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Abstract

In 1998 Ebbesen and co-workers discovered the extraordinary optical trans-
mission through a subwavelength silver nano hole array. Here we measure
the transmittance of a subwavelength gold square nano hole array. We study
the transmittance as a function of hole size and as a function of array size.

Comparing the results of the 2500 µm2 array with the 930 µm2 array, we
conclude the array size is an important factor for the transmittance profile.
Transmittance of the 2500 µm2 array follows a clear Fano-profile and has a
larger transmittance.

For the transmittance dependent on hole size, we can make a distinction
between holes that do not support transverse electromagnetic waves, i.e. that
are in cutoff, and holes that are not in cutoff. The normalized transmission
for arrays that are not in cutoff is not dependent on hole size. This result
shines a new light on the extra ordinary transmission.
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Chapter 1

Introduction

1.1 Scientific background

In 1998 Ebbesen and co-workers measured the transmission of light through
a subwavelength silver nano hole array [5]. When they normalized the trans-
mission to the open area, the transmittance profile was not constant. Some
wavelengths had reduced transmittance, whereas others were enhanced.

At the time, the observations were not explained theoretically. Until then,
it was thought that the transmittance depended on wavelength as (d/λ4),
with d the radius of the apperture [2]. Because the transmission was not
explained theoretically, Ebbesen named it extraordinary optical transmission.

Since its discovery, the factors that could influence the extraordinary
transmission are extensively researched. The type of material only plays a
role on the surface layer, with a thickness of the skin depth [8]. Van der
Molen et. al. found that the transmission appears to be stronger and more
pronounced in good conductors [19].

According to Ebbesen [5] the enhanced wavelength (or the position of
the transmittance maximum) shifts with respect to the angle of the incident
light. The transmittance has maxima for certain wavelengths. The position
of these maxima depend on hole shape [19, 10] and the grating period [5, 18].

The transmittance is influenced by the polarization of the incident light
[6] and the properties of the holes. Also hole depth and size influence the
transmittance. The bigger the holes, the larger the transmittance [5], but
the transmittance decreases linearly with increasing hole depth [4].



Different theoretical explanations 4

1.2 Different theoretical explanations

Various authors tried to model the extraordinary optical transmission. In
these explanations, guided surface modes, especially surface plasmon polari-
tons (SPPs), are mentioned as a contributing factor [5, 16, 9, 1, 12, 14].

There are also authors that use other models to describe the extraordinary
transmission [3, 13, 11]. Although these explanations state that SPPs have
nothing to do with the extraordinary transmission, or have even a negative
contribution [3, 13], they all use certain aspects of the models that do include
SPPs.

Instead of surface plasmons, the extraordinary transmission is explained
by surface currents [3] or composite diffracted evanescent waves (CDEWs)
[13]. The CDEW-theory by Lezec and Thio explaines the extraordinary
transmission as a superposition of diffraction modes. Although these theories
do not use guided modes, they do describe a wave that is bound to the surface
of the array.

Lalanne et. al. [11] give a numerical description for the transmittance in
the far and near field. They use a SPP mode, which mainly contributes to the
far field. In the near field there is another contribution to the transmittance
at the surface. This contribution is given by a creeping wave, which has a
high transmittance close to the surface, but is not bound to that surface. The
contribution of the creeping wave is significant for short distances (λd < 1).

Although this introduction focuses on models that do not include SPPs,
current consensus states that the array couples light into a guided mode.
The transmission is enhanced by the guided mode, which leads eventually to
the transmittance pattern found by Ebbesen [5]. The contribution of SPPs
will in greater length be discussed in Chapter 2.

1.3 Experimental context

The near field of the transmission of a metal nano hole array has local in-
tensity maxima. Atoms can be manipulated with a strong electromagnetic
field. We want to study the interaction between cold Rubidium atoms and
the near field of a nano hole array. How does the size of our sample influence
the transmission? What is the influence of the hole size?

The transmission through a subwavelength hole in a real metal film is
larger than predicted by Bethe and Bouwkamp [2]. But when the transmis-
sion through an array is normalized to the transmission through a single hole,
the enhancement (per hole) of the array is up to a factor of 7 [13].

The extraordinary transmission is mainly ascribed to a SPP contribution.
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The larger the array, the stronger the coupling between the array and the SPP
can be. We therefore think the transmission spectrum is largely influenced
by the finite size of the array. We will study the transmission for different
array sizes. This way we want to get a better view on the role that the array
size plays in the extraordinary transmission.



Chapter 2

Theory

2.1 Introduction

We study the transmittance of white light through a gold nano hole array.
When white light is incident on a thin metal grating, part of the light will
be reflected, part will be transmitted and part of the light will be diffracted.
Because we have a grating structure, diffraction is described by the grating
equation (or Bragg-condition)

mλ = d(sin θi + sin θd). (2.1)

In this equation, m is an integer, d is the grating period, θi is the angle of
incidence and θd is the angle of diffraction. With a given angle of incidence,
for a certain wavelength λRayleigh, the angle of diffraction will be 90◦. The
wave will propagate along the surface of the grating. For wavelengths bigger
than this wavelength, there is no diffraction. In other words: a diffraction
channel is shut off, and for those wavelengths, the far field intensity is smaller.
This abrupt change in the intensity is called Rayleigh’s anomaly. In our
results this anomaly appears as a kink in the transmittance.

One of the waves that is outcoupled at Rayleigh’s anomaly, can have a
corresponding SPP with a wavelength that matches the grating period. For
metal gratings this wave is then coupled to a guided surface mode. The
coupled wave has only two dimensions and a fixed angle of either incidence
or diffraction. This leads to a diminished intensity for this one wavelength.
This is known as Wood’s anomaly, and the resulting guided surface modes
are called surface plasmon polaritons (SPPs).

When measuring the laser power, we recognize a Fano-profile. This means
there is a direct contribution that interferes with a spectrally narrow indi-
rect contribution. In our case, the direct transmission and the enhanced



Waveguide theory 7

5 10 15 20
Ω

1

2

3

4

Intensity

Figure 2.1: Intensity of the interference of a Lorentz-oscilator and a background
field as function of the frequency. The Intensity is plotted for several phases of
the field, -0.5 π (red) and 0.5 π (pink).

transmission through the holes. Mathematically we can describe this by a
background with a phase (the direct transmission) that interferes with a
Lorentz-oscillator. Verhagen [21] showed that this model gives an accurate
description of the power measurements. In Figure 2.1 the Fano-profile is
illustrated for different phases of the plane wave.

2.2 Waveguide theory

The holes in our sample can be described with classical waveguide theory.
The boundary conditions for the inner wall of a waveguide are [7]

~E|| = 0 (2.2)

B⊥ = 0. (2.3)

Figure 2.2 depicts a rectangular waveguide with sides of length a and b.
In this waveguide transverse electric waves can propagate. Due to the

boundary conditions, the magnetic field only has a z-component. When we
solve the magnetic field for the boundary conditions we get the following
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Figure 2.2: Square waveguide with dimensions a and b.

wavenumber
k =

√
(ω/c)2 − π2[(m/a)2 + (n/b)2]. (2.4)

When the wavelength is smaller than b/2 (a ≥ b), the wavenumber is ima-
ginary and the wavelength is not supported by the waveguide. The elec-
tromagnetic wave evanescently penetrates the hole, and there is almost no
transmission for these wavelengths.

2.3 Surface Plasmon Polaritons

Qualitatively, surface plasmons can be understood as oscillating modes of
the electron cloud in the metal on a metal-dielectric interface. These modes
can be excited by electromagnetic waves (light). The excited modes result in
a traveling wave that is bound to the interface. We call these surface waves
surface plasmon polaritons (SPPs), and they follow naturally from solving
Maxwell’s equations [7] for the appropriate boundary conditions.

We now consider the interface between a metal and a dielectric medium.
The boundary conditions for an electromagnetic wave that can exist on the
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interface between those two media are given by

~n× ~E1 = ~n× ~E2 (2.5)

~n× ~H1 = ~n× ~H2 (2.6)

~n · ~D1 = ~n · ~D2 (2.7)

~n · ~B1 = ~n · ~B2. (2.8)

The first two conditions 2.5, 2.6 make sure that the fundamental magnetic
and electric fields are equal when we look from both sides to the interface.
The third and forth boundary condition 2.7 , 2.8 state that when the metal
is polarized, the charge is the same for both sides of the interface.

We can rewrite this boundary conditions in the following form

E‖,1 = E‖,2 = E‖ (2.9)

and
H‖,1 = H‖,2 = H‖. (2.10)

The perpendicular components of the electric field are not equal. So E⊥,1 6=
E⊥,2, but the perpendicular components of the displacement fields are

D⊥,1 = D⊥,2 = D⊥ (2.11)

and
B⊥,1 = B⊥,2 = B⊥. (2.12)

When we assume that both media are non magnetic, so µ1 = µ2 = 1, also
the perpendicular components of the H-field are equal

H⊥,1 = H⊥,2 = H⊥. (2.13)

Now let’s try the following solution for the electromagnetic wave

~Hj = (0, H̃, 0)ei(kxx̂+kzj ẑ−ωt) (2.14)

~Ej = (Ẽx, 0, Ẽzj)e
i(kxx̂+kzj ẑ−ωt). (2.15)

When we put these equations into the wave equation

∇2 ~H =
ε

c2
∂2

∂t2
~H, (2.16)

we get
∂2

∂t2
~H =

∂

∂t
− iω(0, H̃, 0)ei(kxx̂+kzj ẑ−ωt),
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= −ω2(0, H̃, 0)ei(kxx̂+kzj ẑ−ωt) (2.17)

and

∇2 ~H = (
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)(0, H̃, 0)ei(kxx̂+kzj ẑ−ωt),

= (−k2x − k2zj)(0, H̃, 0)ei(kxx̂+kzj ẑ−ωt). (2.18)

From the wave equation 2.16 we now know

k2x + k2zj =
εω2

c2
, (2.19)

which leads to the following dispersion relation

k2j = k2x + k2zj = εjk
2
0, (2.20)

with k0 = ω/c.

From the Maxwell equations we know that ∇ · ~D = ρf . As there are no
free charges in our system, we get

∇ · ~D = (
∂

∂x
+

∂

∂y
+

∂

∂z
)(D̃x, 0, D̃zj)e

i(~k·~x−ωt)

= (ikxDx + ikzjDzj)

= 0 (2.21)

Assuming we are dealing with linear media, we know [7]

Dx = εjEx,

and
Dzj = εjEzj . (2.22)

When we insert this in 2.21, we get

iε(kxEx + kzjEzj)e
i(~k·~x−ωt) = 0, (2.23)

so
kxEx + kzjEzj = 0. (2.24)

Notice equation 2.24 only holds within one medium, and does not apply on
the surface. Recalling boundary condition 2.11 in combination with 2.22, we
know that

ε1Ẽz1 = ε2Ẽz2 . (2.25)

With the combination of the following equations 2.20, 2.24 ,2.25, we can
find the dispersion relation for the wave vector in the two media. First we
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eliminate k2x from equation 2.20, because it has the same value at the interface
for both media. This gives us

ε1k
2
0 − k2z1 = ε2k

2
0 − k2z2 . (2.26)

From the divergence of the displacement fields 2.21 we can isolate the x-
component of the electric field

kzjEzj + kxEx = 0. (2.27)

For the separate media, this means

kz1Ẽz1 = −kxẼx, (2.28)

and
kz2Ẽz2 = −kxẼx, (2.29)

giving us the relation for the z-components of the electric field:

kz1Ẽz1 = kz2Ẽz2 . (2.30)

By using boundary condition 2.25, the divergence of the displacement
field 2.21 and eliminating Ez1 , we get

kz1 = kz2
ε1
ε2
, (2.31)

or
kz2 =

ε2
ε1
kz1 . (2.32)

Using 2.32, we can eliminate kz2 from 2.20, giving us

k2z1 =
ε21

ε2 + ε1
k20. (2.33)

Using the same method we can also find

k2z2 =
ε22

ε2 + ε1
k20. (2.34)

This result 2.33 we can put into the dispersion relation 2.20

k2x = k20[
ε1ε2
ε2 + ε1

]. (2.35)

We now can insert values for the electric constant into the dispersion
relation 2.35. We choose ε1 > 1 for a dielectric and ε2 < 0 for a metal.
When ε2 < −ε1, kzj < 0 (see equation 2.33), so kzj is imaginary, kx is real
and kx > k0. With these conditions we have an electromagnetic wave that
propagates in the x-direction (parallel to the interface) and is evanescent
in the z-direction (perpendicular to the interface). This wave we call the
surface plasmon. The dispersion relation for a SPP on an air-gold interface
as a function of wavelength is shown in Figure 2.3.
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Figure 2.3: This graph gives the relation between the frequency in vacuum
and the real part of the wavenumber of the SPP. The horizontal bars show the
imaginary part of the wavenumber, Im{kSPP}.

2.4 Coupling of light into SPPs

We have seen that electromagnetic waves can exist on the interface between
a metal and a dielectric (see section 2.3). But how does light couple into
a SPP? We will first look at the behavior of an electromagnetic plane wave
when it meets a disturbance in space in the x-plane, with a certain coupling
t(x). A schematic overview is given in Figure 2.4.

The field of the incoming wave is given by

Ein = E0e
ik‖xeik⊥z. (2.36)

When we define the coupling as follows

t(x) = t0, (2.37)

the transmitted wave will be given by

Eout = t(x)Ein, (2.38)
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Figure 2.4: A plane wave is incident on a material with transmittivity t(x). In
the overview the x, z, and k-vectors are given.

Eout = t0E0e
ik‖xeik⊥z. (2.39)

The wavenumber of the incoming wave is given by k0 =
√
k2‖ + k2⊥. Because

of energy conservation, the outcoming wave has the same wavenumber k0.
We will now look what will happen when the outcoming wave couples to
a SPP mode on the interface. The parallel component of the wavenumber
needs to match the wavenumber of the SPP, k‖ = kSPP. When we look at
the dispersion relation 2.35 we know that

kSPP = k0

√
ε1ε2
ε1 + ε2

. (2.40)

We can see that kSPP > k0, which leads to an imaginary value of the perpen-
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dicular component of the outcoming wavevector

k⊥ =

√
k20(1− ε1ε2

ε1 + ε2
). (2.41)

The incoming wave and the SPP mode have different values for k‖. This
means the waves will couple destructively and there will be no enhanced
transmittance.

When we define the coupling with a spatial component

t(x) =
t0
2i

(eikdx − e−ikdx), (2.42)

the outcoming wave will be given by

Eout =
t0E0

2i
(eikdx − e−ikdx)eik‖xeik⊥z. (2.43)

The wavenumber of the outcoming wave will now be given by

k0 =
√

(k‖ + kd)2 + k2⊥ − (k‖ − kd)2 − k2⊥

=
√

4k‖kd. (2.44)

The resulting wave has only an x-component. Here we see that a regular
disturbance like a grating, can add momentum to a wave. Which leads to
coupling to SPPs.

2.4.1 Extraordinary transmission

We know that there are bound modes on a dielectric metal interface, and that
light can couple into these modes. But how does this help us understand the
extraordinary transmission? How does the light get to the other end of the
sample?

From the waveguide theory we know that holes that are in cutoff have
only a small transmission. This is caused by the damping of the electric field
in the waveguide and because there is only a small coupling between the
incoming light and the holes.

We can increase the transmission by two means. The damping can be
influenced by the hole size. The bigger the hole, the smaller the damping.
The coupling to the holes can be increased when light is coupled to a guided
mode on the Au/Air interface. The light will interact with more holes, and
have a stronger coupling.

The increase in transmission holds only for one wavelength (Wood’s ano-
maly). This wavelength will interfere with the direct transmission (all wave-
lengths), resulting in a Fano-profile of the measured laser power.
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2.4.2 Collective effect

From the previous section we can learn that the larger the array is, the
more light is transmitted with respect to the surface area, and the bigger
the enhancement is. This means that the extraordinary transmission is an
effect of the array and not an effect of the individual holes. This leads us to
wonder how big our array needs to be to obtain a good Fano-profile.



Chapter 3

Method and Setup

3.1 Introduction

To measure the influence of the hole size and the size of the nano hole array on
the extra ordinary transmission, we need to vary these two properties. Arrays
with different hole sizes were produced. The array size was not varied, instead
we varied the size of the illumination spot size on the array. The sample was
attached to an xy-adjustable mount, we could bring different arrays in focus,
thus varying the hole size.

3.2 Setup

Figure 3.1: Schematic overview of the experimental setup.

We used a fiber coupled (Thorlabs 973-579-7227 FTO 30-BLUE) white
ligth laser (NKT Photonics, SuperK Extreme) with an AOTF (acousto opti-
cal tunable filter) frequency sampler (NKT Photonics, SpectraK Dual). The
ligth is focused on the sample, magnified by a factor 3

10
and led through

a beam splitter (BP108�1” Pellicle Beamsplitter, uncoated for 8:92 (R:T)
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Split Ratio for 400-2400 nm). The main beam is focused on a pinhole and
the ligth is coupled into a fiber (Ocean Optics QP200-2-VIS-BX). Eventu-
ally the power of the light is measured using a spectrometer (Ocean Optics
HR2000CG-UV-NIR). The other part of the light is focused on a beam pro-
filer (WincamD UCD12) and gives us an image of the sample. A schematic
overview of the setup is given in Figure 3.1.
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Figure 3.2: This figure shows the mean normalized laser power as a function of
time. The normalization factor is given by the average power of the laser over
the wavelength (700 - 900 nm) for each time interval. The errorbars show the
standard deviation over λ.

The power of the laser exhibits noise and long term drift. To determine
how big the drift is, we measured the power as a function of time for different
wavelengths. The results are shown in Figure 3.2. The standard deviation
in the power fluctuations of the laser over half an hour is between 1.3%
(λ = 820 nm) and 12% (λ = 850 nm). Taking the standard deviation of the
mean values for the power fluctuations (0,0136) and the mean of the standard
deviations (0,0453) teaches us that the random noise in the laser is bigger
than the power fluctuations. We can therefore conclude that the drift does
not give us a significant error in the measurements.
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Figure 3.3: SEM-picture of the nano square hole gold array. The scale bars
indicate 7.700 µm (ten times the grating period) and 443.6 nm (the hole size).

3.2.1 Sample

We produced our sample using electron beam lithography and lift-off. Each
array is 50 × 50 µm. The gold is deposited using physical vapor disposition
(PVD). The hole size ranges from 150 nm - 600 nm. Measurements were
performed on arrays with hole size 250 nm, 300 nm, 400 nm, and 450 nm.
In Figure 3.3, a typical scanning electron micrograph of an array is shown.

The choices for our sample properties lie in the context in which this
research was performed. The aim is to investigate the interaction of cold
Rubidium atoms with the near field of a nano hole array, because the near
field of nano structures is very concentrated and can possibly be used to trap
cold atoms.

We chose Au as a material for our array because it is a good conductor
and does not oxidize. The better the conductor, the easier SPP modes are
excited. We chose Au over Ag, which is a better conductor, because it does
not oxidize, increasing the lifetime of our sample significantly. In the final
setup, where measurements will be performed in vacuum, Ag is a viable
option.

The grating period was aimed at 763 nm. This is the SPP-wavelength
on the Au/Air interface which corresponds with a wavelength of 780 nm.
For this wavelength, Rubidium atoms have the strongest transition (5s-5p).
The possible interaction between the near field and the atoms is therefore
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expected to be the strongest here. The SPP-wavelength as a function of
wavelength of free light is plotted in Figure 2.3.

We took scanning electron microscope (SEM) pictures of our arrays. The
hole sizes and grating periods of each array were measured with the scale bars
of the scanning electron microscope. We measured that the actual grating
period was bigger than the period we aimed for. This is due to stretching of
the resist in the post baking process. The stretching is proportional to hole-
size and is a linear effect. This means we can compensate for the stretching
in a next sample. The actual aimed values are given in Table 3.1.

aimed average average grating # data points
hole size hole size (nm) period (nm)
200 211.3± 0 767.9± 0 1
250 253.5± 0 773.2± 0 1
300 311.6± 5.3 769.0± 5.3 2
350 338.0± 0 769.0± 0 2
400 401.4± 12.9 769.2± 0.9 4
450 438.4± 8.1 770.2± 0.9 6
500 495.2± 8.2 771.2± 3 8
550 545.7± 21.7 771.3± 7 12
600 591.7± 21.2 771.4± 1.5 12

Table 3.1: The average hole size and grating period for different aimed hole
sizes. The aimed grating period was for all arrays the same and is 763 nm.
Measurements were performed at the 250, 300, 400 and 450 nm hole arrays.
Other array-sizes did not provide the quality to take good measurements.

3.3 Method

The power of the transmitted light is measured in the range of 700 nm -
900 nm, with intervals of 2 nm. For each wavelength, a reference measure-
ment is made by measuring the power of the light on the glass. For both
measurements, a dark measurement was made. Since the values of the dark
measurements don’t vary much with respect to wavelength (standard devia-
tion of ±0.053% for the sample measurement and ±0.040% for the reference
measurement), we measured only these two dark intensities.

The measurements were done with two different focus sizes, to illuminate
a different area of the sample. This way we can test the dependence of array-
size on the extraordinary transmission. The spot sizes of the focus of the
beam were 18.30±1.59 µm and 34.35±2.10 µm in diameter.
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3.3.1 Data analysis

The transmission is normalized to a reference measurement on the glass of
the sample. The transmission is defined as follows

T =
Isample − Idark,sample

Ireference − Idark,reference
, (3.1)

with T , the transmission and I the different intensities. This normalized
transmittance is plotted as a function of wavelength, and fitted to a Fano-
profile.

The fit-fuction consists of two contributions: that of the single hole and of
the collective effect of the array. The contribution of the single hole is given
by a Bethe, Bouwkamp-like term (d/λ4). The array contribution is given by
an interference term that will give the Fano-profile to our fit.

The function is fitted to the optical frequency as a function of wavelength
(f(λ)), the resonance frequencies (fr,i), the damping of the resonances (gr,i)
and the relative phases of the resonances to the direct transmission (qr,i).
The fit function is given by

F(a, λ, fr,i, gr,i, qr,i) =
a

λ4
[1 + Σiqr,i/er,i(λ)]2

[1 + Σi1/er,i(λ)]2
, (3.2)

with

er,i(λ) =
2(f(λ) + fr,i)

gr,i

, (3.3)

and
i = 0, 1. (3.4)



Chapter 4

Transmission features for small
and large samples

4.1 Introduction

From Chapter 2 we can get an intuitive understanding of the influence of the
array size on the extraordinary transmission. The larger the number of holes
in the array, the more light is transmitted with respect to the surface area.

Miyamaru and Hangyo [15] studied the effect of the number of holes on the
extraordinary transmission for small numbers of holes. They found there is a
linear relation between the height of the peak in the normalized transmittance
and the number of holes. This is in accordance with expectations. The
amount of transmitted light is proportional to the open area, given by the
number of holes n. The signal we measure is proportional to n2, because
I ∝ E2. This means the relation between the area and the transmittance is
linear.

Here we will study the transmission for different spot sizes, with much
larger array sizes than used in Ref[15].

4.2 Extraordinary transmission - first results

In Figure 4.1 we see the transmission as a function of the wavelength (dots).
The solid line shows the fit to this data. Rayleigh’s anomaly is indicated by
the solid vertical line and Wood’s anomalies are shown by the dashed and the
dashed dotted lines. The first Wood anomaly is caused by SPPs launched on
the Air/Gold interface for the (10) direction. The second Wood’s anomaly
corresponds to the (11) direction at the Au/Glass interface.

Rayleigh’s anomaly is calculated from the first Wood anomaly and should
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Figure 4.1: This graph shows the transmittance for different hole sizes. The
laser power is measured for each wavelength between 700 and 900 nm, with steps
of 2nm. The transmitted power was divided by the inserted power, giving us the
transmittance. The illumination was done with a large spot size. The wave
length for Rayleigh’s anomaly by the solid vertical lines. The Wood anomaly is
indicated b the dashed line (Air/Au (10)) and the dashed dotted line (Au/Glass
(11)).

correspond with the grating period of the array. The grating periods as well
as the calculated values of Rayleigh’s and Wood’s anomaly are given in Table
4.1. Here we see Rayleigh’s anomaly does not correspond with the grating
periods measured with the scanning electron microscope. An explanation
will be given in Section 4.4. Rayleigh’s anomaly is visible in the data by the
small kink in the downward slope of the Fano-profile. We did not take the
data in the wavelength range of 700 to 750 nm into account, which is why
the numerical fit does not follow the data below Rayleigh’s anomaly.

In the data we see the same asymmetrical shape that is characteristic for
the Fano profile. Therefore the maximum of our graph does not coincide with
Wood’s anomaly. In the tail of the graph we see a second interference max-
imum coming. This maximum belongs to Wood’s anomaly at the Au/Glass
interface in the (11) direction.
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4.3 Results for different array sizes

We illuminated our sample with a small (278 ± 4.63 µm2) and large (934
± 3.88 µm2) circularly shaped spots. The number of illuminated holes were
respectively 469 ± 164 and 1576 ± 251 holes. With this illumination we
stayed well within the total area of our sample, 2500 µm2. In this section
we will discuss the difference in the transmission features for these two spot
sizes.

holesize Grating Rayleigh 1stWood Width(THz) 2ndWood
period anomaly anomaly anomaly
(nm) (nm) (nm) (nm)

250 773.2 787.78± 2.94 804.05± 2.94 16.29± 2.81 876.48± 3.54
300 765.8 783.51± 1.05 799.82± 1.05 17.61± 1.14 867.02± 2.84
400 770.0 770.22± 2.50 786.00± 2.50 27.59± 2.40 868.82± 2.93
450 771.1 764.16± 2.54 782.22± 2.54 24.43± 2.40 860.55± 2.13

Table 4.1: Values for the different features of the transmission with large spot
size for four hole sizes. The actual values of the grating period are given.
Rayleigh’s anomaly, Wood’s anomaly on the Au/Air interface in the (10) di-
rection, and the width of the resulting transmittance maximum and Wood’s
anomaly on the Au/Glass interface in the (11) direction.

In Figure 4.2 we see the transmission for four different hole sizes. In
each Figure the transmission is given for the small illumination spot size
(triangles) and the large illumination (dots) as well as a fit to the large spot
size. In Table 4.1 the values for Rayleigh’s anomaly and two visible Wood’s
anomalies from the numerical fit are given.

In all Figures we see that the maxima and minima have the same posi-
tion for small and large spot size. For the 450, 400 and 300 nm hole size,
the maxima and minima of the transmission with a large spot size is more
articulated. The minima are higher and the maxima are lower. This is only
not the case for the 250 nm hole size.

The smearing out of the transmission features, results in less pronounced
extremes. For Rayleigh’s anomaly a broader shoulder appears in the data
instead of a small kink. In the datasets for 400 nm and 250 nm hole size;
we see also that the Au/Glass (11) maximum broadens, and that a shoulder
at the place of Wood’s anomaly is appearing. This broadening of the second
maximum also influences the position of the second minimum. For the 400
nm we see that this minimum s shifted to the blue, and the same can be said
for the 250 nm hole size.
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Figure 4.2: Transmission spectrum for two different sample sizes. The sub fig-
ures give the transmission for several hole sizes. The solid line indicates Rayleigh’s
anomaly, Wood’s anomaly is indicated by the dashed line (Au/Air (10)) and the
dashed dotted line (Au/Glass (11)). The exact values of the anomaly’s and the
width of Wood’s anomaly Au/Air (10) are given in Table 4.1. In Figure 4.2b the
data between wavelengths 842 and 862 nm are missing. We did not take these
values into account because there appeared to be a temporary offset in the laser
power.
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4.4 Discussion

Our method of data acquisition and setup prevented us from experimenting
with more different array sizes. Still there are some shared features in the re-
sults discussed above. In accordance with the data of Miyamaru and Hangyo
[15], we find that the transmittance is stronger for larger samples.

We find the same trend as Miyamaru and Hangyo [15], although we cannot
confirm the linear relation between the number of holes and the transmittance
maximum. Still there are some significant differences between the studies.
Miyamaru and Hangyo studied the extraordinary transmission in the far
infrared and for very small array sizes (1 to 21 holes). The holes they studied
have a circular hole shape and are ordered in a triangular array.

The grating period and the calculated wavelength of Rayleigh’s anomaly
do not correspond (see also Tabel 4.1). These two values only correspond
when the incident light is perpendicular to the interface. Since we could
not control the angle of our sample in the setup, and we used unpolarized
light, there was an inhomogeneous broadening of the spectrum. Therefore
our measurements (and the calculated values from these measurements) for
Rayleigh’s anomaly are not very accurate.



Chapter 5

Hole size dependence on
transmission

5.1 Introduction

The influence of hole properties on the extraordinary transmission have been
extensively researched [5, 19, 10, 4]. Prangsma [17] investigated the transition
radiation of single rectangular holes as a function of hole width and height.
When we look at the results for square holes, we see the radiated power
increases with hole size. When we make the distinction between holes in
cutoff and not in cutoff, the increase is smaller for the holes that are not in
cutoff.

Van der Molen et. al. [20] investigated the far field transmittance of a
gold array with square holes as a function of hole size. They found that the
normalized transmission shows an increasing maximum for increasing hole
size. The transmittance does not increase linearly, the slope decreases for
larger hole sizes. The results are in accordance with the findings of Prangsma.
Additionally, they found a shift in the position of the transmission maxima
as a function of hole size. The maxima also broaden for larger holes.

All observed changes in transmittance are gradual. The maxima increase
for increasing hole size. Prangsma [17] showed the increase for holes in cutoff
is more or less linear. Van der Molen et. al. [20] show a gradual increase in
transmittance for increasing hole sizes that are not in cutoff. Based on these
observations and our assumption that the extra ordinary transmission is a
collective effect of the array; we expect the relation between hole size and
transmittance to be linear for holes that are in cutoff.
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5.2 Normalization

We normalized the transmission to the open area of the 450 nm hole sample.
Meaning all results were multiplied by a normalization factor N given by:

N =
holesize2450nm/gratingperiod2

450nm

holesize2sample/gratingperiod2
sample

. (5.1)

The exact normalization factors are given in Table 5.1.

hole size (nm) normalization factor
250 2.93
300 1.97
400 1.16
450 1

Table 5.1: Normalization factors for the different hole sizes.

5.3 Results

5.3.1 Introduction

In Figure 5.1 we see the transmission normalized to the open area of the 450
nm array. The transmission does not change as a function of hole size for
the large holes. The array for 250 nm holes differs from these results. The
transmission is lower, and the kink we see in the transmission around 760
nm is stronger for this hole size. The transmission for wavelengths below 760
nm is the same for all hole sizes. This is a background effect that is the same
for all arrays.

For the wavelength range we measured, the 250 nm hole array is in cutoff.
The 400 and 450 nm hole arrays are not in cutoff. The array that is in
cutoff does not support the transverse EM-waves and we measure a smaller
transmittance.

The transmission for the 300 nm holes is a special case. For this array
the cutoff frequency (indicated by the black line in Figure 4.2b) is close to
Rayleigh’s anomaly. This influences the transmission spectrum. The most
prominent feature is the transmittance in the 700 - 750 nm range. It is
significantly higher than the background transmission for the other hole sizes.
The shape of the transmission in this range is similar to that of the 250 nm
hole array, which is in cutoff. When we look at the maximum (due to Wood’s
anomaly), the transmission behaves like holes that are not in cutoff.
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Figure 5.1: This graph shows the transmittance for different hole sizes. The
transmittance is normalized to the open area of the 450 nm hole size sample. The
normalization factor N for each sample is given in Table 5.1. The laser power is
measured for each wavelength between 700 and 900 nm, with steps of 2 nm. The
transmitted power was divided by the input power, giving us the transmittance.
The illumination was done with a large spot size. The wavelength for Rayleigh’s
anomaly is indicated by the solid vertical lines. Wood’s anomaly is indicated by
the dashed line (Air/Au (10)) and the dashed dotted line (Au/Glass (11)).

We describe the ambiguous behavior of the 300 nm hole array to Rayleigh’s
anomaly and the cutoff frequency being in the same range.

We see that the transmittance peak normalized to open area takes on two
values: high for holesizes 400 and 450 nm, and low for hole size 250 nm. The
distinction between the arrays with the high and the low transmittance, is
that the holes of the array with high transmittance are not in cutoff, whereas
the holes of the array with low transmittance are in cutoff. There is no linear
relation between holesize and the height of the transmittance peak, instead
we see an abrupt change. The transmittance is not dependent on hole size
for holes that are not in cutoff. This is not in accordance with what van der
Molen et. al. [20] showed. For this comparison we left the 300 nm hole size
out of the discussion because of the distinctive behavior.
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5.3.2 Rayleigh anomaly and Wood’s anomalies
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Figure 5.2: This graph shows the values for Rayleigh’s and Wood’s anomalies
for different holesizes and directions in the sample. Values are calculated from
the numerical fit to our data.

In Figure 5.2 we see the wavelength of Rayleigh’s anomaly and two Wood’s
anomalies as a function of hole size. Wood’s anomalies have a small blue shift
when we go to larger hole sizes. Accordingly, Rayleigh’s anomaly shows a
similar blue shift, because we calculated this value from Wood’s anomaly.

The blue shift is not due to the hole size of the different arrays, but to
the grating period. Although we aimed for a constant grating period of 763
nm, we showed in Chapter 3 that the grating period is not constant, and
increases with increasing hole size. We think the stretching of the array took
place in the post baking process.

The large holes have less contact with the glass, and the resist can there-
fore move more easy, causing a bigger stretch. This might also have happened
with the array, leading to a bigger stretch with the big holes. Since there is a
linear relation between the hole size and the pitch stretch, we can compensate
for this in a next sample.

Besides this drift that can be described to engineering flaws, Wood’s
anomalies appear to be at a constant position. Exact values of the grating
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periods are given in Table 3.1.

5.3.3 Width of interference maximum
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Figure 5.3: This graph shows the with of the transmittance maximum for
different hole sizes. The values are calculated from the numerical fit to our data.

Figure 5.3 shows the width of the first interference maximum as a function
of hole size. The data support the view that the width increases for increasing
hole size. To make any solid statements, further research is required.

5.4 Discussion

5.4.1 Special case: Holesize 300 nm

We did not take the array with hole size 300 nm into account for the compa-
rison of the normalized transmittance. This is because the values we found
for the width of the interference and of the second Wood anomaly did not
follow the same trend as the other arrays. In the data we could already see
that Rayleigh’s anomaly does not coincide with the calculated point. Also
the shoulder that was present in the transmittance for the other arrays was
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not found in these results. The widths of the anomalies for the 300 nm ar-
ray have in common with the other hole sizes, that the second maximum is
broader. But they do not fit in the trend.

There are three possible explanations for this behavior. As we could see,
there were several data points left out of the graph, because the laser had
an offset there. These data points are at a crucial position for the data fit:
exactly at a minimum. Because of the missing data points, the fit could have
ended up with wrong values.

A second interpretation is a more physical one. The cutoff wavelength for
this hole size is in our measuring domain and is indicated by the black solid
line in Figure 4.2b. For the large hole size we see that around this wavelength
there is a local maximum.

(a) 250 nm (b) 300 nm (c) 400 nm

Figure 5.4: A rejected array, hole size 200 nm, the 300 nm hole array and the
400 nm hole array. The latter two are both used in this experiment.

Third, it could also be that this array has not the same quality as the
other arrays and does therefore not produce data that can be compared.
Based on the SEM-pictures of our sample, see Figure 5.4, there is no reason
to assume this.

5.4.2 Transmittance

The normalized transmittance we measured did not depend on hole size.
This is not in accordance with the observations of Prangsma [17] and van
der Molen [20].

Prangsma did transition radiation on rectangular holes. When we look at
his results for four square holes, they show an increase in the transmittance
for increasing hole size.

Van der Molen et. al. studied hole arrays that are in cutoff. For increasing
hole size, they see a gradual change in transmission. Since we have only one
result for an array in cutoff, we cannot compare our results to the trends
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that are described in the literature. These results indicate however that the
transmittance has a different behavior for arrays in cutoff and arrays that
are not in cutoff.

Van der Molen et. al. also observed a redshift in the transmission max-
ima, that we did not observe. We think this absence is due to the size of
the sample. Where van der Molen et. al. look at very small samples (100
µm2), we have sample of approximately 2500 µm2. We think the resonance
is stronger due to the larger sample and that we therefore see no shifting and
spreading in the maxima.

For further discussion it must be noted that the observed redshift in the
research of van der Molen is in the 11 Au/Glass maximum, whereas we look
at the 10 Air/Au maximum. Maybe the maximum we looked at is fixed
because it is captured between to minima.
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