j/2)[mk(δ
[d ,a]
2k · )]


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L∞(�d)

|| f ||F s,a
p,q,d (�d ,w;X)

≤ C3 sup
k≥0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

l∏
j=1

(1 + (−∆[d ; j])i j/2)[mk(δ
[d ,a]
2k · )]

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L1(�d)

|| f ||F s,a
p,q,d (�d ,w;X) , (5.46)

where we used the boundedness of F −1 from L1 to L∞ in the last inequality. Since m0,m1,m2 ∈

C∞c (�d) and since

mk(δ
[d ,a]
2k ξ) = 2−σk(1 + |δ[d ,a]

2k ξ|2d ,a)σ/2ψ̂k(δ
[d ,a]
2k ξ)

= (2−2k + |ξ|2d ,a)σ/2φ(ξ) ∀k ≥ 3

with φ ∈ C∞c (�d) satisfying φ ≡ 0 in a neighborhood of 0, there exists a constant C4 > 0
(independent of k) such that∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
l∏

j=1

(1 + (−∆[d ; j])i j/2)[mk(δ
[d ,a]
2k · )]

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L1(�d)

≤ C4.

Combining this with (5.46), we obtain∣∣∣∣∣∣Jd ,a
σ f

∣∣∣∣∣∣
F s−σ,a

p,q,d (�d ,w;X)
≤ C5 || f ||F s,a

p,q,d (�d ,w;X) .

�

Let n ∈ (�>0)l, a ∈
(

1
�>0

)l
, and s ∈ �, such that n j = s

a j
for j = 1, . . . , l. Then the

next proposition basically says that F s,a
p,q,d (�d,w; X) can be defined in terms of derivatives

and F0,a
p,q,d (�d,w; X) in the same way as Wn

p,d (�d,w; X) is defined in terms of derivatives and
Lp,d (�d,w; X). In fact, here we have the freedom to replace Jd ,n (5.2) by suitable other sets of
multi-indices J ⊂ �d. In order to give an easy description of which J are allowed, we define

Jn,d := {0} ∪

α ∈ l⋃
j=1

ι[d ; j]�
d j : |α j| ≤ n j, j = 1, . . . , l
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and

Jn,d :=
{
α ∈ �d :

1
n
·d α ≤ 1

}
.

Proposition 5.2.29. Let X be a Banach space, a ∈
(

1
�≥1

)l
, p ∈ [1,∞[l, q ∈ [1,∞], s ∈ �,

w ∈
∏l

j=1 A∞(�d j), and k ∈ �. Suppose that J ⊂ �d is such that J k
a ,d
⊂ J ⊂ J k

a ,d
, where

k
a = ( k

a1
, . . . , k

al
) ∈ �l. Let A ∈ {B, F}. Then f 7→

∑
α∈J ||Dα f ||

A
s−k,a
p,q,d (�d ,w;X) defines an equivalent

norm onAs,a
p,q,d (�d,w; X).

Proof. Observe that f 7→
∑
α∈J ||Dα f ||

A
s−k,a
p,q,d (�d ,w;X) defines a norm on the subspace of S′(�d; X)

on which it is finite. We first show that
∑
α∈J ||Dα · ||

A
s−k,a
p,q,d (�d ,w;X) . || · ||As,a

p,q,d (�d ,w;X). For each α ∈ J

it is an easy but tedious computation to check that ξ 7→ ξα(1 + |ξ|2d ,a)−k/2 is a Fourier multiplier
on As−k,a

p,q,d (�d,w; X) as in Proposition 5.2.26, say of norm cα. With the lifting property from
Proposition 5.2.28 it thus follows that

∑
α∈J

||Dα f ||
A

s−k,a
p,q,d (�d ,w;X) =

∑
α∈J

∣∣∣∣∣∣F −1[ξαF f ]
∣∣∣∣∣∣
A

s−k,a
p,q,d (�d ,w;X)

=
∑
α∈J

∣∣∣∣∣∣F −1[ξα(1 + |ξ|2d ,a)−k/2FJd ,a
k f ]

∣∣∣∣∣∣
A

s−k,a
p,q,d (�d ,w;X)

≤
∑
α∈J

cα
∣∣∣∣∣∣Jd ,a

k f
∣∣∣∣∣∣
A

s−k,a
p,q,d (�d ,w;X)

≤ C || f ||As,a
p,q,d (�d ,w;X) .

Next, we show the reverse inequality. For this it suffices to take the minimal J in the
statement,that is , to take J = J k

a ,d
. We claim that there exist Fourier multipliers ρ j,i ( j = 1, . . . , l,

i = 1, . . . , d j) onAs−k,a
p,q,d (�d,w; X) as in Proposition 5.2.26 and a constant c > 0 such that

1 +

l∑
j=1

d j∑
i=1

ρ j,i(ξ)ξ
k/a j

j,i ≥ c(1 + |ξ|2d ,a)k/2 (ξ ∈ �d). (5.47)

Assuming this is true, it is again an easy but tedious computation to check that

m(ξ) := (1 + |ξ|2d ,a)k/2

1 +

l∑
j=1

d j∑
i=1

ρ j,i(ξ)ξ
k/a j

j,i


−1

is a Fourier multiplier on As−k,a
p,q,d (�d,w; X) as in Proposition 5.2.26. With the lifting property
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from Proposition 5.2.28 it thus follows that

|| f ||As,a
p,q,d (�d ,w;X) =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣Jd ,a
−k TµF

−1

1 +

m∑
j=1

d j∑
i=1

ρ j,iξ
k/a j

j,i

F f

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
A

s,a
p,q,d (�d ,w;X)

≤ C1 || f ||As−k,a
p,q,d (�d ,w;X) + C1

m∑
j=1

d j∑
i=1

∣∣∣∣∣∣∣∣F −1ρ j,iξ
k/a j

j,i F f
∣∣∣∣∣∣∣∣
A

s−k,a
p,q,d (�d ,w;X)

≤ C2 || f ||As−k,a
p,q,d (�d ,w;X) + C2

m∑
j=1

d j∑
i=1

∣∣∣∣∣∣∣∣Dk/a j

j,i f
∣∣∣∣∣∣∣∣
A

s−k,a
p,q,d (�d ,w;X)

= C2

∑
α∈J

||Dα f ||
A

s−k,a
p,q,d (�d ,w;X) .

To finish, it remains to establish the claim. For each ( j, i), with j ∈ {1, . . . , l} and i ∈
{1, . . . , d j}, we construct ρ j,i ∈ C∞(�d) as follows: Let ψ ∈ C∞(�d) be a smooth function taking
values in �≥0 such that ψ ≡ 1 on {ξ : |ξ|d ,a ≥ 1} and 0 < suppψ. Since

K±j,i := {u ∈ S d−1 | ±ui, j > 0 and |u j̃,ĩ|
1/a j̃ ≤ |ui, j|

1/a j ∀( j̃, ĩ) , ( j, i)}

is a compact in the unit sphere S d−1 ⊂ �d which is contained in the open O±j,i := {u ∈ S d−1 |

±ui, j > 0} ⊂ S d−1 (in the topology of S d−1), there exists a ϑ±i, j ∈ C∞(S d−1) taking values in [0, 1]
with ϑ±i, j ≡ 1 on K±j,i and suppϑ±i, j ⊂ O±j,i. Now we let φ±i, j ∈ C∞(�d \ {0}) be the function which
in (d , a)-anisotropic polar coordinates is given by φ±i, j : (λ, u) 7→ ϑ±i, j(u), and define

ρ j,i := ψ(ϑ+
i, j + (−1)k/a jϑ−i, j).

To see that (5.47) is fulfilled by the constructed functions (ρ j,i) j,i, let ξ ∈ �d. Then we have
that |ξ j,i|

1/a j ≤ |ξi0, j0 |
1/a j for all (i, j) , (i0, j0) and some (i0, j0). By construction of the ρ j,i, we

have

1 +

l∑
j=1

d j∑
i=1

ρ j,i(ξ)ξ
k/a j

j,i ≥ 1 + ψ(ξ)|ξi0, j0 |
k/a j0 ≥ 1 +

ψ(ξ)
d

l∑
j=1

d j∑
i=1

|ξ j,i|
k/a j .

In particular, this is ≥ 1 because we have chosen ψ ≥ 0. Therefore, it suffices to consider the
case |ξ|d ,a ≥ 1. Then ψ(ξ) = 1, so that

1+

l∑
j=1

d j∑
i=1

ρ j,i(ξ)ξ
k/a j

j,i ≥ 1+
1
d

l∑
j=1

d j∑
i=1

|ξ j,i|
k/a j ≥

1
d
|(1, |ξ1,1|

2/a1 , . . . , |ξ1,d1 |
2/a1 , |ξ2,1|

2/a2 , . . . , |ξl,dl |
2/al)|k/2k/2,

where | · |k is the k-norm on �1+d. Since | · |k h | · |1 on �1+d and since
(∑l

j=1
∑d j

i=1 |ζ j,i|
2/a j

)1/2
h

|ζ |d ,a for ζ ∈ �d (equivalence of norms and (d , a)-anisotropic distance functions, respectively),
the desired estimate (5.47) follows.

Finally, we show that each ρ j,i is a Fourier multiplier on As−k,a
p,q,d (�d,w; X) as in Proposi-

tion 5.2.26. But ρ j,i ∈ C∞(�d) is constructed in such a way that ρ j,i(δ
[d ,a]
λ ξ) = ρ j,i(ξ) for all

λ > 1 and |ξ|d ,a ≥ 1, whence Example 5.2.27 applies to get the desired conclusion. �
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5.2.2.b Elementary Embeddings

Proposition 5.2.30. Let X be a Banach space, a ∈]0,∞[l, p ∈ [1,∞[l, s ∈ �, and w ∈
∏l

j=1 ∈

A∞(�d j).

(i) For all 1 ≤ q0 ≤ q1 ≤ ∞,

Bs,a
p,q0,d

(�d,w; X) ↪→ Bs,a
p,q1,d

(�d,w; X),

F s,a
p,q0,d

(�d,w; X) ↪→ F s,a
p,q1,d

(�d,w; X).

(ii) For all q0, q1 ∈ [1,∞] and ε > 0,

Bs+ε,a
p,q0,d

(�d,w; X) ↪→ Bs,a
p,q1,d

(�d,w; X),

F s+ε,a
p,q0,d

(�d,w; X) ↪→ F s,a
p,q1,d

(�d,w; X).

(iii) For q ∈ [1,∞],

Bs,a
p,min{p1,...,pm,q},d

(�d,w; X) ↪→ F s,a
p,q,d (�d,w; X) ↪→ Bs,a

p,max{p1,...,pm,q},d
(�d,w; X)

(iv) For all q ∈ [1,∞] and Banach spaces X ↪→ Y,

F s,a
p,q,d (�d,w; X) ↪→ F s,a

p,q,d (�d,w; Y) and Bs,a
p,q,d (�d,w; X) ↪→ Bs,a

p,q,d (�d,w; Y)

Proof. (i) is immediate from the monotonicity of `q-spaces (`q0 ↪→ `q1 for 1 ≤ q0 ≤ q1 ≤ ∞),
(ii) follows from a combination of (i) and the estimate∣∣∣∣∣∣(2skbk)k∈�

∣∣∣∣∣∣
`q1 (�)

≤
∣∣∣∣∣∣(2−εk)k

∣∣∣∣∣∣
`q1 (�)

∣∣∣∣∣∣(2(s+ε)kbk)k∈�

∣∣∣∣∣∣
`q∞ (�)

≤ C
∣∣∣∣∣∣(2(s+ε)kbk)k∈�

∣∣∣∣∣∣
`q∞ (�)

, (bk)k ∈ �
�,

and (iv) is completely trivial. Finally, (iii) is also not very difficult and can be proven as [97,
Section 2.3.2, Proposition 2.(iii)]. �

The embeddings between Sobolev and Triebel-Lizorkin spaces in the next proposition will
form the basis for determining the trace space of anisotropic Sobolev spaces in Section 5.2.3;
also see the introductory section of this chapter, Section 5.1. Similarly this will be the case
for anisotropic Bessel potential spaces. Here we do not require any restrictions on the Banach
space X; also see the discussion in Section 5.2.1.b.

Proposition 5.2.31. Let X be a Banach space, a ∈
(

1
�≥1

)l
, p ∈]1,∞[l, and w ∈

∏l
j=1 Ap j(�

d j).

(i) For all s ∈ �,

Bs,a
p,1,d (�d,w; X) ↪→ H s,a

p,d (�d,w; X) ↪→ Bs,a
p,∞,d (�d,w; X),

F s,a
p,1,d (�d,w; X) ↪→ H s,a

p,d (�d,w; X) ↪→ F s,a
p,∞,d (�d,w; X). (5.48)

(ii) For all s ∈ � and n ∈ �l such that n j = s
a j

( j = 1, . . . , l),

Bs,a
p,1,d (�d,w; X) ↪→ Wn

p,d (�d,w; X) ↪→ Bs,a
p,∞,d (�d,w; X),

F s,a
p,1,d (�d,w; X) ↪→ Wn

p,d (�d,w; X) ↪→ F s,a
p,∞,d (�d,w; X). (5.49)
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Proof. In view of Proposition 5.2.30, it suffices to prove (5.48) and (5.49). By Propositions
5.2.28 and 5.2.29, for this it is in turn enough to establish the embeddings

F0,a
p,1,d (�d,w; X) ↪→ Lp,d (�d,w; X) ↪→ F0,a

p,∞,d (�d,w; X). (5.50)

For the first inclusion in (5.50), let f be in the dense subspace S(�d; X) of F0,a
p,1,d (�d,w; X).

Then f =
∑∞

n=0 S n f in S(�d; X); in particular, f =
∑∞

n=0 S n f pointwise. It follows that

|| f ||X ≤
∞∑

n=0

||S n f ||X = ||(S n f )n≥0||`1(�;X) ,

and taking Lp,d (�d,w)-norms we obtain

|| f ||Lp,d (�d ,w;X) ≤ || f ||F0,a
p,1,d (�d ,w;X) .

For the second inclusion in (5.50), let f ∈ Lp,d (�d,w; X). By Lemma 3.4.1,

||S 0 f ||Lp,d (�d ,w;X) ≤ C1 || f ||Lp,d (�d ,w;X) .

For n ≥ 1 we have

||S n f (x)||X ≤

∫
�d
|ϕn(y)| || f (x − y)||X dy

=

∫
�d
|2(n−1)a·d ϕ1(δ[d ,a]

2n−1 y)| || f (x − y)||X dy

≤ sup
k∈�

∫
�d
|2ka·d ϕ1(δ[d ,a]

2k y)| || f (x − y)||X dy,

so that, by Lemma 3.4.1,

||(S n f )n≥1||Lp,d (�d ,w)[`∞(�≥1)](X) ≤ C2 || f ||Lp,d (�d ,w;X) .

Therefore,

|| f ||F0,a
p,∞,d (�d ,w;X) ≤ ||S 0 f ||Lp,d (�d ,w;X) + ||(S n f )n≥1||Lp,d (�d ,w)[`∞(�≥1)](X) ≤ C3 || f ||Lp,d (�d ,w;X) .

�

5.2.2.c Sobolev Embeddings

The following inequality is an inequality of Plancherel-Pólya-Nikol’skii type. It allows us to
easily prove the Sobolev embedding result Corollary 5.2.33 for weighted anisotropic mixed-
norm Besov spaces. We will furthermore use this inequality in the trace problem for Besov
spaces in Section 5.2.3 to the case γ ≥ p − 1, where γ the parameter in the power weight
wγ(t) = |t|γ on �; see the end of the proof of Lemma 5.2.53 for this application. We would
like to remark that for applications in Chapter 6 we will only need traces for γ ∈] − 1, p − 1[
(corresponding to wγ ∈ Ap; see Example D.2.12).

Proposition 5.2.32. Let X be a Banach space, p, p̃ ∈]1,∞[l, and w, w̃ ∈
∏l

j=1W(�d j). Suppose
that J ⊂ {1, . . . , l} is such that
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• p j = p̃ j and w j = w̃ j for j < J;

• w j(x j) = |x j|
γ j and w̃ j(x j) = |x j|

γ̃ j for j ∈ J for some γ j, γ̃ j > −d j satisfying

γ̃ j

p̃ j
≤
γ j

p j
and

d j + γ̃ j

p̃ j
<

d j + γ j

p j
.

Then there exists a constant C > 0 such that, for all f ∈ S′(�d; X) with supp( f̂ ) ⊂
∏l

j=1[−R1,R1]d j

for some R1, . . . ,Rl > 0, we have the inequality

|| f ||L p̃,d (�d ,w̃;X) ≤ C

∏
j∈J

Rδ j

j

 || f ||Lp,d (�d ,w;X) ,

where δ j := (d j + γ j)/p j − (d j + γ̃ j)/ p̃ j > 0 for each j ∈ J.

Proof. Step I. The case l = 1:
We refer to [77, Proposition 4.1].
Step II. The case J = {l}:
By Lemma C.7.2, we may view f as an element of S′(�dl ; C(�d1+...+dl−1; X)) having compact

Fourier support contained in [−Rl,Rl]dl . Given a compact subset K ⊂ �d1+...+dl−1 we have the
continuous linear operator

m1K : C(�d′; X) −→ L∞K (�d′; X) ↪→ Lp′,d ′(�d′ ,w′; X), g 7→ 1Kg,

where d′ := d1 + . . . + dl−1, d ′ = (d1, . . . , dl−1), p′ := (p1, . . . , pl−1), and w′ = (w1, . . . ,wl−1).4

Accordingly, for each compact K ⊂ �d′ we have 1K f = m1K f ∈ S′(�dl ; Lp′,d ′(�d′ ,w′; X)) with
compact Fourier support contained in [−Rl,Rl]dl , so that we may apply Step I to obtain that

||1K f ||L p̃l (�dl ,w̃l;Lp′ ,d ′ (�d′ ,w′;X)) ≤ CRδl
l ||1K f ||Lpl (�dl ,wl;Lp′ ,d ′ (�d′ ,w′;X))

for some constant C > 0 independent of f and K. Since L p̃,d (�d, w̃; X) = L p̃l(�dl , w̃l; Lp′,d ′(�d′ ,w′; X))
and Lp,d (�d,w; X) = Lpl(�dl ,wl; Lp′,d ′(�d′ ,w′; X)), the desired result follows by taking K =

Kn = [−n, n]dl and letting n→ ∞.
Step III. The case #J = 1:
Let’s say that J = { j0}. Then, by Corollary C.6.5, for each fixed x′′ = (x j0+1, . . . , xl) ∈

�d j0+1+...+dl we have that f (·, x′′) defines an X-valued tempered distribution having compact
Fourier support contained in

∏ j0
j=1[−R j,R j]d j . The desired inequality follows by applying Step

II to f (·, x′′) for each x′′ and subsequently taking L(p j0+1,...,pl),(d j0+1,...,dl)(�d j0+1+...+dl , (w j0+1, . . . ,wl); X)-
norms with respect to x′′.

Step IV. The general case:
Just apply Step III repeatedly (#J times). �

Corollary 5.2.33. Let X be a Banach space, p, p̃ ∈]1,∞[l, q, q̃ ∈ [1,∞], s, s̃ ∈ �, and w, w̃ ∈∏l
j=1 A∞(�d j). Suppose that J ⊂ {1, . . . , l} is such that

• p j = p̃ j and w j = w̃ j for j < J;

4The notations here do not mean Hölder conjugates and p-dual weights.
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• w j(x j) = |x j|
γ j and w̃ j(x j) = |x j|

γ̃ j for j ∈ J for some γ j, γ̃ j > −d j satisfying

γ̃ j

p̃ j
≤
γ j

p j
and

d j + γ̃ j

p̃ j
<

d j + γ j

p j
.

Furthermore, assume that q ≤ q̃ and that s − d j+γ j

p j
= s̃ − d j+γ̃ j

p̃ j
for each j ∈ J. Then

Bs,a
p,q,d (�d,w; X) ↪→ Bs̃,a

p̃,q̃,d (�d, w̃; X).

Proof. This is an easy consequence of the above proposition and Proposition 5.2.30.(i); also
see [77, Theorem 1.1,(2)⇒(1)] for the isotropic case. �

5.2.2.d Invariance under rescaling in Smoothness-Anisotropy

The next proposition says that the anisotropic Besov and Triebel-Lizorkin spaces, Bs,a
p,q,d (�d,w; X)

and F s,a
p,q,d (�d,w; X), are invariant under the reparametrization (s, a) 7→ (λs, λa), λ > 0.

Proposition 5.2.34. Let X be a Banach space, a ∈]0,∞[l, p ∈ [1,∞[l, q ∈ [1,∞], s ∈ � and
w ∈

∏l
j=1 A∞(�d j). LetA ∈ {B, F}. Then we have, for each λ > 0,

A
s,a
p,q,d (�d,w; X) = Aλs,λa

p,q,d (�d,w; X)

up to an equivalence of norms.

Proof. It is enough to show that

A
λs,λa
p,q,d (�d,w; X) ↪→ As,a

p,q,d (�d,w; X), (5.51)

the opposite inclusion being of the same kind. To this end, let ϕλ ∈ Φd ,λa(�d) be fixed the
Littlewood-Paley sequence in the definition of Aλs,λa

p,q,d (�d,w; X). For each n ∈ � we define
fn := ϕλn ∗ f . Then ( fn)n∈� satisfies the Fourier support condition

supp f̂0 ⊂ {ξ ∈ �
d | |ξ|d ,λa ≤ c̃}, supp f̂n ⊂ {ξ ∈ �

d | c̃−12n ≤ |ξ|d ,λa ≤ c̃2n} (n ≥ 1)

for some constant c̃ > 1. Since | · |d ,λa h | · |
λ
d ,a, it follows that ( fn)n∈� satisfies the Fourier

support condition (5.34) for some constant c > 1. With a modification of the proof of Lemma
5.2.10 (as in the proof of (5.35), or just with Lemma 5.2.24 and Lemma 5.2.25), we obtain
(5.51). �

5.2.2.e Representations by Intersections and Difference Norms for Triebel-Lizorkin Spaces

In Corollary 5.2.58/Remark 5.2.59 we will prove that, in the notation of Sections 1.2 and 2.1,
the spatial trace operator try=0 is a continuous surjection

try=0 : W (2,1)
(p,q),(d,1)(�

d ×�, (wγ, vµ); X) −→ F
1− 1

p (1+γ),( 1
2 ,1)

p,q,(d−1,1) (�d−1 ×�, (1, vµ); X)

with a continuous right-inverse. We would like to represent the anistropic Triebel-Lizorkin
space on the right as a space of intersection type like (1.12). This is achieved in the following
theorem in a more general setting.
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Theorem 5.2.35. Let X be a Banach space, l = 2, a ∈]0,∞[2, p, q ∈]1,∞[, p̃ := (p, q), s > 0,
and w ∈ Ap(�d1) × Aq(�d2). Then

F s,a
p̃,p,d (�d,w; X) = F s/a2

q,p (�d2 ,w2; Lp(�d1 ,w1; X)) ∩ Lq(�d2 ,w2; F s/a1
p,p (�d1 ,w1; X)) (5.52)

with equivalence of norms.

To prove this theorem, we introduce partial Triebel-Lizorkin spaces on �d and prove that
the general anisotropic Triebel-Lizorkin space F s,a

p,q,d (�d,w; X) (with s > 0 and q > 1) can
be represented as an intersection of these spaces. This representation result will be proved by
choosing suitable equivalent norms on F s,a

p,q,d (�d,w; X) and on these partial Triebel-Lizorkin
spaces in terms of differences. Recall here that F s,a

p,q,d (�d,w; X) ↪→ Lp,d (�d,w; X) for every
s > 0, p ∈]1,∞[l, q ∈ [1,∞], and w ∈

∏l
j=1 Ap j(�

d j); see Propositions 5.2.30 and 5.2.31
We start by defining the partial Triebel-Lizorkin spaces. Let X be a Banach space, a ∈

]0,∞[l, p ∈]1,∞[l, q ∈ [1,∞], s > 0, and w ∈
∏l

j=1 Ap j(�
d j). Let j0 ∈ {1, . . . , l}. To a ϕ[d ; j0] =

(ϕ[d ; j0]
n )n∈� ∈ Φa j0 (�d j0 ) we associate the family of partial convolution operators (S [d ; j0]

n )n∈� ⊂

B(Lp,d (�d,w; X)) given by

S [d ; j0]
n f := ϕ[d ;l]

n ∗[d ; j0] f , f ∈ Lp,d (�d,w; X). (5.53)

Here the partial convolution product φ ∗[d ; j0] f for a φ ∈ S(�d j0 ) and an f ∈ Lp,d (�d,w; X) is
defined by

(φ ∗[d ; j0] f )(x) :=
∫
�

d j0

f (x − ι[d ; j0]y j0)φ(y j0) dy j0 , x ∈ �d, (5.54)

where ι[d ; j0] : �d j0 −→ �d is the inclusion map from Convention 2.2.1. Under the identification

Lp,d (�d,w; X) = Lp′ j0 ,d ′ j0
(
�
|d ′ j0 |1 ,w′ j0; Lp j0 (�d j0 ,w′ j0; Lp′′ j0 ,d ′′ j0 (�|d

′′ j0 |1 ,w′′ j0; X))
)
,

where d ′ j0 = (d1, . . . , d j0−1) and d ′′ j0 = (d j0+1, . . . , dl), and similarly for p and w, the partial con-
volution φ∗[d ; j0] with φ ∈ S(�d j) just corresponds to the operator which is pointwise induced by
the convolution operator on the weighted Lp′′ j0 ,d ′′ j0 (�|d

′′ j0 |1 ,w′′ j0; X)-valued Lebesgue-Bochner
spaceLp j0 (�d j0 ,w′ j0; Lp′′ j0 ,d ′′ j0 (�|d

′′ j0 |1 ,w′′ j0; X)); note here that the latter yields a well-defined
continuous linear operator because of the assumption w j0 ∈ Ap j0

(see Lemma 3.4.1).
Given a φ ∈ S(�d j0 ), we can define the partial convolution operator φ∗[d ; j0] ∈ L(S(�d j; X))

via the formula which used in (5.54). In the usual way, we can then define the operator φ∗[d ; j0] ∈

L(S′(�d j; X)) by

(φ ∗[d ; j0] f )(ψ) := f (φ ∗[d ; j0] ψ), f ∈ S′(�d; X), ψ ∈ S(�d).

It is standard to see that this operator coincides with the previous definitions for f ∈ Lp,d (�d,w; X) ↪→
S′(�d; X) and f ∈ S(�d j); X) ↪→ S′(�d; X).

We now come to the definition of the partial Triebel-Lizorkin spaces.

Definition 5.2.36. Let X be a Banach space, j0 ∈ {1, . . . , l}, a j0 ∈]0,∞[, p ∈]1,∞[l, q ∈ [1,∞],
s > 0, and w ∈

∏l
j=1 Ap j(�

d j). Let ϕ[d ; j0] ∈ Φa j0 (�d j0 ) with associated family (S [d ; j0]
n )n∈� as in

(5.53). We define the partial Triebel-Lizorkin space F
s, j0,a j0

p,q,d ,ϕ[d ; j0](�d,w; X) with respect to ϕ[d ; j0]

as the space of all f ∈ Lp,d (�d,w; X) ⊂ S′(�d; X) for which

|| f ||
F

s, j0 ,a j0
p,q,d (�d ,w;X)

:=
∣∣∣∣∣∣(2nsS [d ; j0]

n f )n≥0

∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)](X)

< ∞.
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Remark 5.2.37.

(i) In case l = 1 this is the ordinary (anisotropic) Triebel-Lizorkin space F s,a
p,q(�d,w; X), which

coincides with the usual (isotropic) Triebel-Lizorkin space F s/a
p,q (�d,w; X) by Proposition 5.2.34.

Here we use that
F s,a

p,q(�d,w; X) = F s/a
p,q (�d,w; X) ⊂ Lp,d (�d,w; X)

(in view of s > 0) and that the (partial) convolution operator on Lp,d (�d,w; X) is obtained by
restriction of the (partial) convolution operator S′(�d; X).

(ii) In case l = 2, p, q ∈]1,∞[, p̃ := (p, q) we have, by Fubini,

F s,1,a1

p̃,p,d ,ϕ[d ;1](�
d,w; X) = F s,a1

q,p (�d2 ,w2; Lp(�d1 ,w1; X))

and
F s,2,a2

p̃,p,d ,ϕ[d ;2](�
d,w; X) = Lq(�d2 ,w2; F s,a1

p,p (�d1 ,w1; X)).

By Proposition 5.2.34, the above spaces are precisely the two spaces occurring in the intersec-
tion (5.52).

(iii) It is a natural question whether the partial Triebel-Lizorkin spaces F
s, j0,a j0

p,q,d ,ϕ[d ; j0](�d,w; X) de-

pend on the chosen ϕ[d ; j0] ∈ Φa j0 (�d j0 ) . We expect not, but we will not care about this. The
reason is that, thanks to (ii), this will not matter for our proof of Theorem 5.2.35.

We can now state the representation result of the general anisotropic Triebel-Lizorkin space
F s,a

p,q,d (�d,w; X) (with s > 0 and q > 1) as an intersection of partial Triebel-Lizorkin spaces:

Proposition 5.2.38. Let X be a Banach space, a ∈]0,∞[l, p ∈]1,∞[l, q ∈]1,∞], s > 0, and
w ∈

∏l
j=1 Ap j(�

d j). Then there exist ϕ[d ; j0] ∈ Φa j0 (�d j0 ), j0 = 1, . . . , l, such that

F s,a
p,q,d (�d,w; X) =

l⋂
j0=1

F
s, j0,a j0

p,q,d ,ϕ[d ; j0](�
d,w; X)

with an equivalence of norms.

Note that Theorem 5.2.35 is an immediate consequence of this proposition and Remark
5.2.37.(ii). So it remains to prove this proposition.

As already announced above, we will prove this proposition via a characterization by dif-
ferences. For f ∈ Lp,d (�d,w; X), m ∈ � and j0 ∈ {1, . . . , l}, the m-th order difference operator
is defined as

∆m
h f (x) :=

m∑
ν=0

(−1)ν
(
m
ν

)
f (x + (m − ν)h), x, h ∈ �d,

and the m-th order [d ; j0]-partial difference operator is defined as

∆m
[d ; j0],h j0

f (x) :=
m∑
ν=0

(−1)ν
(
m
ν

)
f (x + (m − ν)ι[d ; j0]h j0), x ∈ �d, h j0 ∈ �

d j0 .

With these difference operators we define:

[ f ][m],cont
F s,a

p,q,d (�d ,w;X) :=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
(∫ ∞

0
t−sq

(
t−d ·a

∫
|h|d ,a≤t

∣∣∣∣∣∣∆m
h f

∣∣∣∣∣∣
X

dh
)q dt

t

)1/q
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp,d (�d ,w)
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[ f ][m],discr
F s,a

p,q,d (�d ,w;X) :=

∣∣∣∣∣∣
∣∣∣∣∣∣
(

2sk
∫
|h|d ,a≤1

∣∣∣∣∣∣∣∣∣∣∆m
δ[d ,a]

2−k h
f
∣∣∣∣∣∣∣∣∣∣

X
dh

)
k∈�

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)]

||| f |||[m],cont/discr
F s,a

p,q,d (�d ,w;X) := || f ||Lp,d (�d ,w;X) + [ f ][m],cont/discr
F s,a

p,q,d (�d ,w;X)

[ f ][m],cont

F
s, j0 ,a j0
p,q,d (�d ,w;X)

:=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∫ ∞

0
t−sq

t−d j0 a j0

∫
|h j0 |≤ta j0

∣∣∣∣∣∣∣∣∆m
[d ; j0],h j0

f
∣∣∣∣∣∣∣∣

X
dh j0

q dt
t

1/q
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp,d (�d ,w)

[ f ][m],discr

F
s, j0 ,a j0
p,q,d (�d ,w;X)

:=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 2sk

∫
|h j0 |≤1

∣∣∣∣∣∣∣∣∣∣∆m
[d ; j0],2−ka j0 h j0

f
∣∣∣∣∣∣∣∣∣∣

X
dh j0


k∈�

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)]

||| f |||[m],cont/discr

F
s, j0 ,a j0
p,q,d (�d ,w;X)

:= || f ||Lp,d (�d ,w;X) + [ f ][m],cont/discr

F
s, j0 ,a j0
p,q,d (�d ,w;X)

.

Having this notation, we start the proof of Proposition 5.2.38 with the following proposition,
which gives a characterization of the partial Triebel-Lizorkin spaces in terms of the partial
difference operators.

Proposition 5.2.39. Let X be a Banach space, j0 ∈ {1, . . . , l}, a j0 ∈]0,∞[, p ∈]1,∞[l, q ∈
[1,∞], s > 0, and w ∈

∏l
j=1 Ap j(�

d j). Let m ∈ � be such that m > s
a j0

. Then there exists a

ϕ[d ; j0] ∈ Φa j0 (�d j0 ) such that ||| · |||[m],cont/discr

F
s, j0 ,a j0
p,q,d (�d ,w;X)

and || · ||
F

s, j0 ,a j0
p,q,d ,ϕ[d ; j0] (�d ,w;X)

define equivalent extended

norms on Lp,d (�d,w; X).

By Remark 5.2.37.(i) we obtain the following difference norm characterization of F s,a
p,q(�d,w; X),

which for a = 1 includes the ordinary weighted isotropic Triebel-Lizorkin spaces F s
p,q(�d,w; X).

Corollary 5.2.40. Let X be a Banach space, l = 1, a ∈]0,∞[, p ∈]1,∞[, q ∈ [1,∞], s > 0, and
w ∈ Ap(�d). Choose m ∈ � such that m > s/a. Then ||| · |||[m],cont/discr

F s,1,a
p,q,d(�d ,w;X)

and || · ||F s,a
p,q(�d ,w;X) define

equivalent extended norms on Lp(�d,w; X).

In the proof of Proposition 5.2.39 we need the following lemma.

Lemma 5.2.41. Let m ∈ �, 0 < r ≤ 1, and ϕ[d ; j0] ∈ Φa j0 (�d j0 ). Then there exists a constant
C > 0 such that for fn = S [d ; j0]

n f with f ∈ Lp,d (�d,w; X) it holds that∣∣∣∣∣∣∣∣∆m
[d ; j0],h j0

fn(x)
∣∣∣∣∣∣∣∣

X
≤ C

(
M[d ; j0],r || fn||X

)
(x)

{
(2na j0 |h j0 |)

m, if |h j0 | ≤ 2−na j0 ;
(2na j0 |h j0 |)

d j0/r, if |h j0 | > 2−na j0 .

for allmost all x ∈ �d and all h j0 ∈ �
d j0 .

Proof. Write d = (d ′, d j0 , d
′′), p = (p′, p j0 , p′′), w = (w′,w j0 ,w

′′) and put d′ := |d ′|1, d′′ :=
|d ′′|1. For almost all x′′ ∈ �d′′ we have that gx′′(x j0) := f (·, x j0 , x

′′) and gn,x′′(x j0) := fn(·, x j0 , x
′′)

136



define elements gn,x′′ , gx′′ ∈ Lp j0 (�d j0 ,w j0 ; Lp′,d ′(�d′ ,w′; X)) ⊂ S′(�d j0 ; Lp′,d ′(�d′ ,w′; X)) re-
lated by gn,x′′ = ϕ

[d ; j0]
n ∗gx′′ . So each gn,x′′ is a Lp′,d ′(�d′ ,w′; X)-valued tempered distribution be-

longing to Lp j0 (�d j0 ,w j0; Lp′,d ′(�d′ ,w′; X)) and having Fourier support contained in B(0, c2na j0 )
for some c > 0 independent of f , n, x′′. With Lemma 3.4.10 we thus obtain that∣∣∣∣∣∣∣∣∆m

h j0
gn,x′′(x j0)

∣∣∣∣∣∣∣∣
X
≤ C

(
Mr

∣∣∣∣∣∣gn,x′′
∣∣∣∣∣∣

X

)
(x j0)

{
(2na j0 |h j0 |)

m, if |h j0 | ≤ 2−na j0 ;
(2na j0 |h j0 |)

d j0/r, if |h j0 | > 2−na j0 ,

for some constant C > 0 independent of f , n, x′′. The desired result now follows by definition
of gn,x′′ and M[d ; j0],r. �

With a slight modification of the above proof we can get the following lemma, which we
will need later on in the proof of Proposition 5.2.44.

Lemma 5.2.42. Let m ∈ �, 0 < r ≤ 1, and j0 ∈ {1, . . . , l}. Let (S n)n∈� be the family of
convolution operators associated with a ϕ ∈ Φd ,a(�d). Then there exists a constant C > 0 such
that for fn = S n f with f ∈ Lp,d (�d,w; X) it holds that∣∣∣∣∣∣∆m, ι[d ; j0]h j0 fn(x)

∣∣∣∣∣∣
X
≤ C

(
M[d ; j0],r || fn||X

)
(x)

{
(2na j0 |h j0 |)

m, if |h j0 | ≤ 2−na j0 ;
(2na j0 |h j0 |)

d j0/r, if |h j0 | > 2−na j0 .

for allmost all x ∈ �d and all h j0 ∈ �
d j0 .

We are now ready to give the proof of Proposition 5.2.39:

Proof of Proposition 5.2.39. Since ||| · |||[m],cont

F
s,l,al
p,q,d (�d ,w;X)

and ||| · |||[m],discr

F
s,l,al
p,q,d (�d ,w;X)

both clearly define norms

on the subspaces of Lp,d (�d,w; X) on which they are finite while F s,l,al
p,q,d (�d,w; X) ↪→ Lp,d (�d,w; X),

it suffices to establish the following:

(I) [ · ][m],cont

F
s,l,al
p,q,d (�d ,w;X)

∼ [ · ][m],discr

F
s,l,al
p,q,d (�d ,w;X)

;

(II) [ · ][m],discr

F
s,l,al
p,q,d (�d ,w;X)

. || · ||F s,l,al
p,q,d (�d ,w;X);

(III) || · ||F s,l,al
p,q,d (�d ,w;X) . ||| · |||

[m],discr

F
s,l,al
p,q,d (�d ,w;X)

.

(I): We only treat the inequality [ · ][m],cont

F
s, j0 ,a j0
p,q,d (�d ,w;X)

. [ · ][m],discr

F
s, j0 ,a j0
p,q,d (�d ,w;X)

, the reverse being similar.

Via a discretization and monotonicity argument we obtain∫ ∞

0
t−sq

t−d j0 a j0

∫
|h j0 |≤ta j0

∣∣∣∣∣∣∣∣∆m
[d ; j0],h j0

f (x)
∣∣∣∣∣∣∣∣

X
dh j0

q dt
t

1/q

≤

 ∞∑
k=−∞

∫
[2−k ,2−k+1[

t−sq

t−d j0 a j0

∫
|h j0 |≤ta j0

∣∣∣∣∣∣∣∣∆m
[d ; j0],h j0

f (x)
∣∣∣∣∣∣∣∣

X
dh j0

q dt
t

1/q

≤

 ∞∑
k=−∞

∫
[2−k ,2−k+1[

dt
t

2ksq

2kd j0 a j0

∫
|h j0 |≤2−ka j0

∣∣∣∣∣∣∣∣∆m
[d ; j0],h j0

f (x)
∣∣∣∣∣∣∣∣

X
dh j0

q1/q

= log(2)1/q

 ∞∑
k=−∞

2ksq

∫
|y j0 |≤1

∣∣∣∣∣∣∣∣∣∣∆m
[d ; j0],2−ka j0

y j0
f (x)

∣∣∣∣∣∣∣∣∣∣
X

dy j0

q1/q

,
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and the desired inequality follows by taking Lp,d (�d,w)-norms.
(II): Let f ∈ F

s, j0,a j0
p,q,d (�d,w; X), put fn := S (d , j0)

n for n ∈ �≥0 and fn := 0 for n ∈ �<0, and

pick r ∈]0, 1[ and λ ∈]0, 1[ such that s > a j0
d j0
r (1 − λ). For g ∈ Lp,d (�d,w; X) we write

I
µ,a j0
[d ; j0](g, 2

−k))(x) :=
∫
|h j0 |≤1

∣∣∣∣∣∣∣∣∣∣∆m
[d ; j0],2−ka j0 h j0

g(x)
∣∣∣∣∣∣∣∣∣∣

X
dh j0 .

In this notation, using that f =
∑

n∈� fn+k in Lp,d (�d,w; X) for each k ∈ �, we can estimate

[ f ][m],discr

F
s, j0 ,a j0
p,q,d (�d ,w;X)

≤
∑
n∈�

∣∣∣∣∣∣∣∣(2skI
m,a j0
(d , j0)( fn+k, 2−k))k∈�

∣∣∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)]

. (5.55)

We first estimate the sum over n ∈ �≤0 in (5.55). For this we first observe that in light of
Lemma 5.2.41, for n ∈ �≤0 and k ∈ �,

I
m,a j0
(d , j0)( fn+k, 2−k)(x) =

∫
|h j0 |≤1

∣∣∣∣∣∣∣∣∣∣∆m
[d ; j0],2−ka j0 h j0

f (x)
∣∣∣∣∣∣∣∣∣∣

X
dh j0

≤ C1

∫
|h j0 |≤1

(
M[d ; j0],r || fn+k||X

)
(x)(2na j0 )mdh j0

≤ C22na j0 m
(
M[d ; j0],r || fn+k||X

)
(x).

Multiplying this with 2sk and taking `q(�)-norms yields∣∣∣∣∣∣∣∣(2skI
m,a j0
(d , j0)( fn+k, 2−k)(x)

)
k∈�

∣∣∣∣∣∣∣∣
`q(�)

≤ C2

∑
k∈�

2skq2na j0 mq
[(

M[d ; j0],r || fn+k||X

)
(x)

]q
1/q

= C22n(ma j0−s)

∑
k∈�

2s(k+n)q
[(

M[d ; j0],r || fn+k||X

)
(x)

]q
1/q

= C22n(ma j0−s)

∑
i∈�

2siq
[(

M[d ; j0],r || fi||X

)
(x)

]q
1/q

.

Since ma j0−s > 0 and M[d ; j0],r is bounded on Lp,d (�d,w)[`q(�)] (see Theorem 3.1.4), it follows
that ∑

n≥0

∣∣∣∣∣∣∣∣(2skI
m,a j0
(d , j0)( fn+k, 2−k))k∈�

∣∣∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)

≤ C3

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑

i∈�

2siqM[d ; j0],r || fi||X


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Ld (�d ,w)

≤ C4 || f ||F s, j0 ,a j0
p,q,d (�d ,w;X)

.

Next we estimate the sum over n ∈ �>0 in (5.55). For n ≥ 1 and k ∈ �, we have

I
m,a j0
(d , j0)( fn+k, 2−k)(x) ≤

∫
|h j0 |≤1

∣∣∣∣∣∣∣∣∣∣∆m
[d ; j0],2−ka j0 h j0

f (x)
∣∣∣∣∣∣∣∣∣∣λ

X
dh j0 sup

|h j0 |≤1

∣∣∣∣∣∣∣∣∣∣∆m
[d ; j0],2−ka j0 h j0

f (x)
∣∣∣∣∣∣∣∣∣∣1−λ

X
.

Observing that for the first term in this product we have, for almost all x ∈ �d, the estimate∫
|h j0 |≤1

∣∣∣∣∣∣∣∣∣∣∆m
[d ; j0],2−ka j0 h j0

f (x)
∣∣∣∣∣∣∣∣∣∣λ

X
dh j0 ≤ C5

|| fn+k(x)||λ +

m∑
ν=1

(ν−12a j0 k)d j0

∫
|y j0 |≤ν2

−a j0
k

∣∣∣∣∣∣ fn+k(x + ι[d ; j0]y j0)
∣∣∣∣∣∣λ

X
dy j0


≤ C6M[d ; j0] || fn+k||

λ
X (x),
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and applying Lemma 5.2.41 to the second term in this product, we obtain

I
m,a j0
(d , j0)( fn+k, 2−k)(x) ≤ C7M[d ; j0] || fn+k||

λ
X (x)2d j0 a j0 n(1−λ)/r(M[d ; j0] || fn+k||

r
X (x))(1−λ)/r.

Multiplying this with 2sk, taking `q(�) norms, summing over n ∈ �≥1, using that s > d j0a j0(1 −
λ)/r, and applying Hölder’s inequality, we get∑

n≥1

∣∣∣∣∣∣∣∣(2skI
m,a j0
(d , j0)( fn+k, 2−k)(x))k∈�

∣∣∣∣∣∣∣∣
`q(�)

≤ C7

∑
n≥1

2−sn2d j0 a j0 n(1−λ)/r

∑
k∈�

2s(n+k)q(M[d ; j0] || fn+k||
λ
X (x))q(M[d ; j0] || fn+k||

r
X)q(1−λ)/r(x)

1/q

≤ C8

∑
i≥0

2siq(M[d ; j0] || fi||
λ
X (x))q(M[d ; j0] || fi||

r
X (x))q(1−λ)/r

1/q

≤ C8

∑
i≥0

2siq(M[d ; j0] || fi||
λ
X (x))q/λ

λ/q ∑
i≥0

2siq(M[d ; j0] || fi||
r
X (x))q/r

(1−λ)/q

= C8

∣∣∣∣∣∣∣∣(2siM[d ; j0],λ(|| fi||X)(x)
)

i∈�

∣∣∣∣∣∣∣∣λ
`q(�)

∣∣∣∣∣∣∣∣(2siM[d ; j0],r(|| fi||X)(x)
)

i∈�

∣∣∣∣∣∣∣∣1−λ
`q(�)

.

Finally, taking Lp,d (�d,w)-norms, applying Hölder’s inequality l times, and using Theorem
3.1.4, we obtain∑

n≥1

∣∣∣∣∣∣∣∣(2skI
m,a j0
(d , j0)( fn+k, 2−k))k∈�

∣∣∣∣∣∣∣∣
Lp,d (�d ,w)[`q(�)]

≤ C8

∣∣∣∣∣∣∣∣( 2siM[d ; j0],λ(|| fi||X)
)

i≥0

∣∣∣∣∣∣∣∣λ
Lp,d (�d ,w;`q(�))

∣∣∣∣∣∣∣∣( 2siM[d , j0],r(|| fi||X)
)

i≥0

∣∣∣∣∣∣∣∣1−λ
Lp,d (�d ,w;`q(�))

≤ C9

∣∣∣∣∣∣(2is || fi||X)i≥0

∣∣∣∣∣∣λ
Lp,d (�d ,w;`q(�))

∣∣∣∣∣∣(2is || fi||X)i≥0

∣∣∣∣∣∣1−λ
Lp,d (�d ,w;`q(�))

= C9 || f ||F s, j0 ,a j0
p,q,d (�d ,w;X)

.

(III): Let f ∈ Lp,d (�d,w; X). Choose ψ ∈ S(�dl) such that ψ̂(ξ j0) = 1 for |ξ j0 |
1/a j0 ≤ 1 and

ψ̂(ξ) = 0 if |ξ|1/a j0 ≥ 3/2. Now let (ϕn)n∈� ∈ Φa j0 (�d j0 ) be determined by

ϕ̂0(ξ j0) := (−1)m+1
m−1∑
ν=0

(−1)ν
(
µ

ν

)
ψ̂(−(m − ν)ξ j0);

note that ϕ̂0(ξ j0) for |ξ j0 |
1/a j0 ≤ 1/µ1/a j0 and ϕ̂0(ξ j0) = 0 for |ξ j0 |

1/a j0 ≥ 3/2. Let (S [d ; j0]
n )n∈� be the

corresponding partial convolution operators and let (T
[d ; j0]

n )n∈� be the partial convolution opera-
tors corresponding to the functions (2na j0 d j0ϕ0(2na j0 · ))n∈�. Then S [d ; j0]

n f = T [d ; j0]
n+1 f −T [d ; j0]

n f for
all n ≥ 1, so that

|| f ||
F

s, j0 ,a j0
p,q,d (�d ,w;X)

=
∣∣∣∣∣∣∣∣(2sn

∣∣∣∣∣∣S [d ; j0]
n f

∣∣∣∣∣∣
X

)
n≥0

∣∣∣∣∣∣∣∣
Lp,d (�d ,w;`q(�))

≤

∣∣∣∣∣∣∣∣S [d ; j0]
0 f

∣∣∣∣∣∣∣∣
Lp,d (�d ,w;X)

+ C1

∣∣∣∣∣∣∣∣(2sn
∣∣∣∣∣∣ f − T [d ; j0]

n f
∣∣∣∣∣∣

X

)
n≥1

∣∣∣∣∣∣∣∣
Lp,d (�d ,w;`q(�≥1))

.

As w j0 ∈ Ap j0
(�d j0 ) we have∣∣∣∣∣∣∣∣S [d ; j0]

0 f
∣∣∣∣∣∣∣∣

Lp,d (�d ,w;X)
≤ C2 || f ||Lp,d (�d ,w;X) .
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So it remains to estimate the second term on the RHS.
First we compute

f (x) − T [d ; j0]
n f (x) = f (x) − 2na j0 d j0

∫
�

d j0

f (x − ι[d ; j0]zl)ϕ0(2na j0 z j0)dz j0

= f (x) − (−1)m+1
m−1∑
ν=0

(
m
ν

)
(−1)ν(m − ν)−d j0 2na j0 d j0

∫
�

d j0

f (x − ι[d ; j0]z j0)ψ(−(m − ν)−12na j0 z j0)dz j0

= f (x) + (−1)m
m−1∑
ν=0

(
m
ν

)
(−1)ν

∫
�

d j0

f (x + (m − ν)2−na j0 ι[d ; j0]y j0)ψ(y j0)dy j0

= (−1)m
m∑
ν=0

(
m
ν

)
(−1)ν

∫
�

d j0

f (x + (m − ν)2−na j0 ι[d ; j0]y j0)ψ(y j0)dy j0

= (−1)m
∫
�

d j0

∆m
[d ; j0],2−na j0 y j0

f (x)ψ(y j0)dy j0 .

Next, picking r > s + a j0d j0 and choosing a corresponding constant Cψ > 0 for ψ ∈ S(�dl) such
such that |(1 + |x j0 |

r/a j0 )ψ(x j0)| ≤ Cψ for all x j0 ∈ �
d j0 , we can estimate∣∣∣∣∣∣ f (x) − T [d ; j0]

n f (x)
∣∣∣∣∣∣ ≤ ∫

�
d j0

∣∣∣∣∣∣∣∣∣∣∆m
[d ; j0],2−na j0 y j0

f (x)ψ(y j0)
∣∣∣∣∣∣∣∣∣∣

X
dy j0

≤ Cψ

∫
|y j0 |

1/a j0≤1

∣∣∣∣∣∣∣∣∣∣∆m
[d ; j0],2−na j0 y j0

f (x)
∣∣∣∣∣∣∣∣∣∣

X
dy j0

+ Cψ

∑
k≥0

2−kr
∫

2k≤|y j0 |
1/a j0≤2k+1

∣∣∣∣∣∣∣∣∣∣∆µ

[d ; j0],2−na j0 y j0

f (x)
∣∣∣∣∣∣∣∣∣∣

X
dy j0

= Cψ2na j0 d j0

∫
|h j0 |

1/a j0≤2−n

∣∣∣∣∣∣∣∣∆m
[d ; j0],h j0

f (x)
∣∣∣∣∣∣∣∣

X
dh j0

+
∑
k≥0

2−kr
∫

2k−n≤|h j0 |
1/a j0≤2k+1−n

∣∣∣∣∣∣∣∣∆m
[d ; j0],h j0

f (x)
∣∣∣∣∣∣∣∣

X
dh j0


≤ C3

∑
k≥−1

2−kr2(k+1)a j0 d j0 2−(k+1−n)a j0 d j0

∫
|h j0 |

1/a j0≤2k+1−n

∣∣∣∣∣∣∣∣∆µ

[d ; j0],h j0
f (x)

∣∣∣∣∣∣∣∣
X

dh j0 .

Finally, multiplying with 2sn, taking Lp,d (�d,w; `q(�≥1))-norms, using a monotonicity argu-
ment similar to the proof of (I), and recalling that r > s + a j0d j0 , we obtain∣∣∣∣∣∣∣∣(2sn

∣∣∣∣∣∣ f − T [d ; j0]
n f

∣∣∣∣∣∣
X

)
n≥1

∣∣∣∣∣∣∣∣
Lp,d (�d ,w;`q(�≥1))

≤ C3

∑
k≥−1

2−kr2(k+1)a j0 d j0 2s(k+1)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑

n≥1

2−sq(k+1−n)2−(k+1−n)a j0 d j0 q

∫
|h j0 |

1/a j0≤2k+1−n

∣∣∣∣∣∣∣∣∆µ

[d ; j0],h j0
f (x)

∣∣∣∣∣∣∣∣
X

dh j0

q1/q∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp,d (�d ,w)

≤ C4

∑
k≥−1

2(s+a j0 d j0−r)k

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∫ ∞

0
t−sq

t−d j0 a j0

∫
|h j0 |≤ta j0

∣∣∣∣∣∣∣∣∆m
[d ; j0],h j0

f (x)
∣∣∣∣∣∣∣∣

X
dh j0

q dt
t

1/q
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp,d (�d ,w)

≤ C5 ||| f |||
[m],cont

F
s, j0 ,a j0
p,q,d (�d ,w;X)

.

�
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With an adaption of the proof of (II) above we can show that, in case q > 1, the following
"shifted" version of (II) holds as well, which we will need for the proof of Proposition 5.2.38.

Lemma 5.2.43. Let X be a Banach space, j0 ∈ {1, . . . , l}, a j0 ∈]0,∞[, p ∈]1,∞[l, q ∈]1,∞],
s > 0, and w ∈

∏l
j=1 Ap j(�

d j). Let m ∈ � be such that m > s
a j0

and let c ∈ �. Then there is a
constant C > 0 such that∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
 2sk

∫
|h j0 |≤1

∣∣∣∣∣∣∣∣∣∣∆m
(d , j0),2−ka j0 h j0

f (x + c2−ka j0 ι[d ; j0]h j0)
∣∣∣∣∣∣∣∣∣∣

X
dh j0


k∈�

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp,d (�d ,w;`q(�))

≤ C || f ||
F

s, j0 ,a j0
p,q,d (�d ,w;X)

for all f ∈ F
s, j0,a j0
p,q,d (�d,w; X).

Proof. Let f ∈ F
s, j0,a j0
p,q,d (�d,w; X) and put fn := S [d ; j0]

n f for n ∈ �≥0 and fn := 0 for n ∈ �<0. For
g ∈ Lp,d (�d,w; X) we write

I
m,a j0
[d ; j0],c(g, 2

−k))(x) :=
∫
|h j0 |≤1

∣∣∣∣∣∣∣∣∣∣∆m
[d ; j0],2−ka j0 h j0

g(x + c2−ka j0 ι[d ; j0]h j0))
∣∣∣∣∣∣∣∣∣∣

X
dh j0 .

In this notation, using that f =
∑

n∈� fn+k in Lp,d (�d,w; X) for each k ∈ �, we again have an
estimate∣∣∣∣∣∣∣∣(2skI

m,a j0
[d ; j0],c( fn+k, 2−k))

∣∣∣∣∣∣∣∣
Lp,d (�d ,w;`q(�))

≤
∑
n∈�

∣∣∣∣∣∣∣∣(2skI
m,a j0
[d ; j0],c( fn+k, 2−k))k∈�

∣∣∣∣∣∣∣∣
Lp,d (�d ,w;`q(�))

. (5.56)

The sum over n ∈ �≥1 in (5.56) can be estimated in the same way as in (II) of the proof of
Proposition 5.2.39; note that it could also similarly be estimated more directly without making
use of λ and r and using the Boundedness of M[d ; j0] on Lp,d (�d,w)[`q(�)].

To finish, we estimate the sum over n ∈ �≤0 in (5.55). Of course, we only need to consider
the case c , 0. Again using Lemma 5.2.41, for n ∈ �≤0 and k ∈ �, we now have

I
m,a j0
[d ; j0],c( fn+k, 2−k)(x) =

∫
|h j0 |≤1

∣∣∣∣∣∣∣∣∣∣∆m
[d ; j0],2−ka j0 h j0

f (x + c2−ka j0 ι[d ; j0]h j0))
∣∣∣∣∣∣∣∣∣∣

X
dh j0

≤ C1

∫
|h j0 |≤1

M[d ; j0](|| fn+k||X)(x + c2−ka j0 ι[d ; j0]h j0))(2
na j0 )µdh j0

≤ C22na j0 mM2
[d ; j0](|| fn+k||X)(x)

Now the proof can be completed in the same way as in (II) of the proof of Proposition 5.2.39,
now using the boundedness of M[d ; j0] on Lp,d (�d,w)[`q(�)]. �

Finally, we prove the following proposition, which contains Proposition 5.2.38 in it.

Proposition 5.2.44. Let X be a Banach space, a ∈]0,∞[l, p ∈]1,∞[l, q ∈]1,∞], s > 0, and
w ∈

∏l
j=1 Ap j(�

d j). Let m ∈ � be such that m > s
a j

for all j ∈ {1, . . . , l}. Then the following
define equivalent extended norms on Lp,d (�d,w; X):

(i) || · ||F s,a
p,q,d (�d ,w;X);

(ii) ||| · |||[lm],cont
F s,a

p,q,d (�d ,w;X) = || · ||Lp,d (�d ,w;X) + [ · ][lm],cont
F s,a

p,q,d (�d ,w;X);
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(iii) ||| · |||[lm],discr
F s,a

p,q,d (�d ,w;X) = || · ||Lp,d (�d ,w;X) + [ · ][lm],discr
F s,a

p,q,d (�d ,w;X);

(iv)
∑l

j=1 || · ||F
s, j,a j
p,q,d (�d ,w;X)

;

(v) || · ||Lp,d (�d ,w;X) +
∑l

j=1[ · ][m],cont

F
s, j,a j
p,q,d (�d ,w;X)

;

(vi) || · ||Lp,d (�d ,w;X) +
∑l

j=1[ · ][m],discr

F
s, j,a j
p,q,d (�d ,w;X)

.

Proof. First note that they indeed define norms on the subspaces of Lp,d (�d,w; X) on which
they are finite. From Proposition 5.2.39 it follows that the norms in (iv),(v),(vi) are equivalent.
Analogously to (I) in the proof Proposition 5.2.39 it can be shown that the norms in (ii) and
(iii) are equivalent. So it is enough to show that (ii) is stronger than (i), (iv) is stronger than
(iii), and (i) is stronger than (vi).
|| · ||F s,a

p,q,d (�d ,w;X) . ||| · |||
[lm],cont
F s,a

p,q,d (�d ,w;X): This can be done completely analogously to (III) in the

proof of Proposition 5.2.39.
||| · |||

[lm],discr
F s,a

p,q,d (�d ,w;X) .
∑l

j=1 || · ||F
s, j,a j
p,q,d (�d ,w;X)

: Let f ∈ Lp,d (�d,w; X). Since F s, j,a j

p,q,d (�d,w; X) ↪→

Lp,d (�d,w; X), we only need to estimate [ f ][lm],discr
F s,a

p,q,d (�d ,w;X). To this end, we first note that

∣∣∣∣∣∣∣∣∣∣∆lm
δ[d ,a]

2−k h
f (x)

∣∣∣∣∣∣∣∣∣∣
X
≤ C1

N∑
n=1

l∑
j=1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∆m

[d ; j],2−ka j h j
f (x +

m∑
i=1

c[n]
i 2−kaiι[d ;i]hi)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
X

(x, h ∈ �d, k ∈ �)

for certain C1 > 0, N ∈ � and {c[n]
j } j=1,...,m;n=1,...,N ⊂ �; this can, for instance, be seen by writing

out ∆lm
y f = F −1[(eıy − 1)lm f̂ ]. So we can estimate∫

|h|d ,a≤1

∣∣∣∣∣∣∣∣∆lm
(2−k)d ,a f (x)

∣∣∣∣∣∣∣∣
X

dh

≤ C1

N∑
n=1

l∑
j=1

∫
|h1 |,...,|hl |≤1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∆m

[d ; j],2−ka j h j
f (x +

l∑
i=1

c[n]
j 2−kaiι[d ;i]hi)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
X

d(h1, . . . , hl)

≤ C2

N∑
n=1

l∑
j=1

M[d ;1] . . . M[d ;l]

(∫
|h j |≤1

∣∣∣∣∣∣∣∣∣∣∆m
[d ; j],2−ka j h j

f ( · + c[n]
j 2−ka jι[d ; j]h j)

∣∣∣∣∣∣∣∣∣∣
X

dh j

)
(x).

Multiplying with 2sk, taking Lp,d (�d,w)[`q(�)]-norms, using the boundedness of M[d ;1] . . . M[d ;l]

on Lp,d (�d,w)[`q(�)], and invoking Lemma 5.2.43, we obtain

[ f ][lm],discr
F s,a

p,q,d (�d ,w;X)

≤

N∑
n=1

l∑
j=1

∣∣∣∣∣∣
∣∣∣∣∣∣
(
2skM[d ;1] . . . M[d ;l]

∫
|h j |≤1

∣∣∣∣∣∣∣∣∣∣∆m
[d ; j],2−ka j h j

f ( · + c[n]
j 2−ka jι[d ; j]h j)

∣∣∣∣∣∣∣∣∣∣
X

dh j

)
k∈�

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp,d (�d ,w;`q(�))

≤ C3

N∑
n=1

l∑
j=1

∣∣∣∣∣∣
∣∣∣∣∣∣
(
2sk

∫
|h j |≤1

∣∣∣∣∣∣∣∣∣∣∆m
[d ; j],2−ka j h j

f ( · + c[n]
j 2−ka jι[d ; j]h j)

∣∣∣∣∣∣∣∣∣∣
X

dh j

)
k∈�

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp,d (�d ,w;`q(�))

≤ C4N
l∑

j=1

|| f ||
F

s, j,a j
p,q,d (�d ,w;X)

.

142



|| · ||Lp,d (�d ,w;X)+
∑l

j0=1[ · ][m],discr

F
s, j0 ,a j0
p,q,d (�d ,w;X)

. || · ||F s,a
p,q,d (�d ,w;X): Since F s,a

p,q,d (�d,w; X) ↪→ Lp,d (�d,w; X)

(s > 0), we just need to show that [ · ][m],discr

F
s, j0 ,a j0
p,q,d (�d ,w;X)

. || · ||F s,a
p,q,d (�d ,w;X) for each j0. This can be

done completely analogously to (II) in the proof of Proposition 5.2.39, replacing S [d ;l]
n by S n

and using Lemma 5.2.42 instead of Lemma 5.2.41. �

5.2.2.f Embeddings and Isomorphisms under Restrictions on the Banach Space

As already announced, the identity Wn
p,d (�d,w; X) = H s,a

p,d (�d,w; X) holds under some restric-
tions on the Banach space X and/or the weight-vector w:

Proposition 5.2.45. Let X be a UMD space, p ∈]1,∞[l, n ∈ �l, s ∈ �, a ∈
(

1
�>0

)l
with n j = s

a j

for each j ∈ {1, . . . , l}, and

w ∈
{ ∏l

j=1 Arec
p j

(�d j), l > 1;∏l
j=1 Ap j(�

d j), l = 1 or X has (α).

Then we have
Wn

p,d (�d,w; X) = H s,a
p,d (�d,w; X)

with an equivalence of norms.

Proof. This can be shown in exactly the same way as Proposition 5.2.29, now using Theo-
rem 4.1.1 instead of Proposition 5.2.26. �

Next we come the an intersection representation for anisotropic Bessel potential spaces.

Proposition 5.2.46. Let X be a UMD space, a ∈
(

1
�>0

)l
, p ∈]1,∞[l, s > 0, and

w ∈
{ ∏l

j=1 Arec
p j

(�d j), l > 1;∏l
j=1 Ap j(�

d j), l = 1 or X has (α).

For each k ∈ {1, . . . , l} we write d ′k = (d1, . . . , dk−1) and d ′′k = (dk+1, . . . , dl), and similarly for
p and w. Then we have

H s,a
p,d (�d,w; X) =

l⋂
k=1

Lp′k ,d ′k
(
�
|d ′k |1 ,w′k; H s/ak

pk
(�dk ,wk; Lp′′k ,d ′′k(�|d

′′k |1 ,w′′k; X))
)

with an equivalence of norms.

Proof. Using Corollary 4.1.2, this can be shown similarly to [6, Theorem 3.7.2]. For more
comments we refer to the notes of this chapter. �

The next two results are specially designed for applications in Chapter 6, for which it is
more convenient to replace X by E in the notation.
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Lemma 5.2.47. Let E be a UMD Banach space, let p ∈]1,∞[, w ∈ Ap(�d), and n ∈ �>0. For
each λ ∈ �\] −∞, 0] and σ ∈ � we define Lσλ ∈ L(S′(�d; E)) by

Lσλ f := F −1[(λ + | · |2n)σ f̂ ] ( f ∈ S′(�d; E)).

Then Lσλ restricts to a topological linear isomorphism from H s+2nσ
p (�d,w; E) to H s

p(�d,w; E)
(with inverse L−σλ ) for each s ∈ �. Moreover,

�\] −∞, 0] 3 λ 7→ Lσλ ∈ B(H s+2nσ
p (�d,w; E),H s

p(�d,w; E)) (5.57)

defines an analytic mapping for every σ ∈ � and s ∈ �.

Proof. To show that Lσλ restricts to a topological linear isomorphism from H s+2nσ
p (�d,w; E) to

H s
p(�d,w; E) with inverse L−σλ (for arbitrary σ and s) it suffices to show that Lσλ restricts to

a bounded linear operator from H s+2nσ
p (�d,w; E) to H s

p(�d,w; E) since we already know that
Lσλ and L−σλ are inverses of each other as operators on S′(�d; E). For this we must show that
J−nσLσλ = JsLσλJ−(s+2nσ) restricts to a bounded linear operator on Lp(�d,w; E). This can be
done be checking the Mikhlin condition from Corollary 4.1.2.

Next we show that the map in (5.2.47) is analytic. We only treat the case σ ∈ �\�, the case
σ ∈ � being easy. So suppose that σ ∈ � \� and fix a λ0 ∈ �\] − ∞, 0]. We shall show that
λ 7→ Lσλ is analytic at λ0. Since Lτλ0

is a topological linear isomorphism from H s+2nτ
p (�d,w; E)

to H s
p(�d,w; E), τ ∈ �, for this it suffices to show that

�\] −∞, 0] 3 λ 7→ Lσλ L−σλ0
= L

s
n
λ0

Lσλ L−
1
n (s+2nσ)

λ0
∈ B(Lp(�d,w; E))

is analytic at λ0. To this end, we first observe that, for each ξ ∈ �d,

�\] −∞, 0] 3 λ 7→ (λ + |ξ|2n)σ(λ0 + |ξ|2n)−σ ∈ �

is an analytic mapping with power series expansion at λ0 given by

(λ+ |ξ|2n)σ(λ0 + |ξ|2n)−σ = 1+σ(λ0 + |ξ|2n)−1(λ−λ0)+σ(σ−1)(λ0 + |ξ|2n)−2(λ−λ0)2 + . . . (5.58)

for λ ∈ B(λ0, δ), where δ := d (0, {λ0 + t | t ≥ 0}) > 0. We next recall that L−1
λ0

restricts to a
topological linear isomorphism from Lp(�d,w; E) to H2n

p (�d,w; E); in particular, L−1
λ0

restricts
to a bounded linear operator on Lp(�d,w; E). Since L−k

λ0
= (L−1

λ0
)k for every k ∈ �, there thus

exists a constant C > 0 such that∣∣∣∣∣∣L−k
λ0

∣∣∣∣∣∣
B(Lp(�d ,w;E))

≤ Ck, ∀k ∈ �. (5.59)

Now we let ρ > 0 be the radius of convergence of the power series z 7→
∑

k∈�

[∏k−1
j=0(σ − j)

]
Ckzk,

set r := min(δ, ρ) > 0, and define, for each λ ∈ B(λ0, r), the multiplier symbols mλ,mλ
0,m

λ
1, . . . :

�d −→ � by

mλ(ξ) := (λ + |ξ|2n)σ(λ0 + |ξ|2n)−σ and mλ
N(ξ) :=

N∑
k=0

 k−1∏
j=0

(σ − j)

 (λ0 + |ξ|2n)−k(λ − λ0)k.

Then, by (5.58) and (5.59), we get

mλ(ξ) = lim
N→∞

mλ
N(ξ), ξ ∈ �d
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and
lim

N,M→∞
[Tmλ

N
− Tmλ

M
] = 0 in B(Lp(�d,w; E)),

respectively. Via Proposition 4.2.4.(iv) we thus obtain that

Lσλ L−σλ0
= Tmλ = lim

N→∞
Tmλ

N
= lim

N→∞

N∑
k=0

 k−1∏
j=0

(σ − j)

 L−k
λ0

(λ − λ0)k in B(Lp(�d,w; E))

for λ ∈ B(λ0, r). This shows that the map �\] − ∞, 0] 3 λ 7→ Lσλ L−σλ0
∈ B(Lp(�d,w; E)) is

analytic at λ0, as desired. �

Lemma 5.2.48. Let E be a UMD space, p, q ∈]1,∞[, v ∈ Aq(�), and n ∈ �>0. For each σ ∈ �
we define Lσ ∈ L(S′(�d−1 ×�; E)) by

Lσ f := F −1
[(

(ξ1, ξ2) 7→ (1 + ıξ2 + |ξ1|
2n)σ

)
f̂
]

( f ∈ S′(�d−1 ×�; E)).

Then Lσ restricts to a topological linear isomorphism from H s+σ,( 1
2n ,1)

(p,q),(d−1,1)(�
d−1 × �, (1, v); E) to

H s,( 1
2n ,1)

(p,q),(d−1,1)(�
d−1 ×�, (1, v); E) (with inverse L−σ) for each s ∈ �.

Proof. It suffices to show that Lσ restricts to a bounded linear operator

H s+σ,( 1
2n ,1)

(p,q),(d−1,1)(�
d−1 ×�, (1, v); E) −→ H s,( 1

2n ,1)
(p,q),(d−1,1)(�

d−1 ×�, (1, v); E).

For this must we check that J (d−1,1),( 1
2n ,1)

−σ Lσ = J
(d−1,1),( 1

2n ,1)
s LσJ (d−1,1),( 1

2n ,1)
−(s+σ) restricts to a bounded

linear operator on L(p,q),(d−1,1)(�d, (1, v); E). This can be done by checking that the symbol

�
d−1 ×� 3 (ξ1, ξ2) 7→

(1 + ıξ2 + |ξ1|
2n)σ

(1 + |ξ1|
4n + |ξ2|

2)σ/2
∈ �

satisfies the anisotropic Mikhlin condition from Corollary 4.1.2. �

5.2.3 Traces
In this subsection we characterize trace spaces of weighted anisotropic mixed-norm Triebel-
Lizorkin, Besov, Bessel potential, and Sobolev spaces. Here we restrict ourselves to traces with
respect to the hyperplanes {0} ×�d−1 and �d−1 × {0}, corresponding to the spatial trace operator
try=0 and the temporal trace operator trt=0, respectively, in case of the weighted anisotropic
mixed-norm Sobolev space W (2,1)

(p,q),(d,1)(�
d ×�, (wγ, vµ); X) from the introductory section of this

chapter, Section 5.1.

5.2.3.a The General Trace Problem

Our interest is traces of weighted anisotropic mixed-norm function spaces, where we restrict
ourselves to traces with respect to the hyperplanes {0} × �d−1 and �d−1 × {0}. Furthermore,
concerning traces with respect to {0}×�d−1 we only consider weight-vectors w ∈

∏l
j=1 A∞(�d j)

in which the first weight vector w1 is of the form

w1(x1) = wγ(x1) := |x1,1|
γ, x1 = (x1,1, . . . , x1,d1) ∈ �

d1 (5.60)
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for some γ ∈] − 1,∞[, whereas concerning traces with respect to �d−1 × {0} we only consider
weight-vectors w ∈

∏l
j=1 A∞(�d j) in which the last weight vector wl is of the form

wl(xl) = vµ(xl) := |xl,dl |
µ, xl = (xl,1, . . . , x1,dl) ∈ �

dl (5.61)

for some µ ∈] − 1,∞[.
We will consider two ways to define the trace with respect to the hyperplanes {0}×�d−1 and

�d−1 × {0}, which on distributions from S(�d; X) and F −1E′(�d; X) ⊂ C(�d; X) both are given
as the classical trace of continuous functions. The first is an elegant abstract definition moti-
vated by Section 2.1.3. For this trace operator it will be more convenient to construct a right-
inverse (when we restrict to a certain subspace of the domain of definition). This right-inverse
is constructed in a concrete way which is well-suited for estimates in weighted anisotropic
mixed-norm Triebel-Lizorkin and Besov spaces. The second way is a more concrete definition,
which consists of taking the classical traces of the pieces in the Littlewood-Paley decomposi-
tion of a tempered distribution, and is very suitable for doing estimates in weighted anisotropic
mixed-norm Triebel-Lizorkin and Besov spaces. The advantage of these definitions, instead of
defining trace operators via bounded linear extension by density, is that it gives us trace oper-
ators on certain ’big’ spaces of distributions that contain the anisotropic spaces in which we
are interested in, so that we a unified way of defining the concept of trace operator on the var-
ious anisotropic spaces including Triebel-Lizorkin spaces with microscopic parameter q = ∞

(which are very important for us).
Motivated by Section 2.1.3, we define the distributional trace operator r0,i with respect to

the hyperplane �i−1 × {0} × �d−i, i ∈ {1, . . . , d}, as follows. Viewing C(�;D′(�i−1 × �d−i; X))
as subspace ofD′(�d; X) = D′(�i−1 ×� ×�d−i; X) via the canonical identification, so

C(�;D′(�i−1 ×�d−i; X)) ↪→ D′(�;D′(�i−1 ×�d−1; X)) = D′(�i−1 ×� ×�d−i; X),

we define r0,i ∈ L(C(�;D′(�i−1×�d−i; X)),D′(�d−1; X)) as the evaluation in 0 map continuous
linear operator

r0,i : C(�;D′(�i−1 ×�d−i; X)) −→ D′(�d−1; X), f 7→ ev0 f . (5.62)

Then, in view of

C(�d; X) = C(�i−1 ×� ×�d−i; X) = C(�; C(�i−1 ×�d−i; X)) ↪→ C(�;D′(�i−1 ×�d−i; X)),

we have that the distributional trace operator r0,i coincides on C(�d; X) with the classical trace
operator with respect to the hyperplane �i−1 × {0} ×�d−i, i.e.,

r0,i : C(�d; X) −→ C(�d−1; X), f 7→ f|�i−1×{0}×�d−i . (5.63)

Next, we consider our second possible definition for the trace with respect to the hyperplane
�i−1 × {0} ×�d−i, i ∈ {1, . . . , d}. For this definition we let ϕ ∈ Φd ,a(�d) with associated family
of convolution operators (S n)n∈� ⊂ L(S′(�d; X)) be fixed. In order to motivate the definition to
be given in a moment, let us first recall that f =

∑∞
n=0 S n f in S(�d; X) respectively in S′(�d; X)

whenever f ∈ S(�d; X) respectively f ∈ S′(�d; X), from which it is easy to see that

f|�i−1×{0}×�d−i =

∞∑
n=0

(S n f )|�i−1×{0}×�d−i in S(�d−1; X), f ∈ S(�d; X).
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Furthermore, given a general tempered distribution f ∈ S′(�d; X), recall that S n f ∈ F −1E′(�d; X),
i.e. Ŝ fn has compact support, for every n ∈ �. By the Paley-Wiener-Schwartz theorem, The-
orem C.6.5, it thus holds that each S n f is a continuous function on �d; in particular, each S n f
has a well defined classical trace with respect to �i−1 × {0} × �d−i. This suggests to define the
the trace operator γ0,i = γ

ϕ
0,i : D(γϕ0 ) ⊂ S′(�d; X) −→ S′(�d−1; X) by

γ
ϕ
0,i f :=

∞∑
n=0

(S n f )|�i−1×{0}×�d−i (5.64)

on the domain D(γϕ0 ) consisting of all f ∈ S′(�d; X) for which this defining series converges
in S′(�d−1; X). Note that F −1E′(�d; X) is a subspace ofD(γϕ0 ) on which γϕ0 coincides with the
classical trace of continuous functions with respect to �i−1 × {0} × �d−i; of course, for an f
belonging to F −1E′(�d; X) there are only finitely many S n f non-zero.

In the next two subsubsections we will investigate the trace operators r0,i and γ0,i = γ
ϕ
0 ,

i ∈ {1, d}, on the weighted anisotropic mixed-norm functions spaces of Besov, Triebel-Lizorkin,
Sobolev and Bessel-potential type of suitable smoothness, equipped with a weight-vector w ∈∏l

j=1 A∞(�d ) in which w1 (resp. w2) has the form (5.60) (resp. (5.61)) in case of i = 1 (resp.
i = d). It is our goal to find, for

E = Bs,a
p,q,d (�d,w; X), F s,a

p,q,d (�d,w; X),Wn
p,d (�d,w; X),H s,a

p,d (�d,w; X),

sufficient conditions in terms of the parameters and weights in order that γ0,i = γ
ϕ
0,i, i ∈ {1, d},

is well-defined on E (and independent of ϕ ∈ Φd ,a(�d), and such that there exists a Banach
space G ⊂ S′(�d−1; X) (which is necessarily unique up to an equivalence of norm) such that
γ
ϕ
0,i restricts to a continuous surjection

γ0,i : E −→ G

having a continuous right-inverse (also independent of ϕ ∈ Φd ,a(�d)). The space G is then
called the trace space of E. Note that in case S(�d; X) is a dense subspace of E, which in
our situation occurs when E , Bs,a

p,∞,d (�d,w; X), F s,a
p,∞,d (�d,w; X), γ0,i is the unique extension

to a continuous linear operator E −→ G of the classical trace (with respect to the hyperplane
�i−1 × {0} × �d−i) defined on S(�d; X). Under extra restrictions on the smoothness parameter
and the weight-vector, we will show that E is continuously included in the domain of the
distributional trace operator r0,i and that r0,i coincides here with γ0,i.

Before we go to the just discussed specific trace problem for the weighted anisotropic
mixed-norm function spaces, let us first do some preparations in a general setting.

In the next proposition we construct a right-inverse for the distributional trace operator r0,i

restricted to C(�;S′(�d−1; X)) (under the usual identifications). For simplicity of notation, we
with out loss of generality restrict ourselves to the case i = 1:

Proposition 5.2.49. Let ρ ∈ S(�) such that ρ(0) = 1 and supp ρ̂ ⊂ [1, 2], a1 ∈ �, d̃ ∈ (�>0)l̃

such that d − 1 = |d̃ |1, ã ∈]0,∞[l̃, and (φn)n∈� ∈ Φd̃ ,ã(�d−1) with corresponding family of
convolution operator (Tn)n∈� ⊂ L(S′(�d−1; X)) (given by Tn := φn∗ for each n). Then, for each
g ∈ S′(�d−1; X),

ext g :=
∞∑

n=0

ρ(2na1 · ) ⊗ Tng (5.65)
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defines a convergent sum inS′(�d; X) and the operator ext0,1 defined via this formula is a linear
operator

ext0,1 : S′(�d−1; X) −→ Cb(�;S′(�d−1; X))

which acts as a right inverse of r0,1 : C(�;S′(�d−1; X)) −→ S′(�d−1; X).

Proof. We start with establishing the convergence of the series in (5.65) in the space S′(�d; X).
Writing l := l̃+1, d := (1, d̃ ) ∈ (�>0)l, and a := (a1, ã) ∈]0,∞[l, this can be proved by checking
the conditions of Lemma 5.2.7: From

F [ρ(2na1 · ) ⊗ Tng] = F [ρ(2na1 · )] ⊗ T̂ng = 2−na1 ρ̂(2−na1 · ) ⊗ T̂ng, n ∈ �,

it follows that

supp F [ρ(2na1 · ) ⊗ Tng] ⊂ supp ρ̂(2−na1 · ) × supp Tng ⊂ [2na1 , 2na12] × supp Tng.

In view of the Fourier supports of the ψn (see (5.13)), we can thus find a c′ > 0 (independent of
g) such that

F [ρ ⊗ T0g] ⊂ {ξ | v(ξ) ≤ c′}, supp F [ρ(2na1 · ) ⊗ Tng] ⊂ {ξ | c′−12n ≤ v(ξ) ≤ c′2n} , n ≥ 1,

for the (d , a)-anisotropic distance function v on �d defined by v(ξ) := max{|ξ1|
1/a1 , |ξ′|d̃ ,ã}. But

v h | · |d ,a by Lemma 2.3.2, whence there exists a constant c > 0 (independent of g) such that

supp F [ρ⊗T0g] ⊂ {ξ | |ξ|d ,a ≤ c}, supp F [ρ(2na1 · )⊗Tng] ⊂ {ξ | c−12n ≤ |ξ|d ,a ≤ c2n} , n ≥ 1,
(5.66)

which is the desired Fourier support condition (5.15) from Lemma 5.2.7. The growth condition
(5.17) follows directly from the fact (ρ(2na1 · ))n∈� is a uniformly bounded family of functions
on � and such a growth condition for the Tng on �d−1 (see Lemma 5.2.7.(ii)).

Next we show that ext g belongs to Cb(�;S′(�d−1)). To this end, observe that
∑∞

n=0[x1 7→

ρ(2na1 x1)Tng] defines an absolutely convergent series in Cb(�;S′(�d−1; X)). Indeed, each x1 7→

ρ(2na1 x1)Tng clearly defines an element of Cb(�;S′(�d−1; X)). Moreover, since (ρ(2na1 · ))n∈�

is a uniformly bounded family of functions on �, and since ||Tng(ψ)||X ≤ Cψ2−n for all ψ ∈
S(�d−1) by Lemma 5.2.7.(ii) (just take K large enough), it holds that

∞∑
n=0

||x1 7→ ρ(2na1 x1)Tng(ψ)||Cb(�;X) ≤ C̃ψ (ψ ∈ S(�d−1)). (5.67)

This establishes the absolute convergence of the series in Cb(�;S′(�d−1; X)), say with limit
Λg. To see that Λg = ext0,1 g, it suffices to show that they coincide on test functions of the form
χ ⊗ ψ with χ ∈ C∞c (�) and ψ ∈ C∞c (�d−1). So let’s compute

Λg(χ ⊗ ψ) =

∫
�

Λg(x1)[(χ ⊗ ψ)(x1, · )]dx1

=

∫
�

∞∑
n=0

ρ(2na1 x1)Tng(ψ)χ(x1)dx1

!
=

∞∑
n=0

∫
�

ρ(2na1 x1)Tng(ψ)χ(x1)dx1

=

∞∑
n=0

[ρ(2na1 · ) ⊗ Tng](χ ⊗ ψ)

= [ext0,1 g](χ ⊗ ψ);
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here the interchange in the third equality is justified by (5.67) and χ ∈ Cc(�).
To finish the proof, we show that the operator ext0,1 : S′(�d−1; X) −→ Cb(�;S′(�d−1)),

which is obviously linear, acts as a right inverse of r0,1 : C(�;S′(�d−1)) −→ S′(�d−1; X). As
ρ(0) = 1 and (Tn)n∈� is the family of convolution operators associated to (ψn)n∈� ∈ Φd ′′,a′′(�d−1)
by our choice, we simply have

r0,1(ext0,1 g) = r0,1Λ
g = Λg(0) =

∞∑
n=0

ρ(2na10)Tng =

∞∑
n=0

Tng = g.

�

The following simple lemma will be important for determining the trace space G in case E
is a Besov or a Triebel-Lizorkin space.

Lemma 5.2.50. Let E ⊂ S′(�d; X) and G ⊂ S′(�d−1) be two Banach spaces of X-valued
tempered distributions such that F −1E′(�d−1; X) ∩G is dense in G. Suppose that γ0,i exists on
E and defines a continuous linear operator E −→ G and that the extension operator ext0,i from
Proposition 5.2.49 restricts to a continuous linear operator G −→ E. Then ext0,i : G −→ E is
a right inverse of γ0,i : E −→ G.

Proof. For simplicity of notation we assume that i = 1. Let g be an arbitrary element from the
dense subspace F −1E′(�d−1; X) ∩G of G. In the notation of Proposition 5.2.49,

ext0,1 g =

N∑
n=0

ρ(2na1 · ) ⊗ Tng ∈ F −1E′(�d; X) = F −1E′(�d; X) ∩C(�d; X)

for some N ∈ �. Since γ0,1 extends the classical trace on F −1E′(�d; X) while r0,1 extends the
classical trace on C(�d; X), it follows that

γ0,1(ext0,1 g) = (ext0,1 g)|{0}×�d−1 = r0(ext g) = g;

see Proposition 5.2.49 for the last equality. This identity extends by denseness and continuity
to all g ∈ G. �

Lemma 5.2.51. Let E ⊂ D′(�d; X) and G ⊂ S′(�d−1; X) be two Banach spaces of X-valued
distributions such that

• S(�d; X)
dense
↪→ E and S(�d−1; X) ⊂ G;

• S(�d; X) −→ S(�d−1; X), f 7→ f|�i−1×{0}×�d−i extends to a bounded linear operator tr0,i :
E −→ G;

• The extension operator ext0,i from Proposition 5.2.49 restricts to a continuous right in-
verse of tr0,i.

Then { f ∈ S(�d; X) : f|�i−1×{0}×�d−i = 0 } is a dense subspace of ker(tr0,i) ⊂ E.
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Proof. Let f ∈ ker(tr0,i) ⊂ E be arbitrary. Then, as

F −1(C∞c (�d; X))
dense
⊂ S(�d; X)

dense
↪→ E,

there exists a sequence ( fn)n∈� ⊂ F −1(C∞c (�d; X)) such that f = limn→∞ fn in E. Now note that

r( fn) = fn|tr0,i ∈ F −1(C∞c (�d−1; X)), n ∈ �,

and that ext0,i maps F −1(C∞c (�d−1; X)) into F −1(C∞c (�d; X)). So we have

f̃n := fn − ext0,i(tr0,i( fn)) ∈ F −1(C∞c (�d; X)) ⊂ S(�d; X)

for each n ∈ �. Furthermore,

f̃n|�i−1×{0}×�d−i = tr0,i( f̃n) = tr0,i( fn) − tr0,i(ext0,i(tr0,i( fn))) = tr0,i( fn) − tr0,i( fn) = 0, n ∈ �,

and
f̃n = fn − ext0,i(tr0,i( fn))

n→∞
−→ f − ext0,i(tr0,i( f )) = f − ext0,i(0) = f in E.

�

5.2.3.b Traces with respect to {0} ×�d−1

The Trace Space of a Besov Space We first investigate the Besov case. Since we restrict
ourselves to weight-vectors w ∈

∏l
j=1 A∞(�d ) in which w1 has the form (5.60) for some γ > −1,

in view of Remark 5.2.13 we may assume without loss of generality that d1 = 1; this will
simplify the notation.

Throughout this paragraph we will use the following notation: We write d ′′ = (d2, . . . , dl).
Given p ∈]1,∞[l we will write p′′ = (p2, . . . , pl), and similarly for w ∈

∏l
j=1 A∞(�d ).

Theorem 5.2.52. Let X be a Banach space, a ∈]0,∞[l, p ∈]1,∞[l, q ∈ [1,∞], γ ∈] − 1,∞[
and s > a1

p1
(1 + γ). Let w ∈

∏l
j=1 A∞(�d ) be such that w1(x1) = wγ(x1) = |x1|

γ and w′′ ∈∏l
j=2 Ap j/r j(�

d j) for some r′′ = (r2, . . . , rl) ∈]0, 1[l−1 satisfying s− a1
p1

(1 +γ) >
∑l

j=2 a jd j( 1
r j
−1).5

Then the trace operator γ0,1 = γ
ϕ
0,1 is well-defined on Bs,a

p,q,d (�d, (wγ,w′′); X) and restricts to a
continuous surjection

γ0,1 = γ
ϕ
0,1 : Bs,a

p,q,d (�d, (wγ,w′′); X) −→ B
s− a1

p1
(1+γ),a′′

p′′,q,d ′′ (�d−1,w′′; X),

independent of ϕ, for which the extension operator ext0,1 from Proposition 5.2.49 (with d̃ = d ′′

and ã = a′′) restricts to a corresponding continuous right-inverse. Moreover, if s > a1
p1

(1 + γ+)
and w′′ ∈

∏l
j=2 Ap j(�

d j), then

Bs,a
p,q,d (�d, (wγ,w′′); X) ↪→ C(�; Lp′′,d (�d−1,w′′; X)) ↪→ C(�;S′(�d−1; X)) (5.68)

and the distributional trace r0,1 coincides with the trace operator γ0,1 on Bs,a
p,q,d (�d, (wγ,w′′); X).

Lemma 5.2.22 and the following lemma are the main ingredients for the doing the estimates
for γ0,1 in the proof of this theorem.

5This technical condition on w′′ is in particular satisfied for w′′ ∈
∏l

j=2 Ap j (�
d j ).
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Lemma 5.2.53. Let d1 = 1, p ∈]1,∞[l, γ > −1 and wγ(x1) := |x1|
γ on �. Then there

exists a constant C > 0 such that for all Banach spaces X, w′′ ∈
∏l

j=2W(�d j), R > 0,
f ∈ F −1E′(�d; X) with πd ;1(supp f̂ ) ⊂ [−R,R], b ≥ 0, and x1 ∈ [−b, b], it holds that

|| f (x1, ·)||Lp′′ ,d ′′ (�d−1,w′′;X) ≤ C(bR + 1)
γ−
p1 R

1+γ
p1 || f ||Lp,d (�d ,(wγ,w′′);X)

Proof. We first consider the case −1 < γ < p − 1. Pick a ψ ∈ F −1(C∞(�)) satisfying ψ̂ ≡ 1
on [−1, 1]. For R > 0 we define ψR := Rψ(� · ); then ψR ∈ F −1(C∞c (�)) with ψ̂R ≡ 1 on
[−R,R]. Now let X be a Banach space, w′′ ∈

∏l
j=2W(�d j), R > 0, f ∈ F −1E′(�d; X) such that

π1(supp f̂ ) ⊂ [−R,R], b ≥ 0, and x1 ∈ [−b, b]. Then

f (x1, x′′) = [ f ( · , x′′) ∗ ψR](x1) =

∫
�

f (s, x′′)|s|γ/p1ψR(x1 − s)|s|−γ/p1ds.

Putting γ′ := −γ p′1
p1

= −
γ

p1−1 > −1, Hölder’s inequality gives

|| f (x1, x′′)||X ≤ || f (x1, · )||Lp1 (�,wγ;X)

(∫
�

|ψR(x1 − s)|p
′
1 |s|γ

′

ds
)1/p′1

. (5.69)

The second term can be computed as(∫
�

|ψR(x1 − s)|p
′
1 |s|γ

′

ds
)1/p′1

= R
(∫
�

|ψ(Rx1 − Rs)|p
′
1 |s|γ

′

ds
)1/p′1

= R
1− 1+γ′

p′1

(∫
�

|ψ(Rx1 − σ)|p
′
1 |σ|γ

′

dσ
)1/p′1

= R
1

p1
(1+γ)

(∫
�

|ψ(Rx1 − σ)|p
′
1 |σ|γ

′

dσ
)1/p′1

. (5.70)

Since ψ ∈ S(�) and wγ′ ∈ Ap′1
(�), where wγ′(s) = |s|γ

′

, it follows from Lemma D.2.7 that there
is a constant C1 > 0 such that∫

�

|ψ(Rx1 − σ)|p
′
1 |σ|γ

′

dσ ≤ C1

∫
[Rx1−1,Rx1+1]

|σ|γ
′

dσ.

Observing that the right hand side can be estimated by C2(bR+1)(γ′)+ = C2(bR+1)p′1γ− for some
constant C2 > 0 independent of R, b and x1, combining this estimate with (5.69) and (5.70),
and subsequently taking Lp′′,d ′′(�d−1,w′′; X)-norms, we obtain the desired estimate.

Next, the case γ ≥ p−1 can be derived from the case γ = 0 via the inequality of Plancherel-
Pólya-Nikol’skii type from Proposition 5.2.32:

|| f (x1, ·)||Lp′′ ,d ′′ (�d−1,w′′;X) . R
1

p1 || f ||Lp,d (�d ,(1,w′′);X) . R
1+γ
p1 || f ||Lp,d (�d ,(wγ,w′′);X) .

6

�

The following proposition forms the basis for the last statement in Theorem 5.2.52 con-
cerning the distributional trace operator r0,1.

Proposition 5.2.54. Let X be a Banach space, a ∈]0,∞[l, p ∈]1,∞[l, q ∈ [1,∞], γ ∈] − 1,∞[,
wγ(x1) := |x1|

γ on �, and w′′ ∈
∏l

j=2 Ap j(�
d j). Then

B
a1
p1

(1+γ+),a

p,1,d (�d, (wγ,w′′); X) ↪→ Cb(�, vγ,p1; Lp′′,d (�d−1,w′′; X)) ↪→ C(�;S′(�d−1; X)), 7 (5.71)

6Note that this actually works for all γ ≥ 0.
7See Appendix C.1 for the space Cb(�, vγ,p1 ; Lp′′,d (�d−1,w′′; X)).
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where vγ,p1 := max{| · |, 1/3}−
γ−
p1 and where, given a Banach space Y, Cb(�, vγ,p1; Y) denotes

the Banach space of all continuous functions f : � −→ Y for which f vγ,p1 is bounded with its

natural norm || f ||Cb(�,vγ,p1 ;Y) :=
∣∣∣∣∣∣ f vγ,p1

∣∣∣∣∣∣
∞

. Here an f ∈ B
a1
p1

(1+γ+),a

p,1,d (�d, (wγ,w′′); X) corresponds
to the f̃ ∈ Cb(�, vγ,p1; Lp′′,d (�d−1,w′′; X)) ⊂ C(�;S′(�d−1; X)) given by

f̃ =

∞∑
n=0

[x1 7→ S n f (x1, ·)],

with absolute convergence in Cb(�, vγ,p1; Lp′′,d (�d−1,w′′; X)).

Proof. Given a Banach space Y and a function ρ : � −→]0,∞[, we denote by B(�, ρ; Y)
the space of all functions g : � −→ Y for which ρg is bounded. Equipped with the norm
||g||B(�,ρ;Y) := supt∈� ||ρ(t)g(t)||Y , B(�, ρ; Y) becomes a Banach space. Note that C(�, ρ; Y) is the
closed subspace of B(�, ρ; Y) consisting of all the continuous functions belonging to B(�, ρ; Y).

Let f ∈ B
a1
p1

(1+γ+),a

p,1,d (�d, (wγ,w′′); X). For all n ∈ � we have S n f ∈ F −1E′(�d; X) with

pr1 supp Ŝ n f ⊂ [−3 · 2na1 , 3 · 2na1]. From Lemma 5.2.53 it follows that, for all n ∈ �, b ≥ 1/3
and x1 ∈ [−b, b],

||S n f (x1, · )||Lp′′ ,d (�d−1,w′′;X) ≤ C1(b3 · 2na1 + 1)
γ−
p1 (3 · 2na1)

1+γ
p1 ||S n f ||Lp,d (�d ,(wγ,w′′);X)

≤ C2b
γ−
p1 (2na1)

1+γ+γ−
p1 ||S n f ||Lp,d (�d ,(wγ,w′′);X)

= C2b
γ−
p1 2n a1

p1
(1+γ+)

||S n f ||Lp,d (�d ,(wγ,w′′);X) .

Thus each x1 7→ S n f (x1, · ) defines an element of B(�, vγ,p1; Lp′′,d (�d−1,w′′; X)) of norm

||x1 7→ S n f (x1, · )||B(�,vγ,p1 ;Lp′′ ,d (�d−1,w′′;X)) ≤ C22n a1
p1

(1+γ+)
||S n f ||Lp,d (�d ,(wγ,w′′);X) ,

so that

∞∑
n=0

||x1 7→ S n f (x1, · )||B(�,vγ,p1 ;Lp′′ ,d (�d−1,w′′;X)) ≤ C2

∞∑
n=0

2n a1
p1

(1+γ+)
||S n f ||Lp,d (�d ,(wγ,w′′);X)

= C2 || f ||
B

a1
p1

(1+γ+),a

p,1,d (�d ,(wγ,w′′);X)
.

If each x1 7→ S n f (x1, · ) were continuous as a function � −→ Lp,d (�d, (wγ,w′′); X), then we
would have absolute convergence of the series f̃ :=

∑
n∈�[x1 7→ S n f (x1, · )] in the Banach

space Cb(�, vγ,p1; Lp′′,d (�d−1,w′′; X)) and f 7→ f̃ would be a continuous linear map

B
a1
p1

(1+γ+),a

p,1,d (�d, (wγ,w′′); X) −→ Cb(�, vγ,p1; Lp′′,d (�d−1,w′′; X)).

To see that x1 7→ S n f (x1, · ) is indeed continuous, let b > 0. By Lemma 5.2.53 we have, for
x1 ∈] − b, b[ and h1 ∈ � such that x1 + h1 ∈] − b, b[,

||S n f (x1 + h1, · ) − S n f (x1, · )||Lp,d (�d ,(wγ,w′′);X) ≤ C1(bRn + 1)
γ−
p1 R

1+γ
p1

n

∣∣∣∣∣∣∆[d ;1],h1S n f
∣∣∣∣∣∣

Lp,d (�d ,(wγ,w′′);X)
,
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where Rn := −2−na1 . Now we pick an r ∈]0, 1] such that wγ ∈ Ap1/r(�), apply Lemma 5.2.42,
and use the boundedness of M[d ;1],r on Lp,d (�d, (wγ,w′′)), to obtain, for |h1| ≤ Rn,

||S n f (x1 + h1, · ) − S n f (x1, · )||Lp,d (�d ,(wγ,w′′);X) ≤ C3(bRn + 1)
γ−
p1 R

1+γ
p1

n Rn|h1|
∣∣∣∣∣∣M[d ;1],r ||S n f ||X

∣∣∣∣∣∣
Lp,d (�d ,(wγ,w′′))

≤ |h1|C[n] ||S n f ||Lp,d (�d ,(wγ,w′′);X)

for some constant C[n] > 0. This gives the desired continuity.
Finally, we show that f and f̃ coincide as distributions: It is not difficult to see that [x1 7→

S n f (x1, · )] ∈ C(�;S′(�d−1; X)) coincides with S n f when viewed as distribution on �d. From
the convergence f̃ =

∑∞
n=0[x1 7→ S n f (x1, · )] in C(�;S′(�d−1; X)) and the continuity of the

inclusion C(�;S′(�d−1; X)) ↪→ D′(�d; X) it thus follows that f̃ =
∑∞

n=0 S n f in D′(�d; X). As
f =

∑∞
n=0 S n f in S′(�d; X) ↪→ D′(�d; X), this completes the proof. �

We are now ready to prove Theorem 5.2.52:

Proof of Theorem 5.2.52. Let the notations be as in Proposition 5.2.49. We will show that, for
an arbitrary ϕ ∈ Φd ,a(�d),

(I) γϕ0,1 exists on Bs,a
p,q,d (�d, (wγ,w′′); X) and defines a continuous operator

γ
ϕ
0,1 : Bs,a

p,q,d (�d, (wγ,w′′); X) −→ B
s− a1

p1
(1+γ),a′′

p′′,q,d ′′ (�d−1,w′′; X);

(II) The extension operator ext0,1 from Proposition 5.2.49 (with d̃ = d ′′ and ã = a′′) restricts
to a continuous operator

ext0,1 : B
s− a1

p1
(1+γ),a′′

p′′,q,d ′′ (�d−1,w′′; X) −→ Bs,a
p,q,d (�d, (wγ,w′′); X).

In case q < ∞, the independence of ϕ ∈ Φd ,a(�d) in the first assertion follows from denseness
of S(�d; X) in Bs,a

p,q,d (�d, (wγ,w′′); X) and (I), whereas the right inverse part in the first assertion

then follows from denseness of F −1C∞c (�d; X) ⊂ F −1E′(�d; X) ∩ B
s− a1

p1
(1+γ),a′′

p′′,q,d ′′ (�d−1,w′′; X)

in B
s− a1

p1
(1+γ),a′′

p′′,q,d ′′ (�d−1,w′′; X) (cf. Proposition 5.2.17), (I) and (II), via an application of Lemma
5.2.50. In case q = ∞, this assertion follows from a combination of (I), (II), the case q = 1,
and Proposition 5.2.30(ii); to see that also in this case γϕ0,1 is independent of ϕ and has ext0,1 as
a right-inverse, we use the embeddings Bs,a

p,∞,d (�d, (wγ,w′′); X) ↪→ Bs̃,a
p,1,d (�d, (wγ,w′′); X) and

B
s− a1

p1
(1+γ),a′′

p′′,q,d ′′ (�d−1,w′′; X) ↪→ B
s̃− a1

p1
(1+γ),a′′

p′′,q,d ′′ (�d−1,w′′; X), respectively, where s̃ ∈] a1
p1

(1 + γ), s[.
The last assertion is immediate from a combination of Proposition 5.2.30(ii) and Proposition
5.2.54.

(I): Let f ∈ Bs,a
p,∞,d (�d, (wγ,w′′); X). Then each S n f ∈ S′(�d; X) has Fourier support

supp Ŝ n f ⊂
l∏

j=1

[−c2na j , c2na j]d j
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for some constant c > 0 only depending on ϕ. Therefore, by Corollary C.6.5, we have
S n f (0, ·) ∈ S′(�d−1; X) with Fourier support contained in

∏l
j=2[−c2na j , c2na j]d j . In view of

Lemma 5.2.22, it thus suffices to show that∣∣∣∣∣∣∣∣∣∣(2n[s− a1
p1

(1+γ)]S n f (0, ·)
)

n≥0

∣∣∣∣∣∣∣∣∣∣
`q(�;Lp′′ ,d ′′ (�d−1,w′′;X))

. || f ||Bs,a
p,q,d (�d ,(wγ,w′′);X) .

Using Lemma 5.2.53, we can obtain this estimate:∣∣∣∣∣∣∣∣∣∣(2n[s− a1
p1

(1+γ)]S n f (0, ·)
)

n≥0

∣∣∣∣∣∣∣∣∣∣
`q(�;Lp′′ ,d ′′ (�d−1,w′′;X))

=

∣∣∣∣∣∣∣∣∣∣(2n[s− a1
p1

(1+γ)]
||S n f (0, ·)||Lp′′ ,d ′′ (�d−1,w′′;X)

)
n≥0

∣∣∣∣∣∣∣∣∣∣
`q(�)

≤

∣∣∣∣∣∣∣∣∣∣(2n[s− a1
p1

(1+γ)]C1(c2na1)
1

p1
(1+γ)
||S n f ||Lp,d (�d ,(wγ,w′′);X)

)
n≥0

∣∣∣∣∣∣∣∣∣∣
`q(�)

= C1c
1

p1
(1+γ)

∣∣∣∣∣∣∣∣(2ns ||S n f ||Lp,d (�d ,(wγ,w′′);X)

)
n≥0

∣∣∣∣∣∣∣∣
`q(�)

= C2 || f ||Bs,a
p,q,d (�d ,(wγ,w′′);X) .

(II): Let g ∈ B
s− a1

p1
(1+γ),a′′

p′′,q,d ′′ (�d−1,w′′; X). By construction of ext0,1 (see Proposition 5.2.49 and
its proof), we have that ext0,1 g =

∑∞
n=0 ρ(2na1 · ) ⊗ Tng in S′(�d; X) with each ρ(2na1 · ) ⊗ Tng

satisfying (5.66) for a c > 1 independent of g. In view of Lemma 5.2.10, it is thus enough to
show that

||(2snρ(2na1 · ) ⊗ Tng)n≥0||`q(�;Lp,d (�d ,(wγ,w′′);X)) ≤ C ||g||
B

s−
a1
p1

(1+γ),a′′

p′′ ,q,d ′′ (�d−1,w′′;X)

for some constant C > 0 independent of g. So we compute

||(2snρ(2na1 · ) ⊗ Tng)n≥0||`q(�;Lp,d (�d ,(wγ,w′′);X))

=
∣∣∣∣∣∣∣∣(2sn ||ρ(2na1 · ) ⊗ Tng||Lp,d (�d ,(wγ,w′′);X))n≥0

∣∣∣∣∣∣∣∣
`q(�)

=
∣∣∣∣∣∣∣∣(2sn ||ρ(2na1 · )||Lp1 (�,wγ) ||Tng||Lp′′ ,d ′′ (�d−1,w′′);X))n≥0

∣∣∣∣∣∣∣∣
`q(�)

=
∣∣∣∣∣∣∣∣(2n[s− a1

p1
(1+γ)]

||ρ||Lp1 (�,wγ) ||Tng||Lp′′ ,d ′′ (�d−1,w′′);X))n≥0

∣∣∣∣∣∣∣∣
`q(�)

= ||ρ||Lp1 (�,wγ) ||g||
B

s−
a1
p1

(1+γ),a′′

p′′ ,q,d ′′ (�d−1,w′′;X)
.

�

The Trace Space of a Triebel-Lizorkin Space

Theorem 5.2.55. Let X be a Banach space, d1 = 1, a ∈]0,∞[l, p ∈]1,∞[l, q ∈ [1,∞], γ ∈
]−1,∞[ and s > a1

p1
(1+γ). Let w ∈

∏l
j=1 A∞(�d ) be such that w1(x1) = wγ(x1) = |x1|

γ and w′′ ∈∏l
j=2 Ap j/r j(�

d j) for some r′′ = (r2, . . . , rl) ∈]0, 1[l−1 satisfying s− a1
p1

(1 +γ) >
∑l

j=2 a jd j( 1
r j
−1).8

8This technical condition on w′′ is in particular satisfied for w′′ ∈
∏l

j=2 Ap j (�
d j ).
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Then the trace operator γ0,1 = γ
ϕ
0,1 is well-defined on F s,a

p,q,d (�d, (wγ,w′′); X) and restricts to a
continuous surjection

γ0,1 = γ
ϕ
0,1 : F s,a

p,q,d (�d, (wγ,w′′); X) −→ F
s− a1

p1
(1+γ),a′′

p′′,p1,d ′′
(�d−1,w′′; X)

independent of ϕ, for which the extension operator ext0,1 from Proposition 5.2.49 (with d̃ = d ′′

and ã = a′′) restricts to a corresponding continuous right-inverse. Moreover, if s > a1
p1

(1 + γ+)
and w′′ ∈

∏l
j=2 Ap j(�

d j), then

F s,a
p,q,d (�d, (wγ,w′′); X) ↪→ C(�; Lp′′,d (�d−1,w′′; X)) ↪→ C(�;S′(�d−1; X)) (5.72)

and the distributional trace r0,1 coincides with the trace operator γ0,1 on F s,a
p,q,d (�d, (wγ,w′′); X).

Note that the trace space of the weighted anisotropic Triebel-Lizorkin space (as in the the-
orem) is independent of the microscopic parameter q ∈ [1,∞]. Together with the embeddings
(5.48) and (5.49) from Proposition 5.2.31, this will allow us to solve the trace problems for
Bessel potential and Sobolev spaces via a simple sandwich argument; see the next paragraph.

Besides the technical Lemma 5.2.23, the following lemma plays a crucial role in the proof
of this theorem.

Lemma 5.2.56. For every r ∈ [1,∞] and t > 0 there exists a constant C > 0 such that, for all
sequences (bk)k∈� ∈ �

�, the following two inequalities hold true:∣∣∣∣∣∣∣∣(2tk ∑∞
n=k+1 |bn|

)
k∈�

∣∣∣∣∣∣∣∣
`r(�)

≤ C
∣∣∣∣∣∣(2tkbk)k∈�

∣∣∣∣∣∣
`r(�)

,∣∣∣∣∣∣∣∣(2−tk ∑k
n=0 |bn|

)
k∈�

∣∣∣∣∣∣∣∣
`r(�)

≤ C
∣∣∣∣∣∣(2−tkbk)k∈�

∣∣∣∣∣∣
`r(�)

.

Proof. See [62, Lemma 4.2] and the references given there. �

Proof of Theorem 5.2.55. Let the notations be as in Proposition 5.2.49. We will show that, for
an arbitrary ϕ ∈ Φd ,a(�d),

(I) γϕ0,1 exists on F s,a
p,q,d (�d, (wγ,w′′); X) and defines a continuous operator

γ
ϕ
0 : F s,a

p,q,d (�d, (wγ,w′′); X) −→ F
s− a1

p1
(1+γ),a′′

p′′,p1,d ′′
(�d−1,w′′; X);

(II) The extension operator ext0,1 from Proposition 5.2.49 (with d̃ = d ′′ and ã = a′′) restricts
to a continuous operator

ext0,1 : F
s− a1

p1
(1+γ),a′′

p′′,p1,d ′′
(�d−1,w′′; X) −→ F s,a

p,q,d (�d, (wγ,w′′); X).

Since F −1C∞c (�d; X) ⊂ F −1E′(�d−1; X) ∩ F s,a′′

p,p1,d ′′
(�d−1,w′′; X) is dense in F s,a′′

p,p1,d ′′
(�d,w′′; X)

(cf. Proposition 5.2.17), the right inverse part in the first assertion follows from (I) and (II)
via an application of Lemma 5.2.50. The independence of ϕ in the first assertion follows from
denseness of S(�d; X) in F s,a

p,q,d (�d, (wγ,w′′); X) in case q < ∞, from which the case q = ∞

can be deduced via Proposition 5.2.30.(ii). The last assertion is immediate from a combination
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of Proposition 5.2.30.(iii) and Theorem 5.2.54; here we of course use the continuous inclusion
F s,a

p,q,d (�d,w; X) ↪→ Bs,a
p,∞,d (�d,w; X) from Proposition 5.2.30.(iii).

(I): In view of Proposition 5.2.30(i), we may with out loss of generality assume that q = ∞.
Let f ∈ F s,a

p,∞,d (�d, (wγ,w′′); X) and write fn := S n f for each n. Similar to (I) in the proof of
Theorem 5.2.52, now using Lemma 5.2.23 instead of Lemma 5.2.22, it suffices to show that∣∣∣∣∣∣∣∣∣∣(2n[s− a1

p1
(1+γ)] fn(0, ·)

)
n≥0

∣∣∣∣∣∣∣∣∣∣
Lp′′ ,d ′′ (�d−1,w′′;`p1 (�;X))

. || f ||F s,a
p,∞,d (�d ,(wγ,w′′);X) . (5.73)

In order to establish the estimate (5.73), we pick an r1 ∈]0, 1[ such that wγ ∈ Ap1/r1(�), and
write r := (r, r′′) ∈]0, 1[l. For all x = (x1, x′′) ∈ [2−na1 , 2(1−n)a1] ×�d−1 and every n ∈ � we have

|| fn(0, x′′)|| ≤ C1
|| fn(x1 − y1, x′′)||
1 + |2na1y1|

1/r1

∣∣∣∣
y1=x1

≤ (1 + 2
a1
r1 ) f ∗n (r, b[n], d ; x) = C1 f ∗n (r, b[n], d ; x),

where b[n] := (2na1 , . . . , 2nal) ∈]0,∞[l. Raising this to the p1-th power, multiplying by 2nsp1 |x1|
γ,

and integrating over x1 ∈ [2−na1 , 2(1−n)a1], we obtain

2a1(γ+1) − 1
1 + γ

2n
(
s− a1

p1
(1+γ)

)
p1
|| fn(0, x′′)||p1 ≤ Cp

1

∫
[2−na1 ,2(1−n)a1 ]

[
2ns f ∗n (r, b[n], d , d ; (x1, x′′))

]p1
|x1|

γdx1.

It now follows that
∞∑

n=0

2
(
s− a1

p1
(1+γ)

)
np1
|| fn(0, x′′)||p1 ≤ C2

∫
�

∣∣∣∣∣∣∣∣(2ks f ∗k (r, b[n], d ; (x1, x′′))
)

k≥0

∣∣∣∣∣∣∣∣p1

`∞(�)
|x1|

γdx1,

from which we in turn obtain∣∣∣∣∣∣∣∣∣∣(2n[s− a1
p1

(1+γ)] fn(0, ·)
)

n≥0

∣∣∣∣∣∣∣∣∣∣
Lp′′ ,d ′′ (�d−1,w′′;`p1 (�;X))

≤

∣∣∣∣∣∣∣∣(2ks f ∗k (r, b[n], d ; · )
)

k≥0

∣∣∣∣∣∣∣∣
Lp,d (�d ,(wγ,w′′);`∞(�))

.

Since ( fk)k∈� ⊂ S
′(�d; X) satisfies supp( f̂k) ⊂ Qd ,cb[k] for each k ∈ � and some c > 0, the

desired estimate (5.73) is now a consequence of Proposition 3.4.7.
(II): In view of Proposition 5.2.30(i), we may with out loss of generality assume that q = 1.

Let g ∈ F
s− a1

p1
(1+γ),a′′

p′′,p1,d ′′
(�d−1,w′′; X) and write gn = Tng for each n. By construction of ext0,1 (see

Proposition 5.2.49 and its proof), we have ext g =
∑∞

n=0 ρ(2na1 · ) ⊗ gn in S′(�d; X) with each
ρ(2na1 · )⊗ gn satisfying (5.66) for a c > 1 independent of g. In view of Lemma 5.2.10, it is thus
enough to show that

||(2snρ(2na1 · ) ⊗ gn)n≥0||Lp,d (�d ,(wγ,w′′);`1(X)) . ||g||
F

s−
a1
p1

(1+γ),a′′

p′′ ,p1 ,d
′′ (�d−1,w′′;X)

. (5.74)

In order to establish the estimate (5.74), we define, for each x′′ ∈ �d−1,

I(x′′) :=
∫
�

 ∞∑
n=0

2sn ||ρ(2na1 x1)gn(x′′)||

p1

|x1|
γdx1. (5.75)

We furthermore first choose a natural number N > 1
p1

(1 + γ) and subsequently pick a con-
stant C1 > 0 for which the Schwartz function ρ ∈ S(�) satisfies the inequality |ρ(2na1 x1)| ≤
C1|2na1 x1|

−N for every n ∈ � and all x1 , 0.
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Denoting by I1(x′′) the integral over � \ [−1, 1] in (5.75), we have

I1(x′′) ≤ C1

∫
�\[−1,1]

 ∞∑
n=0

2−Na1n 2sn ||gn(x′′)||

p1

|x1|
−N p1+γdx1

= C1

∫
�\[−1,1]

|x1|
−N p1+γdx1

 ∞∑
n=0

2
(

1
p1

(1+γ)−N
)
a1n 2

(
s− a1

p1
(1+γ)

)
n
||gn(x′′)||

p1

≤

∫
�\[−1,1]

|x1|
−N p1+γdx1

∣∣∣∣∣∣
∣∣∣∣∣∣
(

2
(

1
p1

(1+γ)−N
)
a1n

)
n≥0

∣∣∣∣∣∣
∣∣∣∣∣∣p1

`
p′1 (�)︸                                                         ︷︷                                                         ︸

=:C2∈[0,∞[

∣∣∣∣∣∣
∣∣∣∣∣∣
(

2
(
s− a1

p1
(1+γ)

)
n
||gn(x′′)||

)
n≥0

∣∣∣∣∣∣
∣∣∣∣∣∣p1

`p1 (�)

.(5.76)

Next we denote, for each k ∈ �, by I0,k(x′′) the integral over Dk := {x1 ∈ � | 2−(k+1)a1 ≤

|x1| ≤ 2−ka1} in (5.75). Since the Dk are of measure wγ(Dk) ≤ C32−ka1(γ+1) for some constant
C3 > 0 independent of k, we can estimate

I0,k(x′′) ≤
∫

Dk

 k∑
n=0

2sn ||ρ||∞ ||gn(x′′)|| +
∞∑

n=k+1

C12(s−a1N)n|x1|
−N ||gn(x′′)||

p1

|x1|
γdx1

≤ C32−ka1(γ+1)

 k∑
n=0

2sn ||ρ||∞ ||gn(x′′)|| +
∞∑

n=k+1

C12(s−a1N)n2Na1(k+1) ||gn(x′′)||

p1

≤ C32p1 ||ρ||p1
∞ 2−ka1(γ+1)

 k∑
n=0

2sn ||gn(x′′)||

p1

+ C32p1(C12Na1)p12k
(
N− 1

p1
(γ+1)

)
a1 p1

 ∞∑
n=k+1

2(s−a1N)n ||gn(x′′)||

p1

.

Writing I0(x′′) :=
∑∞

k=0 I0,k(x′′), which is precisely the integral over [−1, 1] in (5.75), we obtain

I0(x′′) ≤ C4

∞∑
k=0

2−ka1(γ+1)

 k∑
n=0

2sn ||gn(x′′)||

p1

+ C4

∞∑
k=0

2k
(
N− 1

p1
(γ+1)

)
a1 p1

 ∞∑
n=k+1

2(s−a1N)n ||gn(x′′)||

p1

= C4

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2− a1

p1
(1+γ)k

k∑
n=0

2sn ||gn(x′′)||


k∈�

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p1

`p1 (�)

+ C4

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2(

N− 1
p1

(1+γ)
)
a1k

∞∑
n=k+1

2(s−a1N)n ||gn(x′′)||


k∈�

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p1

`p1 (�)

,

which via an application of Lemma 5.2.56 can be further estimated as

I0(x′′) ≤ C5

∣∣∣∣∣∣∣∣∣∣( 2−
a1
p1

(1+γ)k2sk ||gk(x′′)||
)

k≥0

∣∣∣∣∣∣∣∣∣∣p1

`p1 (�)
+ C5

∣∣∣∣∣∣
∣∣∣∣∣∣
(

2
(
N− 1

p1
(γ+1)

)
a1k2(s−a1N)k ||gk(x′′)||

)
k≥0

∣∣∣∣∣∣
∣∣∣∣∣∣p1

`p1 (�)

= 2C5

∣∣∣∣∣∣
∣∣∣∣∣∣
(

2
(
s− a1

p1
(1+γ)

)
k
||gk(x′′)||

)
k≥0

∣∣∣∣∣∣
∣∣∣∣∣∣p1

`p1 (�)

. (5.77)

Combining the estimates (5.76) and (5.77), we get

I(x′′)1/p1 ≤ C6

∣∣∣∣∣∣
∣∣∣∣∣∣
(

2
(
s− a1

p1
(1+γ)

)
n
||gn(x′′)||

)
n≥0

∣∣∣∣∣∣
∣∣∣∣∣∣
`p1 (�)

,

from which (5.74) follows by taking Lp′′,d ′′(�d−1,w′′)-norms. �
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The Trace Spaces of Bessel Potential and Sobolev Spaces The following two trace results
are immediate from Theorem 5.2.55 and Proposition 5.2.31.

Corollary 5.2.57. Let X be a Banach space, d1 = 1, a ∈
(

1
�>0

)l
, p ∈]1,∞[l, γ ∈]− 1, p1 − 1[ and

s > a1
p1

(1+γ). Let w ∈
∏l

j=1 Ap j(�
d ) be such that w1(x1) = wγ(x1) = |x1|

γ (see Example D.2.12).
Then the trace operator γ0,1 = γ

ϕ
0,1 is well-defined on H s,a

p,d (�d, (wγ,w′′); X) and restricts to a
continuous surjection

γ0,1 : H s,a
p,d (�d, (wγ,w′′); X) −→ F

s− a1
p1

(1+γ),a′′

p′′,p1,d ′′
(�d−1,w′′; X),

independent of ϕ, for which the extension operator ext0,1 from Proposition 5.2.49 (with d̃ = d ′′

and ã = a′′) restricts to a corresponding continuous right-inverse. Moreover, if s > a1
p1

(1 + γ+),
then

H s,a
p,d (�d, (wγ,w′′); X) ↪→ C(�;S′(�d−1; X))

and the distributional trace r0,1 coincides with the trace operator γ0,1 on H s,a
p,d (�d, (wγ,w′′); X).

Corollary 5.2.58. Let X be a Banach space, d1 = 1, n ∈ (�>0)l, p ∈]1,∞[l, γ ∈]−1, p1−1[. Let
w ∈

∏l
j=1 Ap j(�

d ) be such that w1(x1) = wγ(x1) = |x1|
γ (see Example D.2.12). Furthermore,

let s > 0 and a ∈
(

1
�>0

)l
be such that n j = s

a j
for each j ∈ {1, . . . , l}. Then the trace operator

γ0,1 = γ
ϕ
0,1 is well-defined on Wn

p,d (�d, (wγ,w′′); X) and restricts to a continuous surjection

γ0,1 : Wn
p,d (�d, (wγ,w′′); X) −→ F

s− a1
p1

(1+γ),a′′

p′′,p1,d ′′
(�d−1,w′′; X),

independent of ϕ, for which the extension operator ext0,1 from Proposition 5.2.49 (with d̃ = d ′′

and ã = a′′) restricts to a corresponding continuous right-inverse. Moreover,

Wn
p,d (�d, (wγ,w′′); X) ↪→ C(�;S′(�d−1; X))

and the distributional trace r0,1 coincides with the trace operator γ0,1 on Wn
p,d (�d, (wγ,w′′); X).

Remark 5.2.59. The above two results easily extend to the case d1 > 1; it should be understood
that we take w1 = wγ as in (5.60) (which may be even multiplied with an Ap1-weight depending
only on (x1,2, . . . , x1,d1)) in this case. For this we just have to reformulate Theorem 5.2.55 to
this situation via Remark 5.2.13, and then apply the sandwich argument based on Proposition
5.2.31.

5.2.3.c Traces with respect to �d−1 × {0}

The Trace Space of a Besov Space We first investigate the Besov case. Since we restrict
ourselves to weight-vectors w ∈

∏l
j=1 A∞(�d ) in which wl has the form (5.61) for some µ > −1,

in view of Remark 5.2.13 we may without loss of generality assume that dl = 1; this will
simplify the notation.

Throughout this paragraph we will use the following notation: We write d ′ = (d1, . . . , dl−1).
Given p ∈]1,∞[l we will write p′ = (p1, . . . , pl−1), and similarly for w ∈

∏l
j=1 A∞(�d ).
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Theorem 5.2.60. Let X be a Banach space, dl = 1, a ∈]0,∞[l, p ∈]1,∞[l, q ∈ [1,∞], µ ∈
] − 1,∞[ and s > al

pl
(1 + µ). Let w ∈

∏l
j=1 A∞(�d ) be such that wl(xl) = vµ(xl) = |xl|

µ and w′ ∈∏l−1
j=1 Ap j/r j(�

d j) for some r′ = (r1, . . . , rl−1) ∈]0, 1[l−1 satisfying s− al
pl

(1+γ) >
∑l−1

j=1 a jd j( 1
r j
−1).9

Then the trace operator γ0,d = γ
ϕ
0,d is well-defined on Bs,a

p,q,d (�d, (w′, vµ); X) and restricts to a
continuous surjection

γ0,d = γ
ϕ
0,d : Bs,a

p,q,d (�d, (vµ,wµ); X) −→ B
s− al

pl
(1+µ),a′

p′,q,d ′ (�d−1,w′; X),

independent of ϕ, for which the extension operator ext0,d from Proposition 5.2.49 (with d̃ = d ′

and ã = a′) restricts to a corresponding continuous right-inverse. Moreover, if s > al
pl

(1 + µ+)
and w′ ∈

∏l−1
j=1 Ap j(�

d j), then

Bs,a
p,q,d (�d, (w′, vµ); X) ↪→ C(�;S′(�d−1; X))

and the distributional trace r0,d coincides with the trace operator γ0,d on Bs,a
p,q,d (�d, (w′, vµ); X).

Proof. The proof is similar to the proof of Theorem 5.2.52, concerning the trace problem for
the hyperplane {0} ×�d−1. So we skip it. �

The Trace Space of a Triebel-Lizorkin Space Just as in the Besov case, we may without
loss of generality restrict ourselves to the case dl = 1.

Theorem 5.2.61. Let X be a Banach space, dl = 1, a ∈]0,∞[l, p ∈]1,∞[l, q ∈ [1,∞], µ ∈
] − 1,∞[ and s > al

pl
(1 + µ). Let w ∈

∏l
j=1 A∞(�d ) be such that wl(xl) = vµ(xl) = |xl|

µ and w′ ∈∏l−1
j=1 Ap j/r j(�

d j) for some r′ = (r1, . . . , rl−1) ∈]0, 1[l−1 satisfying s− al
pl

(1+µ) >
∑l−1

j=1 a jd j( 1
r j
−1).9

Then the trace operator γ0,d = γ
ϕ
0,d is well-defined on F s,a

p,q,d (�d, (w′, vµ); X) and restricts to a
continuous surjection

γ0,d = γ
ϕ
0,d : F s,a

p,q,d (�d, (w′, vµ); X) −→ B
s− al

pl
(1+µ),a′

p′,pl,d ′
(�d−1,w′; X)

independent of ϕ, for which the extension operator ext0,d from Proposition 5.2.49 (with d̃ = d ′

and ã = a′) restricts to a corresponding continuous right-inverse. Moreover, if s > al
pl

(1 + µ+)
and w′ ∈

∏l−1
j=1 Ap j(�

d j), then

F s,a
p,q,d (�d, (w′, vµ); X) ↪→ C(�;S′(�d−1; X))

and the distributional trace r0,d coincides with the trace operator γ0,d on F s,a
p,q,d (�d, (w′, vµ); X).

Proof. This can be shown in a similar fashion as Theorem 5.2.55, concerning the trace problem
with respect to {0} × �d−1. For more details on the involved computations in the unweighted
scalar-valued case we refer to [62, Theorem 2.5]. �

Note that, as for the trace problem with respect to the hyperplane {0} × �d−1, that the trace
space is independent of the microscopic parameter q ∈ [1,∞]. Together with the embeddings
(5.48) and (5.49) from Proposition 5.2.31, this again will allow us to solve the related trace
problems for Bessel potential and Sobolev spaces via a simple sandwich argument; see the
next paragraph.

9This technical condition on w′ is in particular satisfied for w′ ∈
∏l−1

j=1 Ap j (�
d j ).
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The Trace Spaces of Bessel Potential and Sobolev Spaces The following two trace results
are immediate from Theorem 5.2.61 and Proposition 5.2.31.

Corollary 5.2.62. Let X be a Banach space, dl = 1, a ∈
(

1
�>0

)l
, p ∈]1,∞[l, µ ∈] − 1, pl − 1[ and

s > al
pl

(1 + µ). Let w ∈
∏l

j=1 Ap j(�
d ) be such that wl(xl) = vµ(xl) = |xl|

µ (see Example D.2.12).
Then the trace operator γ0,d = γ

ϕ
0,d is well-defined on H s,a

p,d (�d, (w′, vµ); X) and restricts to a
continuous surjection

γ0,d : H s,a
p,d (�d, (w′, vµ); X) −→ B

s− al
pl

(1+µ),a′

p′,pl,d ′
(�d−1,w′; X),

independent of ϕ, for which the extension operator ext0,d from Proposition 5.2.49 (with d̃ = d ′

and ã = a′) restricts to a corresponding continuous right-inverse. Moreover, if s > al
pl

(1 + µ+),
then

H s,a
p,d (�d, (w′, vµ); X) ↪→ C(�;S′(�d−1; X))

and the distributional trace r0,d coincides with the trace operator γ0,d on H s,a
p,d (�d, (w′, vµ); X).

Corollary 5.2.63. Let X be a Banach space, dl = 1, n ∈ (�>0)l, p ∈]1,∞[l, µ ∈] − 1, pl − 1[.
Let w ∈

∏l
j=1 Ap j(�

d ) be such that wl(xl) = wγ(xl) = |xl|
µ (see Example D.2.12). Furthermore,

let s > 0 and a ∈
(

1
�>0

)l
be such that n j = s

a j
for each j ∈ {1, . . . , l}. Then the trace operator

γ0,d = γ
ϕ
0,d is well-defined on Wn

p,d (�d, (w′, vµ); X) and restricts to a continuous surjection

γ0,d : Wn
p,d (�d, (w′, vµ); X) −→ B

s− al
pl

(1+µ),a′

p′,pl,d ′
(�d−1,w′; X),

independent of ϕ, for which the extension operator ext0,d from Proposition 5.2.49 (with d̃ = d ′

and ã = a′) restricts to a corresponding continuous right-inverse. Moreover,

Wn
p,d (�d, (w′, vµ); X) ↪→ C(�;S′(�d−1; X))

and the distributional trace r0,d coincides with the trace operator γ0,d on Wn
p,d (�d, (w′, vµ); X).

Remark 5.2.64. Similarly to Remark 5.2.59, the above two results easily extend to the case
dl > 1; it should be understood that we take wl = vµ as in (5.61) (which may be even multiplied
with an Apl-weight depending only on (xl,1, . . . , xl,dl−1)) in this case.

5.2.3.d Spaces with Boundary Conditions

In this subsection we have a look at the closure of the space of Schwartz functions which
vanish at {0} ×�d−1 (resp. �d−1 × {0}) in the weighted anisotropic mixed-norm function spaces
of Triebel-Lizorkin, Besov, Bessel potential, and Sobolev type. The first result in this direction
is the following lemma, which is an immediate consequence of Lemma 5.2.51 and the various
trace results from the previous two subsubsections:

Lemma 5.2.65.

(i) Let E be a weighted anisotropic mixed-norm function space of Triebel-Lizorkin, Besov,
Bessel potential or Sobolev type, as in Theorem 5.2.52, Theorem 5.2.55, Corollary 5.2.57,
Corollary 5.2.58, respectively. Then { f ∈ S(�d; X) : f|{0}×�d−1 = 0} is dense in ker(γ0,1)∩
E.
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(ii) Let E be a weighted anisotropic mixed-norm function space of Triebel-Lizorkin, Besov,
Bessel potential or Sobolev type, as in Theorem 5.2.60, Theorem 5.2.61, Corollary 5.2.62,
or Corollary 5.2.63. Then { f ∈ S(�d; X) : f|�d−1×{0} = 0} is dense in ker(γ0,d) ∩ E.

Remark 5.2.66. We can of course also allow anisotropic spaces E with d1 > 1 (resp. dl > 1) in
the above lemma; see Remarks 5.2.13 and 5.2.64 (resp. Remarks 5.2.13 and 5.2.64).

In this lemma the closure of the space of Schwartz functions which vanish at {0} × �d−1

(resp. �d−1 × {0}) is characterized as the kernel of the trace operator with respect to {0} ×�d−1

(resp. �d−1 × {0}) on the space E under consideration. In order to formulate this in a notionally
more compact way, let us us define:

Definition 5.2.67. Let X be a Banach space. For a Banach space E containing S(�d; X), we
define 0,(0,i)E as the closure of 0,(0,i)S(�d; X) := { f ∈ S(�d; X) : f|�i−1×{0}×�d−i = 0} in E.

We next consider situations in which 0,(0,1)E = E (resp. 0,(0,d)E = E), having as a conse-
quence the non-existence of a trace operator with respect to {0} ×�d−1 (resp. �d−1 × {0}). The
main tool for this denseness result will be the the following result that, in the natural parameter
range, the characteristic function of the half-space is a pointwise multiplier on vector-valued
Besov and Triebel-Lizorkin spaces:

Theorem 5.2.68. [78, Theorem 1.3] Let X be a Banach space, p ∈]1,∞[, q ∈ [1,∞[, and
γ ∈] − 1, p − 1[. Define the weight wγ(x) := |x1|

γ on �d = � ×�d−1. LetA ∈ {B, F}. Then, for
s ∈] − 1+γ′

p′ ,
1+γ

p [, the pointwise multiplier operator

S(�d; X) −→ L∞(�d; X) ↪→ S′(�d; X) f 7→ 1�d
+

f

takes its values inAs
p,q(�d,wγ; X) and extends to a bounded linear operator onAs

p,q(�d,wγ; X).

Proof. The result in [78, Theorem 1.3] is in fact more general. Besides also considering the
case q = ∞, the theorem states that for all f ∈ As

p,q(�d,w; X) the product 1�d
+

f is well-defined
as a so-called paraproduct and is a tempered distribution belonging toAs

p,q(�d,w; X), and more-
over that the induced mapping

As
p,q(�d,wγ; X) −→ As

p,q(�d,wγ; X), f 7→ 1�d
+

f

defines a bounded linear operator. But [85, Section 4.2.1, Lemma 1] in particular says that,
for Schwartz functions f ∈ S(�d; X), whenever 1�d

+
f exists as a paraproduct, the resulting

distribution coincides with the usual pointwise product, implying our result. �

Using the intersection representation from Theorem 5.2.35, the following poinwise multi-
plier result for anisotropic Triebel-Lizorkin spaces follows easily from the isotropic Triebel-
Lizorkin case considered in the above theorem:

Corollary 5.2.69. Let X be a Banach space, l = 2, a ∈]0,∞[2, p, q ∈]1,∞[, p̃ := (p, q),
µ ∈] − 1, q − 1[, and w ∈ Ap(�d1) × Aq(�d2) with w2(x2) = vµ(x2) := |x2,d2 |

µ. Then, for
s ∈]0, a2

q (1 + µ)[, the pointwise multiplier operator

S(�d; X) −→ Lp(�d,w; X) f 7→ 1�d−1×]0,∞[ f

takes its values in F s,a
p̃,p,d (�d,w; X) and extends to a bounded linear operator on F s,a

p̃,p,d (�d,w; X).
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Proof. By Theorem 5.2.35 we have

F s,a
p̃,p,d (�d,w; X) = F s/a2

q,p (�d2 ,w2; Lp(�d1 ,w1; X)) ∩ Lq(�d2 ,w2; F s/a1
p,p (�d1 ,w1; X))

with an equivalence of norms. So we only need to show that the multiplier operator acts bound-
edly on both spaces occurring in this intersection. For the space F s/a2

q,p (�d2 ,w2; Lp(�d1 ,w1; X))
we just note that

S(�d; X) = S(�d2;S(�d1; X)) ↪→ S(�d2; Lp(�d1 ,w1; X))

and invoke Theorem 5.2.68. For the space Lq(�d2 ,w2; F s/a1
p,p (�d1 ,w1; X)) it is enough to observe

that
S(�d; X) = S(�d2;S(�d1; X)) ↪→ S(�d2; F s/a1

p,p (�d1 ,w1; X)).

�

Using the pointwise multiplier result from this corollary, we are now able to prove:

Proposition 5.2.70. Let the notations be as in Corollary 5.2.69. For s < a2
q (1 +µ)[ it holds that

0,(0,d)F s,a
p̃,p,d (�d,w; X) = F s,a

p̃,p,d (�d,w; X).

Proof. Since C∞c (�d; X) is dense in F s,a
p̃,p,d (�d,w; X), it suffices to show that C∞c (�d; X) is con-

tained in the closure of 0,(0,d)S(�d; X) in F s,a
p̃,p,d (�d,w; X). For this we may of course assume

that s > 0; so s ∈]0, a2
q (1 + µ)[.

Let us fix an f ∈ C∞c (�d; X). Then we have f + := 1�d−1×]0,∞[ f ∈ L∞(�d; X)∩F s,a
p̃,p,d (�d,w; X)

and f − := 1�d−1×]0,∞[ f = f − f + ∈ L∞(�d; X)∩F s,a
p̃,p,d (�d,w; X) by the pointwise multiplier result

of Corollary 5.2.69. So it is enough to construct sequences ( f ±n )n≥1 ⊂ 0,(0,d)S(�d; X) such that
f ±n

n→∞
−→ f ± in F s,a

p̃,p,d (�d,w; X).
We shall only construct the sequence ( f +

n )n≥1, the construction of ( f −n )n≥1 being completely
similar. For the construction of ( f +

n )n≥1, we pick an φ ∈ C∞c (�d) such that φ ≥ 0,
∫
�d φ(x)dx = 1,

and supp(φ) ⊂ �d−1×[1,∞[. We set f +
n := φn∗ f + for each n ∈ �≥1, where φn := ndφ(n · ). By the

basic properties of the convolution product (see Appendix C.5), we then have f +
n ∈ C∞(�d; X)

with

supp( f +
n ) ⊂ supp(φn) + supp( f +) ⊂

[
�

d−1 × [1/n,∞[
]

+
[
�

d−1 × [0,∞[
]
⊂ �d−1×]0,∞[;

in particular, ( f +
n )n≥1 ⊂ 0,(0,d)S(�d; X). Furthermore, f + = limn→∞ f +

n in F s,a
p̃,p,d (�d,w; X) by

Proposition 5.2.20. �

Remark 5.2.71.

(i) The above proof even shows that C∞c (�̇d; X) is dense in F s,a
p̃,p,d (�d,w; X) for s < a2

q (1+µ),
where �̇d = �d \ [�d−1 × {0}].

(ii) Using the embeddings from 5.2.2.b, we can extend this result to the spaces

E = F s,a
p,q,d (�d,w; X), a ∈]0,∞[2, p ∈]1,∞[2, q ∈ [1,∞[, s <

a2

p2
(1 + µ)[,
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and

E = H s,a
p,d (�d,w; X), a ∈

(
1
�>0

)2

, p ∈]1,∞[2

equipped with a weight-vector w ∈
∏2

j=1 Ap j(�
d j) with w2(x2) = vµ(x2) := |x2,d2 |

µ, µ ∈] −
1, p2[. We expect that this also holds true for general l (l ≥ 3). For this we would have to
find a (d , a)-anisotropic generalization of the pointwise multiplier result Theorem 5.2.68.
Since the situation covered by Proposition 5.2.70 will be enough for our purposes in
Chapter 6, we will not go into this direction.

5.3 Function Spaces on Domains
The topic of this section is function spaces on domains, i.e on open subsets of�d. Motivated by
applications to the parabolic initial-boundary value model problems in Chapter 6, we mainly
restrict ourselves to anisotropic function spaces on �d

+ ×�, �d−1 ×�, and �d
+.

5.3.1 Definitions and Basic Properties
We start with the definition of weighted anisotropic mixed-norm Sobolev spaces in terms of the
the weighted mixed-norm Lebesgue-Bochner spaces Lp,d (U1 × . . . × Ul,w; X) from Definition
2.2.2.

Definition 5.3.1. Let X be a Banach space, U j ⊂ �
d j , j = 1, . . . , l, open subsets , p ∈]1,∞[l,

n ∈ �l, and w ∈
∏l

j=1 Ap j(�
d j). We define the weighted anisotropic mixed-norm Sobolev

space Wn
p,d (U1 × . . . × Ul,w; X) as the space of all f ∈ D′(U1 × . . . × Ul; X) for which Dα f ∈

Lp,d (U1 × . . .×Ul,w; X) for all α ∈ Jn,d , where Jn,d = {α ∈
⋃m

j=1 ι[d ; j]�
d j : |α j| ≤ n j}. We equip

this space with the norm

|| f ||Wn
p,d (U1×...×Ul,w;X) :=

∑
α∈Jn,d

||Dα f ||Lp,d (U1×...×Ul,w;X) ,

which turns it into a Banach space.

For the application to the weighted maximal Lq-Lp-regularity problem for parabolic initial-
boundary value problems on the half-space in Chapter 6, it is suffices to consider these weighted
anisotropic mixed-norm Sobelev spaces in the situation of the following lemma (also see
Lemma 2.1.4).

Lemma 5.3.2. Let X be a Banach space, U = U1 × . . . × Ul a product of open subsets U j ∈

{�
d j
+ ,�

d j}, j = 1, . . . , l,, p ∈]1,∞[l, n ∈ �l, and w ∈
∏l

j=1 Ap j(�
d j). For each j ∈ {1, . . . , l} with

U j = �
d j
+ we assume w j to be symmetric with respect to reflections in {0}×�d j−1 and to satisfy, in

case n j ≥ 1, for some C j ∈]0,∞[ and λ j ∈]0,∞[\{1}, the estimate w(λ jx j,1, . . . , x j,d j) ≤ Cw(x j)
for almost all x j = (x j,1, . . . , x j,d j) ∈ �

d j . Then the restriction operator

R := r�d ,U ∈ L(D′(�d; X),D′(U; X))

restricts to a continuous surjection from Wn
p,d (�d,w; X) onto Wn

p,d (U,w; X) with a continuous
right inverse. As a consequence, we have

Wn
p,d (U,w; X) = { f ∈ D′(�d; X) : f = Rg, g ∈ Wn

p,d (�d,w; X) } (5.78)
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with
|| f ||Wn

p,d (U,w;X) h inf{ ||g||Wn
p,d (�d ,w;X) : f = Rg, g ∈ Wn

p,d (�d,w; X) }. (5.79)

Proof. This can be shown similarly to Lemma 2.1.4. �

This lemma allows us to carry over many properties of Wn
p,d (�d,w; X) to Wn

p,d (U,w; X).
As we have seen in Section 5.2, weighted anisotropic mixed-norm function spaces of Bessel
potential and Triebel-Lizorkin, and Besov type play a very important role in the theory of
weighted anisotropic mixed-norm Sobolev spaces on the full Euclidean space �d. Together
with the description (5.78)/(5.79), this motivates to define the weighted anisotropic mixed-
norm function spaces of Bessel Potential, Triebel-Lizorkin, and Besov type on domains via
restriction of the corresponding spaces on �d.

Definition 5.3.3.

(i) Let X be a Banach space, U ⊂ �d an open subset, a ∈
(

1
�

)l
, p ∈]1,∞[l, s ∈ �, and w ∈∏l

j=1 Ap j(�
d j). We define weighted anisotropic mixed-norm Bessel potential space as the linear

space
H s,a

p,d (U,w; X) := { f ∈ D′(U; X) : f = r�d ,Ug, g ∈ H s,a
p,d (�d,w; X) }

equipped with the norm

|| f ||Hs,a
p,d (U,w;X) := inf{ ||g||Hs,a

p,d (�d ,w;X) : f = r�d ,Ug, g ∈ H s,a
p,d (�d,w; X) }.

(ii) Let X be a Banach space, a ∈]0,∞[l, p ∈ [1,∞[l, q ∈ [1,∞], s ∈ �, and w ∈
∏l

j=1 A∞(�d j).
We define the weighted anisotropic mixed-norm Triebel-Lizorkin space as the linear space

F s,a
p,q,d (U,w; X) := { f ∈ D′(U; X) : f = r�d ,Ug, g ∈ F s,a

p,q,d (�d,w; X }

equipped with the norm

|| f ||F s,a
p,q,d (U,w;X) := inf{ ||g||F s,a

p,q,d (U,w;X) : f = r�d ,Ug, g ∈ F s,a
p,q,d (U,w; X) }.

(iii) Let X be a Banach space, a ∈]0,∞[l, p ∈ [1,∞[l, q ∈ [1,∞], s ∈ �, and w ∈
∏l

j=1 A∞(�d j).
We define the weighted anisotropic mixed-norm Besov space as the linear space

Bs,a
p,q,d (U,w; X) := { f ∈ D′(U; X) : f = r�d ,Ug, g ∈ Bs,a

p,q,d (�d,w; X }

equipped with the norm

|| f ||Bs,a
p,q,d (U,w;X) := inf{ ||g||Bs,a

p,q,d (U,w;X) : f = r�d ,Ug, g ∈ Bs,a
p,q,d (U,w; X) }.

Note that these definitions via restriction can also be viewed as taking quotients; to be more
precise, the above defined spaces can be thought of as canonical realizations of quotient spaces
as spaces as spaces of X-valued distributions on U. For example, in the Bessel potential case
we have the canonical isomorphism

H s,a
p,q,d (U,w; X) � H s,a

p,q,d (�d,w; X)/
[
ker(r�d ,U) ∩ H s,a

p,q,d (�d,w; X)
]
.
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Since ker(r�d ,U)∩H s,a
p,q,d (�d,w; X) is a closed linear subspace of the Banach space H s,a

p,q,d (�d,w; X),
it in particular follows that H s,a

p,q,d (U,w; X) is a Banach space. A similar statement of course
holds true for the Triebel-Lizorkin and Besov case.

It is a natural question whether these spaces can be defined as subspaces of D′(U; X) in
terms of explicit norms. This is the so-called problem of inner-description, see [97, Sec-
tion 3.1.1]. For reasons of time and for reasons of size of this thesis we will not go into
this. However, we would like to remark that the difference norm characterization from Propo-
sition 5.2.44 gives a suggestion how to define a concrete norm in the Triebel-Lizorkin case.
Such descriptions are (at least) well known in the (unweighted) isotropic setting (see [97, 98]),
which are useful to get more concrete descriptions of anisotropic spaces of intersection type
(involving isotropic spaces in their description).

The following results are immediate consequences from the above quotient space viewpoint
and the corresponding results on the full Euclidean space �d.

Proposition 5.3.4.

(i) Let X be a Banach space, U =
∏l

j=1 U j a product of open subsets U j ∈ {�
d j
+ ,�

d j}, j =

1, . . . , l, p ∈]1,∞[l, n ∈ �l, and w ∈
∏l

j=1 Ap j(�
d j). For each j ∈ {1, . . . , l} with U j = �

d j
+

we assume w j to be symmetric with respect to reflections in {0} × �d j−1 and to satisfy, in
case n j ≥ 1, for some C j ∈]0,∞[ and λ j ∈]0,∞[\{1}, the estimate w(λ jx j,1, . . . , x j,d j) ≤
Cw(x j) for almost all x j = (x j,1, . . . , x j,d j) ∈ �

d j . Then Wn
p,d (

∏l
j=1 U j,w; X) is Banach

space with

C∞(c)(U; X),S(U; X)
d
⊂ Wn

p,d (U,w; X) ↪→ D′(U; X).

(ii) Let X be a Banach space, U ⊂ �d an open subset, a ∈
(

1
�

)l
, p ∈]1,∞[l, s ∈ �, and

w ∈
∏l

j=1 Ap j(�
d j). Then H s,a

p,d (U,w; X) is a Banach space with

C∞(c)(U; X),S(U; X)
d
⊂ H s,a

p,d (U,w; X) ↪→ D′(U; X).

(iii) Let X be a Banach space, U ⊂ �d an open subset, a ∈]0,∞[l, p ∈ [1,∞[l, q ∈ [1,∞],
s ∈ �, and w ∈

∏l
j=1 A∞(�d j). Let A ∈ {B, F}. Then As,a

p,q,d (U,w; X) is a Banach space
with

S(U; X) ⊂ As,a
p,q,d (U,w; X) ↪→ D′(U; X). (5.80)

Moreover, if q < ∞, then C∞(c)(U; X) and S(U; X) are dense subspaces ofAs,a
p,q,d (U,w; X).

Proof. Here the corresponding results on �d are Propositions 5.2.14 and 5.2.17. �

Proposition 5.3.5.

(i) Let X be a UMD space, U ⊂ �d an open subset, a ∈
(

1
�>0

)l
, p ∈]1,∞[l, s ∈ �, and

w ∈
{ ∏l

j=1 Arec
p j

(�d j), l > 1;∏l
j=1 Ap j(�

d j), l = 1 or X has (α).

Then, for each multi-index α ∈ �d, the partial derivative operator Dα ∈ D′(U; X) restricts to a
bounded linear operator

Dα : H s,a
p,d (U,w; X) −→ H s−a·d α,a

p,d (U,w; X).
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(ii) Let X be a Banach space, U ⊂ �d an open subset, a ∈]0,∞[l, p ∈ [1,∞[l, q ∈ [1,∞],
s ∈ �, and w ∈

∏l
j=1 A∞(�d j). Let A ∈ {B, F}. Then, for each multi-index α ∈ �d, the partial

derivative operator Dα ∈ D′(U; X) restricts to a bounded linear operator

Dα : As,a
p,q,d (U,w; X) −→ As−a·d α,a

p,q,d (U,w; X).

Proof. Here the corresponding results on �d are Propositions 5.2.15 and 5.2.21. �

Remark 5.3.6. We expect that (i) of the above proposition remains true under the assumption
w ∈

∏l
j=1 Ap j(�

d j), see Remark 5.2.16 concerning the corresponding result on �d. The same
remark will apply to Proposition 5.3.8 and Theorem 5.2.35.(i).

5.3.2 Isomorphisms and Embeddings
The following intersection representation can be proved directly from Definition 5.3.1.

Lemma 5.3.7. Let X be a Banach space, U j ⊂ �
d j , j = 1, . . . , l, open subsets , p ∈]1,∞[l,

n ∈ (�>0)l, and w ∈
∏l

j=1 Ap j(�
d j). For each j ∈ {1, . . . , l} with U j = �

d j
+ we assume that w j

is of the form w j(x j) = |x j,1|
γ j for some γ j ∈] − 1, p j − 1[. For each k ∈ {1, . . . , l} we write

U′k := U1 × . . . × Uk−1, U′′k := Uk+1 × . . . × Ul,d ′k := (d1, . . . , dk−1) and d ′′k := (dk+1, . . . , dl),
and similarly for p and w. Then we have

Wn
p,d (U,w; X) =

l⋂
k=1

Lp′k ,d ′k
(
U′k,w′k; Wnk

pk
(Uk,wk; Lp′′k ,d ′′k(U′′k,w′′k; X))

)
with an equivalence of norms.

Proof. We can simply follow the argumentation used in Section 2.1 to prove the intersection
representation for W (2,1)

(p,q),(d,1)(�
d ×�, (wγ, vµ); X). �

The following results are also immediate consequences from the quotient space viewpoint
and the corresponding results on the full Euclidean space �d.

Proposition 5.3.8. U = U1 × . . . × Ul a product of open subsets U j ∈ {�
d j
+ ,�

d j}, j = 1, . . . , l,,
p ∈]1,∞[l, n ∈ �l, and w ∈

∏l
j=1 Ap j(�

d j). For each j ∈ {1, . . . , l} with U j = �
d j
+ we assume

w j to be symmetric with respect to reflections in {0} × �d j−1 and to satisfy, in case n j ≥ 1, for
some C j ∈]0,∞[ and λ j ∈]0,∞[\{1}, the estimate w(λ jx j,1, . . . , x j,d j) ≤ Cw(x j) for almost all
x j = (x j,1, . . . , x j,d j) ∈ �

d j .
Let X be a UMD space, U = U1 × . . . × Ul a product of open subsets U j ∈ {�

d j
+ ,�

d j}, j =

1, . . . , l,, p ∈]1,∞[l, n ∈ �l, s ∈ �, a ∈
(

1
�>0

)l
with n j = s

a j
for each j ∈ {1, . . . , l}, and

w ∈
{ ∏l

j=1 Arec
p j

(�d j), l > 1;∏l
j=1 Ap j(�

d j), l = 1 or X has property (α).

For each j ∈ {1, . . . , l} with U j = �
d j
+ we assume w j to be symmetric with respect to reflections

in {0}×�d j−1 and to satisfy, in case n j ≥ 1,for some C j ∈]0,∞[ and λ j ∈]0,∞[\{1}, the estimate
w(λ jx j,1, . . . , x j,d j) ≤ Cw(x j) for almost all x j = (x j,1, . . . , x j,d j) ∈ �

d j . Then we have

Wn
p,d (U,w; X) = H s,a

p,d (U,w; X)

with an equivalence of norms.
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Proof. Here the corresponding result is Proposition 5.2.45. �

Proposition 5.3.9. Let X be a Banach space, U ⊂ �d an open subset, a ∈]0,∞[l, p ∈ [1,∞[l,
s ∈ �, and w ∈

∏l
j=1 ∈ A∞(�d j).

(i) For all 1 ≤ q0 ≤ q1 ≤ ∞,

Bs,a
p,q0,d

(U,w; X) ↪→ Bs,a
p,q1,d

(U,w; X),

F s,a
p,q0,d

(U,w; X) ↪→ F s,a
p,q1,d

(U,w; X).

(ii) For all q0, q1 ∈ [1,∞] and ε > 0,

Bs+ε,a
p,q0,d

(U,w; X) ↪→ Bs,a
p,q1,d

(U,w; X),

F s+ε,a
p,q0,d

(U,w; X) ↪→ F s,a
p,q1,d

(U,w; X).

(iii) For all p ∈ [1,∞[l and q ∈ [1,∞],

Bs,a
p,min{p1,...,pl,q},d

(U,w; X) ↪→ F s,a
p,q,d (U,w; X) ↪→ Bs,a

p,max{p1,...,pl,q},d
(U,w; X).

(iv) For all q ∈ [1,∞] and Banach spaces X ↪→ Y,

F s,a
p,q,d (U,w; X) ↪→ F s,a

p,q,d (U,w; Y) and Bs,a
p,q,d (U,w; X) ↪→ Bs,a

p,q,d (U,w; Y).

Proof. Here the corresponding result is Proposition 5.2.30. �

Proposition 5.3.10. Let X be a Banach space, U ⊂ �d an open subset, a ∈
(

1
�≥1

)l
, p ∈]1,∞[l,

and w ∈
∏l

j=1 Ap j(�
d j).

(i) For all s ∈ �,

Bs,a
p,1,d (U,w; X) ↪→ H s,a

p,d (U,w; X) ↪→ Bs,a
p,∞,d (U,w; X), (5.81)

F s,a
p,1,d (U,w; X) ↪→ H s,a

p,d (U,w; X) ↪→ F s,a
p,∞,d (U,w; X). (5.82)

(ii) Suppose U = U1 × . . . × Ul is a product of open subsets U j ⊂ �
d j , j = 1, . . . , l. Let

n ∈ �l. For each j ∈ {1, . . . , l} with U j = �
d j
+ we assume w j to be symmetric with respect

to reflections in {0} × �d j−1 and to satisfy, in case n j ≥ 1, for some C j ∈]0,∞[ and λ j ∈

]0,∞[\{1}, the estimate w(λ jx j,1, . . . , x j,d j) ≤ Cw(x j) for almost all x j = (x j,1, . . . , x j,d j) ∈
�d j . Then, for all s ∈ � such that n j = s

a j
( j = 1, . . . , l),

Bs,a
p,1,d (U,w; X) ↪→ Wn

p,d (U,w; X) ↪→ Bs,a
p,∞,d (U,w; X), (5.83)

F s,a
p,1,d (U,w; X) ↪→ Wn

p,d (U,w; X) ↪→ F s,a
p,∞,d (U,w; X). (5.84)

Proof. Here the corresponding result is Proposition 5.2.31. �
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Proposition 5.3.11. Let X be a Banach space, U ⊂ �d an open subset, a ∈]0,∞[l, p ∈ [1,∞[l,
q ∈ [1,∞], s ∈ � and w ∈

∏l
j=1 A∞(�d j). LetA ∈ {B, F}. Then we have, for each λ > 0,

A
s,a
p,q,d (�d,w; X) = Aλs,λa

p,q,d (�d,w; X)

up to an equivalence of norms.

Proof. Here the corresponding result on �d is Proposition 5.2.34. �

In order to extend the intersection representations from Proposition 5.2.46 and Theorem 5.2.35,
we can not proceed as above via just the quotient space description. Instead, we also have to
use extension operators.

Lemma 5.3.12.

(i) Let E be a UMD space, k ∈ �, n ∈ {0, . . . , k}, p ∈]1,∞[, γ ∈]− 1, p− 1[, s ∈]0, 1
p (1 + γ)[,

and let wγ ∈ Ap(�d) be defined by wγ(x) := |x1|
γ (x = (x1, . . . , xd) ∈ �d). Then the

extension operator EE,k : L1
loc(�

d
+; E) −→ L1

loc(�
d; E) from Lemma 2.1.2 restricts to a

bounded linear operator from H s+n
p (�d

+,wγ; E) to H s+n
p (�d,wγ; E).

(ii) Let E be a Banach space, k ∈ �, n ∈ {0, . . . , k}, p ∈]1,∞[, q ∈ [1,∞], γ ∈] − 1, p − 1[,
s ∈]0, 1

p (1 + γ)[, and let wγ ∈ Ap(�d) be defined by wγ(x) := |x1|
γ (x = (x1, . . . , xd) ∈ �d).

Let A ∈ {B, F}. Then the extension operator EE,k : L1
loc(�

d
+; E) −→ L1

loc(�
d; E) from

Lemma 2.1.2 restricts to a bounded linear operator fromAs+n
p,q (�d

+,wγ; E) toAs+n
p,q (�d,wγ; E).

Proof. (ii) By Proposition 5.2.29 and the definition of As+n
p,q (�d

+,wγ; E), it suffices to show
that∣∣∣∣∣∣DαEE,kr�d ,�d

+
g
∣∣∣∣∣∣
As

p,q(�d ,wγ;E)
. ||Dαg||As

p,q(�d ,wγ;E) , |α| ≤ n, g ∈ As+n
p,q (�d,wγ; E).

(5.85)
By construction of EE,k (see [1, Theorem 5.19]), EE,k maps Wk

1,loc(�
d
+; E) into Wk

1,loc(�
d; E)

in such a way that DαEE,k f = E α
E,kDα f for a certain extension operator E α

E,k : L1
loc(�

d
+; E) −→

L1
loc(�

d; E). In order to give more information about E α
E,k, for λ , 0 we define the opera-

tor Tλ : L1
loc(�

d; E) −→ L1
loc(�

d; E) by [Tλ f ](x) := f (x1, . . . , xd−1, λxd). In this notation
we have

E α
E,kr�d ,�d

+
f = 1�d

+
f + 1�d

−

N∑
i=1

ciTλi f , f ∈ L1
loc(�

d; E)

for certain c1, . . . , cN ∈ � and λ1, . . . , λN ∈] −∞, 0[. It follows

DαEE,kr�d ,�d
+
g = E α

E,kDαr�d ,�d
+
g = E α

E,kr�d ,�d
+
Dαg = 1�d

+
Dαg + 1�d

−

N∑
i=1

ciTλi D
αg

for all |α| ≤ n and g ∈ As+n
p,q (�d,wγ; E). Since the Tλi are easily seen to restrict to bounded

linear operators on As
p,q(�d,wγ; E), the desired estimate (5.85) now is a consequence of

the pointwise multiplier result Theorem 5.85.
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(i) This can be done in exactly the same way as (i), now using the pointwise multiplier theo-
rem for UMD-valued Bessel potential spaces [78, Theorem 1.1] instead of Theorem 5.85.

�

Theorem 5.3.13.
(i) Let X be a UMD space, U = U1 × . . . × Ul with U j ∈ {�

d j
+ ,�

d j}, j = 1, . . . , l, a ∈
(

1
�>0

)l
,

p ∈]1,∞[l, s > 0, and

w ∈
{ ∏l

j=1 Arec
p j

(�d j), l > 1;∏l
j=1 Ap j(�

d j), l = 1 or X has property (α).

For each j ∈ {1, . . . , l} with U j = �
d j
+ we assume that w j is of the form w j(x j) = |x j,1|

γ j

for some γ j ∈] − 1, p j − 1[. For each k ∈ {1, . . . , l} we write U′k := U1 × . . . × Uk−1,
U′′k := Uk+1 × . . . × Ul,d ′k := (d1, . . . , dk−1) and d ′′k := (dk+1, . . . , dl), and similarly for p
and w. Then we have

H s,a
p,d (U,w; X) =

l⋂
k=1

Lp′k ,d ′k
(
U′k,w′k; H s/ak

pk
(Uk,wk; Lp′′k ,d ′′k(U′′k,w′′k; X))

)
with an equivalence of norms.

(ii) Let X be a Banach space, l = 2, U = U1 × U2 with U j ∈ {�
d j
+ ,�

d j}, j = 1, 2, a ∈]0,∞[2,
p, q ∈]1,∞[, p̃ := (p, q), s > 0, and w ∈ Ap(�d1) × Aq(�d2). For each j ∈ {1, 2} with
U j = �

d j
+ we assume that w j is of the form w j(x j) = |x j,1|

γ j for some γ j ∈] − 1, p̃ j − 1[.
Then we have

F s,a
p̃,p,d (U,w; X) = F s/a2

q,p (U2,w2; Lp(U1,w1; X)) ∩ Lq(U2,w2; F s/a1
p,p (U1,w1; X))

with an equivalence of norms.

Proof. We only treat (ii), (i) being completely similar (where the corresponding result on �d

is Proposition 5.2.46). Using an argumentation as in the proof of Lemma 2.1.4, now using
Lemma 5.3.12 instead of Lemma 2.1.2, we can show that the restriction operator

r�d ,U ∈ L(D′(�d; X),D′(�d; X)), f 7→ f|U ,

restricts to a continuous surjection from

F s,a
p̃,p,d (�d,w; X) Thm 5.2.35

= F s/a2
q,p (�d2 ,w2; Lp(�d1 ,w1; X)) ∩ Lq(�d2 ,w2; F s/a1

p,p (�d1 ,w1; X))

onto
F s/a2

q,p (U2,w2; Lp(U1,w1; X)) ∩ Lq(U2,w2; F s/a1
p,p (U1,w1; X))

with a continuous right-inverse. The desired result is now immediate from the definition of
F s,a

p̃,p,d (U,w; X). �

From this intersection representations it immediately follows that the anisotropic space un-
der consideration is continuously included in each space occuring in the intersecion. For conve-
nience of later reference, we state this for the weighted anisotropic mixed-norm Bessel potential
space as the following corollary.

Corollary 5.3.14. Let the notations and assumptions be as in Theorem 5.3.13.(i). Then we
have, for each k ∈ {1, . . . , l},

H s,a
p,d (U,w; X) ↪→ Lp′k ,d ′k

(
U′k,w′k; H s/ak

pk
(Uk,wk; Lp′′k ,d ′′k(U′′k,w′′k; X))

)
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5.3.3 Traces
In this subsection we study traces of weighted anisotropic spaces on domains. Here we only
present trace results which are directly needed in the next chapter; this will be more convenient
for later references. More general trace results can be derived in the same way from the trace
theory developed in Section 5.2.3.

For the remainder of this section, we fix an arbitrary Banach space X, real numbers q, p ∈
] − 1,∞[, and the Muckenhaupt power weights vµ ∈ Aq(�) and wγ ∈ Ap(�d) given by

vµ(t) := |t|µ (t ∈ �) and wγ(y, x′) := |y|γ ((y, x′) ∈ � ×�d−1 = �d).

5.3.3.a Spatial Traces on �d
+ ×�+ and �d

+ ×�

Let U ∈ {�+,�}. We define the distributional spatial trace operator try=0 on �d
+ × U as in

Section 2.1.3:
try=0 : C([0,∞[;D′(�d−1 × U; X)) −→ D′(�d−1 × U; X),

where C([0,∞[;D′(�d−1 × U; X)) is viewed as subspace of D′(�d
+ × U; X) in the usual way.

Then we we have

W (k1,k2)
(p,q),(d,1)(�

d
+ × U, (wγ, vµ); X) ↪→ D′(�d−1 × U; C([0,∞[; X)), (k1, k2) ∈ (�>0)2,

and the distributional trace operator try=0 coincides on the weighted anisotropic mixed-norm
Sobolev space

W (k1,k2)
(p,q),(d,1)(�

d
+ × U, (wγ, vµ); X) ↪→ Lq(U, vµ; Wk1

p (�d
+,wγ; X))

with the trace operator pointwise induced by try=0 ∈ B(Wk1
p (�d

+,wγ; X), Lp(�d−1; X)). In partic-
ular, try=0 restricts to a continuous linear operator

try=0 : W (k1,k2)
(p,q),(d,1)(�

d
+ × U, (wγ, vµ); X) −→ L(p,q),(d−1,1)(�d−1 × U, (1, vµ); X).

With Corollary 5.2.58/Remark 5.2.59 it is not difficult to see that that try=0 restricts in fact to a
continuous surjection

try=0 : W (k1,k2)
(p,q),(d,1)(�

d
+ × U, (wγ, vµ); X) −→ F

1− 1
k1 p (1+γ),( 1

k1
, 1

k2
)

(p,q),q,(d−1,1) (�d−1 × U, (1, vµ); X)

with a continuous right-inverse. However, in Chapter 6 we will not use this trace result, but we
will instead use the following two results.

Theorem 5.3.15. Let (a1, a2) ∈]0,∞[2 and s > a1
p1

(1 + γ+) be given. Then we have

F s,(a1,a2)
(p,q),∞,(d,1)(�

d
+ × U, (wγ, vµ); X) ↪→ C([0,∞[;D′(�d−1 × U; X))

and the distributional trace operator try=0 restricts to a continuous surjection

try=0 : F s,(a1,a2)
(p,q),∞,(d,1)(�

d
+ × U, (wγ, vµ); X) −→ F

s− a1
p1

(1+γ),(a1,a2)

(p,q),q,(d−1,1) (�d−1 × U, (1, vµ); X)

with a continuous right-inverse.
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Proof. The corresponding result on�d×� follows from a combination of Theorem 5.2.55 and
Remark 5.2.13, from which the desired result can be easily derived. �

Theorem 5.3.16. Let (a1, a2) ∈ ( 1
�>0

)2 and s > a1
p1

(1 + γ+) be given. Then we have

H s,(a1,a2)
(p,q),(d,1)(�

d
+ × U, (wγ, vµ); X) ↪→ C([0,∞[;D′(�d−1 × U; X))

and the distributional trace operator try=0 restricts to a continuous surjection

try=0 : H s,(a1,a2)
(p,q),(d,1)(�

d
+ × U, (wγ, vµ); X) −→ F

s− a1
p1

(1+γ),(a1,a2)

(p,q),q,(d−1,1) (�d−1 × U, (1, vµ); X)

with a continuous right-inverse. Moreover, in case that U = �, this right-inverse maps
F −1(C∞c (�d−1; X)) ⊗F −1(C∞c (�)) into S(�d

+; X) ⊗F −1(C∞c (�)).

Proof. This can be derived from the corresponding result on�d×�, Corollary 5.2.57/Remark 5.2.59.
�

5.3.3.b Temporal Traces on �d
+ ×�+

Theorem 5.3.17. Let (k1, k2) ∈ (�>0)2. Then we have that the temporal trace operator

trt=0 : W (k1,k2)
(p,q),(d,1)(�

d
+, (wγ, vµ); X) ↪→ W1

q (�+, vµ; Lp(�d
+,wγ; X)) −→ Lp(�d

+,wγ; X), f 7→ f (0),

is a continuous surjection

trt=0 : W (k1,k2)
(p,q),(d,1)(�

d
+, (wγ, vµ); X) −→ B

k2[1− 1
k1q (1+µ)]

p,q (�d
+,wγ; X)

with a continuous right-inverse. Moreover, trt=0 coincides on S(�d
+ × �+; X) (in fact even on

C(�d
+ × [0,∞[; X) ∩W (k1,k2)

(p,q),(d,1)(�
d
+, (wγ, vµ); X)) with the classical trace of continuous functions

with respect to �d
+ × {0}.

Proof. This follows from the corresponding result on �d ×�, Corollary 5.2.63. �

5.3.3.c Spatial Traces on �d
+

Theorem 5.3.18. Let k ∈ �>0. Then the trace operator

try=0 : Wk
p(�d

+,wγ; X) ↪→ W1
p(�+, | · |

γ; Lp(�d−1; X)) −→ Lp(�d−1; X), f 7→ f (0)

restricts to a continuous surjection

try=0 : Wk
p(�d

+,wγ; X) −→ F
k− 1

p (1+γ)
p,p (�d−1; X) = B

k− 1
p (1+γ)

p,p (�d−1; X)

with a continuous right-inverse. Moreover, try=0 coincides on C(�d
+; X) ∩ Wk

p(�d
+,wγ; X) with

the classical trace with respect to {0} ×�d−1.

Proof. This can be derived from the corresponding result on�d, Corollary 5.2.58/Remark 5.2.59;
here we also have to use Proposition 5.2.34 to get the trace space in the right form. �
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Theorem 5.3.19. Let s > 1
p (1 + γ). Then the linear operator

S(�d
+; X) −→ S(�d−1; X), f 7→ f|{0}×�d−1 ,

extends to (a necessarily unique) continuous linear surjection

try=0 : Bs
p,q(�d

+,wγ; X) −→ B
s− 1

p (1+γ)
p,q (�d−1; X)

with a continuous right-inverse.

Proof. This can be derived from the corresponding result on �d, Theorem 5.2.52/Remark
5.2.13; here we also have to use Proposition 5.2.34 to get the trace space in the right form. �

5.3.3.d Temporal Traces on �d−1 ×�+

Theorem 5.3.20. Let (a1, a2) ∈]0,∞[2 and s > a2
q (1 + µ). Then the linear operator

S(�d
+; X) −→ S(�d−1; X), f 7→ f|{0}×�d−1 ,

extends to (a necessarily unique) continuous linear surjection

F s,(a1,a2)
(p,q),p,(d−1,1)(�

d−1 ×�+, (1, vµ); X) −→ B
1

a1

[
s− a2

q (1+µ)
]

p,q (�d−1; X)

with a continuous right-inverse.

Proof. This can be derived from the corresponding result on�d−1×�, Theorem 5.2.61/Remark 5.2.13;
here we also have to use Proposition 5.2.34 to get the trace space in the right form. �

As in Section 5.2.3.d, we define 0,(0,d)F
s,(a1,a2)
(p,q),p,(d−1,1)(�

d−1×�+, (1, vµ); X) as the closure of { f ∈
S(�d−1 × �+; X)} in F s,(a1,a2)

(p,q),p,(d−1,1)(�
d−1 × �+, (1, vµ); X). For this space we have the following

useful characterization (in case s , a2
q (1 + µ)):

Proposition 5.3.21. Suppose s , a2
q (1 + µ). Then we have

0,(0,d)F
s,(a1,a2)
(p,q),p,(d−1,1)(�

d−1×�+, (1, vµ); X) =

 ker(trt=0) , s > a2
q (1 + µ);

F s,(a1,a2)
(p,q),p,(d−1,1)(�

d−1 ×�+, (1, vµ); X), s < a2
q (1 + µ).

where trt=0 is the trace operator from Theorem 5.3.20. Furthermore,

0,(0,d)F
s,(a1,a2)
(p,q),p,(d−1,1)(�

d−1×�+, (1, vµ); X) � 0,(0,d)F
s,(a1,a2)
(p,q),p,(d−1,1)(�

d−1×�, (1, vµ); X)/[ker(r�d−1×�,�d−1×�+
)]

Proof. This can be easily derived from Lemma 5.2.65.(ii)/Remark 5.2.66 and Proposition 5.2.70.
�
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5.4 Notes

5.4.1 General Notes
In the literature there are two sorts of anisotropic spaces, the anisotropic spaces of intersec-
tion type (which may be in an abstract form) and the anisotropic spaces of distribution type.
Motivated by the maximal Lp-regularity problem for parabolic initial-boundary value problems
(see [76]), in [75] a systematic treatment is given of anisotropic fractional Sobolev spaces of
intersection type on space-time with weights in the time variable in the UMD setting, where
the main tools are operators with a bounded H∞-calculus, interpolation theory, and opera-
tor sums. However, concerning the spatial trace result [75, Theorem 4.5], the followed ap-
proach only works in the non-mixed-norm case q = p (due to an interchange in the order of
the variables). In the mixed-norm case, spatial traces of anisotropic Triebel-Lizorkin spaces
(of distribution type) were studied in [62] in the scalar-valued case, which include scalar-
valued anisotropic anisotropic Sobolev and Bessel potential spaces. A characterization of such
anisotropic mixed-norm Triebel-Lizorkin cases was provided in [27]; also see the discussion
[62, Section 5], where this problem was left for the future. However, in contrast to the scalar
case, in the general Banach space case, (anisotropic mixed-norm) Triebel-Lizorkin spaces do
not contain (anisotropic mixed-norm) Sobolev and Bessel potential spaces, with an exception
for the Hilbert space case. Nevertheless, in [86]/[88] the traces of Sobolev and Bessel poten-
tial space were characterized without any assumptions on the Banach space (in the unweighted
non-mixed-norm isotropic case) by making use of a sandwich argument with the end-point
Triebel-Lizorkin spaces. Distributional weighted anisotropic mixed-norm Banach space-valued
function spaces (of Sobolev, Bessel potential, Triebel-Lizorkin, and Besov type) have not been
considered before in the literature. For more information on anisotropic spaces in the scalar-
valued case we refer to [62, 27] (and the references given therein) and for a nice historical
background of isotropic spaces we refer to [97].

5.4.2 Comparison to the Literature
• Section 5.2:

– Section 5.2.1: This material is mainly a basic extension of the existing literature to
our (d , a)-anisotropic weighted setting; here the consulted literature is [97, 62, 77].
Some of the results from Section 3.4 play a very important role in this extension.

– Section 5.2.2:
The Plancherel-Pólya-Nikol’skii inequality of Proposition 5.2.32 is an extension
of [77, Proposition 4.1] (which corresponds to Step I in the proof) and is a par-
tial extension of [61, Proposition 4] (which is concerned with the scalar-valued
unweighted case for p, p̃ ∈]0,∞[l). The strategy of our proof is taken from [61,
Proposition 4], where the argumentation in Step I/II is completely different and
does not work in the weighted setting. Our argumentation in Step I/II, based on the
theory of vector-valued distributions (with values in a complete LCS), is new and
could also be used in the setting of [61].
Theorem 5.2.35 is in the unweighed scalar-valued case due to Denk & Kaip [27,
Proposition 3.23] for the special case d = (n − 1, 1), partly based on [8, 9]. There
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this representation is used for interpolation of such intersection spaces. We present
a completely different ’more direct’ self-contained proof, which consists of prov-
ing the more general intersection representation of Proposition 5.2.38, which is in
turn contained in Proposition 5.2.44. Both these two propositions as well as the
notion of partial Triebel-Lizorkin space (cf. Definition 5.2.36) are new, where
Proposition 5.2.44 is also of independent interest. Here the proofs of Proposi-
tion 5.2.39 and Lemma 5.2.43 are inspired by the proof of [88, Proposition 6]
(also see [86]), which gives a difference norm characterization for unweighted
isotropic Triebel-Lizorkin spaces. The proof of the inequality ||| · |||[mµ],discr

F s,a
p,q,d (�d ,w;X) .∑m

l=1 || · ||F s,l,al
p,q,d (�d ,w;X) in the proof of Proposition 5.2.39 is inspired by the proof of

[100, Theorem 4.4], which is concerned with the Fubini property of unweighted
isotropic Triebel-Lizorkin spaces.
The intersection representation of Proposition 5.2.46 is based on [6, Theorem 3.7.2].
Here we have to remark that Amann [6] considered the unweighted non-mixed norm
anisotropic vector-valued case, where the non-mixed norm case allows for an inter-
change in the order of the variables (by Fubini). Furthermore, in [6] the UMD
Banach space is assumed to have property (α) (except for the case a ∈ �+1), which
can be explained by the use of the more restrictive Marcinkiewicz Fourier multi-
plier theorem instead of an anisotropic Mikhlin Fourier multiplier theorem; also
see [55, 57] for an explanation of the relationship between the Marcinkiewicz and
anisotropic Mikhlin Fourier multiplier theorems. However, the given proof extends
to our situation (using Corollary 4.1.2).
Lemmas 5.2.47 and 5.2.48 are new and are specially designed for Lemma 6.4.3
(and Proposition 6.3.3). Here the operator from the second lemma is basically also
used in [73, Lemma 2.2.7] (on which Lemma 6.4.3 is based), but via an operator
theoretic approach in the case p = q instead of via a Fourier analytic approach for
general q, p ∈]1,∞[.
Except for Proposition 5.2.31 and Proposition 5.2.34, which are based on [88, The-
orem 1]/[77, Proposition 3.12] (also see [86]) and [62, Lemma 3.24], respectively,
the rest of this section is based on [97] (which is concerned with the unweighted
scalar-valued isotropic case) and some comments in [77] (which is concerned with
the weighted vector-valued isotropic case).

– Section 5.2.3: The concept of distributional trace operator is taken from [60, 38, 62],
where the space C(�,D′(�d−1; X)) is viewed as subspace of D′(�d; X) via Propo-
sition C.7.3 in the scalar-valued case X = �. The trace operator (5.64) is also used
in [60, 38, 62], where it is called the working definition of the trace. Consistency
with the distributional trace operator was first proved for Besov spaces by Johnsen
[60]; see [38, Remark 2.1]. Consistency of the classical trace on C(�d; X) with the
distributional trace was not considered in [60, 38, 62]. For several further concepts
to define a trace we refer to [88, Remark 18] (and the references given therein).
Proposition 5.2.49 is based on [62, Theorem 2.6].
Theorem 5.2.52 is inspired by [88, Theorem 2], where a different concept of trace
was considered in the unweighted isotropic case. Lemma 5.2.53 is a technical ex-
tension of [88, Lemma 5&Remark 16] to the weighted mixed-norm case, where it
was enough to consider the case b = 0 thanks to translation arguments (which do not
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work in our weighted setting). The proof of Proposition 5.2.54 is to a large extend
based on the proof of [88, Proposition 9]. The computations in the proof of Theo-
rem 5.2.52 bassically follow the computations in the proof of [88, Theorem 2]; one
of the main differences is that we have isolated some steps such as as the more gen-
eral Lemmas 5.2.22 and 5.2.10, which improves the transparency (similarly to [62]
concerning the trace problem for unweighted anisotropic Triebel-Lizorkin spaces).
An unweighted non-mixed-norm scalar-valued scalar-valued version of Theorem
5.2.52 is contained in [38, Theorem 3, Proposition 1 & Corollary 1]. Here the
weighted setting leaded to new considerations for the inclusion (5.68) due to the
unavailability of translation arguments, for which [88, Proposition 9] (and the con-
cept of trace used there in) was very helpful.
The computations and estimates in the proof of Theorem 5.2.55 are basic exten-
sions of the computations and estimates in the proof of [62, Theorem 2.2], which
is about the unweighted case (for p ∈]0,∞[l and q ∈]0,∞]). Due the unavailability
of translation arguments, we proceeded via the anisotropic Besov space in order to
obtain the inclusion (5.72).
The sandwich argument used in Corollaries 5.2.57 and 5.2.58 is taken from [86]/[88],
where it was used in the unweighted isotropic case.
The argumentation in the proof of Proposition 5.2.70 is (modulo some minor mod-
ifications) taken from [79].

• Section 5.3: The description/definition of function spaces on domains via the restriction
procedure is standard and can be found in [97]. Most of the results in this section easily
follow from the corresponding results on the full Euclidean space, where in quite some
cases the description via restriction alone was enough but in some cases an extension
operator was needed. Here the proof of Lemma 5.3.12 is essentially a reinterpretation of
the proof of [1, Theorem 5.19] inspired by [97, Section 2.9.2].
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Chapter 6

Parabolic Initial-Boundary Value
Problems with Inhomogeneous Data

In this chapter we apply the theory of weighted anisotropic mixed-norm function spaces from
Chapter 5 and the theory of Fourier multipliers from Chapter 4 to the study of maximal weighted
Lq-Lp-regularity for parabolic initial-boundary value problems with inhomogeneous static bound-
ary conditions in the half space�d

+ = �+×�
d−1. The weights we consider are power weights in

time and in the first space direction, and yield flexibility in the regularity of the initial-boundary
data.

6.1 Introduction

6.1.1 The Problem and the Maximal Weighted Lq-Lp-Regularity Approach
The aim of this chapter is to study maximal weighted Lq-Lp-regularity of vector-valued linear
inhomogeneous parabolic initial-boundary value model problems in the half space �d

+ = �+ ×

�d−1 of the form

∂tu(y, x′, t) + (1 +A(D))u(y, x′, t) = f (y, x′, t), (y, x′) ∈ �d
+, t ≥ 0

B j(D)u(y, x′, t)|y=0 = g j(x′, t), x′ ∈ �d−1, t ≥ 0, j = 1, . . . , n,
u(y, x′, 0) = u0(y, x′), (y, x′) ∈ �d

+.
(6.1)

HereA(D) is a homogeneous differential operator of order 2n and the B j(D) are homogeneous
differential operators of order n j ≤ 2n − 1, both having B(X)-valued coefficients, where X is
some fixed Banach space. For X = �n such vector-valued problems are just the usual parabolic
initial-boundary value systems.

In order to give a precise description of the maximal weighted Lq-Lp-regularity approach
for (6.1), let X be a Banach space, n, n1, . . . , nn ∈ � natural numbers with n j ≤ 2n − 1 for each
j ∈ {1, . . . , n}, and

A(D) =
∑
|α|=2n aαDα,

B j(D) =
∑
|β|=n j

b j,βDβ, j = 1, . . . , n, (6.2)

where aα and b j,β are constant B(X)-valued coefficients. We furthermore let

q ∈]1,∞[, µ ∈] − 1, q − 1[ and p ∈]1,∞[, γ ∈] − 1, p − 1[
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and define

vµ(t) := |t|µ (t ∈ �) and wγ(y, x′) := |y|γ ((y, x′) ∈ � ×�d−1). (6.3)

Then we have vµ ∈ Aq and wγ ∈ Ap, see Example D.2.12.
The maximal Lq

µ-L
p
γ-regularity approach to the parabolic initial-boundary value problem

(6.1) means that we want to find1 a (necessarily unique) space of initial-boundary data

Di.b. ⊂
[
L(p,q),(d−1,1)(�d−1 ×�+, (1, vµ); X)

]n
⊕ Lp(�d

+,wγ; X) (6.4)

such that the problem

∂tu + (1 +A(D))u = f ,
try=0B j(D)u = g j, j = 1, . . . , n,

trt=0u = u0.
(6.5)

admits a unique solution

u ∈ �sol,µ,γ := W (2n,1)
(p,q),(d,1)(�

d
+ ×�+, (wγ, vµ); X) (6.6)

if and only if ( f , g, u0) ∈ D = �0,µ,γ ×Di.b., where

�0,µ,γ := L(p,q),(d,1)(�d
+ ×�+, (wγ, vµ); X). (6.7)

Here try=0 and trt=0 are the distributional trace operators on �d
+ × �+ with respect to {y = 0} =

{0} × �d−1 × �+ and {t = 0} = �d
+ × {0}, respectively, as defined in Section 2.1.3. These trace

operators are well defined on B j(D)�sol,µ,γ and �sol,µ,γ, respectively, and give rise to bounded
linear operators

Btr
j (D) := try=0 ◦ B j(D) ∈ B(�sol,µ,γ, L(p,q),(d−1,1)(�d−1 ×�+, (1, vµ); X)) (6.8)

and
trt=0 ∈ B(�sol,µ,γ, Lp(�d

+,wγ; X)). (6.9)

Definition 6.1.1. We say that the problem (6.5) enjoys the property of maximal Lq
µ-L

p
γ-regularity

if there exists a (necessarily unique) linear space Di.b. as in (6.4) such that (6.5) admits a unique
solution u ∈ �sol,µ,γ if and only if ( f , g, u0) ∈ D = �0,µ,γ ×Di.b.. In this situation we call Di.b. the
optimal space of initial-boundary data and D the optimal space of data.

Lemma 6.1.2.

(i) If the problem (6.5) enjoys the property of maximal Lq
µ-L

p
γ-regularity, then there exists a

unique Banach topology on the space of initial-boundary data Di.b. such that

Di.b. ↪→
[
L(p,q),(d−1,1)(�d−1 ×�+, (1, vµ); X)

]n
⊕ Lp(�d

+,wγ; X). (6.10)

1Establish its existence and determine it explicitely.

178



(ii) Suppose that (6.5) enjoys the property of maximal Lq
µ-L

p
γ-regularity and that Di.b. has been

equipped with a Banach norm such that (6.10) holds true; see (i). Accordingly, view the
optimal space of data D as direct sum D = �0,µ,γ⊕Di.b.. Then the corresponding solution
operator

S : D −→ �sol,µ,γ, ( f , g, u0) 7→ S ( f , g, u0) = u

is an isomorphism of Banach spaces, or equivalently,

||u||�sol,µ,γ
h || f ||�0,µ,γ

+ ||(g, u0)||Di.b.
, u = S ( f , g, u0), ( f , g, u0) ∈ D .

(iii) The following are equivalent:

(a) (6.5) enjoys the property of maximal Lq
µ-L

p
γ-regularity.

(b) For every f ∈ �0,µ,γ there exists a unique solution u ∈ �sol,µ,γ of the problem (6.5)
with homogeneous inital-boundary data (g = 0 and u0 = 0).

(c) Denote by AB the linear operator on Y = Lp(�d
+,wγ; X) with domain

D(AB) = {v ∈ W2n
p (�d

+,wγ; X) | Btr
j (D)v = 0, j = 1, . . . , n}

given by ABv = A(D)v, where Btr
j (D) ∈ B(W2n

p (�d
+,wγ; X), Lp(Rd−1; X)) is the

boundary operator on �d
+ associated with B j(D). Then 1 + AB enjoys the prop-

erty of maximal Lq
µ-regularity2, i.e. for each f ∈ Lq(�+, vµ; Y) there exists a unique

solution u ∈ W1
q (�+, vγ; Y) ∩ Lq(�+, vµ; D(AB)) of

u′ + (1 + AB)u = f , u(0) = 0.

Proof. (i) Suppose that the problem (6.5) enjoys the property of maximal Lq
µ-L

p
γ-regularity.

Then uniqueness follows from the closed graph theorem. So we only need to establish exis-
tence: We define the closed linear subspace � of �u,µ,γ by

� := ker
(
∂t + (1 +A(D)) : �sol,µ,γ −→ �0,µ,γ

)
.

Then, by (6.8) and (6.9),

T :
� −→

[
L(p,q),(d−1,1)(�d−1 ×�+, (1, vµ); X)

]n
⊕ Lp(�d

+,wγ; X)
u 7→

(
(try=0B1(D)u, . . . , try=0Bn(D)u) , trt=0u

)
defines a bounded linear operator, which is a linear isomorphism onto its image T (�) = Di.b. by
definition of maximal Lq

µ-L
p
γ-regularity for (6.5). So we may equip Di.b. with the norm induced

by T , i.e. ||(g, u0)||Di.b.
:=

∣∣∣∣∣∣T−1(g, u0)
∣∣∣∣∣∣
�

, resulting in a Banach norm on Di.b. for which the
continuous inclusion (6.10) holds true.

(ii) To see that S is an isomorphism of Banach spaces, we argue as follows: Clearly, S is
a linear isomorphism with inverse

T : �sol,µ,γ −→ D , u 7→

 ∂tu + (1 +A(D))u
(try=0B1(D)u, . . . , try=0Bn(D)u)

trt=0u

 . (6.11)

2See Section 6.2, in which the topic of study is abstract maximal Lq
µ-regularity.
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By the closed graph theorem, it suffices to show that T is a closed operator. To this end, we
observe that T is continuous when viewed as an operator

�sol,µ,γ −→ �0,µ,γ ⊕
[
L(p,q),(d−1,1)(�d−1 ×�+, (1, vµ); X)

]n
⊕ Lp(�d

+,wγ; X); (6.12)

see (6.8) and (6.9). Since D = �0,µ,γ ⊕ Di.b. is continuously included in the space on the RHS
of (6.12) (as a consequence of (6.10)), we find that T : �sol,µ,γ −→ D is indeed a closed linear
operator.

(iii) The implication ’(a)⇒(b)’ is trivial and the equivalence ’(a)⇔(c)’ follows from the
canonical identification between �sol,µ,γ and the Sobolev space of intersection type

W1
q (�+, vγ; Lp(�d

+,wγ; X)) ∩ Lq(�+, vµ; W2m
p (�d

+,wγ; X)).

So we only need to establish the implication ’(b)⇒(a)’. To this end, we assume (b) to hold
true. Then it in particular holds that 0 is the unique solution of (6.5) with homogeneous data
(( f , g, u0) = 0), implying uniqueness of solutions for (6.5) with general data. So we only need
to find a linear space Di.b. as in (6.4) such that (6.5) admits a solution u ∈ �sol,µ,γ if and only if
( f , g, u0) ∈ �0,µ,γ ×Di.b.. We show that the linear space Di.b., consisting of all

(g, u0) ∈
[
L(p,q),(d−1,1)(�d−1 ×�+, (1, vµ); X)

]n
⊕ Lp(�d

+,wγ; X)

for which there exists a solution u ∈ �sol,µ,γ of (6.5) for f = 0, is as desired.
First we consider

( f , g, u0) ∈ �0,µ,γ ⊕
[
L(p,q),(d−1,1)(�d−1 ×�+, (1, vµ); X)

]n
⊕ Lp(�d

+,wγ; X)

for which there exists a solution u ∈ �sol,µ,γ of (6.5). Let v ∈ �u,µ,γ be the unique solution of
(6.5) for this given f with homogeneous initial-boundary conditions. Then w := u− v ∈ �sol,µ,γ

satisfies
∂tw + (1 +A(D))w = 0,

try=0B j(D)w = g j, j = 1, . . . , n,
trt=0w = u0.

By definition of Di.b., we conclude that (g, u0) ∈ Di.b..
For the converse we consider ( f , g, u0) ∈ �0,µ,γ ×Di.b.. Let v ∈ �sol,µ,γ be the unique solution

of (6.5) for this given f with homogeneous initial-boundary conditions and let w ∈ �sol,µ,γ solve

∂tw + (1 +A(D))w = 0,
try=0B j(D)w = g j, j = 1, . . . , n,

trt=0w = u0.

Then u := v + w ∈ �sol,µ,γ is a solution of (6.5). �

As the main result of this chapter, Theorem 6.1.8, we will show that, under the assumption
that X is a UMD space with property (α) and under suitable assumptions onA(D),B1(D), . . . ,Bn(D)
(certain conditions of ellipticity and of Lopatinskii-Shapiro type, to be discussed in Section
6.1.3), the problem (6.5) enjoys the property of maximal Lq

µ-L
p
γ-regularity with an explicit de-

scription of the optimal space of initial-boundary data Di.b.. In order to determine the optimal
space of initial-boundary data Di.b. explicitly, we observe that Di.b. should of course contain the
necessary regularity of the data (g, u0) and might also contain compatibility conditions between
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them at time t = 0. Having this in mind, we define a Banach space of initial boundary data�µ,γ

suggested by the sharp trace results from Chapter 5 such that

Di.b. ↪→ �µ,γ ↪→
[
L(p,q),(d−1,1)(�d−1 ×�+, (1, vµ); X)

]n
⊕ Lp(�d

+,wγ; X),

with the hope that the first inclusion also holds in the reverse direction; the precise formulation
of the space �µ,γ will be given in the next subsection.

6.1.2 The Space of Initial-Boundary Data
In this section we determine the initial-boundary data space Di.b. for the maximal Lq

µ-L
p
γ-

regularity problem (6.5). To be more precise, under the assumption that (6.5) enjoys the prop-
erty of maximal Lq

µ-L
p
γ-regularity with optimal space of initial-boundary data Di.b. and optimal

space of data D , we will find necessary conditions on the initial-boundary data (g, u0) ∈ Di.b.

implied by the sharp trace theorems and the boundedness results of the partial differential op-
erators Dα from Chapter 5. So let us assume that (6.5) enjoys the property of maximal Lq

µ-L
p
γ-

regularity with optimal space of initial-boundary data Di.b. and optimal space of data D .
By Theorem 5.3.17, for the initial value u0 we must have

u0 ∈ B
2m(1− 1+µ

q )
p,q (�d

+,wγ; X) =: Xµ,γ. (6.13)

In order to determine the regularity of g = (g1, . . . , gn), we first observe that

B j(D) ∈ B(�u,µ,γ, F
1−

n j
2n ,(

1
2n ,1)

(p,q),∞,(d,1)(�
d
+ ×�+, (wγ, vµ); X))

by a combination of Proposition 5.3.10.(ii) and Proposition 5.3.5.(ii). As

try=0 ∈ B(F1−
n j
2n ,(

1
2n ,1)

(p,q),∞,(d,1)(�
d
+ ×�+, (wγ, vµ); X), F

1−
n j
2n−

1
2np (1+γ),( 1

2n ,1)

(p,q),p,(d−1,1) (�d−1 ×�+, (1, vµ); X))

by Theorem 5.3.15, we thus obtain

Btr
j (D) = try=0 ◦ B j(D) ∈ B(�u,µ,γ,� j,µ,γ), (6.14)

where
� j,µ,γ := Fκ j,γ,( 1

2n ,1)
(p,q),p,(d−1,1)(�

d−1 ×�+, (1, vµ); X)

for the number κ j,γ ∈]0, 1[ given by

κ j,γ := 1 −
n j

2n
−

1
2np

(1 + γ).

Hence, for the boundary inhomogeneity g we must have

g = (g1, . . . , gn) ∈ �1,µ,γ ⊕ . . . ⊕ �n,µ,γ =: �µ,γ. (6.15)

Combining the necessary regularity (6.13) and (6.15) with the closed graph theorem, we
find that

Di.b. ↪→ �µ,γ ⊕ Xu,µ,γ; (6.16)
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indeed, that Di.b. is contained in the Banach space on the right is an immediate consequence of
(6.13) and (6.15), whereas the continuity of this inclusion (then) follows via the closed graph
theorem from the fact that there exists a topological Hausdorff space in which both spaces are
continuously included (namely the space on the RHS of (6.4)).

Besides the necessary regularity (6.16), there might also be a compatibility condition for
the data: If u is solution belonging to the dense subspace S(�d

+ × �+; X) of �sol,µ,γ, then u is a
classical solution of (6.5) for the data

( f , g, u0) ∈ D ∩
[
S(�d

+ ×�+; X) × S(�d
+; X)n × S(�d−1 ×�+; X)

]
,

that is, u and ( f , g, u0) satisfy (6.1). In particular, for each j ∈ {1, . . . , n} we must have

B j(D)u(y, x′, t)|y=0 = g j(x′, t), x′ ∈ �d−1, t ≥ 0,
u(y, x′, 0) = u0(y, x′), (y, x′) ∈ �d

+,

implying the compatibility condition

g j(x′, 0) = B j(D)u0(y, x′)|y=0, x′ ∈ �d−1. (6.17)

In case κ j,γ >
1+µ

q , or equivalently, in case 2n(1− 1+µ

q )−n j >
1
p (1+γ), we can define the temporal

trace operator trt=0 on � j,µ,γ and the spatial trace operator try=0 on B
2n(1− 1+µ

q )−n j

p,q (�d
+,wγ; X) as in

Theorem 5.3.20 and Theorem 5.3.19, respectively, which are bounded linear operators

trt=0 ∈ B

(
� j,µ,γ, B

2n(κ j,γ−
1+µ

p )
p,q (�d−1; X)

)
, try=0 ∈ B

(
B

2n(1− 1+µ
q )−n j

p,q (�d
+,wγ; X), B

2n(κ j,γ−
1+µ

p )
p,q (�d−1; X)

)
.

Since

B j(D) ∈ B
(
Xµ,γ, B

2n(1− 1+µ
q )−n j

p,q (�d
+,wγ; X)

)
by Propositions 5.3.5.(ii) and 5.3.11, we thus get a bounded linear operator

�0,µ,γ ⊕ �µ,γ ⊕ Xu,µ,γ −→ B
2n(κ j,γ−

1+µ
p )

p,q (�d−1; X), ( f , g, u0) 7→ trt=0g j − try=0B j(D)u0 (6.18)

in case κ j,γ >
1+µ

q . Now note that (6.17) just means that this operator vanishes on the dense

subspace S −1S(�d
+ × �+; X) of D

(6.16)
↪→ �0,µ,γ ⊕ �µ,γ ⊕ Xu,µ,γ (recall that S is an isomorphism

of Banach spaces, Lemma 6.1.2.(i)), whence this operator must vanish on the whole D . In
conclusion, incorporating this compatibility condition in (6.16), we find

Di.b. ↪→ �µ,γ :=
{

(g, u0) ∈ �µ,γ ⊕ Xµ,γ | trt=0g j − try=0B j(D)u0 = 0 when κ j,γ >
1 + µ

q

}
;

(6.19)
here the continuity of the inclusion follows as in (6.16) because�µ,γ is a Banach space as well.

6.1.3 Assumptions on (A,B1, . . . ,Bn)

LetA(D),B1(D), . . . ,Bn(D) be as in (6.2).
For φ ∈ [0, π[ we introduce the conditions (E)φ and (LS)φ, for which we need to recall that

Σθ = {z ∈ � \ {0} : | arg(z)| < θ} for θ ∈]0, π]. The condition (E)φ is an ellipticity condition and
condition (LS)φ is a so-called Lopatinskii-Shapiro condition. Given φ ∈ [0, π[, they are defined
as follows:
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(E)φ For all ξ ∈ �d, |ξ| = 1 it holds that σ(A(ξ)) ⊂ Σφ for the spectrum of the operator
A(ξ) =

∑
|α|=2n aαξα in B(X).

(LS)φ For each ξ′ ∈ �d−1 and λ ∈ Σπ−φ with |ξ′| + |λ| , 0 and all h = (h1, . . . , hn) ∈ Xn, the
ordinary initial value problem

λw(y) +A(Dy, ξ
′)w(y) = 0, y > 0

B j(Dy, ξ
′)w(y)|y=0 = h j, j = 1, . . . , n. (6.20)

has a unique solution w ∈ C∞0 ([0,∞[; X).

Remark 6.1.3. Note that, by continuity and compactness,A(D) satisfies (E)φ if and only if

inf
|ξ|=1

dist(σ(A(ξ)),Σπ−φ) > 0.

In particular, by homogeneity, A(D) satisfies (E)π/2 if and only if there exists a constant c > 0
such that

inf{<(µ) | µ ∈ σ(A(ξ))} ≥ c|ξ|2n, ∀ξ ∈ �d.

In this case we say thatA(D) is normally elliptic.
Note that differential operators of odd degree can not be normally elliptic (when we ex-

tend the just defined notion of normal ellipticity in the natural way to differential operators of
arbitrary degree).

The ellipticity condition (E)φ is equivalent to the condition that Σπ−φ ⊂ ρ(−A(ξ)) for all
ξ ∈ �d \ {0}. In case X is a UMD Banach space (so that the operator valued Mikhlin theorem
with Ap-weights from Chapter 4 is available), this condition makes it possible to find, for λ ∈
Σπ−φ and f ∈ Lp(�d,wγ; X), a unique solution v ∈ W2n

p (�d,wγ; X) of the equation

(λ +A(D))v = f ,

as well as certain estimates/bounds for this solution.
The Lopatinskii-Shapiro condition (LS)φ makes it possible to solve, given a λ ∈ Σπ−φ, the

elliptic boundary value problem

λv +A(D)v = f ,
try=0B j(D)v = g j, j = 1, . . . , n,

for the case f = 0 via the partial Fourier transform with respect to x′, from which the case of
a general f can be derived from the elliptic problem on �d without boundary conditions. In
particular, for zero boundary data g1 = . . . = gl = 0, this condition makes it possible to compute
the resolvent of the operator AB from Lemma 6.1.2.(iii).(c).

Remark 6.1.4. In our main result of this chapter, Theorem 6.1.8, we will assume that the condi-
tions (E)φ and (LS)φ hold for some φ ∈]0, π2 [. In [73, Lemma 2.2.1&Lemma 2.2.4] it is shown
that for this it is already enough that just (E) π

2
and (LS) π

2
are satisfied. There (E) π

2
is called

normal ellipticity and (LS) π
2

is called the Lopatinskii-Shapiro condition, with notations (E) and
(LS), respectively.

We now take a closer look at the ellipticity condition (E)φ and Lopatinskii-Shapiro condition
(LS)φ in some more ’concrete’ situations.
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Example 6.1.5.

(i) Suppose that X = H is a Hilbert space and that each coefficient aα ∈ B(H) is a self-
adjoint operator. Then A(ξ) =

∑
|α|=n aαξα ∈ B(H) is a self-adjoint operator as well for

each ξ ∈ �d. Therefore,

σ(A(ξ)) = σap(A(ξ)) ⊂ {〈A(ξ)h|h〉 | ||h|| = 1}, ∀ξ ∈ �d;

where σap(A(ξ)) is the approximate point spectrum of A(ξ). Using Remark 6.1.3, we
see that for A(D) to be normally elliptic it is sufficient that there exists a constant c > 0
such that

<(〈A(ξ)h|h〉) ≥ c|ξ|2n ||h||2 , ∀ξ ∈ �d, h ∈ H.

(ii) Suppose thatA(D) has scalar-valued coefficients aα ∈ �. Then, in view of Remark 6.1.3,
A(D) is normally elliptic if and only if there exists a constant c > 0 such that

<(A(ξ)) ≥ c|ξ|2n, ∀ξ ∈ �d.

Example 6.1.6. Let X be a Banach space and let A(D) =
∑
|α|=2 aαξα with aα ∈ �. Suppose

that either

(i) B(D) =
∑
|β|=1 bβDβ with b(1,0,...,0) , 0; or

(ii) B(D) = b0 with b0 , 0,

with bβ ∈ � in each case. Then the Lopatinskii-Shapiro condition (LS)φ is equivalent to: For
each ξ′ ∈ �d−1 and λ ∈ Σπ−φ with |ξ′| + |λ| , 0, the polynomial equation

a0µ
2 + a1(ξ′)µ + a2(ξ′) + λ = 0

has two distinct roots µ± ∈ � with =(µ+) > 0 > =(µ−), where

ak(ξ′) :=
∑
|α′ |=k

a(k,α′)(ξ′)α
′

, ξ′ ∈ �d−1.

Proof. As there is only one boundary condition, it suffices to prove this for X = �. This can be
found in [64, Section 7.4]. �

Using the equivalent algebraic condition from the above example, it is easy to see that:

Example 6.1.7. Let X be a Banach space and A(D) = −∆. Suppose that B(D) is as (i) or (ii)
of Example 6.1.6. ThenA(D) and (A(D),B(D)) satisfy (E)φ and (LS)φ for any φ ∈ [0, π[.

6.1.4 Statement of the Main Result and Outline of its Proof
Before we state the main result of this chapter, we first recall some notation: We have X a
Banach space, A(D),B1(D), . . . ,Bn(D) differential operators as in (6.2), q, p ∈] − 1,∞[, µ ∈
]−1, q−1[, γ ∈]−1, p−1[, and vµ, wγ are the weights on� and�d given in (6.3). Furthermore,
we have the numbers

κ j,γ = 1 −
n j

2n
−

1
2np

(1 + γ) ∈]0, 1[, j = 1, . . . , n,
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and the function spaces

�sol,µ,γ = W (2n,1)
(p,q),(d,1)(�

d
+ ×�+, (wγ, vµ); X)

= W1
q (�+, vµ; Lp(�d

+,wγ; X)) ∩ Lq(�+, vµ; W2n
p (�d

+,wγ; X))
�0,µ,γ = L(p,q),(d,1)(�d

+ ×�+, (wγ, vµ); X)
= Lq(�+, vµ; Lp(�d

+,wγ; X))

Xµ,γ = B
2n(1− 1+µ

q )
p,q (�d

+,wγ; X)

� j,µ,γ = Fκ j,γ,( 1
2n ,1)

(p,q),p,(d−1,1)(�
d−1 ×�+, (1, vµ); X), j = 1, . . . , n,

= Fκ j,γ
q,p (�+, vµ; Lp(�d−1; X)) ∩ Lq(�+, vµ; F2nκ j,γ

p,p (�d−1; X)), j = 1, . . . , n,
�µ,γ = �1,µ,γ ⊕ . . . ⊕ �n,µ,γ

�µ,γ =
{
(g, u0) ∈ �µ,γ ⊕ Xµ,γ | trt=0g j − try=0B j(D)u0 = 0 when κ j,γ >

1+µ

q

}
;

see Lemma 5.3.7 and Theorem 5.3.13.(ii) for the above intersection representations of anisotropic
spaces.

Theorem 6.1.8. Let the notations be as above. Suppose that X is a UMD space with property
(α), thatA(D),B1(D), . . . ,Bn(D) satisfy the conditions (E)φ and (LS)φ for some φ ∈]0, π2 [, and
that κ j,γ ,

1+µ

q for all j ∈ {1, . . . , n}. Then the problem (6.5) enjoys the property of maximal
Lq
µ-L

p
γ-regularity with �µ,γ as the optimal space of initial-boundary data, i.e., the problem

∂tu + (1 +A(D))u = f ,
try=0B j(D)u = g j, j = 1, . . . , n,

trt=0u = u0,

admits a unique solution u ∈ �sol,µ,γ if and only if ( f , g, u0) ∈ �0,µ,γ ⊕ �µ,γ. Moreover, the
corresponding solution operator S : �0,µ,γ ⊕ �µ,γ −→ �sol,µ,γ is an isomorphism of Banach
spaces.

Note the dependence of the space of initial-boundary data on the weight parameters µ and γ.
For fixed q, p ∈]1,∞[ we can roughly speaking decrease the required ’smoothness’ (or regular-
ity) of g and u0 by increasing γ and µ, respectively. Furthermore, compatibility conditions can
be avoided by choosing µ and γ big enough. So the weights make it possible to solve (6.5) for
more initial-boundary data (compared to the unweighed setting). On the other hand, by choos-
ing µ and γ closer to −1 (depending on the initial-boundary data) we can find more information
about the behavior of u near the initial-time and near the boundary, respectively.

Remark 6.1.9.

(i) We assume property (α) in order to simplify the proof of Theorem 6.1.8; it allows us
to prove the R-boundedness of a set of Fourier multiplier operators via the last part of
Theorem 4.1.1 (or Corollary 4.5.21). Without property (α) it is not possible to apply last
part of Theorem 4.1.1 (or Corollary 4.5.21) to get the R-sectoriality in Theorem 6.3.12
(and the R-sectoriality in Theorem 6.3.1, which is needed for the R-sectoriality in The-
orem 6.3.12). The notion of R-sectorial operator will be defined in Section 6.2 and is
closely related to abstract maximal Lq

µ-regularity; see Theorem 6.2.4 and also recall (c)
of Lemma 6.1.2.(iii).

In the general UMD-case we could proceed via the boundedness of the H∞-calculus
to get the just mentioned R-sectoriality; for general information on the H∞-calculus we
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refer to [25] and [48]. A result due to Clément and Prüss [18] (also see [25, Theorem 4.5])
says that, for a UMD space Y , if A ∈ BIP(Y) with power-angle θA

3, then A is R-sectorial
with R-angle φR

A ≤ θA. In particular, since

A ∈ H∞(Y) =⇒ A ∈ BIP(Y) with φ∞A ≥ θA,

if A has a bounded H∞-calculus with H∞-angle φ∞A , then A is R-sectorial with R-angle
φR

A ≤ φ∞A . Accordingly, for the R-sectoriality in Theorems 6.3.12 and 6.3.1, it suffices
to show that the involved elliptic operators have a bounded H∞-calculus with the right
H∞-angle. This can be done as in [25, Theorem 5.5] and [25, Theorem 7.4], respectively.

Furthermore, from the viewpoint of applications, property (α) is not very restrictive since
it is automatically satisfied by every UMD Banach lattice X; see Example E.4.2.(iii) and
Proposition E.5.5.(iii).

(ii) Let the notations and assumptions be as in the theorem. Let AB be the operator on Y =

Lp(�d
+,wγ; X) from Lemma 6.1.2.(iii).(c). Then the theorem in particular tells us that the

abstract Cauchy problem

u′ + ABu = f , u(0) = u0

has for each f ∈ Lq(�+, vµ; Y) a unique solution u ∈ W1
q (�+, vµ; Y) ∩ Lq(�+, vµ; D(A)) if

and only if (0, u0) ∈ �µ,γ, that is, if and only if

u0 ∈

{
v ∈ B

2n(1− 1+µ
q )

p,q,B (�d
+,wγ; X) : Btr

j (D)v = 0 when κ j,γ >
1 + µ

q

}
.

(iii) For the reader familiar with real interpolation theory. Let the notations and assumptions
be as in the theorem, except for the condition κ j,γ ,

1+µ

q for all j ∈ {1, . . . , n}. We define

BW2n
p (�d

+,wγ; X) :=
{
v ∈ W2n

p (�d
+,wγ; X) : Btr

j (D)v = 0, j = 1, . . . , n
}

and, for s ∈ � with s − 1
p (1 + γ) , n j for each j ∈ {1, . . . , n},

BBs
p,q(�d

+,wγ; X) :=
{

v ∈ Bs
p,q,B(�d

+,wγ; X) : Btr
j (D)v = 0 when s −

1
p

(1 + γ) > n j

}
.

As a consequence of (ii) and Remark 6.2.2 (see below), we then have, for q ∈]1,∞[ and
θ ∈]0, 1[ with θ , 1

2n

(
n j + 1

p (1 + γ)
)

for each j ∈ {1, . . . , n},(
Lp(�d

+,wγ; X), BW2n
p (�d

+,wγ; X)
)
θ,q

= BB2nθ
p,q (�d

+,wγ; X).

Example 6.1.10. Let X be an (α)-UMD space. As a consequence of the above theorem and
Example 6.1.7, we have Lq

µ-L
p
γ-regularity for the following two second order parabolic initial-

boundary value problems:

3A is a sectorial operator having bounded imaginary powers, see [25, Definition 2.4])
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(i) 1 − ∆ with Dirichlet boundary condition:

The problem
∂tu + (1 − ∆)u = f ,

try=0u = g,
trt=0u = u0.

has a unique solution u ∈ W1
q (�+, vµ; Lp(�d

+,wγ; X)) ∩ Lq(�+, vµ; W2
p(�d

+,wγ; X)) if and
only the data ( f , g, u0) satisfy:

• f ∈ Lq(�+, vµ; Lp(�d
+,wγ; X));

• g ∈ F
1− 1

2p (1+γ)
q,p (�+, vµ; Lp(�d−1; X)) ∩ Lq(�d

+, vµ; F
2− 1

p (1+γ)
p,p (�d−1; X));

• u0 ∈ B2− 2
q (1+µ)(�d

+,wγ; X);

• trt=0g = try=0u0 when 2 − 2
q (1 + µ) > 1

p (1 + γ).

(ii) 1 − ∆ with Neumann boundary condition:

The problem
∂tu + (1 − ∆)u = f ,

try=0∂yu = g,
trt=0u = u0.

has a unique solution u ∈ W1
q (�+, vµ; Lp(�d

+,wγ; X)) ∩ Lq(�+, vµ; W2
p(�d

+,wγ; X)) if and
only the data ( f , g, u0) satisfy:

• f ∈ Lq(�+, vµ; Lp(�d
+,wγ; X));

• g ∈ F
1
2−

1
2p (1+γ)

q,p (�+, vµ; Lp(�d−1; X)) ∩ Lq(�d
+, vµ; F

1− 1
p (1+γ)

p,p (�d−1; X));

• u0 ∈ B2− 2
q (1+µ)(�d

+,wγ; X);

• trt=0g = try=0u0 when 1 − 2
q (1 + µ) > 1

p (1 + γ).

We will give the proof of Theorem 6.1.8 in the end of Section 6.4. Since this proof requires
quite some preparation, we now first give an outline:

Outline of the proof of Theorem 6.1.8. The first step is to prove that the problem (6.5) enjoys
the property of maximal Lq

µ-L
p
γ-regularity without showing yet that �µ,γ is the optimal space

of initial-boundary data. For this we use the equivalence ’(a)⇔(c)’ from Lemma 6.1.2.(iii),
leading to the maximal Lq

µ-regularity problem of abstract Cauchy problems. The latter problem
we will study in Section 6.2.(ii), with as main result in this direction Theorem 6.2.4, giving
a characterization of maximal Lq

µ-regularity for linear operators A on a UMD Banach space
for which −A is the generator of an analytic semigroup in terms of a certain R-boundedness
condition for the resolvent of −A. Accordingly, in Section 6.3 we will check that the the linear
operator AB on Y = Lp(�d,wγ; X) from (c) of Lemma 6.1.2.(iii) is such that −AB is the generator
of an analytic semigroup for which the resolvent satisfies the R-boundedness condition from
this characterization. For this we need to study the elliptic boundary value problems

λv +A(D)v = f ,
try=0B j(D)v = 0, j = 1, . . . , n,
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on �d
+ for f ∈ Lp(�d

+,wγ; X); we must show existence and uniqueness of a solution u ∈
W2n

p (�d
+,wγ; X) plus certain estimates/bounds for λ in an appropriate sector of the complex

plain. For this we will in fact study (in Section 6.3.2) for λ ∈ Σπ−φ the more general elliptic
boundary value problems

λv +A(D)v = f ,
try=0B j(D)v = g j, j = 1, . . . , n, (6.21)

for f ∈ Lp(�d
+,wγ; X) and g j ∈ F2nκ j,γ

p,p (�d−1; X), j = 1, . . . , n; here the regularity of g =

(g1, . . . , gn) is motivated by the trace result of Theorem 5.3.18 (note that 2nκ j,γ = 2n−n j−
1+γ

p ).
Our approach will be as follows:

(I) Using the ellipticity condition (E)φ, for f̄ ∈ Lp(�d,wγ; X) we show existence and unique-
ness of solutions w̄ ∈ W2n

p (�d,wγ; X) of the elliptic problem

λw̄ +A(D)w̄ = f̄ (6.22)

on the full space�d, as well as certain estimates/bounds. This is the subject of in Section
6.3.1.

(II) Using the Lopatinskii-Shapiro condition (LS)φ (plus (I) at some technical point concern-
ing uniqueness), we treat the problem (6.21) in case f = 0.

(III) Firstly using (I) (via extension by zero of f to �d and restriction of the obtained solution
to �d

+) and subsequently using (II), we solve the problem (6.21) in case g = 0.

(IV) Finally, combining (II) and (III) of course solves (6.21) for the general case.

Having proved that the problem (6.5) enjoys the property of maximal Lq
µ-L

p
γ-regularity, the

second step is to show that �µ,γ is indeed the optimal space of initial-boundary data. Since we

have Di.b.
(6.19)
↪→ �µ,γ by construction of �µ,γ, we only need to show that �µ,γ ⊂ Di.b.; continuity

of this inclusion then is a consequence of the open mapping theorem.4 For this we need to show
existence of a solution u ∈ �u,µ,γ of the problem (6.5) for any ( f , g, u0) ∈ �0,µ,γ ⊕�µ,γ; note that
uniqueness follows from the fact that we already have uniqueness in case (g, u0) = 0 in view of
’(a)⇔(c)’ from Lemma 6.1.2.(ii). The idea is to first reduce to the case that u0 = 0 (by using
that trt=0 maps �u,µ,γ onto Xu,µ,γ) and subsequently to reduce to the case f = 0,u0 = 0 (by using
(c) from Lemma 6.1.2.(iii)). We will solve this reduced problem in Lemma 6.4.3. �

6.2 Abstract Maximal Lq
µ-Regularity

In this section we state the characterization of maximal Lq-regularity in terms of R-sectoriality
due to Weis [102] in the vµ-weighted setting. Let us first give the definitions of maximal Lq

µ-
regularity (also see Lemma 6.1.2.(iii)) and R-sectoriality.

4In our solution we will in fact obtain the continuity of the inclusion �µ,γ ↪→ Di.b. via direct estimates.
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Definition 6.2.1. Let Y be a Banach space and let A be a closed linear operator on Y with
domain D(A). The abstract Cauchy problem

u′ + Au = f , u(0) = 0,

is said to enjoy the property of maximal Lq
µ-regularity, where q ∈]1,∞[ and µ ∈] − 1, q − 1[, if

for each f ∈ Lq(�+, vµ; Y) there exists a unique solution u ∈ W1
q (�+, vµ; Y) ∩ Lq(�+, vµ; D(A)).

In this case we also say that A has maximal Lq
µ-regularity. For µ = 0 we drop the µ from the

notation.

Remark 6.2.2. Having maximal Lq
µ-regularity, non-zero initial values can easily be treated via

related temporal trace results (see e.g. [99, Section 1.8.1 & 1.14.5]); also see Proposition 6.2.5
below, which says that −A generates an analytic semigroup on Y in this situation. To be more
specific, if −A is the generator of an analytic semigroup on Y , then the temporal trace space (in
t = 0) of W1

q (�+, vµ; Y) ∩ Lq(�+, vµ; D(A)) is the real interpolation space (Y,D(A))1− 1+µ
q ,q.5

Definition 6.2.3. Let Y be a Banach space and let A be a closed linear operator on Y with
domain D(A). Then A is called R-sectorial of angle ω ∈]0, π[ if the following conditions hold
true:

(i) The domain D(A) and range R(A) of A are dense in Y .

(ii) Σπ−ω ⊂ ρ(−A).6

(iii) For every φ ∈]ω, π[, {λ(λ + A) : λ ∈ Σπ−φ} is an R-bounded set in B(Y).

In this case we define the R-angle φR
A as the infimum of all such ω.

Theorem 6.2.4. Let Y be a UMD Banach space and let A be a closed linear operator on Y
with domain D(A). Let q ∈]1,∞[ and µ ∈] − 1, q − 1[. Then A has the property of maximal
Lq
µ-regularity if and only if A is an invertible R-sectorial operator with R-angle φR

A <
π
2 .

This result is due to Weis [102, Theorem 4.2] (µ = 0). For a nice historical overview of this
problem we refer to [64]. Another reference is [25, Theorem 4.4]. The same argumentation
can be used in the Aq-weighted setting. The idea is roughly to translate this problem into a
Fourier multiplier problem, for which a condition involving R-boundedness is natural in view
of Remark 4.5.6 and Theorem 4.5.13. Also see [15] for extrapolation of maximal regularity.
Also see [82] for the independence of maximal Lq

µ-regularity on µ in the range [0, q − 1[.

Proposition 6.2.5. Let X be a Banach space, A a closed linear operator on X with domain
D(A), and q ∈]1,∞[. If A has maximal Lq-regularity, then −A generates an exponentially
stable analytic C0-semigroup (e−tA)t≥0 in X.7

For a proof we refer to [30, Corollary 4.2].

5For an elementary introduction to interpolation theory we refer to [69].
6Recall here that Σθ = {z ∈ � \ {0} : | arg(z)| < θ} for θ ∈]0, π].
7A C0-semigroup (e−tA)t≥0 in X is called exponentially stable if there exist M, ω > 0 such that

∣∣∣∣∣∣e−tA
∣∣∣∣∣∣ ≤ Me−ωt

for all t ≥ 0.
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6.3 Elliptic Problems
The goal of this section is to solve the elliptic problem (6.22) on the full space �d and the
elliptic boundary value problem (6.21) on the half-space �d

+; also see the outline of the proof
of the main result, Theorem 6.1.8, given in Section 6.1.4.

6.3.1 Elliptic Problems on �d

Theorem 6.3.1. Let X be an (α)-UMD space, p ∈]1,∞[, and w ∈ Ap(�d). Suppose that
A(D) =

∑
|α|≤n aαDα, with aα ∈ B(E), satisfies (E)φ for some φ ∈ [0, π[. Let A be the operator

on Lp(�d,w; X) with domain D(A) := Hn
p(�d,w; X) = Wn

p(�d,w; X) given by Au := A(D)u.
Then A is an R-sectorial operator with R-angle φRA ≤ φ.

Proof. For (i) of Definition 6.2.3 we only need to establish the denseness of R(A), the denseness
of D(A) being immediate from the fact that S(�d; X) is dense in Lp(�d,w; X). In view of
Lemma 3.4.3, it sufficient to show that S0(�d; X) is contained in R(A). To this end, let us
fix an f ∈ S0(�d; X). Now observe that �d \ {0} 3 ξ 7→ A(ξ) ∈ B(X) is a well-defined
smooth function since �d \ {0}ξ 7→ A ∈ B(X) is a smooth map taking values in the invertible
operators (in view of the ellipticity assumption (E)φ). Therefore, g : ξ 7→ A(ξ)−1 f̂ (ξ) belongs
to C∞c (�d \ {0}; X) ⊂ S(�d; X). Clearly, u := F −1g ∈ S(�d; X) ⊂ D(A) solvesA(D)u = f .

Next we must show that (ii) and (iii) of Definition 6.2.3 hold true for ω ≤ φ. For this we fix
a ϕ ∈]φ, π[ and show that Σπ−ϕ ⊂ ρ(−A) with R{λ(λ + A)−1 | λ ∈ Σπ−ϕ} < ∞.

From the ellipticity condition (E)φ it follows that, for each λ ∈ Σπ−ϕ and |α| ≤ n,

[ξ 7→ λ1− |α|n ξα(λ +A(ξ))−1] ∈ C∞(�d \ {0};B(X)).

We claim that

κα,β := R{|ξ|βDβ
ξλ

1− |α|n ξα(λ+A(ξ))−1 | ξ ∈ �d\{0}, λ ∈ Σπ−ϕ} < ∞, ∀|α| ≤ n, β ∈ �d. (6.23)

By Corollary 4.5.21 (the operator-valued (α)-UMD Mikhlin theorem with Ap-weights) we then
obtain that each multiplier symbol ξ 7→ ξα(λ+A(ξ))−1, λ ∈ Σπ−ϕ and |α| ≤ n, defines a bounded
linear operator Tλ,α on Lp(�d,w; X) for which {λ1− |α|n Tλ,α | λ ∈ Σπ−φ} is an R-bounded collec-
tion in B(Lp(�d,w; X)). We thus get bounded linear operators Tλ := Tλ,0 : Lp(�d,w; X) −→
Wn

p(�d,w; X), λ ∈ Σπ−φ, such that

R

{
λ1− |α|n DαTλ = λ1− |α|n Tλ,α

}
< ∞ in B(Lp(�d,w; X)), |α| ≤ n. (6.24)

Since Tλ ∈ B(Lp(�d,w; X),Wn
p(�d,w; X)) ⊂ B(Lp(�d,w; X)) is easily seen to be the inverse of

λ + A, it follows that Σπ−ϕ ⊂ ρ(−A) with R{λ(λ + A)−1} < ∞ (take α = 0 in (6.24)), as desired.
In order to establish (6.23), we pick a θ ∈]φ, ϕ[ and define G := {(σ, ξ) ∈ (� × �d) \ {0} |

arg(σ) < 1
n (π − θ)} and, for each |α| ≤ n,

mα : G −→ B(X), (σ, ξ) 7→ σn−|α|ξα(σn +A(ξ))−1;

then mα is a well defined holomorphic function as a consequence of the ellipticity condition
(E)φ. Since mα is positively homogeneous of degree 0, i.e. m(ρσ, ρξ) = m(σ, ξ) for all (σ, ξ) ∈ G
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and ρ > 0, it follows that (σ, ξ) 7→ |ξ||β|Dβ
ξmα(σ, ξ) is positively homogeneous of degree 0 as well

for each β ∈ �d. Combining this homogeneity with the contraction principle (cf. Proposition
E.1.2), we obtain

R{|ξ|βDβ
ξλ

1− |α|n ξα(λ +A(ξ))−1 | ξ ∈ �d \ {0}, λ ∈ Σπ−φ}

≤ R{|ξ|βDbeta
ξ mα(σ, ξ) | (σ, ξ) ∈ (� ×�d) \ {0}, arg(σ) ≤

1
n

(π − φ)}

= R{|ζ ||β|Dβ
ξmα(τ, ζ) | (τ, ζ) ∈ G, arg(τ) ≤

1
n

(π − ϕ), |τ|2 + |ζ |2 = 1}

≤ R{Dβ
ξmα(τ, ζ) | (τ, ζ) ∈ G, arg(τ) ≤

1
n

(π − ϕ), |τ|2 + |ζ |2 = 1}.

By Proposition E.3.9, the latter R-bound is finite because the involved set is the image under
the holomorphic function Dβ

ξmα : G −→ B(X) of a compact set. This shows (6.23). �

Note that, as a byproduct of the R-sectoriality in the above theorem, by Theorem 6.2.4 we
obtain the following maximal regularity result:

Corollary 6.3.2. Let the notations be as in the above theorem and assume that φ < π
2 (so that

we must have n ∈ 2�).8 Then 1 + A enjoys the property of maximal Lq
µ-regularity.

Proof. Here we just have to note that if A is R-sectorial with R-angle φR
A, then 1 + A is an

invertible R-sectorial operator with R-angle φR
1+A ≤ φ

R
A. �

6.3.2 Elliptic Boundary Value Problems on �d
+

LetA(D),B1(D), . . . ,Bn(D) be as in (6.2).
In this subsection we will study the elliptic boundary value problem

λv +A(D)v = f ,
B j(D)v = g j, j = 1, . . . , n, (6.25)

on �d
+, assuming the ellipticity condition (E)φ and the Lopatinskii-Shapiro condition (LS)φ.

Given f ∈ Lp(�d
+,wγ; X) and g = (g1, . . . , gn) ∈

∏n
j=1 F2nκ j,γ

p,p (�d−1; X), we look for a solution
v ∈ W2n

p (�d
+,wγ; X); note that the given regularity for g is necessary by the trace result of

Theorem 5.3.18.

6.3.2.a The case f = 0

We now turn to the elliptic boundary value problem (6.25) with f = 0. Our main result in
this direction, Proposition 6.3.3, says that we have existence and uniqueness plus a certain
representation for the solution (which will be useful for later).

Before we can state Proposition 6.3.3, we first need to introduce some notation. Given
a UMD Banach space X and a natural number k ∈ �, we have, for the UMD space E =

Lp(�+, | · |
γ; X), the natural inclusion

Wk
p(�d

+,wγ; X) ↪→ Wk
p(�d−1; Lp(�+, | · |

γ; X)) = Hk
p(�d−1; E)

8It actually suffices to assume that φ = π
2 ; this then implies that A(D) satisfies (E)φ′ for some φ′ < π

2 ; see [73,
Lemma 2.2.1].
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and the natural identification

Lp(�d
+,wγ; X) = H0

p(�d−1; E).

By Lemma 5.2.47 we accordingly have that, for λ ∈ �\] −∞, 0], that the partial Fourier multi-
plier operator

Lk/2n
λ ∈ L(S′(�d−1;D′(�+; X))), f 7→ F −1

x′
[(
ξ′ 7→ (λ + |ξ′|2n)k/2n

)
Fx′ f

]
,

restricts to a bounded linear operator

Lk/2n
λ ∈ B(Wk

p(�d
+,wγ; X), Lp(�d

+,wγ; X)).

Moreover, we even get an analytic operator-valued mapping

�\] −∞, 0] −→ B(Wk
p(�d

+,wγ; X), Lp(�d
+,wγ; X)), λ 7→ Lk/2n

λ .

In particular, we have

L1−
n j
2n

λ , L1−
n j+1

2n
λ Dy ∈ B(W2n−n j

p (�d
+,wγ; X), Lp(�d

+,wγ; X)), j = 1, . . . , n, (6.26)

with analytic dependence on the parameter λ ∈ �\] −∞, 0].

Proposition 6.3.3. Let X be a UMD Banach space, p ∈]1,∞[, γ ∈] − 1, p − 1[, and assume
that (A,B1, . . . ,Bn) satisfies (E)φ and (LS)φ for some φ ∈]0, π[. Then, for each λ ∈ Σπ−φ, there
exists an operator

S(λ) =
(
S1(λ) . . . Sn(λ)

)
∈ B

 n⊕
j=1

F2nκ j,γ
p,p (�d−1; X),W2n

p (�d
+,wγ; X)


which assigns to a g ∈

⊕n
j=1 F2nκ j,γ

p,p (�d−1; X) the unique solution v = S(λ)g ∈ W2n
p (�d

+,wγ; X)
of the elliptic boundary value problem

λv +A(D)v = 0,
Btr

j (D)v = g j, j = 1, . . . , n; (6.27)

recall here that κ j,γ = 1 − n j

2n −
1

2np (1 + γ). Moreover, for each j ∈ {1, . . . , n} we have that

S̃ j : Σπ−φ −→ B(W2n−n j
p (�d

+,wγ; X),W2n
p (�d

+,wγ; X)), λ 7→ S̃ j(λ) := S j(λ) ◦ try=0

defines an analytic mapping, for which the operators DαS̃ j(λ) ∈ B(W2n−n j
p (�d

+,wγ; X), Lp(�d
+,wγ; X)),

|α| ≤ 2n, can be represented as

DαS̃ j(λ) = T 1
j,α(λ)L1−

n j
2n

λ + T 2
j,α(λ)L1−

n j+1
2n

λ Dy (6.28)

for analytic operator-valued mappings

T i
j,α : Σπ−φ −→ B(Lp(�d

+,wγ; X)), λ 7→ T i
j,α(λ), i ∈ {1, 2}, (6.29)

satisfying the R-bounds

R{λk+1− |α|2n∂k
λT

i
j,α(λ) | λ ∈ Σπ−φ} < ∞, ∀k ∈ �. (6.30)
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The goal of this subsubsection is to prove this proposition. Accordingly, we let the notations
and assumptions be as in this proposition for the rest of this subsubsection.

In order to get an idea how to construct the solution operator S(λ) for λ ∈ Σπ−φ, suppose
we have a solution v ∈ S(�d

+; X) of (6.27) for given g = (g1, . . . , gn) ∈ S(�d−1; X)n. This just
means that

λv(y, x′) +A(D)v(y, x′) = 0, (y, x′) ∈ �d
+,

B j(D)v(0, x′) = g j(x′), x′ ∈ �d−1, j = 1, . . . , n. (6.31)

Taking the partial Fourier transform Fx′ with respect to x′, we obtain

λFx′v(y, x′) +A(Dy, ξ
′)Fx′v(y, x′) = 0, (y, ξ′) ∈ �d

+,
B j(Dy, ξ

′)Fx′v(y, ξ′)|y=0 = Fg j(ξ′), ξ′ ∈ �d−1, j = 1, . . . , n.

This motivates to study, for each fixed ξ′ ∈ �d−1 and h = (h1, . . . , hn) ∈ Xn, the ordinary initial
value problem (6.20).

Study of the ordinary initial value problem (6.20): Let λ ∈ Σπ−φ and ξ′ ∈ �d−1 with
(λ, ξ′) , 0 be given.9 Recall that the Lopatinskii-Shapiro condition (LS)φ says that the ordinary
initial value problem (6.20) has a unique solution w ∈ C∞0 ([0,∞[; X) (for any h = (h1, . . . , hn) ∈
Xn). We shall rewrite (6.20) into a system of first order equations which allows us to get a
representation formula for w.

We write

A(Dy, ξ
′) =

2n∑
k=0

∑
|α′ |=k

a(k,α′)(ξ′)α
′

D2n−k
y

=

2n∑
k=0

ak(ξ′)D2n−k
y ,

where ak(ξ′) :=
∑
|α′ |=k ak,α′(ξ′)α

′

, and

B j(Dy, ξ
′) =

n j∑
k=0

∑
|α′ |=k

b j,(k,α′)(ξ′)α
′

Dn j−k
y

=

n j∑
k=0

b j,k(ξ′)D
n j−k
y ,

where b j,k(ξ′) :=
∑
|α′ |=k b j,(k,α′)(ξ′)α

′

. Then, since a0 = a0(ξ′) ∈ B(E) is invertible (by the
ellipticity assumption (E)φ onA(D) as a0 = A(1, 0, . . . , 0)), (6.20) can be rewritten as

D2n
y wy +

∑2n−1
k=1 a−1

0 ak(ξ′)D2n−k
y w(y) + a−1

0 (λ + a2n(ξ′))w(y) = 0, y > 0∑n j

k=0 b j,k(ξ′)D
n j−k
y w(y)|y=0 = h j, j = 1, . . . , n.

(6.32)

For later it will be convenient to do the following rescaling: For ρ ∈ �∗ = � \ {0} we set

σ :=
λ

ρ2n and b :=
ξ′

ρ
. (6.33)

9We consider such (λ, ξ′) instead of just (λ, ξ′) ∈ Σπ−φ×�
d−1 for technical reasons needed to obtain the estimate

(6.39) (based on continuity and compactness).
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Then, as ak and b j,k are homogeneous of degree k, (6.32) can be written as

D2n
y w(y) +

∑2n−1
k=1 a−1

0 ak(b)ρkD2n−k
y w(y) + a−1

0 (σ + a2n(b))ρ2nw(y) = 0, y > 0∑n j

k=0 b j,k(b)ρkDn j−k
y w(y)|y=0 = h j, j = 1, . . . , n.

(6.34)
Writing

A0(σ, b) :=


0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 . . . 0 I
c2n(σ, b) c2n−1(b) . . . c1(b)


∈ M2n×2n(B(X)),

where
c j(b) := −a−1

0 a j(b), j = 1, . . . , 2n − 1,
c2n(σ, b) := −a−1

0 (σ + a2n(b)),

and
B0

j(b) := ( b j,n j(b) . . . b j,0 0 . . . 0 ) ∈ M2n×1(B(X)), j = 1, . . . , n,

(6.34) is equivalent with the first order ordinary initial value problem

∂ywρ(y) = ıρA0(σ, b)wρ(y), y > 0,
B0

j(b)wρ(0) =
h j

ρ
n j , j = 1, . . . , n, (6.35)

where the equivalence is given via the correspondence

w↔ wρ = (w, ρ−1Dyw, . . . , ρ−(2n−1)D2n−1
y w).

Let’s take a look at all (σ, b) which can be obtained via (6.33). For ω ∈ � we define

Υω :=
{
(σ, b) ∈ (� × �d−1) \ {0} | arg(ω2nσ) ≤ φ, ωb ∈ �d

}
.

Then

Υ :=
⋃
ω∈�

Υω =
{
(σ, b) ∈ � × �d−1 | ∃(λ, ξ′) ∈

[
Σπ−φ ×�

d−1
]
\ {0}, ρ ∈ �∗ s.t. σ = ρ−2nλ, b = ρ−1ξ′

}
.

(6.36)
For (σ, b) ∈ Υ we write ω(σ, b) for the unique ω ∈ � with (σ, b) ∈ Υω.

Remark 6.3.4. Let (λ, ξ′) ∈
[
Σπ−φ ×�

d−1
]
\ {0} and ρ = ω|ρ| ∈ �∗ with ω ∈ �. Then for (σ, b)

as defined in (6.33) we have ω(σ, b) = ω. As a consequence, ıρA0(σ, b) = ıω(σ, b)A0(σ, b)|ρ|.

In the above notation we have:

Lemma 6.3.5. For (σ, b) ∈ Υ it holds that σ (ıω(σ, b)A0(σ, b)) ∩ ı� = ∅.

Proof. This can be shown as in [25, Proposition 6.1]. �

This lemma implies that

σ(ıω(σ, b)A0(σ, b)) = [σ(ıω(σ, b)A0(σ, b)) ∩ {<(z) < 0}]︸                                       ︷︷                                       ︸
=:S −(σ,b)

∪ [σ(ıω(σ, b)A0(σ, b)) ∩ {<(z) > 0}]︸                                       ︷︷                                       ︸
=:S +(σ,b)
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for (σ, b) ∈ Υ. By compactness and continuity, given R, r > 0 there there exist constants
c1, c2 > 0 such that

S −(σ, b) ⊂ {<(z) ≤ −c1}, (σ, b) ∈ Υ, |σ| + |b|2n ∈ [r,R]
S +(σ, b) ⊂ {<(z) ≥ c2}, (σ, b) ∈ Υ, |σ| + |b|2n ∈ [r,R] (6.37)

We denote by P±(σ, b) the spectral projection associated to S ±(σ, b). Then we have the decom-
position

X2n = P−(σ, b)X2n ⊕ P+(σ, b)X2n, (6.38)

which is invariant under ıω(σ, b)A0(σ, b). Moreover, it holds that∣∣∣∣∣∣eıω(σ,b)A0(σ,b)tx
∣∣∣∣∣∣ ≤ e−c1t ||x|| , x ∈ P−(σ, b)X2n, t ≥ 0, (σ, b) ∈ Υ, |σ| + |b|2n ∈ [r,R]∣∣∣∣∣∣eıω(σ,b)A0(σ,b)tx
∣∣∣∣∣∣ ≥ ec2t ||x|| , x ∈ P+(σ, b)X2n, t ≥ 0, (σ, b) ∈ Υ, |σ| + |b|2n ∈ [r,R].

(6.39)

Proposition 6.3.6. Given (λ, ξ′) ∈
[
Σπ−φ ×�

d−1
]
\ {0}, ρ = ω|ρ| ∈ �∗ and h = (h1, . . . , hn) ∈ Xn,

let (σ, b) be as in (6.33) and set

hρ :=
(

h1

ρn1
, . . . ,

hn

ρnn

)
.

Then (6.35) has a unique solution wρ ∈ C∞([0,∞[; X2n), which is given by

wρ(y) = eıρA0(σ,b)ywρ
0, (6.40)

where wρ
0 ∈ X2n is the unique solution of

P+(σ, b)wρ
0 = 0,

B0
j(b)wρ

0 = hρj , j = 1, . . . , n. (6.41)

Moreover,
wρ

0 = M(σ, b)hρ

for some holomorphic mapping Υ 3 (σ, b) 7→ M(σ, b) ∈ B(X, X2n).

Proof. By the Lopatinskii-Shapiro condition (LS)φ and the equivalence between (6.20) and
(6.35), (6.35) has a unique solution wρ ∈ C∞([0,∞[; X2n). This solution must of course be
of the form (6.40) for some unique wρ

0 ∈ X2n. By the decomposition (6.38), Remark 6.3.4
and the estimates (6.39) (take r = R = |σ| + |b|2n), wρ

0 ∈ X2n must be the unique solution of
(6.41). Letting M(σ, b) ∈ B(X, X2n) (hρ 7→ M(σ, b)hρ) be the solution map for (6.41), we have
wρ

0 = M(σ, b)hρ. That Υ 3 (σ, b) 7→ M(σ, b) ∈ B(X, X2n) is holomorphic can be shown as in
[25, Proposition 6.2]. �

We will use the following choice of ρ when we come back to (6.31):

Example 6.3.7. For (λ, ξ′) ∈
[
Σπ−φ ×�

d−1
]
\ {0} we define

ρλ(ξ′) := (λ + |ξ′|2n)1/2n ∈ �∗ (6.42)

and
σλ(ξ′) :=

λ

ρλ(ξ′)
, bλ(ξ′) :=

ξ′

ρλ(ξ′)
. (6.43)
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Then there exits an R > 1, independent of λ and ξ′, such that

|σλ(ξ′)| + |bλ(ξ′)|2n ∈ [1,R]. (6.44)

By Remark 6.3.4 and (6.39) there consequently exists a constant c > 0, independent of λ and
ξ′, such that∣∣∣∣∣∣eıρλ(ξ′)A0(σλ(ξ′),bλ(ξ′))tx

∣∣∣∣∣∣ ≤ e−c|ρλ(ξ′)|t ||x|| , x ∈ P−(σλ(ξ′), bλ(ξ′))X2n, t ≥ 0. (6.45)

Proof. By the triangle inequality we have

|σλ(ξ′)| + |bλ(ξ′)|2n =
|λ|

|λ + |ξ′|2n|
+

|ξ′|2n

|λ + |ξ′|2n|
≥
|λ| + |ξ′|2n

|λ| + |ξ′|2n = 1.

For the upper bound we may assume that λ , 0; just note that |σλ(ξ′)| + |bλ(ξ′)|2n = 1 in case
λ = 0. Then we have

|σλ(ξ′)| + |bλ(ξ′)|2n =
1 +

|ξ′ |2n

|λ|

λ
|λ|

+
|ξ′ |2n

|λ|

=
1 + t
|eıθ + t|

,

where t := |ξ′ |2n

|λ|
≥ 0 and eıθ := λ

|λ|
, θ ∈ [−(π − φ), π − φ] ⊂] − π, π[. If t ≥ 2, then

1 + t
|eıθ + t|

≤
1 + t
t − 1

=
2

t − 1
+ 1 ≤ 3,

and, if t ≤ 2, then
1 + t
|eıθ + t|

≤
3

|eıθ + t|
≤

3
=(eı(π−φ))

=
3

sin(π − φ)
.

This shows that |σλ(ξ′)| + |bλ(ξ′)|2n ≤ R for the constant R := 3
sin(π−φ) > 1. �

Representation formulas for the solution of (6.27): Having solved the ordinary initial value
problem (6.20), we now go back to the elliptic boundary value problem (6.27).

Fix λ ∈ Σπ−φ. In order to construct the solution operator S(λ) from Proposition 6.3.3, we
will construct an operator

S̃(λ) =
(
S̃1(λ) . . . S̃n(λ)

)
∈ B

(⊕n
j=1 W2n−n j

p (�d
+,wγ; X),W2n

p (�d
+,wγ; X)

)
with the property that

∀g̃ ∈
⊕n

j=1 W2n−n j
p (�d

+,wγ; X) : S̃(λ)g̃ solves (6.27) with g = try=0g̃.
(6.46)

Then, given extension operators E j : F2nκ j,γ
p,p (�d−1; X) −→ W2n−n j

p (�d
+,wγ; X), j = 1, . . . , n, as in

Theorem 5.3.18, i.e.

E j ∈ B(F2nκ j,γ
p,p (�d−1; X),W2n−n j

p (�d
+,wγ; X))

is a right-inverse of the trace operator j = 1, . . . , n,
try=0 ∈ B(W2n−n j

p (�d
+,wγ; X), F2nκ j,γ

p,p (�d−1; X))
(6.47)

the composition S(λ) := S̃(λ) ◦ (E1, . . . ,En) will be a solution operator for (6.27).
Let g̃ ∈ S(�d

+; X)n and write g := try=0g̃ ∈ S(�d−1; X)n. For every ξ′ ∈ �d−1 we define

hξ′ := (Fg1(ξ′), . . . ,Fgn(ξ′)) ∈ Xn,
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let ρ(ξ′) = ρλ(ξ′), σ(ξ′) = σλ(ξ′) and b(ξ′) = bλ(ξ′) as in Example 6.3.7. Furthermore, we
let wρ(ξ′) ∈ C∞([0,∞[; X2n) be the unique solution of (6.35) (corresponding to h = hξ′ and
ρ = ρ(ξ′)); recall that, by the equivalence between (6.20) and (6.35), π1wρ(ξ′) ∈ C∞([0,∞[; X)
then is the unique solution of (6.20), where π1 : X2n −→ X denotes the canonical projection
onto the first coordinate. By Proposition 6.3.6, this solution can be represented as

wρ(ξ′)(y) = eıρ(ξ′)A0(σ(ξ′),b(ξ′))yM(σ(ξ′), b(ξ′))


ρ(ξ′)−n1Fg1(ξ′)

...
ρ(ξ′)−nnFgn(ξ′)

 . (6.48)

From this formula, (6.45), the fact that M(σ, b) maps into P−(σ, b)X2n (see Proposition 6.3.6),
the fact that (σ, b) 7→ A0(σ, b) and (σ, b) 7→ M(σ, b) are continuous, (6.44), and the observa-
tion that ξ′ 7→ ρ(ξ′)−n jFg j(ξ′) belongs to S(�d−1; X) ( j = 1, . . . , n), it easily follows that the
function

φ : [0,∞[×�d−1 −→ X2n, (y, ξ′) 7→ wρ(ξ′)(y) (6.49)

has the property that, for each k ∈ �, ξ′ 7→ Dk
yφ(y, ξ′) is rapidly decreasing uniformly in

y ∈ [0,∞[. Hence, we may take the inverse partial Fourier transform F −1
x′ with respect to ξ′, to

obtain

F −1
x′ φ ∈ C∞b ([0,∞[×�d−1; X2n) with (DαF −1

x′ φ)(y, x′) = F −1[ξ′ 7→ (ξ′)α
′

Dα1
y φ(y, ξ′)](x′),∀α ∈ �d.

Since y 7→ π1φ(y, ξ′) solves the ordinary initial value problem (6.20) for h = hξ′ = (Fg1(ξ′), . . . ,Fgn(ξ′)) ∈
Xn by construction, it follows that

v := π1F
−1
x′ φ = F −1

x′ π1φ ∈ C∞b ([0,∞[×�d−1; X)

satisfies

λv(y, x′) +A(D)v(y, x′) = F −1[ξ′ 7→ (λ +A(Dy, ξ
′))π1φ(y, ξ′)](x′) = 0, (y, x′) ∈ �d

+,
B1(D)v(0, x′) = F −1[ξ′ 7→ B1(Dy, ξ

′)π1φ(y, ξ′)|y=0](x′) = g1(x′), x′ ∈ �d−1,
...

...
...

Bn(D)v(0, x′) = F −1[ξ′ 7→ Bn(Dy, ξ
′)π1φ(y, ξ′)|y=0](x′) = gn(x′), x′ ∈ �d−1.

So, recalling the formula given in (6.48) and the definition of φ given in (6.49), in order to
establish the existence of an operator S̃(λ) as in (6.46), it suffices to show that the linear operator
S̃(λ) : S(�d

+; X)n −→ C∞b (]0,∞[×�d−1; X) ↪→ D′(�d
+; X) given by

S̃(λ)g̃ := π1F
−1
x′

(y, ξ′) 7→ eıρ(ξ′)A0(σ(ξ′),b(ξ′))yM(σ(ξ′), b(ξ′))


ρ(ξ′)−n1[F g̃1(0, · )](ξ′)

...
ρ(ξ′)−nn[F g̃n(0, · )](ξ′)




(6.50)
takes its values in W2n

p (�d
+,wγ; X) and satisfies, for each |α| ≤ 2n, the norm estimate

||DαS(λ)g̃||Lp(�d
+,wγ;X) . ||g̃||∏n

j=1 W2n−n j (�d
+,wγ;X) (g̃ ∈ S(�d

+; X)n); (6.51)

then, by denseness ofS(�d
+; X)n in

⊕n
j=1 W2n−n j�d

+,wγ; X), continuity ofA(D) from W2n
p (�d

+,wγ; X)

to Lp(�d
+,wγ; X) and continuity ofBtr

j (D) from W2n
p (�d

+,wγ; X) to F2nκ j,γ
p,p (�d−1; X) ( j = 1, . . . , n),
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S̃(λ) extends to a bounded linear operator

S̃(λ) :
n⊕

j=1

W2n−n j
p (�d

+,wγ; X) −→ W2n
p (�d

+,wγ; X)

which is as in (6.46).
Recall that, for each α ∈ �d and all g ∈ S(�d−1; X)n, we have

DαS̃(λ)g̃ = π1F
−1
x′

[
mλ,αFρg̃

]
,

where mλ,α : [0,∞[×�d−1 −→ B(Xn, X2n) is given by

mλ,α(y, ξ′) := (ξ′)α
′

[ρ(ξ′)A0(σ(ξ′), b(ξ′))]α1eıρ(ξ′)A0(σ(ξ′),b(ξ′))yM(σ(ξ′), b(ξ′))ρ(ξ′)−2n (6.52)

and where

Fρg̃ := (ρ2n−n1F [g̃1(0, · )], . . . , ρ2n−nnF [g̃n(0, · )]) ∈ S(�d−1; Xn).

From (6.45), the fact that M(σ, b) maps into P−(σ, b)X2n (see Proposition 6.3.6), the fact that
(σ, b) 7→ A0(σ, b) and (σ, b) 7→ M(σ, b) are continuous, and (6.44), it follows that mλ,α has the
property that, for each k ∈ � and δ > 0, ξ′ 7→ Dk

ymλ,α(y, ξ′) is rapidly decreasing uniformly for
y ∈ [δ,∞[. Therefore, we have Kλ,α := F −1

x mλ,α|]0,∞[×�d ∈ C∞(]0,∞[×�d−1;B(Xn, X2n)) with
bounded partial derivatives on the sets [δ,∞[×�d−1, δ > 0. Since Kλ,α is given by the formula

Kλ,α(y, x′) = (2π)−(d−1)
∫
�d−1

eıx
′·ξ′mλ,α(y, ξ′)dξ′,

we have

[DαS̃(λ)g̃](y, x′) = π1

∫
�d−1

Kλ,α(y, x′−x̃′)
[
(L1− n1

2n
λ , . . . , L1− nn

2n
λ )g̃

]
(0, x̃′)dx̃′ ((y, x′) ∈]0,∞[×�d−1).

Integrating by parts and applying Fubini, this can be written as

[DαS̃(λ)g̃](y, x′) = −ıπ1

∫ ∞

0

∫
�d−1

DỹKλ,α(y + ỹ, x′ − x̃′)
[
(L1− n1

2n
λ , . . . , L1− nn

2n
λ )g̃

]
(ỹ, x̃′)dx̃′dỹ

−ıπ1

∫ ∞

0

∫
�d−1

Kλ,α(y + ỹ, x′ − x̃′)Dỹ

[
(L1− n1

2n
λ , . . . , L1− nn

2n
λ )g̃

]
(ỹ, x̃′)dx̃′dỹ

Finally, defining K1
λ,α,K

2
λ,α ∈ C∞(]0,∞[×�d−1;B(Xn, X2n)) by

K1
λ,α(y, x′) := −ıDyKλ,α(y, x) = −ı(2π)−(d−1)

∫
�d−1

eıx
′·ξ′mλ,α(y, ξ′)dξ′ (6.53)

and
K2
λ,α(y, x′) := −ı(2π)−(d−1)

∫
�d−1

eıx
′·ξ′Dymλ,α(y, ξ′)ρ(ξ′)dξ′, (6.54)

respectively, we obtain the representation formula

[DαS̃(λ)g̃](y, x′) = π1

∫ ∞
0

∫
�d−1 K1

λ,α(y + ỹ, x′ − x̃′)
[
(L1− n1

2n
λ , . . . , L1− nn

2n
λ )g̃

]
(ỹ, x̃′)dx̃′dỹ

π1

∫ ∞
0

∫
�d−1 K2

λ,α(y + ỹ, x′ − x̃′)Dỹ

[
(L1− n1+1

2n
λ , . . . , L1− nn+1

2n
λ )g̃

]
(ỹ, x̃′)dx̃′dỹ.

= π1

∫ ∞
0

∫
�d−1 K1

λ,α(y + ỹ, x′ − x̃′)
[
(L1− n1

2n
λ , . . . , L1− nn

2n
λ )g̃

]
(ỹ, x̃′)dx̃′dỹ

π1

∫ ∞
0

∫
�d−1 K2

λ,α(y + ỹ, x′ − x̃′)
[
(L1− n1+1

2n
λ , . . . , L1− nn+1

2n
λ )Dyg̃

]
(ỹ, x̃′)dx̃′dỹ.

(6.55)
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Bounds for the solution operator of (6.27): In order to obtain the norm estimates (6.51),
the boundedness (6.26) and the representation formula (6.55) motivate to look at conditions on
kernels K : �d

+ −→ B(Y,Z) for which the associated integral operator TK of the form

TK f (y, x′) :=
∫ ∞

0

∫
�d−1

K(y + ỹ, x − x̃′) f (ỹ, x̃′)dx̃′dỹ ((y, x′) ∈ �d
+) (6.56)

is a well defined bounded linear operator Lp(�d
+,wγ,Y) −→ Lp(�d

+,wγ,Z).

Lemma 6.3.8. Let Y,Z be two Banach spaces. Suppose that K : �d
+ −→ B(Y,Z) is a strongly

measurable function for which there exists a constant M > 0 such that

||K( · , y)||L1(�d−1,B(Y,Z)) ≤
M
y
, a.e. y > 0. (6.57)

Then the formula (6.56) gives rise to a well defined bounded linear operator TK from Lp(�d
+,wγ; Y)

to Lp(�d
+,wγ; Z) of norm

||TK ||B(Lp(�d
+,wγ;Y),Lp(�d

+,wγ;Z)) .p,γ M.

Proof. Fix f ∈ Lp(�d
+,wγ, X). By Young’s inequality (cf. A.1.4) and (6.57), for a.e. y, ỹ > 0 it

holds that∣∣∣∣∣∣∣∣∣∣x′ 7→ ∫
�d−1
||K(y + ỹ, x − x̃′) f (ỹ, x̃′)||X dx̃′

∣∣∣∣∣∣∣∣∣∣
Lp(�d−1)

≤ ||K(y + ỹ, · )||L1(�d−1;B(X)) || f (ỹ, · )||Lp(�d−1;X)

≤
M

y + ỹ
|| f (ỹ, · )||Lp(�d−1X) .

Now note that Lemma D.2.9 in particular yields

(y, x′) 7→
∫
�d−1
||K(y + ỹ, x − x̃′) f (ỹ, x̃′)||X dx̃′ ∈ L1(�+)[Lp(�d−1)] = L(p,1),(d−1,1)(�d−1 ×�+)

for a.e. y > 0. Since L1(�+)[Lp(�d−1)] ↪→ Lp(�d−1)[L1(�+)] contractively, it follows that∫ ∞

0

∫
�d−1

[∫ ∞

0

∫
�d−1
||K(y + ỹ, x − x̃′) f (ỹ, x̃′)||X dx̃′dỹ

]p

dx′yγdy

≤

∫ ∞

0

∫ ∞

0

∣∣∣∣∣∣∣∣∣∣x′ 7→ ∫
�d−1
||K(y + ỹ, x − x̃′) f (ỹ, x̃′)||X dx̃′

∣∣∣∣∣∣∣∣∣∣
Lp(�d−1)

dỹ

p

yγdy

≤ Mp
∫ ∞

0

(∫ ∞

0

1
y + ỹ

|| f (ỹ, · )||Lp(�d−1X) dỹ
)p

yγdy.

By Lemma D.2.9, the latter can be estimated by MpCp
p,γ || f ||

p
Lp(�d ,wγ;X). This shows that TK f is a

well-defined function in Lp(�d
+,wγ; X) of norm ||TK f ||Lp(�d ,wγ;X) ≤ Cp,γM || f ||Lp(�d

+,wγ;X) �

Example 6.3.9. The condition (6.57) from the above lemma is in particular satisfied if there
exists a constant M′ > 0 such that

||K(y, x′)||B(Y,Z) ≤
M′

(y + |x′|)d , a.e. (y, x′) ∈ �d
+. (6.58)

In fact, if (6.58) is satisfied, then

||K( · , y)||L1(�d−1,B(Y,Z)) .d M′.
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In the following lemma we in particular show that the kernels from the representation for-
mula (6.55) (also see (6.53) and (6.54)) satisfy the pointwise norm estimate (6.58); the stronger
pointwise R-bound is interesting in view of Lemma E.3.10.

Lemma 6.3.10. Let i ∈ {1, 2} and |α| ≤ 2n. For each fixed (y, x′) ∈ �d
+ it holds that Σπ−φ 3 λ 7→

Ki
λ,α(y, x′) ∈ B(Xn, X2n) is a holomorphic mapping, for which we have the R-bounds

R{λk+1− |α|2n∂k
λKi

λ,α(y, x′) | λ ∈ Σπ−φ} .k
1

(|y| + |x′|)d , k ∈ �.

Proof. This can be shown as in [26, Lemma 4.4] �

Lemma 6.3.11. Let i ∈ {1, 2} and |α| ≤ 2n. For each λ ∈ Σπ−φ we have that the kernel Ki
λ,α

induces a bounded linear operator T i
λ,α = TKi

λ,α
∈ B(Lp(�d

+,wγ; Xn), Lp(�d
+,wγ; X2n)) via the

formula (6.56). Moreover,

Σπ−φ 3 λ 7→ T i
λ,α ∈ B(Lp(�d

+,wγ, Xn), Lp(�d
+,wγ, X2n))

is a holomorphic mapping, for which we have the R-bounds

R{λk+1− |α|2n∂k
λT

i
λ,α | λ ∈ Σπ−φ} < ∞, k ∈ �.

Proof. From Lemma 6.3.10 it in particular follows that, for each k ∈ �, ∂k
λKi

λ,α satisfies the
estimate (6.58) from Example 6.3.9. By Lemma 6.3.8 we thus obtain that the kernel ∂k

λKi
λ,α

induces a bounded linear operator T∂k
λKi

λ,α
∈ B(Lp(�d

+,wγ; Xn), Lp(�d
+,wγ; X2n)) via the formula

(6.56). From the R-bounds in Lemma 6.3.10, Lemma E.3.10, and Lemma 6.3.8/Example 6.3.9,
it follows that

R{λk+1− |α|2n T∂k
λKi

λ,α
| λ ∈ Σπ−φ} < ∞, k ∈ �.

Therefore, it remains to be shown that λ 7→ T i
λ,α is a holomorphic mapping with ∂k

λT
i
λ,α =

T∂k
λKi

λ,α
. To this end, let λ0 ∈ Σπ−φ and pick δ > 0 such that B(λ0; δ) ⊂ Σπ−φ. Then, for every

h ∈ �, |h| < δ, and each (y, x′) ∈ �d
+, there exists a ch,(y,x′) ∈]0, 1[ such that

Ki
λ0+h,α = Ki

λ0,α
+ ∂λKi

λ0,α
h +

1
2
∂2
λKi

λ0+ch,(y,x′)h,α
h2.

In combination with the R-bound in Lemma 6.3.10, we in particular get, for every |h| < δ, the
estimate ∣∣∣∣∣∣Ki

λ0+h,α − Ki
λ0,α
− ∂λKi

λ0,α
h
∣∣∣∣∣∣
B(Xn,X2n)

. (λ0 + ch,(y,x′)h)−(2−1− |α|2 ) h2

(|y| + |x′|)d

.λ0,δ

h2

(|y| + |x′|)d ,

from which we in turn obtain, via Lemma 6.3.8/Example 6.3.9, the norm bound∣∣∣∣∣∣∣∣TKi
λ0+h,α
− TKi

λ0 ,α
− T∂λKi

λ0 ,α
h
∣∣∣∣∣∣∣∣ .λ0,δ h2.

This shows that λ 7→ TKi
λ,α

is holomorphic with derivative λ 7→ T∂λKi
λ,α

. That also ∂k
λT

i
λ,α = T∂k

λKi
λ,α

can be shown similarly. �
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The proof of Proposition 6.3.3: We now give the proof of Proposition 6.3.3, of which most
of the hard work has already been done above.

Proof of Proposition 6.3.3. We first establish the existence of a solution operatorS(λ) for (6.27);
we do not prove uniqueness of solutions yet. For this it suffices to construct an operator S̃(λ)
as in (6.46); then we can take S(λ) := S̃(λ) ◦

⊕n
j=1 E j, where the E j are extension operators

as in (6.47). Above we have seen that for this it is enough to show that the linear operator
S̃(λ) : S(�d

+; X)n −→ C∞b (�d
+; X) defined in (6.50) (takes its values in W2n

p (�d
+,wγ; X) and)

satisfies the norm estimate (6.51) for each |α| ≤ 2n; then, by construction, the linear operator
S̃(λ) : S(�d

+; X)n −→ W2n
p (�d

+,wγ; X) has a unique extension to a bounded linear operator

S̃(λ) :
n⊕

j=1

F2nκ j,γ
p,p (�d−1; X) −→ W2n(�d

+,wγ; X)

as in (6.46). But the estimates (6.51), |α| ≤ 2n, follow from a combination of the boundedness
(6.26), the representation formula (6.55), and Lemma 6.3.11. Hence, there indeed exists a
solution operator S(λ) for (6.27).

We finally prove uniqueness of solutions. To this end, suppose we have a solution v ∈
W2n

p (�d
+,wγ; X) of (6.27) with g = 0. It suffices to show that v = 0. We claim that:

(i) There exists a sequence (vk)k∈N ⊂ S(�d
+) converging to v in W2n

p (�d
+,wγ; X) having the

property that (λ +A(D))vk = 0 for every k ∈ �.

(ii) For every k ∈ � it holds that

vk = S(λ)(Btr
1 (D)vk, . . . ,Btr

n (D)vk).

As S j(λ)Btr
j (D) ∈ B(W2n

p (�d
+,wγ; X)), j = 1, . . . , n, we then obtain

v = lim
k→∞

vk = lim
k→∞
S(λ)(Btr

1 (D)vk, . . . ,Btr
n (D)vk)

= S(λ)(Btr
1 (D)v, . . . ,Btr

n (D)v) = S(λ)(0, . . . , 0)
= 0.

To finish the proof, it remains to establish the two claims:

(i) Since C∞c (�d; X) is dense in W2n
p (�d,wγ; X), there exists a sequence (ūk)k∈� ⊂ C∞c (�d; X)

such that uk := Ryūk k→∞
−→ v in W2n

p (�d,wγ; X). Then we can pick, for each k ∈ �, a
function χk ∈ C∞(�d) which is 1 on �d

+ and which is such that∣∣∣∣∣∣χk(λ +A(D))ūk
∣∣∣∣∣∣

Lp(�d ,wγ;X)
<

∣∣∣∣∣∣Ry(λ +A(D))ūk
∣∣∣∣∣∣

Lp(�d
+,wγ;X)

+
1

k + 1
.

But Ry(λ+A(D))ūk = (λ+A(D))uk k→∞
−→ (λ+A(D))u = 0 in Lp(�d

+,wγ; X) by continuity
of λ +A(D) from W2n

p (�d
+,wγ; X) to Lp(�d

+,wγ; X), whence

C∞c (�d; X) 3 f̄ k := χk(λ +A(D))ūk k→∞
−→ 0 in Lp(�d,wγ; X).
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Since ξ 7→ (λ +A(ξ))−1 belongs to OM(�d;B(X)) and defines a bounded Fourier multi-
plier operator from Lp(�d,wγ; X) to W2n

p (�d,wγ; X) (see (6.23)), it follows that

S(�d; X) 3 w̄k := F −1[ξ 7→ (λ +A(ξ))−1F f̄ k(ξ)]
k→∞
−→ 0 in W2n

p (�d,wγ; X).

Furthermore, by construction we have that Ry(λ +A(D))w̄k = Ry f̄ k = (λ +A(D))uk for
every k ∈ �. Therefore, vk := uk − Ryw̄k ∈ S(�d

+; X) is as desired.

(ii) For each k ∈ � we put

gk := (Btr
1 (D)vk, . . . ,Btr

n (D)vk) ∈ S(�d−1; X)n

and pick a g̃k ∈ S(�d
+; X)n such that g̃k

j(0, · ) = gk
j, j = 1, . . . , n. Then, taking the

partial Fourier transform Fx′ with respect to x′ we see that, for each fixed ξ′ ∈ �d−1, the
function w = wξ′ ∈ C0([0,∞[; X) given by wξ′(y) := Fxvk(y, ξ′) is a solution of (6.20)
for h = hξ′ := (Fgk

1(ξ′), . . . ,Fgk
1(ξ′)) ∈ Xn. In view of the construction of S̃(λ) on

S(�d
+; X) (which is via unique solutions of (6.20)) and the relation S̃ j(λ) = S j(λ) ◦ try=0,

j = 1, . . . , n, we must thus have that

vk = F −1
x′ Fx′vk = S̃(λ)g̃k = S(λ)gk.

�

6.3.2.b The case g = 0

In this subsubsection we will solve the elliptic boundary value problem (6.25) with g = 0,
where the assumptions are as in Proposition 6.3.3. The idea is to combine the associated elliptic
problem on the full space �d with the elliptic boundary value problem (6.27).

Given λ ∈ Σπ−φ and f ∈ Lp(�d
+,wγ; X), in order to show that there exists a unique solution

v ∈ W2n
p (�d

+,wγ; X) of
λv +A(D)v = f ,
Btr

j (D)v = 0, j = 1, . . . , n, (6.59)

we argue as follows. Denote by E0 : Lp(�d
+,wγ; X) −→ Lp(�d,wγ; X) the ’extension by zero’

operator. Denote by Ry : D′(�d; X) −→ D′(�d
+; X) the restriction operator. Furthermore, let

A be the realization of A(D) in Lp(�d,wγ; X) defined as in Theorem 6.3.1. In these notations,
v1 := Ry(λ + A)−1E0 ∈ W2n

p (�d
+,wγ; X) is a solution of

λv1 +A(D)v1 = f ,
Btr

j (D)v1 = g j, j = 1, . . . , n,

where g j := Btr
j (D)v1 ∈ F2nκ j,γ

p,p (�d−1; X). In order to correct for the boundary term g =

(g1, . . . , gn), let v2 := −S(λ)g ∈ W2n
p (�d

+,wγ; X) be the unique solution of (6.27) obtained in
Proposition 6.3.3. Then v := v1 + v2 ∈ W2n

p (�d
+,wγ; X) is a solution of (6.59), which in view of

the uniqueness of solutions in Proposition 6.3.3 must in fact be the unique solution of (6.59).
We thus find that (6.59) has a unique solution v(λ) ∈ W2n

p (�d
+,wγ; X) given by

v(λ) = Ry(λ + A)−1E0 f −
n∑

j=1

S̃ j(λ)B j(D)Ry(λ + A)−1E0 f ; (6.60)
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see Proposition 6.3.3 for the definition of S̃ j(λ).
The problem (6.59) can also naturally be viewed as the invertibility of an operator by incor-

porating the boundary conditions into the domain of a realization of A(D) on Lp(�d
+,wγ; X).

To be more precise, let AB be the realization of A(D) in Lp(�d
+,wγ; X) with as domain the

space of all v ∈ W2n
p (�d

+,wγ; X) satisfying the boundary conditions in (6.59). Then we have
Σπ−φ ⊂ ρ(−AB) with (λ+ AB)−1 f = v(λ), where v(λ) is given in (6.60). Via a careful study of the
solution formula (6.60) we can show that AB is an R-sectorial operator with R-angle φR

AB
≤ φ,

which is important for the maximal Lq
µ-L

p
γ-regularity result in Theorem 6.1.8 in view of Lemma

6.1.2.(iii).’(a)⇔(c)’ and the abstract maximal Lq
µ-regularity result given in Theorem 6.2.4:

Theorem 6.3.12. Let X be a (α)-UMD space, p ∈]1,∞[, γ ∈] − 1, p − 1[, and assume that
(A,B1, . . . ,Bn) satisfies (E)φ and (LS)φ for some φ ∈ [0, π[. Define the linear operator AB on
Lp(�d

+,wγ; X) by

D(AB) := {v ∈ W2n
p (�d

+,wγ; X) | Btr
j (D)v = 0, j = 1, . . . , n},

ABv := A(D)v.

Then AB is an R-sectorial operator with R-angle φR
AB
≤ φ.

Proof. Let us first show (i) of Definition 6.2.3. For denseness of D(AB) it is enough to estab-
lish denseness of C∞c (�d

+; X) in Lp(�d
+,wγ; X), for which it in turn suffices to show that that

C∞c (�̇d; X) is dense in Lp(�d,wγ; X), where �̇d = �d \ [{0} × �d−1]. But this can be shown by
using an argumentation as in the proof of Proposition 5.2.70 (also see Remark 5.2.71); here the
boundedness of the pointwise multiplier 1�d

+
on Lp(�d,wγ; X) is trivial and we, of course, have

to use Lemma 3.4.2 instead of Lemma 5.2.20.
In order to show that R(AB) is dense in Lp(�d

+,wγ; X), we first observe that, as a consequence
of Corollary 3.4.4, S0,(1,d−1)(�d

+; X) = {h|�d
+

: h ∈ S0,(1,d−1)(�d; X)} is dense in Lp(�d
+,wγ; X).

It thus is enough to show that S0,(1,d−1)(�d
+; X) ⊂ R(AB). To this end, let f = f̄|�d

+
with

f̄ ∈ S0,(1,d−1)(�d; X). Then, as in the first part of the proof of Theorem 6.3.1,

v̄1 := F −1
[(
ξ 7→ A(ξ)−1

)
F f̄

]
∈ S0,(1,d−1)(�d; X)

satisfies A(D)v̄1 = f̄ . Now note that g̃ j := B j(D)v̄1 ∈ S0,(1,d−1)(�d
+; X) for each j ∈ {1, . . . , n}.

In view of the formula

[F g̃ j(0, · )](ξ′) =

∫
�

[F g̃ j](η, ξ′)dη

we have g j := try=0g j ∈ S0(�d−1; X) for each j ∈ {1, . . . , n}. So the computations in paragraph
’Representation formulas for the solution of (6.27)’ up to (6.50) also make sense for λ = 0. In
fact, following these computations we can find a v2 ∈ S(�d

+; X) which solves

A(D)v1 = 0,
Btr

j (D)v1 = g j, j = 1, . . . , n.

By construction of v̄1 and v2, v := v̄1|
�d

+

− v2 ∈ D(AB) solves ABv = f .
Next we prove that (ii) and (iii) of Definition 6.2.3 hold true for ω ≤ φ. For this we fix

ϕ ∈]φ, π[ and show that Σπ−ϕ ⊂ ρ(−AB) with R{λ(λ + AB)−1 | λ ∈ Σπ−ϕ} < ∞.
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From the discussion preceding this theorem we already know that Σπ−ϕ ⊂ ρ(−AB) with

(λ + AB)−1 = Ry(λ + A)−1E0 −

n∑
j=1

S̃ j(λ)B j(D)Ry(λ + A)−1E0,

where A is the realization ofA(D) in Lp(�d,wγ; X) defined as in Theorem 6.3.1. Since A is an
R-sectorial operator on Lp(�d,wγ; X) with R-angle φR

A ≤ φ, it is enough to show that

R
{
λS̃ j(λ)B j(D)Ry(λ + A)−1E0

}
< ∞, j = 1, . . . , n,

in B(Lp(�d
+,wγ; X)). So fix a j ∈ {1, . . . , n}. Then, by the representation formula (6.28),

λS̃ j(λ)B j(D)Ry(λ + A)−1E0 = λ

[
T 1

j,0(λ)L1−
n j
2n

λ + T 2
j,0(λ)L1−

n j+1
2n

λ Dy

]
B j(D)Ry(λ + A)−1E0

= λT 1
j,0(λ) RyL1−

n j
2n

λ B j(D)(λ + A)−1E0

+ λT 2
j,0(λ) RyL1−

n j+1
2n

λ DyB j(D)(λ + A)−1E0.

Since R
{
λT i

j,0(λ) | λ ∈ Σπ−ϕ
}
< ∞, i = 1, 2, by (6.30), it suffices to show that{

L1−
n j
2n

λ B j(D)(λ + A)−1 | λ ∈ Σπ−ϕ

}
,

{
L1−

n j+1
2n

λ DyB j(D)(λ + A)−1 | λ ∈ Σπ−ϕ

}
are R-bounded sets in B(Lp(�d,wγ; X)). But this can be shown analogously to (6.24) in the

proof of Theorem 6.3.1; just note that L1−
n j
2n

λ B j(D)(λ + A)−1 and L1−
n j+1

2n
λ DyB j(D)(λ + A)−1 are

Fourier multiplier operators on Lp(�d,wγ; X) with symbols

(η, ξ′) 7→ (λ + |ξ′|2n)1−
n j
2nB j(η, ξ′)(λ +A(η, ξ′))−1 ∈ B(X)

and
(η, ξ′) 7→ (λ + |ξ′|2n)1−

n j+1
2n B j(η, ξ′)η(λ +A(η, ξ′))−1 ∈ B(X),

respectively. �

6.4 The Parabolic Initial-Boundary Value Problem
In this section we prove the main result of this chapter, Theorem 6.1.8. Throughout this section
we let the notations and assumptions be as in Theorem 6.1.8.

We start with the parabolic initial-boundary value problem (6.5) in the case of homogeneous
initial-boundary data:

Lemma 6.4.1. For every f ∈ �0,µ,γ there exists a unique solution u ∈ �sol,µ,γ of the problem

∂tu + (1 +A(D))u = f ,
Btr

j (D)u = 0, j = 1, . . . , n,
trt=0u = 0.
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Proof. Since the operator AB from Theorem 6.3.12 is an R-sectorial operator with R-angle
φR

AB
≤ φ < π

2 , it follows that 1 + AB is an invertible R-sectorial operator with R-angle φR
1+AB
≤

φR
AB
< π

2 . Therefore, by Theorem 6.2.4, the operator 1 + AB enjoys the property of maximal
Lq
µ-regularity. The desired result now follows from Lemma 6.1.2.(iii).’(b)⇔(c)’. �

We next study the problem (6.5) in case f = 0 and u0 = 0 (we only have a boundary
inhomogeneity g), that is, we study the problem

∂tu + (1 +A(D))u = 0,
Btr

j (D)u = g j, j = 1, . . . , n,
trt=0u = 0.

(6.61)

for g = (g1, . . . , gn) with (0, g, 0) ∈ �µ,γ. For this we first observe that, in view of the com-
patibility condition in the definition of �µ,γ and Proposition 5.3.21, (0, g, 0) ∈ �µ,γ if and only
if

g j ∈ 0� j,µ,γ := 0,(0,d)F
κ j,γ,( 1

2n ,1)
(p,q),p,(d−1,1)(�

d−1 ×�+, (1, vµ); X)

for all j ∈ {1, . . . , n}. Defining

0�µ,γ := 0�1,µ,γ ⊕ . . . ⊕ 0�n,µ,γ,

we thus have (0, g, 0) ∈ �µ,γ if and only if g ∈ 0�µ,γ. Therefore, we just have to solve the
problem (6.61) for g ∈ 0�µ,γ.

In order to get an idea how to solve problem (6.61) for g ∈ 0�µ,γ, suppose we have a

g = (g1, . . . , gn) ∈
n∏

j=1

CL1(�; F2nκ j,γ
p,p (�d−1; X)) (6.62)

with g1(0) = . . . = gn(0) = 0 and a

u ∈ C1
L1(�; Lp(�d

+,wγ; X)) ∩CL1(�; W2n
p (�d

+,wγ; X)) (6.63)

such that
∂tu + (1 +A(D))u = 0,

Btr
j (D)u = g j, j = 1, . . . , n. (6.64)

Then we may take the partial Fourier transform Ft with respect to t ∈ � in (6.64) to obtain, for
each θ ∈ �,

(1 + ıθ)Ftu(θ) + (1 +A(D))Ftu(θ) = 0,
Btr

j (D)Ftu(θ) = Ftg j(θ), j = 1, . . . , n.

Via Proposition 6.3.3 this implies uniqueness of solutions of the problem (6.64) within the
space given in (6.63); in fact, if such a solution exists, then it must satisfy

Ftu(θ) = S(1 + ıθ)(Ftg1(θ), . . . ,Ftgn(θ)). (6.65)

The above suggests to reduce the problem (6.61) on �+ to the same problem on the whole
one-dimensional Euclidean space �, so that we can use the partial Fourier transform Ft with
respect to t and try to define a solution operator based on the formula (6.65); of course, the
strategy is to define a solution operator initially for g in a certain dense subspace (for which
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we can take the inverse Fourier transform F −1
t in the formula (6.65)) and obtain estimates, and

then extend this operator by continuity. Defining an operator based on the formula (6.65) in
first sight only gives a solution operator for the problem (6.64), but it can in fact be shown that
solutions u (6.63) of (6.64) automatically satisfy the initial condition u(0) = 0 and are thus
automatically solutions of (6.61):

Lemma 6.4.2. Suppose we have g as in (6.62) with g1(0) = . . . = gn(0) = 0 and u as in (6.63)
satisfying (6.64). Then u(0) = 0.

Proof. Let us first observe that −(1 + AB) generates an exponentially stable semigroup. Indeed,
(1+AB) has maximal Lq-regularity by Lemma 6.4.1 (take µ = 0), and must thus be exponentially
stable by Proposition 6.2.5.

For each j ∈ {1, . . . , n} it holds that u ∈ C(�; W2n
p (�d

+,wγ; X)) satisfies the boundary condi-
tion Btr

j (D)u = g j with g j ∈ C(�; F2nκ j,γ
p,p (�d−1; X) satisfying g j(0) = 0. Hence, u(0) ∈ D(AB).

Since the semigroup generated by −(1 + AB) is exponentially stable, we may thus define

v := e− · (1+AB)u(0) ∈ C1
L1([0,∞[; Lp(�d

+,wγ; X)) ∩CL1([0,∞[; D(AB)).

Since v(0) = 0 and v′(0) = −(1 + AB)u(0) = [−(1 +A(D))u](0) = u′(0), it follows that

ũ(t) :=
{

u(t) − v(t), t ≥ 0,
0, t < 0,

defines a function

ũ ∈ C1
L1(�; Lp(�d

+,wγ; X)) ∩CL1(�; W2n
p (�d

+,wγ; X)),

which is a solution of (6.64) by construction. By uniqueness of solutions within the space given
in (6.63), u = ũ. This implies that v = 0, or equivalently, u(0) = 0. �

In the formula (6.65) we have the solution operator S j(λ) from Proposition 6.3.3 and the
partial Fourier transform with respect to t. Recall that for the operator S̃ j(λ) = S j(λ) ◦ try=0 we
have the representation formula (6.28) in which the operators Lσλ occur. It will be useful to note
that, for h ∈ S(�d

+ ×�; X),

Lσ1+ıθ0
[(Fth)( · , θ)] = F −1

x′ [
(
(y, ξ′) 7→ (1 + ıθ0 + |ξ′|2n)

)
F(x′,t)h( · , θ0)]

=
[
FtF

−1
(x′,t)[

(
(y, ξ′, θ) 7→ (1 + ıθ + |ξ′|2n)

)
F(x′,t)h]

]
( · , θ0)

= (FtLσh)( · , θ0), (6.66)

where

Lσ ∈ L(S′(�d−1 ×�;D′(�+; X))), f 7→ F −1
(x′,t)

[(
(ξ′, θ) 7→ (1 + ıθ + |ξ′|2n)σ

)
F(x′,t) f

]
.

We now are ready to solve the parabolic initial-boundary value problem (6.61):

Lemma 6.4.3. For each g ∈ 0�µ,γ the problem (6.61) has a unique solution u ∈ �sol,µ,γ.
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Proof. Uniqueness follows from the observation that u = 0 is the unique solution of the prob-
lem

∂tu + (1 +A(D))u = 0,
Btr

j (D)u = 0, j = 1, . . . , n,
trt=0u = 0.

(6.67)

So we only need to establish existence.
(I) Below we will write 0�µ,γ for the space 0�µ,γ with �+ replaced by �, and similarly for

�sol,µ,γ. Then we have 0�µ,γ � 0�µ,γ/ ker(Rt) and �sol,µ,γ � �sol,µ,γ/ ker(Rt); see Lemma 5.3.2
and Proposition 5.3.21.

(II) It suffices to construct a solution operator S ∈ B(0�µ,γ,�sol,µ,γ) for the problem (6.61),
i.e. for g = (g1, . . . , gm) ∈ 0�µ,γ we have that u = S g ∈ �sol,µ,γ solves the problem (6.61).
Indeed, such an operator S automatically satisfies

RtS g = RtS g̃ whenever g, g̃ ∈ 0�µ,γ satisfy Rtg = Rtg̃, (6.68)

because RtS g − RtS g̃ is a solution of the problem (6.67) whenever Rtg = Rtg̃, and must
thus equal the unique solution 0. Therefore, such an operator S ∈ B(0�µ,γ,�sol,µ,γ) induces a
bounded linear operator S ∈ B(0�µ,γ,�sol,µ,γ), which is of course a solution operator for the
problem (6.61).

(III) We claim that

V :=
{
f ∈ F −1(C∞c (�d−1; X)) ⊗F −1(C∞c (�) | f|�d−1×{0} = 0

}
is dense in 0� j,µ,γ. Then Vn is a dense linear subspace of 0�µ,γ. So, in view of the continu-
ity/boundedness

∂t + (1 +A(D)) ∈ B(�sol,µ,γ,�0,µ,γ), Btr
j (D) ∈ B(�sol,µ,γ,� j,µ,γ), trt=0 ∈ B(�sol,µ,γ, Xu,µ,γ),

it suffices to construct a solution operator S ∈ B(Vn,�sol,µ,γ), where we equip Vn with the
norm induced by 0�µ,γ.

To prove the claim, we first recall that 0� j,µ,γ coincides with the closure of { f ∈ S(�d−1 ×

�; X) | f|�d−1×{0} = 0} in � j,µ,γ; see Definition 5.2.67. Since S(�d−1 × �; X) ↪→ � j,µ,γ, it thus
is enough to show that V is dense in { f ∈ S(�d−1 × �; X) | f|�d−1×{0} = 0} with respect to
the Fréchet topolgy induced by S(�d−1 × �; X). To this end, let f ∈ S(�d−1 × �; X) with
f|�d−1×{0} = 0 be given. Then there exists a sequence ( fk)k∈� ⊂ F −1(C∞c (�d−1; X))⊗F −1(C∞c (�)
such that f = limk→∞ fk in S(�d×�; X). Now we set hk := fk|�d−1×{0} ∈ F −1(C∞c (�d−1; X)), pick
a χ ∈ F −1(C∞c (�)) with χ(0) = 1, and put f̃k := fk−hk⊗χ ∈ F −1(C∞c (�d−1; X))⊗F −1(C∞c (�).
Then, by construction, ( f̃k)k∈� ⊂ V and

f = lim
k→∞

fk − 0 ⊗ χ = lim
k→∞

fk − f|�d−1×{0} ⊗ χ = lim
k→∞

f̃k in S(�d ×�; X),

proving the claim.
(IV) For the definition of the solution operator S ∈ B(Vn,�sol,µ,γ), fix g = (g1, . . . , gn) ∈ Vn.

Let
E j ∈ B(� j,µ,γ,H

1−
n j
2n ,(

1
2n ,1)

(p,q),(d,1) (�d
+ ×�, (wγ, vµ); X)), j = 1, . . . , n, (6.69)
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be extension operators (right-inverses of the trace operator try=0) as in Theorem 5.3.16. Then
E j maps F −1(C∞c (�d−1; X)) ⊗F −1(C∞c (�)) into S(�d

+; X)) ⊗F −1(C∞c (�)); in particular,

E jg j ∈ S(�d
+; X)) ⊗F −1(C∞c (�)), j = 1, . . . , n.

So, for each j ∈ {1, . . . , n}, we have

FtE jg j ∈ S(�d
+; X)) ⊗C∞c (�),

and we may also view FtE jg j as a function

[θ 7→ (FtE jg j)(θ)] ∈ C∞c (�; W2n−n j
p (�d

+,wγ; X)).

Since

[θ 7→ S̃ j(1 + ıθ)] ∈ C∞(�;B(W2n−n j
p (�d

+,wγ; X),W2n
p (�d

+,wγ; X))), j = 1, . . . , n,

with S̃ j(1 + ıθ) as in Proposition 6.3.3, we may thus define

S g := F −1
t

θ 7→ n∑
j=1

S̃ j(1 + ıθ)(FtE jg j)(θ)

 ∈ S(�; W2n
p (�d

+,wγ; X))

(V) We now show that u = S g ∈ S(�; W2n
p (�d

+,wγ; X)) is a solution of (6.61) for g ∈
Vn. To this end, let θ ∈ � be arbitrary. Then we have that (FtE jg j)(θ) ∈ S(�d

+; X) ⊂
W2n−n j

p (�d
+,wγ; X) and (Ftg j)(θ) ∈ S(�d−1; X) ⊂ F2nκ j,γ

p,p (�d−1; X) are related by try=0(FtE jg j)(θ) =

(Ftg j)(θ); just note that (FtE jg j)(0, x′, θ) = (Ftg j)(x′, θ) for every x′ ∈ �d−1. Therefore, by
Proposition 6.3.3, v(θ) = (Ftu)(θ) = (FtS g)(θ) =

∑n
j=1 S̃ j(1+ıθ)(FtE jg j)(θ) ∈ W2n

p (�d
+,wγ; X)

is the unique solution of the problem

(1 + ıθ)v +A(D)v = 0,
Btr

j (D)v = (Ftg j)(θ), j = 1, . . . , n.

Applying the inverse Fourier transform F −1
t with respect to θ, we find

∂tu + (1 +A(D))u = 0,
B j(D)u = g j, j = 1, . . . , n.

Then we also have u(0) = 0 as a consequence of Lemma 6.4.2. Hence, u = S g is indeed a
solution of (6.61).

(VI) We next derive a representation formula for S that is well suited for proving the
boundedness of S . To this end, fix a g = (g1, . . . , gn) ∈ Vn. Then we have, for each multi-
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index α ∈ �d, |α| ≤ 2n,

DαS g = DαF −1
t

θ 7→ n∑
j=1

S̃ j(1 + ıθ)(FtE jg j)(θ)


=

n∑
j=1

F −1
t

[
θ 7→ DαS̃ j(1 + ıθ)(FtE jg j)(θ)

]
(6.28)
=

n∑
j=1

F −1
t

[
θ 7→ T 1

j,α(1 + ıθ)L1−
n j
2n

1+ıθ (FtE jg j)(θ) + T 2
j,α(1 + ıθ)L1−

n j+1
2n

1+ıθ Dy(FtE jg j)(θ)
]

=

n∑
j=1

F −1
t

[
θ 7→ T 1

j,α(1 + ıθ)L1−
n j
2n

1+ıθ (FtE jg j)(θ)
]

+

n∑
j=1

F −1
t

[
θ 7→ T 2

j,α(1 + ıθ)L1−
n j+1

2n
1+ıθ (FtDyE jg j)(θ)

]
(6.66)
=

n∑
j=1

F −1
t

[
θ 7→ T 1

j,α(1 + ıθ)(FtL1−
n j
2nE jg j)(θ)

]
+

n∑
j=1

F −1
t

[
θ 7→ T 2

j,α(1 + ıθ)(FtL1−
n j+1

2n DyE jg j)(θ)
]
. (6.70)

(VII) We finally show that S ∈ B(Vn,�sol,µ,γ), where we equip Vn with the norm induced
by �µ,γ. For this we must show that

∣∣∣∣∣∣∣∣S g
∣∣∣∣∣∣∣∣
�sol,µ,γ

. ||g||�µ,γ for g ∈ Vn. Being a solution of (6.61),

S g satisfies
∂tS g = −(1 +A(D))S g.

Hence, it suffices to establish the estimate
∣∣∣∣∣∣∣∣DαS g

∣∣∣∣∣∣∣∣
�0,µ,γ
. ||g||�µ,γ for all multi-indices α ∈

�d, |α| ≤ 2n. So fix such an |α| ≤ 2n. Then, in view of the representation formula (6.70), it is
enough to show that∣∣∣∣∣∣∣∣∣∣F −1

t

[
θ 7→ T 1

j,α(1 + ıθ)(FtL1−
n j
2nE jg j)(θ)

] ∣∣∣∣∣∣∣∣∣∣
�0,µ,γ

. ||g||�µ,γ , j = 1, . . . , n, (6.71)

and ∣∣∣∣∣∣∣∣∣∣F −1
t

[
θ 7→ T 2

j,α(1 + ıθ)(FtL1−
n j+1

2n DyE jg j)(θ)
] ∣∣∣∣∣∣∣∣∣∣
�0,µ,γ

. ||g||�µ,γ , j = 1, . . . , n. (6.72)

We only treat the estimate (6.72), the estimate (6.71) being similar (but easier): Fix a j ∈
{1, . . . , n}. Then, by (6.69), Proposition 5.3.5.(i), Corollary 5.3.14, and Lemma 5.2.48,

L1−
n j+1

2n DyE j ∈ B

� j,µ,γ,H
0,( 1

2n ,1)
(p,q),(d−1,1)(�

d−1 ×�, (1, vµ); Lp(�+, | · |
γ; X))︸                                                       ︷︷                                                       ︸

= Lq(�,vµ;Lp(�d
+,wγ;X)) =�0,µ,γ

 . (6.73)

Furthermore, we have that T 2
j,α(1 + ı·) ∈ C∞(�;B(Lp(�d

+,wγ; X))) satisfies

R
{
θk∂k

θT
2
j,α(1 + ıθ) | θ ∈ �

}
≤ R

{
(1 + ıθ)k+1− |α|2n∂k

θT
2
j,α(1 + ıθ) | θ ∈ �

}
< ∞, k ∈ �,

209



by the contraction principle (cf. Proposition E.1.2) and (6.30); in particular, T 2
j,α(1 + ı·) satisfies

the Mikhlin condition from Theorem 4.5.13 (or from Theorem 4.1.1 for l = 1,d = 1). As a con-
sequence, T 2

j,α(1+ ı·) defines a bounded Fourier multiplier operator on Lq(�, vµ; Lp(�d
+,wγ; X)).

In combination with (6.73), this gives the estimate (6.72). �

We can now finally prove the main result of this chapter:

Proof of Theorem 6.1.8. By Lemma 6.4.1 and Lemma 6.1.2.(iii).’(a)⇔(c)’, the problem (6.5)
enjoys the property of maximal Lq

µ-L
p
γ-regularity. Denote by Di.b. the space of initial boundary

data. We must show that Di.b. = �µ,γ; then the statement about the solution operator follows
from Lemma 6.1.2.(i). Since we already know that Di.b. ⊂ �µ,γ from Section 6.1.2, it remains
to be shown that the reverse inclusion�µ,γ ⊂ Di.b. holds as well. To this end, let ( f , g, u0) ∈ �µ,γ

be given. Let E ∈ B(Xµ,γ,�sol,µ,γ) be an extension operator (right-inverse of the trace operator
try=0) as in Theorem 5.3.17. Now we set u1 := Eu0 ∈ �sol,µ,γ (so trt=0u1 = u0) and

f̃ := f − ∂tu1 − (1 +A(D))u1 ∈ �0,µ,γ,

g̃ := (g1 − B
tr
1 (D)u1, . . . , gn − B

tr
n (D)u1)

!
∈ 0�µ,γ;

here we have g̃ ∈ 0�µ,γ (and not just g̃ ∈ �µ,γ) as a consequence of the compatibility condition in
the definition of�µ,γ (and the fact that trt=0 ◦B

tr
j (D) = Btr

j (D)◦ trt=0 on �sol,µ,γ when κ j,γ >
1+µ

q ).
Now let u2 ∈ �sol,µ,γ be the unique solution from Lemma 6.4.1 for f̃ ∈ �0,µ,γ (instead of f ) and
let u3 ∈ �sol,µ,γ be the unique solution from Lemma 6.4.3 for g̃ ∈ 0�µ,γ (instead of g). Then
u := u1 + u2 + u3 solves (6.5). �

6.5 Notes

6.5.1 General Notes
The unweighted version of Theorem 6.1.8 is due to Denk, Hieber & Prüss [26], which was
already extended to the temporal weighted setting (µ ∈ [0, q − 1[) in the case q = p by Meyries
& Schnaubelt [76]; also see the PhD thesis of Meyries [73]. Of course, here we have to remark
that our Theorem 6.1.8 only is a model problem (which forms the basis for more general prob-
lems) and that we assume property (α) for simplicity; also see the discussion below. For more
information on the historical background of the maximal (weighted) Lq-Lp-regularity approach
to the parabolic initial-boundary value problem (6.5) we refer to Section 1.1.

6.5.2 Comparison to the Literature
• Section 6.1: Theorem 6.1.8 extends the model problem versions of [26, Theorem 2.3] and

[76, Theorem 2.1] (cf. [73, Theorem 2.1.4]), where we need to remark that in contrast
to [26, 73, 76], we for simplicity restrict ourselves to UMD spaces that have property
(α); see Remark 6.1.9.(i) for the simplifications related to property (α). The elliptic-
ity assumption (E)φ and the Lopatinskii-Shapiro condition (LS)φ are as in [26] (also see
[25]); see Remark 6.1.4 concerning [73, 76]. As in [73], for the formulation of The-
orem 6.1.8 we have chosen to explicitly define the notion of maximal Lq

µ-L
p
γ-regularity

(cf. Definition 6.1.1). Whereas the definition of maximal Lq
µ-L

p
γ-regularity in [73, Def-

inition 2.1.3] is formulated in terms of an explicit space of data (suggested by sharp
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trace results), our definition only requires the existence of (a necessarily unique) abstract
space of initial boundary data. Besides the advantage that our definition avoids the use
of some quite involved function space theory (which can also be seen as part of the prob-
lem), the main advantage of our definition is the characterization from Lemma 6.1.2.(iii).
This characterization allows us to first prove maximal Lq

µ-L
p
γ-regularity via the problem

with homogeneous initial-boundary data, and to subsequently benefit from the existence
of the space of initial-boundary data to determine it explicitely: assuming maximal Lq

µ-
Lp
γ-regularity, in Section 6.1.2 we find necessary conditions on the initial-boundary data

(g, u0) ∈ Di.b. by using the function space theory from Chapter 5 in combination with
Lemma 6.1.2.(i)&(ii). For more comments on the different approach on the function
space theoretic part of the problem (in comparison with [26, 73, 76]) we refer to Sec-
tion 1.2 and the notes of Chapter 5; also see the discussion about Section 6.4 below.

• Section 6.2: See the references given in that section.

• Section 6.3:

– Section 6.3.1:

– Section 6.3.2: Proposition 6.3.3 is based on [26, Lemma 4.3&Lemma 4.4] and [73,
Lemma 2.2.6], where our formulation is more closer to the second (which was in
turn based on the first). The main difference with [73, Lemma 2.2.6] is that we
give representation formulae for the operators DαS̃ j(λ) instead of for the operators
S j(λ). In [26, 73] a specific extension operator Eλ (right-inverse of the trace try=0)
was used in the construction of the solution operator S(λ) = (S1(λ), . . . ,Sn(λ)),
which has the advantageous property that DyEλ = ıL1/2n

λ Eλ. Whereas the in this

way obtained representation formulae S j(λ) = T j(λ)L1−
n j
2n

λ Eλ can only be used to
solve (6.61) in the case q = p (cf. [26, Proposition 4.5] and [73, Lemma 2.2.7]), our
representation formulae (6.28) can (in combination with the function space theory
from Chapter 5) be used to solve (6.61) in the full parameter range q, p ∈]1,∞[ (cf.
Lemma 6.4.3).
The proof of Proposition 6.3.3 is mainly based on the proofs of [26, Lemma 4.3&Lemma 4.4]
(and on the earlier monograph [25]); [73, Lemma 2.2.6] has [26, Lemma 4.3&Lemma 4.4]
as reference. Here [26, Lemma 4.3] corresponds to the existence of the solution
operator, whose construction was essentially already contained in [25], plus its rep-
resentation, and [26, Lemma 4.4] basically corresponds to the analytic dependence
of (6.29) plus the R-bounds (6.30). In order to make the difficult proof of Proposi-
tion 6.3.3 more accessible, we have tried to treat the main argument of the proof in
more (technical) detail and to refer to [25, 26] at some appropriate moments (as for
the proof of Lemma 6.3.10, which is a very important computation which is also of
independent interest).
Finally, the proof of Theorem 6.3.12 is based on the proof of [64, Theorem 7.7]
(except for the denseness of D(AB) and R(AB)), where the scalar-valued case X = �

(which certainly has property (α)) is considered for a second order system.

• Section 6.4: In this section the main work is to solve (6.61). Our solution to this problem
is mainly based on [73, Lemma 2.2.7]. Here we had to make quite some modifications
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due to our different function space theoretic approach (including a different extension
operator); also see the discussion about Proposition 6.3.3 above.
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Appendix A

Measure Theory

In Section A.1 we recall some basics from measure theory, which we assume the reader to be
familiar with throughout the thesis. In Section A.2 we briefly treat Orlicz spaces, which is only
needed in Chapter 3 (in the proof of Lemma 3.3.20). Finally, in Section A.3 we treat martingale
theory, which is only needed in Chapter 3, where it is a prerequisite for Section 3.3.

A.1 Basic Measure and Integration Theory
The vector-valued theory from this section is taken from [57].

A.1.1 Classical Measure and Integration Theory
Let (S ,A ) be a measurable space. We denote by M(S ) the set of all measurable functions
f : S −→ �, byM+(S ) the set of all measurable functions f : S −→ [0,∞[, and byM+(S )
the set of all measurable functions f : S −→ [0,∞].

Let (S ,A , µ) be a measure space. We denote by L0(S ), L0
+(S ), and L0

+(S ), the sets of all
µ-a.e. equivalence classes fromM(S ),M+(S ), andM+(S ), respectively.

Given two σ-finite measure spaces (S ,A , µ) and (T,B, ν), their product measure space is
denoted by (S × T,A ⊗B, µ ⊗ ν).

Theorem A.1.1 (Tonelli’s theorem). Let (S ,A , µ) and (T,B, ν) be twoσ-finite measure spaces
and let f : S × T −→ [0,∞] be A ⊗B-measurable. Then

(i) For every s ∈ S and every t ∈ T, f (s, · ) and f ( · , t) are B and A -measurable, respec-
tively.

(ii) s 7→
∫

T
f (s, t)dν(t) and t 7→

∫
S

f (s, t)dµ(s) are A and B-measurable, respectively.

(iii)
∫

S

∫
T

f (s, t)dν(t)dµ(s) =
∫

S×T
f d(µ ⊗ ν) =

∫
T

∫
S

f (s, t)dµ(s)dν(t).

Definition A.1.2. Let (S ,A , µ) be a measure space and let F ⊂ A be a sub-σ-algebra. We
say that F is countably atomic with respect to µ if there exists a countable partition {Di}i∈I

of S , consisting of F -measurable sets Di having strictly positive finite measure, such that
F = σ({Di}i∈I). In this situation we write

F atom = F µ−atom := {Di : i ∈ I},
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which is just the collection of all atoms of the measure space (S ,F , µ|F ).

A.1.2 Vector-Valued Measurability and Integration
Measurability Let (S ,A ) be a measurable space and let X be a Banach space. We denote by

St(S ; X) :=

 n∑
j=1

1A j ⊗ x j : A j ∈ A disjoint , x j ∈ X


the vector space of all X-valued simple functions; here we use the usual notational convention
to view, given a function f : S −→ �, f ⊗ x as the function s 7→ f (s)x, S −→ X. A function
f : S −→ X is called strongly measurable if it is the pointwise limit of a sequence ( fk)k∈� ⊂

St(S ; X); it can be shown that the sequence ( fk)k can be chosen such that || fk||X ≤ || f ||X. The well
known Pettis measurability theorem says that a function f : S −→ X is strongly measurable, if
and only if, f is separably valued and Borel measurable, if and only if, f is separably valued
and 〈 f , x∗〉 is measurable for all x∗ in some weak∗ dense subspace Z of X∗. As a consequence,
if f : S −→ X is strongly measurable and takes its values in a closed linear subspace Y of
X, then f is also strongly measurable as a function S −→ Y . Furthermore, it can be shown
that if (S ,A ) = (V,B(V)) for a separable metric space V with its Borel σ-algebra B(V), then
every Borel measurable function f : V −→ X is separably valued and is thus automatically
strongly measurable.

Let (S ,A , µ) be a measure space and let X be a Banach space. We denote by L0(S ; X) the
vector space of all µ-a.e. equivalence classes of strongly measurable functions f : S −→ X. It is
convenient to view L0(S ; X) as the vector space of all µ-a.e. equivalence classes of functions
g : S −→ X which are µ-a.e. equal to a strongly measurable function on f : S −→ X.

Let Y be a second Banach space. A function f : S −→ B(X,Y) is called WOT-measurable
if 〈 f x, y∗〉 is measurable for every x ∈ X and y∗ ∈ Y∗.

Integration Let (S ,A , µ) be a measure space and let X be a Banach space. We denote by

Stµ(S ; X) :=

 n∑
j=1

1A j ⊗ x j : A j ∈ A disjoint, µ(A j) < ∞ , x j ∈ X


the vector space of all X-valued µ-simple functions. A function f : S −→ X is called Bochner
integrable if it is the pointwise limit of a sequence ( fn)n∈� ⊂ Stµ(A; X) such that

lim
n→∞

∫
S
|| f − fn||X dµ = 0.

In this situation we may define ∫
S

f dµ := lim
n→∞

∫
S

fn dµ,

where each
∫

S
fn dµ is defined in the obvious way; this is easily seen to be well-defined.

A strongly measurable function f : S −→ X is Bochner integrable if and only if∫
S
|| f ||X dµ < ∞,
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in which case ∣∣∣∣∣∣∣∣∣∣∫
S

f dµ
∣∣∣∣∣∣∣∣∣∣

X
≤

∫
S
|| f ||X dµ.

Proposition A.1.3. Let (S ,A , µ) be a finite measure space and let X be a Banach space. If
f : S −→ X is Bochner integrable, then∫

S
f dµ ∈ µ(S ) conv{ f (s) : s ∈ S },

where conv{ f (s) : s ∈ S } denotes the closed convex hull of the set { f (s) : s ∈ S } ⊂ X.

We denote by

L1(S ; X) := { f ∈ L0(S ; X) :
∫

S
|| f ||X dµ < ∞}

the space of all equivalence classes of Bochner integrable functions, equipped with its natural
norm. It is not difficult to see that the integral induces a well-defined bounded linear operator

L1(S ; X) −→ X, f 7→
∫

S
f dµ.

A.1.3 Lebesgue-Bochner Spaces
Let (S ,A , µ) be a measure space. We denote byW(S ,A , µ) the set of all measurable functions
S −→]0,∞[; a function W ∈ W(S ,A , µ) is called a weight. Given a p ∈]1,∞[, the p-dual
weight of W ∈ W(S ,A , µ) is the weight W ′ = W

1
p−1 ∈ W(S ,A , µ).

Given a Banach space X, W ∈ W(S ,A , µ), and p ∈]1,∞[, we define the weighted Lebesgue-
Bochner space

Lp(S ,W; X) := { f ∈ L0(S ; X) :
∫

S
|| f ||pX W dµ < ∞},

which becomes a Banach space when equipped with its natural norm

|| f ||Lp(S ,W;X) :=
(∫

S
|| f ||pX W dµ

)1/p

.

Lp(S ,W) ⊗ X is dense in Lp(S ,W; X).
Let p′ ∈]1,∞[ be the Hölder conjugate of p and denote by W ′ = W

1
p−1 ∈ W(S ,A , µ) the p-

dual weight of W. By Hölder’s inequality, every function g ∈ Lp′(S ,W ′; X∗) defines a bounded
linear functional Λg ∈ (Lp(S ,W; X))∗ by the formula

Λg( f ) :=
∫

S
〈 f (s), g(s)〉 dµ(s),

which is of norm
∣∣∣∣∣∣Λg

∣∣∣∣∣∣
(Lp(S ,W;X))∗

≤ ||g||Lp′ (S ,W′;X∗). If Y is a norming closed subspace of X∗, then

Lp′(S ,W ′; Y) −→ (Lp(S ,W; X))∗, g 7→ Λg,

is an isometry onto a closed subspace of (Lp(S ,W; X))∗ which is norming for Lp(S ,W; X). In
case Y = X∗ has the so-called Radon-Nikodym property (RNP), this mapping is surjective.
Examples of spaces with the RNP are separable dual spaces and reflexive spaces. A similar
duality result holds true for mixed-norm Lebesgue spaces (of which Definition 2.2.2 is a special
case).
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A.1.4 Convolutions
Let X1, X2, X0 be Banach spaces. Suppose that we are given a continuous bilinear map

X1 × X2 −→ X0, (x1, x2) 7→ x1 • x2 (A.1)

of norm at most 1. Such a map is called a multiplication (of Banach spaces). The two main
examples of multiplications which are of interest for us are multiplication with scalars

� × X −→ X, (λ, x) 7→ λx,

and the evaluation map
B(X,Y) × X −→ Y, (A, x) 7→ Ax.

Let f ∈ L0(�d; X1) and g ∈ L0(�d; X2). If [y 7→ f (y)g(x − y)] ∈ L0(�d; X0) is Bochner
integrable for almost all x ∈ �d, then we define the convolution product f ∗• g ∈ L0(�d; X0) by

( f ∗• g)(x) :=
∫
�d

f (y)g(x − y)dy, x ∈ �d. (A.2)

Theorem A.1.4 (Young’s inequality). Let p, q, r ∈ [1,∞] satisfy

1
q

+ 1 =
1
p

+
1
r
.

Let f ∈ Lp(�d; X1) and g ∈ Lr(�d; X2). Then [y 7→ f (y)g(x − y)] ∈ L0(�d; X0) is Bochner
integrable for almost all x ∈ �d, and for the convolution product we have f ∗• g ∈ Lq(�d; X0)
with norm estimate

|| f ∗• g||Lq(�d;X0) ≤ || f ||Lp(�d;X1) ||g||Lr(�d;X2) .

A.2 Orlicz Spaces
Definition A.2.1.

(i) A Young function is a continuous increasing convex function Φ : [0,∞[−→ [0,∞[ that
satisfies Φ(0) = 0 and limt→∞Φ(t) = ∞.

(ii) Let Φ be a Young function with the property that limx→∞
Φ(x)

x = ∞. Then the Young com-
plement of Φ is the Young function Ψ defined by

Ψ(x) := sup
t∈[0,∞[

{tx − Φ(t)}, x ∈ [0,∞[.

(iii) Let (S ,A , µ) be a measure space and let Φ be a Young’s function. The Orlicz norm of
�-valued measurable function f on (S ,A ) is defined as

|| f ||Φ(µ) := inf
{
λ > 0 :

∫
S

Φ(| f |/λ)dµ ≤ 1
}
.

The Orlicz space Φ(S ,A , µ) is defined as

Φ(S ,A , µ) := { f ∈ L0(S ,A , µ) : || f ||Φ(µ) < ∞},

which comes a Banach space when equipped with the norm || · ||Φ(µ).
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For the Young function Φp(t) := tp, p ∈ [1,∞[, the corresponding Orlicz norm is just the
Lp-norm || · ||Lp(S ).

An important tool for computing/estimating Orlicz norms is the fact that for any increasing
continuously differentiable function φ on [0,∞[ with φ(0) = 0 we have∫

S
φ(| f |) dµ =

∫ ∞

0
φ′(t)µ({ f > t}) dt, f ∈ M(S ,A ). (A.3)

Lemma A.2.2 (Hölder’s inequality for Orlicz Spaces). Let (S ,A , µ) be a measure space and
let Φ and Ψ be (complementary Young functions) as in Definition A.2.1. Then we have, for all
f , g ∈ M(S ,A ), ∫

S
| f g| dµ ≤ 2 || f ||Φ(µ) ||g||Ψ

The following example of complementary Young functions is the main motivation for us to
include this section in the appendix:

Example A.2.3. The functions Φ,Ψ : [0,∞[−→ [0,∞[ defined by

Φ(t) := t log(1 + t) and Ψ(t) := exp(t) − 1

are (complementary Young functions) as in Definition A.2.1.

A.3 Martingales
The material from this section is taken from [57], except for Proposition A.3.11.

A.3.1 Conditional Expectations
Throughout this subsection we fix a measure space (S ,A , µ), sub-σ-algebra F ⊂ A , and a
Banach space X. We shall view L0(S ,F ; X) = L0((S ,F , µ); X) as the subspace of L0(S ; X) =

L0((S ,A , µ); X) consisting of all elements in L0(S ; X) having a strongly F -measurable repre-
sentative.

Definition A.3.1. A family C ⊂ F is called an exhausting ideal for F if it has the following
two properties:

(i) C ∩ F ∈ C for all C ∈ C and F ∈ F ;

(ii) S can be covered by at most countably many sets from C .

It is not difficult to see that any exhausting ideal contains a disjoint sequence covering S .
Given a sub-σ-algebra F ⊂ A and a function f ∈ L0(S ; X), we define

F f := {F ∈ F : 1F f ∈ L1(S ; X)}.

Definition A.3.2 (Conditional Expectation). A function g ∈ L0(S ,F ; X) is called a conditional
expectation of f ∈ L0(S ; X) with respect to F if there exists an exhausting ideal C for F
contained in F f ∩Fg such that∫

C
g dµ =

∫
C

f dµ, C ∈ C .
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Theorem A.3.3 (Uniqueness). If g and g̃ are both conditional expectations of a function f ∈
L0(S ; X) with respect to F , then g = g̃ almost everywhere.

So a conditional expectation of a function f ∈ L0(S ; X), if it exists, is unique as an element
of L0(S ,F ; X). This allows us to speak of the conditional expectation of f with respect to F ,
for which we shall use the notation �( f | F ) (or �[ f | F ]).

Example A.3.4.

(i) Suppose that f1, f2 ∈ L0(S ; X) admit conditional expectation with respect to F . Then,
for all scalars c1, c2 ∈ �, c1 f1 + c2 f2 admits a conditional expectation with respect to F ,
which is given by �(c1 f1 + c2 f2 | F ) = c1�( f1 | F ) + c2�( f2 | F ).

(ii) For all f ∈ L0(S ,F ; X), f is a conditional expectation with respect to F : �( f | F ) = f .

(iii) If f ∈ L0(S ; X) admits a conditional expectation with respect to F , then for every F ∈ F ,
1F�( f | F ) is the conditional expectation of 1F f with respect to F : 1F�( f | F ) =

�(1F f | F ).

(iv) If f ∈ L0(S ; X) admits a conditional expectation with respect to F , and if T ∈ B(X,Y)
(where Y is a second Banach space), then T�( f | F ) is the conditional expectation of
T f with respect to F : �(T f | F ) = T�( f | F ). This in particular holds for Y = X∗.

(v) Suppose that F is countably atomic with respect to µ in the sense of Definition A.1.2.
Let f ∈ L0(S ; X) be such that F atom ⊂ F f . Then f admits a conditional expectation,
which is in fact given by the formula

�( f | F ) =
∑

D∈F atom
k

1D

?
D

f dµ.

It follows directly from the definitions that a necessary condition for the existence of the
conditional expectation of a function f ∈ L0(S ; X) with respect to F is σ-integrability of f
over F , which is defined as follows:

Definition A.3.5. A function f ∈ L0(S ; X) is called σ-integrable over F if S can be covered
by a sequence in F f . Any such covering sequence in F f is called an exhausting sequence for
f in F .

Remark A.3.6.

(i) The sets in an exhausting sequence for f can be taken disjoint.

(ii) A function f ∈ L0(S ; X) is σ-integrable over F , if and only if, the measure || f ||X µ is σ-finite
on F , if and only if, F f is an exhausting ideal for F .

(iii) Every function f ∈ L0(S ; X) is σ-integrable over A .

Theorem A.3.7. Let f ∈ L0(S ; X).

(i) If f admits a conditional expectation with respect to F , then f is σ-integrable over F .

(ii) If f is σ-integrable over F and µ is σ-finite on F , then f admits a conditional expecta-
tion with respect to F .
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In this situation, we have F f ⊂ F�( f |F ) and∫
F

f dµ =

∫
F
�( f | F ) dµ, F ∈ F .

Corollary A.3.8. Suppose that µ is σ-finite on F . Then f ∈ L0(S ; X) admits a conditional
expectation with respect to F if and only if f is σ-integrable over F .

We denote by L1
σ((S ,A , µ),F ; X) the space of all f ∈ f ∈ L0(S ; X) which are σ-integrable

over F . If µ is σ-finite on F , then the conditional expectation �( · | F ) is a well-defined
linear operator on L1

σ((S ,A , µ),F ; X).

Example A.3.9. Suppose that F is countably atomic with respect to µ in the sense of Definition
A.1.2. Then an f ∈ L0(S ; X) belongs to L1

σ((S ,A , µ),F ; X) if and only if F atom ⊂ F f , in
which case �( f | F ) is given by the formula in Example A.3.4.(v).

Theorem A.3.10 (Existence in L1(S ; X)). If µ isσ-finite on F , then L1(S ; X) ⊂ L1
σ((S ,A , µ),F ; X)

and the conditional expectation operator �( · | F ) restricts to a contraction on L1(S ; X).

For the unweighted Lebesgue-Bochner spaces Lp(S ; X), p ∈]1,∞[, the Lp-contractivity of
the conditional expectation can be derived from a combination of the L1-contractivity and the
conditional Jensen’s inequality. In the weighted setting we have to proceed differently:

Proposition A.3.11. Suppose that µ is σ-finite on F . Let p ∈]1,∞[ and let W ∈ W(S ,A , µ)
be a weight for which its p-dual weight W ′ := W− 1

p−1 is σ-integrable over F . Then Lp(W; X) ⊂
L1
σ((S ,A , µ),F ; X) and the conditional expectation operator �( · | F ) restricts to a contrac-

tion on Lp(W; X).

Proof. In order to prove that Lp(W; X) ⊂ L1
σ((S ,A , µ),F ; X) we show that, for every f ∈

Lp(W; X), FW′ ⊂ F f ; note that FW′ is an exhausting ideal for F by the hypothesis that W ′ is
σ-integrable on F . To this end, let f ∈ Lp(W; X) and C ∈ FW′ . Then, by Hölder’s inequality,∫

C
|| f ||X dµ

∫
S
|| f ||X W1/p · 1CW−1/p dµ ≤ || f ||Lp(W;X) ||1C ||Lp′ (W′) < ∞

because ||1C ||Lp′ (W′) = ||1CW ′||
1/p′

L1 < ∞.
Next we show that �( · | F ) restricts to a contraction on Lp(W; X). Let ι : Lp′(W ′,F ) ↪→

Lp′(W ′) be the natural inclusion; here p′ ∈]1,∞[ denotes the Hölder conjugate of p (i.e. 1
p +

1
p′ = 1). Then, under the identifications Lp(W) � (Lp′(W ′))∗ and Lp(W,F ) � (Lp′(W ′,F ))∗,
we have that ι∗ ∈ B(Lp(W), Lp(W,F )) of norm ||ι∗|| ≤ 1. Since ι∗ is a positive operator (in
the sense that it maps positive functions to positive functions), there exists a unique operator
ι∗X ∈ B(Lp(W; X), Lp(W,F ; X)) of norm

∣∣∣∣∣∣ι∗X ∣∣∣∣∣∣ ≤ 1 with the property that

〈ι∗X f , x∗〉 = ι∗〈 f , x∗〉, ∀ f ∈ Lp(W), x∗ ∈ X∗;

the operator ι∗X is called the X-valued extension of ι∗.1 To finish we show that i∗X f = �( f | F )
for every f ∈ Lp(W; X). By the above, FW′ is an exhausting ideal for F contained in F f∩Fi∗X f .

1Banach-valued extensions of positive operators on Lp-spaces can for instance be found in [57].
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Given C ∈ FW′ we have 1C ∈ Lp′(W ′), so that, for every x∗ ∈ X∗,

〈

∫
C

i∗X f dµ, x∗〉 =

∫
C
〈i∗X f , x∗〉 dµ =

∫
i∗〈 f , x∗〉 · 1C dµ

=

∫
〈 f , x∗〉 · ι1C dµ =

∫
〈 f , x∗〉 · 1C dµ

= 〈

∫
C

f dµ, x∗〉.

Therefore, by Hahn-Banach,∫
C

i∗X f dµ =

∫
C

f dµ, ∀C ∈ FW′ ,

showing that i∗X f = �( f | F ). �

Proposition A.3.12 (Taking out F -measurable terms). Suppose that µ is σ-integrable on F .
Let g ∈ L0(S ,F ; X) and f ∈ L1

σ((S ,A , µ),F ; X). Then g f ∈ L1
σ((S ,A , µ),F ; X) and

�(g f | F ) = g�( f | F ).

Proposition A.3.13 (Tower property). Let G ⊂ F be a sub-σ-algebra on which µ is σ-finite.
If h ∈ L0(S ; X) is σ-integrable over G (and thus over F ), then so is �(h | F ). Moreover, in
this situation we have

�[�(h | F ) | G ].

A.3.2 Martingales

Throughout this subsection we fix a measure space (S ,A , µ) and a Banach space X.

A.3.2.a Definitions and Examples

Definition A.3.14.

(i) A family of sub-σ-algebras (Fk)k∈� of A is called a filtration in (S ,A , µ) if Fk ⊂ Fl

whenever k ≤ l. The filtration is called σ-finite if µ is σ-finite on each Fk.

(ii) A family of functions ( fk)k∈� in L0(S ; X) is called adapted to the filtration (Fk)k∈� if
fk ∈ L0(S ,Fk; X) for all k ∈ �. In this situation, we also call ( fk)k∈� an X-valued
martingale on (S ,A , µ) with respect to (Fk)k∈�.

(iii) An adapted family of functions ( fk)k∈� in L0(S ; X) is called a martingale with respect to
(Fk)k∈� if for all k, l ∈ � with k ≤ l the conditional expectation of fk with respect to Fl

exists and is given by
�( fk | Fl) = fl.

Remark A.3.15.
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(i) By Proposition A.3.13 and Example A.3.4.(i)&(ii), an adapted family of functions ( fk)k∈� in
L0(S ; X) is a martingale with respect to (Fk)k∈� if for all k ∈ � the conditional expectation fn+1

with respect to Fn exists and

�( fn+1 | Fn) = fn, or equivalently, �( fn+1 − fn | Fn) = 0.

(ii) By Corollary A.3.8, when the filtration (Fk)k∈� is σ-finite, the existence of the conditional
expectation in (iii) is equivalent with fk ∈ L1

σ((S ,A , µ), (Fl)l≥k; X) for every k ∈ �.

Example A.3.16 (Martingales generated by a function). Suppose that (Fk)k∈� is a σ-finite
filtration in (S ,A , µ). If f ∈ L1

σ((S ,A , µ), (Fk)k∈�; X), i.e. f ∈ L0(S ; X) is σ-integrable over
each Fk, then

fk := �( f | Fk), k ∈ �,

defines a martingale ( fk)k∈� with respect to (Fk)k∈�.

Martingales generated by functions with respect to dyadic filtrations play a very important
role in (Harmonic) Analysis (as can, for instance, be seen in Chapter 5). In the following
example we consider the standard dyadic filtration on �d.

Example A.3.17 (Dyadic harmonic analyis). Let (S ,A , µ) = (�d,B(�d), λ). For each k ∈ �,
let

Dk := {2−k([0, 1[d+m) : m ∈ �}

be the system of standard dyadic cubes of side-length 2−k, and Fk := σ(Dk) its generated
countably atomic σ-algebra. Then (Fk)k∈� is a σ-finite filtration in (�d,B(�d), λ), called the
standard dyadic filtration. For this filtration it holds that⋃

k∈�

L1
σ((S ,A , µ),Fk; X) = L1

σ((S ,A , µ), {Fk}k∈�; X) = L1
loc(�

d; X).

So each f ∈ L1
loc(�

d; X) generates a martingale (�[ f | Fk])k∈�.

A.3.2.b Doob’s maximal inequality

For a sequence f = ( fk)k∈� ⊂ L0(S ; X) we define the maximal functions

f ∗k := sup
l≤k
|| fl||X , f ∗ := sup

l∈�
|| fl||X .

Theorem A.3.18 (Doob’s maximal inequality). Let ( fk)k∈� be an X-valued martingale on (S ,A , µ)
with respect to the filtration (Fk)k∈�. If fk ∈ Lp(S ; X) for some p ∈]1,∞] and all k ∈ �, then
f ∗k ∈ Lp(S ) for all k ∈ � and ∣∣∣∣∣∣ f ∗k ∣∣∣∣∣∣Lp(S )

≤ p′ || fk||Lp(S ;X) ,

where p′ ∈ [1,∞[ denotes the Hölder conjugate of p.

Combining this with Example A.3.16 and Proposition A.3.11, we obtain:

Corollary A.3.19. Suppose that (Fk)k∈� is a σ-finite filtration on (S ,A , µ). If f ∈ Lp(S ; X),
p ∈]1,∞], then ∣∣∣∣∣∣

∣∣∣∣∣∣sup
k∈�
||�[ f | Fk]||X

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp(S )

≤ p′ || f ||Lp(S ;X) ,

where p′ ∈ [1,∞[ denotes the Hölder conjugate of p.
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A.3.2.c Stopping times

Stopping time techniques play an important role in martingale theory. For example, Doob’s
maximal inequality (cf. Theorem A.3.18) can be proved using stopping times.

Definition A.3.20. A mapping τ : S −→ �∪ {±∞} is called a stopping time with respect to the
filtration (Fk)k∈� if for all k ∈ � we have {τ ≤ k} ∈ Fk, or equivalently, if for all k ∈ � we have
{τ = k} ∈ Fk.

If τ1 and τ2 are both stopping times, then τ1 ∧ τ2 = min{τ1, τ2} and τ1 ∨ τ2 = max{τ1, τ2}

are again stopping times.

Example A.3.21 (First hitting time). Let ( fk)k∈� ⊂ L0(S ; X) be adapted to the filtration (Fk)k∈�

and let B ⊂ X be a Borel set. We define τ : S −→ � ∪ {±∞} by

τ := inf{k ∈ � : fk ∈ B},

where inf ∅ = ∞. Here it is understood that we work with strongly Fk-measurable represen-
tatives of the fk. Then τ is a stopping time2 (with respect to (Fk)k∈�), which is called the first
hitting time of B associated with ( fk)k∈�.

Let τ be a stopping time with respect to the filtration (Fk)k∈�. We define the sub-σ-algebra
Fτ ⊂ A associated with τ by

Fτ := {A ∈ A : A ∩ {τ = k} ∈ Fk,∀k ∈ �} .

Then τ is Fτ-measurable. If τ = l ∈ � ∪ {±∞}, then we have

Fτ =


F−∞ :=

⋂
k∈�Fk , l = −∞;

Fl , l ∈ �;
F∞ := σ (

⋃
k∈�Fk) , l = ∞;

so there is no inconsistency of notation.

Lemma A.3.22. Let τ : S −→ �∪{∞} be a stopping time with respect to the filtration (Fk)k∈�.
Then µ is σ-finite on Fτ and L1

σ((S ,A , µ), {Fk}k∈�; X) ⊂ L1
σ((S ,A , µ),Fτ; X). Moreover, for

every f ∈ L1
σ((S ,A , µ), {Fk}k∈�; X) we have

1{τ=k}�( f | Fτ) = 1{τ=k}�( f | Fk), k ∈ � ∪ {∞}.

Definition A.3.23. Let τ : S −→ � ∪ {∞} be a stopping time with respect to the filtration
(Fk)k∈� and let f = ( fk)k∈� be an adapted sequence in L0(S ; X).

(i) The stopped sequence f τ = ( f τk )k∈� is defined by

f τk := fτ∧k, k ∈ �.

(ii) The started sequence τ f = (τ fk)k∈� is defined by

τ fk := fk − fτ∧k, k ∈ �.
2Here it should of course be understood that we work with equivalence classes of stopping times. In practice,

we only work with representatives.
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For a sequence ( fk)k∈� ⊂ L0(S ; X), we define the difference sequence (d fk)k∈� by

d fk := fk − fk−1, k ∈ �.

Then, in the situation of the above definition, the difference sequence d f τ = (d f τk∈�)k∈� is given
by

d f τk = 1{k≤τ}, k ∈ �,

and the difference sequence dτ f = (dτ fk)k∈� is given by

dτ fk = 1{k>τ}d fk, k ∈ �.

Proposition A.3.24. Let ( fk)k∈� be an X-valued martingale and let τ : S −→ � ∪ {∞} be a
stopping time, both with respect to the filtration (Fk)k∈�. Then f τ and τ f are again martingales
with respect to the filtration (Fk)k∈�.

A.3.2.d Martingale convergence

Let (Fk)k∈� be a σ-finite filtration in (S ,A , µ). Recall that F∞ = σ (
⋃

k∈�Fk).

Theorem A.3.25 (Forward convergence of generated martingales). If f ∈ Lp(S ; X) for some
p ∈ [1,∞[, then

lim
n→∞
�( f |Fn) = �( f |F∞)

both in Lp(S ; X) and pointwise almost everywhere.

The following lemma is used in the proof of this theorem:

Lemma A.3.26. Let p ∈ [1,∞[. Then
⋃

k∈� Lp(S ,Fk; X) is dense in Lp(S ,F∞; X).
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Appendix B

Banach Function Spaces

In this appendix, Section B.1 is based on [72, 2] and Section B.2 is based on [13, 70]. The
material from this appendix is only needed in Chapter 2, where it is a prerequisite for Sections
3.1-3.3 (except for Theorem 3.1.4 and Corollary 3.1.5).

B.1 Banach Lattices and Banach Function Spaces

B.1.1 Banach Lattices
A binary relation ≤ on a set P is called a partial order if it is reflexive, antisymmetric, and
transitive. In this situation we write, as usual, x ≥ y if (and only if) y ≤ x for x, y ∈ P. Any set
equipped with a partial order is called a partially ordered set (poset). If (P,≤) is a poset, then
we write P+ := {x ∈ P : 0 ≤ x}.

Let (P,≤) be a poset and S ⊂ P. An element u ∈ P is called an upperbound of S if s ≤ u for
all s ∈ S . An upperbound u ∈ P of S is called the supremum (or the least upperbound) of S if
u ≤ x for every upperbound x ∈ P of S . The notions of lowerbound and infimum (or greatest
lower bound) are defined in the same way with ’≤’ replaced by ’≥’ (and with upperbound
replaced by lowerbound). A poset P is called Dedekind complete if every subset which has
an upperbound also has a supremum and if every subset which has a lower bound also has an
infimum. A poset P is called σ-Dedekind complete if every countable subset which has an
upperbound also has a supremum and if every countable subset which has a lower bound also
has an infimum.

A poset (P,≤) is called a lattice if every pair of elements a, b ∈ P has a supremum and an
infimum, which are then denoted by a ∨ b and a ∧ b, respectively.

Definition B.1.1. Let X be a vector space over � ∈ {�,�}.

(i) X is called a partially ordered vector space if it is equipped with a partial order ≤ satis-
fying:

(a) If x ≤ y, then x + z ≤ y + z for each z ∈ X;

(b) If x ≤ y, then αx ≤ αy for each α ≥ 0.

(ii) X is called a Riesz space if it is a partially ordered vector space which is equipped with
a surjective idempotent mapping | · | : X −→ X+, called the modulus of X, satisfying the
following properties:
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(a) |λx| = |λ| |x| for every x ∈ X and λ ∈ � (homogeneity);

(b) |x + y| ≤ |x| + |y| for every x, y ∈ X (subadditivity);

(c) X = span�(X+) (generating cone).

(iii) X is called a normed Riesz space if it is a Riesz space which is equipped with a norm
having the property that ||x|| ≤ ||y|| whenever |x| ≤ |y|.

(iv) X is called a Banach lattice if it is a normed Riesz space which is norm complete.

Let X and Y be two Riesz spaces. A Riesz space homomorphism from X to Y is a linear
map T : X −→ Y with the property that T |x| = |T x| for all x ∈ X. Note that such a map
automatically satisfies T X+ ⊂ Y+. A Riesz space isomorphism from X to Y is a bijective Riesz
space homomorphism T : X −→ Y . Note that T−1 : Y −→ X then automatically is a Riesz
space homomoprhism; in particular, T X+ = Y+.

Let X and Y be two Banach lattices. An isomorphism of Banach lattices from X to Y is
Riesz space isomorphism from X to Y which at the same time is an isomorphism of Banach
spaces.

Remark B.1.2.

(i) If X is partially ordered vector space, then x ≤ y if and only if y − x ∈ X+.

(ii) If X is a Riesz space, then x ∈ X+ if and only if |x| = x.

(iii) If X is a norm Riesz space, then ||x|| = || |x| || for every x ∈ X.

(iii) In the complex case � = �, a Banach lattice is not a lattice in the sense of posets.

Remark B.1.3. The above axiomatic definition of Riesz spaces (and therefore that of normed
Riesz spaces and Banach lattices) is based on [80]; here the authors actually start with a so-
called modulus m on X and define ≤m as the partial order generated by the cone X+ := m(X),
which can be seen to be equivalent to (ii) above (under the correspondence | · | = m and
≤m=≤). It is not difficult to see that, in case � = �, this definition is equivalent with the usual
definition of a Riesz space, for which | · | is the usual absolute value (or modulus). Furthermore,
in case � = � it can be shown that X� := X+ − X+ is a Riesz space under the induced
order and modulus, for which we have X = X� ⊕ ıX� (direct sum over �), or equivalently
X = (X�)�, and that (X,≤, | · |) coincides with the usual Riesz space complexification of X� in
case X� is Archimedean and uniformly complete1. In particular, since real Banach lattices are
Archimedean and uniformly complete, our definition of complex Banach lattice coincides with
the usual one via complexification; here we of course use that the norms are in both situations
uniquely determined on X+.

Before we state some basic properties of (normed) Riesz spaces and Banach lattices, let us
first give some basic examples:

Example B.1.4. Fix a field � ∈ {�,�}.

(i) � is a Banach lattice
1For Riesz space complexifaction, one imposes certain conditions (such as Archimedean and uniformly com-

plete) to guarantee the existence of certain suprema in order to extend the absolute value to the complexification.
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(ii) Let (S ,A , µ) be a measure space and let X be a Banach lattice. Then L0(S ; X), the space of
equivalence classes of X-valued strongly measurable functions on (S ,A , µ), is a Riesz space
for the pointwise almost everywhere induced order and modulus from X.

(iii) Let (S ,A , µ) be a measure space, p ∈ [1,∞], and X a Banach lattice. Then Lp(S ; X) is a
Banach lattice for the order and modulus induced from L0(S ; X).

(iv) Let K be a compact Hausdorff space and let X be a Banach lattice. Then C(K; X) is a
Banach lattice for pointwise induced order and modulus from X.

Proposition B.1.5. Let X be a Riesz space over� ∈ {�,�}. Then X� := X+ − X− is a lattice in
the sense of posets, for which we have

|x| = x ∨ (−x), x ∈ X�.2

Furthermore, in case � = � we have X = X�, and in case � = � we have X = X� ⊕ ıX�
(direct sum over �).

Proof. We refer to [80] (also see the beginning of the discussion in Remark B.1.3). �

We finally introduce several properties that a Banach lattice (or a normed Riesz space) can
possess. All of these properties provide connections between the order and the norm. We first
need to introduce a little bit notation and terminology: Let X be a partially ordered vector space.
Let {xα}α∈A be a net in X. We say that {xα} is increasing (resp. decreasing) if xα ≤ xα′ (resp.
xα ≥ xα′) whenever α ≤ α′. We write xα ↑ x (resp xα ↓ x) to indicate that {xα} is increasing
(resp. decreasing) and has a supremum x = supα (resp. infumum x = infα xα) in X. If {xα}α is
an increasing net which converges to x in the norm topology of a normed Riesz space X, then
we have xα ↑ x.

Definition B.1.6. Let X be a normed-Riesz space. We say that X (or the norm || · ||X of X) is

• order continuous: 0 ≤ xα ↓ 0 implies ||xα|| ↓ 0

• σ-order continuous: 0 ≤ xk ↓ 0 implies ||xk|| ↓ 0;

• Fatou: 0 ≤ xα ↑ x implies ||xα|| ↑ ||x||;

• σ-Fatou: 0 ≤ xk ↑ x implies ||xk|| ↑ ||x||;

• Levi: every increasing norm bounded net has a supremum;

• σ-Levi: every increasing norm bounded sequence has a supremum.

Definition B.1.7. A Banach lattice X is called a KB-space (or a Kantorovich-Banach space) if
every increasing norm bounded sequence is norm convergent, which is actually equivalent to
the property that every norm bounded net is norm convergent.

Let (S ,A , µ) be a measure space and let p ∈ [1,∞]. Then Lp(S ;�) is σ-Fatou and σ-Levi.
If p < ∞, then Lp(S ;�) has all the above properties. In general, the following relations hold
true:

2So X� is a real Riesz space in the usual way with absolute value | · |.
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Proposition B.1.8.

(i) For normed Riesz spaces X we have:

(a) X is order continuous =⇒ X is σ-order continuous =⇒ X is σ-Fatou;

(b) X is order continuous =⇒ X is Fatou =⇒ X is σ-Fatou.

(ii) For Banach lattices X we have:

(a) X is reflexive =⇒ X is a KB-space =⇒ X is order continuous;

(b) X is order continuous⇔ X is σ-order continuous & σ-Dedekind complete;

(c) X is order continuous =⇒ X is Levi =⇒ X is Dedekind complete;

(d) X is Levi =⇒ X is σ-Levi =⇒ X is σ-Dedekind complete.

Here (i).(a) and (ii).(b) are frequently used in Chapter 3.

B.1.2 Banach Function Spaces
An ideal in a Riesz space X is a linear subspace A of X with the additional property that x ∈ X,
y ∈ A and |x| ≤ |y| imply x ∈ A. Note that every ideal A of X is a Riesz space on its own right
for the restricted order and modulus.

Throughout this subsection we fix aσ-finite measure space (S ,A , µ) and a field� ∈ {�,�}.
We shall write L0(S ) = L0((S ,A , µ);�).

Definition B.1.9. A Banach function space E on (S ,A , µ) is an ideal of L0(S ) which is equipped
with a norm which turns it into a Banach lattice.

Examples of Banach function space are Lp-spaces (p ∈ [1,∞]) and Orlicz spaces.

Definition/Proposition B.1.10. Let E be an ideal in L0(S ). Then there exists a smallest (with
respect to µ-a.e. inclusion) set CE ∈ A such that every f ∈ E vanishes µ-a.e. on S \ CE. This
set3 is called the support (or the carrier) of the ideal E, and is denoted by supp(E). In case
supp(E) = S we say that E has full support.

The Banach function space E = Lp(S ) (p ∈ [1,∞]) has support supp(E) = S . In the
general case, if E is a Banach function space on (S ,A , µ), then E can also be viewed as a
Banach function space on restricted measure space (supp(E),Asupp(E), µsupp(E)) in the natural
way. The measure space (supp(E),Asupp(E), µsupp(E)) also being σ-finite, it is no restriction to
assume supp(E) = S .

Lemma B.1.11. Let E be a Banach function space on (S ,A , µ) with supp(E) = S . Then there
exists a u ∈ E+ such that u(s) > 0 for µ-almost every s ∈ S .

Let E be a Banach function space on (S ,A , µ) and let r ∈]0,∞[. We define

Er := { f ∈ L0(S ) : | f |1/r ∈ E}, || f ||Er :=
∣∣∣∣∣∣ | f |1/r ∣∣∣∣∣∣r

E
. (B.1)

Then Er is an ideal of (S ,A , µ), but || · ||Er is in general not a norm for r > 1. If r ≤ 1, then we
have that (Er, || · ||Er ) is a Banach function space on (S ,A , µ). Basic examples are:

3In fact this equivalence class of sets, which can be formulated in terms of the measure algebra of (S ,A , µ).

228



• If 1 ≤ q ≤ p < ∞, then we have Lp(S ) = [Lq(S )]q/p;

• [L∞(S )]r = L∞(S ) for each r ∈]0,∞[.

Finally, we come to duality of Banach function spaces. The Köthe dual of a Banach function
space E on (S ,A , µ) is the ideal E× of L0(A) defined by

E× := {g ∈ L0(A) : f g ∈ L1(A),∀ f ∈ E},

and is equipped with the seminorm

||g||E× :=
{∣∣∣∣∣∫

S
f g dµ

∣∣∣∣∣ : f ∈ E, || f ||E ≤ 1
}
.

For example, if p ∈ [1,∞[ and p ∈]1,∞] are Hölder conjugates, then we have [Lp(S )]× =

Lp′(S ) ' [Lp(S )]∗. In general, the following holds true:

Theorem B.1.12. Let E be a Banach function space on (S ,A , µ) with supp(E) = S . Then E×

is a Banach function space with supp(E×) = S which has a σ-Fatou norm. If E has a σ-order
continuous norm, then

E× −→ E∗, g 7→ Λg := [e 7→
∫

A
ge, dµ]

defines is an isometric isomorphism of Banach spaces (even an isometric isomorphism of Ba-
nach lattices for the natural order and modulus on E∗).

B.2 Köthe-Bochner Spaces and Mixed-Norm Spaces

B.2.1 Köthe-Bochner Spaces

Let σ-finite measure space (S ,A , µ) and let X be a Banach space.
Similarly to the definition of the Lebesgue-Bochner spaces Lp(S ; X), we define the Köthe-

Bochner space E(X):

Definition B.2.1. Let E be a Banach function space on (S ,A , µ). Then we define the Köthe-
Bochner space E(X) as the linear space

E(X) := { f ∈ L0(S ; X) | || f ||X ∈ E}

equipped with the norm
|| f ||E(X) :=

∣∣∣∣∣∣|| f ||X ∣∣∣∣∣∣E .
It can be shown that E(X) is a Banach space. Moreover, if X is a Banach lattice, then so

is E(X) (with respect to the order and modulus induced form L0(S ; X)). When X is a Banach
function space on a σ-finite measure space (T,B, ν), then elements of L0(S ; X) (and thus in
particular elements of E(X)) can be naturally identified with elements of L0(S × T ); in fact, we
even have:
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Lemma B.2.2. Let (S ,A , µ) and (T,B, ν) be two σ-finite measure spaces. Suppose that F is a
Banach function space on (T,B, ν). Then, for every strongly µ-measurable function g : S −→
F(X) there exists a strongly µ⊗ν-measurable g̃ : S ×T −→ X, which is unique as an element of
L0(S × T ; X), such that g̃(s, · ) = g(s) in F(X) for µ-a.a. s ∈ S . Moreover, if g : S −→ F(X) is
Bochner integrable, then we have, for ν-a.a. t ∈ T, that g̃( · , t) : S −→ X is Bochner integrable
with (∫

A
g dµ

)
(t) =

∫
A

g̃( · , t) dµ, A ∈ A .

Corollary B.2.3. Let F be a Banach function space on the σ-finite measure space (T,B, ν)
and let X be a Banach space.

(i) Let g ∈ L1
loc(�; F(X)) and let g̃ ∈ L0(�n ×T ; X) be as in Lemma B.2.2. Then we have, for

ν-a.a. t ∈ T, that g̃( · , t) ∈ L1
loc(�

n; X) with(∫
A

g dλ
)

(t) =

∫
A

g̃( · , t) dλ, A ∈ B(�n), λ(A) < ∞.

(ii) Let (S ,A , µ) be a measure space equipped with a filtration � = (Fk)k∈� for which
each Fk is countably atomic with respect to µ in the sense of Definition A.1.2. Let
g ∈ L1

σ((S ,A , µ),�; F(X)) ⊂ L0(S ; F(X)) and let g̃ ∈ L0(S × T ; X) be as in Lemma
B.2.2. Then we have, for ν-a.a. t ∈ T, that g̃( · , t) ∈ L1

σ((S ,A , µ),�; X) with

�[g | Fk](t) =

 ∑
D∈F atom

k

1D

?
D

g dµ

 (t) =
∑

D∈F atom
k

1D

?
D

g̃( · , t) dµ = �[g̃( · , t) | Fk], k ∈ �;

also see Examples A.3.4.(v) and A.3.9.

B.2.2 Mixed-Norm Spaces
For the definition of mixed-norm spaces we need the following measurability result:

Lemma B.2.4. Let (S ,A , µ) and (T,B, ν) be two σ-finite measure spaces. Suppose that F is a
Banach function space on (T,B, ν) with a σ-Fatou norm. For every strongly µ⊗ ν-measurable
function g̃ : S × T −→ X it holds that s 7→ ||g̃(s, · )||F is µ-measurable.

Definition B.2.5. Let E be a Banach function space on the σ-finite measure space (S ,A , µ)
and let F be a Banach function space on the σ-finite measure space (T,B, ν). Suppose that F
has a σ-Fatou norm. Then we define the mixed-norm space E[F] as the linear space

E[F] := {g̃ ∈ L0(S × T ) | s 7→ ||g̃(s, · )||F ∈ E}

equipped with the norm
||g̃||E[F] :=

∣∣∣∣∣∣s 7→ ||g̃(s, · )||F
∣∣∣∣∣∣

E
.

It can be shown that the mixed-norm space E[F] is a Banach function space on (S ×T,A ⊗
B, µ ⊗ ν). The next lemma shows that we can iterate the construction of mixed-norm spaces.
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Lemma B.2.6. Let E and F be two Banach function spaces on σ-finite measure spaces. If both
E and F have σ-Fatou norms, then the mixed-norm space E[F] has a σ-Fatou norm as well.
As a consequence, the mixed-norm space D[E[F]] is well defined whenever D is a Banach
function space on a σ-finite measure space. Moreover, it holds that D[E][F] = D[E[F]].

A natural question is under what conditions on E and F do we have a natural identification
E[F] ' E(F) of mixed-norm space and Köthe-bochner space. For E = Lp(S ) (p ∈ [1,∞[)
and F = Lq(S ) (q ∈ [1,∞[) this is easy; this can for instance be found in [57]. In general, the
following holds true:

Theorem B.2.7. Let E and F be Banach function spaces on the σ-finite measure spaces
(S ,A , µ) and (T,B, ν), respectively, and let X be a Banach space. Suppose that F has a σ-
Fatou norm. Then, for each g ∈ E(F(X)) we have g̃ ∈ E[F](X) for the unique g̃ ∈ L0(S × T ; X)
from Lemma B.2.2. The induced linear mapping j : E(F(X)) −→ E[F](X), g 7→ g̃ is an isom-
etry which is a homomorphism of Banach lattices in case X is a Banach lattice. Moreover, we
have j(E(F(X))) = E[F](X) provided that F has a σ-order continuous norm.

Next we come to duality of mixed-norm spaces.

Proposition B.2.8. Let E and F be two Banach function spaces on σ-finite measure spaces,
both having full support. Suppose that F has σ-Fatou norm. Then the Köthe dual of E[F] is
given by E[F]× = E×[F×]. If E and F both have σ-order continuous norms, then so has E[F],
so that we have a natural isometric isomorphism E[F]∗ ' E×[F×] of Banach lattices.
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Appendix C

Fourier Analysis and Distribution Theory

This appendix is mainly based on [4] and [96], where only Banach space-valued distributions
and scalar-valued distributions are treated, respectively. In this appendix we also treat some
aspects of the theory of distributions with values in a general (complete) locally convex space
(LCS), having as main advantage the interpretation of the Schwartz kernel theorem in Section
C.7 as a canonical identification between spaces of distributions. For a comprehensive treat-
ment of the theory of distributions with values in locally convex spaces we refer to the original
work of Schwartz [89, 90].

The reader is assumed to have experience with the basics of distribution theory and to be
familiar with the contents of this appendix throughout the thesis (with an exception for Sections
3.2 and 3.3 of Chapter 3).

C.1 Some Spaces of Functions

C.1.1 Functions With Values in a Banach Space
Throughout this subsection we fix a Banach space X. Let U ⊂ �d be a non-empty open subset.

E(U; X): Smooth Functions We define

E(U; X) := C∞(U; X)

endowed with the locally convex topology induced by the family of seminorms {|| · ||K,r : K ⊂
U compact, r ∈ �} given by

|| f ||K,r := max
|α|≤r
||∂α f ||∞,K = sup{||∂α f (x)||X : x ∈ K, |α| ≤ r}.

In this way, E(U; X) is a Fréchet space.

D(U; X): Test Functions We define

D(U; X) := C∞c (U; X),

the space of smooth compactly supported functions, with the following topology. For each
compact subset K ⊂ U, we consider

EK(U; X) := { f ∈ E(U; X) : supp f ⊂ K},
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endowed with the topology induced from E(U; X) (which coincides with the topology induced
by the collection of seminorms {|| · ||K,r : r ∈ �}). Then we have

D(U; X) =
⋃

K⊂U compact

EK(U; X),

and we consider the inductive limit topology on D(U; X). Then D(U; X) is a complete Haus-
dorff LCS.

S(�d; X): Schwartz Functions A Schwartz function is a smooth function f : �d −→ X with
the property that, for all α, β ∈ �d,

|| f ||α,β := sup
x∈�d

∣∣∣∣∣∣xβ∂α f (x)
∣∣∣∣∣∣

X
< ∞.

We define S(�d; X) as the space of Schwartz functions, endowed with the locally convex topol-
ogy induced by the family of seminorms {|| · ||α,β : α, β ∈ �d}, or equivalently, with the locally
convex topology induced by the family of seminorms {pN}N∈� given by

pN fN := sup
|α|,|β|≤N

|| f ||α,β = sup
|α|,|β|≤N,x∈�d

∣∣∣∣∣∣xβ∂α f (x)
∣∣∣∣∣∣

X
. (C.1)

In this way, S(�d; X) is a Fréchet space.
For the just defined spaces it holds that

D(U; X)
d
↪→ E(U; X) and D(�d; X)

d
↪→ S(�d; X)

d
↪→ E(�d; X). (C.2)

OM(�d; X): Slowly Increasing Smooth Functions A slowly increasing smooth function (or
a smooth function of moderate growth) is a smooth function f : �d −→ X such that, for each
α ∈ �d, there exist mα ∈ � and cα > 0 such that

|∂α f (x)| ≤ cα(1 + |x|2)mα , x ∈ �d.

We define OM(�d; X) as the space of all X-valued slowly increasing smooth functions on �d,
equipped the locally convex Hausdorff topology generated by the seminorms

f 7→ ||ψDα f ||∞ , ψ ∈ S(�d), α ∈ �d.

In this way, OM(�d; X) is a complete LCS.
Some notation for spaces of functions (which we do not topologize):

• C∞(c)(U; X) := {g = f|U : f ∈ C∞c (�d; X)},

• S(U; X) := {g = f|U : f ∈ S(�d; X)}

C.1.2 Functions With Values in a locally Convex Space
Throughout this subsection we fix a LCS X.
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C(S ; X): Continuous Functions Let S ⊂ �d be a subset. We equip the space of continuous
functions C(S ; X) with the locally convex topology generated by the the seminorms

f 7→ sup
y∈K

p( f (y)), K ⊂ S compact, p a continuous seminorm on X.

If S admits an exhaustion by compacts and if X is a Fréchet space, then C(S ; X) is a Fréchet
space as well.

Cb(S ; X): Bounded Continuous Functions Let S ⊂ �d be a subset. We equip the space of
bounded continuous functions Cb(S ; X) with the locally convex topology generated by the the
seminorms

f 7→ sup
y∈S

p( f (y)), p a continuous seminorm on X.

S(�d; X): Schwartz Functions Let X be a LCS. A Schwartz function is a smooth function
f : �d −→ X with the property that, for all continuous seminorms p on X and all multi-indices
α, β ∈ �d,

|| f ||p,α,β := sup
x∈�d

p(xβ∂α f (x)) < ∞.

We define S(�d; X) as the space of Schwartz functions, endowed with the locally convex topol-
ogy generated by the family of seminorms

{ || · ||p,α,β : p a continuous seminorm on X, α, β ∈ �d }.

Note we may restrict p to a generating family for X; in particular, if X is a normed space, we
may restrict to p = || · ||.

C.2 Spaces of Vector-Valued Distributions
Throughout this subsection we let X be a LCS.

D′(U; X): Distributions Let U ⊂ �d be a non-empty open subset. We define

D′(U; X) := L(D(U), X),

the the space of X-valued distributions on U, equipped with the topology of bounded conver-
gence. Note that for X = � we get the usual space of distributionsD′(U). The support supp( f )
of a distribution f ∈ D′(�d; X) is as defined in the scalar-valued case X = �.

E′(U; X): Compactly Supported Distributions Let U ⊂ �d be a non-empty open subset.
We define

E′(U; X) := L(E(U), X),

the the space of X-valued compactly supported distributions on U, equipped with the topology
of bounded convergence. In view of the first inclusion in (C.2), we have

E′(U; X) ↪→ D′(U; X)

canonically. Via this identification, E′(U; X) corresponds to the distributions in D′(U; X) hav-
ing compact support.
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S′(U; X): Tempered Distributions We define

S′(�d; X) := L(S(�d), X),

the the space of X-valued tempered distributions on�d, equipped with the topology of bounded
convergence. Observe that a linear operator f : S(�d) −→ X is continuous if and only if, for
each N ∈ � there exists a constant CN > 0 such that

||〈 f , φ〉||X ≤ CN pN(φ) (φ ∈ S(�d)), (C.3)

where (pN)N∈� is the generating family of seminorms for S(�d) given in (C.1). In view of
(C.2), we have

E′(U; X) ↪→ D′(U; X) and E′(�d; X) ↪→ S′(�d; X) ↪→ D′(�d; X).

The partial derivative operators Dα, α ∈ �d, are defined on D′(U; X), E′(U; X), and
S′(U; X) in the usual way giving rise to continuous linear operators. For example, given
f ∈ D′(U; X), we have

(Dα f )(φ) = (−1)|α| f (Dαφ), φ ∈ D(U).

Since D(U), E(U) and S(�d) are Montel spaces, for the convergence of sequences in the
corresponding spaces of distributions it is irrelevant whether we work with the topology of
bounded convergence or the topology of pointwise convergence:

Proposition C.2.1. A sequence ( f )n∈� converges with limit f in D′(U; X) (with respect to the
topology of bounded convergence) if and only if it converges with respect to the to the topology
of pointwise convergence with limit f . As a consequence, if Z is a sequential topological space
(e.g. first countable), then a function F : Z −→ D′(U; X) is continuous if and only if it
is continuous with respect to the topology of pointwise convergence on D′(U; X). The same
statement holds true for E′(U; X) and S′(�d; X).

Note that, if X is a sequentially complete LCS, then D′(U; X), E′(U; X) and S′(�d; X)
are sequentially complete as well with respect to the topology of pointwise convergence (as a
consequence of the Banach-Steinhaus theorem becauseD(U), E(U) and S(�d) are barreled).

Regular Distributions in the case that X is a Banach space Let U ⊂ �d be a non-empty
open subset. To each f ∈ L1

loc(U; X) we associate the distribution

Λ f : D(U) −→ X, φ 7→
∫

U
f (x)φ(x) dx.

In this way we obtain
L1

loc(U; X) ↪→ D′(U; X),

and we identify L1
loc(U; X) with a subspace of D′(U; X). Distributions belonging to L1

loc(U; X)
are often called regular distributions.

Examples of spaces consisting of regular distributions are D(U; X), S(�d; X), E(U; X),
C(U; X), C(U; X), Lp(U; X), p ∈ [1,∞]. Here we have

D(U; X),E(U; X),C(U; X),C(U; X), Lp(U; X) ↪→ D′(U; X)

and
D(�d; X),S(�d; X), Lp(�d; X) ↪→ S′(�d; X).
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Regular Distributions in the case that X is a complete LCS Let U ⊂ �d be a non-empty
open subset. To each f ∈ C(U; X) we associate the distribution

Λ f : D(U) −→ X, φ 7→
∫

U
f (x)φ(x) dx, 1

yielding the canonical continuous inclusion

C(U; X) ↪→ C(U; X) ↪→ D′(U; X). (C.4)

Analogously, to each f ∈ Cb(�d; X) we associate the tempered distribution

Λ f : S(�d) −→ X, φ 7→
∫
�d

f (x)φ(x) dx, 2

yielding the canonical continuous inclusion

S(�d; X) ↪→ Cb(�d; X) ↪→ S′(�d; X).

C.3 Approximations
In this section we assume that X is a Banach space and that U ⊂ �d is a non-empty open subset.

Proposition C.3.1.

• D(U; X) is sequentially dense inD′(U; X), E′(U; X);

• D(�d; X) is sequentially dense in S′(�d; X).

As usual, we view the algebraic tensor product L0(U)⊗X as linear subspace of L0(U; X) by
identifying a tensor f⊗x, where f ∈ L0(U) and x ∈ X, with the element element f⊗x ∈ L0(U; X)
given by

( f ⊗ x)(y) := f (y)x, y ∈ �d.

In this way, we also haveD(U)⊗X ⊂ D(U; X), S(�d)⊗X ⊂ S(�d; X), and E(U)⊗X ⊂ E(U; X).
Analogously, we view the algebraic tensor product D′(U) ⊗ X as a linear subspace of

D′(U; X) by identifying a tensor f ⊗ x, where f ∈ D′(U) and x ∈ X, with the X-valued
distribution on f ⊗ x on U given by

( f ⊗ x)(φ) := f (φ)x, φ ∈ D(U).

Similarly, we have S′(�d) ⊗ X ⊂ S′(�d; X) and E′(U) ⊗ X ⊂ E′(U; X).
In the following approximation theorem these algebraic tensor products are given the cor-

responding subspace topologies.

1For each g ∈ Cc(U; X) there exists a unique vector Ig ∈ X such that 〈Ig, x∗〉 =
∫

U〈g, x
∗〉dx for every x∗ ∈ X∗,

which satisfies p(Ig) ≤
∫

U p(g(x))dx for every continuous seminorm on X. We write Ig =
∫

U g(x)dx.
2Here

∫
�d f (x)φ(x) dx is the unique vector in X satisfying 〈

∫
�d f (x)φ(x) dx, x∗〉 =

∫
�d 〈 f (x), x∗〉φ(x) dx for all

x∗ ∈ X∗, whose existence can be obtained via a truncation argument from the existence of Ig for g ∈ C(K; X),
where K ⊂ �d compact.
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Theorem C.3.2.

(i) D(U) ⊗ X
d
↪→ D(U; X)

d
↪→ E′(U; X)

d
↪→ D′(U; X);

(ii) D(U) ⊗ X
d
↪→ E(U) ⊗ X

d
↪→ E(U; X)

d
↪→ D′(U; X);

(iii) E′(U) ⊗ X
d
↪→ E′(U; X);

(iv) D′(U) ⊗ X
d
↪→ D′(U; X);

(v) D(�d) ⊗ X
d
↪→ S(�d) ⊗ X

d
↪→ S(�d; X)

d
↪→ S′(�d; X)

d
↪→ D′(U; X);

(vi) S(�d) ⊗ X
d
↪→ S′(�d) ⊗ X

d
↪→ S′(�d; X).

C.4 Pointwise Multiplications
The usual pointwise multiplication ( f , g) 7→ f g of functions restricts to hypocontinuous (and
thus in particular separately continuous) bilinear maps

E(U) × D(U) −→ D(U);
D(U) × E(U) −→ D(U);
E(U) × E(U) −→ E(U);
OM(�d) × S(�d) −→ S(�d).

Given a locally convex space X, these maps induce pointwise multiplication maps

E(U) × D′(U; X) −→ D′(U; X);
D(U) × E′(U; X) −→ D′(U; X);
E(U) × E(U; X) −→ E(U; X);
OM(�d) × S′(�d; X) −→ S′(�d; X),

in the usual way; for example, given φ ∈ E(U) and f ∈ D′(U; X), the distribution φ f ∈
D′(U; X) is defined via [φ f ](ψ) := f (φψ), ψ ∈ D(U). Any two of these maps coincide with
each other on the intersection of their domains.

Now suppose that
X1 × X2 −→ X0, (x1, x2) 7→ x1 • x2 (C.5)

is a multiplication of Banach spaces. Recall that this means that (C.5) is a continuous bilinear
map of norm at most 1; see Appendix A.1.4.

Theorem C.4.1. There exists a unique hypocontinuous (and thus in a particular separately
continuous) bilinear map

E(U; X1) ×D′(U, X2) −→ D′(U; X0), (a, f ) 7→ a • f ,

called pointwise multiplication induced by (C.5), such that

(φ ⊗ x1) • (ψ ⊗ x2) = φψ ⊗ (x1 • x2)
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for a = φ⊗x1 ∈ D(U)⊗X1 and f = ψ⊗x2 ∈ D(X)⊗X2. Moreover, it restricts to hypocontinuous
(and thus in particular separately continuous) bilinear maps

E(U; X1) × D(U; X2) −→ D(U; X0);
E(U; X1) × E(U; X2) −→ E(U; X0);
OM(�d; X1) × S(�d; X2) −→ S(�d; X0);
E(U; X1) × D′(U; X2) −→ D′(U; X0);
E(U; X1) × E(U; X2) −→ E(U; X0);
OM(�d; X1) × S′(�d; X2) −→ S′(�d; X0)

Since X2 × X1 −→ X0, (x2, x1) 7→ x1 • x2 is a multiplication as well, we can interchange the
roles of X1 and X2 in the above theorem.

Some basic properties of the pointwise multiplication induced by (C.5):

Proposition C.4.2.
(a) If a ∈ E(U; X1) and f ∈ L1

loc, then a • f , the pointwise multiplication induced by (C.5),
coincides with pointwise multiplication with respect to (C.5) in the usual sense.

(b) Leibiz rule: For every multi-index α ∈ �d,

∂α(a f ) =
∑
β≤α

(
α

β

)
(∂βa) • (∂α−β f ), a ∈ E(U; X1), f ∈ D′(U, X2).

(c) If (a, f ) ∈ E(U; X1) ×D′(U, X2), then

supp(a • f ) = supp(a) ∩ supp( f ).

C.5 Convolutions
We define the reflection operator S ∈ L(S(�d)) by (Sφ)(x) := φ(−x); we also write φ̃ = Sφ.
Given a locally convex space X, we define the reflection operator S ∈ L(S′(�d; X)) by

(S f )(φ) := f (Sφ), φ ∈ S(Rd). (C.6)

Let X be a locally convex space. The convolution product

S(�d) × S′(�d; X) −→ OM(�d; X), (φ, f ) 7→ φ ∗ f

is defined by
(φ ∗ f )(ψ) := f (φ̃ ∗ ψ), ψ ∈ S(�d).

This is a hypocontinuous (and thus in particular a separately continuous) bilinear map.

Theorem C.5.1. There exists a unique hypocontinuous (and thus in particular separately con-
tinuous) bilinear map

S(�d; X1) × S′(�d; X2) −→ OM(�d; X0), ( f , g) 7→ f ∗• g,

called the convolution map induced by (C.5), such that

(φ ⊗ x1) ∗• (u ⊗ x2) = (φ ∗ u) ⊗ (x1 • x2)
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for f = φ ⊗ x1 ∈ S(�d) ⊗ X1 and g = u ⊗ x2 ∈ S
′(�d) ⊗ X2. Moreover, this convolution map

restricts to a hypocontinuous bilinear map

S(�d; X1) × S(�d; X2) −→ S(�d; X0).

Since X2 × X1 −→ X0, (x2, x1) 7→ x1 • x2 is a multiplication as well, we can interchange the
roles of X1 and X2 in the above theorem.

Proposition C.5.2.

(i) If f ∈ S(�d; X1) and g ∈ L1
loc(�

d; X2) ∩ S′(�d; X2), then

( f ∗• g)(x) =

∫
�d

f (x − y)g(y)dy =

∫
�d

f (y)g(x − y)dy, x ∈ �d;

see Proposition D.1.2 for the integrability of the integrand. So f ∗• g coincides with the
convolution in the sense of measure theory (A.2).

(ii) Given f ∈ S(�d; X1), g ∈ S′(�d; X2), and α ∈ �d, we have supp f ∗• g ⊂ supp f + supp g
and Dα( f ∗• g) = Dα f ∗• g = f ∗• Dαg

C.6 The Fourier Transform
Let X be a Banach space. For an f ∈ L1(�d; X), the Fourier transformed function F f ∈
Cb(�d; X) is defined by the formula

(F f )(ξ) :=
∫
�d

e−ıx·ξ f (x) dx, ξ ∈ �d. (C.7)

We also write f̂ = F f .
A function f : �d −→ X is called rapidly decreasing if x 7→ xα f is bounded for every

multi-index α ∈ �d.

Proposition C.6.1. Given a Banach space X, we have:

(i) The Riemann-Lebesgue lemma: The Fourier transform F is a continuous linear map-
ping of L1(�d; X) into C0(�d; X).

(ii) The Fourier transform F restricts to a topological linear isomorphism on S(�d; X) with
inverse F −1 = (2π)−dF ◦ S = (2π)−dS ◦F which is given by the formula

(F −1g)(x) :=
∫
�d

eıξ·xg(ξ) dξ. (C.8)

(iii) If f ∈ S(�d; X) and α, β ∈ �d, then

F [xαDβ
x f ] = (−Dξ)αξβF f .
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(iv) If f ∈ L1(�d; X) is such that xα f ∈ L1(�d; X) for all |α| ≤ N for some N ∈ �, then f̂ ∈
CN

b (�d; X) with (−Dξ)α f̂ = F [xα f ] for every |α| ≤ N. In particular, if f : �d −→ X is
a strongly measurable rapidly decreasing function, then f̂ ∈ C∞b (�d; X) with (−Dξ)α f̂ =

F [xα f ] for every |α| ≤ N.

Given a locally convex space X, the Fourier transform F can be defined on S′(�d; X) by

(F f )(φ) = f̂ (φ) := f (φ̂) = f (Fφ), φ ∈ S(�d; X). (C.9)

In this way, F is a topological linear isomorphism on S′(�d; X) with inverse F −1 = (2π)−dF ◦
S = (2π)−dS ◦ F , where S is the reflection operator (C.6). We also write f̌ = F −1 f . Fur-
thermore, (iii) above remains valid for f ∈ S′(�d; X). If X is a Banach space, then we have
L1(�d; X) ↪→ S′(�d; X) and the definitions (C.7) and (C.9) coincide.

Lemma C.6.2. Suppose we are given a multiplication of Banach spaces (C.5). If f ∈ S(�d; X1)
and g ∈ S′(�d; X2), then F [ f • g] = F f ∗• Fg.

Theorem C.6.3 (The Plancherel theorem). Let H be a Hilbert space. Then the Fourier trans-
form F restricts to an isometric isomorphism on L2(�d; H).

Theorem C.6.4 (Paley-Wiener-Schwartz). Let X be a Banach space. For an f ∈ S′(�d; X) and
a compact K ⊂ �d the following are equivalent:

(i) supp f̂ ⊂ K;

(ii) f is extends to an entire analytic function on �d satisfying

|| f (x + ıy)||X ≤ C(1 + |x + ıy|)NeH(−y) (x, y ∈ �d)

for some C > 0 and N ∈ �; here H(y) = sup{y · ξ | ξ ∈ K} is the supporting function of
the compact K.

In this situation, we have

f (φ) =

∫
�d

f (x)φ(x)dx, φ ∈ S(�d), (C.10)

and
f (x) = (2π)−d f̂ (eıx) (C.11)

Corollary C.6.5. Suppose that f ∈ S′(�d; X) has Fourier support supp f̂ contained in the
rectangle

∏d
j=1[R j,R j], where R1, . . . ,Rd > 0. Let d = d1 + d2 + d3 with d1, d2, d3 ∈ � and

view �d as �d = �d1 × �d2 × �d3 . Then, for each fixed x1 ∈ �
d1 and x3 ∈ �

d3 , it holds that
x2 7→ f (x1, x2, x3) defines a tempered distribution on �d2 with Fourier support contained in∏d1+d2

j=d1+1[−R j,R j].

Corollary C.6.6. Let X be a complete LCS and equip F −1E′(�d; X) with the locally convex
topology for which the Fourier transform F becomes a topological linear isomorphism from
F −1E′(�d; X) onto E′(�d; X). Then we have

F −1E′(�d; X) ↪→ C(�d; X).
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Proof. The Paley-Wiener-Schwartz theorem in particular tells us that F −1E′(�d) ⊂ C(�d).
As F −1E′(�d) and C(�d) are both continuously included in the locally convex Hausdorff
space D′(�d), the natural inclusion F −1E′(�d) −→ C(�d) is a closed linear mapping. Since
F −1E′(�d) is a barreled LCS and since C(�d) is a Fréchet space, it follows from the closed
graph theorem that F −1E′(�d) ↪→ C(�d).

Finally, the case of a general complete LCS X can be derived from the case X = � by using
the theory of topological tensor products:

F −1E′(�d; X) = F −1E′(�d) ⊗̃ε X ↪→ C(�d) ⊗̃ε X = C(�d; X).3

�

C.7 Identifications Between Spaces of Distributions
Theorem C.7.1 (Schwartz Kernel Theorem). Let X be a complete LCS and let U ⊂ �d and
V ⊂ �n be open subsets. Then we have a topological linear isomorphism

D′(U × V; X) −→ D′(U;D′(V; X)), K 7→ uK ,

where
(uKψ)φ := K(φ ⊗ ψ), ψ ∈ D(U), φ ∈ D(V),

which is called the canonical isomorphism. Moreover, the canonical isomorphism restricts
to topological linear isomorphisms E′(U × V; X) � E′(U;E′(V; X)) and S′(�d × �n; X) �
S′(�d;S′(�n; X)) (in case U = �d and V = �n).

Let X be a complete LCS. Then

C(U × V; X) −→ C(U; C(V; X)), f 7→
[
U 3 y 7→ f (y, · ) ∈ C(V; X)

]
is a topological linear isomorphism, which can be obtained by restriction of the canonical
isomorphismD′(U × V; X) � D′(U;D′(V; X)).

Let X be a Banach space. Then the natural identification Lp(U × V; X) � Lp(U; Lp(V; X))
(Fubini) is also compatible with the canonical isomorphismD′(U × V; X) � D′(U;D′(V; X)).

Lemma C.7.2. Let X be a Banach space and let f ∈ F −1E′(�d+n; X) with supp f̂ ⊂ [−R,R]d ×

�n for some R > 0. Then, under the canonical isomorphismD′(�d×�n; X) � D′(�d;D′(�n; X)),
f corresponds to a tempered distribution F = u f ∈ S

′(�d; C(�n; X)) having compact Fourier
support supp F̂ ⊂ [−R,R]d.

Proof. Given a locally convex space Y , we equip F −1E′(�m; Y) with the locally convex topol-
ogy which makes the Fourier transform F a topological linear isomorphism from F −1E′(�m; Y)
onto E′(�m; Y). In this way it is not difficult to see that F −1E′(�d+n; X) � F −1E′(�d; F −1E′(�n; X))
under the canonical isomorphism. Furthermore, if K ∈ F −1E′(�d+n; X) has Fourier support
contained in [−r, r]d × �n, r > 0, then uK ∈ F −1E′(�d; F −1E′(�n; X)) has Fourier sup-
port contained in [−r, r]d. In particular, under the canonical isomorphism, our given f cor-
responds to F := u f ∈ F −1E′(�d; F −1E′(�n; X)) ⊂ S′(�d; F −1E′(�n; X)) having Fourier
support supp F̂ ⊂ [−R,R]d. Since F −1E′(�n; X) ↪→ C(�n; X) by Corollary C.6.6, we may
view F as a tempered distribution F ∈ S′(�d; C(�n; X)) having compact Fourier support
supp F̂ ⊂ [−R,R]d. �

3For the theory of topological tensor products we refer to [96]; also see [4].

242



Recall that for a complete LCS Y we have the continuous inclusion C(�; Y) ↪→ D′(�; Y);
see (C.4). If Y = D′(�d−1; X) for a Banach space X, then we have the canonical isomor-
phism D′(�; Y) = D′(�d; X), so that C(�;D′(�d−1; X)) ↪→ D′(�d; X). A function f ∈
C(�;D′(�d−1; X)) can also be viewed as an X-valued distribution on �d in the following more
direct way:

Proposition C.7.3. Let X be a Banach space. Given f ∈ C(�;D′(�d−1; X)),

Λ f (φ) :=
∫
�

[ f (t)](φ(t, · )) dt, φ ∈ D(�d),

defines an X-valued distribution on �d. The obtained mapping f 7→ Λ f defines an injection
C(�;D′(�d−1; X)) −→ D′(�d; X).

Proof. This can be shown in completely the same way as [60, Proposition 3.5]. �

Let X be a Banach space. By testing on D(�) ⊗ D(�d−1) we see that the inclusion from
this proposition coincides with the inclusion C(�;D′(�d−1; X)) ↪→ D′(�d; X) obtained by the
canonical isomorphism; here we of course do not have to restrict ourselves to � and �d−1. An
advantage of the abstract viewpoint is that we can use abstract theory, for example to obtain:

Lemma C.7.4. Under the canonical isomorphismD′(U;D′(V; X)) � D′(U×V; X) � D′(V;D′(V; X)),
we have

C(U;D′(V; X)) � D′(V; C(U; X)).

In fact, C(U)⊗D′(V)⊗X is dense in both C(U;D′(V; X)) andD′(V; C(U; X)), and the induced
topologies coincide on C(U) ⊗D′(V) ⊗ X.

Proof. This follows from the commutativity of the ε-tensor product for locally convex spaces
and the fact that for a complete LCS Y it holds that C(U; Y) = C(U)⊗̃εY and D′(V; Y) =

D′(V)⊗̃εY . �
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Appendix D

Harmonic Analysis

This appendix is mainly based on [44, 45] and can be consulted on reference.

D.1 Maximal Functions
Definition D.1.1. For a function f ∈ L1

loc(�
d), the Hardy-Littlewood maximal function M f ∈

L0
+(�d)1 is defined by

(M f )(x) := sup
δ>0

?
B(x,δ)
| f (y)|dy = sup

δ>0

1
|B(x, δ)|

∫
B(x,δ)
| f (y)|dy, x ∈ �d. (D.1)

Let p ∈]1,∞[. Then we have that

M : Lp(�d) −→ Lp(�d), f 7→ M f

defines a bounded sublinear operator on Lp(�d): for every f , g ∈ Lp(�d) it holds that M( f +g) ≤
M f + Mg and ||M f ||Lp(�d) .p,d || f ||Lp(�d).

Let φ : �d −→ �. For each t > 0, we define

φt(x) := tdφ(tx), x ∈ �d. (D.2)

Lemma D.1.2. Suppose φ ∈ L1(�d) is such that

ψ(x) := sup{ |φ(y)| : |y| ≥ |x| }

defines a function ψ ∈ L1(�d). Then, for all f ∈ L1
loc(�

d; X) and t > 0, we have∫
�d
||φt(x − y) f (y)||X dy ≤ ||ψ||L1(�d) M(|| f ||X)(x), , x ∈ �d.

As a consequence, the convolution product φt∗ f (A.2) is well-defined and the following estimate
is valid:

sup
t>0
||(φt ∗ f )(x)||X ≤ ||ψ||L1(�d) M(|| f ||X)(x), x ∈ �d.

1For the measurability we refer to the proof of [87, Lemma 19.16].
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Definition D.1.3. Let X be a Banach space and let f ∈ L1
loc(�

d; X). A point x0 ∈ �
d is called a

Lebesgue point of f if

lim
r↘0

?
B(x0,r)

|| f (y) − f (x0)||X dy = 0.2

Observe that, if x0 is a Lebesgue point of f ∈ L1
loc(�

d; X), then

f (x0) = lim
r↘0

?
B(x0,r)

f (y)dy.

As a consequence, we have || f ||X (x0) ≤ [M || f ||X](x0).

Proposition D.1.4. Let X be a Banach space, f ∈ L1
loc(�

d; X), and φ ∈ Cc(�d) such that φ ≥ 0
and

∫
�d φ(x)dx = 1. Let x0 be a Lebesgue point of f . Then we have

f (x0) = lim
t→∞

( f ∗ φt)(x0),

where φt is as in (D.2).

Theorem D.1.5 (Lebesgue’s Differentiation theorem). Let X be a Banach space and let f ∈
L1

loc(�
d; X). Then almost every point of �d is a Lebesgue point. As a consequence, || f ||X ≤

M || f ||X almost everywhere.

D.2 Weights
A weight on �d is a is a locally integrable function �d −→ [0,∞] that takes its values in ]0,∞[
Lebesgue almost everywhere. We denote byW(�d) the set of all weights on �d. For a weight
w ∈ W(�d) we define the associated weighted Lebesgue-Bochner space

Lp(�d,w; X) :=
{

f ∈ L0(U; X) :
∫
�d
|| f (x)||pX w(x) dx < ∞

}
,

which becomes a Banach space when equipped with the norm

|| f ||Lp(�d ,w;X) :=
(∫
�d
|| f ||pX w dλU

)1/p

.

Due to the importance of the Hardy-Littlewood maximal function operator M (D.1) in (Har-
monic) analysis, it would be interesting to characterize, for a fixed p ∈]1,∞[, all the weights w
on �d with Lp(�d,w) ⊂ L1

loc(�
d) for which M (D.1) restricts to a bounded (sublinear) operator

on Lp(�d,w). It is well known that these weights can be characterized via the Ap-condition,
for which a motivation is given in [45, Subsection 9.1.1] (which simultaneously proves the
necessity). The sufficiency will be stated in Theorem D.2.4, but let us first give the definition.

Definition D.2.1. Let p ∈]1,∞[. A weight w on �d is said to be of class Ap if

[w]Ap := sup
Q

(?
Q

w(x)dx
) (?

Q
w(x)−1/(p−1)dx

)p−1

< ∞, (D.3)

2Here it is understood that we work with a representative f .
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where the supremum is taken over all cubes Q in �d with sides parallel to the coordinate
axes. We also say that w is an (Muckenhaupt) Ap-weight and the number [w]Ap is called the
(Muckenhaupt) Ap-characteristic constant of w. The set of all Ap-weights w on �d is denoted
by Ap(�d). We define

A∞(�d) :=
⋃

p∈]1,∞[

Ap(�d).

In the following proposition we summarize some basic properties of Ap-weights.

Proposition D.2.2. (basic properties)

(i) Let p, p′ ∈]1,∞[ be Hölder conjugates. A weight w ∈ W(�d) belongs to the class Ap if
and only if w−

1
p−1 is a weight belonging to the class Ap′ , in which case we have

[w−
1

p−1 ]Ap′ = [w]
1

p−1

Ap
.

(ii) [w]Ap ≥ 1 for all w ∈ Ap. Equality holds if and only if w is constant.

(iii) Let 1 < p < q < ∞. Then we have Ap ⊂ Aq with

[w]Aq ≤ [w]Ap , w ∈ Ap.

(iv) Let p ∈]1,∞[. A weight w ∈ W(�d) belongs to the class Ap if and only if there exists a
constant C ∈ [1,∞[ such that, for all f ∈ L0(�d),

1
|Q|

∫
Q
| f (x)|dx ≤ C1/p

(
1

W(Q)

∫
Q
| f (x)|pW(x)dx

)1/p

.

In this situation, the smallest such constant C coincides with [w]Ap .

(v) The measure Wλ is doubling: for all λ > 0 and all cubes Q we have

W(Qλ) ≤ λnp[w]Apw(Q),

where Qλ denotes the cube with the same center as Q and side length λ times the side
length of Q.

From a combination of (i) above and Hölder’s inequality it follows that, if p ∈]1,∞[ and
w ∈ Ap(�d), then we have

Lp(�d,w; X) ↪→ L1
loc(�

d; X); (D.4)

here we simply write 1K f = ( f w1/p) · (1Kw−
1

p−1 ) for each compact K ⊂ �d subset.
The power weights in the following example are very important for this thesis:

Example D.2.3.
(i) Let a ∈]−d,∞[ and define w ∈ W(�d) by w(x) := |x|a. Given p ∈]1,∞[, it holds that w ∈ Ap

if and only if a ∈] − d, d(p − 1)[.

(ii) Let a ∈] − 1,∞[ and define w ∈ W(�d) by w(x) := |x1|
a (x = (x1, . . . , xd) ∈ �d). Given

p ∈]1,∞[, it holds that w ∈ Ap if and only if a ∈] − 1, p − 1[.
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We now state the boundedness of the Hardy-Littlewood maximal function operator on
Muckenhaupt-weighted Lp-spaces:

Theorem D.2.4. Let p ∈]1,∞[ and w ∈ Ap(�d). Then the Hardy-Littlewood maximal function

operator M restricts to a bounded (sublinear) operator on Lp(�d,w) of norm .p,d [w]
1

p−1

Ap
.

Via a combination of this theorem with Propositions D.1.2 and D.1.4, the Lebesgue domi-
nated convergence theorem gives:

Proposition D.2.5. Let X be a Banach space, p ∈]1,∞[ and w ∈ Ap(�d). Let φ ∈ Cc(�d) be
such that φ ≥ 0 and

∫
�d φ(x)dx = 1. For every f ∈ Lp(�d,w; X) we have f = limt→∞ f ∗φt both

in Lp(�d,w; X) and pointwise almost everywhere.

Some more results which are needed:

Lemma D.2.6. Let X be a Banach space, p ∈ [1,∞[, and w ∈ A∞(�d). Then C∞c (�d; X) is
dense in Lp(�d,w; X).

Lemma D.2.7. Let p ∈]1,∞[ and w ∈ Ap. Then there is constant C ∈]0,∞[ such that for all
x ∈ �d, ∫

�d
w(y)(1 + |x − y|)−dpdy ≤ C

∫
B(x,1)

w(y)dy.

Corollary D.2.8. Let w ∈ A∞(�d). Then there exists an L ∈ � such that∫
�d

w(y)(1 + |y|2)−Ldy < ∞.

Lemma D.2.9. Let p ∈]1,∞[ and w ∈ Ap(�). Then there exists a constant Cp,w ∈]0,∞[ such
that, for all g ∈ Lp(�+,w),∣∣∣∣∣∣

∣∣∣∣∣∣y 7→
∫
�+

|g(ỹ)|
y + ỹ

dỹ

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp(�+,w)

≤ Cp,w ||g||Lp(�+,w) .

The class of Ap-weights are not only characterized by the boundedness of the Hardy-
Littlewood maximal function operator (on the corresponding weighted Lp-space), but also by
the boundedness of each of the Riesz transforms. We state this fact in Fourier analytic terms,
which is more convenient for Chapter 4.

Theorem D.2.10. Let w ∈ W(�d) and p ∈]1,∞[.

(i) If, for each j ∈ {1, . . . , d},

C∞c (�d) −→ C∞0 (�d), f 7→ F −1
[(
ξ 7→ ı

ξ j

|ξ|

)
f̂
]

(takes its values in Lp(�d,w) and) extends to a bounded linear operator R j on Lp(�d,w),
then we have w ∈ Ap(�d). Moreover, there exists a function C : [0,∞[d−→ [0,∞[
(independent of w) which is increasing in each of its variables such that

[w]Ap ≤ C
(
||R1||B(Lp(�d ,w)) , . . . , ||Rd||B(Lp(�d ,w))

)
.
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(ii) If w ∈ Ap(�d), then

S(�d) −→ C∞0 (�d), f 7→ F −1
[(
ξ 7→ ı

ξ j

|ξ|

)
f̂
]

(takes its values in Lp(�d,w) and) extends to a bounded linear operator R j on Lp(�d,w).
Moreover, there exists an increasing function C : [0,∞[−→ [0,∞[ (independent of w)
such that

∣∣∣∣∣∣R j

∣∣∣∣∣∣
B(Lp(�d ,w))

≤ [w]Ap , j = 1, . . . , d.

In the Ap-condition (D.3) the supremum is taken over all cubes in �d with sides parallel to
the coordinate axes. Taking the supremum over the much larger collection of all rectangles in
�d with sides parallel to the coordinate axes, we arrive at the more restrictive Arec

p -condition:

Definition D.2.11. Let p ∈]1,∞[. A weight w on �d is said to be of class Arec
p if

[w]Arec
p := sup

R

(?
R

w(x)dx
) (?

R
w(x)−1/(p−1)dx

)p−1

< ∞, (D.5)

where the supremum is taken over all rectangles R in �d with sides parallel to the coordinate
axes. We also say that w is an (Muckenhaupt) Arec

p -weight and the number [w]Arec
p is called the

(Muckenhaupt) Arec
p -characteristic constant of w.

For the power weights from Example D.2.12 we have:

Example D.2.12.
(i) Let a ∈]−d,∞[ and define w ∈ W(�d) by w(x) := |x|a. Given p ∈]1,∞[, it holds that w ∈ Ap

if and only if a ∈] − 1, p − 1[.

(ii) Let a ∈] − 1,∞[ and define w ∈ W(�d) by w(x) := |x1|
a (x = (x1, . . . , xd) ∈ �d). Given

p ∈]1,∞[, it holds that w ∈ Ap if and only if a ∈] − 1, p − 1[.

The following simple characterization of the class Arec
p is very useful:

Lemma D.2.13. Let w ∈ W(�d). Then the following are equivalent:

(i) w ∈ Arec
p (�d).

(ii) There exists a constant C ≥ 1 such that, for every j ∈ {1, . . . , d} and almost every
(x1, . . . , x j−1, x j+1, . . . , xd) in�d, w(x1, . . . , x j−1, · , x j+1, . . . , xd) ∈ Ap(�) with Ap-characteristic
constant ≤ C.

Moreover, in this situation the smallest such constant C ≥ 1 equals [w]Arec
p .

Combining Theorem D.2.10 and Lemma D.2.13, the following is not difficult to see:

Proposition D.2.14. Let w ∈ W(�d). Then we have w ∈ Arec
p (�d) if and only if

C∞c (�d) −→ C∞0 (�d) ↪→ S′(�d; X), f 7→ F −1[1[0,∞[d f̂ ]

(takes its values in Lp(�d,w) and) extends to a bounded linear operator R on Lp(�d,w), called
the Riesz projection. Moreover, in this situation we have R f = F −1[1[0,∞[d f̂ ] for every f ∈
S(�d).
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Appendix E

Banach Space Theory

The material from this appendix is taken from the book [57], in which one of the main themes
is the use of randomization and martingale techniques in Banach space-valued analysis.

E.1 Random Sums

E.1.1 Random Variables
Let X be a Banach space. An X-valued random variable is an X-valued strongly measurable
function ξ on some probability space (Ω,F ,�). The underlying probability space (Ω,F ,�) will
always be considered fixed, and when several random variables are considered simultaneously
we will always assume them to be defined on the same probability space (Ω,F ,�) unless
otherwise stated.

Recall that every strongly measurable X-valued function is Borel measurable. In particular,
we may define define the distribution of an X-valued random variable ξ as the Borel probability
measure µξ on X given by

µξ(B) := �(ξ ∈ B) = �(ξ−1(B)), B ∈ B(X).

Two X-valued random variables ξ1 and ξ2 are identically distributed when µξ1 = µξ2 .
An X-valued random variable ξ is called:

• symmetric, if ξ and εξ are identically distributed for all unimodular scalars ε (i.e. ε ∈ �
with |ε| = 1)

• real-symmetric, if ξ and −ξ are identically distributed.

Let I be an index set. A collection {ξi}i∈I of X-valued random variables is called independent
if for all choices of distinct indices i0, . . . , iN ∈ I and all Borel sets B0, . . . , BN ⊂ X we have

�(ξi0 ∈ B0, . . . , ξiN ∈ BN) =

N∏
n=0

�(ξin ∈ Bn)

A �-valued random variable ε is called a Rademacher random variable if it is uniformly
distributed in {z ∈ � : |z| = 1}. A Rademacher sequence is a sequence of independent
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Rademacher variables (εn)n∈�. If (εn)n∈� is a Rademacher sequence and (εn)n∈� a sequence of
unimodular scalars, then (εnεn)n∈� is a Rademacher sequence again.

Throughout this appendix we fix a Rademacher sequence (εn)n∈� (on the probability space
(Ω,F ,�)). All notions that will be defined in terms of this Rademacher sequence (εn)n∈� are
independent of this particualr choice because any two Rademacher sequences are identically
distributed.

Lemma E.1.1. Let ξ and η be X-valued random variables. If η is real-symmetric and indepen-
dent of ξ, then for all p ∈ [1,∞] we have

||ξ||Lp(X) ≤ ||ξ + η||Lp(X) .

Proposition E.1.2 (Kahane’s contraction principle). Let p ∈ [1,∞] and let (ξn)n=0N be a se-
quence of independent and (real)-symmetric random variables in Lp(Ω; X). Then, for all scalar
(real) sequences (an)N

n=0 we have∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

anξn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Ω;X)

≤ max
0≤n≤N

|an|

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

ξn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ .

E.1.2 The Kahane-Khintchine Ineqalities

Theorem E.1.3 (Kahane-Khintchine). For all q, p ∈ [1,∞[ there exists a constant κq,p such
that, for all N ∈ N and x0, . . . , xN ∈ X,∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
N∑

n=0

εnxn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lq(Ω;X)

≤ κq,p

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

εnxn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Ω;X)

.

The main point of this theorem is the case 1 ≤ p < q < ∞. For 1 ≤ q ≤ p < ∞ the
above estimate simply holds true with constant 1 by Hölder’s inequality. Since (εn)n∈� is an
orthonormal sequence in L2(Ω), for X = � we have∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
N∑

n=0

εnxn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω)

=

 N∑
n=0

|xn|
2

1/2

for all N ∈ �, x0, . . . , xN . Combining this observation with the Kahane-Khintchine inequalities
and Fubini, it can be shown that:

Proposition E.1.4. Let (S ,A, µ) be a measure space and let q ∈ [1,∞[. Then, for all N ∈ �,
x0, . . . , xN ∈ X, and p ∈ [1,∞[, we have the estimate

1
c

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
 N∑

n=0

|xn|
2

1/2
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lq(S )

≤

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

εnxn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Ω;Lq(S ))

≤ C

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
 N∑

n=0

|xn|
2

1/2
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lq(S )

with c = κ2,qκq,p and C = κp,qκq,2.
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E.1.3 The Space Radp(X)

Let X be a Banach space and let p ∈ [1,∞[. We define Radp(X) as the space of all sequences
(xn)n∈� in X for which the series

∑∞
n=0 εnxn converges in Lp(Ω; X), endowed with the norm

||(xn)n∈�||Radp(X) :=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞∑

n=0

εnxn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Ω;X)

= lim
N→∞

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

εnxn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Ω;X)

= sup
N≥0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

εnxn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Ω;X)

, (E.1)

which turns it into a Banach space. Here the third identity is a consequence of Lemma E.1.1.
We can identify Radp(X) with a closed subspace of Lp(Ω; X) in the natural way. Note that, by
Lemma E.1.1 and the triangle inequality,

`1(�; X) ↪→ Radp(X) ↪→ `∞(�; X).

We would like to remark that the finiteness of the supremum on the right side of (E.1)
does in general not imply the convergence of the sum

∑∞
n=0 εnxn in Lp(Ω; X). For example,

for X = c0 and (xn)n∈� = (en)n∈� the standard unit basis in c0, the supremum equals 1 but
the corresponding series certainly does not converge in Lp(Ω; c0). By a theorem of Hoffmann-
Jorgensen and Kwapien, c0 is in a sense the only counterexample: If X does not contain a closed
subspace isomorphic to c0, then the finiteness of the supremum does imply the convergence of
the corresponding series.

Let (S ,A , µ) be a σ-finite measure space. By Fubini we have the canonical isometric
isomorphism

Lp(S ; Radp(X)) ' Radp(Lp(S ; X)). (E.2)

As a consequence of the Kahane-Khintchine inequalities (cf. E.1.3), we have:

Lemma E.1.5. For all p, q ∈ [1,∞[ we have Radp(X) = Radq(X) with an equivalence of norms.
In fact we have

1
κp,q
||x||Radp(X) ≤ ||x||Radq(X) ≤ κq,p ||x||Radp(X)

, x = (xn)n∈� ∈ Radp(X) = Radq(X).

This lemma motivates us to write Rad(X) := Rad2(X).

E.2 Type and Cotype

Let H be a Hilbert space. As usual, we denote by (εn)n∈� a Rademacher sequence on some
probability space (Ω,F ,�). Then we have, for all N ∈ � and h0, . . . , hN ∈ H,

 N∑
n=0

||xn||H

1/2

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

εnxn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω;H)

. (E.3)
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Indeed, ∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

εnxn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

L2(Ω;H)

= �

 N∑
n=0

εnhn,

N∑
n=0

εnhn


H

= �

N∑
n=0

N∑
m=0

εnε̄m[hn, hm]H

=

N∑
n=0

N∑
m=0

�(εnε̄m)[hn, hm]H =

N∑
n=0

N∑
m=0

δn,m[hn, hm]H

=

N∑
n=0

[hn, hn]H =

N∑
n=0

||hn||
2 .

The equality (E.3) can be interpreted as a generalization of the parallelogram law. The
parallelogram characterizing the norms that are induced by an inner-product, this suggests to
introduce the notions of type and cotype as measures of how far a Banach space X is being
away from a Hilbert space.

Definition E.2.1. Let X be a Banach space, p ∈ [1, 2], and q ∈ [2,∞].

(i) The space X is said to have type p ∈ [1, 2] if there exists a constant C > 0 such that for
all N ∈ � and x0, . . . , xN ∈ �∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
N∑

n=0

εnxn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Ω;X)

≤ C

 N∑
n=0

||xn||
p
X

1/p

.

(ii) The space X is said to have type q ∈ [2,∞] if there exists a constant C > 0 such that for
all N ∈ � and x0, . . . , xN ∈ N∑

n=0

||xn||
q
X

1/q

≤ C

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

εnxn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lq(Ω;X)

,

with the obvious modifaction for q = ∞.

The least admissible constants in (i) and (ii) are called the type p constant and cotype q constant
of X and will be denoted by τp,X and cq,X, respectively.

From the case N = 0 we see that τp,X ≥ 1 and cq,X ≥ 1. By the Kahane-Khintchine in-
equalites (cf. Theorem E.1.3), the exponents (with the exception of q = ∞) in the Rademacher
sums in (i) and (ii) could be replaced by any exponent.

It is not difficult to check that the inequalities defining type and cotype cannot be satisfied
for any p > 2 and q < 2, respectively, explaining the restrictions p ∈ [1, 2] and q ∈ [2,∞].

Let us state some basic facts:

(a) Every Banach space X has type 1 and cotype∞, with constants τ1,X = 1 and c∞,X = 1.

(b) If X has type p, then it has type σ for every σ ∈ [1, p].

(c) If X has cotype q, then it has cotype r for every r ∈ [q,∞[.
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(d) A Banach space X is isomorphic to a Hilbert space if and only if it has type 2 and cotype
2.

(e) If X is a Banach space with type p and cotype q, (S ,A, µ) a σ-finite measure space, and
r ∈ [1,∞], then Lr(S ; X) has type min{p, r} and cotype max{q, r}.

Here (a) is immediate from the triangle inequality (type 1 assertion) and Lemma E.1.1
(cotype ∞ assertion), (b) and (c) follow from Hölder’s inequality, and the direct implication in
(d) is a consequence of (E.3). The reverse implication in (d) is a deep fact due to Kwapién.

Motivated by (a), we say that X has non-trivial type if X has type p for some p ∈]1, 2], and
finite cotype if it has cotype q for some q ∈ [2,∞[.

Next we come to a deep fact which generalizes Proposition E.1.4:

Theorem E.2.2 (Khintchine-Maurey). Let E be a Banach function space with finite cotype.
Then there exists a constant C > 0 such that for all N ∈ � and x0, . . . , xN ∈ X,

1
κ2,1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
 N∑

n=0

|xn|
2

1/2
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ ≤ �

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

εnxn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ C

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
 N∑

n=0

|xn|
2

1/2
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ ,

where κ2,1 is as in the Kahane-Khintchine inequality (cf. Theorem E.1.3).

E.3 R-boundedness
Definition E.3.1. A collection T ⊂ B(X) is said to be R-bounded if there exists a constant
C ≥ 0 such that for all sequences (Tk)K

k=0 in T and (xk)K
k=0 ⊂ X, K ∈ �, we have∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
K∑

k=0

εkTkxk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω;X)

≤ C

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

K∑
k=0

εkxk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω;X)

.

The least admissible constant C is called the R-bound of T and is denoted by R(T ).

The Kahane-Khintchine inequality (cf. Theorem E.1.3) show that the exponents 2 may be
replaced by any other exponents p, q ∈ [1,∞[: A collection T ⊂ B(X) is R-bounded if there
exists a constant C ≥ 0 such that for all sequences (Tk)K

k=0 in T and (xk)K
k=0 ⊂ X, K ∈ �, we

have ∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

K∑
k=0

εkTkxk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(Ω;X)

≤ C

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

K∑
k=0

εkxk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lq(Ω;X)

.

Denoting by Rp,q(T ) the least admissible constant C ≥ 0 in this inequality, we have Rp,q(T ) ≤
κp,2κ2,qR(T ) and Rp,q(T ) ≤ κ2,pκq,2Rp,q(T ). We will write Rp(T ) := Rp,p(T ). Furthermore,
we shall use the convention to write Rp,p(T ) = ∞ for collections T ⊂ B(X) which are not
R-bounded.

Remark E.3.2.

(i) If T ⊂ B(X) is R-bounded, then T is uniformly bounded with supT∈T ||T || ≤ Rp(T ) (just
take K = 0 in the definition).
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(ii) It can be shown that it is enough to consider all possible choices of distinct operators
T0, . . . ,TK , K ∈ �, in the definition of R-boundedness.

Example E.3.3 (Scalar multiples of the identity.). Let X be a Banach space and let A ⊂ �.
Then {aI : a ∈ A} is R-bounded if and only if A is bounded, in which case R{aI : a ∈ A} =

sup{|a| : a ∈ A}. This follows from a combination of the Kahane contraction principle (cf.
Proposition E.1.2) and Remark E.3.2.

From the identity (E.3) it follows that in a Hilbert space R-boundedness coincides with
uniform boundedness. Using Kwapien’s isomorphic characterization of Hilbert spaces as the
only Banach spaces with both type 2 and cotype 2, the reverse can be shown to hold true as
well:

Proposition E.3.4. A Banach space X is isomorphic to a Hilbert space if and only if every uni-
formly bounded family inB(X) isR-bounded. In this situation we haveR(T ) ≤ τ2,Xc2,X supT∈T ||T ||
for every uniformly bounded family T in B(X).

Some basic properties of R-bounds:

Proposition E.3.5. Let X be a Banach space.

(i) Suppose that S,T ⊂ B(X) are R-bounded, then the families S ∪ T , S + T , and ST are
R-bounded as well and for all p ∈ [1,∞[ we have

Rp(S ∪ T ) ≤ Rp(S) + Rp(T )
Rp(S + T ) ≤ Rp(S) + Rp(T )
Rp(ST ) ≤ Rp(S)Rp(T ).

(ii) If T ⊂ B(X) is an R-bounded family, then so are its convex hull and absolute convex hull.
Moreover, for all p ∈ [1,∞[ we have

Rp(T ) = Rp(conv(T )) = Rp(absconv(T )).

(iii) If T ⊂ B(X) is an R-bounded family, then its closures T
WOT

and T
SOT

in the weak oper-
ator topology (WOT) and strong operator topology (SOT), respectively, are R-bounded
as well, and for all p ∈ [1,∞[ we have

Rp(T ) = Rp(T
WOT

) = Rp(T
SOT

).

(iv) If T ⊂ B(X∗) is an R-bounded family, then its closure T
W∗OT

in the weak-star operator
topology (W∗OT) is R-bounded as well, and for all p ∈ [1,∞[ we have

Rp(T ) = Rp(T
W∗OT

).

The following simple formulation of R-boundedness in terms of the space Rad(X) is some-
times very useful:
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Lemma E.3.6. Let X be a Banach space and T ⊂ B(X). Denote by T̃ ⊂ B(Rad(X)) the
collection of all finitely non-zero T̃ = (Tn)n∈� sequences in T̃ , where the action of T̃ = (Tn)n∈�

on x = (xn)n∈� ∈ Rad(X) is given in the obvious way by T̃ x := (Tnxn)n∈�. Then T is R-bounded
if and only if T̃ is uniformly bounded, in which case we have Rp(T ) = supT̃∈T̃

∣∣∣∣∣∣T̃ ∣∣∣∣∣∣
B(Radp(X))

.

Theorem E.3.7. Suppose that E has non-trivial type1 and let T ⊂ B(E) be an R-bounded
collection. Then the collection of adjoints T ∗ = {T ∗ | T ∈ T } ⊂ B(E∗) is R-bounded as well.

Lemma E.3.8. Let X be a Banach space, (S ,A , µ) a measure space, and p ∈ [1,∞[. If
T ⊂ B(Lp(S ; X)) is R-bounded and r, s ∈ [0,∞[, then

{mφTmψ : T ∈ T , φ, ψ ∈ L∞(S ), ||φ||∞ ≤ r, ||ψ||∞ ≤ s} ⊂ B(Lp(S ; X))

is R-bounded with Rp-bound ≤ rRp(T )s.

Proposition E.3.9. Let X be a Banach space, let H : G −→ B(X) be a holomorphic mapping
on the open set G ⊂ �, and let K ⊂ G be a compact subset. Then H(K) ⊂ B(X) is R-bounded.

Lemma E.3.10. Let X be a Banach space, (S ,A , µ) a measure space, and p ∈]1,∞[. Suppose
that K ⊂ B(Lp(S ; X)) is a family of kernel operators in the sense that

K f (x) =

∫
S

k(x, x′) f (x′) dµ(x′), x ∈ S , f ∈ Lp(S ; X),

for each K ∈ K , where the kernels k : S × S −→ B(X) are strongly measurable such that

Rp{k(x, x′) : k ∈ K} ≤ κ0(x, x′), x, x′ ∈ S ,

for some measurable scalar kernel κ0 : S ×S −→ � which gives rise to a well-defined bounded
linear kernel operator K0 on Lp(S ). Then K is R-bounded with Rp(K) ≤ ||K0||B(Lp(S )).

Proof. See [25, Proposition 4.12]. �

E.4 Property (α)

Let (ε′n)n∈� and (ε′′n )n∈� be independent Rademacher sequences on probability spaces (Ω,F ′,�′)
and (Ω,F ′′,�′′), respectively.

Definition E.4.1. A Banach space X is said to have property (α) (or Pisier’s contraction prop-
erty if there exists a constant C ≥ 0 such that∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
M∑

m=0

N∑
n=0

am,nε
′
nε
′′
m xm,n

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω′×Ω′′;X)

≤ C|a|∞

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

M∑
m=0

N∑
n=0

ε′nε
′′
m xm,n

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω′×Ω′′;X)

for all scalars am,n ∈ � and vectors xm,n ∈ X; m = 0, . . . ,M and n = 0, . . . ,N. The least
admissible constant C is denoted by αX.

1Or equivalently, assume that X is K-convex, which is a notion defined in terms of the boundedness of the
Rademacher projctions.
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It can be shown that the exponent 2 can be replaced by any other exponent p ∈ [1,∞[. The
resulted constants will be denoted by αp,X.

Example E.4.2.

(i) Every Hilbert space has property (α).

(ii) Every Lp-space (p ∈ [1,∞[) has property (α).

(iii) A Banach lattice has property (α) if and only if it has finite cotype.

(iv) The Schatten class C p(`2) has property (α) if and only if p = 2.

Proposition E.4.3. Let (S ,A , µ) be a measure space let and p ∈ [1,∞[ be such that Lp(S ) is
non-trivial. If X is a Banach space with property (α), then Lp(S ; X) has property (α) as well
with

αp,Lp(S ;X) = αp,X.

The reason for considering property (α) in this thesis is that it allows us to bootstrap R-
boundedness:

Proposition E.4.4. Let X be a Banach space with property (α) and let T ⊂ B(X). In the
notations of Lemma E.3.6, if T is R-bounded in B(X), then so it T̃ is R-bounded in B(Rad(X)).
Moreover, there exists a constant C ≥ 0, independent of T , such that R(T̃ ) ≤ CR(T ).

E.5 UMD Spaces

In this section we come to the so-called UMD spaces, where UMD stands for the uncondition-
ality of martingale differences. Besides the direct martingale theoretic definition (see Defini-
tion/Theorem E.5.3), it is also has equivalent analytic and geometric definitions (see Theorem
E.5.7).

A measure space (S ,A , µ) endowed with a σ-finite filtration � = (Fn)n∈� will be called a
σ-finite filtered measure space.

Definition E.5.1. Let p ∈]1,∞[ and let (S ,A ,�, µ) be σ-finite filtered measure space. A
Banach space X is said to have the UMDp property with respect to the σ-finite filtered measure
space (S ,A ,�, µ) if there exists a constant β ≥ 0 such that∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
N∑

n=0

εndn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(S ;X)

≤ β

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

dn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(S ;X)

for all finite martingale difference sequences (dn)N
n=0 with respect to � in Lp(S ; X) and all se-

quences (εn)N
n=0 of unimodular scalars in �.

With a simple randomization argument, we see that UMDp can also be described as follows:
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Lemma E.5.2. Let p ∈]1,∞[ and let (S ,A ,�, µ) be σ-finite filtered measure space. Then X
has the UMDp property with respect to (S ,A ,�, µ) if and only if∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
N∑

n=0

εndn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lq(Ω;Lp(S ;X))

hq β

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N∑
n=0

dn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Lp(S ;X)

for all finite martingale difference sequences (dn)N
n=0 with respect to � in Lp(S ; X) and all q ∈

[1,∞[.

Definition/Theorem E.5.3. A Banach space X is said to have the UMD property (or is called
a UMD space) if one of the following equivalent conditions is satisfied:

(i) X has the UMDp property with respect to everyσ-finite filtered measure space (S ,A ,�, µ)
space for some p ∈]1,∞[.

(ii) X has the UMDp property with respect to everyσ-finite filtered measure space (S ,A ,�, µ)
space for every p ∈]1,∞[.

Example E.5.4.
(i) Every Hilbert space is a UMD space.

(ii) Every closed subspace of a UMD space is a UMD space.

(iii) Lp-spaces have the UMD property for p ∈]1,∞[.

Proposition E.5.5. Let X be a UMD space. Then

(i) X is reflexive;

(ii) X∗ is a UMD space

(iii) X has non-trivial type;

(iv) X has finite cotype.

Proposition E.5.6. Let F be a non-trivial Banach function space on a σ-finite measure space
and let X be a non-trivial Banach space. The Köthe-Bochner space F(X) has the UMD property
if and only if both X and F have the UMD property. As a consequence, if (S ,A , µ) is a non-
trivial σ-finite measure space and p ∈ [1,∞[, then Lp(S ; X) is a UMD space if and only if X is
a UMD space.

Theorem E.5.7. For a Banach space X the following are equivalent:

(i) X is a UMD space.

(ii) X is of class HT , i.e. the Hilbert transform H ∈ B(Lp(�)) has an X-valued extension
HX ∈ B(Lp(�; X)) for some/every p ∈]1,∞[.

(iii) The Riesz projection is bounded on Lp(�d; X), i.e.

R : S(�d; X) −→ L∞(�d; X) ↪→ S′(�d; X), f 7→ F −1[1]0,∞[d f̂ ],

takes its values in Lp(�d; X) and has a (necessarily unique) extension to a bounded linear
operator R on Lp(�d; X).

(iv) X is ζ-convex.2.

2For the definition of ζ-convexity we refer to [57]
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