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Abstract

Research on the phase transition and phase diffusion between the Mott-insulator and
superfluid phase has not yet been done extensively for the case of magnons. In this thesis
we start from a model Hamiltonian for an easy-plane magnetic insulator and construct the
phase diagram describing the transition between the Mott insulator and superfluid phase.
Finally, we consider phase diffusion of the Bose-Einstein condensate in the superfluid phase
and find that phase diffusion indeed occurs in a finite-sized system.
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1 Introduction

Magnons are quasiparticles, meaning they do not consist of ordinary matter, but instead corre-
spond to collective excitations in the magnetization. They were first introduced by Felix Bloch
[1] in order to better understand the appearance of ordered spin states in ferromagnets at zero
applied magnetic field and zero temperature. At absolute zero temperature, a system of atomic
particles in a ferromagnet has its spin completely aligned to maximize the net magnetization and
minimize the exchange interactions. When the temperature is increased, spins start to deviate
randomly from the common direction defined by the ground state of the system. If one were
to treat the perfectly magnetized state at T = 0 as the vacuum state of the system, the T 6= 0
state with increased internal energy and decreased net magnetization can be treated as a gas
of quasiparticles, i.e. magnons. According to the laws of quantum mechanics, the change of a
single particle’s spin angle is equal to the partial shift of the spin angles of all particles in the
system. This partial disturbance then travels through the lattice like a wave of discrete energy
transferal. We may call this wave a spin wave, because the magnetization is induced by the spins
of the particles. This concept is illustrated in Fig.1 below, where is shown how the spins align
with the magnetic field after a strong pulse and induce changes in orientation of the surrounding
spins, effectively creating a spin wave. Thus we can conclude that magnons are quantized spin
waves. Holstein and Primakoff [2] then showed that magnons behave like weakly interacting
quasiparticles (bosons) obeying Bose-Einstein statistics, a feature we will be using later on.

The kind of phase transition we are interested in, are quantum phase transitions. These are
defined as phase transitions between two quantum phases, which are phases of matter at zero
temperature. Accessing a quantum phase transition can only be done by varying a physical
parameter of the system at zero temperature. A quantum phase transition typically describes
a sudden change in the ground state of a many-particle system, i.e. a spontaneous break of
symmetry in the Hamiltonian, due to the fact that thermal fluctuations are frozen out and
quantum fluctuations prevail [3][4]. The latter is an important requirement, as we will see later
on.

Since magnons can be considered bosons and obey Bose-Einstein statistics, it is theoretically
possible to achieve Bose-Einstein condensation of magnons cooled to temperatures near abso-

Figure 1: Magnon propagation after a ultrashort terahertz magnetic field pulse (red)- the magnon
is shown by the blue line connecting the spin tips. Taken directly from [5]
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lute zero. A Bose-Einstein condensate is described as a coherent state in which the quantum
mechanical operators have nonzero expectation values and has a fixed phase [6]. Especially the
latter argument is of importance in our section concerning phase diffusion. In this condensate, the
magnons occupy the same lowest energy state which results in the fact that quantum phenomena
become apparent at a macroscopic scale.

One of such macroscopic phenomena that could become apparent is the quantum phase
transition between the Mott insulator and superfluid phase. As described earlier, this phase
transition is induced at zero temperature and can only be accessed through varying the magnetic
field B (our adjustable physical parameter). This has been done before for a system of cold atoms,
but it has never been shown in the particular case of magnons [7]. Therefore one of the goals
of this thesis is to create such a phase diagram in the case of magnons. Another goal of this
thesis is researching phase diffusion in a magnon Bose-Einstein condensate. Typically, phase
diffusion is only measurable indirectly by determining the phase difference obtained through
an interference pattern. However, as will become apparent in the last section, the number of
magnons in our system and the phase of those magnons are conjugate variables and and for
our model the magnon phase corresponds to the spin direction in the x-y plane. This gives the
oppurtunity to measure the phase directly.

This thesis will be divived into several sections, starting with the theoretical model showing
what Hamiltonian governs our system and how this must be transformed to aptly describe the
occurence of magnons. Next we research the effects of Bose-Einstein condensation of magnons
followed by a couple of phase diagrams which are consistent with making particular approxima-
tions to the earlier derived Hamiltonian. In the following section we go into further detail on
the construction of the phase diagram of the Mott insulator to superfluid phase transition. In
the final chapter we discuss the phenomenon called phase diffusion in Bose-Einstein condensates
and derive the equations of motion for the phase of the condensate. Finally we finish with the
conclusion, extracting the most important discoveries throughout this thesis.

2 Model

In this section we determine several representations of our magnon system. This way, we express
the dynamics of our system in terms of different variables, allowing us to apply this model in
various situations.

2.1 The Holstein-Primakoff transformation

The model we use throughout this thesis is the easy-plane ferromagnet described by the Hamil-
tonian given in Eq.1. This Hamiltonian describes a three-dimensional lattice of spin particles
subject to an external magnetic field B pointing in the −z direction.

Ĥ = − J

2~2

∑
〈i,j〉

~Si·~Sj +
K

2~2

∑
i

(Szi )2 +
B

~
∑
i

Szi . (1)

Where i, j denote positions on the lattice, 〈i, j〉 describes a neighbouring pair of spins. The
parameters J and K, both real and positive, correspond respectively to the interaction energies
between sites and per site.

Since we are interested in the behaviour of magnons, we have to transform Ĥ in such a
way that it is expressed in terms of particle rather than spin operators. To that end we
apply the Holstein-Primakoff transformation to our Ĥ in order to map the angular momentum
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operators (corresponding to spin) to the bosonic creation and annihilation operators, where
the latter describe the creation and annihilation of magnons, respectively. We introduce the
following relations:

S+
i = ~a†i

√
2S − a†iai, S−i = ~ai

√
2S − a†iai, Szi = ~(a†iai − S), (2)

where ai and a†j satisfy the commutation relation [ai, a
†
j ] = δi,j , with δi,j being the familiar

Kronecker delta. We can write: [ai, a
†
i ] = 1, which is a result we will be using later on.

Because S is relatively large compared to a†iai in the case we are interested in, we can Taylor
expand the expressions for S+

i and S−i up to first order in powers of 1
S to obtain:

S+
i = ~a†i

√
2S

√
1− a†iai

2S
≈ ~
√

2Sa†i , S−i = ~ai
√

2S

√
1− a†iai

2S
≈ ~
√

2Sai. (3)

We can now rewrite our Ĥ in terms of S+ and S− after which we can substitute the above
mentioned equations to eventually yield the following expressions:

Ĥ =− J

2~2

∑
〈i,j〉

(1

2
(S+
i S
−
j + S−i S

+
j ) + Szi S

z
j

)
+
K

2~2

∑
i

(Szi )2 +
B

~
∑
i

Szi (4a)

≈− J

2~2

∑
〈i,j〉

~2
(
S(a†iaj + aia

†
j) + (a†iai − S)(a†jaj − S)

)
+
K

2~2

∑
i

~2(a†iai − S)2 (4b)

+
B

~
∑
i

~(a†iai − S).

Which can be further simplified to yield:

Ĥ =− J

2

∑
〈i,j〉

(
S(a†iaj + aia

†
j) + a†iaia

†
jaj − S(a†iai + a†jaj) + S2

)
(5)

+
K

2

∑
i

(
a†iaia

†
iai − 2Sa†iai + S2

)
+B

∑
i

(
a†iai − S

)
=− J

2

∑
〈i,j〉

(
2S(a†iaj − a

†
iai) + a†iaia

†
jaj

)
+
K

2

∑
i

(
a†iaia

†
iai − 2Sa†iai

)
+B

∑
i

a†iai (6)

− 1

2
JNs(Ns − 1)S2 +

1

2
KNsS

2 −BNsS.

Here Ns equals the total number of lattice sites. If we now neglect the constant terms and
rearrange the remaining ones, we retrieve in essence the Bose-Hubbard Hamiltonian:

Ĥ =− J

2

∑
〈i,j〉

(
2S(a†iaj − a

†
iai) + a†ia

†
jaiaj

)
+
(K

2
(1− 2S) +B

)∑
i

a†iai (7)

+
K

2

∑
i

a†ia
†
iaiai.

Where we’ve made use of the relation following from [ai, a
†
j ] = δi,j , in particular that aia

†
i =

1 + a†iai, in order to arrange the terms according to the normal ordering convention. In this
convention the creation operators are ordered left of their annihilation counterparts.

4



2.2 Fourier transform

We are now ready to Fourier transform this equation for our system using the identities ai =
1√
N

∑
k a~ke

i~k·~Ri and a†i = 1√
N

∑
~k a
†
~k
e−i

~k·~Ri , where ~Ri is a three-dimensional vector representing

the position in Cartesian coordinates of a particle on lattice site i and ~k is the three-dimensional
wave vector. Therefore we can write ~Ri = αiax̂+ βiaŷ+ γiaẑ (α, β, γ ∈ Z) and ~k = kxx̂+ ky ŷ+
kz ẑ. The constant a represents the spacing between the lattice points. Writing out our terms
separately we obtain:∑

〈i,j〉

a†iaj =
1

2N

∑
α,β,γ

∑
~k,~k′

a†~k
a~k′e

−ia(kxα+kyβ+kzγ) (8a)

(
e−ia(kx(α+1)+kyβ+kzγ) + e−ia(kx(α−1)+kyβ+kzγ) + e−ia(kxα+ky(β+1)+kzγ)

+ e−ia(kxα+ky(β−1)+kzγ) + e−ia(kxα+kyβ+kz(γ+1)) + e−ia(kxα+kyβ+kz(γ−1))
)

=
1

2N

∑
α,β,γ

∑
~k,~k′

a†~k
a~k′e

iαa(k′x−kx)eiβa(k′y−ky)eiγa(k′z−kz) (8b)

(
eik
′
xa + e−ik

′
xa + eik

′
ya + e−ik

′
ya + eik

′
za + e−ik

′
za
)

=
1

2

∑
~k,~k′

a†~k
a~k′δ~k,~k′

(
eik
′
xa + e−ik

′
xa + eik

′
ya + e−ik

′
ya + eik

′
za + e−ik

′
za
)

(8c)

=
∑
~k

a†~k
a~k
(
cos(kxa) + cos(kya) + cos(kza)

)
. (8d)

Note that we used that
∑
〈i,j〉 a

†
iaj =

∑
i a
†
i (ai−1 + ai+1) in order to reduce the sum over

neighbouring pairs to one dependent only on lattice site i. We also used the following relation
in Eq.8b:

∑
α,β,γ e

iαa(k′x−kx)eiβa(k′y−ky)eiγa(k′z−kz) = Nδ~k,~k′ . The next term gives us:

∑
〈i,j〉

a†iai =
3

N

∑
α,β,γ

∑
~k,~k′

a†~k
a~k′e

−ia(kxα+kyβ+kzγ)e−ia(k′xα+k′yβ+k′zγ) (9a)

=
3

N

∑
α,β,γ

∑
~k,~k′

a†~k
a~k′e

iαa(k′x−kx)eiβa(k′y−ky)eiγa(k′z−kz) (9b)

= 3
∑
~k,~k′

a†~k
a~k′δ~k,~k′ = 3

∑
~k

a†~k
a~k. (9c)

Where the factor 3 in the foregoing equations arises due to the fact that in three dimensions the
sum runs over 6 pairs of spins and, in order to avoid double contributions, has to be divided
through by 2 resulting in a factor equal to 3. Analogous to the above, we can also write:∑

i

a†iai =
1

N

∑
α,β,γ

∑
~k,~k′

a†~k
a~k′e

iαa(k′x−kx)eiβa(k′y−ky)eiγa(k′z−kz) (10a)

=
∑
~k,~k′

a†~k
a~k′δ~k,~k′ =

∑
~k

a†~k
a~k. (10b)

Now that we have Fourier-transformed every term seperately, we can write down Eq.7 again, but
now in terms of a†k and ak. In this expression we have chosen to neglect the fourth-order terms
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in J and K.

Ĥ =
∑
~k

(
~ω~k +

K

2
(1− 2S) +B

)
a†~k
a~k, (11)

where ~ω~k = cos(kxa) + cos(kya) + cos(kza)− 3.

3 Bose-Einstein condensation of magnons and phase dia-
grams

In this chapter, we construct a phase diagram for Bose-Einstein condensation occurring in our
magnon system. We also study the behaviour of our system when we neglect the magnon-magnon
hopping and consider only a single spin of a lattice site. In this chapter, we

3.1 Constructing the phase diagram for BEC

Now that we have succesfully Fourier transformed our Hamiltonian, we can construct a BEC-
phase diagram of our system of magnons. This is accomplished by examining the behaviour of the
chemical potential µ of the system. Since it is not a priori clear what µ is, we have to calculate
the distribution function of our system first and compare it to the Bose-Einstein distribution
function (which governs bosons i.e. magnons) in order to identify the chemical potential in
Eq.11. To achieve this we introduce the dispersion relation Ω~k = ~ω~k + K

2 (1 − 2S) + B, our
Hamiltonian can then be written as:

Ĥ =
∑
~k

Ω~ka
†
~k
a~k, (12)

where we note that this expression is actually reminiscent of a sum over many harmonic oscillators

with frequencies
Ω~k
~ . We can then derive the energy states εn to be equal to:

εnk =
∑
~k

Ω~k(nk +
1

2
), (13)

where nk takes on integer values. We shift out the ground-state energy so our energy states are
given by εnk =

∑
~k Ω~knk.

Now we start by calculating the partition function of our system. We use the partition
function to find an expression for 〈U〉, which is obtained through the relation: 〈U〉 = − ∂

∂β lnZ.

Z =
∑
nk

e−βεnk =
∑
nk

e−β
∑
~k

Ω~knk =
∏
~k

∑
n

e−(βΩ~k)n =
∏
~k

1

1− e−βΩ~k
, (14)

〈U〉 =− ∂

∂β
ln
(∏

~k

1

1− e−βΩ~k

)
= − ∂

∂β

(∑
~k

ln
( 1

1− e−βΩ~k

))
(15)

=
∑
~k

Ω~ke
−βΩ~k

1− e−βΩ~k

(1− e−βΩ~k)2
=
∑
~k

Ω~ke
−βΩ~k

1− e−βΩ~k
=
∑
~k

Ω~k
eβΩ~k − 1

.

Due to the fact that the distribution function 〈N~k〉 of a system is directly related to its average
energy through the relation 〈U〉 =

∑
~k 〈N~k〉Ω~k, we can immediately extract that the distribution

function of our system is given by:

〈N~k〉 = 〈a†~ka~k〉 = (eβΩ~k − 1)−1 = (eβ(~ω~k+K
2 (1−2S)+B) − 1)−1. (16)
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1⁄2(2S-1)
0

T

B⁄K

BEC No BEC

Figure 2: BEC phase diagram of magnon system after Holstein-Primakoff transformation, with-
out magnon-magnon interactions

Now we compare our calculated distribution function to the one which should govern all bosons,
namely the Bose-Einstein distribution: f(ε~k) = (eβ(ε~k−µ) − 1)−1. Matching this with Eq.16 and
taking ε~k = ~ω~k we find that our chemical potential µ is given by:

µ = −K
2

(1− 2S)−B. (17)

Since the conditions for Bose-Einstein condensation of a purely bosonic system obeying Bose-
Einstein statistics depend on the chemical potential, we now have all the necessary information to
construct our phase diagram. When the chemical potential is greater than or equal to the lowest
single-particle energy state, which equals ~ω~k=0 = 0 in our case, Bose-Einstein condensation
occurs. If µ is less than 0, no Bose-Einstein condensation will take place. To summarize what
that means for our system of magnons, we write down the conditions followed by the phase
diagram below.

µ =


≥ 0 if B

K ≤ −
1
2 (1− 2S)⇒ BEC

< 0 if B
K > − 1

2 (1− 2S)⇒ No BEC

(18)

Therefore we have established a threshold for B
K at which Bose-Einstein condensation of our

system of magnons will occur. We note that this depends on spin only and is therefore indepedent
of temperature. The result is shown in Fig.2

3.2 Magnon behaviour in a single-spin problem at J = 0

In this section we are interested in how our system of magnons behaves when there are no
magnon-magnon interactions between lattice sites, thus taking J = 0. In doing this, we actually
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only have to look at a single lattice site, since the sites are now uncoupled. Therefore it is
sufficient to consider a single spin in our calculation and multiplying the final result by Ns,
yielding the correct answer for our uncoupled system of magnons.

As we saw in the previous calculations, the chemical potential µ is dependent on the mag-
netic field B. Since B is a parameter which is experimentally easily adjustable, we can vary
B to observe the changes in behaviour of our system. We already know that, according to the
approximations made in section 3.1, our system collapses to a Bose-Einstein condensate once a
certain threshold of B

K is passed. For that reason we construct another diagram, but now for

J = 0, expressed in terms of B
K for the sake of comparison.

The Hamiltonian for a single lattice site is given by:

Ĥ =
K

2~2
(Sz)2 +

B

~
Sz. (19)

Let us first consider T = 0. Since the Holstein-Primakoff transformation defines a relation
between the the spin and number of magnons, we want to make a diagram where we somehow
express the expectation value of the spin in the ẑ-direction in terms of B

K . That way we can
translate that diagram to obtain what we are after, namely a plot of the number of magnons in
our system. We know the eigenvalue equation for Sz: Sz|S,ms〉 = ~ms|S,ms〉. Using this, we
can evaluate our spin-Hamiltonian in this basis.

Ĥ|S,ms〉 =
K

2~2
(Sz)2|S,ms〉+

B

~
Sz|S,ms〉 (20)

=

(
K

2
(ms)

2 +Bms

)
|S,ms〉.

Here ms is the secondary quantum number which ranges from −S to S in integer steps.
Since we are interested in the expecation value of Sz at T = 0, we have to find the ground

state of our system, which we denote as |Ψ0〉. Thus in order to evaluate 〈Sz〉T=0, we must find
the value of ms,0, since 〈Sz〉T=0 = 〈Ψ0|Sz|Ψ0〉 = ~ms,0〈Ψ0|Ψ0〉 = ~ms,0. However, this ground
state is not the same in all regimes of B and therefore has different values of ms,0 corresponding
to the ground state in each of the domains.

To make this comprehensible, we compute the eigenvalues for S = 1 and S = 2 and highlight
the minimum values in each domain. For practical reasons, we divide through by K and imme-
diately use those eigenvalues to plot our diagram in terms of B

K . Since the magnetic field is an
easily adjustable parameter

Table 1: Eigenvalues for S=1
B
K 0 (0, 1

2 ) 1
2 > 1

2

ms

−1 1
2

1
2 −

B
K 0 1

2 −
B
K

0 0 0 0 0

1 1
2

1
2 + B

K 1 1
2 + B

K

Now that we know the ground states and corresponding values of ms in every domain, we
can evaluate 〈Sz〉T=0 for each one. As mentioned before, we can translate this result to obtain
a diagram for the number of magnons, 〈a†a〉.

〈a†a〉 =
〈Sz〉
~

+ S. (21)
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Table 2: Eigenvalues for S=2
B
K 0 (0, 1

2 ) 1
2 ( 1

2 , 1) 1 (1, 3
2 ) 3

2 > 3
2

ms

−2 2 2− 2BK 1 2− 2BK 0 2− 2BK −1 2− 2BK
−1 1

2
1
2 −

B
K 0 1

2 −
B
K − 1

2
1
2 −

B
K −1 1

2 −
B
K

0 0 0 0 0 0 0 0 0

1 1
2

1
2 + B

K 1 1
2 + B

K
3
2

1
2 + B

K 2 1
2 + B

K

2 2 2 + 2BK 3 2 + 2BK 4 2 + 2BK 5 2 + 2BK

- 3 - 2 - 1 0 1 2 3

- 2

- 1

0

1

2

3

4

5

B

K

<a†a>

Figure 3: 〈a†a〉 at T = 0 for a single spin-2 particle

In Fig.3, we plot our results for the case where S = 2.
In the diagram we can see that when B

K > 3
2 , 〈a†a〉 = 0 which means that there are no

magnons when B
K reaches a certain threshold. Recall that this is due to the fact that when the

magnetic field is strong enough, it completely aligns the spin in the negative ẑ-direction. When
the magnetic field is not so strong, the spin will not be aligned so forcibly and therefore gains
some freedom in varying its spin angle. This implies the increase in the number of magnons in
proportion with the decrease in magnetic field strength up to a maximum of 2S magnons per
spin particle.

We are now interested in the behaviour of our magnon system when T 6=0. We therefore
attempt to find the eigenvalues of 〈Sz〉 and divide them through by K again. Since we now
have a nonzero temperature, we can also vary the temperature in order to induce changes in the
behaviour of our system. Varying the temperature corresponds to changing the value of βK.
If we use Eq.20 and calculate the expectation value through the related partition function, we
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- 3 - 2 - 1 0 1 2 3
- 1

0

1
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3
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5
βK=90

B⁄K
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0.1
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0.3

0.4

0.5

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.1

>σ² < †a a>σ²

- 3 - 2 - 1 0 1 2 3
- 1

0

1

2

3

4

5
βK=15

- 3 - 2 - 1 0 1 2 3
- 1

0

1

2

3

4

5

B⁄K

B⁄K

< † >a a

< †a a>σ²

0

0.1

0.2

0.3

0.4

0.5

-0.1

βK=7

- 3 - 2 - 1 0 1 2 3
- 1

0

1

2

3

4

5

B⁄K

βK=2

0

0.1

0.2

0.3

0.4

0.5

-0.1

< † >a a
< †a a>σ²

Figure 4: 〈a†a〉 and σ2
〈a†a〉 at T 6=0 for a single spin-2 particle

obtain:

〈Sz〉 =
1

Z

S∑
ms=−S

ms~e−β(K2 m
2
s+Bms) =

1

Z

S∑
ms=−S

ms~e−βK( 1
2m

2
s+

B
Kms), (22)

where Z =

S∑
ms=−S

e−βK( 1
2m

2
s+

B
Kms).

As before, we translate this using the Holstein-Primakoff transformation to obtain a plot for
〈a†a〉 in terms of B

K . However, since the temperature is now greater than zero, the number of
magnons (per lattice site) will not be well-defined i.e. our system will have a nonzero variance
σ2
〈a†a〉 at each lattice site. We calculate the variance through:

σ2
〈a†a〉 = 〈(a†a)2〉 − 〈a†a〉2 =

〈(
Sz

~
− S

)2
〉
−

〈(
Sz

~
− S

)〉2

=
〈(Sz)2〉 − 〈Sz〉2

~2
. (23)

So now we can plot 〈a†a〉 and σ2
〈a†a〉 for several values of βK, which is depicted in the diagrams

above. As is clear from the plots, thermal fluctuations become increasingly more important
when the temperature is high (i.e. low value of βK). For low temperatures, the variance peaks
sharply when shifts in magnon quantity occurs. This uncertainy in magnon quantity becomes
more and more ’smeared’ out as we further increase temperature, until it does not even reach
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Figure 5: Schematic display of Mott insulator and superfluid phase; red spheres represent
magnons

zero anymore on the magnon plateaus. By then the magnon plateaus have become so flattened
that the discrete ladder depicted in Fig.3 is just barely recognizable. If we take βK = 2, the
magnon quantity is essentially reduced to a straight line accompanied by a very high uncertainty
which implies that thermal fluctuations dominate this particular regime.

4 Creating a phase diagram of Mott insulator to superfluid
phase transition

In this section we focus our efforts on creating a phase diagram of the so called Mott insulator to
superfluid phase transition. This transition takes place within the Bose-Einstein condensation
regime at zero temperature (see Fig.2) where all thermal fluctuations have died out and is thus
governed by quantum fluctuations. In the following subsections we explain what a Mott insulating
phase exactly is and how to construct the corresponding phase diagram.

4.1 What are Mott insulating and superfluid phases?

We consider again our lattice site in three dimensions. Let there be an integer number of particles
per site i and JS � K. Then this means that the magnon-magnon hopping is significantly
smaller than the on-site interaction, therefore making it energetically unfavorable for particles to
move between sites, i.e. the number of magnons per lattice site is fixed. This situation is what is
known as the Mott insulating phase or Mott insulator. Note that in the Mott insulating phase,
the number of magnons on each site is well-defined. This implies that the fluctuation in magnon
number per site is reduced which leads to increased fluctuations in the phase. Fig.5 shows the
distribution of magnons on a lattice. Note that in the Mott insulating phase, the phases of the
magnons fluctuate while in the superfluid phase they are coherent (see Fig.8). We discuss the
latter case later on.

The other phase in which particles can reside in is the superfluid phase. In this phase,
each atom is essentially spread out over the entire lattice which corresponds to the magnon-
magnon hopping being more dominant than the on-site interactions. This leads to a long-range
phase coherence for particles in the superfluid phase whereas particles in the insulating phase
have no phase coherence across the lattice. The phase transition between these two phases only

11
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Figure 6: Ψ and |Ψ|2 plotted as functions of B
K

occurs at zero temperature when the thermal fluctuations have died out completely and quantum
fluctuations, which are present at T = 0, are strong enough to induce a phase transition. Most
of the information stated above has been adapted from [7].

In order to actually describe the zero-temperature phase transition analytically in the super-
fluid case, we need to apply a mean-field approximation to our Hamiltonian:

ai → 〈a〉, a†i → 〈a
†〉 and substituting Ψ = 〈a〉 = 〈a†〉. (24)

Where Ψ is introduced and represents the superfluid order parameter. If we plug these expressions
into our Hamiltonian defined in Eq.7 we obtain:

Ĥ = −JS
∑
〈i,j〉

(
a†iaj − a

†
iai

)
+

(
K

2
(1− 2S) +B

)∑
i

a†iai +
K

2

∑
i

a†ia
†
iaiai

→ −µ|Ψ|2
∑
i

+
K

2
|Ψ|4

∑
i

= −µNs|Ψ|2 +
K

2
Ns|Ψ|4 = E. (25)

Where we used Eq.17 to further simplify the equation. Furthermore we have set the end result
equal to E to clarify that the expression must equal a constant after the mean-field approxima-
tion. If we now were to minimalise this energy E, we would obtain a non-trivial relation between
the superfluid order parameter Ψ and B

K as will be illustrated below:

∂E

∂Ψ
= 2NsΨ

(
−µ+K|Ψ|2

)
= 0 ⇒ |Ψ|2 =

µ

K
= S − B

K
− 1

2
. (26)

Note that in the diagram of Ψ(BK ) we only plotted one of the possibilities since any plot would
be correct when multiplied by a phase factor eiθ. This phase diagram is in agreement with our
previous phase diagram for Bose-Einstein condensation, i.e., the order parameter Ψ is nonzero if
µ > 0.

4.2 Constructing the phase diagram

We now determine the phase diagram including the Mott-insulator. First we take our Hamilto-
nian defined in Eq.7. Neglecting the fourth order magnon-magnon interaction term again and
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rearranging the terms, we get:

Ĥ = −JS
∑
〈i,j〉

a†iaj +
(K

2
(1− 2S) +B +

zJS

2

)∑
i

a†iai +
K

2

∑
i

a†ia
†
iaiai, (27)

where the term zJS
2

∑
i a
†
iai originates from transforming JS

∑
〈i,j〉 a

†
iai to a sum over i sites and

z signifies the number of nearest neighbours, so in three dimensions z = 6. The factor 1
2 arises

to prevent double counting of pairs. When we compare this Hamiltonian to the Bose-Hubbard
Hamiltonian:

ĤBH = −t
∑
〈i,j〉

a†iaj − µ
∑
i

a†iai +
U

2

∑
i

a†ia
†
iaiai, (28)

we can immediately see that µ = −K2 (1− 2S)−B − zJS
2 , t = JS and U = K. In order to make

this Hamiltonian dimensionless, we scale all energies with a factor 1
zt = 1

zJS . So µ̄ = µ
zJS and

K̄ = K
zJS . This means that the chemical potential can we written in the form:

µ̄ = − K

2zJS
(1− 2S)− B

2zJS
− 1

2
= −K̄

2
(1− 2S)− K̄ B

K
− 1

2
. (29)

The second term was multiplied by K
K = 1 in order to write µ̄ in terms of the now familiar

parameter B
K .

Now that our Ĥ is dimensionless and we have arrived at a mean-field theory capable of
describing the Mott insulator phase, we can actually derive the phase diagram analytically using
second-order pertubation theory [8]. Doing this we eventually discover that the ground state
energy is given by:

E(2)
g =

g

K̄(g − 1)− µ̄
+

g + 1

µ̄− K̄g
. (30)

If the Landau procedure for second-order phase transition is followed, we write the ground state
energy as an expansion in Ψ:

Eg(Ψ) = a0(g, K̄, µ̄) + a2(g, K̄, µ̄)Ψ2 +O(Ψ4). (31)

When we minimize this as a function of Ψ, it is established that Ψ = 0 when a2(g, K̄, µ̄) > 0 and
Ψ 6= 0 if a2(g, K̄, µ̄) < 0. This has the important implication that a2(g, K̄, µ̄) = 0 signifies the
boundary between the Mott insulator and superfluid phase. When this is solved, it yields the
relation:

µ̄± =
1

2

(
K̄(2g − 1)− 1

)
± 1

2

√
K̄2 − 2K̄(2g + 1) + 1. (32)

Since Eq.29 gives another expression for µ̄, we can plug that in:

−K̄
2

(1− 2S)− K̄ B

K
− 1

2
=

1

2

(
K̄(2g − 1)− 1

)
± 1

2

√
K̄2 − 2K̄(2g + 1) + 1. (33)

We can solve this to find an equation that expresses J
K in terms of B

K :

J

K
=

1

zS

(
1 + 2g − 2

√
2g2 + (S − B

K
)2 + g(1− 2S + 2

B

K
)

)
. (34)
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Figure 7: Phase diagram of the Mott insulator to superfluid phase transition for spin-2 particles

When we then plot this in the three dimensional case (so z = 6) and for a spin-2 particle, we
obtain the phase diagram depicted in Fig.7. Note that the red line represents the boundary
between the Mott insulating and superfluid phases. The shaded area shows Bose-Einstein con-
densation, within the bumps particles resides in the Mott-insulating phase. We look in particular
at the right-most slope’s intersection with the J

K = 0 line. As we can see, this occurs at B
K = 3

2 ,
which coincides with the BEC boundary determined in Fig.2 for S = 2: 1

2 (4 − 1) = 3
2 . This

therefore validates our result, since the Mott insulating phase can only occur within the BEC
regime, where the number of magnons is larger than zero.

5 Phase diffusion in the superfluid regime

We now relay our focus to the superfluid regime, where the magnon gas has the ability to flow
without experiencing friction. The superfluid regime is established for J

K � 1 which implies
that the magnon-magnon hopping is stronger than the on-site interactions, as becomes clear
when looking at the height of the tallest slope in Fig.7. An interesting phenomenon occuring
within this superfluid phase is phase diffusion, which is a direct consequence of the spontaneous
U(1) symmetry breaking and the finite size of the condensate [9]. Here U(1) represents the
group consisting of all complex numbers with absolute value equal to 1 under multiplication. We
approach this problem by looking at the probability distribution for the quantum mechanical
observables upon undergoing the phase transition. Unlike its classical counterparts, the mean
value of those operators is nonzero [10]. In the context of Bose-Einstein condensation, this
then means that the Hamiltonian describing our system remains invariant under global U(1)
transformations. These transformations are associated with the conservation of the number
of magnons. Therefore the above implies the important relation, namely that the number of
condensed magnons and the phase of the condensate itself are conjugate variables. It follows
from Heisenberg’s uncertainty principle that for a fixed number of magnons in the condensate,
the phase of the condensate necassarily fluctuates [7]. However, as stated in the introduction,
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Figure 8: Illustration of phase coherence for a few magnons in the Bose-Einstein condensate

the phase of a Bose-Einstein condensate is typically fixed (as shown in Fig.8), which implies
fluctuations in magnon number. Therefore, if we take a finite-sized condensate, the system can
not be in a state with a definite phase. Consequently, the phase of the condensate is described
by a probability distribution, which can lead to non-trivial equations of motion for the phase.
This section is devoted to validating the above statements in the case of magnons. We approach
this in two manners; one involves Ehrenfest’s theorem applied to the spin-Hamiltonian given in
Eq.1, the other method considers a given action and derives the equation of motion from it.

5.1 Spin method for deriving the equations of motion of the phase of
the condensate

In this subsection, we would like to derive the equations of motion for the phase of the condensate.
We begin by verifying Ehrenfest’s theorem in the spin operator representation:

d〈Sα〉
dt

= −εαβγ〈Sβ〉
∂H[〈~S〉]
∂〈Sγ〉

, where α, β, γ ∈ {x, y, z}, (35)

and εαβγ is the Levi-Cevita symbol. Initially, we use the single-spin Hamiltonian Ĥ[〈~S〉] =

−g ~B · 〈~S〉 to check whether Eq.35 indeed reproduces the known relation for the time-derivative

of the expectation value of the spin operator: d〈~S〉
dt = g〈~S〉 × ~B. This expression follows directly

from Ehrenfest’s theorem for any quantum mechanical operator Â:

d〈Â〉
dt

=
1

i~
〈
[Â, Ĥ]

〉
+

〈
∂Â

dt

〉
. (36)

We note that every component of the spin operator is time-independent which implies that the
second term of Eq.36 equals zero. Thus we calculate the first term for Â = Sx, where we
initially consider the x-component of the spin operator and deduce the result for all components
analogously afterwards.

1

i~
〈
[Sx, Ĥ]

〉
= − g

i~
〈

(Bx[Sx, Sx] +By[Sx, Sy] +Bz[Sx, Sz])
〉

(37)

= − g

i~
〈

(Bx · 0 +By(i~Sz)−Bzi~Sy)
〉

= g (Bz〈Sy〉 −By〈Sz〉) .

This immediately gives the expression that:

d〈Sx〉
dt

= g (Bz〈Sy〉 −By〈Sz〉) . (38)

The corresponding expressions for the time-derivates of Sy and Sz are obtained through per-
mutation of the indices yielding indeed the cross-product relation mentioned above. All that is
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left now, is to calculate the time-derivative of the x-component using Eq.35 and the fact that
∂H[〈~S〉]
∂〈Sα〉 = −gBα:

d〈Sx〉
dt

= εxyz〈Sy〉gBz + εxzy〈Sz〉gBy (39)

= gBz〈Sy〉 − gBy〈Sz〉 = g (Bz〈Sy〉 −By〈Sz〉) ,

which is exacty Eq.38 and can be extended analogously to all components so that we therefore
may conclude that the spin representation of Ehrenfest’s theorem defined in Eq.35 holds.

Now that we have validated the exactitude of Eq.35, we apply it to our spin Hamiltonian
defined in Eq.1 so that we can derive the equations of motion subsequently. Note that our spin
Hamiltonian is not yet defined in terms of expectation values as is required by Eq.35. To simplify
matters, we assume that the expectation value of the inner product of two spin operators is the
same as the product of the expectation values of the operators seperately. The same applies for
the expectation of the square of an operator. Later on, we see that this leads to a small error
in the equation of motion. Nevertheless, we choose simplicity over integrity in this particular
calculation. Our Hamiltonian can thus be written in the form:

Ĥ = − J

2~2

∑
〈i,j〉

〈~Si〉·〈~Sj〉+
K

2~2

∑
i

〈Szi 〉2 +
B

~
∑
i

〈Szi 〉. (40)

Calculating the derivates required for the equations, gives us the next three expressions:

∂H[〈~S〉]
∂〈Szi 〉

= − J

2~2

(
〈Szi−1〉+ 〈Szi+1〉

)
+
K

~2
〈Szi 〉+

B

~
, (41)

∂H[〈~S〉]
∂〈Sxi 〉

= − J

2~2

(
〈Sxi−1〉+ 〈Sxi+1〉

)
and

∂H[〈~S〉]
∂〈Syi 〉

= − J

2~2

(
〈Syi−1〉+ 〈Syi+1〉

)
.

Now we are ready to use Ehrenfest to calculate the time-derivatives of the spin components.
Again, we start by computing the equation for the x-component, calculating the expressions for
the remaining components in a similar fashion.

d〈Sxi 〉
dt

= −εxyz〈Syi 〉
∂H[〈~S〉]
∂〈Szi 〉

− εxzy〈Szi 〉
∂H[〈~S〉]
∂〈Syi 〉

(42)

=
J

2~2

(
〈Syi 〉

(
〈Szi−1〉+ 〈Szi+1〉

)
−
(
〈Syi−1〉+ 〈Syi+1〉

)
〈Szi 〉

)
− K

~2
〈Syi 〉〈S

z
i 〉 −

B

~
〈Syi 〉;

d〈Syi 〉
dt

=
J

2~2

(
〈Sxi 〉

(
〈Sxi−1〉+ 〈Syi+1〉

)
−
(
〈Szi−1〉+ 〈Szi+1〉

)
〈Sxi 〉

)
+
K

~2
〈Sxi 〉〈Szi 〉+

B

~
〈Sxi 〉;

(43)

d〈Szi 〉
dt

=
J

2~2

(
〈Sxi 〉

(
〈Syi−1〉+ 〈Syi+1〉

)
−
(
〈Sxi−1〉+ 〈Sxi+1〉

)
〈Syi 〉

)
. (44)

We can use the Holstein-Primakoff transformation once again in order to express our relations
in terms of the number operators corresponding to the creation and annihilation of magnons.
Recalling that the phase of the condensate and the number of magnons are conjugate variables,
we thus obtain information about the phase of the condensate indirectly. Consequently, we
apply a mean-field approach to the number operators, yielding two equations of motion for the
creation and annihilation operators seperately. As is to be expected, these equations of motion
are conjugate to one another. We take the field operators φ∗i and φi to be time-dependent, giving

the following relation for our mean-field approximation: φi = 〈ai〉(t) and φ∗i = 〈a†i 〉(t).
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In order to apply the abovementioned transformation, we have to derive the relations for Sxj
and Syj from Eq.2 using the definitions of the spin-raising and lowering operators. These are

given to be: S+
j = Sxj + iSyj and S−j = Sxj − iS

y
j . We deduce that:

Sxj =
1

2
(S+
j + S−j ) ≈ ~

2

√
2S(a†j + aj) =

~
2

√
2S(φ∗j + φj); (45)

Syj =
1

2
(S+
j − S

−
j ) ≈ ~

2i

√
2S(a†j − aj) =

~
2i

√
2S(φj − φ∗j );

Szj = ~
(
a†jaj − S

)
= ~

(
|φj |2 − S

)
. (46)

Plugging the derived expressions into Eq.42 to 44, we compute the equations of motion for the
field operators. For pragmatic reasons, we initially consider Eq.44:

d〈Szk〉
dt

=
J

2~2

(
〈Sxk 〉(〈S

y
k−1〉+ 〈Syk+1〉)− (〈Sxk−1〉+ 〈Sxk+1〉)〈S

y
i 〉
)

(47)

=
JS

4i

(
(φk + φ∗k)(φk−1 − φ∗k−1 + φk+1 − φ∗k+1)

− (φk − φ∗k)(φk−1 + φ∗k−1 + φk+1 + φ∗k+1)
)

=
JS

2i

(
φ∗k(φk−1 + φk+1)− φk(φ∗k−1 + φ∗k+1)

)
.

Here we assumed for simplicity that the lattice is one-dimensional. The actual case of three
dimensions can be analogouly expanded from the one at hand. Writing out the left-hand side
yields the following equation for the z-component:

d

dt
|φk|2 =

JS

2i

(
φ∗k(φk−1 + φk+1)− φk(φ∗k−1 + φ∗k+1)

)
. (48)

However, we observe that, since we are in a BEC, it is safe to assume that the magnons are
homogeneously distributed. This implies that φk = φ and thus φ becomes independent of
position. Consequently we see that the time-derivative of the z-component of the spin becomes
zero. This is actually a consistent result, since Sz is directly related to the number of magnons
in the homogeneous condensate approximation and therefore directly corresponds to the number
of magnons being finite (i.e., fixed). Furthermore, if our condensate was not homogeneous,
then Eq.48 is nonzero and would represent the density of magnons which can change locally by
magnons entering and leaving a particular volume element.

Correspondingly, since the first terms of both Eq.42 and 43 are analogous to Eq.44, we see
that these terms also go to zero in the homogeneous condensate approximation. The equations
for the time-derivatives of the x- and y-component become:

d〈Sx〉
dt

= −K
~2
〈Sy〉〈Sz〉 − B

~
〈Sy〉 (49)

= −K
2i

√
2S (φ− φ∗)

(
|φ|2 − S

)
− B

2i

√
2S (φ− φ∗)

=

√
2S

2i
(φ− φ∗)

(
−K|φ|2 +KS −B

)
,

d〈Sy〉
dt

=
K

~2
〈Sx〉〈Sz〉+

B

~
〈Sx〉 (50)

=
K

2

√
2S (φ+ φ∗)

(
|φ|2 − S

)
+
B

2

√
2S (φ+ φ∗)

= −
√

2S

2
(φ+ φ∗)

(
−K|φ|2 +KS −B

)
.
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The left-hand side of both equations are
√

2S
2 ~

(
dφ
dt + dφ∗

dt

)
and

√
2S
2i ~

(
dφ
dt −

dφ∗

dt

)
for x- and y-

components respectively. To recapitulate, the expressions for both components culminate into
one equation of motion comprising the two field operators. This gives us the important equation:

i~
(
dφ

dt
± dφ∗

dt

)
= (φ∓ φ∗)

(
−K|φ|2 +KS −B

)
. (51)

The above equations describe the dynamics at a single lattice site. The reason we point out that
this is actually one equation of motion for both field operators, is that when we seperate Eq.51
into its real and imaginary parts, we obtain the same equations for each operator twice. In other
words, it does not matter whether we extract the upcoming equations of motion from the one
obtained through the x-component or via the y-component. The result is as follows:

i~
dφ

dt
= (KS −B)φ−K|φ|2φ and i~

dφ∗

dt
= − (KS −B)φ∗ +K|φ|2φ∗. (52)

5.2 Action method for deriving the equations of motion of the phase
of the condensate

In this section, we derive the equations of motion through a different, more comprehensive method
in order to obtain a completer result compared to one derived in Eq.52. We begin with a given
action, with the field operators as its argument, describing the dynamics of our magnon system:

S[φ∗, φ] =

∫
dt

{
i~φ∗

∂φ

∂t
−H[φ∗, φ]

}
. (53)

Clearly we have to transform our Hamiltonian in terms of the field operators first in order to
be able to derive the equations of motion using the Euler-Lagrange equations applied to the
defined action. To do this we take the Hamiltonian after the Holstein-Primakoff transformation
(neglecting fourth-order terms regarding the magnon-magnon interactions) Eq.27 and convert
that using the aforementioned mean-field approxamation to yield:

Ĥ[φ, φ∗] = −JS
∑
〈i,j〉

φ∗iφj +
(K

2
(1− 2S) +B +

zJS

2

)∑
i

|φi|2 +
K

2

∑
i

|φi|4. (54)

We define µ′ = −
(
K
2 (1 − 2S) + B + JS

)
, where we again considered our lattice to be one-

dimensional implying that z = 2. Inserting this back into the action and maintaining the
Einstein summation convention, we are left with:

S[φ∗, φ] =

∫
dt

{
i~φ∗j

∂φj
∂t

+ JSφ∗j (φj−1 + φj+1) + µ′|φj |2 −
K

2
|φj |4

}
. (55)

From this it can be derived that the Lagrangian density is of the form:

L[φ, φ∗] = i~φ∗j
∂φj
∂t

+ JSφ∗j (φj−1 + φj+1) + µ′|φj |2 −
K

2
|φj |4. (56)

Now that we have obtained an expression for the Lagragian density, we can apply the Euler-
Langrange equations and derive the equations of motion. The Euler-Lagrange equations are
given by the formula:

∂L
∂φk

=
∂

∂t

(
∂L

∂ (∂tφk)

)
. (57)
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We compute the equations for φj first and follow up with the expressions for φ∗j :

∂L
∂φk

= JSφ∗j

(
δj−1
k + δj+1

k

)
+ µ′φ∗jδ

j
k −K

(
φ∗j
)2
φjδ

j
k (58)

= JSφ∗j

(
δjk+1 + δjk−1

)
+ µ′φ∗k −K

(
φ∗j
)2
φk

= JS
(
φ∗k+1 + φ∗k−1

)
+ µ′φ∗k −K|φk|2φ∗k

∂

∂t

(
∂L

∂ (∂tφk)

)
=

∂

∂t

(
i~φ∗jδ

j
k

)
= i~

∂φ∗k
∂t

(59)

∂L
∂φ∗k

= i~δjk
∂φj
∂t

+ JSφj

(
δj−1
k + δj+1

k

)
+ µ′φjδ

j
k −Kφ

2
jφ
∗
jδ
j
k (60)

= i~
∂φk
∂t

+ JS (φk+1 + φk−1) + µ′φk −K|φk|2φk

∂

∂t

(
∂L

∂ (∂tφ∗k)

)
= 0 (61)

Putting together all of the above, we arrive at the equations descbribing the change over time of
our field operators:

i~∂φk∂t = −JS (φk+1 + φk−1)− µ′φk +K|φk|2φk

i~∂φ
∗
k

∂t = JS
(
φ∗k+1 + φ∗k−1

)
+ µ′φ∗k −K|φk|2φ∗k

 (62)

However, since the fact that the condensate is homogeneous must be accounted for, we have to
use that φk = φ. Applying the approximation means that the expressions become independent
of J as those terms cancel out with similar ones comprised within µ′. To recap, we denote the
final equations of motion for the field operators below:

i~∂φ∂t = −µφ+K|φ|2φ

i~∂φ
∗

∂t = µφ∗ −K|φ|2φ∗

Equations of motion for φ and φ∗. (63)

Here we identified µ = −
(
K
2 (1− 2S) +B

)
, which is exactly the chemical potential defined in

Eq.17. Furthermore we take special note of the fact that the magnon-magnon interactions do
not contribute to the change over time of the field operators and therefore the rate of creation
or annihilation of magnons.

When we compare this to the equations of motion derived through the spin method, we note
that the action method actually gives us an extra term. We can easily identify this term to
be K

2 φ and K
2 φ
∗ for the real and imaginary field equation respectively. This can be explained

due to the assumption concerning the dependence of expectation values in our Hamiltonian. In
doing so, we transformed our operators into numbers, disregarding the extra term these two
operators produce when commutating for the normal ordering convention. These terms turn
out to be exactly the missing terms in our equations obtained through the spin-method.

In order to obtain information about the phase of the condensate, we transform our field
operators to density and phase variables by the following relation: φ→

√
neiθ and φ∗ →

√
ne−iθ.

Here n signifies the magnon density in the Bose-Einstein condensate and θ represents the phase.

19



Plugging this into Eq.55, we obtain the following expressions for the action and Lagrangian
density:

S[n, θ] =

∫
dt

{
i~
√
ne−iθ∂t

(√
neiθ

)
+ µn− K

2
n2

}
, (64)

L[n, θ] = i~
√
n
(
eiθ(∂t

√
n) +

√
n(∂te

iθ)
)

+ µn− K

2
n2 (65)

=
i~
2
∂tn− n~∂tθ + µn− K

2
.

Now we calculate the Euler-Langrange equations in terms of our new variables. Doing so imposes
restrictions on the variables which are used to describe the Lagrangian density solely in terms of
the phase θ:

∂L
∂θ

= 0,
∂

∂t

(
∂L

∂(∂tθ)

)
= −~∂tn ⇒ ∂tn = 0, (66)

∂L
∂n

= −~∂tθ + µ−Kn, ∂

∂t

(
∂L

∂(∂tn)

)
=

∂

∂t

(
i~
2

)
= 0 ⇒ ~∂tθ = µ−Kn. (67)

However, combining these two equations by taking the second time-derivative of the last expres-
sion we obtain the following relation:

~
∂2θ

∂t2
= −K∂tn = 0. (68)

The Lagrangian is given by L =
∫

dsxL, where s is the number of spatial dimenions, i.e. in our
case s = 3. Since our condensate is homogeneously distributed, the variables are indepent of
position. We can therefore write, using the equations derived above, that the Lagrangian takes
on the form:

L[n, θ] =

∫
d3xL[n, θ] = V

(
−n~∂tθ + µn− K

2
n2

)
. (69)

Here V is the volume of our condensate. In order to express the Lagrangian in terms of just
the phase, we integrate out the density. This is done by taking the density to be constant up
to small fluctuations: n = n0 + δn. The first step is to minimalize the Lagrangian in terms of
n according to the substitution. Therefore we differentiate L with respect to n and substitute
n = n0 while maintaining that ∂tθ = 0:

∂L
∂n

∣∣∣∣
n=n0

= µ−Kn0 = 0 ⇒ µ = Kn0. (70)

Plugging all of the above into the Lagrangian yields:

L[δn, θ] = V

(
−(n0 + δn)~∂tθ + µ(n0 + δn)− K

2
(n0 + δn)2

)
(71)

= V

(
K

2
n2

0 − δn~∂tθ −
K

2
(δn2)

)
=
V Kn2

0

2
− V

(
δn~∂θ +

K

2
(δn)2

)
. (72)
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Here we made use of the fact that the term −n0~∂tθ integrates out to zero since it is an equili-
bruim term by definition. Furthermore, the first term in Eq.72 is a constant and could therefore
in principle be shifted out. We then minimalize the Lagrangian once more, but now in terms of
δn:

∂L
∂(δn)

= −V ~∂tθ − V Kδn = 0 ⇒ δn = − ~
K

∂θ

∂t
. (73)

Finally, what remains is the effective Lagrangian dependent only on the phase θ:

Leff[θ] =
V Kn2

0

2
+ V

(
~2

K

∂2θ

∂t2
− ~2

2K

∂2θ

∂t2

)
(74)

= C +
V ~2

2K

∂2θ

∂t2
. (75)

Where C is a constant. This effective Lagrangian describes the classical theory of our system in
terms of θ. However, we now want to translate this to a quantum mechanical statement telling
us something about the phase of the condensate. To do this we quantize the Lagrangian using
canonical quantization of the variable θ. This ensures that the commutation relation [θ, pθ] = i~
holds. By definition we have that: Leff[φ] = A+ 1

2meff∂
2
t φ, where A can be any constant and φ an

arbitrary scalar field operator. Therefore it is possible to immediately identify that 1
2meff = V ~2

2K .
In the end, the phase must obey the Schrödinger equation according to second quantization:

i~
∂Ψ(θ, t)

∂t
= − ~2

2meff

∂2Ψ(θ, t)

∂θ2
⇒ i~

∂Ψ(θ, t)

∂t
= −K

V

∂2Ψ(θ, t)

∂θ2
. (76)

This result is exactly what we expected, namely that the phase can only be well-defined if the
number of magnons is not. This means that the volume must be infinitely large for the phase to
be well-defined. We can easily verify this by examining Eq.76 and noticing that the right-hand
side only goes to zero if V → ∞. Therefore we can conclude this section by stating that the
phase is ill-defined for any finite-sized system and thus that we have shown that phase diffusion
indeed occurs.

6 Conclusion

We began this thesis by giving a short introduction into the prevailing concepts such as Bose-
Einstein condensation, magnons, different types of phases and corresponding transitions and
ultimately phase diffusion. This was followed by stating the motivation for writing about Bose-
Einstein condensation of magnons and the interesting consequences that brings about, since this
had not yet been done for this particular system setup.

In order to gain a better understanding of our system, we started by defining a thorough
theoretical foundation yielding various Hamiltonians describing our system in different variables.
This allowed us multiple approaches to describe certain situations later on. We used the Holstein-
Primakoff transformation in order to map our Hamiltonian from angular momentum operators to
the bosonic creation and annihilation operators. We continued by transforming our Hamiltonian
using a Fourier transformation in order to let Ĥ be expressed in wave space.

The third section described the Bose-Einstein condensation of our magnon system and the
phase diagrams corresponding to it. We derived an expression for the chemical potential µ and
used the restrictions imposed on it, due to the fact that our system is bosonic, in order to
create a phase diagram which was independent of temperature. Of course the latter can not be
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true, since our system must be near absolute zero for it to Bose-Einstein condensate. A more
realistic diagram would have had a curved (to the left) line instead of a vertical boundary. See
p.342-343 of [9] for a more detailed discussion about this particular subject. Nevertheless, the
diagram gives us a good approximation of the value of B

K for which our sytem become a BEC,
since we are looking at very low values of T . After the BEC boundary had been established, we
continued on to examine the behaviour of the magnons when the magnon-magnon interactions
were ignored, i.e. J = 0. We initially researched this for a single spin at T = 0, deriving a phase
diagram which showed discrete ’step’-behaviour. Furthermore, we also calculated the partition
function and corresponding phase diagram for T 6= 0, this yielded the continuous counterpart of
the earlier derived phase diagram as expected. We plotted this, along with the corresponding
variation in magnon number, at different temperatures. The conclusion that followed was that
thermal fluctuations become increasingly more important when the temperature gets higher up
to the point where the system is governed by a large variance in magnon quantity.

Moreover, we devoted the next section to finding the phase diagram corresponding to the
Mott insulating to superfluid phase transition. Initially we gave some information about what
these phases represent and what the conditions to achieve it were. As it turns out, the bound-
ary between the phases could be calculated analytically by applying an appropriate mean-field
approximation to the Hamiltonian expressed in terms of the bosonic particle operators. We
then compared our Hamiltonian to the Bose-Hubbard Hamiltonian and used a relation for the
chemical potential derived in [8] to find an equation describing how J

K is expressed in terms of
B
K . The result was again plotted and we saw that the right-most slope’s intersection with the
J
K = 0-axis coincides with the BEC boundary determined in Fig.2.

In the final section, we relayed our focus to another interesting phenomenon occuring in the
superfluid regime, namely phase diffusion. We hypothesized that, since the phase and number
of magnons are conjugate variables, the system can not have a well-defined phase if the system
has a finite size. This hypothesis was approached using two different methods; one involved
applying Ehrenfest’s theorem to the Spin-Hamiltonian, calculating the time-derivatives of each
spin-component seperately. These derivates were then expressed in terms of the particle operators
which in turn were subject to another mean-field approach, yielding two (conjugate) equations
of motion for the field operators for a single lattice site. The other method revolved around
varying a predefined action with a Hamiltonian already expressed in terms of the field operators.
This also yielded two equations of motion, but these each had an extra term originating from
the commutation relation between the operators and did not appear in the spin variant since we
approximated the Hamiltonian in that approach. In both methods, we were allowed to use the
fact that our condensate was homogeneously distributed, meaning that we could take φk = φ,
which greatly simplified our equations.

In an effort to obtain information about the phase of the condensate, the Lagrangian had to be
dependent only on the phase. To achieve this, we made an average density approximation which
allowed us to integrate out the density. After minimalising the Lagrangian, in order to eliminate
the small deviation in density δn, we could write our Lagrangian solely in terms of θ. Finally we
translated this into the corresponding Schrödinger equation, resulting in the confirmation of the
hypothesis, namely that phase diffusion indeed must occur in a finite-sized system.

To conclude this thesis, we note that phase diffusion is indeed measurable directly, because
we can extract the phase from the magnetization in the x-y plane. We leave for future work
the interesting features in behaviour of a low-dimensional magnon system, because the phase
possibly fluctuates more than in three dimensions.
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