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Abstract

In this thesis we measure and calculate the enhanced scattering rate for both cold
thermal clouds and Bose-Einstein condensates. For Bose-Einstein condensates we
find that the scattering rate is enhanced, due to the large densities and a temper-
ature just below the critical temperature. The enhancement under typical experi-
mental conditions with a Bose-Einstein condensate is up to a factor 3, while there
is no enhancement for thermal clouds. The scattering rate influences both the num-
ber of particles and the average energy per particle. For both the energy and the
number of particles a theoretical prediction is compared with an experimental re-
sult. For the number of particles in a cloud both with and without a Bose-Einstein
condensate and the energy in a cloud without a Bose-Einstein condensate, we find
that theory and experiment agree within their uncertainties. In the case of the en-
ergy per particle in a cloud with a Bose-Einstein condensate, we included a cooling
effect for condensed atoms that become thermal, however our experimental results
are not sufficient to confirm this theory.
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1 Introduction to making images of a BEC

If light propagates through a medium, some light will be absorbed and re-emitted in
a random direction direction (called scattering), and other light will pass through the
medium (called transmission). Most of the light seen in every day life has been scattered.
Light from a source like the sun or a lamp falls on a surface (an object like a hand) and
scatters in every direction including your eyes. Transmitted light is the light coming
directly from the source, without any scattering. Since the scattered light is re-emitted
in a random direction, the light spreads over an area and the intensity of the light is
reduced. Figure 1a gives a schematic view of the situation. The amplitude of the waves
of the light corresponds to the intensity of the light.
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Figure 1: Schematic image of light passing through a medium. (a) Schematic scheme
of absorption imaging, some light is absorbed by the medium. When a image is taken
of the transmitted light, it is called absorption imaging. When a image is taken of
the scattered light, it is called fluoresence imaging. (b) Schematic scheme of phase
contrast imaging (PCI), only a minimal amount of light is absorbed by the medium,
but the light that passes through the medium gets a phase shift and the light will
interfere with undisturbed light. The undisturbed light gets an additional phase shift.

Figure 2 shows different pictures of a hand, where Figure 2a shows the image taken of
the scattered light. This is ’everyday-life’: anyone could take this picture with their
camera or cellphone. Figure 2b shows the transmitted light. This technique is called
absorption imaging because the absorption is the negative of the transmission. The
amount of scattering and transmission depend on the medium (structure and density)
and the light (wavelength). For example, if one would use x-rays, one would also get an
insight of the hand as seen in Figure 2c, using the same absorption imaging technique.
The amount of transmission depends on whether the light passes through a bone or not.
Now some characteristic of the atoms used are discussed before a new imaging technique
is introduced.

A Bose-Einstein condensate (BEC) consists of atoms that have a negligible amount of
energy compared to a thermal cloud and have an extremely low temperature. If scattered
light illuminates a BEC, the BEC will gain energy, thereby increasing the temperature
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Figure 2: Examples of different kinds of images taken of a hand. (a): Everyday-life
imaging, of scattered light.(b): Absorption imaging, of light not scattered. (c): X-ray
absorption imaging, of light not scattered. (d): Phase Contrast Imaging.

and particles will be lost. So light which is scattered on a BEC can destroy the BEC.
Light which is not scattered will pass through the BEC (like a clear glass window).
Light is needed to make a picture, so using the previously described techniques, will
either destroy the BEC or result into no picture. If a BEC is destroyed, a new BEC
can be made, however it is impossible to make multiple pictures of one single BEC. This
limits our ability to detect fast dynamics in the condensate.

For purposes like imaging the dynamics of the BEC, multiple pictures of one single BEC
are needed. To prevent the destruction of the BEC, the light shouldn’t be scattered,
so light that doesn’t scatter is used. However some contrast is needed depending on
the medium the light travels through (unlike a clear glass window). To overcome this
problem, light is also sent around the medium, so it is undisturbed. This light will
interfere with the light that has gone through the medium. Since the medium has slowed
the light down, the undisturbed light wave will be ahead of the light wave which went
through the medium. This causes a phase shift. A schematic view is visible in Figure 1b.
The intensity of the interfered light depends on the phase shift which depends on the
medium, though a phase shift of exactly a integer of periods won’t be noticed. This
technique is called Phase Contrast Imaging (PCI).

In Figure 2d it is shown how a hand could look like using PCI. Compare it with the
x-ray image in Figure 2c and notice that some of the darker areas of the x-ray image are
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white again, while the darkest area of the x-ray are again dark (in the bone of the arm).
This is because the delayed light is exactly a period behind. So in a PCI image, the
same color can represent different kinds of medium while in absorption the same color
implies the same (similar) kinds of medium. The difference for the medium is that no
light is scattered.

The typical maximum densities of a BEC is over a factor 10 000 smaller than the density
of air. The condensates are cigar-shaped with a length up to one millimeter and a
diameter of tens of micrometers. In everyday life the effects of the air between our eyes
and a lamp is barely noticed. Notice that the dimensions and density of the condensate
are far less than those of the air which causes a barely noticeable effect. So will have
very limited contrast. To overcome this problem resonant and near resonant light are
used. This light has a large phase shift and a large probability to get scattered.

Kramers-Kronig relations say that probability of a photon to get scattered and the
reduction in speed are correlated. So a balance is needed for a small scattering effect
and a large phase shift. Atoms have different internal energy levels (ignoring the kinetic
and potential energy of the atom). Those levels are quantized, which means that the
atom can only have some discrete amounts of energy. If light, with exactly the energy
difference between two of these energy levels passes through these atoms, the atoms and
the light are likely to interact, causing a large phase shift and a large probability of
scattering. This light is called resonant light.

Resonant light is used for absorption imaging since this light interacts with the atoms.
The energy of resonant light is noted as ∆E = E1−E0 and the corresponding frequency
is noted as ω = ∆E/~. A schematic view of two energy levels is shown in Figure 3a.
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(a) Schematic scheme of two energy lev-
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(b) The polarizability of sodium in arbi-
trary units. Green corresponds with the
real part, corresponding the speed reduc-
tion. Red corresponds with the imaginary
part, corresponding with the scattering.

Figure 3

If the energy of the light is different, the energy and frequency are detuned, the energy is
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∆E±δE, which is not exactly the energy difference of the two levels. Now the scattering
probability is reduced but also the phase shift. This is called near resonance light. For
PCI, near resonance light with a detuning of 0.000068% (=346Mhz) in the energy of the
light is used, so that the probability of scattering is reduced with approximately a factor

1
5000 . The scattering rates corresponds with the imaginary part of the polarizability,
shown in Figure 3b. If the detuning is larger, the effects of the medium on the light are
smaller. This is the reason why the light of the sun (with an energy that isn’t selected
to be near resonance) travels through the air with a barely noticeable effect.

A few more notes on this introduction. First notice that in this introduction two different
kinds of light are pointed out. The main difference of visible light and x-rays is the energy.
However in our experiment we use only different variations of resonant light (with almost
the same energy), but a different detuning, so these variation have the same color for
the human eye . Secondly, notice that the condensate is created in vacuum, since it
would heat up and be destroyed if it would get into contact with air. This means that
the achieved densities -even though a factor 10 000 smaller than the density of air-,
are still relatively large. Furthermore notice that for the use the interference in PCI
monochromatic coherent light is needed, which is provided by a laser.

It is possible to make images of Bose-Einstein condensates. When absorption imaging is
used, there is a lot of interaction between the atoms and the light, causing the atoms to
heat up and to lose all the particles. When phase contrast imaging is used, there limited
interaction, causing the system to heat up and to lose a fraction of the particles. In this
research I will explain why the system heats and the particles are lost the way they are.
I will distinguish between a cold thermal gas, analogue to the Bachelor Thesis of Damaz
de Jong [1] and a case where the probability that a single light-photon will interact
with one single atom depends on the surrounding atoms. My experimental results are
similar to those of Damaz de Jong, though my theoretical description has more effects
included.

2 Experimental setup

2.1 Creating a cold cloud

Here I describe very briefly the cooling steps to get an ultra cold cloud. In our experiment
a cold thermal cloud is first created. The atoms started in a warm cloud (600K) in the
oven in a vacuum chamber. With the use of diaphragms, particles escape in a collimated
beam into a Zeeman slower, where the particles velocity is reduced. Next the particles
are trapped in the Magneto-Optical Trap (MOT), where red-detuned laser light causes
a momentum transfer opposing the momentum of the atoms. Next the light is turned
off and the atoms are trapped in a Magnetic Trap (MT) where the magnetic field causes
a restoring force that traps the atoms. Using evaporative cooling, where the particles
with the highest energy are removed using an RF field, the cloud is cooled even more.
During the phase transition to BEC, the cooling process is sufficiently slow to minimize
the probability of defects. If a cold cloud without a BEC is needed, the cooling step of
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evaporative cooling is shorter, so more particles will be in the cloud. A more detailed
description is in [2, Sec 2].

By the use of the MT, the atoms in the final cloud are all F = 1, MF = −1 atoms.
The specifications of the MOT don’t really matter as long as enough particles at a
certain temperature could be loaded to the MT. The MT is a harmonic trap within the
boundaries of the experiment, and has a different strength in different directions. By
the geometry of the magnetic coils a cylindrical symmetry is created in the trap. The
MT can therefore be characterized by a radial and an axial trap frequency. The trap
frequencies are measured by inducing a oscillation the cloud and determining the period
of the oscillation of the center of mass of the cloud.

2.2 Imaging with PCI

After cooling our cloud (with or without a BEC) to the desired initial equilibrium,
we start to take pictures of the cloud. A system in equilibrium has a unique density
distribution for a certain trap, number of particles and the temperature. We analyze the
pictures to get the chemical potential and temperature. Using Phase Contrast Imaging
(PCI), there is very little interaction between the atoms and the light, causing only tiny
changes in temperature and number of particles. We will take many pictures of the same
cloud, that we analyze to determine the temperature and the number of particles, so we
can determine some dynamics.

Figure 4: Schematic setup of the experimental of Phase Contrast Imaging (PCI),
containing two lenses, a phase spot and a camera. The lightbeam is the yellow part.
The dotted line produces a construction of the image of the atoms. (from R. Meppelink
[2])

PCI is a technique which uses the phase shift of the light to determine the density
profile. In Figure 4 a schematic setup is showed. A collimated beam passes through the
atoms. Next the light passes through two lenses and a phase spot before the light hits
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the camera. A phase spot is a transparent disk with a small cylindrical shaped hole in
it. The hole has a diameter of 50µm and is 5/3λ deep where λ = 589nm the wavelength
of the light. Some of the light passes through the atoms while an other part of the light
goes around the atoms and through a phase spot, both hitting the camera where they
interfere. So the intensity of the light on the camera depends on the angle θ introduced
by the background and the phase angle φatoms by the atoms and the intensity with a
phase spot without the atoms I0. This intensity is derived in [2, Sec 3], with the following
result of the transmission T

T =
I

I0
= 3− 2 cos(θ) + 2 cos(θ − φatoms)− 2 cos(φatoms) (1)

During alignment, we first remove the second lens and get the phase spot shifted out
of the beam. We place the second lens such that the background light focuses on the
camera. The first lens is placed back, while the phase spot still remains shifted out of the
beam. We align the first lens by making images of the cloud without a phase spot, where
we aim to see ’nothing’. If the two lenses are aligned correctly and without an in-the-
beam phase spot, we won’t see the atoms, since we find a constant intensity independent
of the phases caused by atoms, see Equation 1. If the two lenses aren’t aligned correctly,
defocussing occurs and there is some contrast due to the atoms, see [8]. Lastly we place
the phase spot back in the beam, where the light is sufficiently focused at the phase spot
to fit in the hole of the phase spot. We find a circular interference pattern if the phase
spot is aligned correctly, aiding us in the alignment.

Three images are taken, one with laser light with the atoms with intensity Iatoms, one
with laser light without the atoms with intensity I0 and one without any laser light nor
atoms to find the intensity of the background Ibg. The transmission T is given by:

T =
Iatoms − Ibg

I0 − Ibg
(2)

We use singular value decomposition (SVD) [6, Sec 3.4] to reduce noise in I0.

For our measurements we need the intensity of the light in the cloud Icloud. The intensity
of the laser can be calculated from the number of counts per pixel on the camera, the
count is average pixel value. The image of the cloud is enlarged by a factor 3 by the
lenses, so the intensity of the light would be reduced by a factor 32 = 9 before it hits the
camera without any loss of light.

Icloud = 9
Icam

η
= 9

1

ηqes

NiEphoton

Otexp
(3)

The intensity of the laser light in the camera is Icam = I0−Ibg. Further Ni = Ni,0−Ni,bg

is the number counts per pixel of the ith frame. The exposure time is texp. The energy
of a photon is Ephoton = ~ω = 3.37 · 10−19J, the area of a pixel is O = (8µm)2. The
probability for a photon which passes through a pixel to actually be detected by a pixel
is 1

qes
with qe the quantum efficiency and s the sensitivity. Those depend on the mode

of the camera called the Pre-Amplifier-Gain. If the Pre-Amplifier-Gain is 3.8, qe = 0.21
and s = 4.2 (used in the experiment). If the Pre-Amplifier-Gain is 1, qe = 0.21 and

7



s = 1.63. The efficiency coefficient η is the reduction of the light due to losses of light in
mirrors and lenses. For all the measurements, including those of [1], until the beginning
May 2014, η = 0.19(2). This efficiently was low because some mirrors weren’t placed as
they were designed to. After moving the mirrors we find η = 0.80(10).

2.3 The experiment and the analysis

Thus my experiment has several steps. First a cloud of atoms is prepared into the
desired initial equilibrium, characterized by the trap frequencies, particle number and
temperature. After this 100 images are taken using PCI rapidly (1̃0ms between two
images) of the cloud. During those 100 photographs, the only dynamics are caused by
the illumination of the laser and background effects. After we turn off our trap, the
atoms are lost and we take twice another 100 images to determine I0 and Ibg. Then a
new cloud is created with similar initial conditions. We now take two pictures of new
cloud, with 99 times more time between shots, to measure the background effects (in
the assumptions that those are independent of the conditions of the cloud). We take
multiple series of those images where we varied our initial conditions and the intensity
of the light used.

In our analysis, we first determine the position of the center of mass by fitting our model
(Popov) to the first few shots. Next, we fix the center of mass and fit our model to
get the temperature, chemical potential, energy of the cloud and particle number for
all frames. We determine the average change in temperature and particle number and
subtract the background effects.

3 Theoretical predictions of the dynamics of an illu-
minated cloud

In this section a prediction is constructed for the dynamics of the cloud when illuminated.
A expectation is made for the number of particles and the energy of the system per
particle. The dynamics are caused by the photons.

In Section 3.1 the scattering rate is determined. The probability for the atom to get
scattered by a photon to a different ground state is calculated in Section 3.2. The effect
of a scattering event where an atoms falls back to a certain ground state is described
in Section 3.3. In Section 3.4 a prediction for the dynamics of the particle number is
generated, in Section 3.5 the energy of the system is described, and a prediction for
the dynamics of the energy is generated. An enhancement in the scattering rate isn’t
included until Section 4.
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3.1 The scattering rate

Sodium has different ground states and different excited states. The 8 ground states
and 9 excited states are shown in Figure 5. A photon can be absorbed by an atom,
called scattered. The atom will get excited before it almost instantly (γ−1 = τ ∼ 16ns)
falls back to a (possibly different) ground state. The scattering rate is the number of
scattering events per unit of time per atom and will be calculated in this section.

Figure 5: The 8 ground states and 9 excited states are shown. We start with all the
atoms in the ground states F = 1, MF = −1. The ground states F = 1, MF = −1
and F = 2, MF = 1 and F = 2, MF = 2 are magnetically trapped, atoms in the
other ground states (gray colored) won’t feel the trap and will be lost. However only
the ground state F = 1, MF = −1 is also visible on PCI. The excited F ′ = 3 state is
forbidden and therefore not drawn.

The scattering rate where light is scattered by atoms in the F = 1, MF = −1 ground
state that get excited to a F ′ = e excited state is given by

Γesc =− Icloud

~ε0c
Im (αe(β)) (4)

Here Icloud denotes the intensity of the laser at the cloud, given in Equation 3, ~ the
reduced Planks constant, ε0 the vacuum permittivity and c the speed of light. The
polarizability of the atoms is denoted with αe(β) and depends on the transition to the
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excited F = e state. The polarizability is the ability for an atom to be polarized, causing
the atom to produce a dipole moment. This dipole moment interacts with the electric
field of the light. The polarizability of the atoms is given by

αe(β) =
3iε0λ

3

4π2

DFe(β)

1− 2iδe/γ
(5)

Here λ is the wavelength of the light, γ = τ−1 is the natural line width which is one over
the lifetime τ of the excited stated and β is the angle between the polarization of the light
and the quantization axis. For π-polarized light, we have β = 0, for linear combinations
of σ+ and σ− we find β = π/2. The most important case is linear polarized light where
the intensity of σ+ equals the intensity of σ− light. We have δe the detuning for the
transition from the F = 1 to the excited F ′ = e state

(δ0 δ1 δ2) = (δ + 15.8MHz δ δ − 34.3MHz) (6)

where we kept δ = 4 × −86.5 MHz (and occasionally δ = 2 × −86.5) and DFe the
transition strengths of the transition from the F = 1 to the excited F ′ = e state, given
by

D0(β) =
4

24
sin2 β

β=π/2−−−−→D0 =
4

24
(7)

D1(β) =
5

24
(1 + cos2 β)

β=π/2−−−−→D1 =
5

24
(8)

D2(β) =
1

24
(6 + sin2 β)

β=π/2−−−−→D2 =
7

24
(9)

3.2 Probability to get to an different ground state

When a photon scatters on an atom, the atom gets excited and fall back to a ground
state. The atoms are illuminated with linear polarized light where the intensity of σ+

and σ− is equal. Here the probability of an atom, to get excited and fall back to the
ground state with F = 1 or F = 2, is calculated for a given scattering rate. All the
particles start in the ground state F = 1 and MF = −1.

First the probability to get to a certain exited state is determined. Those probabilities
are denoted with a vector. We ignore the F = 3 state since this isn’t reached, so only
the excited states 1 times the F = 0 state plus 3 times the F = 1 state plus 5 times the
F = 2 state are considered. So the probabilities to get to the 9 relevant exited states
can be denoted with a vector in the R1 ⊕R3 ⊕R5 space. If we consider just π-polarized
light, we have the angle between the polarization of the light and the quantization axis
β = 0. We only get to the F = 1, MF = −1 and the F = 2, MF = −1 state, those
probabilities are given by

φE,π =texp(0 Γ1
sc 0 0 0 Γ2

sc 0 0 0)> (10)
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with texp the time of illumination per frame. Here Γesc is the scattering rate given in
Equation 4. If we consider linear polarized with the intensity of the σ+ equal to the
intensity of the σ− light, we get β = π/2 and

φE,σ =texp(Γ0
sc 0 Γ1

sc 0 6
7Γ2

sc 0 1
7Γ2

sc 0 0)> (11)

It turns out that the difference between linear σ-polarized light and linear π-polarized
light are minimal (∼2%). In the rest of the calculation we will only consider linear σ-
polarized light, also used in our experiment, and we use Equation 11. Now the probability
to fall back from an excited state to the different ground state is calculated. There are 8
relevant ground states, 3 from the F = 1 and 5 from the F = 2 ground state. So a vector
of probabilities to get to the different ground states in the R3 ⊕R5 space is used.

Without restrictions, the atoms could fall back from 9 excited states to 8 ground states,
though by certain restrictions some probabilities are zero. This is denoted with a 9× 8
matrix. We separate the cases where π, σ+ and σ−-polarize light is emitted. Those
probabilities are the Clebsch Gordan coefficient and denoted with the matrices: Sπ, Sσ+ ,
Sσ− , where the total probability to fall back to a state is given by S = Sπ + Sσ+ + Sσ− .
The values for S are given in Equation 13.

The probability to get excited and fall back to a certain ground state is just the product
of the probability to get excited and the probability to fall back, summed over the
different ways to get to the new ground state. In linear algebra this could be written
as a matrix multiplication. The probability to get excited and fall back to the ground
states is denoted with φG

φG =(Sσ− + Sσ+ + Sπ) · φE,σ (12)

So by calculating this all, a vector for the probabilities to get excited and fall back to a
ground state φG is found

Sσ− = 1
60



0 0 200 0 0 0 0
0 25 0 0 0 1 0 0
0 0 250 0 0 3 0
0 0 0 0 0 0 0 6
30 0 0 010 0 0 0
0 15 0 0 0 15 0 0
0 0 5 0 0 0 15 0
0 0 0 0 0 0 0 10
0 0 0 0 0 0 0 0



>

Sπ = 1
60


0 250 0 0 15 0 0 0
20 0 0 0 0 0 20 0 0
0 0 025 0 0 0 15 0
0 0 0 0 20 0 0 0 0
0 3 0 0 0 5 0 0 0
0 0 4 0 0 0 0 0 0
0 0 0 3 0 0 0 5 0
0 0 0 0 0 0 0 0 20



Sσ+ = 1
60



20 0 0 0 0 0 0 0
0 0 0 6 0 0 0 0
25 0 0 0 3 0 0 0
0 25 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 10 0 0 0 0
5 0 0 0 15 0 0 0
0 15 0 0 0 15 0 0
0 0 30 0 0 0 100



>

φG = texp



1
3Γ0

sc+
5
12Γ1

sc+
37
84Γ2

sc
1
3Γ0

sc+
1
21Γ2

sc
1
3Γ0

sc+
5
12Γ1

sc+
1
84Γ2

sc
2
7Γ2

sc
1
20Γ1

sc+
5
28Γ2

sc
1
15Γ1

sc
1
20Γ1

sc+
1
28Γ2

sc
0



(13)

A quick example of calculating with the probability. Consider the case for an atom in
the ground state F = 1, MF = −1 to get excited to the F ′ = 1, MF = 0 and fall back
to the ground state F = 1, MF = 1. The probability to get excited to the F ′ = 1,
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MF = 0 state is the 3th element of φE,σ is texpΓ
1
sc. The probability to fall back to

the F = 1, MF = 1 ground state is the element (3,3) of S is S3,3 = 25
60 . The product

is texp
25
60Γ1

sc, which contributes to the total probability to get to the F = 1, MF = 1
state φG,3 = 1

3Γ0
sc + 5

12Γ1
sc + 1

84Γ2
sc, the 3th element of φG. Their are different routes

to get to this ground state F = 1, MF = 1, and those probabilities should be summed
over.

3.3 The effect of scattering on the system

If a photon is scattered on a atom, the atom gets a momentum transfer from the photon,
in the direction of the light from the absorption and in a random direction from the
emission of the photon. A photon has a momentum of p = ~ω

c . We have to use the

average energy transfer (
p2transfer

2m )avg, with ptransfer the total momentum transfered by
two photons. With

p2
transfer =

(
~ω
c

)2
1

4π

∫ π

0

dθ

∫ 2π

0

dφ sin θ

∣∣∣∣∣∣
∣∣∣∣∣∣
sin θ cosφ
sin θ sinφ
1 + cos θ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

= 2

(
~ω
c

)2

(14)

So the energy increase is
p2transfer

2m = ~2ω2

mc2 . The energy increase is independent of the
initial moment p0 since the new energy minus the old energy is just the energy of the
transfered momentum.

1
4π

∫ π
0

dθ
∫ 2π

0
dφ sin θ×

(ptransfer+p0 cos θ)2+(p0 sin θ sinφ)2+(p0 sin θ cosφ)2−p20
2m

=
p2

transfer

2m
(15)

We consider a cloud in the hydrodynamic limit, so all scattered particle redistribute their
energy and give an energy increase per particle.

Epp =(1, 1, 1, 1, 1, 1, 1, 1) · φG ·
~2ω2

mc2
= texp

(
Γ0
sc + Γ1

sc + Γ2
sc

) ~2ω2

mc2
(16)

The vector φG of probabilities to get to a different ground state is used, see Equation 13.
For a small cloud this is not always the case. Let us consider the dilute limit. The
fraction of particles lost remains the same, though the energy increase per scatter event
decreases. This decrease is because particles no longer trapped don’t redistribute their
gained energy. Only particles still trapped will redistribute their energy.

Epp =
~2ω2

mc2
(1, 0, 0, 0, 0, 0, 1, 1) · φG = texp

(
1

3
Γ0
sc +

5

12
Γ1
sc +

37

84
Γ2
sc

)
~2ω2

mc2
(17)

The fraction of the particles lost, is given by the sum of the product of the probabilities
to get to a certain state times the probabilities of a certain state to be no longer trapped
(this is either 0 or 1). The fraction of atoms no longer trapped is

g =(0, 1, 1, 1, 1, 1, 0, 0) · φG = texp

(
2

3
Γ0
sc +

7

12
Γ1
sc +

47

84
Γ2
sc

)
(18)
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3.4 The number of particles

Here an expression for the dynamics in the number of particles is calculated. If Ni
denotes the total number of particles, and gi the fraction of the particles lost after the
N th
i frame, then the expression for Ni is:

Ni+1 = Ni(1− gi) (19)

If the enhancement is constant, the fraction of atoms scattered is constant. For a cloud
without BEC this is the case. For a cloud with a BEC, when there is a minimal change
of the system within a series of frames, we can approximate this as well. If gi = g � 1
is constant an expression is

Ni = N0(1− g)i ≈ N0 exp(−g · i) (20)

The fraction of the particles lost g is the sum of all probabilities to a scattering event
where the particle is lost, calculated in Equation 18.

3.5 The energy

Here an expression for the energy of the system is calculated. The energy per particle
for particles in a harmonic trap is calculated with [5, Sec 2.4]

E =3NkBT
ζ(4)

ζ(3)

(
T

Tc

)3

+
5

7
2π~µ T ≤ Tc (21)

E =3NkBT

[
1 +

ζ(3)

24

(
Tc
T

)3
]

T > Tc (22)

Here 2πµ~ is the chemical potential which has negligible effect. Here kB is the Boltzmann

constant, T the temperature, Tc = ~ω̄N1/3

(ζ(3))1/3
the critical temperature as a function of the

number of particles, ~ the reduced Planck constant and ω̄ = (ωxωyωz)
1/3 the average of

the trap frequencies. The Riemann Zeta function is denoted with ζ. For T � Tc we find
the classical expression E ≈ 3NkBT ∝ N . However, for T ≤ Tc we find that the energy
is independent of the total number of particles, since the thermal cloud is saturated and
the condensed particles have a negligible amount of energy.

We include two effects caused by the scattering, the momentum transfer and the loss
of particles. The effect on the energy of the system by the momentum transfer for one
particle was described in Section 3.3. Now the effect on the energy of the system of the
loss of particles is described.

If only atoms are lost (without an explicit change in energy per particle), a decrease in
number of atoms is noticed. For a given temperature, if a fraction of particles is removed,
we expect also to remove a fraction of the total energy. So

∆Eexpect = ∆N
E

N
=

∆N

N
E (23)
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We consider two cases, E ∝ N for a cloud without a BEC and E 6∝ N for a cloud
with a BEC where E is independent of the number of particles. We calculate directly
∆E ≡ E(N + ∆N)− E(N).

∆ET>Tc =E
N + ∆N −N

N
= E

∆N

N
if E ∝ N (24)

∆ET<Tc =E − E = 0 if E 6∝ N (25)

So for T > Tc and E ∝ N we have removed also a fraction of the total energy as
expected. Equation 23 and Equation 24 agree. No explicit energy decrease has to be
introduced.

However for T < Tc the energy is independent of the number of particles E 6∝ N . Now
we do not find a direct decrease in energy. So by removing some particles we remove
some energy which is not found directly. Equation 23 and Equation 25 do not agree. We
have to add an additional energy per particle decreasing term ∆E = ∆N

N E to make the
equations agree.

If a thermal particle is lost in a cloud with a BEC, we expect a BEC particle to get
thermal to keep the thermal cloud saturated. This effect is a cooling effect, and gives an
intuitive explanation of the previous explicit energy decreasing term.

Dynamic energy expression for T > Tc

Here an expression for the dynamics of the energy of the system is calculated for a cloud
without a BEC. If Ei = Ei/Ni denotes the average energy per particle in the ith frame,
for T > Tc, Ei+1 is given by

Ei+1 = Ei + Epp,i (26)

If the enhancement is constant, the fraction of atoms scattered is constant. For a cloud
without BEC this is the case. For a cloud with a BEC, when there is a minimal change
of the system within a series of frames, we can approximate this as well. Then the
expression becomes

Ei = E0 + iEpp (27)

we can approximate the energy with an expression for the temperature.

Ti ≈ T0 + i
Epp
3kB

(28)

with Epp energy added per frame. The temperature change is the energy change over
the heat capacity per particle C∗V ≈ 3kB . This is the probability for an atom to scatter
times the average energy added, calculated in Equation 16.
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Dynamic energy expression for T < Tc

Here an expression for the dynamics of the energy of the system is calculated for a
cloud with a BEC. For T < Tc, we will add an explicit cooling term in our equation
for the energy per particle. This is necessary since during the remove particles we also
lose energy we haven’t included yet. Our equation for the average energy per particle
becomes

Ei+1 = Ei + Epp,i − giEi (29)

If Epp,i = Epp and gi = g are constant (this can be approximated when the system has
minimal changes and a constant enhancement in the scattering rate), this can be written
as a differential equation:

Ė = Epp − gE (30)

We solve this and find

Ei =
Epp
g

+
Ei0 −

Epp
g

exp(−gi0)
exp(−gi) (31)

This function will have an asymptotic value at E =
Epp
g .

4 The enhanced scattering rate

In the calculation for the polarizability an extra factor 1
1+A is introduced due to neigh-

boring atoms. Equation 5 will get this extra factor. This factor will also enhance the
scattering rate as given in Equation 4.In this section an expression for A is calculated,
see also [3, Eq 24] (denoted by C) and [4, Sec 3]. The factor 1

1+A introduced in the
polarizability of the atom α at the probe frequency, gives an correction for the:
1-Standard Lorentz-Lorenz local field correction.
2-Two-body correlation function.
*An effect of dipole-dipole interaction is not included since in would be small since it
depends quadratically on the polarizability α� 1.

The equation for A is

A ≡ −1

3
αρ0︸ ︷︷ ︸

Lorentz-Lorenz

−αρ0

∫
d3rg̃xx(~r)e−ikmzφ(r)︸ ︷︷ ︸

Two-body correlation function

(32)

where α is the polarizability and ρ0 the local density the pair correlation function is
denoted with φ(r), which is called also the two body correlation function, given in Sec-
tion 4.1. In Section 4.2 an expression for g̃xx(~r) is given in and simplified. Since the
local density approximation is used, we have to average over the cloud in Section 4.3.
In Section 4.4 we will verify the converging of the integral expression of A. Finally we
verify the local density approximation in Section 4.5, by showing the integral converges
within the dimensions of the condensate.
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4.1 The pair correlation function φ(u) and density function ρ(r)

The pair correlation function is shown in Figure 6a for some values, will be calculated
here. For T > Tc and T ≤ Tc with Tc the critical temperature there are two different
formulas for the pair correlation function.

φ(u) =



 g3/2(αs,π u2

λ2
DB

)
ρ0λ3

DB

2

T > Tc1− g3/2(0)

ρ0λ3
DB

+
g3/2

(
π u2

λ2
DB

)
ρ0λ3

DB

2

−
[
1− g3/2(0)

ρ0λ3
DB

]2
T ≤ Tc

(33)

Also g3/2 is defined as

g3/2(αs, x) =

∞∑
n=1

n−3/2 exp(nαs − x/n) (34)

where 0 ≥ αs = 1
kBT

min(µ0, 0) = log
[
g−1

3/2(ρ0Λ3
DB)

]
and αs = 0 appears when there is a

condensate. Here ΛDB =
√

2π~2

mkBT
is the thermal De Broglie wavelength and ρ0 = ρ(~r0)

is the local density, µ0 = µ − V (~r0) is the local chemical potential. Those are kept
constant during the local density approximation and calculating the relative enhancement
of the scattering rate at a certain point, though variated when averaging the relative
enhancement of the scattering rate over space. We define g3/2(x) = g3/2(0, x) and note
g3/2(0) ≈ 2.612.

Now techniques will be used to determine g3/2 more efficient numerically. Instead of
summing infinite terms, sum a finite number of terms and integrate over the rest, dra-
matically reducing the number of terms before convergence is reached. First have a look

at T ≤ Tc, where we have g3/2

(
π u2

λ2
DB

)
.

g3/2

(
π
u2

λ2
DB

)
=

∞∑
n=1

exp −πu
2

nλ2
DB

n3/2

≈
N∑
n=1

exp −πu
2

nλ2
DB

n3/2
+

∫ ∞
N

dn
exp −πu

2

nλ2
DB

n3/2

=

N∑
n=1

exp −πu
2

nλ2
DB

n3/2
+
λDBerf

( √
πu√

NλDB

)
u

(35)
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This can be done also for T > Tc, where g3/2

(
αs, π

u2

λ2
DB

)
.

g3/2

(
αs, π

u2

λ2
DB

)
=

∞∑
n=1

exp
(
−πu2

nλ2
DB

+ αsn
)

n3/2

≈
N∑
n=1

exp
(
−πu2

nλ2
DB

+ αsn
)

n3/2
+

∫ ∞
N

dn
exp

(
−πu2

nλ2
DB

+ αsn
)

n3/2

=

 N∑
n=1

exp
(
−πu2

nλ2
DB

+ αsn
)

n3/2

+
λDB
2u

[

exp

(
−2
√
πu
√
−αs

λDB

)
erfc

(√
−Nαs +

√
πu√

NλDB

)
−

exp

(
2
√
πu
√
−αs

λDB

)
erfc

(√
−Nαs −

√
πu√

NλDB

)]

(36)

With erfc the complementary error function. Picking the value for N large enough for
which the result is converged, is essential. However a small N will reduce the calculation
time. It turns out that a value of N = 10 seems to be sufficiently large.

4.2 Towards calculating A

Again the definition of A as in Equation 32

A ≡ −1

3
αρ0 − αρ0

∫
d3rg̃xx(~r)e−ikmzφ(r) (37)

Here φ(~r) was the pair correlation function given in Section 4.1 and gαβ = g̃αβ− 1
3δαβδ(~r)

where g̃αβ and g̃xx given by:

g̃αβ =g̃0

[(
1 +

3i

kcr
− 3

(kcr)2

)
rαrβ
r2
−
(

1 +
i

kcr
− 1

(kcr)2

)
δαβ

]
(38)

g̃xx =g̃0

[(
1 +

3i

kcr
− 3

k2
cr

2

)
(cos ζ sin θ)2 −

(
1 +

i

kcr
− 1

k2
cr

2

)]
(39)

Where g̃0 = − k3c
4π

eikcr

kcr
, kc = k

√
1 + αρ0 and km = k

√
1 + αρ0

1+A . Here α =
∑
e α

e is

the total polarizability and k = 2π
λ is the wave number of the light in vacuum. In a

medium the wavenumber is different, kc and km can be seen as the wave number in the
medium, the imaginary part of kc, km ∈ C can be seen as scattering events. Even though
|A|, |αρ| � 1, it turns out that these terms are necessary to make the integral converge,
see Section 4.4.

Substitute spherical coordinates and Jacobian r2 sin θ. Integrate over the angle of the
integral of Equation 37. This is easy since the pair correlation function φ(r) = φ(|r|) is
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independent of the angle. For notation purposes the result is called h(r)
k

h(r)

k
=

1

k

∫ π

0

dθ

∫ 2π

0

dζ r2 sin θ g̃xx(r, θ, ζ)e−ikmr cos θ (40)

= kc
k

eikcr(kcr)
2

(kcr)3(kmr)3

{
kmr cos(kmr)

[
− 3 + kcr(3i+ kcr)

]
+

sin(kmr)
[
3− kcr(3i+ kcr) + k2

mr
2(−1 + ikcr + k2

cr
2)
]} (41)

One can find that limr→0 h(r) exists and is zero, so the bottom part of the integral con-
verges. To make sure that no numerical errors will occur, we use a Taylor approximation
around zero, for small values of r.
Since kc has an imaginary part, the term eikcr will give a damping factor to make the
top part of the integral converge (Section 4.4 will give some calculations).

Now a formula (iterating since kc depends on A) is found, which can be integrated nu-
merical for Equation 32, where u = kr is substituted. For typical values three iteration
steps are sufficient (starting with A0 = − 1

3αρ).

A

αρ0
= −1

3
−
∫ ∞

0

h(r)φ(k r)dr = −1

3
−
∫ ∞

0

h(uk )φ(u)

k
du (42)
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For ΡΛL
3

=0.5, ΡLDB
3 is given

(a)

r

Ρ

(b)

Figure 6: In (a) the pair correlation function is shown, with λL the wavelength of the
light and ΛDB the de Broglie wavelength. The numbers represent the value of ρΛ3

DB .
For Tc their is ρΛ3

DB = g3/2(0) ≈ 2.612. In (b) the density function is shown, where
the dotted parts are the thermal and condensed part and the solid part is the total
density.
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(a) (b)

Figure 7: The relative enhanced scattering rate for sodium with a detuning of δ =
−346MHz is showed here. In (a) is this a function of the temperature T and density
ρ0 in a homogeneous system, where the dashed line denoted the critical temperature

Tc =
(

ρ
ζ(3/2)

)2/3
2π~2

mkB
. In (b) the cloud with a density distribution due to a harmonic

trap this relative enhanced scattering rate is averaged over the cloud, where the system
is characterized by the temperature T and the chemical potential µ.



4.3 Averaging over the cloud

In the calculation A depends on the local density, so we use the local density approx-
imation. We calculate A (and iterate) for a fixed density and take the average factor〈

1
1+A

〉
over all particles. We denote the local density around particle with index n as

ρ(n) = ρ(~r(n)). We simplify this by integrating over space.

〈
1

1 +A

〉
=

∑N
n=1

1
1+A(ρ(n))

N
=

∫ d~rρ(~r)
1+A(ρ(~r))

N
=

∞∞∫∫
0 0

dr dz 4πrρ(r,z)
1+A(ρ(r,z))

N
(43)

In the easiest approximation where thermal and condensed atoms do not interact, the
density function ρ(~r) consists out of two parts, the density of the thermal cloud is added
with the density of the condensed atoms.

ρ(r) = g3/2

(
|µ− V (r)|
kBT

)
+

max(0, µ− V (r))

u0
(44)

The density function is shown in Figure 6b This value of for the density is used in the local
density approximation. When a fit is made to our images we use Popov approximation
to determine the temperature and chemical potential.

Now we will calculate the relative enhancement of the scattering rate, which is the
total enhanced scattering rate over the total non enhanced scattering rate. Since the
imaginary and real part of 1

1+A part will mix up, it is necessary to include the 1
1−2iδe/γ

in the calculation. Constant terms will cancel.

rel.enhan =

∑
e Γesc∑

e Γesc, non enh

=
Im
(∑

e

〈
1

1+A

〉
1

1−2iδe/γ

)
Im
(∑

e
1

1−2iδe/γ

) (45)

with Γesc, non enh the non enhanced scattering rate. In Figure 7 the relative enhancement is
plotted as a function of temperature T and the density ρ0. We also average over the cloud
and the relative enhancement as function of the temperature T and the chemical potential
µ under typical experimental conditions (using sodium, detuning δ = −346MHz).

4.4 Making the integral A converge

Here first, the pair correlation function in the limit r →∞ is calculated, this is necessary
to determine whether the integral expression for A converges. First take u → ∞ of the
g3/2 function, use Section 4.1. Note that the finite sum goes exponentially to zero, since
the elements goes exponentially to zero.

It turns out for T > Tc that the complementary error function multiplied by the exponent
divided by r are going to zero even faster. So above the critical temperature the g3/2

function is going to zero sufficiently fast to integrate over space. Since φ(u) ∝ (g3/2)2,
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the pair correlation function will also converge to zero sufficiently fast to integrate over
space (exponentially or faster).

Below Tc > T it turns out that the g3/2 function goes as 1/u for u → ∞. With some
calculations we find that φ(u) = C1g3/2 + C2(g3/2)2 for C1,2 independent of u. So φ(u)
goes as 1/u below the critical temperature.

First it is shown that the integral will diverge if we make an incorrect (though intuitive
acceptable, and also not always explicitly and clearly written down in the literature as [4,
Section 3] and [3]) approximation. After this it is shown that the integral will converge
without these approximations.

Notice |A0|, |αρ| � 1 and kc = k
√

1 + αρ0 and km = k
√

1 + αρ0
1+A . In the approximation

kc = km = k we find:

h(u)

k
= eiku

(
ku(−3 + 3iku+ (ku)2

(ku)4
cos(ku)+

3− 3iku− 2(ku)2 + i(ku)3 + (ku)4

(ku)4
sin(ku)

) (46)

For kr � 1 we find h(u)
k → sin(ku)(cos(ku) + i sin(ku)), where the imaginary part

oscillates around a non-zero number, 1/2. The pair correlation function will give a 1/u
term, which combined will go as 1/u, this will make the integral diverge as log(u).

We have found that in the approximation kc → k and km → k, the integral A diverges.
Without these approximation, we find that the h(u)/k function will go exponentially to
zero since the eikc will have a negative real part in the exponent.

4.5 Validating the local density approximation

As was read in Section 4.4, we had some difficulty making the integral converge. The
local density approximation assumes that the density is locally constant. This is the case
if the integral would be converging fast enough (within the dimensions of the condensate),
which is not trivial.

After calculating the relative enhancement of the scattering rate (Equation 45) depending
on A (Equation 32), with the difference that A was calculated after integrating over a
finite volume, showed that the relative enhancement of the scattering rate has got for
typical values approximately 50% and 90% of it’s value after just 0.001mm and 0.01mm.
This could be explained since the scattering length only take the exponential damping
into account, but it doesn’t take the 1/r damping of the pair correlation function (see
Section 4.4). Since 1/r will give a logarithm out of the integral, the factor would be
strongly damped, since the effect of the volume of 0.1mm to 1mm will be as small as
0.0001mm to 0.001mm. So the experimental situation will have in good approximation,
probably around 90%, the same effect as the calculated homogeneous situation. In
Figure 8 polarizability with the relative enhancement of the scattering rate as a function
of T is calculated for typical experimental conditions.
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Figure 8: In this figure the imaginary part of the polarizability α is drawn as function
of T with log-linear axes. This is calculated for λ = 589nm, δ = −4 · 86.5MHz, γ =
9.79MHz and ρ0 = 1020m−3. The dotted line is the value without the enhancement.
The dot-dashed is the value after integrating up to 0.001mm and the dashed line is
the value after integrating 0.01mm. We ignored that the oscillating part isn’t fully
converged, so the last part of a period can give a significant contribution. The solid
line is polarizability with the relative enhancement of the scattering rate integrated
up to ∞.

5 Experimental results

To confirm theory, experimental results with sufficiently small uncertainties are needed.
In this section the results will be described. In Section 5.1 we will describe the charac-
teristics of the behavior of our measurements, containing of a 100 images of one single
cloud. In Section 5.2 the results are summarized. In Section 5.3 some difficulties and
uncertainties are described before we describe also how the measuring could be more
accurate. Finally we find the results of [1] agreeing with additional effects in the theory
in Section 5.4.
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5.1 Some measurements of the particle number and tempera-
ture

In this section the result are shown and analyzed. The series here considered, had the
pictures taken rapidly after one another (with a time between shots between 5ms and
10ms), and the mirrors were placed poorly giving a low η, and the Pre-Amplifier-Gain
is 3.8. We measured the trap frequencies to be 2π 89.9Hz and 2π 15.1Hz. All the
measurements in this part are in directory 20140404, though some were taken during
different days.

ð <N> g gtheory DT�shot DTtheory�shot

æ 321 3103 0.023H3L 0.0345 0.037H6L 0.0432
æ 295 1403 0.0118H13L 0.01559 0.026H3L 0.0195
æ 338 334 0.0032H6L 0.00371 0.0014H22L 0.00465
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Figure 9: Examples of the temperature and particle number dynamics for clouds
without a BEC. Different colors represent different series with a different intensity of
the probe laser, scales with < N >. In (a) the total number of particles is shown
as a function of the shot number for a cloud without a BEC. The particles are lost
exponentially, as predicted, though with a exponent smaller than theory predicts. In
(b) the temperature is shown as a function of the shot number. The red and the
blue line seem to flatten out at the end, which is explained by the system leaving
the hydrodynamic regime where particles no longer trapped don’t redistribute their
gained energy anymore. The green curves seems to behave rather odd, some periodic
behavior in the temperature. This is explained by noise due to the use of little light.
This isn’t physical behavior.

In Figure 9a the number of particles is shown for three cloud without a BEC, and
the corresponding temperature is shown in Figure 9b. In Figure 10a and Figure 10b
the number of particles and the corresponding temperature are shown for three clouds
starting with a BEC. The frames with a BEC are denoted with a ’+’ and the frames
without a BEC are denoted with a ’•’.
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ð <N> gBEC gthermal gtheory DTthermal�shot DTtheory�shot

æ 309 1159 0.024H4L 0.0096H10L 0.01287 0.0193H21L 0.0161
æ 317 1004 0.021H3L 0.0080H9L 0.01115 0.0196H21L 0.014
æ 344 327 0.0057H7L 0.0019H4L 0.003632 0.0103H11L 0.00455
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Figure 10: All these figures are clouds started with a BEC. After some frames the
BEC is destroyed completely. The frames with a BEC are denoted with a ’+’; the
frames without a BEC are denoted with a ’•’. Different colors represent different series
with a different intensity of the laser, that scales with < N >. The discontinuities
in the plots, where the BEC disappears completely is caused by fitting errors due to
atoms no longer trapped still present. In (a) the total number of particles is shown
as a function of the shot number for a cloud started with a BEC. When the BEC
disappears the exponent changes. The change in exponent can be explained by the
enhanced scattering rate, which can give up to a factor 3 in the exponent for a BEC.
In (b) the temperature is shown as a function of the shot number for a cloud started
with a BEC. For the part without a BEC the system heats up as thermal clouds who
didn’t start with a BEC. The decrease in temperature in the BEC could be explained
by thermalization of condensed particles.

The number of particles decreases exponentially, as predicted for a constant enhancement
in the scattering rate. For a cloud without a BEC there is no enhancement. For a cloud
with a BEC we assume the enhancement and fraction of particles lost to be constant.
For the frames with a BEC the number of particles decreases faster as predicted by
the enhanced scattering rate, causing a higher exponent. The results are quantified in
Section 5.2.

In the measurements without a BEC, the temperature increases in the first part linearly
before the slope reduces. We expect the temperature difference per frame to satisfy
3kB∆T = Epp for T � Tc. The reduction of the slope occurs gradually and continuously.
It occurs when the temperature is increased and the particle number is reduced, causing
a lower density (up to a factor 10). This can be explained by leaving the hydrodynamic
regime. We enter gradually the regime where the gained momentum of particles no longer
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trapped isn’t redistributed over the rest of the cloud. We haven’t quantified this.

Even though we made a prediction for the energy per particle and temperature for a cloud
with a BEC, we won’t compare theory and experimental results. The enhancement isn’t
constant and isn’t experimentally well enough determined. Also the change in energy
per particle is small for a cloud with a BEC, compared to the statistic and systematic
errors.

Both in the temperature and in the number of particles there is a discontinuity when the
BEC is no longer detected. A discontinuity isn’t physical behavior. There seems to be
also some start-up effect in the first 5 frames when there is a BEC (temperature increase
and the lack of losing particles). This will be described in Section 5.3.

5.2 Quantifying the results

Here the results are quantified. The temperature difference per frame is plotted against
the average pixel count < N >∝ Ilaser in Figure 11a. Under these circumstances the
background effects were measured to be up to 0.001µK per frame. However there seems
to be some kind of cutoff of approximately 0.008µK per frame. We found that the
experimental results over the theoretical results

Epp,experiment

Epp,theory
varies from 0.9 up to 2.2,

caused by the cutoff. If we include a cutoff, vary those from 0.7 up to 1.2. In both
cases we excluded some measurements (20%) with the worst noise (like the green curve
in Figure 9b).

In Figure 11b the exponent of the particle loss is given as a function of the number
of counts per pixel, including a theoretical prediction. Background effects for a cloud
without a BEC with little time between shots appear to be negligible. However the
exponent divided by the counts g/N seems to decrease when more light is used. The
experimental results over the theoretical results

gexperiment

gtheory
vary from 0.65 up to 0.95,

depending on the amount of light.

The fraction of particles is lost when there is a BEC, is on average 2.6(3) times higher
than when there isn’t a BEC. When there was a BEC in measurement 309 the aver-
age value for the chemical potential was µ ≈ 2.3kHz and temperature of T ≈ 0.66µK.
For the measurement 317 and 344 the conditions were similar. Comparing this with
our theoretical prediction in Figure 7, we expect an enhancement of a factor 2.0. So
our measurements are within two times the uncertainty. Since the chemical potential
and temperature change over the frames we expect the enhancement to change as well.
We couldn’t measure accurate enough to get experimental a frame to frame enhance-
ment.
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Figure 11: The values for the series started without a BEC are denoted with a ’•’,
those with a BEC with a ’+’ and when the BEC is destroyed with a ’o’. The dotted
lines are the theoretical values (we didn’t include an extra cutoff effect). The solid gray
lines is the average experimental value. The different colors are measurements of two
different days. In (a) the temperature increase per frame is shown as a function of the
pixel count N . The best linear regressions, with and without offset, are drawn. There
seems to be some kind of cutoff, some temperature increase will occur even without any
laser light, though this was measured directly to be negligible (<0.001µK) for the red
measurements (we didn’t measure the background effects for the black measurements).
In (b) the exponent of the particle loss is shown as a function of the pixel countN . The
best linear regressions without an offset are drawn the thermal clouds ’•’,’o’ and the
clouds with a BEC ’+’. For a cloud with a BEC, where the conditions as temperature
and chemical potential are similar, the slope of the exponent versus the pixel count
is a lot steeper than for the cloud without a BEC. If the conditions of the BEC are
different, different slopes are expected.



5.3 Difficulties, uncertainties and improvements for future mea-
surements

In Figure 10 discontinuities were detected when the BEC is no longer detected. There
seems to be also some start-up effect in the first 5 frames when there is a BEC (tem-
perature increase and the lack of losing particles). This is caused by the failure of our
fit. We have noticed a BEC still present when the BEC is no longer detected by our
fit. The failure of our fit is explained by particles no longer trapped still present. Those
particles will change the shape of our cloud. After ∼20 frames when the BEC is no
longer detected the BEC is really destroyed, and the fit is correct again. The failure of
the fit those ∼20 frames cause the discontinuity. The particles no longer trapped still
present may also cause some startup effects, like the increase in temperature and the
lack of losing particles in the first 5 frames when there is a BEC present.

The effect of the particles no longer trapped still present will give a too high energy
increase since the cloud becomes wider → increased temperature and a to low fraction
of particles lost since the particles are still present. We haven’t quantified this.

The startup effect and the failure of the fit are caused by taking the two shots rapidly
after one another, our model fails to fit some images due to atoms not longer trapped still
present. This effect is extremely important when there is a BEC (due to high densities
and collision rates). Atoms no longer trapped but still present, may also play a role
for clouds without a BEC. This effect increases when there is a lot of light in one shot.
Using little light is not desirable, the images get noisy and hard to analyze.

Increasing the time between two shots introduced new problems. We found that the
effect we were looking for (heating up of particles and losing particles due to the light),
would be small compared to background effects when there is little light or a lot of time
between shots (effects due to impurities of the trap, impurities of the vacuum). To make
matter worse, the background effects seemed to depend on the size and temperature of the
cloud, causing the background effect not to be constant and hard to compensate.

Despite these difficulties we think we have the ingredients to analyze more accurate
than [1], due to the use of more light (less noise in the pictures) and placement of the
camera such that the BEC is on a spot where there are minimal interference effects in
the background. We see less noise in the measured temperature and number of particles.
However reducing the effects of particles lost but still in the trap or subtracting the
background heating and loss is a challenge.

A difficulty we couldn’t solve was the phase spot in our PCI setup. We used a phase spot
with θ = π/3 ≈ 1.047, so we expected a relative intensity I/I0 for the background of 1,
and for the atoms periodic between 0 ≤ I/I0 ≤ 4. Unfortunately, even after different
ways of aligning the system correctly, we got a relative intensity up to 5.0 ± 0.4, with
5.0 > 4. By using a slightly bigger phase spot θ = 1.3 we expect a relative intensity
up to 5.0, but the shape of our model of an image of the cloud doesn’t seem to be
improving, and due to some noise and day to day miss aligning effects, we have quite
some uncertainty for our maximum relative intensity, so we still use in our calculations a
phase spot of θ = π/3. In this thesis we try to measure the particle number decrease and
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the temperature change. We have calculated those for different phase spots and found
for a cloud without a BEC no difference (< 2%) and for a cloud with a BEC only a small
difference (∼ 20%).

Here I will summarize how the noise and uncertainties can be reduced in the measure-
ments. The aligning should be optimized before the measurements, and during the
measurements the background light should be minimized. Using a high intensity of the
light on the camera will noise, as well as placing the camera such that there are no
interference effects in the background image at the BEC. Fixing the center and using
SVD in our analyzes reduces also noise.

An optimum should be found for the time between shots, large enough to let atoms no
longer trapped escape though not to large to keep background effects minimal compared
to the scattering effects. Using a high intensity of light at the atoms will increase the
effects of scattering. To prevent the camera overexposing a filter should be placed in
the light beam before the camera. During the fit we can first fit the temperature on the
thermal part of the cloud containing a BEC (ignoring the atoms no longer trapped still
present in the high densities of the BEC), before we determine the chemical potential
with a fixed temperature.

It is necessary to understand the phase spot better to explain the signal which goes to a
value larger than expected. A possibility is to determine the maximum average value of
the signal I/I0 in measurements with a BEC and no noise and experimentally obtain a
value for the size of the phase spot.

5.4 Results of Damaz de Jong for a cloud without a BEC

Since my thesis uses the results of Damaz de Jong [1, Sec 5.2], I will also describe his
results. He found for a cloud without a BEC experimentally g/N = 25.2(7)× 10−6 and
Epp/N = 97(4)pK. He concluded that these results were a factor 5 and a factor 16 higher
than he predicted.

I have included the following additional effects in his theory: an coefficient η for the
loss of light, assuming the cloud is in the hydrodynamic regime, and a slightly different
value for the average energy transfer. I can make new theoretical predictions with a 10%
uncertainty due to the accuracy of the measurement of η, for losses of light due to our
mirrors. Theory predicts ḡ/N = 29(3) × 10−6 and Ēpp/N = 107(10)pK. For both the
energy as the particle number we find our theoretical value approximately 10% too high.
We think it would be plausible that our value for η could have changed during the year.
Even ignoring a possible change in η, theory and experiment are within two times the
standard deviation. So we can conclude that with some additional theory, experimental
results of [1, Sec 5.2] and theoretical predictions coincide.
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6 Conclusion

In this thesis we have considered the scattering rate, when near resonant light beam
illuminates a cloud of cold atoms. By illumination we lose particles and we add energy
to the system. We have got a better understanding of the scattering of particles and the
background effects.

For the case without a BEC we have the following conclusions about particle loss and
energy increase. We found that theory and experiment differ at most 30%. We had
problems with atoms no longer trapped to remain present, which can be solved by waiting
longer between shots, though not to long too make background effects significant. We
think we can decrease the uncertainties in our measurements. We could conclude that
with some additional theory as written in Section 5.4, the experiment of [1] agrees with
theory for a cloud without a BEC.

For the case with a BEC an enhancement in the scattering rate was calculated, due to
effects of neighboring atoms on the polarizability. This enhanced scattering was measured
in the particle loss and was within the uncertainty of our calculation. Though we had
to approximate that during a some shots the temperature and chemical potential were
constant. This approximation was necessary since our measurements were too noisy. For
the energy of the system we couldn’t compare theory and experiment, because we have
too much uncertainties in our measurements, in the enhancement and the determining
of the temperature and chemical potential.
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