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Abstract 

Although Dutch highways are monitored extensively, important details about incidents are sometimes lacking 

or arrive late in the traffic control center. Tweets sent by traffic participants about their experiences on the 

road could provide useful information in such cases. A difficult task however is to find relevant tweets in the 

thousands of tweets that are sent each second by Twitter users worldwide. Very interesting in this matter are 

tweets that are geographically localized by GPS-coordinates, so-called ‘geotagged’ tweets. It is expected that 

the spatio-temporal characteristics of geotagged tweets can be used to identify incident-related tweets that 

are sent on or around highways. This thesis addresses the question how useful Twitter is as a source of 

spatio-temporal information in the domain of incident management. For a period of 5 months geotagged 

tweets were harvested from the Twitter API and stored in a geographic database. Zonal regularity analysis 

was used in an attempt to detect traffic-related events in the area around Amsterdam from the database. It 

was found that geotagged Twitter data is lacking sufficient quantity and quality in order to be a valuable 

source of spatio-temporal information for incident management.  
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1. Introduction

1.1. Research Background and Motivation 

1.1.1 Twitter as information medium in the Netherlands 

 

Since its foundation in 2006, Twitter has become an increasingly popular micro-blogging service. With over 

271 million monthly active users, sending about 500 billion ‘tweets’ a day as of 2012, Twitter has become one 

of the major social media today (Semiocast, 2012; Twitter, 2012c). Because of this massive number of users 

and messages, Twitter is already a well-known source of information within different countries. 

Strikingly, the Netherlands score quite high in 

terms of Twitter accounts. Recent studies found 

that approximately 3,3 million Twitter users are 

from the Netherlands (Newcom Research & 

Consultancy B.V., 2013). Other studies revealed 

that the Netherlands is one of the countries that 

is most active on Twitter (Dawson, 2012; 

Lunden, 2012).  

Figure 1 shows that the ratio Twitter accounts to 

population is one of the world’s highest in the 

Netherlands. In Figure 2, a tweet density 

visualization of Europe shows the relative high 

density of tweets from the UK and the 

Netherlands compared to other areas. 

Twitter appears to be not just a hype. In the 

Netherlands Twitter has become a serious 

source of information. In a large study among 

more than 13.000 Dutch subjects, 54% of 

participants responded that they think social media will become increasingly important in their way of 

gathering information (Newcom Research & Consultancy B.V., 2013). The importance of Twitter as a source 

of information manifests itself as well through numerous examples of public and commercial organizations 

that use Twitter to reach their public. Different news carriers like the Dutch public news channel NOS, 

newspapers, and governmental bodies each have their own Twitter channel. Also quite remarkably, some 

Dutch politicians use Twitter as their main means of communication with the public, rather than for instance 

press conferences.  

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 

Figure 1 Ratio (in %) Twitter accounts/population 
 (Dawson, 2012) 

Figure 2 Tweet-density map 
of Europe 

 (Twitter, 2011) 
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1.1.2 Twitter as a source of geographical information and event detection 

 
Twitter has become a promising source of information. Perhaps even more promising is the ‘hidden content’ 

of information that Twitter holds. Twitter isn’t used only as a kind of news channel: most messages posted on 

Twitter are messages about people’s daily experiences and opinions. It is for this reason that in several 

studies Twitter users have already been employed as potential valuable sensors for a range of things. For 

example, Zhao et al. (2011) discuss how to use Twitter’s public messages for detecting football games 

throughout the United States in order to generate a real-time electronic program guide for these football 

events. Next to event detection, Twitter has been a topic of study for opinion mining. For example, Tumasjan 

et al. (2010) propose using Twitter content as a valuable indicator of the offline political landscape during 

election times.  

In the framework of geosciences, it is even more interesting to discuss the geographical component of 

Twitter. Because Twitter offers GPS-enabled messaging, a small number of the tweets can be mapped (Figure 

3). In these cases where tweets have GPS-coordinates, tweets can be seen as a source of geo-information, 

assuming that there is a relation between the user’s location and the content of the message that they post. 

In the cases that no GPS-coordinates are sent with a tweet, these tweets can often be geo-located because 

the tweet holds some geographical description, for example the name of a train station. Although the level of 

detail of the geographical component of the tweet becomes smaller in these cases, it still can be seen as 

geographic information.  

The idea to use Twitter as a valid source of geographical information is increasingly studied. Various attempts 

have been made to detect spatio-temporal events from Twitter. Sakaki et al. (2010) attempted to detect 

earthquake locations in Japan in real-time from Twitter messages. Unlike sensing for well-defined events like 

earthquakes, the event topic can also be completely unknown. Still, these unknown events can be detected 

just by searching for unusual regional Twitter activity (Lee et al., 2011). Hence, it appears that Twitter can be 

a valuable provider of geo-information in many different cases.  

 
 

  

Figure 3 Visualization of all geotagged Tweets posted since 2009 
(Rios, 2013) 
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1.1.3 Twitter and traffic management in the Netherlands 

 
In traffic management, Twitter could be an especially useful additional source of information. The goal of 

traffic management is to ensure a smooth flow of traffic over the regional road network. In the Netherlands, 

Rijkswaterstaat is responsible for traffic management of the Dutch highways. In five traffic management 

centers, road traffic is monitored continuously using roadside technology. Operators in the traffic 

management centers are able to control the traffic flow remotely by using, for example, dynamic road signs, 

cameras, information panels and controlled access to motorways by traffic lights.  

One of the main responsibilities of traffic management centers is giving support to incident management 

services. After an incident occurs on the road, it is extremely important that the traffic flow stagnates as little 

as possible. In order to take the right decisions and actions, detailed information about the incident is 

essential. It is important to verify the location and the type of the incident in order to take efficient measures. 

Traffic jams have various causes and therefore have different solutions differently as well. For example, if a 

big truck turns over and blocks the road, other actions will follow than in case a traffic jam is caused by a 

broken-down car or a small accident with only material damage.  

The incident management process can be split up into different time phases, which together form the total 

incident duration (Figure 4). Rijkswaterstaat set the ambition in 2008 to decrease the average incident 

duration of 2015 with 25% compared to 2008 (Drolenga, 2011). The time between the incident occurring and 

the alert coming in at Rijkswaterstaat (detection time) is not counted as part of the incident duration as 

defined by Rijkswaterstaat. There is very little information about the average duration of this detection time, 

because it is hard to register and it can vary greatly for different types of incidents. Nevertheless, this 

detection time has an influence on the overall time it takes to normalize the road traffic. The sooner the 

traffic management centers are informed about the cause of a traffic jam and the precise location of an 

incident, the faster and more efficient this traffic jam can be solved again.  

Unfortunately a relatively long delay exists between the incident happening and the moment traffic 

management centers are informed about the incident, most of the time by officials (for instance via the 

emergency calls of 1-1-2). There is a possibility that Twitter traffic from traffic participants could reveal more 

about the location and cause of the traffic jam or incident. Because Twitter is a real-time medium, information 

about incidents could arrive faster at the traffic management centers than the official information. Especially 

in cases where there’s no need to call the emergency number (1-1-2), Twitter may offer valuable information 

to verify an incident’s location and type.  

TNO found that due to traffic jams, a financial loss of 400 million euros for cargo trade was inflicted in the 

year of 2010 (Zanten & Veth, 2011). If Twitter can be used as a fast source of information during incident 

management, resulting in a faster resolution of traffic jams, social and financial benefits could be high.  
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1.1.4  Motivation for the use of Twitter 

 
There are some critera that need to be met in order for social media to be useable for geographic research. 

Most importantly, messages that are posted in the social media have to be publicly accessible. Secondly, the 

messages should contain an indication of the location from which they are sent. Moreover, the social media 

should provide as much data as possible and preferably the data should be accessible real-time.  

Comparing different social media that are used in the Netherlands, Twitter meets these criteria best. There 

are some advantages of using Twitter as a source of geo-information over other social media. The most 

important advantage is that messages on Twitter are publicly accessible via different REST APIs and 

streaming APIs. Not all social media are publicly accessible in this way. In the Netherlands specifically Twitter 

is a medium that is used by many active users. On an average day, Twitter is used by 1,6 million individuals 

in the Netherlands (Newcom Research & Consultancy B.V., 2013).  

Other important advantages of Twitter are that it is accessible real-time and provides different methods for 

geo-tagging its messages. Chapter 3 will elaborate more on the characteristics of Twitter as a source of data.   

 

    

 

  

Figure 4 Definitions of incident duration and phases during the incident management process. 
(Drolenga, 2011) 
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1.2. Problem statement 

Twitter appears to be a potential source of spatio-temporal information in different countries and for different 

domains. For the domain of incident management there are several indications from the literature that Twitter 

could provide spatio-temporal information, veiled in Tweet-content (Daly et al., 2013; Wanichayapong et al., 

2011). However, very little is known about how Twitter can contribute to incident management. More insight 

is needed into the quality and quantity of potential information for incident management in tweets. How often 

do people tweet about situations in traffic? What kind of information do people provide about incident? Is this 

information really useful?  

Secondly, more insight is needed into how to get information from Twitter for the purpose of incident 

management. In the literature many methods are described for knowledge discovery and event detection 

through Twitter data, but it is not clear if these methods provide the information that is needed for incident 

management. How do we identify relevant tweets from the huge number of tweets that are sent every day? 

How can we extract information from Twitter? Can we apply spatio-temporal techniques on the data in order 

to get useful geo-information? 

1.3. Research Objectives 

1.3.1. Objectives 

The main objective of this thesis is to investigate the value of real-time Twitter data as a source of spatio-

temporal information for traffic incident management. In advance, utility requirements for incident 

management applications need to be investigated and translated into criteria which Twitter data should meet. 

In an attempt to reach the main objective, Twitter data will be collected, prepared and analyzed using 

insights and techniques from state-of-the-art literature and other applications. During the analysis, twitter 

data must be tested on these criteria in order to assess their requirements on quality and practical usefulness 

for incident management applications.  

In order to assess the requirements it will be necessary to evaluate the performance of a proof-of-concept 

model that will be set up as part of the research. Information derived from the Twitter data should be verified 

on different aspects, for example detail and correctness. The speed at which information can be extracted 

from Twitter data should be sufficiently high as well in order to be useful for traffic incident management.     

An important objective of the thesis is to investigate the most important shortcomings and advantages of the 

Twitter data and the methodology that is used to derive useful information from the data. By highlighting 

these shortcomings and advantages, valuable recommendations can be given for further research and future 

application developments.       

1.3.2. Research questions 

The main question of the thesis is:  

 How useful is Twitter as a source of spatio-temporal information in the domain of incident 

management within the Netherlands? 

Sub-questions that need to be answered in the course of the research: 

 How is Twitter used as a source of (spatio-temporal) information in current applications and studies 

over the world? 

 What are requirements of a Twitter-based incident management application in order to bring added 

value to the daily practice of incident management?  

 What are the criteria for twitter data quality for it to be useful for incident management in the 

Netherlands, regarding accurateness, spatial and temporal scale, spatial and temporal density, topic, 

and completeness of information? 
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 How can (geo-)information be extracted from Twitter data? 

 How can the requirements of Twitter data and a Twitter-based application be assessed and validated 

on the basis of their criteria for quality and usefulness for incident management? 

1.4.  Thesis structure 

First, in chapter 2, an overview will be given of important literature related to this thesis. The studies that are 

described can be grouped into three main research focuses: geolocalizing tweets, event detection from 

Twitter data, and traffic-related information extraction from Twitter data. The chapter finishes trying to place 

the thesis into perspective of the relevant literature by making use of a schema that summarizes objectives 

and methodological approaches for all of these studies. After reading chapter 2, the scope of the thesis in 

regard to other literature should be clear to the reader.  

Chapter 3 will discuss the accessibility of Twitter data via APIs, characteristics and structure of the data and 

the way data have been gathered for usage in this thesis. A set of criteria for the data and the gathering 

process is formulated, and these criteria will eventually motivate the decision on which API and gathering 

techniques are used to collect the necessary data.  

Chapter 4 will describe the methodology of this thesis. First, criteria concerning the information quality are 

defined that need to be met in order for the data to be useful for incident management. Next, the data 

collection methods are described. A motivation will be given for the study area that is chosen to apply the 

analyses in the methodology on. The different analyses, correlation statistics and geographic irregularity 

analysis that are used to reach the research objectives will be described in more detail.  

In chapter 5 the results of the analyses are given. In chapter 6 these results are interpreted and discussed. 

Chapter 7 contains the final conclusions and recommendations.  
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2. Background 

 

2.1. Twitter as an information source 

The relatively open character of Twitter has resulted in many studies that made use of this social medium as 

a source of data. In addition to the wide range of academic fields of study that Twitter data have been used 

for, there are several examples of commercial applications that rely on the real-time data from Twitter 

streams. This chapter will give an overview of the related research and commercial applications that made 

use of Twitter data. In section 2.1.3 examples of research in the specific field of information extraction for 

traffic management will be discussed.  

In the literature, there are different approaches of studying tweet content. Concerning the relevance of the 

literature for this thesis, an important distinction could be made between studies that focus on the geographic 

component of Twitter data and studies that do not. One thing that all studies on Twitter data have in 

common is that they should classify or cluster tweets one way or another in order to extract information from 

the data. In many cases, in order to extract useful geo-information from Twitter data, tweets should be 

classified both on the messages’ content as well as on their geographical component. For this reason, this 

literature review will not discuss examples from the literature for which the geographical component of 

Twitter data is not relevant. The work of Bontcheva & Rout (2012) offers a comprehensive meta-review of 

semantic analysis for mining and information extraction of social media streams.  

2.1.1. Geolocalizing tweets 

A major challenge that needs to be dealt with when using Twitter data as a source of geographic information 

is the scarcity of tweets that are geo-referenced. Approximately 1% of all tweets are explicitly geotagged 

(Schulz et al., 2013). In an extensive literature review, Schulz et al. (2013) summarized twenty studies that 

dealt with this challenge of geolocating tweets or Twitter users. In these studies, different spatial indicators 

were used in order to geolocate a tweet or Twitter user. Most of the time, the tweet’s text was used by 

applying natural language processing techniques on the terms in the text. An alternative for using natural 

language processing, that was used in the remainder of the studies is matching the terms in a tweet with a 

database of geographic locations, using a Gazetteer. An advantage of this approach is that it does not require 

training data and is much simpler (Schulz et al., 2013).  

Instead of using the message text, some studies focus on using the location information that is sent with a 

tweet. However, an extensive study by Hecht et al. (2011) on the location field in tweets showed that the 

location field is not a very good spatial indicator on its own. Schulz et al. (2013) are the first that used a 

multi-indicator approach for geolocalizing tweets and Twitter users. They designed this multi-indicator 

approach because this method should be less vulnerable to missing or incomplete data. The work of Schulz 

and his colleagues is one of the best on geolocalizing tweets in recent literature. They managed to geotag 

92% of all tweets with an average distance error of less than 30 kilometers. Hence, it seems that geo-tagging 

tweets without a GPS-coordinate is a very challenging job. In the scope of this thesis, tweets should be geo-

tagged on a very small scale in order to be suitable for usage in incident management. For this reason, geo-

referenced tweets are most useful for the objectives of this thesis.  

2.1.2. Event detection with Twitter data 

One of the leading articles in the field of real-time event detection from Twitter data is the work of Sakaki et 

al. (2010; 2012). Sakaki succeeded in detecting the locations of earthquakes with a seismic intensity scale of 

3 or more from tweet content with a probability of 96%. The detection system that was developed by Sakaki 

is able to send earthquake notifications much faster than the official announcements that are broadcasted by 

the Japanese Meteorological Agency (JMA). The event detection mechanism works on the basis of classifying 

tweets and probabilistic spatio-temporal modeling. First, tweets are classified based on different features like 

the keywords in a tweet and the number of words that a tweet consists of. Next, the center and trajectory of 
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the event location are estimated on the basis of Kalman filtering and particle filtering, using the location 

information. An important assumption that is made in the analysis of Sakaki, is that only one event 

(earthquake) takes place in Japan at a time. Within the context of this thesis, multiple events (traffic 

incidents) could take place simultaneously and therefore this might be an additional challenge for the thesis. 

Lee et al. (2011) discussed the possibility of detecting events by only making use of the geographical 

coordinates of geotagged tweets. Tweet content was not used in their event detection approach. Lee et al. 

attempted to identify geographical irregularities in the patterns of tweet traffic in their analysis. In advance, 

they constructed frameworks for geographical regularity of specific towns in Japan based on geo-tagged 

messages from microblogs, like Twitter. The twitter traffic within these frameworks of geographical regularity 

were monitored. If the geographical pattern of tweets deviated from the regular pattern, then most likely an 

event took place within the framework. Deviant patterns could for example be a sudden increase or drop in 

the number of tweets in a certain region. A sudden increase of unique Twitter users in a certain region for a 

short period could also be an indicator for an event. The authors succeeded in finding many announced, as 

well as unexpected events in the experiment. Depending on the number of available geo-tagged tweets in the 

Netherlands, this may be a useful methodology to apply in order to reach the objectives of this thesis. 

A different approach to detecting events based on their spatio-temporal pattern has been developed by 

Sugitani et al. (2013). In this study local events, regardless of size and type, were identified by using spatio-

temporal clustering techniques. First, the authors filtered out noise from their data. Secondly, clusters of 

tweets that were sent within a short time period and spatial distance from each other were identified. Within 

these clusters co-occurrences of keywords were searched for, which can indicate a relation between these 

tweets and a possible event that caused the formation of these tweet-clusters.  

Next to the work of Sakaki et al. (2010; 2012) where focus lies on detecting events that occur on a large 

scale, there are similar studies that try to detect smaller scale events. Walther and Kaisser (2013) built an 

algorithm that was used to identify places in a given geographic region which showed high amounts of 

Twitter traffic. In case any high Twitter traffic was discovered as being an event, they used Machine Learning 

in order to classify this event as being a real-world event or not. The goal of Walther and Kaisser’s work was 

not only to detect real-world events, but also to know the precise location of these events. In this way, events 

could be presented to a potential user on a map. The authors aimed at designing an event-detection system 

for the following customer groups and use cases: 

 Police forces, fire departments and governmental organizations, which could use the 

system to become more aware about situations that could happen in the service area for 

which they are responsible for 

 Journalists and news agencies, which could be informed about the latest breaking events 

 Private customers, who want to know what is going on in their neighborhood 

It’s important to notice that many of the events that the authors aim to detect in these cases are covered by 

just a few tweets. This scale of event-detection requires a much different approach to large scale event 

detection such as earthquake detection. In order to detect small-scale events, Walther and Kaisser created a 

“ClusterCreator” which checks if a certain number of tweets (three) are issued within a certain timespan (30 

minutes) and within a certain geographic radius (200 meter). The work of Walther and Kaisser shows that the 

detection of undefined events, instead of searching for specific pre-defined events such as traffic jams or 

forest fires, is a lot more complex. 

Twitcident (Abel et al., 2012a; Abel et al., 2012b; Terpstra et al., 2012) is an application that makes use of 

real-time Twitter data in order to detect all kinds of real-world incidents by semantic analysis. The application 

is able to automatically filter information from social web streams that is relevant to any real-world event. 

Users of Twitcident are able to analyze a particular situation as reported on social media. In this way, 

Twitcident can support short-term decision making in case of incidents. The work of Abel et al. is highly 
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relevant to the topic of this thesis. Twitcident is not only a state-of-the-art piece of work in scientific 

literature; it is put into practice in the Netherlands too in various pilot cases.  

For example, Twitcident was brought into action during a Dutch music festival which attracts around 55.000 

visitors (Twitcident, 2013b). It was expected that Twitcident could support the festival workers in different 

crowd management tasks during the festival by early detection of increased risk of incidents on the festival 

ground. In this particular case Twitcident proved its power by informing the organizers about very long 

queues in front of tap water facilities. Relevant to this thesis is that Twitcident can also make use of the 

geographic component in social media. This is both shown in an analysis of Terpstra (2012) and in a second 

pilot case where Twitcident was used by ProRail weather service (Twitcident, 2013a). ProRail weather service 

used the Twitcident weather map in order to identify locations in the Netherlands where the weather could 

hinder the train traffic. Next to the traditional weather forecasts, the Twitcident weather map could verify 

real-time weather conditions by updates from Twitter users. In this way, Twitcident could detect locations 

where the weather was worse than expected, and so the organizers at ProRail could take appropriate action. 

The work of Abel et al. provides several relevant insights into the topic of information extraction and event 

detection from social media and Twitter in particular. The architecture of Twitcident emphasizes the need for 

noise elimination, which entails extracting only useful and relevant information from the enormous amounts 

of data. Sophisticated semantic filtering is necessary in order to reduce the noise of Twitter data. Finally, the 

challenges that come with building real-time applications become clearer from the studies of Abel et al. Next 

to automatic information filtering, it is essential that this information is accessible and findable in a given 

incident context (Abel et al., 2012b). Twitcident succeeded in this by providing a user-friendly interface. 

2.1.3. Twitter as information source in traffic management 

Next to the most important literature on the topics of knowledge discovery and event detection from Twitter, 

some studies discussed the potential value of real-time Twitter data for usage in traffic management. Daly et 

al. (2013) motivated that there is a need for real-time information about the underlying reasons of traffic 

conditions. Traffic congestions can have different causes, such as broken traffic lights, road-works, accidents 

or large events like music concerts. Access to real-time traffic information is increasing; however, for citizens 

and traffic operators it is important to know what reason is behind a traffic jam. Daly et al. (2013) suggest 

that social media can be used to capture information and highlight the causes of traffic conditions. In order to 

substantiate this suggestion, Daly et al. (2013) built a user application called Dub-STAR (Dublin’s Semantic 

Traffic Annotator and Reasoner). In Dub-Star both static data from event planners and dynamic data derived 

from social media are combined in order to bring users updates about traffic conditions. Input from social 

media is scanned for possible causes of a traffic congestion on the basis of the time-window and spatial 

relationship with a specific congestion event. In order to define this spatial relationship, first messages are 

geo-coded on basis of the user-generated text. In a geo-coding evaluation it was discovered that 50% of the 

geo-coded locations of messages where accurate with an error range of 500 meters, and 100% were 

accurate within 2 kilometers. Because the radius of the city of Dublin spans nearly 30 kilometers, these are 

promising results.  

In line with the work of Daly et al. (2013), Mai and Hranac (2013) attempted to derive information about 

causes of traffic congestions from social media as well. The purpose of Mai en Hranac’s work however differs 

from the work of Daly et al. The objective of Mai and Hranac is to collect external data on traffic on roadways 

over time to use in traffic performance analyses. Questions that could be answered with the external data 

from social media are for example “Why are speeds low in this area?” or “How much delay would a rainstorm 

at this time and location likely cause?” (Mai & Hranac, 2013). In order to discuss the value of Twitter data in 

answering these questions, they compared incident records from the California Highway Patrol with tweets 

related to roadway events over the same time period. The authors expected that more traffic-related tweets 

are sent in case of an incident, and so they tried to discover this pattern in a big dataset of incident-related 

tweets. Moreover, Mai and Hranac (2013) expected to find that tweet content of traffic-related tweets is more 
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incident-related near the time and location of an incident. In order to find this pattern in the data, they 

applied a semantic analysis. The authors found that Twitter use appeared to correlate with the California 

Highway Patrol, but that sophisticated filtering based on content and location is needed to maximize their 

conclusions.  

Similar, but more sophisticated compared to the work of Mai and Hranac (2013), is the study of Schulz et al. 

(2012). In order to increase the situational awareness in case of incidents, the authors provided a solution for 

real-time identification of small-scale incidents using Twitter. Similar to the application of Twitcident (Abel et 

al., 2012b), Schulz et al. used text classification and semantic enrichment of tweets in order to detect events. 

A main difference however, is that in the work of Schulz et al. more focus lies on geo-locating incidents on a 

small scale. Whereas other approaches in the literature rely mostly on city-level precision, Schulz et al. 

managed to extract precise location information on street level for 87% of their tweets. The event detection 

approach of Schulz et al. was tested on its ability to detect car crashes. The authors compared fifteen car 

crash incident logs from open government data with incidents that were detected in their database of tweets. 

All fifteen car crashes could be identified based on an average of ten related tweets, and a minimum of three 

related tweets. This result is very promising regarding the research objectives of this thesis. 

2.1.4. Research scope definition  

From the preceding sections, the major challenges that come with using Twitter data as a source of 

geographical information are described. It became clear from literature that different research goals require 

different approaches of processing Twitter data to be useful for event detection. First, a distinction can be 

made in literature on the type of events that are tried to be detected out of Twitter data (Table 1): 

 Geographic scale – For example, an earthquake is a larger scale event than a traffic jam. 

 Well-defined or unclear – In some studies it is tried to seek for specific events like traffic 

jams or earthquakes, whereas in other studies Twitter data is mined in order to identify 

unknown events. 

 

Large Medium Small yes no

Sakaki et al. (2010) x x

Lee et al. (2011) x x

Walther and Kaisser (2013) x x

Abel et al. (2012): Twitcident x x

Daly et al. (2013) x x

Mai and Hranac (2013) x (x) x

Schulz et al. (2012) x x

Thesis methodology x x

Event to detect in Twitter data

Scale Well-defined

 
 

Table 1 Overview of type of events that are aimed to detect in related studies. 
 

Another distinction that can be made in literature is on the detection method of events (Table 2): 

 The detection process can rely solely on Twitter data, or external data can be used next to 

Twitter data to support the detection process. 

 The detection method can be based on semantic analysis, and/or can be based on spatio-

temporal clustering.  

 Different spatial indicators can be used in the detection process – For example a tweet’s 

text, location field or coordinates can be used. 

 The detection method could support real-time detection, or not.  
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Table 2 An overview of the type of detection methods that are used in all related studies 

 

Within the diversity of related literature, the scope of this thesis can be further narrowed down. In both of the 

tables, Table 1 and Table 2, it is listed how the research is related to the state-of-the-art. Regarding the 

related literature, the scope can be defined as follows: 

 The geographic scale of the events that will be studied in this thesis is small. Traffic 

incidents are one of the smallest scale events that have been studied in literature. 

 The events are well-defined: we are only interested in traffic incidents on the Dutch roads. 

 The detection method will mainly rely on Twitter data. Logs from Rijkswaterstaat on traffic 

incidents will  be used for validation of the found results.  

 The detection method will be based mainly on spatio-temporal clustering of Twitter data. 

No semantic techniques are applied.  

 Only coordinates will be used as spatial indicators of tweets.  

 The detection method as applied in this thesis, will not aim at real-time detection of traffic 

incidents. In the first place, gathered Twitter data will be used for analysis. On the other 

hand, the potential of Twitter streams for real-time incident detection will be discussed 

based on the thesis’ results.  

 

 

 

   

yes no semantics spatio-temporal cluster text location field coordinates yes no

Sakaki et al. (2010) x x x x

Lee et al. (2011) x x x x x

Walther and Kaisser (2013) x x x x x

Abel et al. (2012): Twitcident x x x x

Daly et al. (2013) x x x x

Mai and Hranac (2013) x x x x x

Schulz et al. (2012) x x x x x x

Thesis methodology x x x x

Detection method

Based on external data Event identification based on Spatial indicator in tweet Real-time dection
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2.2. Twitter data characteristics and gathering options 

 

This chapter will give an overview of the data characteristics of Twitter data and the way this data is 

accessible through the internet. In order to make use of Twitter data successfully, insight in these 

characteristics of Twitter data is essential. Section 2.1.1 will discuss the different ways of how Tweets can be 

filtered and retrieved from the Twitter APIs.  In section 2.2.2 a motivation will be given for the decision to 

gather data from Twitter’s streaming API. 2.2.3 will discuss the data structure of the ‘raw’ tweets that can be 

retrieved from Twitter’s streaming API. Finally it is discussed in section 2.2.4 how the raw data can be stored 

and exported into databases that are usable in a GIS.  

2.2.1. Twitter data accessibility 

Twitter provides real-time access to their data through different APIs: REST (Representational State Transfer)  

API and Streaming API. There are some important differences between the REST API and Streaming API. The 

REST API is mainly used in applications and websites that need to make use of Twitter’s functionality like 

searching for tweets based on a keyword, search within a Twitter user’s timeline (all tweets that are ever sent 

by someone), or search for tweets based on a hashtag. Figure 5 shows the process that starts when an 

application or web site is making use of Twitter’s functionality. A user can make a request to a website, which 

is issued by a server to Twitter’s REST API. The API will generate some response from the server’s request 

which  is printed to the user via the server. This whole process requires keeping a persistent HTTP 

connection open. Moreover, there are some limitations to the number of request that the user can make in a 

certain time span, and the number of tweets that are generated as a response from the API. This all doesn’t 

make the REST API suitable for harvesting great numbers of tweets for analysis.  

Establishing a connection with the streaming API works differently (Figure 6). The processes that are 

necessary for maintaining the streaming connection and handling HTTP requests, run separately. Once a 

connection is made, access is provided to tweets as they occur in the real-time stream. Eventually, the 

streamed tweets can be stored.   

The streaming API is most suitable for data mining and research purposes (Megally, 2012). The streaming 

API offers low latency (i.e. near real-time) access to all publicly available tweets in Twitter’s global stream 

(Twitter, 2012b). There are three different streaming endpoints available, each customized to different use 

cases: 

 Public stream – this stream contains all public Twitter data 

 User stream – this stream contains all data corresponding with a single Twitter user 

 Site stream – Multi-user version of the user stream 

 
According to Twitter (2012b) the Public stream is best suitable for data mining. Once a connection is 

established to the public streaming endpoint, a feed of Tweets is delivered which has no rate limits. The 

‘unlimited’ access to public Twitter data via the public streaming endpoint offers the opportunity to store great 

amounts of data for further analysis. For this reason, the public streaming endpoint is used for capturing all 

the data that is needed for the analyses in this thesis. 

The only limitations when making use of the streaming APIs, is that only public tweets can be requested, and 

that only a small fraction of the complete stream is accessible. There are 3 different public streaming 

endpoints to choose from: 

 POST statuses/filter – returns public tweets that match one or more filter predicates. 

There are 3 predicate parameters, from which at least one needs to be specified in 

order to receive tweets from the stream: 

o Follow: – returns public tweets that are sent by specific Twitter users 
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o Track: – returns public tweets that contain specific keywords 

o Location: – returns public tweets that are sent within a certain 

geographic region (specified by a bounding box)  

 GET statuses/sample – returns a small random sample of all public tweets. 

 GET statuses/firehose – returns all public tweets, however this requires special 

authorization. There are only few applications that require this level of access. 

 

 

Figure 5 The process of making a connection to the Twitter REST API 

 

Figure 6 The process of making a connection to the Twitter Streaming API 
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2.2.2. Motivation for using the streaming API 

In order to reach the thesis’ objectives, analyses need to be done on Twitter’s data. Hence, the first step of 

the research is building up a database of tweets. In order to do so, a decision needs to be made how this is 

done and which API should be used for data gathering.  

It is decided that the public streaming API is used for filling a database with tweets. There are several 

reasons for choosing this API for building a tweet database. The most important reason is that the streaming 

API is designed for long lasting connections, which makes this API very useful for automated harvesting of 

tweets. The REST API has many limits and restrictions (Twitter, 2013c) which makes automated storage of 

tweets much more complex. It would for example require more than one user account and IP address to 

make request to the APIs (Stronkman, 2011).  

The architecture of the streaming API is designed in such a way that only one request is needed in order to 

make a long-lasting connection which receives tweets real-time as they occur. Though, there is a rate limited 

set for using the streaming API. The public streaming APIs cap the number of tweets that are sent to a client 

to a small fraction of the total volume of the tweet stream (Twitter, 2013a). In many cases however, the 

public streaming cap is not reached because the stream is already filtered on one or more filter predicates. A 

message will be streamed to the user if more messages are found, matching the filter predicate, then the 

streaming cap would allow to pass through.  

Another decision that needed to be taken, is which stream API endpoint should be used. It is decided that the 

POST statuses/filter is the only usable endpoint. The GET statuses/firehose isn’t accessible with default 

authorization, so this endpoint can’t be used. The GET statuses/sample would receive a random sample of the 

complete data stream which is not very useful since we focus the research on Twitter traffic in the 

Netherlands. The POST statuses/filter provides many ways of filtering the twitter stream which makes it 

possible to fill a database with tweets representing Dutch Twitter traffic in the best possible way.  

2.2.3. Structure of raw Twitter data 

When making a request to the POST statuses/filter endpoint, the API will give response. This response 

consists of all tweets from the public stream that match one or more filter predicates. The response format is 

JSON (JavaScript Object Notation).  

A tweet that is responded in JSON format is built up by many fields (Appendix 2). Next to the tweet text, 

many metadata values are included with a tweet like a timestamp, the place of the Twitter user, the source 

from which the tweet is sent etc. On Twitter’s developers website (2013f), an extensive overview and 

explanation is given of all fields that are included with a tweet. 

2.2.4. Twitter data gathering options 

Making requests to the Twitter streaming API can be done in many different ways. On the internet, different 

scripts in different languages are available for free re-use (Barbera, 2013; Cantino, 2013; Graser, 2012; 

Haslam, 2012; McCarroll, 2012). Whether the scripts are useful or not, depends on a couple of criteria: 

 All attribute fields of a tweet can be gathered from the stream 

 The script should be able to make a connection through OAuth authorization (Twitter, 

2013b). Simple authorization via username and password isn’t supported anymore by 

all Twitter APIs since May 2013. 

  The script can handle connection time-outs in order to realize long-lasting 

connections. 

 The script can write the responded tweets to an output file which can be used to 

transport tweets into a geo-database. 
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In order to fulfill all criteria, a Python script (McCarroll, 2012) is used for the data gathering process. Appendix 

3 contains McCarrol’s full original script.  

2.3. Traffic incident management background 

2.3.1. Practices of incident management 

Incident management is defined as all the actions that aim at stabilizing the traffic flow on the road after an 

incident has happened (Eurlings, 2010). In the Netherlands different parties are involved in the practice of 

incident management. The police, fire brigade, ambulance, Rijkswaterstaat, ANWB and salvage workers are 

cooperating in incident management on the Dutch roads.  

The main goal of incident management is to reduce social costs inflicted by traffic jams. This is realized by 

making good arrangements between all partners that are involved in incident management. The aim of these 

arrangements is to resolve an incident as quickly as possible while taking good care of incident victims and 

investigate the incident cause. When handling an incident, priorities are set as follows (The Netherlands 

Traffic Management Centre (VCNL), 2005): 

 The emergency worker’s own safety 

 Traffic safety 

 Treatment of casualties 

 Maintaining the flow of traffic 

 Vehicle / cargo salvaging 
 

Regarding these priorities, the incident management process is started as soon as an incident is called in or 

detected. The incident management process can be split up into 4 phases: 
 

 Detection and notification phase 

 Getting to the scene 

 Action phase 

 Normalization phase 

Detection and notification phase 
 

Incidents can be identified via 

various ways (Figure 7). In most 

cases, an incident is called in by 

an incident-involved person or 

some other road user. Often, 

more than one call about the 

same incident is received by the 

recipient emergency center. Next 

to these incident calls, incidents 

can be detected as well. Incidents 

can be detected automatically by 

detection systems of one of the 

regional traffic control centers of 

Rijkswaterstaat. Otherwise, 

incidents can be detected by 

officials on patrol like social 

workers, road inspectors or 

ANWB-employees.  

 

Figure 7 Incident notification chart (Rijkswaterstaat, 2011) 
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The recipient emergency center verifies the incident and asks which emergency services (police, fire brigade 

or ambulance) are needed to give aid. Subsequently, the executing emergency center will send the required 

emergency services towards the incident. In the meantime, the regional traffic center of RWS and the 

National Notification Centre Incidents (NNCI) and/or Truck Salvage Notification Centre (TSNC) are called and 

informed about the incident. The regional traffic center of RWS sends out a road inspector to the location of 

the incident. The road inspector can verify the type of incident and can assist in clearing the road. If possible 

and necessary the traffic control center takes safety measures and takes actions to stimulate the traffic flow. 

The NNCI/TSNC central calls in a salvage worker in order to tow away the incident involved cars or trucks. If 

a truck is involved in the incident, an incident-management expert is called in as well in order to estimate the 

damage of the truck and its load.  

Getting to the scene, action and normalization phase 

 

After the detection and notification phase (see Figure 4 for all phases), all emergency services make their way 

to the incident location. In the meantime information about the incident is verified by the emergency center, 

regional traffic center and via any possible assisting people at the incident location. A precise location and 

description of the incident situation is essential for the emergency services to arrive fast and work efficiently. 

The more complete and nuanced information about the incident situation is available, the better the 

emergency services are prepared when they arrive at the incident location. For this reason, the emergency 

services keep in contact with the emergency center and/or regional control center until they arrive at the 

incident location. 

In the action phase, different disciplines have their own responsibilities. In Table 3 all actions that need to be 

taken by various emergency services are summarized in order of priority. In the normalization phase, focus 

lies on re-enabling a safe traffic flow. All traffic and safety measures taken in order to deal with the incident 

are withdrawn.  

 

 

 

 
Table 3 Incident management work processes for the various emergency services. Work processes that are 

higher in the tale, have higher priority. (Rijkswaterstaat, 2011) 
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2.3.2. Improvement goals on incident management 

 
It is extremely important that an incident is dealt with very fast. The time traffic flow is stagnated due to an 

incident, has to be as short as possible. TNO estimated that the annual total financial loss to transportation of 

goods and logistic processes due to traffic jams is between 954 million to 1,240 billion euros per year. In 

different studies for the Netherlands, United States and England, it is estimated that about 20% of the total 

lost hours by traffic jams is caused by incidents (Knibbe, 2007). Hence, a reasonable amount of the total loss 

due to traffic jams is directly inflicted due to incidents. The faster an incident is solved, the less financial 

damage is done. 

The effectiveness of incident management is proven by calculations of TNO. In 2003, the Netherlands would 

have been affected with 65% more hours lost by vehicles as a consequence of incidents, if no incident 

management had been applied (Immers, 2007). These numbers give every reason to start improving the 

incident management process in order to enhance the benefits that come with it. In order to improve the 

application of incident management a set of ambitions and ‘SMART’ (specific, measurable, acceptable, 

realistic, time-dependent) aims have been set up in a professionalizing program for the period of 2008 to 

2015. 

One of the program items aims at shortening the total incident duration with 25% from 2008 till 2015 for the 

different categories of incidents. Three categories of incidents are distinguished: 

 Category 1: car breakdown 

 Category 2: truck breakdown, or car accident (only material damage done) 

 Category 3: car accident (injury done), truck accident  

 
Each year, the average incident duration for the whole year is calculated and compared with the average 

duration as it should be according to the enhancement program. The results of this comparison can be seen 

in Figure 8. Developments on the duration of incidents of category 1 and 3 are ahead of schedule. 

Developments on the duration of incidents category 2 are behind schedule. 

Although the incident duration of category 3 incidents is ahead of schedule, attention to this category is 

needed in order to keep the development on schedule towards achieving the goal for 2015. The management 

of incidents of category 1 does not require any additional measures in order to achieve the 2015 incident 

duration development goal. Management of incidents of category 2 do need additional measures in order to 

reach the goals.  

Another goal of the professionalizing program is to enhance the information provision to the traveler and 

media.  Information about the incident, the expected normalization time and advises for alternative routing 

should be sent within five minutes from the incident report or detection (Immers, 2007). 

It is for these two goals, reduction of the incident management process and information provision to the 

public and media, that Twitter could play a supportive role. The next chapter will elaborate more on the 

expectations of Twitter as an information source to support different incident management practices. 
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Figure 8 Development of incident duration regarding the ambition of the incident management 
professionalizing program 
(Ammerlaan et al., 2013) 
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3. Use cases: Twitter as information source for IM 

The preceding sections of this chapter made clear that incident information is essential in the incident 

management process. The faster and completer an image of the incident scene can be drawn, the faster 

actions and efficient measures can be taken by all IM-involved disciplines. In addition, the chance of a follow-

up accident will be smaller if the situation is under control due to good information provision (The 

Netherlands Traffic Management Centre (VCNL), 2005). Twitter, as a potential source of (geo-)information, 

could possibly provide support in different practices within incident management process: 

 Incident report verification 

 Incident detection 

 Incident communication to road users 

3.1. Incident report verification and enrichment 

The first practice for which Twitter is expected to be useful, is the verification and enrichment of incident 

reports. Incidents that are called in are verified first by asking the person reporting the incident for details. 

After the verification, emergency services are sent out to the incident scene. After the emergency services 

have departed, the report is enriched, if possible, with complementing or more nuanced information. The 

emergency service first arriving at the scene will provide feedback about the incident to the control centers. 

All responsibilities of the control center are subdivided and structured as (The Netherlands Traffic 

Management Centre (VCNL), 2005): 

 ASK: asking the person reporting the incident for information / details 

 DISPATCH: sending the service to the scene 

 CONSULT: consulting the emergency worker at the scene of the incident 

 COMMUNICATE:  communicating all information to the other control centers involved 

 RECORD & EVALUATE: recording and evaluating the data of the handling of the incident 

If people around the incident scene are using Twitter to report about the incident, then this information could 

be used for verification of the incident, and enrichment of the incident details. Immers (2007) found out from 

discussions with emergency workers that often there is misunderstanding about the incident location or the 

nature of the incident. These misunderstandings lead to loss of speed and quality of the emergency 

assistance. Ideally, Twitter could give both indications on the location of an incident as well as the nature of 

an incident. This information could perhaps be used as verification material and so reduce misunderstandings 

about the incident scene. Aside from the hypothesis that Twitter could provide information that is usable 

during the incident handling, Twitter could maybe provide useful information for the RECORD & EVALUATE-

task of the control center as well.  

Figure 9 shows an example of an incident-related tweet which is suitable for incident report verification. From 

the text in this tweet it becomes clear that the person who sent the tweet witnessed a car accident and called 

for emergency service immediately. Thereafter, he posted a tweet with a picture of the scene included. 

Because the Twitter user posted information about its location (#Kerkstraat, #Hogezand), this tweet can be 

linked to the emergency call that he made earlier. Very favorable in this case, a picture is included in the 

tweet that gives a clear overview of the incident. The picture makes immediately clear that one of the cars is 

total loss and should be towed away.  

A second example of tweet that could potentially be used for incident report verification and enrichment can 

be seen in Figure 10. The Twitter user describes his location on the road, and uploads a photo of the incident 

scene with his tweet. Information from both examples of tweets and pictures in Figure 9 and Figure 10 can 

be verified with the information that emergency callers provided, and additionally enriches the image of the 

accident scene.   
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Figure 10 Example of an incident-related tweet, suitable for incident report verification. Free translation of 

tweet: I was lucky. This just happened 10 meters in front of me. #A1 near Holten. 

  

Figure 9 Example of an incident-related tweet, suitable for incident report verification. Free translation of 
tweet: quite a heavy crash on the #Kerkstraat in #Hoogezand, I got out immediately and run to, called  

112.   
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3.2. Incident detection 

Next to incident verification, Twitter could be used as a first-line, stand-alone information source, from which 

first indications could be received for possible incidents on the road. Twitter as base for event detection is a 

topic for many examples of studies (see Table 2 for an overview). Also, there are some examples in literature 

that aim at detecting traffic incidents from Twitter data (see section 2.1.3). Incident detection is therefore a 

high potential study topic, however, a highly challenging topic as well. Because Dutch Traffic Centres have 

much technology on board for traffic monitoring and incident detection, Twitter will face high ‘competition’ 

regarding fast incident detection. Maybe past research already proved Twitter’s ability for incident detection 

purposes, but in order to be actually useful Twitter should perform better than traditional incident detection 

technologies. 

The fastest way of traditional incident detection is if someone involved in an accident makes an emergency 

call. Information about the accident is provided directly from first hand to the emergency services in these 

cases. It is highly improbable that someone involved in an accident will post information on Twitter first, 

before calling for emergency service. A higher potential for usefulness of Twitter in incident management is 

maybe more likely to be found in incident cases where no emergency services need to be called. 85 percent 

of the incidents concern material damage only (Immers, 2007). Approximately 270 incidents a day occur in 

the Netherlands (Steenbruggen et al., 2013), so there are many occasions in which an incident does not 

require emergency service. For these cases, Twitter could be a faster detector of the incident than other 

means.   

In section 2.1.4 it is summarized that in literature event detection from Twitter data can be based on 

semantic analysis and/or spatio-temporal clustering. In this thesis, more focus lies on the use of GIS to 

cluster tweets based on their spatio-temporal relation in order to detect incident-related events in the Twitter 

data. Semantic analysis is beyond the scope of the thesis and will only be applied in the form of queries on 

data attributes. It is expected that spatio-temporal clustering of tweets could be used for incident detection if 

sufficient tweets, which can be accurately geotagged, are sent around an incident scene. 

 

  

Figure 11 Example of a tweet that 
provides information about the cause of a 
traffic jam. Free translation of tweet: 
Chaos on Capelseplein in the direction of 
Rotterdam, because of a delivery van in 
the crashbarrier.  
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3.3. Incident communication to road users 

A final practice of incident management for which Twitter could be useful, is the communication of incidents 

to road users. Fast communication about road incidents to the public could reduce the growth of traffic jams 

due to the incident. The smaller the traffic jam, the faster the traffic flow is normalized. Moreover, there’s 

always the risk that cars on the motorway crash into the end of a tailback. Hence, the shorter the period in 

which traffic is stagnated, the less chance exist on secondary incidents due to traffic jams. Therefore, 

communication to the public about incidents and traffic jams is an essential task within incident management.  

Traffic information however is not provided directly to the road user by the regional traffic centers of RWS 

(see Figure 12). Communication of traffic information is done via a service provider (ANWB, VID and TomTom 

are the largest service providers). The service providers buy a license from RWS in order to receive real-time 

basic traffic information like travel times, raw data and video images. This data is provided by the National 

Traffic Centre of RWS (VCNL). In special incident cases, the regional traffic center informs the VCNL of the 

cause of an incident by phone. This information can again be passed through to the service providers. 

Sometimes, service providers receive additional traffic information from in-house informants or measuring 

instruments. Through various media, service providers inform the road user about traffic congestions and 

possible causes of these traffic congestions. The only direct communication between RWS and road users 

about traffic, is through road-side electronic displays (DRIPs).  

A current issue with modern traffic information provision in this context is stressed by Daly et al. (2013).  

Although Real-time information about traffic congestion has become easily accessible and is very detailed, 

real-time information about the underlying reason for traffic congestions is much harder to provide. 

Nevertheless, information about the underlying reason of traffic congestion is essential for road users. If road 

users are aware of the underlying reason of a traffic congestion, they can make better routing decisions.   

It can be expected that Twitter could be an additional source of information during these situations if people 

in traffic jams write messages about the traffic jams that they are in. Examples of this type of information 

sharing can already be discovered in current Twitter traffic. It often happens for example, that the ANWB has 

detected a traffic jam, but is unaware of the cause. Via Twitter, the ANWB asks their followers to keep their 

eyes open and post information about the cause of the traffic jam on Twitter as soon as they notice (and are 

able to safely send a tweet while driving). The need for this kind of information sharing comes forward as well 

in the work of Fernandes et al. (2012). They built an app in which road users could share their problematic 

experiences on the road in order to prevent traffic jams from happening.   

In the Netherlands, Twitter is maybe one of the most suitable media to spread this information and to send 

and receive updates about the incident progress in a fast way. It is expected that in many cases of traffic 

congestion Twitter can complement traditional traffic information provisioning if road users share their 

experiences on the road.  
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Figure 12 Process of traffic information provision to road users, based on Coëmet (2006) 
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4. Methodology – Identification of relevant tweets 

For the sake of geographic research it is very advantageous that tweets can be georeferenced accurately. In 

cases when Twitter users share their geographic location, a coordinate pair is sent with the tweets which 

enables the processing of Twitter data into geographic data. Using the coordinate pair and the timestamp of 

the tweet, tweets can be located in both space and time as spatio-temporal point data. This spatio-temporal 

point data can be made ready for different spatio-temporal analysis techniques. 

As this thesis tries to investigate the potential value of Twitter data as being geographic data for the 

application of incident management in particular, it is key to test the ‘performance’ of this spatio-temporal 

component of Tweets. The performance of the spatio-temporal component could be defined as the data’s 

ability to be used in spatio-temporal analyses and the usefulness of these analyses outcomes. 

In this and upcoming sections, the main goal is to apply spatio-temporal analysis on the Twitter data in order 

to identify traffic- and/or incident-related tweets. Only when incident-related tweets are found, the 

information content of these tweets could be qualified on its value for the incident management process. 

There are many ways to identify relevant tweets. Most often the identification of relevant tweets is done 

through language processing, as is the case in Stronkman (2011). In this thesis however more focus lies on 

the identification of relevant tweets by spatio-temporal analysis. In the end, spatio-temporal analysis should 

bring more insight into the performance of Twitter data as geographical data. 

The main question that is tried to be answered in this thesis is whether or not Twitter data can be used as a 

potential valuable source of geo-information in the field of incident management. In this methodological 

chapter, the thesis’ approach of answering this main question is explained. Answering the main question will 

be done by answering several sub questions.  

Figure 13 shows an image of the ‘pipeline’ of the research approach. The pipeline shows that the 

methodology consists of three phases. In the first phase, all data is collected and criteria are defined on the 

Twitter data quality in order to be useful for incident management. In the second phase, the pre-analysis 

phase, the study area is defined by doing some analysis on the tweets and incident data. Secondly, 

correlation calculations are made in order to find a relation between incident happenings and twitter activity.  

In the third phase of the methodology the zonal regularity analysis is used to detect traffic-related tweet 

clusters. First a pre-analysis is carried out in order to test the applicability of the regularity analysis on the 

Twitter data in the study area. Thereafter, the regularity analysis in the form of a sensitivity analysis is 

applied on zones around highways in the study area. This sensitivity analysis will bring results, which will be 

interpreted and evaluated in the final phase. From the interpretation and discussion, a conclusion will be 

drawn and recommendations for further study will be given.  

The first subquestion that will first be answered is about the relevancy and potential value of geo-information 

for incident management. What information should be extracted from tweets and when (in which situations) 

is this information relevant and potential valuable for incident management? In section 4.1, the criteria are 

defined on geo-information in order to be potential valuable for the incident management process.  

The next subquestion is about the identification of relevant information from tweets. How can we ‘mine’ and 

find relevant information in geographic Twitter data? To answer this question it is key to identify tweets that 

could meet the definition of being potential valuable for incident management as of the informative content 

that can be extracted from these tweets. For this data mining of relevant tweets out of the Twitter databases, 

different approaches and techniques are applied using GIS. 
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Figure 13 Schematic overview of the ‘pipeline’ of the research approach 
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4.1. Criteria (what information is relevant for traffic incidents?) 

The preceding chapter described different practices of incident management for which it could be expected 

that Twitter can give informative support. Whether Twitter really can be of any value in one of these practices 

or not, depends on different sets of criteria. Further on in Chapter 6.1, the value of Twitter data for different 

practices of incident management will be investigated based on these criteria. 

Criteria on Twitter data for their potential value for incident report verification and enrichment 
In order to be useful for incident report verification and enrichment, it is essential that Tweets can be linked 

to specific incidents on the road based on the location from which a tweet is sent. The usability of tweets for 

incident management would be minimal if no indications could be found that a Twitter user was really a 

witness at the location of the incident scene. Therefore a first criterion can be defined as: 

(criterion 1) A tweet should be sent in the neighborhood of an incident, and therefore a tweet 

should hold sufficient indications or evidence about the location from which it was 

sent.     

 

A tweet can be linked to an incident in different ways. First, a tweet can be linked to a specific incident based 

on its proximity to this incident both in space and time. In other words, tweets that are sent near an 

incident’s location and shortly after the happening of this incident, could be related to this specific incident. 

Secondly, tweets can be linked to specific incidents because they hold incident-related information. Twitter 

users can give details about the incident in the tweet’s text, or upload photos of the incident.  

Next to the ability to verify an incident report using tweets, an incident report could as well be enriched by 

tweets that hold detailed information about the incident situation. Because time plays a very important role in 

incident management, information from tweets should arrive in time. For example, if very useful information 

from a tweet comes available just after the emergency services arrived, then this information comes too late 

for the emergency services and is useless. The moment on which relevant tweets can be accessed and the 

time it takes to extract information from these tweets, in other words the recency of the information, is 

essential for their potential value for incident report enrichment. A second criterion could therefore be defined 

as: 

(criterion 2) Tweets should be sent within relevant time limits after an incident happened.   

 

A final criterion for the potential value of tweets for incident report enrichment, is regarding to which extent 

tweets hold complementary information about the incident situation. If tweets hold information that was not 

known by authorities through other media or information sources, then the potential value of these tweets for 

incident report enrichment would increase significantly. Hence, the last criterion will be defined as: 

 
 (criterion 3) Tweets should bring detailed information updates about the incident situation 

 
Criteria on Twitter data for their potential value for incident detection  

 

The ability to detect events from Twitter data has been studied for a wide range of event types. One perhaps 

obvious but nonetheless important criterion for the ability to detect events from Twitter data, is that the 

events particularly influence the daily life of people. Only if people are influenced by an event, people are 

induced to tweet about this event (Sakaki et al., 2012). For both large and small scale events it has been 

shown that these events could be identified based on spatio-temporal characteristics of tweets (Lee et al., 

2011; Sakaki et al., 2012; Sugitani et al., 2013).  

In order to detect events based on the spatio-temporal components of Twitter data, a spatial and/or temporal 

relation should exist between the events and the Twitter data. In other words, it is only possible to identify 
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events from tweets if these tweets can be located near the event location and when the tweets are sent 

within a short period after the event has happened.   

(criterion 4) A spatio-temporal relation should exist between road traffic conditions and patterns in 

Twitter data traffic. 

 

Criteria on Twitter data for their potential value for incident communication to road users 
 

A key criterion for the potential value of relevant tweets for incident communication to road users, is that 

information from tweets will arrive in time. The road traffic condition is very dynamic. This means that the 

development and solution of traffic congestions (due to a road incident) is a matter of minutes. It would be 

most beneficial for communication purposes if road users would respond as quickly as possible to traffic jams 

via Twitter. For this reason, criterion 2 will also apply for the potential value of tweets for incident 

communication to road users.  

Another important criterion for the potential value of tweets for incident communication to road users, is that 

tweet should hold detailed information about the incident situation. Moreover, in the case of incident 

communication to road users, not only information about the incident is relevant. It could be the case that 

tweets provide insight into road traffic conditions which are caused by an incident. For this reason criterion 3 

is extended to: 

(criterion 3B) Tweets should contain detailed information updates about the incident situation or 

road traffic conditions. 

 

Next to the recency of tweets and the detail of information that they provide about the incident situation, the 

ability to geolocate a tweet is also important for the application of incident communication to road users.  

Tweets have to be linkable to incidents or at least it should be clear on which part of the highway the 

information in a tweet applies.  It is for this reason that criterion 1 and criterion 4 will apply to the application 

of incident communication to road users as well.  
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4.2. Data acquisition 

 
The following chapter will describe the data that is used in this thesis, and the way it was gathered from 

different sources. 

Criteria 1 and 4 from section 4.1 stated that Twitter data can only be potential valuable for incident 

management practices if a relation exists between patterns in the Twitter data, and events on the road. 

Additionally, indications or evidence for this relation have to be traceable in the data and must be verifiable 

with other data sources.  

Road incident-related tweets will have to be searched for in a Twitter database. In order to support the 

tracing of incident-related tweets, and the verification of an existing relation between road events and 

patterns in the Twitter database, external sources from Rijkswaterstaat are used. Incident loggings are 

available for analysis and validation purposes. More details about the content of these databases will be given 

in the coming sections of this chapter.  

 
Overview of datasets 

The following main datasets were used for the analyses in this thesis: 

 Twitter data (Geotagged Twitter database): This database contains over a million of tweets that can 

be accurately located on a map by coordinates that were sent with the tweets. 

 

 Incident loggings from Rijkswaterstaat 

Hundreds of logs are available from Rijkswaterstaat Noord-Holland. These logs contain details about all 

incidents that take place on the highways and roads that are monitored by Rijkswaterstaat Noord-

Holland. The logs contain the following information: 

 Date and time of incident log entry 

 Estimation of date and time of incident happening 

 Date and time of last mutation of the log 

 Log type 

 Description of the incident 

 Incident type (category) 

 Location of incident 

 Traffic lane information 
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Twitter Data harvesting setup 

For specific periods, raw tweets are gathered constantly via Twitter’s streaming API using different filters. The 

streamed raw tweets are automatically stored as JSON-formatted strings1. Tweets that flow through the 

streaming API are filtered in two ways (Figure 15). The first filter was set to filter all tweets with a geographic 

coordinate pair that could be placed within a bounding box around the Netherlands, drawn between WGS-

coordinates in decimal degrees: 3, 50, 7 and 54 (see Figure 14) . According to Twitter (2013d), the following 

heuristic is used by the streaming API to determine whether a tweet is sent within the borders of this 

bounding box: 

 If the field “coordinates” is populated, the coordinate pair in this field is tested against the bounding 

box. 

 In cases where the field “coordinates” is empty, but “place” is populated, it is checked whether 

overlap exists between the bounding box of this place and the bounding box that is defined by the 

user. The tweets matches the user defined bounding box if any overlap is found.  

 
If none of these two rules exist then the tweet does not match the filter defined by the bounding box and will 

not be stored. 

On a second computer, tweets are streamed through a filter of specific traffic-related keywords in the tweet 

text. A comma-separated list of phrases is used as a composition of different queries in order to filter out 

possible relevant tweets. Some rules are defined by Twitter to use this comma-separated list as a query 

(2013e) . The following rules are the most relevant for filtering incident-related tweets: 

 Commas in the comma-separated list are equivalent to logical OR operators 

 Space in the comma-sperated list are equivalent to logical AND operator 

 The following entity fields of a tweet are checked for matches with the comma-separated list: 

o text 

o expanded_url 

o display_url 

o screen_name 

 exact matching of phrases is not supported 

 punctuation and special characters are considered part of the term they are adjacent to 

 

Data were collected in the year 2013 from the beginning of July until the end of December.  
 

 

  

                                                
1 JSON stands for JavaScript Object Notation. It is an open standard format that uses human-readable text to 

transmit data objects consisting of attribute-value pairs. JSON is used primarily to transmit data between a 

server and a web application (The Basics | JSON - JavaScript Object Notation [online].; JSON - Wikipedia, the 

free encyclopedia [online].2013).  
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   Figure 14 Bounding box which is used for filtering geotagged tweets from the Twitter stream 
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Data preparation process  

 
The json strings that are generated from the streaming API are prepared for usage in GIS applications. The 

json data preparation had three main goals: 
 reduce the data volume of the raw json strings. Tweets that are stored in raw json format contain 

many entities of metadata (Twitter, 2013f). Some of these metadata entities are considered irrelevant 

for the analyses in this thesis and can therefore be removed from the data. A conversion from the 

raw json strings to comma-separated values containing only the relevant data entities, reduced data 
to 10,5% of the total volume. 

 
 convert the json data to tables that are readable and have good performance in GIS and other 

administrative software packages. Because JSON data isn’t structured as a straightforward 

administrative table, GIS applications as well as other administrative software packages cannot read 
JSON data. In order to enable queries and analyses on the Twitter data using GIS or other software, 

the data needed to be converted to tabular data.  
 

 enable temporal and spatial analysis on the data. The notation of the coordinate pair and the 

timestamp attributes of the tweets was not supported by the used GIS software. In order to 

geographically reference the tweets and to make the data time aware, the coordinate pair and 
timestamp attributes were converted into a different notation. 

 
In order to reach these goals a process of data preparation has been set up. This data preparation process 
consists of the following steps (Figure 15): 

1: Convert data from JSON format to CSV format.  
Using GO programming language2, only the relevant field values from the JSON lines were extracted and 
written to a CSV file. This reduced the volume of the data of the tweets drastically. From the 71 attribute 

fields, only 16 attribute fields were assumed to have potential valuable information for this study. The 
attribute fields listed in Table 4 were extracted from the JSON lines. 

 

2: Convert data from CSV to File Geodatabase3.  
Although CSV files are readable in ArGIS, performance of analyses will increase substantially when data is 

stored in a File Geodatabase. Moreover, a File Geodatabase has additional advantages. For example it is able 
to store up to 1 terabyte of data which can be of different formats (like geographic data in feature classes or 

non-geographic data in database tables). Because of these high benefits for data storage and analysis 
performances, a File Geodatabse is founded most useful for data storage.  

 

In order to convert all tweets stored in CSV-lines to data in a File Geodatabse, ArcGIS modelbuilder models4 
are used. Tweets that were filtered from the streaming API based on location and contained a longitude-

latitude pair, were stored in point feature classes5 within the File Geodatabse. All tweets that were filtered 
from the streaming API based on location, but did not contained a longitude-latitude pair were removed from 

the data. Tweets that were filtered from the streaming API based on keywords by the second computer, were 

stored as non-geographic tables within the file geodatabase. 
  
 

  

                                                
2 http://golang.org/ 
3 http://resources.arcgis.com/en/help/main/10.2/index.html#//003n00000007000000 
4 http://resources.arcgis.com/en/help/main/10.2/index.html#//002w00000001000000 
5 http://resources.arcgis.com/en/help/main/10.2/index.html#//003n00000005000000 
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Figure 15 Schematic overview of data harvesting setup and data preparation process 
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Table 4 Overview of all attribute fields that are extracted from the streamed JSON tweets during the data preparation process. For each attribute field the data type, a description and a motivation for potential usefulness of the 
specified attribute field are given. Information is based on (Twitter, 2012a; Twitter, 2013f; Twitter, 2013g).  

 

 

Attribute field Type Description Potential usefulness of the attribute field for analysis 

created_at String UTC time when Tweet was created Making data time aware 

text String UTF-8 text of the status update This attribute field can contain situational information 

retweeted Boolean Indicates whether the tweet has been retweeted by the authenticating 
user. 

This attribute field could be an indicator that a tweet does not contain new information (Schulz et 
al., 2012).  

in_reply_to_user_id_str String (Nullable) If the tweet is a reply, this field will contain the integer representation of 
the original Tweet’s author ID. 

This attribute field is  an indicator that a tweet is part of a conversation. This field could therefore 
indicate the usefulness of this tweet in particular situations. It could for instance be likely that 

Twitter users do not communicate in dialogues during incident situations.  

in_reply_to_status_id_str String (Nullable) If the tweet is a reply, this field will contain the string representation of 
the original Tweet’s ID.  

This attribute field is  an indicator that a tweet is part of a conversation. If it would for some 
reason be valuable to track conversations, then it would be possible to link different tweets of a 

conversation to each other using this attribute field. 

source String Utility used to post the Tweet, as an HTML-formatted string. Tweets 
from the Twitter website can be identified by the value “web”.  

It could be useful to know whether a tweet is sent from a desktop computer or a smartphone for 
example. 

place_full_name String Full human-readable representation of the place’s name. Tweets 
associated with places are not necessarily issued from that location but 

could also potentially be about that location. 

This attribute field could be used to determine the spatial context of a tweet. It may be an 
alternative to geotag tweets that do not contain a coordinate pair.  

place_place_type String The type of location represented by this place. This attribute field could be an indication of the usable scale of the place field.  

lang String (Nullable) When present, indicates a BCP47 language identifier corresponding to 
the machine-detected language of the tweet, or “und” if no  

language could be detected. 

The language of a tweet may be used as a noise filter, if you are for example only interested in 
Dutch tweets.  

id_str String A unique identifier for a tweet. Could be used to link tweets within conversations, or save lists of interesting tweets. 

user_id_str String A unique identifier for the user that sent a tweet. Could be used to identify users and to link users to conversations. It could as well be used as noise 
filter when blocking tweets of a particular user. 

user_name String The name of the user, as they’ve defined it. Not necessarily a person’s 

name. Typically capped at 20 characters, but subject to change. 

This field is better human readable as the user_id_str field. But, because the field is subject to 

change and not unique this field should never be used to identify a particular user.  

user_location String (Nullable) The user-defined location for this account’s profile. Not necessarily a 
location nor parseable.  

Altough this field does not represent a location with high accuracy of certainty, it may be used to 
identify the geography of a tweet when no other options are available to geolocate this tweet. 

user_followers_count Int The number of followers that the user has a t the moment of sending the 
tweet.  

In different studies this field is used as an indicator of reliability of the tweet’s information, 
assuming that someone with many followers will face more social control on their tweets than 

followers with few followers (Morris et al., 2012). 

user_statuses_count Int The number of tweets (including retweets) issued by the user. This field could as well be used as an indicator of reliability for the tweets. It could also be used to 
filter out tweets of ‘institutions’ like news channels which send many tweets but may not be useful 

for certain purposes. 

user_utc_offset Int 

(Nullable) 
The offset from GMT/UTC in seconds. Because this field defines the time zone, it is used as a geographic indicator of tweets in different 

studies (Krishnamurthy et al., 2008). 

coordinates_coordinates Collection of Float The longitude and latitude of the tweet’s location as a collection in the 
form of [longitude, latitude]. 

This field provides very accurate information about the tweet’s location. It is therefore very useful 
for geographic analysis in this thesis. 
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4.3. Study area 

During the data harvesting period relatively large amounts of data were collected. Because it is assumed that 

it would be too computational heavy to process all data for the whole of the harvesting time and spatial 

extent, it is decided to focus on a smaller area and a shorter time extent for which analyses will be performed 

and the research questions will be answered. In order to increase chances on positive results from the 

analyses, the study area should be defined with caution to both the collected data as well as the road and 

incident characteristics in this area. In the current section a motivation will be given for the choice of the 

study area that is used in this thesis. 

 

In order to define a suitable study area, a few criteria were defined on forehand. These criteria were defined 

regarding the chance to find as many as possible incident-related tweets. The criteria were defined as: 

 The study area should contain a high density of state highways and secondary roads 

 The study area should contain a high density of geotagged Twitter data 

 Many incidents should occur in the study area on a daily basis 

 

The criteria stated above are investigated in a few short pre-analyses. The following sections will describe the 

results of these pre-analyses, and the final motivation for the choice of the study area.  

 

Spatial distribution of state highways and secondary roads in the Netherlands 

 
The first criterion that should be met by the study area, is that it contains a high density of state highways 

and secondary roads. It is only on state highways and secondary roads that incidents are registered by 

Rijkswaterstaat in a standardized and structured way. Rijkswaterstaat made incident loggings available for the 

research purposes of this thesis.     

An essential part of this research will be the validation of incident-related information from tweets using 

incident loggings from Rijkswaterstaat. It would therefore be advantageous to define a study area that has a 

high density of state highways and secondary roads for which incident loggings are abound. In order to 

investigate Dutch areas with high densities of state highways and secondary roads, a line density analysis was 

performed based on the Dutch National Road File (in Dutch: Nationaal Wegenbestand - NWB). This spatial 

line density analysis resulted in a 1 by 1 kilometer grid map, representing for each grid cell the density of 

state highways and roads that were found within a search area of 10 square kilometer from each grid cell 

(Figure 16).  

Overview of spatial distribution of Twitter data in the Netherlands 

 
The second criterion that should be met by the study area is that a high density of geotagged Twitter data 

should be available in the study area. In order to increase chances on finding incident related tweets, the 

number of tweets available in the study area should be as high as possible. The exact number of tweets that 

are sent within a particular area cannot be calculated because approximately 1% of all tweets have 

coordinates available for geotagging. Nevertheless, all geotagged tweets available in a particular area could 

be seen as a representative sample for the Twitter activity. It is assumed that the higher the Twitter activity is 

in a region, the higher the chances are on finding relevant tweets there. 

In order to get some insight into the Twitter activity in the Netherlands, a spatial point density was performed 

based on all collected geotagged tweets. First, all available tweets were projected  based on their coordinate 

values. Thereafter, a point density analysis was performed resulting in a 1 by 1 kilometer grid map, 

representing for each grid cell the density of points that was found in a search area of 10 square kilometers 

around each grid cell (Figure 17).  
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Figure 16 Road density in 
the Netherlands (km/km²).  

Figure 17 Tweet density 
in the Netherlands, 
based on harvested 
tweets (tweets/km²) 
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Spatial distribution of incidents in the Netherlands 

 
A final criterion that should be met by the study area is the number of incidents that happen in the study 

area. It is assumed that in an area with a high density of incident occurrences, a higher chance exist that 

incident-related tweets will be sent from that area.  

Because especially incidents on state highways and secondary roads are studied in this thesis, the study area 

should have a high density of incidents that occurred on these roads. A database from Rijkswaterstaat 

containing registrations of incidents occurrences in the Netherlands was used to get insight into the spatial 

distribution of incidents in the Netherlands. The database only contained incidents in which road users were 

injured, hence no registrations were available of incidents that only led to material damage.  

First, a selection was made on the incidents based on the speed limit of the road on which the incidents 

occurred. Incidents that happened on roads with speed limits from 80 to 130 kilometers per hour were 

selected, as these incidents happened on state highways or secondary roads. A density raster was created 

from the selection of incident points (Figure 18).  

 

 
 

  

Figure 18 Incident density in the Netherlands 
 (RWS, 2003-2011) 
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Study area definition and motivation 

 
From the three different density analyses, it should be concluded that the area around Amsterdam is the most 

suitable study area for the research purposes of this thesis. Figure 16, Figure 17 and Figure 18 show that the 

highest density of state highways and secondary roads, geotagged tweets and incidents can be found in the 

area around Amsterdam. 

Figure 19 shows the exact positioning of the defined study area. For this area Twitter data will be extracted 

and processed, as well as incident loggings will be gathered.   

 

 
Figure 19 Geographic extent of the study area 
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4.4. Prequalification of temporal coverage of harvested Twitter data 

 
Twitter data was collected in the year 2013 from the beginning of July until the end of December. Due to 

technical issues like connection failures, Twitter API issues or system hangs, the Twitter data could not be 

harvested for various smaller periods of time. It is important to avoid these time-out periods when performing 

analyses, in order to decrease the chances on biased results.  

Before analyses took place on the Twitter data, a prequalification of the Twitter data was executed first. The 

main goal of this prequalification was to check the Twitter databases on missing data for any period of time, 

or in other words, finding ‘gaps’ in the data. A prequalification of the Twitter data was executed by creating 

different types of time trend curves, representing the amounts of data that were collected over time.  

Temporal trends have been plotted for the following datasets: 

 The total number of georeferenced tweets  

 The total number of tweets that were filtered on traffic-related keywords 

 

From the temporal trends in Figure 20 gaps in the data that last one or more days can be spotted easily by a 

steep decline in tweet count. Less visible in these curves are gaps of less than one day. Smaller dips in the 

curves can be observed, however these dips do not necessarily have to indicate time-outs in the harvesting 

process.  

In order to get a more thorough insight into smaller gaps, all tweets were classified based on date and hour. 

All tweets that belong to the same hour of a particular date were grouped together. For example, all tweets 

that were sent on July 24, between 06:00 and 06:59:59 were grouped and classified as “2013072406”. After 

classifying all tweets in groups of hours, it was checked for all dates if any classes were missing. If a date 

missed an hour-group, then a time-out of more than one hour took place on this date.  

To avoid studying data that contain gaps of more than an hour, a table was created of all days for which the 

data contained gaps of more than one hour (Table 5). Hereafter in this thesis, this table is used to determine 

suitable time periods for which the harvested Twitter data can be analyzed.  

 

 



 

4 0  

 

 

F i g u r e  2 0  T e m p o r a l  t r e n d s  o f  h a r v e s t e d  t w e e t s .  T h e  r e d  l i n e  r e p r e s e n t s  t h e  n u m b e r  o f  g e o r e f e r e n c e d  t w e e t s  p e r  d a y  t h a t  a r e  h a r v e s t e d .  T h e  b l u e  l i n e  

r e p r e s e n t s  t h e  n u m b e r  o f  n o n - g e o r e f e r e n c e d  t w e e t s  p e r  d a y  t h a t  a r e  h a r v e s t e d .   
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T a b l e  5  O v e r v i e w  o f  d a y s  f o r  w h i c h  d a t a  i s  h a r v e s t e d  w i t h  o r  w i t h o u t  t i m e - o u t s .  G r e e n  r e p r e s e n t s  d a y s  f o r  w h i c h  n o  t i m e - o u t s  t o o k  p l a c e  d u r i n g  

h a r v e s t i n g .  R e d  r e p r e s e n t s  d a y s  f o r  w h i c h  t i m e - o u t s  d i d  t o o k  p l a c e .  ‘ A ’  r e p r e s e n t s  g e o r e f e r e n c e d  t w e e t s ,  ‘B ’  r e p r e s e n t s  n o n  g e o r e f e r e n c e d  t w e e t s .   
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4.5. Finding relations between datasets using correlation statistics 

As has been discussed earlier, one of the main goals described in this methodology is to identify potentially 

valuable tweets. If tweets give information about an incident, or in other words if they increase the situational 

awareness, a tweet could be potentially valuable. Before the information that a tweet contains can be used 

however, it should be clear that a tweet is related to an incident or other event on the road. A very basic 

criterion that defines a potential relation between a tweet and an incident is the co-occurrence of an incident 

and a tweet in each other’s proximity, both in space and time. Hence, it is expected that tweets that tell 

something about an incident’s situation, are sent near the incident location and within a relatively short time 

after the incident happened.  

In a first attempt to get some insight into the geographic Twitter data, a generic relation between the 

geographic Twitter data and the incident loggings was investigated. In upcoming sections, it is tried to 

identify incident-related events from the geographic Twitter data happening on or near the highways in the 

study area. This identification could bring more positive results, which means that a lot of incident-related 

events could be identified from the data if a strong relation would exist between the incidents happening on 

the roads and patterns in the Twitter data around these incident locations and times.  

A first exploratory attempt to identify a relation between the geographic Twitter data and the incident 

management data was done using correlation calculations. A first assumption is made that a stronger 

relationship between incident loggings and Twitter data could be found if only those tweets are taken into 

account which were sent either from or very close to the highway. The closer tweets’ locations are from a 

highway the more likely these tweets are sent by traffic participants. Moreover, it is assumed that tweets sent 

by traffic participants are more likely to have a relation with the traffic situation and thus with incident data. It 

is therefore, in order to increase chance on finding a relationship between twitter data and incident data, that 

only tweets are taken into account that were sent within a short distance from highways or secondary roads. 

A hypothesis is formulated assuming that if tweets are sent as a reaction to incident events on the road, the 

Twitter data will contain more tweets at times directly after an incident has happened. In this view, two 

variables that could be related to each other are the time distance from an incident happening and the 

frequency of tweets that are sent near roads. More specifically, it could be expected that more tweets are 

sent at points in time closer to an incident happening. If this would be the case, then a negative correlation 

would exist between the variables tweet frequency and passed time (in minutes) after an incident occurrence.  

In order to test this hypothesis, correlation calculations were made for different sets of Twitter data. As a 

reference measure of the variable of time after an incident happening, incident loggings from Rijkswaterstaat 

were used. A table was created that listed for every single minute in the test period the frequency of tweets 

and whether or not an incident happened in that minute. In a third column each single minute of the test 

period was translated to a relative time variable. This relative time variable, the time distance from a past 

incident, stands for the number of minutes that passed after the most recent incident took place. The table 

attributes ‘time distance’ and ‘tweet frequency’ that are listed for each single minute could be used as linear 

variables to do a correlation estimation. 

In the form of a small sensitivity analysis, various different correlation estimations were run with different 

selections of geographic tweets regarding their distance from roads (see Figure 21). This sensitivity analysis 

was set up because it was questionable in which correlation estimation setup chances were highest on finding 

a relation between Twitter data and the incident data. It was taken into consideration that a selection of 

tweets very close to roads would increase the chance that these tweets were sent by traffic participants as a 

reaction on the traffic conditions, but on the other hand would deliver a small selection of tweets and the 

chance that relevant but ‘misplaced’ tweets were overlooked. Taking a broader selection of tweets into 

account that is selected based on a greater distance from the road could decrease the chance on overlooking 



 

42 
 

relevant tweets, however increases the chance on distorting the correlation because more non-incident- 

related tweets sent by non-traffic participants, for example citizens of Amsterdam living close to the highway, 

are taken into account in the correlation calculations.  

The following selections of geographic tweets were used in the sensitivity analysis: 

 All tweets either on or within 10 meters from highways in the study area 

 All tweets either on or within 50 meters from highways in the study area 

 All tweets either on or within 100 meters from highways in the study area 

 

 
  

 

 
 

 
 

 

 
 

 
 

 
 

 

Next to the varying selections of tweets, a second variable is altered for each run in the sensitivity analysis. 

Four different calculations of time distance from an incident happening were applied and compared in the 

sensitivity analysis. It was taken into consideration that the timestamps in the incident data always represent 

the moment in time when an incident is registered into the database and do not represent the actual time an 

incident took place. It is therefore expected that the incidents took place a few minutes earlier than the 

registered timestamps in the incident data. For this reason, four different types of time distance were 

calculated and applied in the sensitivity analysis: 

 

v1:  The time distance measured from the last occurred incident timestamp, registered in the incident 

loggings 

v2: The time distance measured from the last occurred incident timestamp, registered in the incident 

loggings, minus 5 minutes delay between an incident happening and its registration. 

V3: The time distance measured from the last occurred incident timestamp, registered in the incident 

loggings, minus 10 minutes delay between an incident happening and registration. 

V4: The time distance measured from the nearest incident happening (both passed and upcoming 

incidents in time). 

A calculation example of the different types of distances (v1 – v4) can be seen in Table 6. 

Finally, the sensitivity analysis was carried out by running different correlation analyses on the variables of 

tweets frequency and time distance. Table 7 shows an overview of the different correlation analyses setups 

and outcome. In all cases, Pearson’s correlations (Field, 2009) were calculated using SPSS software. A 

significant correlation between tweet frequency and distance from an incident happening could not be found 

for any of the different situations of the sensitivity analysis.  

Figure 21 Example selection of tweets within different buffer distances from highways 
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The absence of a relation between the tested datasets does not necessarily mean that the Twitter data does 

not contain incident-related Tweets. On the other hand it is probably a first indication that the identification of 

incident-related tweets asks for an extensive approach.   

  

 Tweets 
within 10m 

Tweets 
within 50m 

Tweets 
within 100m 

Distance v1 0.000 
(0.991) 

0.001 
(0.947) 

0.009 
(0.384) 

Distance v2 -0.002 
(0.929) 

-0.002 
(0,903) 

0.009 
(0.384) 

Distance v3 0.004 
(0.844) 

-0.002 
(0.890) 

0.009 
(0.395) 

Distance v4 0.011 
(0.591) 

-0.002 
(0.869) 

0.008 
(0.407) 

Table 6 Example of different calculations of time distances (v1 – v4) as input variables 
in the sensitivity analysis 

Table 7 Results of the sensitivity analysis: Pearson’s correlation estimations and their 
significant values between brackets. 
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4.6. Geographic irregularity pre-analysis of tweet intensity patterns 

4.6.1. Theoretical background of irregularity analysis 

The previous chapter section explained that no clear relation could be found between the incident loggings 

and the pattern of Tweet frequency that was sent from or close to highways. Although this relation could not 

be found, certainty cannot be given that the Twitter database does not contain tweets that hold relevant 

information for incident management. In this section the identification of relevant tweets will be extended by 

a different approach: geographic irregularity analysis. 

Geographic or “zonal” irregularity analysis is a detection method to find geo-social events, which is 

successfully applied in different studies by Lee et al (2011; 2013). , Wakamiya et al. (2013) and Fujisaka 

(2010). In order to detect unusual Twitter traffic in certain predefined geographic zones, the tweet intensity 

during specific periods of time is compared with the statistical regular Twitter pattern that can be found for 

these zones. If for a specific zone and time period the tweet intensity differs significantly from earlier found 

patterns, then this zone could be identified as being either unusually crowded, or an event takes place in this 

zone which induces many reactions on Twitter. In the above named studies, zonal irregularity is successfully 

applied to discover various big geo-social events in Japan. Both expected as well as unexpected events could 

be detected using the zonal irregularity analysis.  

In literature the zonal irregularity analysis of tweet intensity patterns is only applied to small scaled datasets 

and study areas. For the analysis of Lee et al. (2011), geotagged tweets are used which were sent during a 

period of one and a half month and within the geographic extent of Japan. Moreover, the irregularity analysis 

of Lee et al. (2011) was only applied to identify crowded places. The goal of this thesis is not to identify 

crowded places but to identify incident-related events. On the other hand, crowded places and smaller scale 

events like road incidents could be discovered by a similar reaction in the tweet-intensity pattern: both will 

cause an unusual increase of tweets sent around a location and within a short period of time. It is therefore 

that the zonal irregularity analysis could be a solution for reaching the research objectives. 

In regard of this thesis’ objectives, it is interesting to test the zonal irregularity method for the identification of 

smaller scaled datasets and study areas. Not only would this bring more insight into the applicability of the 

zonal irregularity method, but it could also be very supportive in reaching the objectives of this thesis to 

identify incident-related tweets. It is for these reasons that a test case is set up to apply the zonal irregularity 

method on the available Twitter data in order to identify traffic- and incident-related tweets in the study area. 

Another important reason to use zonal irregularity analyses for reaching the research objectives is the 

geographic focus of this method. The zonal irregularity method doesn’t require language processing of the 

tweet texts to detect events, which is a complex task and a field of study outside the scope of this thesis. 

Event detection will be based mainly on the geographical component of the available tweets.   

In order to test the applicability of the zonal irregularity method for achieving the thesis’ objectives in a 

structured way, the test case is set up in the form of a sensitivity analysis. A sensitivity analysis enables 

testing the zonal irregularity method in different setups. For the purpose of identification of traffic and 

incident-related tweets, it is favorable to apply the zonal irregularity analysis in different setups. Many 

uncertainties exist about the way regular tweet intensity patterns and events should be defined in order to 

detect traffic and incident-related events. It is therefore that a trial-and-error method like a sensitivity analysis 

could give more insight into these uncertainties by testing different analysis setups.  
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4.6.2. Execution of the geographic irregularity analysis 

A zonal irregularity analysis, as it is applied by Lee et al. (2011), consists of different steps that need to be 

taken: 

1 Geographically located tweets should be collected. This can best be done by developing a tweet 

gathering system, which is developed for this thesis as well. The Twitter data should be made ready 

for use in a GIS (Figure 22).  

 

 

2 Establishing zones for which a statistical regular tweet intensity pattern will be estimated. There are 

different ways in which zones could be defined. Zones could be defined by administrational borders. 

For the study area the different districts of Amsterdam could be used for example (Figure 23). 

Another option is to use equally sized zones, for example the cells of a raster draped over the study 

area (Figure 24). In the study of Lee et al. (2011), a K-means clustering method was used to divide 

their study area into zones based on the geographical occurrences of their dataset. The centers of the 

clusters were used to define a Voronoi diagram that divided their study area into “socio-geographic 

boundaries”.  

 

  

Figure 22 Example of geographically located tweets in the study area, visualized in a GIS 

Figure 23 Zones defined by district borders Figure 24 Zones defined by a raster 
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3 Estimating statistical regularities for defined zones. From a long-term harvested Twitter dataset the 

regular pattern of tweet intensity should be estimated for each zone in a specific time period, for 

example days or hours of the day. This regular pattern or geographic regularity will be used as 

threshold value to identify unexpected high tweet occurrences. A boxplot can be used to deal with the 

indicators of a high tweet intensity in a simple statistical way (Lee et al., 2011).  

 

A boxplot (see Figure 25) gives insight into the distributions of tweet occurrences by representing a 

couple of sample statistics (Field, 2009): 

 the lowest and highest score 

 the bottom quartile: this is the range between which the lowest 25% of scores fall 

 the median which is the middle score 

 the top quartile: this is the range between which the highest 25% of scores fall. 

 

 

Figure 25 Boxplot-based geographical regularity construction (Lee et al., 2011) 

 

The boxplot can be used to establish geographic regularities for all zones. A geographic regularity pattern is 

defined by a usual range and an unusual range of tweet intensity. In the study of Lee et al. (2011), the limits 

between usual and unusual range are defined by the lowest and highest occurrence scores. The definition of 

an outlier is not consistent in literature (Hodge & Austin, 2004), and therefore determining what data samples 

are outliers is a subjective task.  

The definition of the usual range and the unusual range is very important for the results of an event detection 

analysis. If the unusual range is defined too narrow, there is chance that relevant events cannot be detected. 

On the other hand, if the unusual range is set too broad, then there is a chance that too many false positive 

events are detected. Because there is no uniform definition of how to define outliers, and therefore how to 

define the usual and unusual range, the definition of outlier is a variable in the analysis that is very suitable as 

input variable in a sensitivity analysis. This will be more elaborated on in the sensitivity analysis set-up.  

4 Detect irregularities for time series of tweets in established zones. When the tweet-intensity of a 

certain zone for a specific period of time is higher than the usual range of the geographic regularity, 

then this could be defined as a unexpected high tweet intensity which could indicate the occurrence 

of an event.  
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4.6.3. Irregularity analysis applied on a broad scale to identify massive events 

For the study area around the city of Amsterdam, an explorative zonal irregularity analysis was executed in 

order to check the functioning of the irregularity method for the available data that was collected earlier in 

this thesis. This explorative zonal irregularity analysis is a first check on the potential of the irregularity 

analysis to identify event-related tweets in the Twitter data.  

Because a relatively low percentage of all tweets is geographically located, it is expected that bigger events 

which provoke many tweets to be sent, are easier to detect than smaller events which provoke only a few 

tweets. It is therefore that first an explorative geographic irregularity analysis is performed on the data in 

order to be able to discuss the potential of the geographic irregularity analysis. When event occurrences can 

be identified clearly from the Twitter data, a more extensive event detection can be performed on a larger 

scale in the form of a sensitivity analysis. This sensitivity analysis could result is the identification of smaller 

events, and hopefully incident-related events as well.  

In the first explorative zonal analysis, the variance in tweet intensity per day for the whole study area is 

examined. Tweet intensity trends were plotted for all the available geographical Twitter data in the study area 

(Figure 19). Next to plotting tweet frequency trends for the study area, tweet frequency trends for all the 

available data from the complete data harvest area (Figure 14) were plotted. It is expected that if some 

events that can be detected from Twitter data are bound to a geographic location, differences can be found in 

the pattern of geographic tweet frequencies for different areas. For example, it is expected that some events 

are bound to the study area of Amsterdam, meaning that these events cannot be detected in the frequency 

pattern of other areas like the whole harvest area. 

In order to validate this hypothesis, the geographic tweet frequency trend of the study area is compared to 

the tweet frequency trend of all available data from the harvest area. Outliers in both frequency trends should 

be identified. If outliers can be found in the frequency trends of the study area, and no outliers can be found 

in the data of the harvest area for the same moment in time, then this would be an indication that an event is 

happening that is only related to the study area of Amsterdam and not to the complete harvest area.  

All geotagged tweets for both areas are first grouped per day. Then, for each day the frequency of tweets is 

counted and plotted into a frequency trend. In order to define outliers in the frequency pattern, the mean 

frequency per day and standard deviation from this mean was calculated. Outliers were defined as days that 

had a higher frequency than the standard deviation from the mean frequency per day for all data in  a zone. 

The frequency trends for both areas can be found in Appendix 4. 

From both frequency trends, outliers could be identified. Where possible, the probable causing event for these 

outliers was identified from the tweet texts: 

 

 Outliers in tweet frequency trends for the study area of Amsterdam:  

Day Probable event responsible for outlier 

22th August No event identified from tweets’ texts.  

25th August No event identified from tweets’ texts. 

28th October Heavy storm over the Netherlands 

10th November MTV European Music Awards (held in Amsterdam) 

26th November Soccer game: Ajax – Barcelona (held in Amsterdam) 
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Outliers in tweet frequency trends for the whole harvest area:  

Day Probable event(s) responsible for outlier 

22th October No event identified from tweets’ texts. 

27th October No event identified from tweets’ texts. 

28th October Heavy storm. 

24th November No event identified from tweets’ texts. 

26th November Various Champions League soccer games.  

27th November No event identified from tweets’ texts. 

28th November No event identified from tweets’ texts. 

30th November No event identified from tweets’ texts. 

 
Remarkable in the outliers that were found is that the peaks in the frequency trends of the harvest area could 

not be found in the frequency trends of the study area of Amsterdam except for two dates: 28th October and 

26th November. These 2 dates were defined as outliers in the frequency trends for the study area of 

Amsterdam as well as for the harvest area. It may not be coincidental that the events that were identified as 

being the probable event responsible for the outliers are events with a large geographical impact. For 

example the heavy storm of 28th October is an event that didn’t only have impact on Amsterdam, but had 

impact over all of the harvest area as well.  

Secondly, an outlier could be found in the study area of Amsterdam on the 26th of November because of an 

important Champions League soccer game that took place in Amsterdam: Ajax vs. Barcelona. Although this 

event took place in the study area of Amsterdam, the impact of this event could be found all over the harvest 

area as well. Most likely this event had impact on the harvest area as well because it is a popular subject 

among many soccer fans distributed over the harvest area.  

Also interesting is the outlier that was found for the study area of Amsterdam on the 10th of November. A 

similar peak in the tweet frequency, much higher than the regular tweet intensity, was not found for the 

whole harvest area. This could be an indication that this particular event has more impact on the tweet 

frequency of the study area than on the total harvest area. The event that is found to be probably responsible 

for the outlier in the tweet frequency trend is the MTV European Music Awards event that was held in a 

concert hall in Amsterdam. Because many world famous artists were present at the MTV awards, this event 

attracted many visitors that were actively using Twitter to share their experiences. It is therefore not 

surprising that this event has a very local impact, and could only be detected in the frequency trend of the 

study area of Amsterdam. For the study area, at least 10.2% of all geotagged tweets mentioned the MTV 

awards. For the harvest area this percentage was less: at least 5.2%. Thus, this particular event had not a big 

enough impact on the total harvest area in order to be identifiable.  

The first attempt to identify geographical events from geotagged tweets by using irregularity analysis, has 

shown that the method is suitable for finding local geo-socio events from the available Twitter data. Because 

zonal regularity was estimated for very broad areas, only relatively massive events that provoke hundreds of 

tweets could be identified. Interesting for further investigation is that events were found with a different 

geographical impact. Both events were found that could be identified from tweet frequency trends in both 

areas, as well as events that could only be found in one of the study area’s frequency trends.  
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4.6.4. Explorative zonal irregularity analysis setup for the study area around Amsterdam 

From the preceding section it became clear that massive events can be detected from geographic irregularity 

indications in the Twitter data. A next question is whether smaller events can be detected using geographic 

irregularity indicators as well. This is an important question for the thesis’ objectives as it is assumed that 

traffic incident-related events have much smaller dimensions than the events that are found in section 4.6.3. 

In the irregularity analysis of the preceding section geographic irregularities were only identified by comparing 

the daily tweet frequencies for the complete study area. In order to detect smaller scaled events, geographic 

irregularities should be identified in smaller geographic zones or time periods. In an attempt to find smaller 

scaled events in the study area, geographic regularity patterns are estimated based on the daily tweet 

frequencies in smaller zones.  

A zonal regularity analysis was performed, by taking the following steps in a GIS: 

1. Tweets were grouped by day of the year. Hence, a dataset containing all geotagged tweets was split 

into multiple point datasets that contained all geotagged tweets of only one day.  

2. Zones are defined by overlaying the study area with a grid, dividing the study area in equal grid cells 

of 5000 by 5000 meters. Each grid cell represents a zone for the zonal regularity analysis. 

3. By spatially joining the point data in each dataset to the overlapping grid cells, the tweet frequency 

was calculated for each grid cell and each day of the year. The tweet frequencies were stored in a 

frequency table where each row represents a grid cell, and each column the day of the year.  

4. Statistical regularities were calculated for each grid cell based on the clusters of tweets in these grid 

cells. The statistical regularities were expressed as the mean plus the standard deviation of the daily 

tweet frequencies.  

5. For all frequency values of each tweet cluster in the frequency table, the deviation of this frequency 

value from the regularity value of the according grid cells was calculated.  

6. High deviations from the regularity values were identified for specific tweet clusters. In case a tweet 

cluster showed a high deviation from the regularity value, it was checked whether the tweets in this 

cluster reveal the occurrence of an event or not.  

An important observation was done when checking the clusters of tweets that were identified by the zonal 

regularity analysis. It was found that many of the identified high geographic irregularities could not be 

explained by the occurrence of an event, but could be explained as the result of a single Twitter user that was 

sending tweets very frequently. In this context it is explained by Walther and Kaisser (2013) that the number 

of tweets is not a good indicator for the occurrence of an event, as they often found series of tweets from the 

same person, issued at the same location. According to Walther and Kaisser, these so called monologues do 

not describe real-world events. In the Twitter data collected for the study area around Amsterdam, these 

found monologues seldom describe a real-world event as well. Moreover because monologues are very 

disturbing for the event detection process, they can be seen as noise in the data.  

In order to improve performance of the geographic irregularity analysis, it is tried to avoid monologues in the 

regularity analyses. Monologues are removed from the data by deleting all tweets that are issued by the same 

person within the same day and grid cell, hence in the same tweet cluster. After monologues are deleted from 

the data, the geographic irregularity analysis was performed again. Clusters of tweets that showed deviations 

from the mean plus standard deviations of 150% or higher were checked whether they described real-world 

events or not. 

As a result of the geographic irregularity analysis, 25 events were identified (Table 8). Hence, from the 

analysis explained in this section it becomes clear that irregularity method is working, and different events 

can be detected from the spatial Twitter data in the study area. 
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Date Identified Event Description 

13-07-2013 A Day at the Park Dance music festival 

16-07-2013 / 

17-07-2013 

Meeting of Jongerenorganisatie 

Vrijheid en Democratie (JOVD) 
Meeting of political party 

24-08-2013 
Mysterland and Dekmantel 

festival 
Dance music festivals 

5-09-2013 HISWA te Water Boat show 

27-09-2013 UNSEEN Photography festival 

01-10-2013 Ajax – Milan UEFA Champions Leage soccer match 

15-10-2013 The Case - Amsterdam Marketing event 

16-10-2013 

/17-10-2013 
Amsterdam Dance Event (ADE) 

Dance music festival held at various venues in 

Amsterdam 

28-10-2013 Games for Health Europe Conference 

28-10-2013 Stormy weather 

During the storm event in Amsterdam, higher tweet 

activity could be found around train stations, for 

example train station Sloterdijk. 

29-10-2013 Jay-Z concert Concert in a large music venue 

29-10-2013 Ajax – ASWH Soccer match 

6-11-2013 Flora Holland Trade Fair Flower fair 

6-11-2013 Ajax – Celtic UEFA Champions Leage soccer match 

6-11-2013 SAP TechEd Technical conference 

7-11-2013 The National concert Concert in a large music venue 

8-11-2013 Adobe Digital Marketing Journey Technical conference 

10-11-2013 
MTV European Music Awards 

(EMA) 
Music event in large music venue 

19-11-2013 The Netherlands – Colombia UEFA World Championship qualification soccer match 

25-11-2013 DroidConNL Technical conference 

27-11-2013 
Accountantsdag / Week van de 

Ondernemer 
Accounting conference 

28-11-2013 FD Gazellenuitreiking Journalistic prize-giving ceremony 

29-11-2013 Kodaline concert Concert 

29-11-2013 De Nieuwe Wibaut-day Meeting of residents 

29-11-2013 DWDD University TV broadcast 

 
Table 8 Events identified in the area of Amsterdam using the geographic regularity analysis 
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4.7. Geographic regularity analysis around highways in the study area 

4.7.1. Motivation for sensitivity analysis 

The preceding section described that the geographic regularity analysis is a successful method to identify 

large geo-socio events from the available geotagged Twitter data around Amsterdam. It became clear that 

tweets that are sent near an event can be identified solely based on their spatio-temporal component. An 

important question remains unanswered however, which is whether this method is suitable for identification 

of small-scaled events as well. With respect to the research objectives of this thesis, it is necessary to identify 

tweets that are related to incidents or other events on or near roads. The dimensions of these events are 

most probably much smaller than the events that are detected in section 4.6.4, however many uncertainties 

exist about the impact of road incidents on Twitter data. It is unclear whether road incidents and other road 

events provoke clusters of tweets, and secondly, what the dimensions of these clusters are in space and time.  

In order to investigate the data on the presence of tweet clusters that are provoked by traffic-related events, 

geographic regularity analysis is applied to identify tweet clusters near roads. Because uncertainty exists 

about the spatio-temporal and quantitative dimensions of any possible traffic-related tweet cluster the 

geographic regularity analysis should be run various times with different variables. In order to compare the 

outputs of the different runs in a structured way, a sensitivity analysis is set up.  

4.7.2. Sensitivity analysis workflow design 
A sensitivity analysis is often used in GIS-based research to validate a model’s outputs and investigate the 

impact of the different input variables on the model’s output. In Saltelli (2008) a possible definition of 

sensitivity analysis is given: “The study of how uncertainty in the output of a model (numerical or otherwise) 

can be apportioned to different sources of uncertainty in the model input.” The sensitivity analysis that will be 

carried out in this thesis, has the purpose to increase the chance on finding traffic-related tweet clusters of 

any possible spatial, temporal or quantitative dimension. By means of a sensitivity analysis, the impact will get 

visible of the individual input variables on the output events that are found by the analysis.  If more insight is 

gained into the impact of the input variables, then a possible next step is trying to calibrate the model and its 

input variables on available incident registrations of Rijkswaterstaat. In this way, a relation can be identified 

between the intensity of tweets and events on or near roads.   

The sensitivity analysis is carried out by running multiple runs of a workflow for the geographic regularity 

analysis on Twitter data in the study area. For each run of the geographic regularity analysis, a single input 

variable is changed consistently in order to measure its impact on the analysis’ output results. On the 

complete setup of the sensitivity analysis setup will be elaborated more on in section 4.7.4. The current 

section will elaborate more on the design of the geographic regularity analysis workflow.  

In Figure 26 a flow chart overview of the geographic regularity analysis workflow can be seen. The flow chart 

items can be distinguished in three types: input variables, tools (python scripts or ArcGIS ModelBuilder 

models) and outputs. In order to refer to the flow chart items in the text below, each flow chart item is 

marked with a reference number/letter. 

The first step in the sensitivity analysis workflow is running the CreateZones model (I) and ClusterTweets 

script (II): 

Create zones 

The CreateZones model (Appendix 5) will create the zones for which geographic regularities will be estimated 

eventually. The zones are created based on the light-version of the Dutch National Road File (Figure 27). In 

this light-version of the Dutch National Road File, all Dutch primary and secondary highways are simplified 

and represented by a single line only in order to facilitate data linking between data and the Dutch National 

Road File (Rijkswaterstaat, 2014). Because roads are represented by a single line, this light-version of the 

Dutch National Road File was especially useful for creating zones for the geographic regularity analysis.  
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The working of the CreateZones model can be explained by two steps. In the first step, all lines in the input 

road file are split into segments of a specific length. This road segment length (1) in which the lines are split, 

is one of the input variables of the sensitivity analysis and must be specified before running the model. In a 

second step the CreateZones model creates buffers around all the split line segments. This buffer distance 

from roads (2) is the second input variable of the sensitivity analysis and must be specified before running the 

model as well.  

Figure 26 Flow chart overview of the geographic regularity analysis workflow 
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The output of the CreateZones model is an ArcGIS feature class with polygon features for each zone (Figure 

28). Each zone is a buffer that was created around all single split line segments of the Dutch National Road 

File in the final step of the createZones model. 

 

Cluster tweets 

The second type of input data that is required for running the CreateGeographicRegularities (III) script are 

clusters of tweets (B). These clusters are created by the ClusterTweets script (Appendix 6). The 

ClusterTweets script makes queries on the Twitter database, based on start and end dates/times that are 

read from an Excel file (3).  The Excel file should be created manually before running the script. Selections on 

the Twitter database, based on the Excel values are subsequently exported to separate feature classes. The 

output of the script is a database with separated feature classes which contain temporal clusters of tweets. If 

for example Tweets are clustered per day, then each feature class will contain al tweets that are sent during 

one day.   

Create geographic regularities 

The third step of the sensitivity analysis workflow is running the script CreateGeographicRegularities (III) 

(Appendix 7) which counts for each zone of the zones input feature class (A) the number of tweets of each 

Tweet cluster (B) that overlap the zone. In other words, the script counts the number of tweets that were 

sent within a specific zone, within a specific time frame. An example scenario of the working of the 

CreateGeographicRegularities script can be seen in Figure 29. For each zone, the number of tweets counted 

per time period are written to a table (C) in which each row represents a geographic zone, and each column 

represents a time period. The cells in the table thus represent the number of tweets that are counted for a 

specific zone for a specific time period.  

Figure 27 Original light-version of the Dutch 
National Road File, in the area of Amsterdam 

Figure 28 Zones created by using the CreateZones 
model, using 2000 m as variable for road segment 
length and 150 m as variable for buffer distance 

from roads. 
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Figure 29 Example scenario of the working of the CreateGeographicRegularities script. In the image left, a 
situation can be seen where tweets of different time periods are overlapping different zones. The table on 
the right is the result of the CreateGeographicRegularities script when doing calculations for the situation 

in the image on the left.  

 

Identify irregularities in table with geographic regularities  

After the CreateGeographicRegularities (III) finished running, the model’s output table can be used to define 

and find geographic irregularities. First the geographic regularity threshold value should be defined. This 

threshold value defines whether clusters of tweets should be detected as being a potential event or not. If the 

number of tweets in a specific cluster exceeds the threshold value, then this cluster is identified as being a 

potential event.  

Geographic regularity threshold values (GRTV) are calculated for each zone, based on the interquartile range 

in the distribution of tweet occurrences (Figure 25): 

(Formula 1)          (      ) 
where: 

   = first quartile 

   = third quartile 

  k = constant 

 

When the GRTVs are calculated for each zone, irregular tweet clusters can be identified in the table.  
  

Compare found irregularities with incident management loggings 

In order to value the performance of the different runs of the sensitivity analysis, the results are valued based 

on incident management loggings from Rijkswaterstaat. In a similar fashion as tweets are counted for each 

zone and time period, the occurrence of road incidents are counted for each zone and time period as well. For 

each detected event in the Twitter data, it is checked if a road event happened in the same zone and time 

period according to the incident management loggings. These checks give the following details for each 

sensitivity analysis run, which can be used as indicators for their performance: 

 The number and percentage of irregularities in the Twitter data, that match a road event 

 The number and percentage of irregularities in the Twitter data, that do not match a road event 

If more detected irregularities match road events occurrences in space and time, then this indicates a better 

performance of a sensitivity analysis run.  
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4.7.3. Differences and similarities compared with regularity analysis in literature 

The regularity analysis as it is applied in this thesis is based on the research of Lee et al. (2011). The main 

principle of detecting events from Tweets, based on their spatio-temporal characteristics, is adopted from the 

work of Lee et al. (2011) and other studies that were carried out following this work (Lee et al., 2013; 

Wakamiya et al., 2013).  

The studies of Lee and Wakamiya and this thesis, share a common research goal: detecting unusual regional 

social activities from Twitter (or different microblogs). Although the geographic regularity analysis is applied in 

this thesis following the work of Lee et al. (2011), there are some main difference in the way the geographic 

regularity analysis is implemented in this thesis and the study of Lee et al. (2011): 

 

 In the study of Lee et al. (2011), three different types of  indicators for crowd activity are used: 

o Degree of crowd activity based on Tweets, which is the number of tweets sent within a zone, 

within a specific period of time. 

o Degree of crowd activity based on crowd, which is the number of individual Twitter users 

found within a zone, within a specific period of time. 

o Degree of crowd activity based on moving crowd, which is the number of moving users 

related to a zone’s boundary within a specific period of time. For each time period and zone, 

the number of users that came into the zone or stayed within the zone were calculated. 

 

The use of above mentioned different crowd activity indicator types is especially useful if Twitter 

activity in relatively crowded areas are monitored. For the research goals of this thesis, it is 

considered sufficient to calculate only the degree of crowd activity based on tweets for each zone 

and period of time. Degree of crowd activity based on crowd, and based on moving crowd are not 

taken into consideration in the thesis’ analysis, because: 

o The zones that are monitored show a relative low Twitter activity compared to other area’s in 

the center of Amsterdam. Because of this lower Twitter activity, it is expected that the 

number of tweets and the number of Twitter users are very close to each other.  

o Because of the high number of monologues it is chosen to dissolve tweets within a zone 

based on individual Twitter users. This will improve detection performance of traffic-related 

events as it is assumed to be unlikely that a Twitter user will write more than 1 message 

about a traffic situation.  

o Degree of crowd based on moving crowd is not calculated because it is assumed that relevant 

tweets will be most often from traffic participants which are always moving Twitter users.  

 

 In order to determine an adequate zone size Lee et al. (2011) used a K-means clustering method 

which divided their study area into zones based on the geographical occurrences of their dataset. The 

center of each cluster was used to define a Voronoi diagram that divided the study area into “socio-

geographic boundaries”.  

 

The use of a K-means clustering method is not applied in the geographic regularity analysis of this 

thesis, because the focus lies on analyzing tweets that are sent near highways of secondary roads in 

the study area. This means that it is probably irrelevant to take the geographic distribution of all 

tweets into account when defining zones for the analysis. Moreover, it is considered unnecessary to 

cover the whole area with zones. Only zones that cover highways or secondary roads are meaningful 

to the analysis. Hence, in order to focus on the distribution of the tweets near highways and 

secondary road instead, zones are based on the geographic position of roads.  

 

Because it is aimed to find clusters of tweets near or on the roads, it isn’t very useful to cover the 

study areas with rasters in order to define zones (as described in section 4.6.4). In order to increase 
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chances on finding clusters on or near roads, it is presumed that it is better to base the zones on the 

geometry of the roads, instead of the geometry of rasters randomly positioned over the study area. 

Moreover it is expected that different tweets about the same road event could be sent with a 

relatively long distance (along the roads) from each other. For example it could be that two traffic 

participants are tweeting about the same traffic jam, however they are kilometers away from each 

other because one of the traffic participant is at the head of a traffic jam and the other traffic 

participant is at the traffic jam’s tail.  

Another reason to search tweet clusters in elongated shaped zones, is to decrease the presence of 

irrelevant tweets in the zones which disturb the geographic regularity estimation. The clusters that 

are aimed at to find, are expected to consist of only a few tweets. The more geographic regularity 

zones are deviating from roads, the more chance many tweets are taken into account during the 

geographic regularity estimation, lowering the chance that small cluster of tweets near the road can 

be identified.   

 In the study of Lee et al. (2011), geographic regularities are estimated based on time periods of six 

hours: morning (6AM – 12 AM), afternoon (12AM – 6 PM), evening (6PM – 12PM), night (12PM – 

6AM). 

For the geographic regularity analysis, the same time periods are applied as in the study of Lee et al. 

(2011). Next to these time periods of six hours, time periods of 12 hours and 24 hours are used as 

well. Because Twitter intensity is much lower for the geographic areas that are analyzed in this thesis 

compared to the areas that are analyzed by Lee et al. (2011), it is assumed that more adequate 

geographic regularities could be estimated for longer time periods.  
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4.7.4. Sensitivity analysis setup 

 

The geographic regularity analysis is performed in different runs, with different model variables set for each 

run. In this way the sensitivity analysis is shaped. The following model variables are manipulated each run: 

1. Area of zones 

A. Buffer distance from roads 

The buffer distance from roads, on which the width of the zones is based,  has impact on the number 

of tweets that are used to estimate geographic regularities. It is expected that if geographic 

regularities are estimated for zones with a wider area around the roads, more tweets are taken into 

account that are not relevant to the road incidents. It is expected that the more irrelevant tweets are 

taken into account during geographic regularity estimation, the more difficult it becomes to detect 

relevant road events. So the model’s performance to detect road incidents is likely to decrease with 

buffer distance. In order to test this assumption, different buffer distances are used to estimate 

geographic regularities: 50, 100, 150 and 200 meters.  

 

B. Segment length of roads 

The segment length of roads, on which the length of the zones is based, has impact on the number 

of tweets that are potentially related to a road incident. For example, it could be that a tweet about a 

road incident was sent after a car passenger traveled a few hundreds of meters away from the road 

incident. For this reason it could be that relevant tweets are missed when zones with a short length 

are used to estimate geographic regularities for. On the other hand it could be as well that noise 

increases due to the occurrence of irrelevant tweets. In order to test the impact of the segment 

length variable on the model’s performance to detect incident-related events, different segment 

lengths are used to estimate geographic regularities: 500, 1000, 1500, 2000 meters. 

 

2. Time interval of the tweet clusters 

The time interval for which geographic regularities are estimated has impact on the number of tweets 

that will be available for this estimation. Peaks of incident occurrences and tweet frequencies near 

roads in the study area take place between 8AM-10AM and 4PM-6PM. It would therefore be expected 

that it would be easier to detect road events based on geographic regularities estimated for these 

peak time periods instead of whole days. When estimating geographic regularities for whole days, it is 

likely that more irrelevant tweets are taken into account which will have a negative impact on the 

model’s performance. On the other hand however, if short time periods are chosen to estimate 

geographic regularities for, it could be the case that too few tweets are available to base geographic 

regularities on.  

As a baseline, geographic regularities are first estimated based on tweet frequencies for whole days. 

Thereafter, geographic regularities are estimated for time periods of 12 hours, and six hours.  

 

3. The geographic regularity threshold values definition 

Geographic regularity threshold values (GRTV) are calculated for each zone, based on the 

interquartile range in the distribution of tweet occurrences (see formula 1). The constant k has impact 

on the sensitivity of the geographic regularity threshold. If a low value is chosen for k, then there’s a 

higher chance on detecting road event occurrences, however the chance that these occurrences are 

relevant are lower than when a higher value for k is chosen. In order to test the impact of the 

constant k on the model’s performance to detect road events, different k values are used to estimate 

geographic regularities: K=1.5 K=2 and K=3. 
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Figure 31 Incident occurrences per hour on highways and secondary roads in the study area, 
counted on all available dates. Source: Rijkswaterstaat 

Figure 30 Tweet frequencies counted within 50 meters of highways and secondary roads in the 
study area counted on all available dates. 
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5. Results 

5.1.  Geographic regularity analysis results 

In this section the results of the different model runs of the entire sensitivity analysis are listed. In total the 

model is run 112 times, each run with different input variables specified (see section 4.7.4). The results of the 

model runs are expressed in two values: the number of events (in other words “irregularities”) that are 

detected in the run, and the percentage of detected events that co-occur with registered road events in the 

same spatio-temporal zone. 

The percentage that is estimated for each model run can be used as an indicator of the performance of the 

model run to detect road events. A percentage of 0 would mean that there’s no indication that any detected 

irregularity is related to any registered road event. A percentage of 100% would mean that there’s a very 

strong indication that detected irregularities are related to registered road events. In the next section (section 

5.2), the model runs that returned the highest percentages are evaluated. For these runs it is verified if the 

indication for a relation between detected and registered events is correct.   

For the first set of model runs, tweets grouped per day were used for estimating geographic regularities. In 

order to define the geographic regularity threshold value, a constant ‘k’ of 1.5 was used. Different buffer 

distances and road segment lengths were entered as input variables for each model run. The results of this 

first set of model runs can be found in Table 9. 

A second and third set of model runs were carried out in order to verify the impact of the constant ‘k’. All runs 

of the first set are repeated in the second and third set. Equal variables are used, except for the constant ‘k’ a 

value of 2 and 3 is used respectively in the second and third set of model runs. The results of the second and 

third set of model runs can be found in Table 10 and Table 11. 

Moreover, new sets of series of analysis runs were carried out in order to get insight into the impact of the 

temporal factor, the time period for which geographic regularities are estimated, on the model’s performance. 

In these subsequent series of runs, the geographic regularities are estimated based on tweets clustered per 

six hours. Tweets issued on separate days are further split into groups of tweets issued between 12AM – 6 

AM, 6AM – 12 PM, 12PM – 6PM and 6PM – 12PM and used as input-data in the model. The results of this   

four series of model runs can be found in Table 12, Table 13, Table 14 and Table 15.  

From the  tables that show results of model runs using tweets grouped per day, the following most important 

observations can be summarized: 

 Performance decreases with increasing “buffer distance from roads.” 

 Performance increases with increasing “road segment length.” 

 Performance decreases with increasing “constant k.”  

 
From the  tables that show results of model runs using tweets grouped per six hours, the following most 

important observations can be summarized: 

 Performance of runs that are based on mornings and afternoons is much better compared to runs 

that are based on nights and evenings. 

 The average performance of runs based on mornings and afternoons is comparable with runs based 

on days.  
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Table 9 - Results for the 1st set of model runs, using tweets grouped per day and a constant ‘k’ of 1.5. The 
numbers represent the number of events that are found in occurrence with a road incident for the same 
zone and time period. Between brackets the percentages are given of the total number of found events that 
co-occure with a road incident.   
 

  

k=1.5 Buffer distance from roads 

Road segment length 50 m 100 m 150 m  200 m 

500 m 161 (8.29%) 134 (6.49%) 121 (5.99%) 124 (6.15%) 

1000 m 97 (9.73%) 73 (8.18%) 63 (7.60%) 61 (7.32%) 

1500 m 78 (12.85%) 75 (13.00%) 62 (11.03%) 45 (10.34%) 

2000 m 55 (12.25%) 59 (12.94%) 45 (10.84%) 45 (12.50%) 

k=2 Buffer distance from roads 

Road segment length 50 m 100 m 150 m  200 m 

500 m 158 (8.27%) 127 (6.40%) 107 (5.69%) 107 (5.72%) 

1000 m 87 (9.34%) 59 (7.41%) 49 (6.92%) 43 (6.20%) 

1500 m 57 (10.71%) 40 (8.81%) 39 (8.71%) 23 (7.01%) 

2000 m 37 (9.92%) 39 (10.24%) 28 (8.24%) 29 (10.25%) 

Table 10 - Results for the 2nd set of model runs, using tweets grouped per day and a constant ‘k’ of 2. The 
numbers represent the number of events that are found in occurrence with a road incident for the same zone 
and time period. Between brackets the percentages are given of the total number of found events that co-
occure with a road incident.   

 

k=3 
Buffer distance from roads 

Road segment length 50 m 100 m 150 m  200 m 

500 m 135 (7.71%) 118 (6.38%) 103 (5.95%) 94 (5.67%) 

1000 m 77 (9.20%) 43 (6.22%) 33 (5.51%) 33 (5.92%) 

1500 m 45 (10.39%) 32 (7.69%) 29 (7,67%) 9 (3.42%) 

2000 m 26 (8.78%) 22 (6.69%) 21 (7.17%) 21 (10.05%) 

Table 11 - Results for the 3rd set of model runs, using tweets grouped per day and a constant ‘k’ of 3. The 
numbers represent the number of events that are found in occurrence with a road incident for the same zone and 
time period. Between brackets the percentages are given of the total number of found events that co-occure 
with a road incident.   
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Night (12AM-6AM) Buffer distance from roads 

Road segment length 50 m 100 m 150 m  200 m 

500 m 7 (2.4%) 11 (2.34%) 12 (1.87%) 15 (1,87%) 

1000 m 9 (3.2%) 15 (3.60%) 17 (3.09%) 18 (2.94%) 

1500 m 11 (2.64%) 22 (3.93%) 20 (3.82%) 23 (4.05%) 

2000 m 15 (5.66%) 20 (5.70%) 23 (5.6%) 22 (4.7%) 
Table 12 - Results for the 4th set of model runs, using tweets grouped per six hours and a constant ‘k’ of 2. 
The numbers represent the number of events that are found in occurrence with a road incident for the 
same zone and time period. Between brackets the percentages are given of the total number of found 
events that co-occure with a road incident.   

 

Morning (6AM-12PM) Buffer distance from roads 

Road segment length 50 m 100 m 150 m  200 m 

500 m 101 (10.5%) 120 (8,94%) 128 (8.3%) 133 (8.26%) 

1000 m 53 (6.16%) 49 (4.82%) 41 (4.31%) 34 (3.70%) 

1500 m 60 (8.34%) 59 (7.63%) 50 (6.67%) 37 (5.57%) 

2000 m 50 (9.01%) 52 (9.56%) 37 (6.95%) 23 (5.15%) 
Table 13 - Results for the 5th set of model runs, using tweets grouped per six hours and a constant ‘k’ of 2. 
The numbers represent the number of events that are found in occurrence with a road incident for the 
same zone and time period. Between brackets the percentages are given of the total number of found 
events that co-occure with a road incident.   

 

Afternoon (12PM- 
6PM) 

Buffer distance from roads 

Road segment length 50 m 100 m 150 m  200 m 

500 m 46 (3.79%) 55 (3.69%) 64 (3.81%) 58 (3.38%) 

1000 m 62 (6.60%) 59 (5.71%) 56 (5.66%) 54 (5.79%) 

1500 m 14 (15.91%) 12 (10.62%) 10 (7.41%) 43 (7.14%) 

2000 m 59 (10.97%) 53 (10.58%) 47 (10.59%) 41 (9.49%) 
Table 14 - Results for the 6th set of model runs, using tweets grouped per six hours and a constant ‘k’ of 2. 
The numbers represent the number of events that are found in occurrence with a road incident for the 
same zone and time period. Between brackets the percentages are given of the total number of found 
events that co-occure with a road incident. 

   

Evening (6PM- 12AM) Buffer distance from roads 

Road segment length 50 m 100 m 150 m  200 m 

500 m 21 (2,46%)  26 (2.24%) 35 (2.63%) 31 (2.25%) 

1000 m 39 (5.32%) 37 (4.31%) 39 (4.59%) 33 (4.15%) 

1500 m 40 (6.91%) 36 (5.40%) 28 (4.90%) 24 (4.15%) 

2000 m 37 (7.39%) 32 (6.10%) 24 (6.06%) 19 (5.31%) 
 
Table 15 - Results for the 7th set of model runs, using tweets grouped per six hours and a constant ‘k’ of 2. 
The numbers represent the number of events that are found in occurrence with a road incident for the 
same zone and time period. Between brackets the percentages are given of the total number of found 
events that co-occure with a road incident.   
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5.2. Evaluation of model runs with highest performance 

For each individual model run in the seven series of model runs listed in section 5.1, model performance is 

estimated by a percentage. This percentage represents the part of the total number of detected events that 

co-occur with a road incident in the same time period and geographic zone. It is for those runs with the 

highest percentage expected to have the highest chance on finding a relation between the detected events 

and the events that are registered by Rijkswaterstaat.  

In order to validate the performance of the most successful model runs, correlation statistics are used. In a 

similar way as done in section 4.5, the relation between issued tweets and past minutes after occurrences of 

incidents are valued. For model runs with a higher performance, it should be expected that a stronger relation 

exists between the tweet clusters that are detected in these runs as irregularities and the incidents that co-

occur in the same spatio-temporal zones. Although some runs have better performance values, this can 

always be the result of coincidental co-occurrence of many irregularities and road incidents. The high 

performance of a model run would therefore be more justified if a significant correlation could be found 

between co-occurring tweets and incidents which resulted in this high performance of the model.  

In order to make correlation calculations between the tweet clusters that are identified as irregularities, and 

the road incidents that co-occur in the same spatio-temporal zone, the following steps are taken: 

 Extract all tweets from the Twitter database within spatio-temporal zones that are marked as 

irregularities. 
 Extract all incidents from Rijkswaterstaats inicident loggings within spatio-temporal zones that are 

marked as irregularities. 

 Create tables that list for every minute of the studied period the tweet frequency and the time 

distance in minutes from an incident occurrence (see Table 6 on page 43).  

 Pearson’s correlations (Field, 2009) are calculated for the table attributes tweet frequency and time 
distance.  

 

For all 18 model runs listed in Table 16, Pearson’s correlations (Field, 2009) were calculated using SPSS 

software. For all model runs very weak negative correlations were found, of which all but two are significant 

at the 0.01 level. Compared to the results that were found for correlation calculations in section 4.5, the 

results in Table 16 are relatively better.  

Before results are interpreted, it should be considered that correlation statistics cannot give an indication 

about the direction of causality (Field, 2009). This means for this analysis that it cannot be concluded that (a 

small part of) road incidents cause more tweets to be issued around the location and time of these incident 

occurrences. In order to know if there’s a genuine relation between detected tweet clusters and road incident, 

tweets’ texts should be read and checked if they contain information related to the incidents. Because this is a 

time consuming task, it is decided to check only the tweets of detected irregularities in the model run with the 

highest correlation efficient. 

In Table 16 it can be seen that the highest correlation coefficient was found for the model run with rank 11. 

Because this model run has the strongest correlation between tweets in irregularity clusters and road 

incidents, it is assumed that the highest chance on finding relevant tweets is for irregularity clusters in this 

model run. The 4665 tweets that were part of irregularity clusters in this model run are manually sorted on 

relevancy. Each tweet’s text is checked if it described a road incident or the road condition. If the text was 

traffic-related, and a photo was attached to the tweet, then this photo was checked on any traffic or incident-

related information. Only 48 tweets of the total 4665 tweets could be related to the road traffic (Appendix 8). 

Photographs were sent as attachment with 10 of the 48 tweets.  

 

 



 

63 
 

 

 

 

 

 

 

  

rank performance 
of run (%) 

k road segment 
length (m) 

buffer 
distance (m) 

time-period  correlation 

1 15.91 2.0 1500 50 afternoon -.027 (0.01)** 

2 13.00 1.5 1500 100 day -.052 (0.01)** 

3 12.94 1.5 2000 100 day -.049 (0.01)** 

4 12.85 1.5 1500 150 day -.057 (0.01)** 

5 12.50 1.5 2000 200 day -.050 (0.01)** 

6 12.25 1.5 2000 50 day -.001 (.941) 

7 11.03 1.5 1500 150 day -.057 (0.01)** 

8 10.97 2.0 2000 50 afternoon -.034 (0.01)** 

9 10.84 1.5 2000 150 day -.059 (0.01)** 

10 10.71 2.0 1500 50 day -.041 (0.01)** 

11 10.59 2.0 2000 150 afternoon -.102 (0.01)** 

12 10.58 2.0 2000 100 afternoon -.049 (0,01)** 

13 10.50 2.0 500 50 morning -.006 (.116) 

14 10.39 3.0 1500 50 day -.041 (0.01)** 

15 10.34 1.5 1500 200 day -.065 (0.01)** 

16 10.25 2.0 2000 200 day -.050 (0,01)** 

17 10.24 2.0 2000 100 day -.049 (0,01)** 

18 10.05 3.0 2000 200 day -.050 (0,01)** 

Table 16 Rank list of 18 of the 112 model runs that scored best performances. The columns “k”, “road 
segment length (m)”, “buffer distance (m)” and “time period” list the input variables of each model run. 
The column “correlation” lists the correlation coefficient and its significance level in brackets that were 
calculated for each run (see page 62 for explanation).  
 
** correlation is significant at the 0.01 level (2-tailed) 
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6. Discussion 

In this chapter the results of analyses that are carried out in the methodology are evaluated and reflection is 

given upon the methodology. First the results are evaluated against the data quality criteria that are defined 

in section 4.1. In this way the potential value of Twitter as information source for incident management is 

discussed. Thereafter, the methodology of the research is evaluated. It is discussed how the design of the 

geographic regularity analysis, and the preprocessing of the input data could have affected the results and 

how the research could have been improved. Finally, there are some questions that remain unanswered in 

this thesis. It is explained why these questions are important to answer in further research. 

6.1. Evaluation of results against the data quality criteria 

Based on preliminary investigations and literature research a couple of use cases are defined in chapter 3 for 

which it was expected that Twitter as a potential source of (geo-)information could support different practices 

in the incident management process: 

 Incident report verification 

 Incident detection 

 Incident communication to road users 

 
In order to be a valuable information source for incident management, different criteria on the Twitter data 

quality are defined in section 4.1. It is now discussed whether the Twitter data could meet these criteria: 

 
(criterion 1) A tweet should hold sufficient indications or evidence about the location from which 

it was sent.  

 
It is discovered that a coordinate pair is probably the only evidence about the location of a tweet that is really 

useful for incident management. Information about incidents must be able to locate an incident scene with 

precision. If no coordinate pair would be available then geolocalizing tweets with enough precision would 

become a seemingly impossible task. In Appendix 8 it can be seen that twitter users most of the time don’t 

provide details about their location, and if they do, location details are too inaccurate to be useful. Sometimes 

Twitter users use the highway number and the driving direction in their tweets. In rare occasions Twitter 

users note the hectometer from the road signs at which they are at. Sometimes, pictures give an indication of 

the location of an incident but it would be impossible to use images in automation processes for localizing 

tweets.  

 
(criterion 2) Tweets should be sent within relevant time limits after an incident happened. 

 
Since there hasn’t been found tweets that could clearly be linked to incident occurrences it remains 

unanswered whether incident-related tweets are sent within relevant time limits after an incident happened or 

not. In section 4.5  a possible relation between incident occurrences and Twitter activity around roads is 

investigated using correlation calculations. From these calculations it should be concluded that no relation 

could be found between the time after an incident happened, and the tweets that are sent after this 

happening.   

 

(criterion 3/3B) Tweets should bring detailed information updates about the incident situation or 

road traffic conditions 

 
In section 5.2 all tweets of the best performing model run were investigated. Only 48 tweets of the total 4665 

tweets could be related to the road traffic (Appendix 8). The majority of these 48 tweets didn’t tell anything 

more than that a traffic jam was present. Regarding the tweets’ texts, only two tweets (from users with car 

troubles) gave some detailed information about a road event.  
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Photographs were sent as attachment with 10 of the 48 tweets. When investigating these photographs 

(Appendix 9) it becomes clear that most photos do not bring detailed information about an incident situation 

or about road conditions. Most photographs only show cars in a traffic jams which doesn’t bring any useful 

information. The only photograph that might be useful for incident management is a photo of a trailer with a 

flat tire (Appendix 9, image 2).  

 

(criterion 4) A spatio-temporal relation should exist between road traffic conditions and patterns 

in Twitter data traffic. 

 

Correlation calculations are done for the 18 best performing model runs of the sensitivity analysis. From the 

results of this calculations in Table 5 it was discovered that very weak negative correlations exists between 

co-occurring tweets from irregularities and incident events. The fact that nearly all correlation calculations are 

significant is an indication of a possible relation between the issued tweets around road incident events. 

Unfortunately the fact that all correlation coefficients are very small (near zero) is an indication that a relation 

between issued tweets around incident occurrences can only be found in a small part of the sample size. This 

would mean that based on the spatio-temporal characteristics of tweets, there’s a small chance that tweets 

can be found that are related to road incidents. Because these chances are so small however, it should be 

concluded that a useful spatio-temporal relation between Twitter data and registered incidents does exist. 

Twitter data does not meet criterion 4.  

6.2. Evaluation of impact of individual model input parameters 

From the tables of model runs’ results in chapter 5, it can be observed that each model input parameter has a 

different impact on the models outcome. 

 
The shape of geographic zones (road segment length and buffer distance) 

A particular trend can be observed for changes in the model’s input variable “road segment length”. For the 

majority of model runs, performance increases when road segment length is increased and other input 

parameters are held equal. This trend could have different explanations. One explanation could be that 

relevant tweet clusters around incidents can be found over long distances, however this explanation is very 

hard to demonstrate since so few relevant tweet clusters are found. Maybe a more obvious explanation is that 

performance increases because irregularities are calculated for bigger zones when longer road segment 

lengths are used. In bigger zones, there’s a higher chance on finding an irregularity cluster that co-occurs 

with a road incident, hence there’s a higher chance on getting a better performance of the model run. 

The results showed that input parameter “road segment length” has a relatively high impact on the model’s 

performance. It is doubtful however whether it is justified to conclude that using longer road segment lengths 

as input parameter really improves the performance of the model in the sense that more irregularities are 

found that are relevant to road incidents. Moreover it should certainly be taken into consideration that events 

detected in long zones provide less detailed information about the location of a possible event than when this 

same event was detected in a small zone. It is therefore that a better performance of a model run’s result not 

necessarily means that this is a more useful result.  

For the variable “buffer distance” a less clear and consistent trend can be observed compared to the variable 

“road segment length”, though it can be seen that there’s a general trend that an increasing buffer distance 

has a negative impact on the model’s performance. This trend is expected because it is assumed that tweets 

issued further away from roads are less relevant to road events. In order to reduce noise in the input data 

and to increase chance on finding relevant tweet clusters, it is better to keep the zones that are used for 

irregularity calculations as small as possible around roads.  

There’s no doubt that the geometry of the input zones has impact on the success of the regularity analysis.  

This is for example also the reason that in other studies an ideal geometry of the zones is determined by 
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using an analytical approach. In Lee et al. (2011) for example, a K-means clustering method is applied to 

estimate zones more convenient for analysis. This method is not applied in this thesis, as it became clear that 

it wouldn’t be useful to take all tweets into account for analysis. Only tweets issued near roads are analyzed 

by manually creating zones around roads.   

Time period of tweet clusters 

The choice of time period for which geographic regularities are estimated seems to have a relatively high 

impact on the model’s performance. Interesting differences can be observed when comparing the mean of 

the performance values of the model runs that are done using tweets grouped by six hours (Tables on page 

61)  with the runs that are done with the same input variables but using tweets grouped by days (Table 10):  

 

Input variable “Time period of tweet clusters” Average performance value (%) 

Days 8.12 

Night 3.59 

Morning 7.12 

Afternoon 7.56 

Evening 4.64 

   
The difference between the average performance values of model runs for morning, afternoon and day 

periods is relatively low, whereas the difference between the average performance values of model runs for 

night, evening and day periods is relatively high. This observation can be expected since most incidents take 

place during mornings and afternoons (Figure 31), which increases the potential performance of the model 

runs that are done for these periods.  

An important observation is that it seems that there’s not much performance to gain by running models that 

estimate geographic regularities for shorter time periods. From the total number of 112 model runs, 18 runs 

resulted in a percentage of 10% or higher. It is remarkable that although more runs were based on time 

periods of six hours, a majority (72%) of the 18 best scoring events are based on time periods of 24 hours 

(Table 16). This is not what was expected on forehand. It was assumed that more relevant tweet clusters 

would be found when doing model runs for shorter time periods. For example, when doing irregularity 

estimations for whole days, tweets in found irregularities can be issued both in the morning as in the evening. 

If one tweet is issued in the morning and another tweet is issued in the evening, they both cannot be about 

the same road event although they may be in the same irregularity cluster. By doing irregularity estimations 

for shorter time periods like six hours, there´s less chance that noisy data (like irrelevant tweets sent a few 

hours after an incident) are taken into account during event detection. Maybe time ranges of six hours are 

still too wide to see clear improvements in the model’s performance.  

Although it was expected that estimating geographic regularities on sorter time periods would bring better 

performance results, it was no option to do analysis runs for time periods shorter than six hours. When 

estimating geographic regularities for time periods shorter than six hours, too few tweets are available for 

each run to base proper irregularity estimations on. For the majority of model runs that are done for time 

period of six hours the geographic regularity threshold values of the geographic zones (GRTV, see page 54) 

was ‘0’. If the GRTV is 0, then each issued tweet in this zone is automatically detected as irregularity. Of 

course, chances are very low that in those situations relevant events are found.   

Constant K 
For the constant ‘k’ a trend can be recognized that performance of runs decreases when K is higher. The 

impact of K is relatively low. For instance, an increase of K from 1.5 to 2 (33%) results in a mean decrease of 

the model’s performance with 14.7%. An increase of K from 2 to 3 (50%) results in a mean performance 

decrease of 12%. The constant K is only useful to tweak the model’s performance if next to relevant events 
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too many irrelevant events are found. Since, there are so few relevant events found, it seems premature to 

use the constant K for performance improvement in the analyses in this thesis.  

 

6.3.  Discussion about methodology 

It may be hard to conclude on the usefulness of Twitter as a valuable information source for incident 

management if only a very small part of the Twitter source is used. The analyses that are performed in this 

thesis only make use of tweets that contain a coordinate pair in their metadata. As this is only a very small 

percentage of the total number of tweets (approximately 1% according to Schulz et al., 2013), conclusions in 

this thesis are only well-grounded for this small part of the data.  

There is a possibility that the analyses in this thesis could have been improved if, next to the ‘geographic 

tweets’, tweets were also included that do not contain geographic coordinates. However, this would ask for 

complex analyses. According to Schulz et al. (2013), geolocalizing tweets is a difficult task which requires 

natural language processing to find spatial indicators for the tweets in tweets’ texts. Aside from the 

complexity it is doubtful whether geolocalizing tweets would bring additional geotagged tweets with enough 

spatial detail. For instance, Schulz et al. (2013) were able to correctly localize 92% of the data within a 30 

kilometer radius, a scale much too large to be of any use for incident management purposes. In Daly et al. 

(2013) however, much better geotagging results were found. In their attempt to geotag tweets in the city of 

Dublin, 100% of the successfully geotagged tweets were right about the location within an error range of 2 

kilometers. At least 50% of the successfully geotagged tweets were right about the location within an error 

range of 500 meters. It would be interesting to know if similar error ranges could be achieved when traffic-

related tweets in the study area of Amsterdam are geotagged.  

To the best of our knowledge, detection of small-scale events using zonal regularity analysis hasn’t been 

attempted prior to the present study. From the results of this thesis, it appears that the quantity of available 

data is the biggest shortcoming for detecting relevant small-scale events from the Twitter data using the 

zonal regularity analysis. As discussed earlier, running the sensitivity analysis for relatively small spatio-

temporal zones often resulted in a GRTV of ‘0’ because most of the times no tweets are counted for these 

small zones. In these cases where the GRTV for a zone is ‘0’ because of a lack of sufficient available tweets, 

each single tweet that is issued in this zone is automatically detected as an event. It would perhaps be more 

efficient to use the point clustering technique, which is used in Sugitani et al. (2013) and Walther and Kaisser 

(2013), for these situations where there is so little Twitter activity. By using a point clustering technique, 

single tweets can never be identified as relevant events. An important drawback of this technique however, is 

that clusters are detected within a certain radius from each other. From the results of this thesis, it has been 

observed that clusters can better be detected within long zones around roads, instead of detecting clusters 

within a certain radius in order to reduce noise.  

The sensitivity analysis that was carried out in this study was applied on the study area of Amsterdam. It was 

expected that in this area the highest chance existed that incident-related tweets would be found, because of 

the high Twitter activity and incident occurrences in this area. Within the scope of this thesis, the zonal 

regularity analysis is not applied on a different study area with different characteristics for Twitter activity and 

incident occurrences. It would have been interesting to apply the zonal regularity analysis on highways 

outside urban areas. Maybe around roads in a rural area there’s less Twitter activity and fewer road incidents 

take place, though it could be that model runs for highways in rural areas would perform better because for 

example due to a lower impact of data noise. The question how useful Twitter could be as an information 

source for incident management on highways and secondary roads outside urban areas remains unanswered.   

Another point of reflection is about the way performance is measured for all model runs in the sensitivity 

analysis. In order to measure performance of the model run, incident registrations of Rijkswaterstaat are used 
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to validate the potential relevancy of a found irregularity. If an irregularity was found in co-occurrence with a 

registered incident, then this irregularity contributed to the performance of the model run. If a irregularity did 

not co-occur with a registered incident it did not contribute to the model run performance. It would be 

interesting to use different data sources than the incident registrations to measure performance. For example, 

inductive loop detector loggings from Rijkswaterstaat could be used as well to find a relation between Twitter 

activity and detected events on highways. To give another example, it would also be interesting to investigate 

a possible relation between identified irregularities in Twitter and registrations in the P2000 network (e.g. in 

Stronkman (2011), P2000 registrations and tweets are used to detect events). In P2000 registrations 

incidents are also registered if they are not located on highways or secondary roads. Using P2000 

registrations for validation of model runs, it would also be possible to measure performance of geographic 

regularity analyses that are carried out for zones that cover streets instead of highways.  

A final important point to reflect upon regarding the methodology that is used, is the way noise elimination is 

applied in the geographic irregularity analysis. Noise elimination is an important part of the methodology in 

related studies (Abel et al., 2012a; Schulz et al., 2012; Sugitani et al., 2013). By filtering out tweets from the 

input data that are irrelevant in any case, performance of event detection can often be improved. For 

example, tweets are removed that are posted by ‘bots’ or that are retweeted. The only noise elimination 

measure that is taken in the geographic irregularity analysis of this thesis is the removal of tweets with 

identical user ids that are found in the same zone for the same time period (24 or 6 hours). It is assumed that 

Twitter users generally do not issue more than one tweet about an incident situation. Whether this measure 

really had a positive effect on the model’s performance is a question that is not answered in this thesis. It 

could have been interesting as well to apply more noise elimination measures and investigate what the impact 

is on the model’s performance. In this exploratory study however, harsh noise elimination measures were 

avoided because it was no so clear which type of tweets could be removed without negative consequences for 

the model’s performance.  
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7. Conclusion and recommendations  

The main research objective of this thesis was to investigate how useful Twitter data is as a source of spatio-

temporal information for incident management in the Netherlands. It was expected that Twitter could be a 

valuable source of information for three types of incident management practices: incident report verification, 

incident detection and incident communication to road users. It should be concluded from the evaluation of 

results and the discussion however, that geotagged tweets in Twitter data cannot contribute as a useful 

information source for any of these three incident management practices in the area around Amsterdam.  

The most important shortcoming of Twitter data for use in geographical analysis in general is that only a very 

limited number of tweets can be geolocated by a coordinate pair that is available in the metadata of the 

tweets. As a consequence it is difficult to detect small-scale events in the large amounts of data that are 

generated through Twitter every day. Real-world events that are successfully identified in this thesis using 

spatio-temporal analysis are detected from massive and temporary crowds at festivals, fairs, concerts or sport 

events. Without sophisticated noise filtering, machine learning or language processing, it seems challenging to 

detect small-scale events with analysis that is solely based on the spatio-temporal characteristics of tweets. 

The geographic regularity analysis designed by Lee et al. (2011) is a practical design of spatio-temporal 

analysis that can be used for event detection in Twitter data, although it seems that this analysis can only be 

applied on large geographic zones. When the regularity analysis is applied on small geographic zones around 

highways, as done in this thesis, no useful results are found. Many tweet clusters are detected as irregular 

Twitter traffic, but when taking a closer look at these tweets they do not seem coherent and they cannot be 

linked to real-world events most of the times. This is also the case when searching for traffic-related events. 

Only a small part of the tweets that are sent on or near highways and secondary roads are actually about 

traffic conditions or incident events. Moreover, only a small part of the traffic-related tweets hold detailed 

information in the form of descriptive texts or images. 

In order to be able to contribute to the incident management practices, information in tweets should meet 

hard criteria on information quality.  It is shown that only a negligible minority of the traffic-related tweets 

meet these criteria in order to be valuable for incident management. Next to these findings, correlation 

calculations showed that there’s no valuable relation between incident occurrences and Twitter activity near 

roads. Altogether, chances are thus low that events on highways and secondary roads will trigger tweets to 

be issued which can be geolocated accurately and provide relevant information about these events. For this 

reason relevant tweets are hard to detect by using spatio-temporal analysis.  

Since this thesis only focused on events on highways and secondary roads, it is interesting to continue the 

search for applications that can benefit from information in geotagged Twitter data. This suggestion for 

further research is confirmed by many examples of useful applications of Twitter data described in the 

literature background of this thesis. For further research on small-scale event detection using spatio-temporal 

analytical approaches, it would be most challenging to deal with the small number of geotagged tweets that 

are available in the total Twitter stream.  

An unanswered question remains how much potentially useful geographic information is hidden in the non-

geotagged tweets. For the use cases of incident management, but certainly for other applications as well, 

information in tweets is useless if these tweets cannot be positioned accurately on a map. From literature it 

can be concluded that geotagging of tweets without coordinate-pairs is still a complex task and the accuracy 

of the estimated tweet locations is often limited. Especially for detecting small-scale events like traffic 

incidents the low availability of geotagged tweets is an obstacle.  
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Appendix 1: List of abbreviations 

 

ANWB  Algemene Nederlandsche Wielrijders-Bond 
API  Application programming Interface  

DRIP  Dynamisch Route Informatie Paneel 

GIMA  Geographical Information Management and Application 

GIS  Geographic Information System 

GPS  Global Positioning System 
JMA  Japan Meteorological Agency 

JSON  JavaScript Object Notation 
NNCI  NNCI 

REST  Representational state transfer 

RWS  Rijkswaterstaat 
SMART  Specific, Measurable, Assignable, Realistic, Tme -related 

TSNC  Truck Salvage Notofication Centre 

VCNL  Verkeers Centrale Nederland 
VID   Verkeersinformatiedienst 

WGS   World Geodetic System  
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Appendix 2: tweet responded by the streaming API in JSON format 

{ 

"retweeted": false, 

"entities": { 

 "hashtags": [{ 

  "text": "trafficjam", 

  "indices": [90, 101]}], 

 "urls": [], 

 "symbols": [], 

 "user_mentions": []}, 

"favorited": false, 

"source": "<a href=\"http://twitter.com/download/iphone\" rel=\"nofollow\">Twitter for iPhone</a>", 

"retweet_count": 0, 

"coordinates": { 

 "coordinates": [5.57270923, 51.30295885], 

 "type": "Point"}, 

"created_at": "Fri Jun 21 12:24:29 +0000 2013", 

"in_reply_to_status_id": null,  

"in_reply_to_user_id_str": null,  

"id": 348053808376594433,  

"text": "Dorpskern afgesloten ivm kermis, schrikbarend wat een verkeer er overdag door zurrik komt 

#trafficjam",  

"favorite_count": 0,  

"lang": "nl",  

"in_reply_to_user_id": null,  

"filter_level": "medium",  

"geo": { 

 "coordinates": [51.30295885, 5.57270923],  

 "type": "Point"},  

"user": { 

 "follow_request_sent": null,  

 "notifications": null,  

 "profile_use_background_image": true,  

 "default_profile": true,  

 "description": null,  

 "favourites_count": 0,  

 "contributors_enabled": false,  

 "is_translator": false,  

 "name": "Rob van Hooff",  

 "verified": false,  

 "created_at": "Fri Oct 15 08:41:32 +0000 2010",  

 "protected": false,  

 "profile_link_color": "0084B4",  

 "profile_background_color": "C0DEED",  

 "id": 202993807,  

 "statuses_count": 646,  

 "profile_background_image_url": "http://a0.twimg.com/images/themes/theme1/bg.png",  

 "friends_count": 136,  

 "default_profile_image": false,  

 "followers_count": 93,  

 "profile_sidebar_border_color": "C0DEED",  

 "location": "Soerendonk, Netherlands",  

 "profile_background_image_url_https": "https://si0.twimg.com/images/themes/theme1/bg.png",  

 "profile_text_color": "333333",  

 "profile_image_url_https": 

"https://si0.twimg.com/profile_images/2926590221/872e67deb87171037c26a9a0800847e1_normal.jpeg",  

 "url": null,  

 "lang": "en",  

 "profile_image_url": 

"http://a0.twimg.com/profile_images/2926590221/872e67deb87171037c26a9a0800847e1_normal.jpeg",  

 "time_zone": "Amsterdam",  

 "following": null,  

 "profile_background_tile": false,  

 "screen_name": "RobvanHooff",  

 "id_str": "202993807",  
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 "profile_sidebar_fill_color": "DDEEF6",  

 "listed_count": 1,  

 "utc_offset": 3600,  

 "geo_enabled": true}, 

"in_reply_to_status_id_str": null,  

"place": { 

 "attributes": {}, 

 "full_name": "Cranendonck, North Brabant",  

 "place_type": "city",  

 "id": "71458c401c6d4b4a",  

 "bounding_box": { 

"coordinates": [[[5.5156653, 51.2209132], [5.5156653, 51.3542543], [5.6722413, 

51.3542543], [5.6722413, 51.2209132]]],  

  "type": "Polygon"},  

 "country": "The Netherlands",  

 "url": "http://api.twitter.com/1/geo/id/71458c401c6d4b4a.json",  

 "name": "Cranendonck",  

 "country_code": "NL"},  

"id_str": "348053808376594433",  

"in_reply_to_screen_name": null,  

"truncated": false,  

"contributors": null 

} 
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Appendix 3: Python script for gathering data from Twitter’s streaming API 

 
# twitstreamer.py 

# Copyright (C) 2012 Niall McCarroll 

 

from urllib.parse import quote 

import time 

import json 

import select 

import datetime 

import time 

import os 

from os.path import exists 

import sys 

import argparse 

import logging 

import random 

import hashlib 

import hmac 

from hashlib import sha1 

import base64 

import csv 

 

from http.client import HTTPSConnection 

 

# you must fill in the following values before you can run this script! 

consumer_key = "" 

consumer_secret = "" 

 

access_token = "" 

access_secret = "" 

 

# formatter class for storing tweets as CSV rows 

class csvformatter(object): 

 

    csv.register_dialect('quotedcsv', delimiter=',', quoting=csv.QUOTE_ALL) 

 

    def __init__(self,columns,write_header): 

        self.columns = columns 

        self.writer = None 

        self.writer = csv.writer(sys.stdout,dialect="quotedcsv") 

        if write_header: 

            self.writer.writerow([col[0] for col in self.columns]) 

 

    def write(self,raw,obj): 

        row = [] 

        for (col,decoder) in self.columns: 

            if col in obj: 

                row.append(obj[col]) 

            else: 

                row.append("") 

        self.writer.writerow(row) 

         

   

# formatter class for storing tweets as JSON objects 

class jsonformatter(object): 

 

    def __init__(self): 

        self.file = sys.stdout 

 

    def write(self,raw,obj): 

        s = json.dumps(obj) 

        self.file.write(s+"\n") 

 

# formatter class for storing tweets as raw JSON objects 

class rawformatter(object): 

 

    def __init__(self): 

        self.file = sys.stdout 

 

    def write(self,raw,obj): 

        s = json.dumps(raw) 

        self.file.write(s+"\n") 

 

 

# utility class for streaming tweets from the twitter API 
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class twitstream(object): 

 

    def __init__(self,options): 

        self.options = options 

        self.track = options.track 

        self.locations = options.locations 

        self.count = 0 

        self.checkpoint_count = 0 

        self.start_time = 0 

        self.checkpoint_time = 0 

 

        def date_decoder(s): 

            return time.strftime('%Y-%m-%d %H:%M:%S', time.strptime(s,'%a %b %d %H:%M:%S +0000 %Y')) 

 

        def geo_decoder(g,index): 

            try: 

                return str(g["geo"]["coordinates"][index]) 

            except: 

                return "" 

 

        # define which columns to create from each tweet object  

        # as a list of column name, extractor-function pairs 

        # an extractor function extracts the value of the column from 

        # the tweet object 

        # if extractor-function is set to None, the column name  

        # is used as the lookup key in the tweet object 

        self.columns = [("id",None),  

                ("created_at",lambda x: date_decoder(x["created_at"])),  

                ("geo_lat",lambda x: geo_decoder(x,0)),  

                ("geo_lon",lambda x: geo_decoder(x,1)),  

                ("from_user_name",lambda x:x["user"]["name"]),  

                ("from_user_screen_name",lambda x:x["user"]["screen_name"]),  

                ("iso_language_code",lambda x: x["user"]["lang"]),  

                ("text",None)] 

 

        self.formatter = self.createFormatter(self.columns) 

 

    # create and return a formatter object 

    def createFormatter(self,columns): 

        if self.options.format == "json": 

            return jsonformatter() 

        elif self.options.format == "raw": 

            return rawformatter() 

        elif self.options.format == "csv": 

            return csvformatter(columns,True) 

        else: 

            return csvformatter(columns,False) 

 

    # generate a nonce used in the OAuth process 

    def generate_nonce(self): 

        random_number = ''.join(str(random.randint(0, 9)) for i in range(40)) 

        m = hashlib.md5((str(time.time()) + str(random_number)).encode()) 

        return m.hexdigest() 

 

    # generate an OAuth Authorization header to add to each request 

    # see https://dev.twitter.com/docs/auth/authorizing-request 

    def generate_authorization_header(self,method,url,query_parameters): 

        nonce = self.generate_nonce() 

        s = "" 

        params = {} 

        for key in query_parameters.keys(): 

            params[key] = query_parameters[key] 

         

        params["oauth_nonce"] = nonce 

        params["oauth_consumer_key"] = consumer_key 

        params["oauth_token"] = access_token 

        params["oauth_signature_method"] = "HMAC-SHA1" 

        params["oauth_version"] = "1.0" 

        params["oauth_timestamp"] = str(int(time.time())) 

 

        sortkeys = [k for k in params.keys()] 

        sortkeys.sort() 

        for k in sortkeys: 

            if s != "": 

                s += "&" 

            s += quote(k,'') 

            s += '=' 
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            s += quote(params[k],'') 

 

        base_string = quote(method,'')+"&"+quote(url,'')+"&"+quote(s,'') 

      

        signing_key = consumer_secret+"&"+access_secret 

 

        tok = 

base64.standard_b64encode(hmac.new(signing_key.encode(),base_string.encode(),sha1).digest()).decode('

ascii') 

        

        params["oauth_signature"] = tok 

 

        auth_header = "OAuth " 

        auth_keys = [k for k in params.keys()] 

        auth_keys.sort() 

        first = True 

        for k in auth_keys:             

            if k.startswith("oauth"): 

                if not first: 

                    auth_header += ", " 

                auth_header += k 

                auth_header += '="' 

                auth_header += quote(params[k]) 

                auth_header += '"' 

                first = False 

        return auth_header 

        

    def sample(self): 

        url = "https://stream.twitter.com/1.1/statuses/sample.json" 

        query = {} 

        self.start_time = int(time.time()) 

        while True: 

            try: 

                auth_header = self.generate_authorization_header("GET",url,query) 

                conn = HTTPSConnection("stream.twitter.com") 

                logging.getLogger("twitstream").debug("calling: 

https://stream.twitter.com/1.1/statuses/sample.json") 

                conn.request("GET","/1.1/statuses/sample.json",None,{'User-

agent':'Mozilla/5.0','Authorization':auth_header}) 

                self.stream(conn) 

            except Exception as ex: 

                logging.getLogger("twitstream").error(str(ex))    

 

    def filter(self): 

        url = "https://stream.twitter.com/1.1/statuses/filter.json" 

        query = {} 

        querystring ="" 

        if self.track: 

            query["track"] = self.track 

            querystring += "track="+quote(self.track) 

 

        if self.locations: 

            query["locations"] = self.locations 

            if querystring: 

                querystring += "&" 

            querystring += "locations="+quote(self.locations) 

                   

        self.start_time = int(time.time()) 

        running = True 

        while running: 

            try: 

                auth_header = self.generate_authorization_header("POST",url,query) 

                logging.getLogger("twitstream").debug("calling: 

https://stream.twitter.com/1.1/statuses/filter.json?"+querystring) 

                conn = HTTPSConnection("stream.twitter.com") 

                conn.request("POST","/1.1/statuses/filter.json?"+querystring,"",{'User-

agent':'Mozilla/5.0','Authorization':auth_header}) 

                running = self.stream(conn) 

            except Exception as ex: 

                logging.getLogger("twitstream").error(str(ex)) 

 

    def stream(self,conn): 

        resp = conn.getresponse() 

        data = bytes() 

         

        while True: 

            ready = select.select([conn.sock],[],[],90.0)[0] 
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            if not ready: 

                # twitter api is designed to send a dummy message every 30 seconds 

                # but we have not recieved anything in 90 seconds, timeout reading and restart the 

connection 

                logging.getLogger("twitstream").error("timeout - retrying connection") 

                return True 

            newdata = resp.read(65536) 

            data += newdata 

            pos = data.find(b'\r\n') 

            while pos > -1: 

                line = data[:pos] 

                data = data[pos+2:] 

                if line: 

                    try: 

                        j = line.decode("utf-8") 

                        status = json.loads(j) 

                        if "text" not in status: 

                            if "delete" not in status: 

                                logging.getLogger("twitstream").info("not a 

status?:"+json.dumps(status)) 

                        else: 

                            self.write(status) 

                        if options.maxtweets and self.count > options.maxtweets: 

                            logging.getLogger("twitstream").info("collected 

"+str(options.maxtweets)+",terminating") 

                            return False 

                    except Exception as ex: 

                        logging.getLogger("twitstream").error(str(ex)) 

                pos = data.find(b'\r\n') 

                 

 

    # call the twitter search API to fetch tweets matching search term 

    def start(self): 

        if self.track or self.locations: 

            self.filter() 

        else: 

            self.sample() 

 

 

    def write(self,r):       

        obj = {}   

        for (col,decoder) in self.columns: 

            try: 

                if decoder: 

                    obj[col] = decoder(r) 

                elif col in r: 

                    obj[col] = str(r[col]) 

            except: 

                obj[col] = None     

        self.formatter.write(r,obj) 

        self.count += 1     

 

        if self.options.interval: 

            t = int(time.time()) 

            if self.checkpoint_time == 0: 

                self.checkpoint_time = t 

 

            lastinterval = (t - self.checkpoint_time) 

            interval = (t - self.start_time) 

            if lastinterval > self.options.interval: 

                rate = self.count / interval 

                recentcount = self.count - self.checkpoint_count 

                lastrate = recentcount / lastinterval      

                self.checkpoint_time =  t 

                self.checkpoint_count = self.count 

                logging.getLogger("twitstream").info("recent: %d records in %d secs (%.2f records per 

second).  overall: %d records in %d secs (%.2f records per 

second)."%(recentcount,lastinterval,lastrate,self.count,interval,rate))  

         

if __name__ == '__main__': 

 

    if consumer_key == "" or consumer_secret == "" or access_token == "" or access_secret == "": 

        print("Error - please define the variables consumer_key,consumer_secret,access_token and 

access_secret at the start of this program") 

        sys.exit(-1) 
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    parser = argparse.ArgumentParser(description="stream tweets from the twitter streaming APIs", 

usage="python3 twitstreamer.py") 

   

    parser.add_argument('-t', "--track", dest='track', type=str, help='track option to filter tweets, 

for example to recieve whiskey related treets, -t=whiskey for more information see 

https://dev.twitter.com/docs/streaming-apis/parameters#track') 

    parser.add_argument("-v","--verbose",dest="verbose",action="store_true",help="display verbose 

messages") 

    parser.add_argument("-i","--interval",dest="interval",type=int,default=300,help="define number of 

seconds interval for reporting statistics") 

    parser.add_argument("-l","--locations",dest="locations",type=str,help="supply location filter in 

form of a bounding box lon_sw,lat_sw,lon_ne,lat_ne (example for London: -l=-

0.563000,51.280430,0.278970,51.683979 for more information see 

https://dev.twitter.com/docs/streaming-apis/parameters#locations",default="") 

    parser.add_argument("-f","--format",dest="format",type=str,help="supply format as json or 

csv",choices=["csv","csv_noheader", "json", "raw"], default="csv") 

    parser.add_argument("-m","--max",dest="maxtweets",type=int,help="limit the number of tweets 

retrieved to the specified number") 

     

     

    options = parser.parse_args() 

     

    if options.verbose: 

        logging.getLogger("twitstream").setLevel(level=logging.DEBUG) 

    else: 

        logging.getLogger("twitstream").setLevel(level=logging.INFO) 

     

    handler = logging.StreamHandler(sys.stderr) 

    handler.setFormatter(logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")) 

    logging.getLogger("twitstream").addHandler(handler) 

    tw = twitstream(options) 

    tw.start() 
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Appendix 5: CreateZones model 
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Appendix 6: ClusterTweets.py 

#------------------------------------------------------------------------------- 

# Name:        GroupTweetsTemporal 

# Purpose:     Group tweets based on their date/time 

# 

# Author:      Roeland Steur 

# 

# Created:     17-5-2014 

# Copyright:   (c) Roeland Steur 2014 

#------------------------------------------------------------------------------- 

 

import arcpy, os, xlrd 

# Set workspace and local variables 

# The following lines need to be adjusted manually: 

# 

ws = arcpy.env.workspace = r"D:\Twitter\gdb\ANALYSIS\19_GroupTweetsTemporal\tweet_fc.gdb" 

xls = r"D:\Twitter\gdb\ANALYSIS\19_GroupTweetsTemporal\input_where_clause_3.xlsx" 

input_Twitter_feature_class = "day_192" 

output_database = r"D:\Twitter\gdb\ANALYSIS\19_GroupTweetsTemporal\output.gdb" 

# 

print "The script will group the tweets in feature class '{0}' into temporal groups based on the 

inputs in file '{1}'.".format(input_Twitter_feature_class, xls) 

x = raw_input("Check settings in the printed statement and press enter to continue.") 

# 

arcpy.env.overwriteOutput = True 

# Create a list of all values that are in the Excel file 

# 

inplist = [] 

# 

workbook = xlrd.open_workbook(xls) 

worksheet = workbook.sheet_by_index(0) 

num_rows = worksheet.nrows - 1 

num_cells = worksheet.ncols - 1 

curr_row = -1 

while curr_row < num_rows: 

        curr_row += 1 

        row = worksheet.row(curr_row) 

        inplist.append(row) 

# Remove the first line from the list as it contains the column headers 

# 

inplist.pop(0) 

# Set the values from the list as input values for the Select_analysis tool: 

# 

for row in inplist: 

    where_clause_start_time = row[5].value 

    where_clause_end_time = row[6].value 

    output_name = row[4].value 

    output_file = "{0}/{1}".format(output_database,output_name) 

    where_clause = "TIMESTAMP_UTC0200 >= date '{0}' and TIMESTAMP_UTC0200 < date 

'{1}'".format(where_clause_start_time, where_clause_end_time) 

    # Select the tweets based on the input values from the list, and export them to the output 

database 

    arcpy.Select_analysis(input_Twitter_feature_class, output_file, where_clause) 

    print "The feature class '{0}' was copied to the output database.".format(output_name) 

 

print "done!" 
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Appendix 7: CreateGeoRegularities.py 

#------------------------------------------------------------------------------- 

# Name:        Geographic regularity maker 

# Purpose:     Generate results for a sensitivity analysis 

# 

# Author:      Roeland Steur 

# 

# Created:     11-04-2014 - 16-5-2014 

# Copyright:   (c) Roeland Steur 2014 

#------------------------------------------------------------------------------- 

 

import arcpy 

from arcpy import env 

import os 

arcpy.env.overwriteOutput = True 

 

# Set local variables for cleaning the zones 

# 

zone_workspace = 

r"D:\Twitter\gdb\ANALYSIS\16_zonal_irregularity_sensitivity_analysis_development\zone_fc.gdb" 

twitter_workspace = 

r"D:\Twitter\gdb\ANALYSIS\16_zonal_irregularity_sensitivity_analysis_development\tweet_fc.gdb" 

clean_twitter_workspace = 

r"D:\Twitter\gdb\ANALYSIS\16_zonal_irregularity_sensitivity_analysis_development\clean_tweet_fc.gdb" 

output_workspace = 

r"D:\Twitter\gdb\ANALYSIS\16_zonal_irregularity_sensitivity_analysis_development\output.gdb" 

excel_output_folder = 

r"D:\Twitter\gdb\ANALYSIS\16_zonal_irregularity_sensitivity_analysis_development\output" 

input_dataset = "zones3" 

output_dataset= "geographic_regularities" 

append_dataset = "append_table" 

wild_card = "" 

field_type = "" 

#Set workspace 

# 

arcpy.env.workspace = zone_workspace 

# Give some infromation to the user and let him/her check it. 

# 

print "For all zones in feature class '{0}' in database '{1}' geographic regularities will be 

calculated, based on Twitter data in the database {2}.".format(input_dataset, zone_workspace, 

twitter_workspace) 

x = raw_input("Press enter to continue.") 

print "Script is running..." 

# Check if output dataset exist, and if so, delete it 

# 

if arcpy.Exists(append_dataset): 

    arcpy.Delete_management(append_dataset) 

model_output = "{0}/{1}".format(output_workspace, output_dataset) 

if arcpy.Exists(model_output): 

    arcpy.Delete_management(model_output) 

# Backup the original input data 

# 

arcpy.FeatureClassToFeatureClass_conversion(input_dataset, zone_workspace, append_dataset) 

# List all fields of the output dataset 

# 

fields =  arcpy.ListFields(append_dataset) 

# Clean the zones feature class table by deleting all fields that are not required 

# 

print "The following fields will be deleted from the zones file '{0}': ".format(input_dataset) 

for field in fields: 

    if not field.required: 

        print field.name 

        arcpy.DeleteField_management(append_dataset, field.name) 

# Add and calculate a new field called zone_id to the zones feature class 

# 

arcpy.AddField_management(append_dataset, "zone_id", "TEXT") 
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arcpy.CalculateField_management(append_dataset, "zone_id", "!OBJECTID!", "PYTHON_9.3") 

# Change the workspace and define some new variables for the analysis 

# 

dropFields = ["created_at","text","retweeted","in_reply_to_user_id_str", 

"in_reply_to_status_id_str","source","place_full_name","place_place_type", 

"lang","id_str","user_name","user_id_str","user_location", 

"user_followers_count","user_statuses_count","user_utc_offset","TIMESTAMP_UTC0200","TIMESTAMP_MONTH",

"TIMESTAMP_WEEK","TIMESTAMP_WEEKDAY","TIMESTAMP_YEARDAY", "TIMESTAMP_HOUR", "ET_ID"] 

arcpy.env.workspace = twitter_workspace 

arcpy.env.overwriteOutput = True 

zones = "{0}/{1}".format(zone_workspace, append_dataset) 

# List all the feature classes in the workspace 

# 

featureclassesoutput = arcpy.ListFeatureClasses() 

for fc in featureclassesoutput: 

    # Join the zone OIDs of the tweet intersecting zones to the tweets 

    # 

    arcpy.SpatialJoin_analysis(fc,"{0}/{1}".format(zone_workspace, 

append_dataset),"clean_{0}".format(fc), "JOIN_ONE_TO_ONE","","", "INTERSECT") 

# Dissolve the newly joined twitter feature classes and copy the output to a clean workspace 

# 

CleanTwitterFeaturesList = arcpy.ListFeatureClasses("clean*") 

for fc in CleanTwitterFeaturesList: 

    newname =  fc.replace("clean_", "") 

    output_clean_tweet_fcs = "{0}/{1}".format(clean_twitter_workspace,newname) 

    arcpy.Dissolve_management(fc, output_clean_tweet_fcs, ["zone_id", "user_id_str"]) 

    arcpy.Delete_management(fc) 

# Change workspace 

# 

arcpy.env.workspace = clean_twitter_workspace 

# Create the actual geographic regularities 

# 

CleanTwitterFeatures = arcpy.ListFeatureClasses() 

for fc in CleanTwitterFeatures: 

    print fc 

    fields =  arcpy.ListFields(fc) 

    # Delete all fields that are not editable 

    # 

    print ">The following fields will be deleted from tweet file '{0}':".format(fc) 

    for field in fields: 

        if not field.required: 

            print field.name 

            arcpy.DeleteField_management(fc, field.name) 

    # Process: Add Field 

    # 

    arcpy.AddField_management(fc, fc, "LONG", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 

    # Process: Calculate Field 

    # 

    arcpy.CalculateField_management(fc, fc, "1", "VB", "") 

    # Create a new fieldmappings and add the two input feature classes. 

    # 

    fieldmappings = arcpy.FieldMappings() 

    fieldmappings.addTable(zones) 

    fieldmappings.addTable(fc) 

    # First get the "fc" fieldmap. "fc" is a field in each twitter feature class. 

    # The output will have the geographic zones with the count number of intersecting tweets per 

zone. 

    #Setting the field's merge rule to sum will aggregate the single tweets into a count number for 

each zone. 

    # 

    FieldIndex = fieldmappings.findFieldMapIndex(fc) 

    fieldmap = fieldmappings.getFieldMap(FieldIndex) 

    # Get the output field's properties as a field object 

    # 

    field = fieldmap.outputField 

    # Rename the field and pass the updated field object back into the field map 

    # 
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    field.name = fc 

    field.aliasName = fc 

    fieldmap.outputField = field 

    # Set the merge rule to sum and then replace the old fieldmap in the mappings object with the 

updated one. 

    # 

    fieldmap.mergeRule = "sum" 

    fieldmappings.replaceFieldMap(FieldIndex, fieldmap) 

    #Run the Spatial Join tool, in order to count all tweets that intersect with a geographic zone. 

    # 

    arcpy.SpatialJoin_analysis(zones, fc, "regularities_{0}".format(fc), "#", "#", fieldmappings) 

    # Add a field to the append_table in order to be able to append the count field to 

    # 

    # arcpy.AddField_management(append_dataset, fc, "LONG") 

    # 

    arcpy.JoinField_management(zones, "zone_id", "regularities_{0}".format(fc), "zone_id", fc) 

# Copy output table to output workspace in order to safely clean the Twitter workspace 

# 

arcpy.FeatureClassToFeatureClass_conversion(zones, output_workspace, output_dataset) 

print ">The output file '{0}' is copied to the output location 

'{1}'.".format(output_dataset,output_workspace) 

# Export geographic regularities to an Excel file 

# 

arcpy.TableToExcel_conversion("{0}/{1}".format(output_workspace,output_dataset), 

"{0}/geographic_regularities.xls".format(excel_output_folder)) 

# Clean the Twitter workspace 

# 

FeaturestoDelete = arcpy.ListFeatureClasses() 

for fc in FeaturestoDelete: 

    arcpy.Delete_management(fc) 

# Notify user that script completed 

# 

print ">The twitter workspace '{0}' is cleaned".format(clean_twitter_workspace) 

print ">Script completed running!" 
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Appendix 8: Traffic-related tweets 

The table below shows traffic-related tweets that are found in the irregularity clusters of the best performing 
model run of the sensitivity analysis. In left column, text of tweets are listed. In the right column it is listed if 

tweets meet the criteria for the use cases defined in section 4.1.  

 

Tweets 
Meet 
criteria 
for UC  

File op de busbaan... no 

File bij A9 op de #A2 richting Amsterdam  1 baan open reden snap ik niet no 

Het is druk op de weg.. no 

En toen stond ik stil #a10 #ongeluk http://t.co/GGEwxSWdrO no 

Viele, pfoeeee. no 

@#A10 stil voor de coentunnel hmp 26.5 no 

We zijn weer gezellig bij amsterdam .. kanker files altijd bij die kankerstad no 

File (@ Brug) http://t.co/5A8b49gGU1 no 

Pf ongeluk op snelweg , no 

Pech klapband A4 #carecaverhuur bij Schiphol http://t.co/yiuzFudjVl yes 

A1 Rut A6 R- RYKSW 290,9 Ongeval/wegvervoer/letsel (beknelling personenauto) (personen in object: 1) (H.E.) no 

Lifeliner vertrokken vanaf vumc naar A6 r bij rutte. no 

Daar sta je dan met pech.. Zwaai even als je lang rijdt #22,6 Re (@ A9) [pic]: http://t.co/Hw73hKGCFM no 

Woehaaaaaa, sta compleet stil al n half uur op de A10 no 

Interessante plek om in de file te staan. En ik wilde alleen maar even naar Landmarkt. http://t.co/6N73Sjx35M no 

Pfff 1tunnel dicht gelijk al.het verkeer lam. Zeeburgertunnel waarom...... no 

Jaja nou dat hielp niet want hij was schijnbaar niet de enige met dat idee #meerfile no 

Ben je lekker uit sta je in de file-_- #coentunnel no 

Lekker in de file (@ NH Schiphol Airport - @nh_hoteles) http://t.co/EcqQ4MwCNE no 

Getver file @ Coentunnel http://t.co/Dl3fdFAt4A no 

@A10Verkeersinfo ongeval nu http://t.co/PnWBsHO1KG no 

@A10Verkeersinfo ongeval file http://t.co/NCN2cUONEa no 

Wachten... (@ Brug Over De Ringvaart) http://t.co/qW4Wkzls1I no 

Sta langs de kant van de haarlemmerweg met kapotte ruitwissers vol in een regenbui! Niet echt handig yes 

Auto te water, niet door nieuwe rotonde #amstelveen http://t.co/Sg35SsGDzZ no 

Tering file door die klote coentunnel hoor no 

14:30 Wo 1 Auto te water Van Cleefkade Aalsmeer - Woasv Hvasv http://t.co/nXT6i8KL3N no 

Eerst foute tomtom en nu in de file door waarschijnlijk iets van een ongeluk ofzo no 

Ik haat auto's die langzaam rijden, files, werkzaamheden, en vooral de muziek die Skyradio draait 😠 no 

File. Moet plassen. Stom. no 

File À 10 zondagmiddag niet te geloven no 

Shit man :s, file. no 

ruzie midden op de snelweg, auto van die persoon staat stil op de snelweg no 

In de file net onder de landingsbaan van Schiphol, lekker vliegtuigjes met Juma kijken dan maar no 

3 sleepauto's, brandweerauto en al 30 min. stil staan op de afrit A4..... no 

Even lekker uitwaaien @A1 http://t.co/Bcd3NvZPgA no 

Brug open op snelweg.. Blijf dit toch wel erg oldskool vinden, helemaal op nieuwe weg.. 
#welkeslimmerikbedenktdit http://t.co/TRRJKMeS6U 

no 

Waarom ik altijd? #A9brugstaataltijdopenalsikerlangswil http://t.co/Zyy1vtzKvE no 

Pff file! no 

File (@ Route Amsterdam - Groningen) http://t.co/O5AxZXtfZC no 

Alles staat open, behalve de carpool strook.... #frak #brugkarma http://t.co/dp3fMiR3UD no 

Dik 20 minuten vertraging om van ring  a10 noord de tunnel in te komen, waarom hoor je dat niet bij 
@anwbverkeer? http://t.co/lBbaAzUw0U 

no 

@vid @meldkamervid als je uit Je raam kijkt staat het stil richting rottepolderplein... no 

Wat een filee jezakk no 

Filee 🚌 no 

Hè, file voor de Coen. Hoe kan dat nou? no 

Lekker in de #file #A9 no 

En natuurlijk in de file bij Amsterdam... no 
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Appendix 9: Photographs added with traffic-related tweets of Appendix 8 

 

 

 

 
  

Image 1 

Image 2 
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Image 3 

Image 4 
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Image 6 
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