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Abstract – Coronary calcium is a significant 
predictor for atherosclerosis and future 
cardiovascular events. The manual approach for 
coronary calcium scoring is intensive and time-
consuming. Different methods have been 
developed to automate this task. Coronary 
calcium is currently scored on non-contrast ECG-
synchronized coronary computed tomography 
(CT), but can be scored with different CT scan 
techniques. This thesis will give an overview of 
methods for automatic calcium scoring. Several 
fully automatic and semi-automatic methods are 
discussed with the used scan techniques and 
mutually compared.  
 
1. Introduction 
Coronary artery disease (CAD) is one of the leading 
causes of mortality worldwide

1
. Early detection 

and quantification of coronary plaques is therefore 
of high interest. Different studies have shown that 
coronary calcium is a significant predictor of 
atherosclerosis disease and correlates with the risk 
for future cardiovascular events

1,2,3,4
. Specially, the 

absence of calcium shows an excellent negative 
predictive value for cardiac events

4
.
 
Observing the 

change in calcium score also makes it possible to 
assess the progression of CAD and monitor the 
efficacy of medical therapies

5
. 

 Coronary calcium can be located in any of 
the two main coronary arteries and their sub 
branches: left main (LM), left anterior descending 
(LAD), left circumflex (LCX), right coronary artery 
(RCA), and posterior descending (PDA)

4
. This can 

be visualized with different modalities. A 
commonly used modality for the detection and 
quantification of coronary calcium is Computed 
Tomography (CT). CT is, apart from the radiation, a 
non-invasive technique and the calcium score is 
comparable with the reference technique for the 
evaluation a coronary plaque, Intravascular 
Ultrasound (IVUS)

4
. This thesis will focus on 

calcium scoring using CT only. 
 The standard scanning protocol for 
evaluation of CAD consists of two CT scans. First, a 
low resolution unenhanced coronary CT with ECG-
synchronization (CT) is used to determine the 
calcium score. Secondly, a contrast enhanced 
coronary CT (CTA) is made. This scan visualizes 
morphology of the vessel lumen and is mainly used 
for evaluation of soft plaques

3
. Coronary 

calcifications are visualized as highly dense regions 

compared to soft tissues on CT. A radiologist has to 
manually identify all calcifications, which is an 
intensive and time-consuming task. This can be 
prevented, by automatically calculating the 
coronary calcium score and cardiovascular risk

6
.  

In this thesis, different ways to 
automatically determine the calcium score will be 
discussed. The advantages and disadvantages will 
be described and the different methods will be 
mutually compared. First the different scores for 
coronary calcium and risk assessment will be 
discussed. The different calcium scores are 
important for the evaluation of the different 
automatic methods.  The automatic scoring 
methods are based on different scan techniques. 
Therefore, the different scan techniques will be 
briefly explained before the automatic methods 
are discussed.  
 
2.  Manual calcium score and risk assessment  
In current clinical practice, the total coronary 
calcium score and corresponding cardiac risk is 
semi-automatically quantified. For the evaluation 
of coronary calcium there are three different 
calcium scores, the Agatston

7
, volume

8
 and mass 

score
9
.  

 
2.1.1 Agatston score  
The score introduced by Agatston

7
 is based on 

electron beam computed tomography (EBCT) with 
a slice thickness of 3 mm and non-overlapping 
slices. In this 2D method coronary calcium is 
defined as an area of at least 1 mm

2 
with a density 

above a threshold of 130 Hounsfield units (HU), 
three standard deviations above the heart mean-
soft-tissue attenuation of the heart. The minimum 
value of 1 mm

2 
is for eliminating noise. For every 

calcified lesion, the area (A) and weighting factor 
(W) are defined per slice. The weighting factor of 
the lesion per slice is defined by the maximum 
intensity value, I of the calcification in the follow 
manner:  
 
  
  
  
  
 
The score for one lesion is then calculated by 
summing the scores of all the slices of the lesion. 
The Agatston score, AS for a calcification is 
therefore given by: 
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Where Ai and Wi are the area and weighting factor 
of the lesion for the respective slice i and n the 
total number of slices of the object. The total 
Agatston score is then the sum of all calcifications 
in the coronary arteries in the scan. The Agatston 
score is based on EBCT. However, the results of 
EBCT in coronary calcium score are comparable 
with MDCT

10
. Therefore the Agaston sore method 

can also be used for MDCT.   The Agatston score is 
a widely used scoring method and largely 
accepted

4
. However, this scoring method is not 

always accurate and reproducible. This is mainly 
because the weighting factor is based on the peak 
calcium attenuation value

9
.  

 
2.1.2 Volume score  
Another scoring method is the volume score 
method

8
. This is an isotropic interpolation method. 

The number of voxels >130 HU are multiplied with 
the voxel volume using isotropic interpolation. 
Compared with the Agatston score, the volume 
score is better reproducible

11
. However, this 

method is not adequate to compare calcium score 
using different CT protocols and scanners. Due to 
the partial volume artefact, the method will 
overestimate the calcium volume of big lesions and 
underestimate small lesions

4
.   

 
2.1.3 Mass score  
A third algorithm, the mass score, measures the 
mineral content of calcified plaques

9
.  This score 

method requires scanner and scan protocol 
calibration of the CT attenuation using a reference 
calcium hydroxyapatite phantom. First, the calcium 
concentration is calculated as the mean CT 
attenuation for all voxels in a calcified lesion. The 
mean calcium concentration is then derived from 
the association between the calculated mean 
attenuation and the calcium concentration in the 
calibration phantom. To calculate the mineral mass 
per plaque, the calcium concentration is multiplied 
by the volume of the calcified plaque. The total 
mass score is then the sum of all calcified 
plaques

11
. The mass score is more accurate and 

less variable then the Agatston or volume method 
and recently preferred by a group of experts. 
Because the volume and mass score are both 
hindered by limited registry data, the widely used 
score is still the Agatston score

4
.  

 
 
 

2.3 Risk classification 
A risk prediction of future cardiac events can be 
made with the calcium score. All calcium scores 
result in the same accuracy in risk stratification

4
.  

For the Agatston score standardized categories for 
the cardiovascular risk have been developed

12
. This 

risk is given by:  
 
  
  
  
  

 
The calcium score can also be added to a 
prediction model based on traditional risk factors, 
such as age, blood pressure, and tobacco use

2
. 

With this prediction model the classification of risk 
significantly improves and places more individuals 
in the most extreme risk category

2,13
. 

 
3. Calcium scoring in different scan-techniques 
The calcium score is usually determined with CT, 
although this is possible with any CT scan that 
visualizes the heart

14
. Different automatic and non-

automatic studies are performed with EBCT, CT, 
CTA and low dose chest CT. The used scan 
technique is important to mutual compare the 
different automatic methods. In the next section, 
the different scan techniques will be briefly 
explained. 
 
3.1 EBCT  
Before the introduction of multi detector 
computer tomography (MDCT), the only 
tomographic scanner capable of noninvasively 
visualizing the coronary arteries was EBCT. EBCT is 
an especially fast form of x-ray imaging technology. 
A stationary source-detector combination and a 
rotating electron beam are used to detect and 
measure calcium deposits in the coronary 
arteries

15
. EBCT is a fast and safe examination, it 

does not use contrast agents and has a low 
radiation dose of approximately 1 mSv. The low 
radiation dose is due to prospective ECG triggering. 
A high energy beam is produced in the mid-end 
diastole, where there is less influence of cardiac 
motion. The disadvantages of EBCT are the poor 
spatial resolution and the impossibility of 
performing angiographic scans

4
.  For the manual 

calcium score, all scoring methods in 2.1 can be 
used. In non-contrast enhanced scans, coronary 
arteries are not visible unless they are calcified or 
embedded in fat. Consequently, automatic 
segmentation of coronary arteries is not possible. 
The coronary calcifications appear as high-density 
structures in the EBCT scans, However, it is difficult 
to identify them automatically, because the 
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presence of other similar high-density structures, 
including the non-coronary calcifications

6
. 

 
3.2 CT 
Currently, calcium scoring is performed on non-
contrast CT scans. MDCT allows image 
reconstruction with a small section increment and 
thus improves the reproducibility of the calcium 
score. In CT scans the same problem as in EBCT 
occurs, with the low contrast between the 
coronary arteries and surrounding tissue, it is very 
difficult to accurately segment the coronary 
arteries. An advantage of this scan technique is 
that a low radiation dose is used. However, this 
low dose leads to noise, which makes it even 
harder to discriminate between coronary calcium 
and surrounding tissue. Furthermore, despite the 
ECG synchronization techniques, motion artefacts 
may occur. This can cause blurring of the coronary 
arteries so that calcifications are not visible 
anymore

16
. 

 
3.3 CTA 
It is common practice today to perform a calcium 
scoring CS study followed by a CTA. A high calcium 
score used to be a contra-indication for CTA, 
because the CT scanners were unable to perform a 
diagnostic quality scan with heavily calcified 
coronary arteries. Nowadays, with the new 
generation of CT scanners, this is no longer a 
contra-indication

17
. If the coronary calcium can be 

quantified on CTA, only one CT scan has to be 
made, which reduces the overall radiation dose 
and discomfort for the patient. Vessels containing 
contrast agent are relatively homogeneous and 
have a high contrast with respect to the 
surrounding tissue. For the quantification it is hard 
to find a good threshold, because it needs to be 
high enough to not misinterpret intravascular 
contrast medium and image noise as calcification 
and low enough, so that calcified plaques are not 
missed

18,19
.  

 
3.4 Chest CT 
In the screening trials for heavy smokers a low 
dose chest CT without ECG-synchronization is 
made. Researchers found that heavy smokers that 

are screened for lung cancer also have a high risk 
for cardiovascular events

20
. Therefore, it is 

advantageous to screen for the CAD and lung 
cancer simultaneously in the chest CT scan. 
However, with low radiation dose and without 
ECG-synchronization, there is a lot of image noise 
and cardiac motion, which makes quantification of 
coronary calcium very hard. Nowadays, with MDCT 
scanners it is possible to have faster gantry 
rotation times, thinner slices and more detector 
rows, which will reduce susceptibility to cardiac 
motion and partial volume effects

21
. In chest CT a 

large field of view (FOV) is applied with thin slices. 
To reduce image noise and improve the detection 
of coronary calcifications, an additional dataset 
should be reconstructed, using a small FOV and 
thicker slice

12,22,23
.
.
A recent study with 50 COPD 

patients showed a very strong correlation (0.96) 
between cardiac CT and chest CT in determining 
the calcium score

21
. Moreover, no patient who had 

coronary artery calcium on cardiac CT scans had a 
zero calcium score in chest CT scans. Furthermore, 
other studies with smokers and non-smokers show 
similar results for the coronary calcium score

20,23
.  

 
4. Automatic calcium scoring methods 
In this next section different automatic calcium 
scoring methods will be discussed. The automatic 
calcium scoring methods are organized per 
different scan technique because in every scan 
technique, the representation of the coronary 
arteries, calcium and other structures can be 
different. This will lead to different methods to 
subtract coronary calcium. Therefore, organizing 
the automatic methods by scan technique will 
make for better comparison (fig 1).  
 An automatic method can be evaluated on 
several criteria. Most automatic methods are 
compared with the manual coronary calcium 
scoring performed by an expert. The three most 
important criteria are sensitivity, specificity and 
accuracy. These statistical performance measures 
can be computed in terms of true-positives (TP), 
true-negatives (TN), false-positives (FP) and false-
negatives (FN) as followed: 
 

  

Automatic 
methods 

EBCT 

Position based 
classification 

Feature based 
classification 

CT 

Feature based 
classification 

CTA 

Threshold 
based 

Threshold 
based 

CT & CTA 

Position based 
classification 

Position based 
classification 

Feature based 
classifcation 

Chest CT 

Feature based 
classifcation 

Figure 1: Overview of the subdivisions of the automatic calcium score methods 
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Another important criterion is the risk 
classification. This is important because the 
calcium score is calculated to predict the cardiac 
risk for a patient. However, only a few of the 
automatic methods used this for the evaluation of 
the method.  
 
4.1 EBCT 
To identify a coronary calcification among the 
candidate regions, a human observer mostly relies 
on prior knowledge of the expected location of the 
coronary arteries relative to the heart. Therefore 
both methods

6,24 
for automatic calcium scoring in 

EBCT make use of a heart-centered coordinate 
system (HCCS). There are different techniques for 
constructing a HCCS. One method, described by 
Brunner et al

25
, is based on two anatomical 

landmarks, the origin of the aorta and the apex of 
the heart. Currently, the two landmarks are 
manually provided by an expert. The aortic root is 
located inside the pericardium and forms the 
center of the heart coordinate system. This point is 
selected because it is easy to identify, the location 
has small variations, is located very close to the 
coronary artery ostia and inside the heart, which 
makes this landmark very suitable as a center 
location. To account for the geometry of the heart 
a spherical coordinate system is used. First, the 
voxel coordinates of the axial CT scans are 
transformed to the spherical space with an affine 
transformation. Then, the center of the coordinate 
system is transformed to the origin of the aorta by 
using a rigid transformation. Each heart scan is 
scaled by setting the radius equal to one, which 
corresponds to the distance from the two 
landmarks. Finally, the heart is in every scan 
aligned using two axes, find with anatomical 
landmarks, which reflect anatomical symmetry. 
Since the coronary arteries are usually located in 
the same respective regions of a heart.  The HCC 
can now be used to align non-contrast CT heart 
volumes for the discrimination between coronary 
artery zones and their surrounding tissue. 
 Brunner et al published one of the first 
automatic methods for coronary calcium scoring

26
. 

The authors used an unsupervised classification 
algorithm to distinguish between coronary artery 
calcifications and other calcifications in EBCT data. 
This is a feature based classification method, 
where the candidates are clustered. This method 
results in an average accuracy of approximately 
80%. More recently, the same authors developed 

an approach for automatic coronary calcium score 
with coronary artery region (CAR) models

24
. First 

the HCC as described above is used to construct a 
family of CAR models for the detection of the main 
coronary arteries and their sub branches. With the 
HCC any coordinate point in scanner space is 
represented by its normalized heart centered 
coordinate (NHCC).  These coordinates are used for 
representation of manually selected coronary 
artery trajectory points. Around these points a 
specific radius is applied, such that tube-like 
regions are created. Different radii are used 
because the diameter of the coronary arteries 
varies. Subsequently, the specific coronary artery 
zone and section radii are set. Nine coronary artery 
regions from three different zones are created, 
LM/LAD, LCX and RCA. Each coronary artery zone is 
divided into three distinct regions, proximal, mid, 
and distal. In the third step, the CAR models are 
trained using a support vector machine (SVM) 
framework with the trajectory point ground truth 
data to learn the extent of the nine coronary artery 
zones. The nine individual coronary artery regions 
and different radius settings for artery sections 
allows 16 different CAR models. Each individual 
CAR model is trained to detect coronary artery 
regions and areas outside the coronary arteries.  
Finally, a classification method is proposed that 
uses CAR models to automatically detect coronary 
calcium in the regions of the coronaries. First, 
candidate calcifications are detected. These are 
pixel areas of at least 1 mm

2 
and a density of at 

least 130 HU. The coordinates of the candidates 
are transformed into the NHCC presentation. 
These coordinates are then used by the CAR 
models to train SVM classifiers using a Gaussian 
radial basis kernel function for the detection of 
coronary calcium. The CAR classifiers are able to 
detect coronary calcium with a mean sensitivity 
and specificity of 86.33 and 93.78% compared with 
a semi-automatic approach obtained by an expert. 
However, the results are limited, because it is only 
tested on 30 patients. Further studies with larger 
patient populations are required. 
 Another approach for automated 
detection of coronary calcium detection presented 
by Kurkure et al

6
. It is a supervised classification-

based approach to distinguish the coronary 
calcifications from all the candidate lesions with a 
two-stage, hierarchical classifier. First, two sets of 
spatial features are used, the absolute location in 
the image coordinate system and the relative 
location in a HCC system. Subsequently, texture 
features are selected using the Laws texture 
energy measures.  These are computed using 
convolution kernels generated from one-
dimensional convolution kernels of five pixel length 
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characterizing level, edge, spot, wave and ripple 
patterns. An observer uses the candidate’s regional 
properties instead of individual pixel properties to 
distinguish the coronary calcification from the rest. 
Based on this observation, features representing 
the neighboring regions of the calcifications are 
used to better discriminate between coronary 
calcium and the other structures. Additionally, 
object-related features are included. The feature 
selection is based on mutual information because 
when two features are inter-correlated, one of 
them can be removed without affecting the 
classification performance to reduce the 
computational load. Also, individually powerful 
features may not be so powerful together. A two-
stage hierarchical classification-based method is 
used. In the first stage, it learns to distinguish the 
arterial calcifications from other highly dense 
regions present within the heart region. And in the 
second stage, another classifier is constructed 
using the features selected specifically to separate 
the coronary calcifications from the aortic 
calcifications. This is done because the negative 
class, with other high density structures, is broader 
and richer than the positive class, coronary 
calcifications. Training on such unbalanced classes 
will bias the classifier towards the majority class, 
and will degrade its performance. This problem is 
solved further by employing an asymmetric 
random sampling strategy. In asymmetric random 
sampling, the candidates are randomly selected 
from the majority class until the number of the 
selected candidates is equal to the number of the 
candidates from the minority class. The authors 
demonstrated that a two-stage hierarchical 
classifier using multiple classifiers is more robust in 
reducing the false positives while keeping a higher 
detection rate than the single stage classifiers.  By 
using multiple classifiers for each stage of the 
hierarchy the accuracy improved. The individual 
classifiers decisions are combined to obtain the 
final decision. The best results are achieved by 
using the simple majority voting rule (MVR) for 
combining the multiple classifiers. This means that 
the final classifier uses the majority results of the 
multiple classifiers. The sensitivity and specificity of 
this approach are respectively 92.07 and 98.62%, in 
a testing dataset of 105 subjects. Instead of using 
the HCC by Brunner et al, a simple bounding box-
based coordinate system is used to represent the 
location of the calcifications. By using the HCC of 
Brunner et al the results might improve.  
 Both methods are limited with respect to 
the imaging modality of EBCT due to poor spatial 
resolution. Another disadvantage is that the 
methods still require manual interaction. The 
method described by Brunner et al is almost fully 

automatic, only the HCC requires manual seed 
points. With further improvements both methods 
could be very promising.  Because of the limited 
studies of the CAR models, the two-stage 
hierarchical classification-based method of Kurkure 
et al is the preferred choice for calcium scoring 
with EBCT.  
 
4.2 CT 
For the automatic detection of calcium in the 
coronary arteries with CTA, a supervised 
classification-based approach is used by Isgum et 
al

16
. First, possible coronary calcifications are 

extracted using a threshold of 130 HU and 
component labeling. All objects bigger than 2500 
voxels (1387 mm

3
) are discarded as coronary 

calcifications and are not expected to have such a 
large volume. Subsequently, each object is 
represented by features describing its size, shape, 
location, intensity values, and variations of 
intensities within the object and their 
surroundings. For the spatial features, a HCC using 
a bounding box for segmentation of the aorta and 
heart is used. The segmentation of the heart is 
used to describe the object’s location relative to it. 
The segmentation of the aorta is used to 
distinguish between coronary calcium and 
calcification in the aorta. The variation of 
intensities is based on image derivatives. These are 
computed by convolving the data with 
approximations of the derivatives of the Gaussian 
kernel. The method is tested with a direct 
classification and two stage classification in the 
same way as described earlier. There are also 
different classifiers tested with and without a 
feature selection scheme. The best performance is 
obtained employing a two-stage classification 
system with a k-nearest neighbor (k-NN) classifier 
and a feature selection scheme.  The results show 
that feature selection is important for good 
performance of the system. Specially, the spatial 
features are very important. However, the aorta 
and heart segmentation do not give a satisfactory 
result. Segmentation of the aorta and heart is a 
difficult task, which is a disadvantage of this 
method. The size and shape features are less 
important, because they are not selected. The 
method uses 304 CT scans of one scanner and 
patients with age at menopause. 28 scans which 
did not gave satisfactory results of the heart or 
aorta segmentation were excluded. This resulted in 
200 training scans and 76 test scans. The outcome 
of the study is that the automatic method detected 
73.8% of coronary calcifications at the expense of 
on average 0.1 false positives per scan. Also an 
evaluation with risk classification for the Agatston 
score as described in 2.4 is done.  The method 
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assigned the correct risk category to 93.4% of the 
76 scans.  
 To my knowledge, this is the first fully 
automatic method for automatic detecting calcium 
in the coronary arteries with MDCT. This method is 
used as a basis for other automatic methods. 
Specially, the spatial features are crucial for the 
identification of coronary calcium. If another 
method for extraction of the spatial features is 
used, for example the HCC describe by Brunner et 
al, the results might be improved. One other 
disadvantage of this approach is that the classifiers 
are trained on the unbalanced data. There are 
many negative candidates and therefore they are 
biased towards the majority class. This problem 
can be solved with the two-stage hierarchical 
classification-based method Kurkure et al used.  
 
4.3 CTA 
Several threshold-based approaches have been 
developed to derive the calcium score from CTA 
studies

18,19
. A method to semi-automatically 

determine the calcium score, uses a fixed 
threshold of 320 HU and computed calcium scores 
by multiplying the calcium volume by a factor 
empirically derived from a training set of studies

18
.  

This threshold still detects lower density calcium, 
which may be found in early calcifications, but not 
non-calcified structures and small areas of contrast 
inclusion. A more promising method uses a 
dynamic threshold

19
. With a semi-automated 

scoring method the best threshold per patient is 
determined. This is very difficult, because the 
higher the threshold, more calcified plaques are 
missed and the detected lesions are smaller. The 
calculated CAC scores needs to be corrected 
depending on the applied HU threshold. Therefore 
a calibration factor, CF, was calculated using a 
linear regression analysis depending on the 
individual HU threshold from an initial cohort of 
100 patients. The determined regression line 
showed a slope of -0.0003 and an intercept with 
the Y-axis at 0.4028. The Agatston score in CTA can 
be calculated with the following correction factor: 
 

 

 
The accuracy of the developed approach is 
determined in 500 patients in comparison to CAC 
scoring in the CT. CAC scoring results in the CT and 
CTA scan showed a high correlation, r = 0.954 and 
with > 95% of the patients correctly assigned to the 
same risk group using the Agatston score. This 
study shows that calcium scoring in CTA is feasible 
and accurate. One disadvantage of using a 
threshold is that due to the partial volume effect, 

calcium voxels that are closer to the vessel 
boundary are influenced more by the lower 
intensity tissues outside the vessel. In the scan this 
lesion is visible, but cannot be segmented by 
thresholding

17
. 

 For the automatic detection of coronary 
calcium in CTA there a lot of methods that use a 
coronary artery tree reconstruction

27,17
. There are 

different methods to reconstruct a coronary artery 
tree

28,29
, I will explain one of those methods

29,30
. 

First, the lungs, mediastinum and aorta are 
detected and segmented. The lungs are detected 
as large areas filled with air and segmented using 
thresholding and morphological filters. The 
mediastinum is then detected as the area 
surrounded by the lungs and the aorta is detected 
and segmented using a 3D active surface 
minimization approach. The segmentation is used 
to create a mask of the aorta, which is used for 
detection of the ostia points. The ostia locations 
are detected via a vessel centerline extraction 
method which tracks the center axis of the 
coronaries starting from the aorta surface. 
Subsequently, a vessel enhancing filter is applied to 
the mediastinum volume image. Voxels with high 
filter response are combined into connected 
tubular components. The whole coronary tree is 
built by tracking tubular components using the 
depth-first-search (DFS) approach, while 
geometrical contiguous segments are connected. 
The four main coronary arteries (LM, LAD, LCX, and 
RCA) are labeled using a probabilistic anatomical 
model.  
 An algorithm for vessel segmentation that 
is capable of dynamically determining calcium 
plaques in CTA scans using vessel centerline 
extraction is developed by Wesarg et al

31
. A 

corkscrew algorithm for segmentation of the 
vessels is used. This is a path search algorithm, a 
connection is searched between the user-defined 
start and end point following a helical- or 
corkscrew-shaped path. A B-spline interpolation 
between the centers-of-gravity for each three 
subsequent sample points are the first estimation 
for the centerline, which is afterwards iteratively 
corrected by detecting the voxels belonging to the 
vessel border. Secondly, a vessel extraction 
approach is employed to exclude calcifications 
from the segmentation result.  An additional three-
step analysis based on the diameter function and 
the image data is performed because calcified 
regions are expected to lower the mean diameter 
and are 20-30% brighter than the vessel lumen 
that is filled with a contrast agent. The approach 
has an FP value of 0 tested with data of 10 
patients. However, the segmentation does not 
always extract the whole artery because imaging 
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artifacts and the handling of bifurcations. This 
method did not segment the detected calcium and 
there is no calcium score calculated. Nonetheless, 
this method is important for automatic calcium 
score in CTA scans because it shows that automatic 
detection of calcium in CTA is possible and can be 
used as a basis for other more promising methods.   
 Teßmann et al

27
 developed an automatic 

threshold-based method using a fully automatic 
segmented coronary artery tree. In order to deal 
with the high contrast variability on CTA data an 
individually threshold for each dataset is 
computed. For a correct threshold, a histogram, 
H(x) based on the intensity values of the voxels 
along the automatically segmented vessel 
centerlines is generated. For using different 
datasets, the histogram values have to be 
normalized with respect to the number of entries, 
because the number of centerline points varies. If 
there are multiple maxima in the histogram, it is 
important to select the last significant peak for the 
threshold value because the HU value for calcified 
lesions lie above the HU values found for the 
contrast agent. Then, a smoothing step is applied 
to the histogram to get rid of noise and 
discontinuity. Subsequently, the histogram 
function is scanned for the last significant 
maximum number of hits. This is done so that the 
ideal HU threshold for calcified plaque 
segmentation corresponds to the lowest intensity 
value that belongs to calcium but does not fall into 
the range of contrast agent.  In order to find the 
optimal threshold, the point where the decent 
from the peak positions flattens in the histogram 
has to be found. This is done by computing the 
derivative of the histogram and examining its 
values starting at the peak position until it exceeds 
a threshold. Voxels within a spherical radius of 1.5-
2 mm of the centerlines of the coronary tree are 
examined. If the HU value is above the calculated 
threshold, it is marked as a possible candidate. The 
candidate points together with the threshold are 
then used as input seeds for a standard region 
growing algorithm. The resulting segmentation 
mask is used to identify single lesions and remove 
lesions whose size is below a certain value, to 
remove noise and flooding. Finally, the region 
growing process is repeated using the final marker 
list. The calcium score is evaluated by the 
segmentation results with the Agatston, volume 
and mass score. For the Agatston score a 
correction factor compensating for the different 
slice thickness in CTA is used. The exact value of 
this correction factor is unclear. The results show 
that the automatic thresholds are very close to 
those that are manually selected with a mean 
absolute distance of 72 HU and a standard 

deviation of ± 73.59. In 62% of the examined cases, 
the automatically detected segmentation 
threshold is lower than the segmentation 
threshold selected by the radiologist. But because 
flooding did not occur during region growing, there 
are more voxels that belong to a segmented 
calcified lesion, which increase the calcium score.  
Therefore, the authors conclude that most 
manually determined thresholds are too high. The 
ground truth score is created with a region growing 
based segmentation for the manual determined 
calcium. The resulting segmentation masks are 
used to generate ground-truth reference calcium 
scores. The correlation between ground-truth and 
automatic calcium score in 53 CTA is for the 
Agatston, mass and volume score 0.946, 0.951 and 
0.950. Patients with cardiac motion are excluded 
from the study, which makes the results less 
accurate. This is a threshold based method, which 
means that the problem of detection small 
calcified lesions still remains. The resulted 
threshold is also compared with the manual 
selected threshold. However, finding a manual 
threshold in CTA is very hard. Therefore, for 
further research the results need to be compared 
with manual determined calcium scores on CT 
data. Nonetheless, using threshold-based 
techniques in CTA data will probably not give 
satisfying results.  
 An approach that can solve the problem of 
threshold-based techniques is a model-based 
segmentation approach,  recently published by 
Eilot et al

17
. This method also makes use of a 

coronary tree represented by its centerlines and a 
list of coronary segments with detected external 
boundaries. The coronary segments are re-
sampled along its centerline using the straightened 
curved planar reformation (CPR) and the external 
boundary is used as a surface in the straightened 
CPR coordinate system. The mean (µc) and the 
standard deviation (σc) of contrast material 
intensity levels inside the aorta are computed. An 
algorithm based on fitting an adaptive intensity 
distribution model to vessel intensity profile for 
every cross section along the vessel is used. The 
model describes the intensity profile of the given 
vessel as it would look if it has no calcium. To do 
that, the authors use a weighting function 
preferring vessel pixels that are more likely to 
represent contrast material, while ignoring areas 
that represent plaques. The following observations 
can be found using this model. Pixels above 150 
HU and below µc +3 σc are likely to be contrast 
material. Pixels below 50 HU are likely to be non-
calcified plaque, thrombus or other tissue outside 
vessel boundaries and pixels above µc + 7 σc are 
very unlikely to be contrast material. The threshold 
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of 150 HU is the minimal mean intensity over 2300 
CTA studies and the second threshold was 
calculated by the first threshold, 150 – 3σ aorta, 
which is ≈ 50 HU. Next, a parabolic model centered 
at the vessel centerline is used to describe the 
vessel cross-section intensity profile. The parabolic 
is < 0, since the contrast intensity is higher than 
that of surrounding tissues. It is expected that the 
parabolic curvature, is larger for narrow vessels 
and smaller for wide ones. This is because the 
central part of a large vessel is almost not 
influenced by the partial volume effect. The 
presence of calcium can result in a wrong 
estimation of model parameters despite the used 
weighting factor. To deal with this problem, the 
parabolic has to be > g(s). g is a negative, non-
decreasing function of vessel cross-section found 
by analyzing parabolic models fitted to 30 healthy 
vessels of various sizes and fitting a quadratic 
lower bound to the parabolic. For the 3D vessel 
modeling, the parabolic model is fitted to each 
vessel cross section independently. In order to 
reduce the local model fitting error, a filter inspired 
by the bilateral filter is used. The paraboloid model 
does not describe bifurcations in the vessel 
correctly. Therefore the locations and directions of 
bifurcations are detected from the reconstructed 
coronary artery tree. In the segments affected by 
bifurcations, the parabolic intensity model assigns 
the parabolic peak value to all pixels affected by 
the bifurcation. With the vessel intensity model, a 
calcium binary map, M is generated by 
thresholding the difference between the actual 
image intensities,  and the values predicted by the 

model, . The threshold is set to 3σc, proportional 
to the image noise. The pixel intensity need to be 
higher than µc − σc to call it calcium. So, for every 
pixel (p):  
 

 

 
Otherwise, M(p) is 0. The binary map is back-
projected to the axial image volume to form the 
calcium binary mask. To calculate the calcium 
score form calcium binary mask, the standard 
calcium score on CT image is first simulated. To 
simulate the standard calcium score, a virtual CT 
image based on the CTA scan is build. First, the 
contrast of the CTA scan is virtually removed. 
Voxels that are brighter than blood > 40 HU which 
do not belong to the segmented coronary artery 
lesions are set to 40 HU. In this way other high 
density structures are also set to 40 HU, but this is 
no problem for the calcium score. Secondly, the 
image is resampled to the standard CT 
reconstruction. The degree of freedom in choosing 
the origin of the new 3 mm grid along the Z axis, 

results in a different, but valid, calcium score. The 
Agatston score can now be calculated by applying 
the standard scoring function.  In order to 
compensate for the calcium under segmentation, 
because of the low-intensity calcium voxels that 
can be recognized as contrast, still a calibration 
factor for the calcium score is used: 
 

 

 
Where, i goes over all calcium lesions detected in 
the study. Si is the initial score and ρ(Si) is the 
calibration factor of lesion i. The calibration factor 
is calculated with the ratio between the true and 
observed lesion volumes and the assuming that the 
calcium score is locally linear in lesion volume. The 
true lesion volume is from a calcium score study 
corresponding to the CTA data. The fully automatic 
system is tested in two independent clinical trials 
on 263 studies and demonstrates 0.95 and 0.91 
correlations between calcium scores compared 
with manual CT score. Correspondingly, 211 out of 
255 patients (82.7%) are categorized into the same 
risk group by both CT and CTA. The algorithm, used 
with the coronary tree, sometimes failed to track 
an artery beyond a total occlusion. The calcium 
lesion in the untracked distal part of the vessel is 
then undetected and not scored. This might not 
occur when a more complex coronary artery tree 
algorithm is used, although the algorithm that is 
used demonstrated very good results

30
. The 2D 

intensity modeling might be improved by using 
local estimations of contrast intensity and noise 
level for calcium segmentation instead of the 3σc 
threshold. The authors also found that even if the 
calcium is detected and segmented perfectly there 
might occur some errors in the scoring. The model 
that is used for the calibration factor is limited on 
spherical lesions. A more complex model might 
reduce these scoring errors.  
 Calcium score on CTA is a very difficult 
task. The method by Wesarg et al shows that it is 
possible to detect coronary calcium in CTA but it is 
not able to calculate a calcium score. The results of 
the threshold based approach by Teßmann et al 
show a really high correlation between the manual 
and automatic method. Likewise, the model based 
approach, which also can detect the small calcium 
lesions, shows good results in coronary calcium 
score. The model based approach compares the 
results with manual CT calcium score instead of 
manual CTA score, which is a more accurate 
measurement.  Therefore, the method presented 
by Eilot et al is better for automatic calcium scoring 
in CTA data.  The results of the method by Eilot et 
al shows that it is possible to calculate the calcium 
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score automatically on CTA data in clinical practice. 
This means that the separate CT scan can be 
eliminated, which reduces the radiation exposure.  
 
4.4 CT and CTA 
The standard scanning protocol for plaque 
assessment consists of two scans: a native, low 
resolution CT and CTA. In the CTA, because of the 
contrast agent, the vessels are bright. By using 
both of these scans the location of the vessels in 
the CTA can be used for detection of the 
calcifications in the CT.  
 For detection of calcified coronary plaque 
a framework using CT and CTA is presented by Saur 
et al

32
.  First the aorta is automatically detected

33
 

in the angio dataset and the coronary tree is 
segmented. For the coronary tree the rough 
estimate of the vessels centerline is obtained with 
a livewire algorithm

34
. For this algorithm seed 

points need to be manually placed at the orifices of 
the coronary arteries and in the distal ends of the 
various branches. Each detected branch is 
reformatted along its centerline to get a stack of 
cross-sectional images. Graph cut is then applied to 
each cross-sectional slice using a circular shape 
prior. The resulting segmentation mask is then 
transformed back into the original angio data set. 
Plaque candidates are extracted using an intensity 
threshold from both the angio and the native data 
set. In the angio data set the coronary artery 
segmentation is used to only detect plaques inside 
the coronary arteries. For all possible plaque 
meshes are generated with the subsequent 
marching cube algorithm. This is a method for 
extracting isosurfaces from scalar volumetric data 
sets

35
. For the Native Data Set (CT) a threshold of 

130 HU is applied and candidates larger than 5000 
mm

3
 are rejected. Using the same marching cube 

algorithm meshes of all plaques are generated.  
Each connected mesh is regarded as a native 
plaque candidate and is stored in a list. The same 
procedure is repeated but with a threshold of 200 
HU, to generate a set of higher calcified native 
candidates. The native and angio data sets are 
generally not well registered due to the beating 
heart, breathing and minor patient movement. 
Therefore rigid plaque registration with Mevislab is 
performed. The registration uses the coronary 
segmentation results from the angio data on the 
native data set. This is done, so that the native 
candidates are limited to the segmented vessel 
regions. The registration also compares plaque 
features from both data sets with each other. To 
avoid misregistrations, only the very high calcified 
native plaques of 200 HU as well as the angio 
plaques with a volume v > 5 voxels are considered 
for registration. Furthermore, the native plaques 

need to have an intensity score, s depending on its 
90%-quantile intensity of its voxels that is > 0.95 to 
be considered. In the second stage of the 
registration, the mapping of angio-native pairs with 
the minimum energy is taken to compute the final 
registration rotation and translation parameters 
using the algorithm from Horn. The rotation and 
translation are then applied to all native 
candidates from 130 HU. Those candidates falling 
outside of the vessel boundaries after the 
registration are deleted from the list. In the end, a 
two rule based approach is used to maximize the 
number of detected plaques while minimizing false 
positives.  First, several distance checks are applied 
to confirm the verified candidates resulting from 
the registration process and to search for 
additional pairs that were not considered by the 
registration process due to their low intensity. 
Secondly, angio candidates with its volume larger 
than 1 mm

3 
and s ≥ 0.75 are added to the results. 

Because it is very likely that large angio plaque 
candidates with high intensity values are plaques 
even though a corresponding native candidate is 
missing. With the method weakly calcified plaques, 
hardly discriminable from the contrast agent in the 
angio data set, could be detected. The framework 
detects 86.3% of the 649 calcified plaques. The 
good performance of the proposed approach can 
be mainly attributed to the fusion of the native and 
angio data set. However, using rigid transformation 
only might not compensate for the movement of 
the heart between the different datasets. A rigid 
transformation followed by a non-rigid registration 
will probably work better for this registration task. 
By automatically labeling the segments of the 
coronary artery tree or using the coronary artery 
tree described in 4.3, the method could be fully 
automatic.  
 Shahzad et al

36
 describes a method to 

automatically detect coronary calcium that uses a 
density estimate for the position of the main 
coronary arteries.  From a training set of CTA 
datasets of 95 patients, a total of 10 CTA atlases 
were selected. For the atlases CTA datasets are 
used, because the contrast within these images 
gives a clear depiction of the heart chambers and 
the main coronary vessels. Lumen centerlines in 
the three main coronary arteries (LAD, LCX and 
RCA) were manually annotated in the remaining 85 
CTA datasets. Each of the three manually 
annotated centerlines is transformed to each of 
the CTA atlases by non-rigid registration focused 
on aligning the entire heart and the chambers. 
Therefore, the mapped centerlines from the 85 
scans are not overlapping but are spread over a 
region. This distribution gets sparser in the distal 
parts of the vessels. For the registration a multi-
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stage registration approach using ElastiX, a publicly 
available registration package, is used. First, for 
each resolution level 256 iterations of a stochastic 
gradient descent optimizer with the mean square 
difference (MSD) as cost function are applied. After 
that, the results of the affine registrations are used 
to initialize a B-spline registration. A stochastic 
gradient descent optimizer with 1024 iterations in 
each step is used with the Mutual Information (MI) 
as cost function.  After the registration, the 
coronary density estimate for each voxel of the 85 
atlases is determined for each of the three vessels 
separately in the following way. First for every 
voxel, the closest point with the Approximate 
Nearest Neighbors on each of the centerlines for 
each of the three main arteries is calculated. If this 
voxel is less than 10 mm away from the centerlines 
mean shift is applied, this is an iterative algorithm 
for locating the maxima of a density function. It 
calculates the mode of this particular voxel with 
respect to the 85 closest point set. The set of all 
locations that converge to the same mode defines 
the basin of attraction of that mode.  These points 
are clustered based on their mode. Next, for each 
of the clusters the covariance of the points in that 
mode is determined. With this information the 
density estimate is calculated by summing the 
contributions of each of the clusters, where each 
cluster is represented by a multivariate Gaussian. 
This process is repeated for each of the voxels on 
the atlas image and separately for the three 
arteries. In the end, the obtained density estimates 
lying within the aorta were reset to zero.  Because 
of anatomical variations between patients and 
inter-observer variation in the start point during 
annotation some of the mapped arteries lie 
partially in the aorta of the atlas and give thereby a 
high density estimate within the aorta. To do this, 
the aorta is automatic segmented using a multi-
atlas based registration approach. In order to 
obtain patient specific coronary artery density 
estimation, the density fields obtained from the 
atlases are mapped onto either a CT or CTA image. 
This is done with a non-rigid registration of the 
atlas images to the CT or CTA images, transforming 
the density fields accordingly, and combining the 
density fields by averaging them. This coronary 
artery density estimate can then be used for fully 
automate calcium scoring. First, the intensity value 
of objects with an intensity > 130 HU and a volume 
> 1 ml were set to zero. This is done so that dense 
bony structures are not detected as coronary 
calcium. To avoid noise being detected as a false 
calcification, the connected components having a 
volume smaller than a certain value were removed. 
In the article the value of 0.02 ml is described. 
However, 0.02 ml is equal to 20 mm

2
 which is a 

very large area for noise, so this is probably a 
mistake.  

 
Subsequently, a ROI is obtained for the 

vessels by averaging the density fields from the 10 
atlases. After that the CT image is limited at 130 
HU to obtain all the calcifications. Finally, the 
automatic calcium scoring method on the CT 
dataset is evaluated with the Agatston score. The 
results show that the density estimates provide a 
reasonable estimate for the locations of the main 
arteries in both CTA and CT images. The 
automatically obtained Agatston scores for the 170 
CT datasets are compared to the manually 
obtained Agatston scores. The authors only 
mentioned that the scores are linearly related to a 
Pearson regression coefficient R

2
 of 0.88 and 

plotted the different scores. It is very hard to 
mutually compare the result of this method when 
the only result that is given is this coefficient. 
Nonetheless, the method shows that it is possible 
to derive calcium scores per vessel. Reporting the 
three calcium scores separately is expected to give 
better insights about the calcified plaque. The 
registration from the atlases to the patient scans 
often fails. Further research on this registration 
might improve the accuracy of the calcium scores. 
However, the used registration method looks 
already very promising for this task, so it is 
probably not possible to get a better registration. 
The results also might improve by using a wider set 
of atlases, covering more anatomical variations or 
by only using atlases that are most similar to the 
patient's anatomy. Furthermore, the calcium 
scoring results are different from the manual 
quantification. Using an appearance feature as 
described in 4.2, which could differentiate 
between a calcium spot and noise, the result might 
improve. This is done in a recently published 
method by the same authors.  
 Shahzad et al. use the density estimate as 
described above, for a feature-based classification 
approach

37
.  First, candidate calcium objects are 

determined from the CT scan by thresholding at 
130 HU units and discarding all objects > 1500 mm

3
 

and also those of < 1.5 mm
3
, which are assumed to 

correspond to respectively bone and noise. 
Subsequently, a classifier that uses local image 
features is applied to determine which of the 
detected candidate objects are coronary calcium. 
Two classifiers are built and trained, one for the 
1.5-mm slice spacing data and one for the 3.0-mm 
data. In total, 62 features are considered. There 
are features describing the object size and shape. 
The intensity of the object at the maximum 
intensity point after Gaussian image derivatives is 
computed at five different scales for features 
describing the multi-scale image derivatives. The 
atlas-based density estimate is used for the 
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location estimate features. These features are used 
for the classification of candidate object and for 
assigning the calcifications to one of the main 
coronary arteries. For location features, the actual 
image space is registered with a standardized 
coordinate space.  This is done by pairwise 
registration of the same 10 CTA atlas images as 
used for the density estimate. The registration 
consists of two stages, an initial affine registration 
followed by a non-rigid registration using ElastiX. 
The standardized space is then obtained by 
averaging the resulting deformations. The 
midpoint between the right and left coronary ostia 
is defined as the origin in the standardized space. 
The CT scan is then mapped into this standardized 
space. The resulting relative position is used for the 
location features. Subsequently, feature selection 
is performed to determine the set of features that 
gives optimal performance in detecting calcified 
objects in the coronary arteries. The authors found 
out that the best classifier for this problem is a k-
NN classifier. The system calculates Agatston, 
mass, and volume scores for the detected calcium 
objects. Additionally, patients are assigned to the 
appropriate risk category using a model that also 
accounts for age and sex

13
. A completely automatic 

system that calculates calcium scores per vessel is 
then presented. Automatic detection of calcified 
objects is achieved with sensitivity and specificity 
of 81.2% and 99,6% per calcified per scan in the 
1.5-mm data set and sensitivity and specificity 
97.4% of 86.6% per calcified object in the 3.0-mm 
data set. Risk category assignment is correct in 95% 
and 89% of the data sets in the 1.5-mm and 3-mm 
scans. The authors conclude that the system 
slightly underestimates scores on 1.5-mm scans, 
while scores are slightly overestimated on 3.0-mm 
scans. However, the 1.5 data is tested on 101 
datasets and the 3.0 data on 56 datasets and 
therefore the results are not directly comparable. 
The most errors in vessel labeling are caused by 
incorrect object classification and calcium objects 
are set to the wrong vessel. Per scan there are on 
average two misclassified objects. This problem 
can be solved, by using a CTA scan from the same 
patient but then there still will be two CT scans 
needed.  
 One disadvantage of the method by Saur 
et al is that it requires both a CTA and CT scan, 
which requires a high radiation dose. Both 
methods by Shahzad et al also make use of both 
scans. However, the CTA scans that are used are 
scans of a database. The manual centerlines are 
annotated offline and the atlas needs to be made 
only once for using it to calculate the density 
estimate per scan. As a result, these methods only 
require the CT scan from the patients and can also 

be performed on CTA scans. However, there are no 
results for using these methods on CTA data. The 
features based classification method improves the 
detection of coronary calcium compared to using 
only the atlas based density estimate.  
Furthermore, the affine registration followed by a 
non-rigid registration used by Shahzad et al is 
probably more accurate than the rigid registration 
used by Saur et al. for the registration of the CT 
and CTA (or atlas) scan.  
 
4.5 Chest CT 
As described in 3.4, it is very promising to detect 
coronary calcium on chest CT screening data of 
heavy smokers. Recently, an automatic feature 
based method to detect coronary calcium in chest 
CT data is presented by Isgum et al

14
. This method 

is developed by the same authors as the featured 
based method described in 4.2

16
 The same 

indication of potential calcifications and features 
describing the size and texture are used here. 
Instead of using a HCC for the spatial features, the 
property that coronary calcification appear at 
typical locations in the scan is used. Therefore, a 
statistical map describing the typical locations and 
variations of the coronary calcification can be 
designed using multi-atlas based segmentation. An 
affine transformation followed by elastic 
registration is performed to calculate the 
derivative of mutual information using ElastiX. For 
the elastic registration, B-spline registration with 
four resolutions is used.  With both registrations an 
iterative stochastic gradient descent optimizer with 
512 iterations is used for the optimization of the 
cost function. The probabilistic map is then created 
by averaging the transformed binary segmentation 
of coronary calcifications. The map is blurred with 
Gaussian filter, to get a probabilistic estimation. 
The spatial features were then calculated using this 
coronary calcium map. With the same registration 
method each scan is registered to the calcium map. 
Nine spatial features are calculated, the candidate 
location in the atlas coordinate system, the 
probability a candidate is coronary calcium and the 
3-D Euclidean distance of a candidate to the 
coronary calcium. Four supervised classifiers and 
three different classification strategies are 
evaluated. The three strategies are a single 
classifier classification, two-stage classification and 
a combination of the best performing classifiers. 
Also the importance of the features is evaluated.  
Experiments are done using all features, only 
features calculated with the coronary calcium map 
or only features calculated without the map. 
Finally, the method is evaluated with the volume 
score and the Agatston score for the cardiovascular 
risk as described in 2.3. The results are compared 
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with manual calcium scores obtained by two 
Radiologists. The best results are achieved with a 
combination of the best classifiers. These are the 
two-stage classification with k-NN classifier and 
SVM classifier, and single k-NN classifier with 
selected features. The sensitivity is on average 
79.2% with the volume score tested on 231 scans 
of a multi scanner trial. The risk is correctly 
assigned in 190 of the 231 subjects (82.2%). 
Although results show that the spatial features are 
very important, the created coronary calcium map 
has a large region for the probability of coronary 
calcium. The authors think it is due to the difficult 
alignment of the coronary arteries in chest CT 
scans. Calcification in the aorta causes the largest 
FP errors. Segmentation of the aorta for spatial 
features might lead to a reduction in false 
positives. Furthermore, there has only been 
experiments with basic classifiers, more complex 
classifiers might also improve the results.   
  To my knowledge, this is the first fully 
automatic method for coronary calcium scoring 
using chest CT data. It would be beneficial to 
automatically detect coronary calcium in chest CT 
scans. The sensitivity of this automatic method is 
low compared to the automatic methods on other 
scan techniques. However, these results are 
limited due the scan technique. By using this 
method on CT data or make the atlas of CT data, 
the results probably improve.  
 
5. Discussion  
There are already several fully automatic and semi-
automatic methods for the calcium scoring in CT 
data. An advantage of the fully automatic methods 
is that they do not depend on intra- and inter-
observer variability. It is difficult to mutual 
compare the different automatic methods, 
because of the different scan techniques. 
Especially the automatic methods based on CTA 
need a very different approach compared with the 
other scan techniques. Although there are a lot of 
manual and automatic calcium scoring methods on 
CTA data, there is still not enough research that 
proves that the calcium score calculated on CTA 
data is accurate. However, the method of Eilot et 
al

17
 is very promising and shows that calculating a 

calcium score on CTA data is possible. The simple 
threshold based methods presented by Teßmann 
et al

27
 might not give satisfying results compared 

to manual calcium score on CT data.  
 Although the methods that make use of 
EBCT by Brunner et al

24
 and Kurkure et al

6
 seem 

promising, the data provided by EBCT is limited. In 
the current practice MDCT is used for the manual 
assessment of coronary calcium. Therefore, if the 
automatic methods become clinically, automatic 

methods based on MDCT data are probably 
preferred. However, both of the methods on EBCT 
might also work on CT data and will probably give 
better results through the better spatial resolution 
of MDCT. 
 Another method that will probably give 
better results on CT data is presented by Isgum et 
al

14
 with chest CT data. However, by using chest CT 

data of screening trials for heavy smokers for the 
automatic calcium score it will be very interesting 
to identify patients who might benefit from 
preventive treatment. There should be more 
research on the coronary calcium map and 
registration of the coronary arteries in chest CT 
data to make this method more accurate.  
 The most automatic calcium score 
methods are based on the Agatston score. In 
clinical research the Agatston is a widely used 
scoring method and largely expected. However, as 
described before, the Agatston score is not always 
accurate and reproducible. This can lead to small 
variations in the results of the automatic calcium 
score methods. Some of the methods additionally 
use the volume and/or mass score to determine 
the calcium score. It is very hard to compare the 
different automatic methods with different 
calcium scores. If all automatic methods are 
calculated with the mass score method, which is 
more accurate and less variable then the Agatston 
or volume method, this will lead to more accurate 
and better comparable results.  
 Another limitation for mutual comparing 
the different automatic methods is the different 
test data. Some of the automatic methods make 
use of small numbers of data from one scanner. 
Isgum et al and Eilot et al make use of data from 
different protocols and scanners, which make the 
results more reliable compared with the other 
methods. A good cooperation step would be to 
develop a database per scan technique, to which 
the obtained accuracy for different calcium score 
methods should be reported. Furthermore, with 
studies of patients with low calcium score, the 
relative influence of small lesions is high

17
. This is 

because small lesions are easier to misinterpret. 
Therefore, it is important for the accuracy of the 
method to know it is tested on patients with all low 
calcium scores or all high calcium scores.  
 For further research, it would be 
interesting to combine some of the different 
methods to make the calcium score more accurate.  
Kurkure et al

6
, Shahzad et al

37
 and Isgum et al

14
 all 

used a featured based classification approach. All 
show that this is a very promising approach for the 
automatic scoring of coronary calcium. For the 
spatial features, looking at the robust of the 
registration and the sensitivity to errors, the 
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density estimate presented by Shahzad et al, is my 
preferred choice. The coronary calcium map of 
Isgum et al will probably give almost the same 
results on CT data because the approach is to a 
certain extent similar. The results of those atlases 
might even improve by using atlases that are most 
similar to the patient's anatomy. Isgum et al and 
Kurkure et al showed that a combination of 
classifiers performed even better than the two-
stage classification with K-NN classifiers. Using this 
for the method of Shahzad et al might improve 
these results even more.  
 Among the available methods for 
automatic calcium scoring, there are multiple 
methods that are very promising. With further 
research, for example combining different steps of 
the automatic methods and using more patient 
data, there are many possibilities to use automatic 
calcium scoring clinically. Specially, using automatic 
calcium scoring on chest CT data by screening trials 
for heavy smokers will be of high interest.  
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