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Abstract 

Regression kriging of nitrate levels in upper groundwater in Dutch sandy soils 
An analysis at national and regional extents 
 
Sample data concerning nitrate concentrations in groundwater, were collected on farmland 
and in nature reserves on sandy soils in The Netherlands. Using Regression Kriging 
modelling, a geostatistical approach that exploits both the spatial variation in the sampled 
variable itself, and environmental information collected from covariate maps for the target 
predictor, it is possible to predict groundwater quality maps for the sandy soil regions in 
The Netherlands, and quantify the uncertainty in accompanying maps.      
Maps were produced for four different sandy soil regions  and three different years in 
2007, 2008 and 2009. For a combination of the regions into a nationwide model for the 
three years maps were made as well. The most successful covariate to be found in the 
regression part was the groundwater table map.  The differences between a regional 
approach and a combined nationwide approach were explored. The nationwide approach 
seemed to generate slightly better predictions in a more stable manner, although 
differences are not very pronounced. 
 
Keywords: 
Regression Kriging, geostatistics, interpolation, covariates, nitrate in groundwater, sandy 
soils 
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1 Introduction 

1.1 Problem definition and context 

 
In the Netherlands, as well as in other countries, governmental agencies deploy large-scale 
measurement campaigns in order to investigate and evaluate environmental quality. This 
thesis focuses primarily on a method to predict groundwater quality based on samples 
from these campaigns, together with mapped variables to ultimately yield maps with 
nitrate content in groundwater. 
 
Decades ago, emission of pollutants into the air, soil and water occurred widespread and 
was common practice. Awareness of the severe negative effects of this practice on the 
environment have led to governments starting up large scale environmental research and 
set-up of measurement campaigns.  Air quality was one of the first fields of interest, soon 
followed by soil and water investigation. Primarily, the focus was on human health effects, 
but soon realization came that whole ecosystems were threatened by deteriorating quality 
of biotic and abiotic components and long lasting effects of certain changes and the 
accumulation of often persistent substances. 
On the countryside, exceeding intensification of agricultural land use, industrial emissions 
of pollutants and the widespread use of fertilizers have led to deteriorated environments. 
In the Netherlands, where both agriculture and further industrialization were stimulated 
after the second world war, farm intensity was increased and for instance cattle breeding 
and dairy farming were successfully growing into a major export producing industry.  
Regarding water quality, the effect was most apparent on surface water. Algal bloom, loss 
of species diversity and finally, imbalanced ecosystems are but a few examples of these 
effects. Since groundwater is the main source for fresh water, water companies have to 
increase their efforts to make groundwater suitable for drinking water (Pebesma, 1996). 
Protection is therefore necessary. Nitrate in drinking water is considered as a contaminant 
in large quantities and therefore a WHO health standard is set at 50 mg/l (WHO, 1998). To 
stop increasing nutrient levels, legislation was enforced in order to reduce input of artificial 
fertilizers and animal manure, thus decreasing their negative effects on the environment. 
To ensure that this new legislation would improve environmental quality, monitoring of the 
current state and future developments was necessary. To register and follow 
environmental quality in time, several monitoring programs were put in place. In the 
Netherlands, but equally in neighbouring countries having similar intensified agriculture, 
like Denmark, groundwater is monitored in yearly measuring campaigns.  In the 
Netherlands, however, groundwater is easily accessible at most locations at a depth of 1-6 
meters, due to the small differences in elevation as well as the almost complete absence of 
rocky and impenetrable soil layers. Therefore, in the Netherlands, samples can simply be 
taken from the groundwater layer close to the soil surface. In other countries deeper 
groundwater layers have to be sampled or stream-area monitoring takes place (Fraters et 
al, 2005). 
 
Measuring the actual quality in situ is a proven technology. Sampling and measuring 
involve large budgets for travel, measuring and sampling equipment and finally laboratory 
analyses and still not every desired location can be sampled. Considering a certain 
variability that seems to differ per location and, for instance, land use or soil type, it 
becomes clear that modelling could provide further information, based on data gathered 
thus far (Reijnders et al, 2004). It is therefore necessary to establish relationships with 
easily available environmental factors, like soil type, precipitation, land use etcetera. 
Variations in local quality levels indicated that a relation existed between soil variables and 
human induced environmental factors such as the type of land use and the intensity of that 
land use (CCRX, 1995); (RIVM, 2002).  
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When modelling groundwater quality, the spatial and temporal variation of groundwater 
quality variables are summarized with a limited set of mathematical equations (Pebesma, 
1996). This will, because of the large complexity, always be a simplification of reality.  
 
At RIVM, the Dutch National Institute for Public Health and the Environment, data are 
available from monitoring networks intended for measuring the effect of national emission 
policies. These data are gathered in various compartments like air, soil, and groundwater. 
The Minerals Policy Monitoring Network (LMM) was founded in cooperation with the 
Agricultural Economics Institute (LEI-WUR), in order to deliver information on the 
effectiveness of policy with regard to reduction of fertilizers and manure application. From 
this network, samples are collected at farms in the upper meter of groundwater. This 
upper meter is considered as being below the root zone and thus ‘out of reach’ for crops 
and other vegetation. In the field, nitrate concentrations in each of the individual samples 
are determined with a quick field check method. The illustration (Figure 1) shows all 
samples that were collected between 2007 and 2009. Some locations were visited 
repeatedly during this timeframe, others only once. 
 

 
Figure 1. Spatial distribution of sample points for groundwater from the years 2007-2009 at national 
scale, and with inset detail of sample pattern 
 
 
Results from past campaigns have shown that policy urgency is larger in some areas in 
The Netherlands (Fraters et al., 2005). In the sandy soil regions, exceedances of nitrate 
groundwater standards have been reported repeatedly and occur more frequent than in 
other soil types. Highly intensive animal farming is present here more than in other parts 
of The Netherlands, causing higher nitrogen surpluses, and sandy soils are more 
vulnerable to nitrate leaching (Boumans et al, 2008). 
 
In the past, the RIVM has made use of interpolation techniques for the prediction of 
groundwater quality from shallow or deep groundwater wells (Pebesma, 1996), (Boumans 
et al, 2004, 2008) and distribution of pesticides and metals in soils using data from 
surveying networks (Tiktak, 1999). 
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1.2 Spatial Interpolation 

Spatial interpolation deals with predicting values for locations that have unknown values.  
Measured values can be used to predict, or interpolate, values at locations that were not 
visited for sampling. Various authors have listed the possible methods available for 
interpolation, for instance Mitas & Mitasova (1999) and Harris et al (2010). Knotters et al 
(2010) provide an extensive review of available interpolation techniques and the degree of 
uncertainty associated with these methods. 
 
In general, there are two accepted approaches to spatial interpolation. The first method 
uses deterministic techniques in which only the information from the point observations 
themselves are used. Examples are direct interpolation techniques like inverse distance 
weighting, or trend surface estimation. 
  
The second approach also relies on regression of auxiliary information, or covariates, 
gathered for the target variable (such as regression analysis combined with kriging). These 
are geostatistical interpolation techniques, better suited to account for spatial variation, 
and capable of quantifying the interpolation errors. The estimation of a propagated total 
error for the final outcome of prediction maps is however a subject by itself and is not 
discussed in this report. Covariates are often available as inexpensive maps, perhaps 
originally intended for other purposes. A digital elevation model may explain quite well how 
water (and dissolved components) flows, but was maybe intended at first hand for 
cartographic purposes. 
 
Depending on the available data, Hengl et al (2007) advocate the combination of these two 
into so-called hybrid interpolation. This is known as Regression Kriging (RK). In another 
paper, Hengl et al (2004) describe a framework for Regression Kriging that forms the basis 
for the research in this report. A limitation of RK is the greater complexity than other more 
straightforward techniques like ordinary kriging, which in some cases might lead to worse 
results (Goovaerts, 1999).  
 
Both interpolation and regression techniques have been used before with similar data sets 
but the hybrid combination of both is not used very frequently yet for nitrate in 
groundwater. Some cases exist however, e.g. in the USA (Gotway & Hartford, 1996) and 
Portugal (Stigter et al, 2008). Also in Florida, USA, regression kriging was used for 
prediction of soil-nitrate nitrogen (Lamsal et al, 2009). Other approaches were also used to 
predict the nitrate content in groundwater, for instance Sonneveld et al (2010), use 
regression models only, whereas Woodard et al (2010) use a Bayesian method of 
interpolation. It can be concluded that many approaches exist and have been applied 
already, also in predicting water quality, but not all combinations have been seen. 
Regression Kriging as a combination of using a widely accepted interpolation technique like 
ordinary kriging, strengthened with the already available knowledge in ancillary maps of 
environmental factors can add some level of detail.  
 
A variety of maps containing explanatory information is available. Groundwater-tables, soil 
maps and the amount of nitrogen used per year are promising candidates. Regression 
Kriging may also reveal some new use of field data for RIVM, which were collected for 
another purpose (informing local participants). By predicting levels and establishing the 
accuracy of the predictions, the outcome of this study can possibly be used to gain insight 
in detecting areas where, and in which degree set standards or legal limits are exceeded.  
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1.3 Research objectives 

 
The main objective of this research is to predict nitrate levels at unsampled locations in 
upper groundwater in sandy soils in the Netherlands using Regression Kriging, and to 
assess the accuracy of these predictions. To achieve this goal, the sampling locations 
illustrated in Figure 1 are utilized, in combination with the knowledge from ancillary maps 
in order to predict nitrate levels for the sandy soil region as a whole. The emphasis is on 
the  practical application of established regression kriging methods and achieving results 
with them.  
 
 

1.4 Research questions 

1. Which environmental covariates are related to groundwater quality and are useful 
in a spatial interpolation? 

2. How can the covariates, determined in (1), be used in a regression model that 
predicts the groundwater quality from the covariate information? 

3. How can the regression model be combined with kriging in the case of nitrate 
levels in upper groundwater and how accurate are the regression kriging results? 

4. What are the differences between resulting maps for three consecutive years when 
the same methodology is applied, and can these differences be explained? 

5. Will the model, when constructed at two extents (national and regional), differ in 
structure and accuracy, and can these differences be explained? 

 
Ad 1. This will result in a list of the most selected covariates for, in this case, nitrate 
 concentration in groundwater. 
Ad 2. As will be demonstrated  
Ad 3.  As will be demonstrated. Results will be discussed by means of summary tables 
 and uncertainty maps. 
Ad 4. When the data from different years are used for prediction on the same region, do 
 the linear models change? How? And what are the differences in the map outputs? 
Ad 5. Does the change of extent lead to effects on predictions and prediction errors and 
 do these occur at other extents too? Can these differences be explained by 
 (knowledge of) regional circumstances? 
 
 
 
 

1.5 Report outline 

This report is structured as follows. Chapter 1 is a general introduction, stating the 
research problem and research questions. In the second chapter the data set is described 
and the study area is characterized. Chapter 3 summarizes the research methods, whereas 
in Chapter 4 the results for one region are presented in detail, for three different years. 
The general outcomes of all model parameters are given after that but since they are a 
repetition, much is placed in the appendices. In Chapters 5 and 6, the results are 
discussed after which conclusions are presented. Further recommendations are also made 
in Chapter 6. In the Appendices finally, more details are available in the covariate 
descriptions. Map results for regions untreated in the main text are also given in the 
appendices, as well as the developed scripts with R-code.   
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2 Study Area and Exploratory Data Analysis 

2.1 Study area characterization and data description  

The research area is limited to the sandy region of the Netherlands, in particular 
agricultural terrain in The Netherlands. This limitation is set by the availability of samples 
and the methodology of sample collection in the data set. Most samples were taken on 
agricultural parcels. The available data set concerns the years 2006-2009. In order to also 
cover natural terrain like forest and heath lands on sandy soils, data from an acidification 
survey study are also available for the same period to include natural terrain and increase 
the coverage of data. In this data set, only nitrate concentration levels are available at the 
individual point locations. Therefore, this research is targeted at nitrate occurrence. Other 
regions, having dominantly non-sandy soils (like clay or peat) are not part of the research. 
 

 
Figure 2. Boundaries of the sandy soil areas in The Netherlands. N=north, E=east, 
C=centre and S=south. Wadden Islands (in fat grey) belong to, but are excluded from the 
North area. 
 
In the monitoring programmes of the RIVM, four regions were defined in which sandy soils 
are the dominant soil type. Figure 2 shows the geographic orientation of those regions. 
The delineation of these regions was based on soil material occurrence, land use and socio-
economic reasons (Fraters et al, 1998). This simplification is mainly for administrative and 
organizational purposes. Since these regions are not homogeneously consisting of sand 
only, other soil types may occur as well when sampled. Moreover, sandy soils may also be 
present in smaller quantities in other regions. In these areas no samples were taken, 
notably the dune areas at the western coastline. This is mainly caused by the absence of 
agricultural activity but also by the limitations of the monitoring program to Pleistocene 
soils (Fraters et al, 1998). The latter ones obviously are not taken into account. Some 
characterizations of the four sandy soil regions are given in Table 1. The four described 
regions are the target areas for the interpolation process. Grid dimensions for the regions 
are listed in Table 2. 
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North 

Sandy soil region consisting of the province of Drenthe and large parts of Friesland and 
Groningen provinces. During the Saale Ice Age, large ice sheets locally shaped landforms 
(phenomena like ‘De Hondsrug’ and ‘Fries-Drents Plateau’). Glacial till has influenced the 
subsurface. In this region, land use in the western half is dominated by dairy farming while 
in the eastern half cattle breeding and arable farming can be found, mostly low intensity 
type farming. In the eastern half of the region, sandy soils alternate with degraded peat 
soils. From the four distinguished regions, this is the most ‘humic’ one, having abundant 
areas with peaty sub layers and former moorland. Nature occurs sparsely and is spread 
evenly over the region. Only a small proportion of this area is urban. In general, the 
nitrate concentrations found here are typically low to medium, depending on the farm type 
and intensity. The Wadden islands administratively are part of this region but are excluded 
from the interpolation because of lack of samples, isolated position and different soil 
genesis. 

 

East 

This region is covering most of the provinces of Overijssel and Gelderland. Agriculture here 
in general can be classified by having a high intensity and most often consists of dairy 
farming and cattle breeding. Diverse in soil type, loam and clay areas occur along with the 
dominant sandy soil type. Nitrate levels found here are among the highest, being second 
only to the South region. Most dominant land use type is grassland. Denser urban areas 
are present in and around the cities of Almelo, Hengelo and Enschede. There is some 
increase in elevation towards the German border. 

 

Centre 

Agriculture is typically consisting of high intensity types like hog-breeding or poultry farms. 
Almost no arable farming occurs here, while in the northern part of this region dairy 
farming on grassland is the main land use type. Large contiguous areas with only nature 
exist (Veluwe, Utrechtse Heuvelrug) with some elevation differences, that were shapes by 
ice sheet movements, dating back to the Saale glacial period, like in the North Region. The 
nature share contributes around 44% of the total area. Overall, this region is quite 
consistently sandy. Only a few minor urban areas exist in this region. 

 

South 

Covering most of the province of Noord-Brabant and partly the province of Limburg. This 
region has a mixed and more intensive type of agriculture, consisting of dairy farming, 
cattle breeding (mainly hogs, fowl, cows) and arable farming. The highest values of nitrate 
in groundwater can be found in this region. Nature areas are mostly concentrated (notably 
De Peel, Loonse- en Drunense Duinen). Along the river Meuse and its tributaries, thick 
banks of river clay have accumulated. Some loam and peat areas exist in the centre of this 
region. Elevation increases towards the south. From the four regions, this one has the 
largest amount of urban area. 

 

 

Page 12 of 175 



GIMA Thesis report 2014-01 

Table 1. Areal and land use characteristics of the four regions, based on reclassification of LGN6 
(Alterra). Actual sand percentage based on Alterra’s simplified soil map 2006 
Region Area  

(hectares) 
agriculture % nature % other % actual sand % 

North 535298 
 

70.4 17.4 12.2 69.5 

East 375321 
 

70.5 16.8 12.7 74.1 

Centre 227162 
 

37.4 44.2 18.4 80.1 

South 569005 
 

57.9 21.7 20.4 76.2 

Total for the 
Sandy Soils 1706786 61.7 22.3 15.9 74.2 

 

The amount of surface covered by both agriculture and nature originate from the LGN6-
land use classification. “Nature” here also includes forests, although these could be 
production forests. During the years of the study period, slight changes in land use have 
occurred, but these are assumed to be minimal and concern mostly within-class changes. 
The actual soil type, upon which these land use types are situated, will not always be sand 
as other soil types may occur within the large sandy soil regions. In Table 1 the 
percentages of actual sandy soil-based samples are given per region in the last column. 
The Centre region can be described as the most sandy (comprising over 80%), while the 
North region has the lowest sand percentage (69.5%). The dimensions of the model 
regions are presented in Table 2. Region south is by far the largest region. 

 

Table 2. Regional grid dimensions in number of 25x25m cells. 
Grid dimensions North East Centre South 

rows (y) 3806 3431 2802 3566 

columns (x) 3731 2740 2578 5582 

 

 

2.2 Sampling setup – monitoring networks 

The dataset consists of a combination of data from two monitoring networks in the 
Netherlands, TMV and LMM. TMV – TrendMeetnet Verzuring in Dutch – stands for 
Acidification Trend Monitoring Network. The network records the effect of atmospheric 
deposition of acidifying and eutrophicating substances from the atmosphere on the 
groundwater. In an evaluation of the monitoring network (De Goffauet al, 2009) TMV is 
described as follows: “The TMV was established in 1989 and is administered by the RIVM. 
The network monitors the quality of the top first meter of groundwater under natural areas 
(forest and heather land) with sandy soils. The groundwater under these areas is not 
affected by any other notable acidifying and eutrophicating substances and, in addition, 
sandy soils have a limited capability to neutralize the impacts of acidification. For these 
reasons, the impact of atmospheric deposition are most clearly detected under natural 
terrains with sandy soils. In other monitoring networks, the effects of atmospheric 
deposition are difficult or impossible to distinguish from other sources of pollution. In 
agricultural areas, for example, the impacts of fertilizer application on groundwater quality 
eclipse those of other sources of pollution.” 
 
In other words, since no fertilizer is applied on natural areas, the expectation is that the  
relation with for instance nitrate levels in groundwater, is strong for atmospheric emissions 
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(Boumans et al., 2004). The representativeness of TMV is described in De Goffau et al 
(2009) and  Masselink & De Goffau (2010). Within TMV, 150 locations, spread over nature 
reserves on sandy soils are visited bi-annually. At each of these 150 locations, 10 samples 
are taken, usually in a straight line with 50 meters between samples. Practical limitations 
to the program are, that the locations had to be owned by Staatsbosbeheer (Dutch 
Forestry Commisision) and that groundwater was accessible within 6 meters below soil 
surface.  
 
In the other monitoring network, LMM or Minerals Policy Monitoring Programme, the focus 
is on agricultural practice. Here the application of fertilizer and animal manure, amongst 
others, is the leading factor for the level of nitrate in groundwater. In the report for 2007-
2010 the setup is described for all soil regions in the Netherlands (De Goffau et al, 2012). 
The backgrounds of the monitoring programmes are explained in (Fraters et al., 1998). 
The aim of the LMM-network is described as follows:  “The objectives of LMM are 
monitoring the water quality on farms and explaining the results in relation to agricultural 
practice on those farms. Up to 2006, the results of the LMM were primarily used to assess 
the effectiveness of Dutch agricultural mineral policies. This network monitors the impacts 
associated with the EU derogation, adjudicated to the Netherlands, for the permissible 
amounts of nitrogen from manure on grassland farms. Since 2006, the number of farms 
monitored has increased considerably. Secondly, the network now consists of a stationary 
group of farms. Prior to that, monitoring was done on a revolving group of farms from the 
total number of participating farms. Thirdly, the sampling frequency for water quality 
monitoring has gone up. Finally, the interest in the quality of surface water has gradually 
increased; at the onset, LMM focused largely on groundwater, water from drains and soil 
moisture.” 
 
Since the LMM is limited in the number of samples taken, and objectives are aimed at 
national goals, a stratified sampling strategy is applied. The research population is 
confined to the most important farm and land use types. Regarding the representativeness 
of samples in sandy agricultural areas, Buis et al (2012) and De Goffau et al (2012)  
describe the selection process for participating farms in LMM and its sub programmes 
(being the other non-sandy soil regions and specific farm type programs), as well as the 
statistical support for the necessary number of farms. To give some idea, if the total 
population consists of farms with certain characteristics (minimal land surface size of 10 
hectares, specific economic boundaries, and geographic representation), in 2010 nearly 2 
percent of that population was sampled (around 300 of the potential 18000 farms) (de 
Goffau et al., 2012). 

The sampling design was focused at farm level, in which all land in use by a farm is 
sampled proportionally. When the same farm is visited again in another year, 
approximately the same locations are sampled, lest the farm area has not changed too 
much. These semi-permanent sampling locations are considered easier than permanent 
wells, since they are quick to install and remove and do not interfere with agricultural 
management practices. They are also easily adaptable to the varying groundwater tables. 
 

Note that the field measurements that are used for this thesis, are not the official data that 
RIVM reports. The official data consist only of analyses in a certified laboratory, where 
conditions are controlled and measurements can be assured to comply with international 
standards. The field measurements correlate with the lab measurements at a high rate 
(near 1:1) but can only be compared at farm level, since the groundwater samples that 
were collected in the field are analysed only after they are mixed for each farm (the 16 
samples are reduced to one sample), thus limiting analysis costs. In practice so far, the 
field measurements have been labelled as ‘indicative’, in order to provide participating 
farms with a general impression of nitrate levels that were found under their farmland. The 
same holds for the samples from TMV, where the 10 field samples are mixed into one 
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sample per location and then analysed for many more compounds in the laboratory. The 
field data for all individual point samples have not been used for any official interpolation 
study before.  
 

2.3 Sampling and the sample data set 

During the years 2007-2009 a total of 18 438 samples were collected. Samples were taken 
at an average depth of 2-5 meters below the soil surface, but always in the upper meter of 
groundwater. Each sample was taken following Standard Operating Procedures 
(documented in De Goffau et al (2012), and Masselink & de Goffau, 2010)). The sampling, 
in short, takes place as follows: manually, a hole is augered until the local phreatic aquifer 
(the groundwater) is reached. A tube is then inserted, by which a water sample is taken 
from the first meter of the groundwater layer, pumped up by a peristaltic pump. The water 
is filtered with a 0.45 µm in-line filter to prevent small particles from clouding and 
influencing the sample. After some measurements, the tube is removed and the hole is 
closed again. This is repeated at each farm for 16 locations, and at each nature site for 10 
locations.  
 
At each location, the nitrate content of the groundwater was determined in situ, using a 
simple portable Nitrachek 404 reflectometer. A determined volume of the sample is used 
on a test strip, which has one minute to react before it is placed in the reflectometer. This 
field method is fast but reasonably accurate, enhanced by a temperature correction and a 
batch verification of the test strips afterwards (Vissenberg, 1994). The standard measuring 
range is from 4 - 440 mg/l, where values below this range will yield a ‘low’ sample rating, 
while ‘high’ values indicate that samples need to be diluted first before repeated 
measurement. The device precision is 1 mg/l. Maximum values found in the field during 
the research years range to as high as 1800 mg of NO3

- per litre.  
 
The nitrate field measurement is based on a chemical reaction, generating a colour 
change, which is then registered. This reaction is temperature sensitive and therefore all 
measurements afterwards get corrected for the temperature at the time of sampling. For 
this purpose, temperature is one of the parameters which are also monitored while 
sampling. The test strips are produced in a batch, each having a specific production date. 
The batch is also tested under lab conditions and results are used to correct the found 
concentrations when needed. Other parameters include pH, electrical conductivity, 
groundwater depth and GPS recorded x,y-coordinates. The water samples later are mixed 
and analysed in a laboratory for  determination of many more chemical environmental 
parameters. 
   
The time necessary to acquire one sample, varies with conditions encountered in the field 
like accessibility, actual soil type, local depth of groundwater and presence of loamy 
particles (thus increasing filter time). Under average circumstances, the time needed to 
collect the sample ranges between 15 minutes and one hour per sample. 
 
The farms in the sandy regions are sampled during the summer period, roughly ranging 
from May until September. This has some practical reasons, the main ones being that the 
water can still be related to agricultural practices and that the water is already out of reach 
for crops at this depth and season of the year. However, samples that are taken in nature 
reserves, generally are taken in winter period, when retrieving samples is easier (higher 
groundwater tables) and less disturbance to plants and wildlife occurs. In Figure 3 this 
structure can be seen where there are two peaks, one in the start of the year, the other 
around midyear. In 2009 the winter peak is almost absent because of a break year in 
sampling. The sampling date is not taken into account for this study; only the year in 
which the sample is collected. Sampling procedures are the same, but the sampling 
strategy is slightly different for natural areas: instead of 16 area-distributed samples per 
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farm, 10 samples are usually taken in a transect of 500 m. This is because of the size of 
most nature reserves. 

 
Figure 3. Sampling distribution during the research years 2007 - 2009 
 
The actual percentage of sampling points on a sandy soil type is given in the last column of 
Table 3. This table also classifies the sampling points in terms of agriculture and nature2 

based sample. Since these data are derived from the 1:50 000 soil map, reality may differ 
somewhat. 

 Table 3. Distribution of sample points from 2007-2009 over the regions and classified as either nature 
or agriculture. Last columns indicates number (and %) of sample points with actual sandy soil type. 

Region Number of 
Sampling 
Points 

# of SP in 
Agriculture1 

# of SP in 
Nature2 

# of SP in 
Other3 

# of SP at 
actual 
sandy soil4 

% 
samples 
on sand 

North  6734  6234  487 13  4581 68.0 

East  3980  3764  203 13  3084 77.5 

Centre  1234  1132   97  5   772 62.6 

South  6490  6024  462  4  5949 91.7 

Total 18438 17154 1249 35 14386 78.0 

 

The attributes of the final sample data set for this research are x,y-coordinates, year and 
sample date, depth of groundwater table, and the NO3-concentration in mg/l. Corrections 
for temperature and batch number lead to concentrations below the precision of the field 
device (4 mg/l), as well as treating missing values with a common measure (0.5 * lower 
limit of detection). That last measure was rarely used since field procedures require double 
or even triple measurement of a sample. The final results are the averaged values. In 
Table 4 some standard characteristics are given. Further analysis is presented in Section 
2.4. The total number of measurements per region were presented already in Table 3, 
whereas the number of samples per year for each region is listed in Appendix IVa. We 
assume there are no differences in sampling methods, and that obvious errors have been 
removed by scripts that database managers previously applied. These scripts check, 

1 As classified in LGN6 ‘Monitoring’ class Agriculture 
2 As classified in LGN6 ‘Monitoring’ class Nature + Forest 
3 LGN ‘Monitoring’ classes other than Agriculture or Nature + Forest. Presumably these points are 
actually situated in either agriculture or nature, but the LGN6 resolution of 25m forces these into 
neighbouring cells  
4 Taken from the simplified Alterra soil map, 2006 
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amongst others, for valid ranges of data, and whether required attributes are missing. 
After data retrieval from the central database, data is considered as valid. 
 
Table 4. mean, median, min and max properties for NO3-samples (in mg/l). 
avgno3 / 
year 

North East Centre South All regions 

mean 

2007 57.61 71.70 35.61 116.80 76.73 

2008 41.01 61.31 30.69 141.50 84.78 

2009 33.90 46.86 25.18 132.50 76.73 

median 

2007 12.67 47.32 9.58 74.24 35.65 

2008 8.20 27.68 6.86 97.12 29.30 

2009 7.63 14.31 6.71 80.41 20.05 

minimum 

2007 1.13 1.13 1.13 1.02 1.02 

2008 1.13 1.13 1.13 1.13 1.13 

2009 1.13 4.25 1.13 1.13 1.13 

maximum 

2007 585.60 559.80 256.91 982.50 982.50 

2008 1176.0 1222.0 308.40 1725.00 1725.00 

2009 677.30 530.90 298.79 1232.00 1232.00 

 
From the first quick scan, it appears that the highest values for NO3 are found in the South 
region, followed by East, North and with the lowest range of values, the Centre region. All 
regions show a decline during the sampling years, except for the South region, which by 
its size in samples is heavily influencing average total numbers. 
 

 

2.4 Exploratory Data Analysis  

All field data are stored in a central database. After retrieval, the dataset containing the 
original location measurements and field analyses needs to be examined for its distribution 
and disturbing features. Next, only records containing valid x,y- locations are used in the 
statistical modelling and prediction process. One check is to print all measurement 
locations to check whether they are located within the defined sandy regions. If not, they 
are removed. For kriging purposes, duplicate x,y-locations need to be checked, in order to 
prevent singularity issues (Pebesma, 2004). Duplicate locations share the same 
coordinates (based on one decimal digit), making it impossible to apply interpolation. 
Therefore the choice is made to delete each second record that has duplicate coordinates. 
This way, 11 duplicates (on a total of 18 960) are removed.  
 
NO3-data distribution 
The data set with field sampling results contains around 19 000 point samples, distributed 
over the three research years 2007, 2008 and 2009. In Table 4 the data were tabulated, 
while the boxplot graph per year in Figure 4 adds some more information on the data 
distribution per year for all regions combined.   
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Figure 4. Nitrate measurements for 2007-2009, all regions combined. Left: All data. Right: same plot, 
zoomed in at bulk data area 
 
Arranging the data by sampled year already shows a few interesting features. The ‘box’ of 
the boxplot represents 50% of all measurements. The median value of each measurement 
year is well below the mean, as can be read in Table 4. The lowest possible value is zero, 
as negative concentrations are not possible, but in the data values lower than 1.02 does 
not occur. Apparently, the majority of the data are relatively low values (around 100 mg/l 
or lower) but there are also very high values. The values above the ‘whisker’ indicator are 
known as ‘outliers’. These measurements are considered valid (‘possible’, not an error) and 
usually can be explained, for instance by sampling an old concentrated animal manure 
spot or cattle dropping from previous years. These high values are known to occur on 
arable farms as well, where excess fertilizer can infiltrate easily after harvesting. Unless 
there are reasons to reject certain values, e.g. an obvious error was made, they should 
remain in the dataset. To distinguish between accidental high values and actual 
agricultural practice is not always possible. These outliers are thus kept in the dataset. The 
distribution of the data, when we zoom in by region, can be seen in Figure 5 and 6.  

 
Figure 5. Nitrate measurements per region for the years 2007-2009 (see below for more detail). 
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Figure 6. Nitrate measurements as in Figure 5, displaying only values maximized at 500 mg/l. 
 
As was clear from Table 4, the highest values are found in the south region, marked by the 
outliers. Overall, this region presents far higher concentrations of NO3 than the region with 
the lowest levels, the centre region. Judging only by nitrate levels in the regions, it seems 
that concentrations decrease from 2007 onwards, but attention is drawn again to the south 
region, where an increase can be seen in 2008. In the following year levels are decreasing 
again. Since a large share of samples is from the south, this is influencing the average of 
all regions combined.    
 
Combined data distribution  
From the previous boxplots, it was clear already that there were many values in the lower 
levels, and only few in the high levels, resulting in a long tail to the right (Figure 7, right). 
This distribution is inherent to measuring natural phenomena. It can however not be 
considered as a normal distribution. For statistical modelling it therefore makes sense to 
transform the target variable to as close to a normal distribution as possible. All further 
analyses should be done on the transformed data (Webster & Oliver, 2007). In Section 3.1 
the transformation of the data is considered. 
 

 

 

Figure 7. Spatial distribution of NO3-samples (left) and histogram of all NO3-sampling data (right).  
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The spatial distribution of the sampling points (Figure 7, left) is difficult to display at 
national scale and needs to be interpreted with care. As the symbols are proportional, the 
high values seem to take more importance. It only gives an impression of where higher 
values can be found.  
 
 

2.5 Covariate selection 

Many natural and human-induced phenomena have been mapped and are available as 
input as covariate variables at various scales. Some of these maps have promising 
explanatory properties with regard to nitrate, as will be investigated in the next 
paragraphs. Groundwater tables for instance, indicating at which depth range the phreatic 
water levels are situated, hold a close relationship with nitrogen reduction speed and thus 
may explain the spatial pattern in the nitrate levels. However, not all maps are suitable in 
the modelling phase as the explanatory value may be too little or may not be present 
sufficiently enough in the measured data set that is available. Selected maps are listed 
below and in Table 5, and more background information on these maps can be found in the 
appendices. 
 
In general, the usefulness of a covariate map revolves around two aspects: 

(1) Strength of relationship with the variable of interest 
(2) Availability 

 
All covariates need to be independent as well. Each of the selected maps is initially 
examined for its explanatory value, first by charting correlation with the data set in a 
scatterplot or boxplots. This determines whether to use the variable in a second step, the 
regression modelling. To keep the procedure alike for all regions and years, the same 
covariates are offered in each regression model. This is described in Section 3.1. 
 
 
Strength of relationship   

Regarding nitrate presence and behaviour in soil and groundwater, one can think of a 
number of potential explanatory variables. This includes for instance, soil factors (reactive 
parameters; e.g. organic carbon (Rivett, Buss, Morgan, Smith, & Bemment, 2008)), 
meteorology (dilution and transport effects), hydrology (mixing and transport parameters) 
and land use management (fertilizer application). In other studies, many parameters have 
already been mentioned, like soil type, land use and geohydrological conditions as 
stipulated by (Pebesma, 1996) and (Stigter et al., 2008). (Gotway & Hartford, 1996) use 
harvest yield data to predict soil nitrate. Nitrogen surplus on farms is also often mentioned 
(Sonneveld et al., 2010) and (Boumans et al., 2008), as well as livestock density and 
deposition from atmosphere (Bonten et al., 2009). Sometimes relations seem to exist but 
cannot be explained well. A correlation might then be used, but may be based on side-
effects of another phenomenon. Caution is always necessary when applying such 
correlations. 
 

 

Availability 

One prerequisite is that these variables need to be available in map form for all the areas 
targeted for interpolation, as stated by Knotter et al (2010), while another requirement is 
that the detail of these variables is sufficient to add explanatory power. In most of the 
accompanying map documentation, information is available on how these maps were 
constructed and how accurate the represented variables are. Such metadata is important 
when interpreting the results of the model fitting (Hengl, 2009). This might later be used 
to judge the reliability of predictions.  
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Unfortunately, not all desired parameters are available in sufficient detail or completeness. 
Meteorological parameters like precipitation and evapotranspiration are available at many 
weather stations, but need interpolation themselves in order to provide a full cover map. 
This leads to other complications in accuracy and methodology, and therefore these data 
are not part of this study. A map showing the mineral pyrite content (related to nitrate 
decomposition) also was not available to cover all of the sandy areas. 
  
The origin or composition of some of the other covariate maps may lead to complications 
too, since these are produced by a model or have been derived from various other maps. 
This may lead to a set of covariates that are more or less related to the same properties. 
Other parameters, for instance livestock data, are available from national inventories, local 
studies or field scale methods, but not directly suitable for the regions as required in this 
research. Some of these are too unspecific or aggregated to be useful.  
 
Maps typically harbour uncertainties and errors in them, both systemic and 
methodological. From the selected maps listed in Section 2.6, in Appendix V the original 
uncertainties are given, when published. Sometimes these are unknown. 
 
 
Examples of covariates 

Organic matter is important for binding nutrients and soil moisture, for the soil structure 
and stability but also for rootabilty and accessibility to soil organisms. Decomposition of 
organic matter liberates nutrients for vegetation (De Vries, 1999). Maps are available for 
different soil depths, since variation in organic matter occurs not only per location but also 
from top soil to the deepest available layer of 1.20 meter. 
 
Nitrogen-application. These maps are a combination of nitrogen in fertilizer and nitrogen 
from animal manure. The map data are modeled distributions of farm based manure 
production data, together with applied fertilizer in the format of so-called stone-plots. This 
is a characterization of 6505 individual plots, each having a unique combination of soil 
type, land use and regional differences. Minimum size is 250 x 250 m, but larger cells exist 
as well. The files are available for four years, stone5 (from 2005), stone6 (from 2006, etc.) 
to stone8. The data for 2009 were not available at the start of this study. 
 
From the data description provided in the file documentation, many auxiliary data share a 
common base, for instance the soil map is the basis for many other products, while the 
interpretation of satellite images for land use map LGN6 also uses the statistical map 
BBG06 as reference data. Top10nl topographic maps were used to delineate satellite data 
classes. Therefore, borders and classes from one map may be present in another map as 
well. This might lead to so called spatial dependence or multicollinearity. However, the 
stepwise linear regression method selects only those covariates yielding the most 
significant values.  
 
Logical choices have to be made about the validity of a given data set for a certain year: 
most of the data sets were produced before the first year of the modelling, so before 2007, 
or at least the data contained in the maps were recorded before the time of interest of this 
research. These maps can simply be applied for each year. Only for the maps NHx 
(atmospheric N-deposition), which dates from 2010, and the maps with the combined 
fertilizer/manure application (stone07-stone09) this is not entirely true. These have a clear 
link with a certain year. 
 
The atmospheric nitrogen emission of NHx-map is based on data from 2010, but this map 
is provided with a so-called scale factor for the previous years, 2007-2009. This scale 
factor is a linear derivation and therefore the resulting maps are not different in exact 
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pattern but only in magnitude. This means that the NHx-map is essentially the same for 
each year to the model, and feeding it as covariate just once is sufficient. 
 
   
 
 

2.6 Available covariate maps 
Covariate data are usually divided in two types, being continuous data and categorical 
data. The first kind is a measurable phenomenon that follows a certain range of 
measurement in a defined unit, for instance elevation in meters. Typically, these are grid-
style maps. Next to that, there are categorical data maps, defining where each map unit 
begins and ends. These are usually vector-style maps (Burrough & McDonnell, 1998).  
 
Each of the candidates is addressed shortly in the following two Sections. More detailed 
descriptions of the possible covariates, and further references for them, are listed in 
appendix V. The complete list of auxiliary data is described in more detail in the annexes 
(Va, Vb). 
 
Covariate data preparation 

Most covariate maps need some treatment in order to be useful as input. Before the 
models can be constructed, the covariate map data need to be in similar projection, 
alignment and preferably, resolution. In order to assign each future grid cell a residual 
covariate value, it is necessary to make grid maps which have exactly the same cell size 
and which are originating exactly at the same point. Preparation took place by means of a 
Modelbuilder model in ArcGIS (see appendix III for details). In order to calculate with 
regional extents, this model also cuts out four regional data sets aimed at the individual 
regions North, Centre, East and South.  
 
For categorical variables, often a processing step is necessary, as they need to be 
converted from vector maps to grid maps, with 25 x 25 m resolution. Next these maps 
must often be reclassified, as some of the data classes may not be significant enough 
during the model selection phase. The land use maps bbg06 and lgn6 for instance, contain 
30+ classes, not all of them appearing relevant to nitrate levels. Some authors therefore 
create maps for each single class or derive a single aspect like a slope class or proximity to 
certain objects. The non-significant classes can then be rejected by the model. 
Reclassification and grouping are therefore relevant options to eliminate the surplus of 
classes. For instance, in a land use map one could merge all forest types as nature in one 
class and all arable crops together as arable farming. 
Reclassification of categorical covariates in the end has not pursued all maps, leaving a 
refinement step for follow-up research. Only the groundwater table map and the soil maps 
were reduced since some specific classes hardly occur.  
 
An overview of all the covariate data that are used in this thesis is presented in Table 5. 
The covariates will be used by the abbreviated name, as listed, throughout this thesis. 
Descriptions and maps of the covariates are available in Appendices Va and Vb.  
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 Table 5. List of available covariates 
# abbreviation      type     name                data description # appendix V 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

  
 ahn  
 bbg06 
 draf 
 dront 
 geom 
 gronds 
 gt06 
 kwel2 
 laf 
 lgn6 
 lont 
 nhx 
 om05 
 om10 
 om25 
 om40 
 om60 
 om80 
 om100 
 om120 
 pawn 
 slaf 
 slont 
 stone5 
 stone6 
 stone7  
 stone8 
 vds  

 
 n 
 f 
 f 
 f 
 f 
 f 
 f 
 n 
 f 
 f 
 f 
 n 
 n 
 n 
 n 
 n 
 n 
 n 
 n 
 n 
 f 
 f 
 f 
 n 
 n 
 n 
 n 
 f 

  
 elevation model  
 statistical land use 
 water discharge by drainage - superficial 
 water discharge by drainage - profound 
 geomorphology 
 simplified soil types 
 groundwater tables 2006 
 seepage/upwelling (vertical velocity mm/day) 
 distance to discharge by ditch 
 satellite land use map 
 distance to profound discharge 
 nitrogen emission 
 organic matter 0-5cm 
 organic matter 5-10cm 
 organic matter 10-25cm 
 organic matter 25-40cm 
 organic matter 40-60cm 
 organic matter 60-80cm 
 organic matter 80-100cm 
 organic matter 100-120cm 
 hydraulic soil property districts 
 distance to discharge by ditch - superficial 
 distance to discharge by ditch – profound 
 fertilizer and manure application 2005 
 fertilizer and manure application 2006 
 fertilizer and manure application 2007 
 fertilizer and manure application 2008 
 soil map RIVM classification 

 
9 
1 
8 
8 
2 
3 
6 
10 
8 
7 
8 
11 
12 
12 
12 
12 
12 
12 
12 
12 
5 
8 
8 
13 
13 
13 
13 
4 
 

  
n = numerical or continuous value map (15) 
f  = factor or categorical map (13) 
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3 Statistical methodology 

3.1 Regression Kriging modelling 

 
The most basic form of kriging is called ordinary kriging. When we add the relationship 
between the target and covariate environmental variables at sample locations, and apply 
this to predicting values using kriging at unsampled locations we get Regression Kriging. In 
this way the spatial process is decomposed into a mean and residual process. The first step 
of regression-kriging analysis thus is to build a regression model by using the explanatory 
grid maps (Hengl, 2009). The kriging residuals are found by using the residuals from the 
regression model as input for the kriging process. Adding up the mean and residual 
components finally, results in the regression kriging prediction. In a simple form, this can 
be written as: 
                                                                  𝑧(𝑠) = 𝑚(𝑠) +  𝜀′(𝑠)       (eq.1,  Hengl, 2009) 

 
With z(s) being the value of a phenomenon at location s,  m(s) being the mean component at 
s, and ε’ (s) stands for the residual component including the spatial noise. The mean 
component is also known as the regression component, and is expressed as 𝑚(𝑠) = 𝛽0 +
𝛽1𝑋1(𝑠) + ⋯+ 𝛽𝑚𝑋𝑚(𝑠) where Xi(s) are the explanatory variables and the βi are the 
regression coefficients.  

 
Figure 8. A schematic representation of regression kriging using a cross section (reproduced from 
Hengl, 2009) 
 
The fundamentals and theoretical backgrounds of this approach are described in various 
sources, for instance in (Hengl et al., 2007; Hengl et al., 2004; Knotters et al., 2010; 
Webster & Oliver, 2007). The process of refining the prediction in two steps (trend 
estimation and kriging) is illustrated in Figure 8, where the result of the mean component, 
only regression, is visible as a dashed line 𝑚�(s), and the sum of trend+kriging is the 
curving thick line 𝑧̂(s). This should approach the actual distribution better than either just a 
trend surface or just a simple interpolation.   
 
A schematic representation of the regression kriging approach is depicted in Figure 9. To 
perform the regression kriging, the following steps are necessary (Hengl et al., 2004):  
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1. Determination of linear model(s) of the variable, and determine the residuals 
2. Use the residuals for generation of a variogram to quantify spatial correlation 
3. Application of the regression model at all unobserved locations 
4. Kriging of residuals at the same locations 
5. Addition of both predictions (steps 3 and 4)  

 

 
Figure 9. Regression kriging schema (after Kempen, 2011).)(Kempen, 2011) 
 
The linear modelling of the relationship between the dependent and explanatory variables 
is quite empirical. The model selection determines which covariable is important or not, 
even when we do not have process knowledge supporting this. It is not necessary to know 
all these relations, as long as there is a significant correlation.  Once the covariates have 
been selected, their explanatory strength is determined by using (stepwise) multiple linear 
regression (MLR) analysis. For each covariate this leads to a coefficient value, describing 
its predictive strength, and whether this is a positive or negative relationship. With the 
combination of these values for all covariate maps, a trend surface is constructed. This 
regression prediction is in fact the calculation for each target cell from each input cell from 
all covariates times the coefficient value. The amount of correlation is expressed by the R2 
in the regression equation. 
 
To enable this, the covariate data first need to be processed by overlaying the sample 
locations with the covariate data layers. In this way a matrix of covariate values for each 
sample point is constructed.  This matrix may still hold several ‘NA’ or missing values due 
to the fact that some maps do not have coverage where others do. An example of this is 
the absence of information on organic matter in urban areas. Since the linear models 
cannot be constructed properly when some covariate data are missing, these sample 
points are discarded altogether. The resulting data matrix is therefore complete for all 
remaining measurement data points.  
 
The second step in which the covariate data are needed is the model prediction phase of 
the mean surface values. First, a prediction mask is made. This prediction mask is the 
selection of grid cells for which covariate data is available and only contains the 
coordinates of valid cells.  Next, the regression mean values are calculated by predicting 
the regression model for every grid cell that is in the prediction mask (see example in 
Figure 11). In the residual kriging phase this prediction grid is used again as a mask for 
the kriging prediction.    
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Regression modeling 

The regression part in the regression kriging consists of constructing a linear model with a 
selection of those covariates that make the best contribution to explaining the 
(transformed) nitrate level. Since we have different years of measurements in the field 
data set, and at the same time discern different regions in the final grid map we want to 
predict to, several options are possible.   
 
First, for each year in the measured dataset (2007, 2008 or 2009) a model can be applied. 
This will render a prediction map per year, at national scale (combining regions (n)orth, 
(e)ast, (c)entre and (s)outh).  There is only a distinction in time, using just the data from 
the selected year. This implies three different models. All variables are up for selection. 
Regions for nationwide models have to be calculated separately to speed up and control 
the prediction process with the available computing means. The total number of model 
runs is as follows: number of years: 3, number of regions: 4. This results in 3 * 4 = 12 
separate calculations of a map region-year combination, finally giving three different maps. 
 
2007: 07n, 07e, 07c and 07s     all.regions.2007 
2008: 08n, 08e, 08c and 08s     all.regions.2008 
2009: 09n, 09e, 09c and 09s     all.regions.2009 
 
Secondly, for each region a separate model can be constructed, based on the best ‘fit’ by 
selecting only those map variables most significant to the region. Predictions are then 
made for each region, based on each available year. This yields 12 different models, 3 
years, 4 regions. Since the models are adapted to fit each region and year dataset 
specifically, they cannot be applied to the other regions, thus resulting in 4 * 3 = 12 
region-year combinations.  
 
north:  2007, 2008, 2009 
centre:  2007, 2008, 2009 
east:   2007, 2008, 2009 
south:  2007, 2008, 2009 

 
Not all these combinations will be presented completely in the main text, since many steps 
are repetitions. The methods followed in the research are illustrated for one region, 
presented in Chapter 4, for three different years. In the Appendices (IVa and IVb), the 
results for the other regions and years can be found. 
  
For each year and region a subset is selected, using additive modeling with multiple linear 
regression and the Akaike criterion5. The lowest score for the Akaike value determines the 
outcome of the stepwise model selection. For the regression models, no interactions have 
been set. A selected variable can only contribute positively or negatively. Possible 
interactions between variables were not investigated to restrict the time allotted to the 
modelling phase.  
 
The linear model regression formula can be written as follows: 
 
10logno3(s) = 𝛽0  + 𝛽1 × 𝑐𝑜𝑣. 1(𝑠) + 𝛽2 × 𝑐𝑜𝑣. 2(𝑠)  + … + 𝛽𝑛 × 𝑐𝑜𝑣. 𝑛(𝑠) +  𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (𝑠)        (eq.2) 
 
where βi stands for the regression coefficients assigned by the model, and cov. for the 
covariates. Regarding the automatic selection for all models using stepwise regression, 
sometimes categorical variables are selected while only one level is indicated as significant. 
Besides that, sometimes a selection seems irrelevant, since it does not have a significance 
at all. Although it is often considered good practice to accept only levels of p < 0.1, this 

5 Akaike Information Criterion (AIC): a value indicating the goodness of fit; see for instance (Webster 
& Oliver, 2007) and http://en.wikipedia.org/wiki/Akaike_information_criterion 
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rule would lead to the dismissal of many categorical covariates. Manual selection might 
often lead to fewer variables, but possibly the inclusion of one covariable strengthens the 
effect of another one. The model however with the lowest AIC value determines whether to 
incorporate a variable or not. With every added covariate the explaining power increases 
somewhat, generating a higher (adjusted) R2. It does not automatically mean the model is 
better but this is accepted in order to automate the selection process as much as possible 
and constructing every model using the same method.  
 
The regression formula and parameter coefficients are subsequently used to predict a 
regression surface. Adding up this regression prediction surface to the kriging prediction, 
ultimately yields the regression kriging prediction. The linear model also delivers the 
regression residuals (measured minus predicted values).  With these residuals a variogram 
is then modeled, after which prediction by simple kriging delivers a second surface. This 
will also give us the kriging variance.  
 
 
Variogram and experimental variogram 

The residuals from the linear regression now can be modeled to display the spatial 
variability. When the distance between two point pairs increases, the variance increases, 
meaning that the similarity is decreasing. The experimental variogram is a plot of the 
semivariance against the distance between sampling points. The variogram is the fitted 
line that best describes the function connecting the dots from the experimental variogram. 
The following parameters are often used to describe variograms (see also Figure 10):  
 

Nugget: the (positive) intercept on the ordinate axis 
Sill: the value where a constant maximum or asymptote value is reached 
Range: the distance where the model (approximately) reaches the Sill 

 
The variogram can be constructed, using (Webster & Oliver, 2007): 
 

𝛾(ℎ) =  1
2
𝐸[{𝑧(𝑠𝑖) − 𝑧(𝑠𝑖 + ℎ)}2]      (eq. 3) 

 
Where 𝛾(ℎ) is the semivariance, 𝑧(𝑠𝑖) stands for the value of a target at a sampled location 
and  𝑧(𝑠𝑖 + ℎ) is the value at location  𝑠𝑖 + ℎ. The equation changes when the variogram is 
fitted to a variogram model. 
 
First, an experimental variogram is constructed using the residual data from the previous 
modeling phase. The variogram is then fitted through the data both by gstat and by 
adjusting the variogram manually. In this way, for every regional RK-model the most 
optimal fitting variogram model has to be selected, resulting in a variogram formula 
including function, nugget, sill and range. The variogram terms are defined above and 
illustrated in Figure 10. 
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Figure 10. Basic estimated and fitted (exponential) variogram with terms (reproduced from 
Hengl, 2009). 
 
As stated by Webster and Oliver (Webster & Oliver, 2007), fitting models can be difficult 
and fitting by eye can be unreliable. The automated fitting procedure in gstat allows an 
initial setting of parameters and then fits the best possible curve based on them. The 
resulting fit needs a visual check before commencing with the next phase. 
 
 
The theory and background of kriging are not discussed or explained here. The basic 
formulas for regression kriging are given below (Hengl, 2004): 
 
First the residuals are calculated using linear regression, the prediction yields a weighted 
average of all input covariables: 
 

𝑧̂ (𝑠𝑜) = ∑ 𝛽�𝑘
𝑝
𝑘=0 ∙ 𝑞𝑘(𝑠0);           𝑞0(𝑠0) ≡ 1,     (eq. 4) 

 
𝑧̂ (𝑠𝑜) = 𝑚�(𝑠0) + 𝑒̂(𝑠0)        (eq. 5) 

 
Where 𝑚�(𝑠0) is the fitted drift and 𝑒̂(𝑠0) the interpolated model. 

 
𝑧̂(𝑠0) =  ∑ 𝛽̂𝑘

𝑝
𝑘=0 ∙ 𝑞𝑘(𝑠0) + ∑ 𝜆𝑖𝑛

𝑖=1 ∙ 𝑒(𝑠𝑖);            (eq. 6) 
 

Where 𝛽̂𝑘 stand for the estimated drift model coefficients, 𝑞𝑘(𝑠0) being the kth external 
covariate at location 𝑠0 and 𝑒(𝑠𝑖) the residual at measurement location 𝑠𝑖 , and 𝜆𝑖 are the 
kriging weights. 
Ordinary kriging turns to Simple kriging when the mean is known. This will be the case as 
the known mean of (the results from the linear prediction) the residuals is zero. This 
kriging prediction is then added to the result of the regression modeling.  
 
Some excellent readings on the backgrounds of kriging are available by Webster and Oliver 
(2007), Isaaks and Srivastava (1990) and also in Burrough  & McDonnel (1998) a good 
overview is presented. In this thesis only the methods are applied, which are conveniently 
available for use in gstat (Pebesma, 2004).  
 
Back transformation of the results 

After adding up the MLR prediction and kriging prediction products, the results are still in 
the transformed 10log format. Since this is not comparable with the original sample data, 
back transformation to the original (mg/l) units of NO3 is necessary. For this, the 
calculated variance of the kriging process is needed (Webster & Oliver, 2007): 
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Back transformed predicted NO3 = 10^(predicted transformed NO3 + 0.5 𝜎2)    (eq. 7) 
 

Where σ means the standard kriging deviation. The resulting prediction can be exported to, 
and presented using a GIS. Graphical capabilities of R are limited for larger 
SpatialGridDataFrames. The R-coding for the regional RK model is given for the 
south.2008 model in appendix I. A script was made for each separate region and year, in 
which certain region specific modifications were applied. Since the south region is the 
largest in grid size, it demanded the most computing resources; at least 16 Gb of RAM 
computer memory was required. More efficient use of memory by optimizing the R code is 
however very well possible. 
 

 
Figure 11. Example of a prediction mask for the centre region, 2009. Grey indicates valid 
cell locations for predicting, white means no prediction will take place. For other years this 
may slightly differ. 
 

3.2 Time comparison within a region 

Within the sample data set, values are distinguished by year of sampling. The mean value 
per region varies between years, as was illustrated in Table 4. The prediction will also have 
different appearance when sample data for different years are the basis for prediction. 
Discriminating between years leads to a change in covariate strength, since model 
structure depends on the relation between the available set of covariates. The stepwise  
method judges whether a parameter should be dropped or selected in the model. Apart 
from the variogram fitting, the kriging part of the RK-approach remains the same. 
 
Using the regression kriging models, values are predicted for the years 2007, 2008 and 
2009. In every year-region combination, data are available for at least 348 points (centre, 
2009) to a maximum of 2523 point samples (south, 2008). Each year-region combination 
will have its own uncertainty map (addressed in Section 3.5), giving the range of values in 
which the predicted value most likely will fall.  
 
Differences will be explained visually and when possible quantitatively. When possible, the 
geographical distribution of selected covariates will be used to explain the differences. 

Page 30 of 175 



GIMA Thesis report 2014-01 

3.3 Extent comparison 

 
By looking at two different extents, national and regional, an effect can be studied in the 
output that will be generated. Models can use a wider span of data and are expected to 
behave differently upon this in contrast to smaller areas with less variation in offered 
covariates. Moreover, the composition of models is subject to change as well and 
parameters that were important in regional models need not occur in ‘national’ models, 
and vice versa.  
 
The cell size in this report is set to remain constant at 25 x 25 meters. Therefore, the 
variation between extents is the amount of surface that is included in the analysis. The 
dataset allows for the investigation of regional behaviour of the interpolation process 
because of its large size. Like in Section 3.2, changing the extent may influence the 
selection of covariates.  
 
 

3.4 Cross validation of regression kriging results 

 
In order to be able to judge the goodness of the interpolation method, the prediction 
results can be compared with the original dataset. The goodness is evaluating whether the 
method of achieving results is robust. One way of doing this, is by sub-setting the dataset. 
A certain amount of the original data is then set aside (called the ‘hold-out’) and is not 
used for the prediction modelling. Later this partial data set can be used to compare with 
the predicted values. This implies that the hold-out is not available during the modelling 
phase. When the available data are already sparse, this has serious limitations for the 
modelling itself. An alternative method is cross-validation, where all data can be used for 
modelling and later are available as well for the validation.  
 
One particular method is called k-fold cross validation, where the ‘k’ stands for the number 
of folds one wants to apply. Each fold is a set of data kept apart from the analysis, 
repeating for the number of folds. In this way, the influence of including or excluding 
sample points can be investigated, thus establishing the robustness of the method.  
 
A special type of k-fold cross validation is where the repetition of analyses (k) is equal to 
the number of data. This is called ‘leave one out’ cross validation, for the analysis is 
repeated for once for every sample in the dataset, omitting the sample value itself. This 
leave one out cross validation is used throughout this thesis, where k equals the number of 
observations in each linear model.  
 
Resulting is a prediction for every observation, made by using the same variogram model 
settings as for the normal regression kriging prediction. The degree in which the cross 
validation predictions resemble the observations is then a measure for the goodness of the 
prediction method. This can be calculated by using the mean squared normalized error or 
‘zscore’ as follows: when the variogram is correct, the computed variance of the zscore 
needs to be near 1, the mean zscore should approach 0 or be very small. In contrast to 
standard residuals, the zscore takes into account the kriging variance as it is a 
standardized residual (Bivand et al, 2008). 
 
To aid further in the assessment of prediction results, additional parameters can be 
calculated from the cross-validation output, like the mean prediction error (MPE), root 
mean square prediction error (RMSPE) and average kriging standard error (AKSE).  
 
    𝑀𝑃𝐸 = 1

𝑁
∑ (𝑧(𝑥) − 𝑧′(𝑥)
𝑁
𝑥=1 )      (eq. 8) 
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   𝑅𝑀𝑆𝑃𝐸 = �1
𝑁

 ∑ [�𝑧(𝑥) − 𝑧′(𝑥)�]2𝑁
𝑥=1       (eq. 9) 

 
Where N stands for the number of pairs of observed and predicted values, z(x) is the 
observed value at location x, and z’(x) is the predicted value by ordinary kriging at location z. 
 
 

     𝐴𝐾𝑆𝐸 =  �1
𝑁
∑ [𝜎(𝑥)]2𝑁
𝑥=1        (eq. 10) 

 
Where x is a location, and σ(x) is the prediction standard error for location x .  
 
MPE indicates whether a prediction is biased and should be close to zero. RMSPE and  
AKSE are a measure of precision and have to be more or less equal. 
 
The cv-procedure only accounts for the kriging part, since the input are the residuals from 
the linear modelling phase. The k-fold cross validation is available in the gstat-package 
(Pebesma, 2004). MPE and AKSE are calculated using the outcomes of R-packages gstat 
(krige.cv()-procedures) and geospt (the criterio()-command).  
 
 

3.5 Uncertainties  

 
Presenting only maps with prediction outcomes can be misleading when no information is 
shared on the uncertainty of that outcome. The range of values where an outcome can be 
found is usually defined as the confidence interval. This interval has an accepted certainty, 
for instance 95%. The assumption is that the Normal Distribution is valid for the 
predictions. We can then take the range between the 2.5th and 97.5th percentiles of the 
normal distribution. The lower and upper boundaries can be found by using the kriging 
standard deviation σ. The range between these boundaries can be presented as a map. 
The 95%-confidentiality map  can provide some assistance in interpreting the meaning of a 
regression kriging outcome. In order to read the maps in a meaningful way, they need to 
be back transformed to the original concentration levels.  
 
For 95% confidence levels, the following values are valid for each cell: 
 
lower boundary :  (0.025)percentile of prediction = (prediction - 1.96σ) 
upper boundary:  (0.975)percentile of prediction = (prediction + 1.96σ) 

 
the 95% confidence interval (the “width”)  around the prediction is then defined as: 
 
 (prediction - 1.96*σ, prediction + 1.96*σ)  

 
Where ‘σ’ stands for the kriging standard deviation. 
 
As these values are still in 10log-scale, they need to be back transformed to the original 
value scale. This is a simple 10^UB for the upper boundary and 10^LB for the lower 
boundary limit. The 95%width is then the back transformed (UB – LB).   
 
The results of this bandwidth can be presented in a map, which should always accompany 
the regression kriging prediction. 
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3.6 Legend color choice 

 
Nitrate values in groundwater are subject to standard levels. A health standard exist for 
drinking water of 50 mg NO3/l (WHO, 1998). This standard is reflected in the color choice 
for the prediction maps: units below 50 are considered ‘safe’ and therefor are colored in 
greenish colors, whereas all legend classes above 50 are seen as exceeding the limit, these 
are colored red or brown. The middle class ranging from 50-100 mg/l is here considered as 
an intermediate class and therefore has a yellow-orange color. Due to uncertainties, the 
confidence we have that maps with these predicted classes are true, is not unlimited. It is 
still possible that a certain area with this or that class can be lower or higher than the map 
shows. This is where the uncertainty maps fit in.  
 

 
Figure 12. Explanation of legend colour choice, related to the WHO standard for drinking 
water of 50 mg NO3 per litre. Map is an example. 
 
The colors for maps with uncertainties and other statistical properties like variances, are 
different from the predicted value maps. With these maps, colors do not have a warning 
meaning. For maps without standards, and without the need to define certain class or 
quantitative intervals, ‘High-Low’ legends are used. 
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4 Results 

4.1 One elaborated result: region south 2008 

To present the results for all models is much of the same; identical steps are performed 
over and over again. To limit repetition, only for the region south and year 2008 the 
results are elaborated. The results of the other 11 region-year combinations are listed in 
appendices IVa and IVb. General outcomes of all predictions are presented in Sections 4.2 
and 4.3. 
 
The R-script for this procedure is available for this region in appendix I. The script is more 
elaborate than the following example here shows. We skip details like cleaning up and 
dealing with memory issues. Since the south region is the largest grid of all four regions, it 
was the most difficult one, with regard to the memory use. 16 Gb of RAM memory was 
barely sufficient to run the model in the current state. Adaptations to the coding may 
enable easier processing in the future. 
 

4.1.1 Linear model for south.2008 

The following description treats the script in appendix I for region south in 2008. The 
general steps are explained here, while in the script some annotation is available as well. 
 

 
 

Figure 13. Measurement data before (left) and after transformation (right). 
 
First, the sample data file is loaded and screened for duplicates. Since the target variable 
is required to have a normal distribution, transformation is necessary (Burrough & 
McDonnell, 1998; Webster & Oliver, 2007).  
 
The target variable has many observations in the low range of measurement values, and 
few with very high values. Therefore, a transformation is needed to convert the variable to 
a more suitable distribution. The sampled NO3 is transformed  using 10log transformation 
(Figure 13). Note that the result is still not normally distributed. This is not a problem, 
since it is only the residuals from the linear regression that we are interested in. The 
dataset is split into the three consecutive years (2007-2009).  
 
Using stepwise multiple linear regression, the linear model for region south in 2008 is 
found,  composed of the following covariates: 
 
om05 + om10 + om40 + om60 + gt06 + stone5 + stone6 + stone7 + nhx + bbg06 + 
kwel2 + lgn6 + geom + slaf + draf 

 
Each of the selected covariates now has a β-value, but since the factor variables gt06, 
bbg06, lgn6, geom, slaf and draf have many categories, the listing of these and their 
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significance can be found in appendix VI (verbose model summary).  The model is based 
on 2523 data points and has an R2 of 0.594 and an adjusted R2 of 0.584.  
 
Next, some diagnostics can be plotted (Figure 14 and Figure 16).   

 
Figure 14. QQ-plot(left) for the outcomes of the south.2008 model 
 
The QQ-plot (Figure 14) indicates that the residuals have what can be considered a 
‘normal’ distribution: they follow the straight line pretty well overall, are more dense in the 
middle and have fewer points at larger and smaller observations. 
 
In Figure 15 (left), the histogram of the (10log) NO3-values is given. Notice that the 
distribution is almost bimodal, and still not very symmetrical even after transformation. 
The right part of this figure shows the frequency histogram for the residuals of the linear 
model prediction south.2008. Now there is a symmetrical, almost normal distribution 
which can also be concluded from Figure 14. This means that one of the prerequisites for 
ordinary kriging (a normal distribution) is now fulfilled, and we can continue with the 
kriging calculation. 

 
Figure 15. Histograms of (transformed) observations (left), and predicted residuals (right).  
 
In the predicted values against the observed values-plot (Figure 16), two separate 
horizontal lines are visible, around 0 and around 0,75. This can be traced back to the two 
separate monitoring networks, described in Section 2.1. When the origin of the sample 
data is added as a differing colour, this becomes more evident.  
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Figure 16.  Plot of predictions vs (transformed) observations for south.2008. Left: all data, 
black and right: arranged by monitoring network. Green=TMV, red=LMM. 
 
In the script x,y-coordinates are not considered as variables, but the influence on the 
model composition was examined for every model. It turned out that the south model had 
a (very) small increase with decreasing y-parameter, suggesting that target values 
increase when going south. However, the fit of the model got worse with the inclusion of y, 
so it was left out altogether. 
 
Next, the model can be used to predict the residual values for unsampled locations. For 
this purpose, a prediction mask was constructed:  
 
Original covariate data  split into two separate dataframes: 

1. df.ON : all valid locations on which prediction should take 
place 

2. df.ON.NA: the remaining non-valid locations, no prediction 
 

For each of the selected covariate grid layers, this process is repeated until all ‘NA’ values 
are processed. The resulting locations in the df.ON dataframe are now used to predict with 
the linear model, after which the remaining grid cells with ‘NA’ are united again with the 
prediction data. After re-ordering of x and y coordinates, the first (regression) prediction 
surface is ready. For the same locations, now the kriging procedure is started. This is 
described in the next paragraph. 
 
 

4.1.2 Experimental variogram for south.2008 

Once the regression prediction has been performed, the variogram for the resulting 
residuals from the sample data can be modelled, using gstat. This concerns the 
transformed data. First, some initial settings are tried, by choosing a variogram model and 
fitting the appearance visually. Next, automated settings are applied by using 
fit.variogram. This results in Figure 17, where an exponential model is fitted. Note that 
the displayed range of the variogram is limited in the figure, but that various settings were 
used to check the behaviour at longer distances (eg.5 km), at which no difference was 
found in the fit of the variogram. The numbers at the data points are the actual point pairs 
available at the corresponding distances.    
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Figure 17. Experimental and fitted variogram for south.2008. Parameters are Vgm.res= 
0.068 Nug(0) + 0.145 Exp(128.05). Numbers in the plot indicate the number of point pairs 
at each point.  
 
At this stage, the simple kriging of the modelled residuals begins. Using the same locations 
from the first prediction surface as a prediction mask, the fitted variogram is input in the 
kriging equation. Now for each of the valid target cells, the kriging equation calculates the 
kriging predictions, based on the residuals from the sample data. The number of points to 
consider for the interpolation is set at (nmax=) 100. The outcome of the kriging 
predictions can now be added to those from the linear regression prediction, resulting in 
Figure 18 (top). The kriging variance is produced together with the kriging operation and is 
shown in the bottom part of the same figure.  
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Figure 18. Regression kriging results (top) and (untransformed) variance (bottom) of the 
residuals from the south.2008 model. The red “dots” indicate where the original 
measurements were taken. 
 
The variance results from Figure 18 have some artefacts. It can be expected that values 
close to the locations where point samples were taken, have lower variances. However, the 
blue coloured regions appear very strange here, especially when other sparsely sampled 
regions do not have this blue but yellow and orange colours, indicating a lower variance 

Detail 
In Figure 19 
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value. Though in the prediction map the blue areas correspond somewhat with higher 
predictions (brownred, >150 mg/l), this is not reversely so for the other regions. A 
possible explanation can be found in the configuration of, or the number of points 
considered for the kriging prediction (100). When zoomed in, the point cloud at the detail 
inset reveals that this is a genuine hotspot. There are 96 points located here, each having 
high nitrate values (range 200-300 mg/l). These 96 points can account for 96/16 = 4 
farms bordering each other, but unfortunately the amount of time to investigate this effect 
is too limited. In Figure 19 this phenomenon is enlarged, showing the scale at which the 
variance is increasing, just around a cluster of sample points. The cell dimensions in the 
image are 25 x 25 m. Recall from the variogram in Figure 17 that the practical range is 
around 500 meters. This corresponds with the decrease of the variance seen in the image. 
Similar point clusters appear in the other blue regions of Figure 18. It does not explain, 
however that the other regions with yellowish colours in Figure 18 have smaller variances, 
when there are no points located. 
 

 
Figure 19. Detail of Figure 18, showing the range of variance around sample points (in 
green, with NO3-value). 
  
For the variance received from ordinary kriging, no back transformation is possible in the 
original units (mg NO3 per litre) since the true spatial mean µ is unknown (µ was estimated 
in the prediction). Therefore Figure 18 shows the variance in 10log(no3). Clearly visible in 
the variance plot are the zones around the sampled locations, having the lowest variance. 
This points at the predominantly local effects of the kriging operation, which can also be 
determined from the relatively short range of the variogram in Figure 17. 
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4.2 Generated regression models for all regions and years 

 
Models for twelve year-region combinations were constructed by means of stepwise 
multiple linear regression analysis. The model composition is shortly presented per region 
in  Sections 4.2.1 to  4.2.6. For each chosen model the coefficient of determination, R2 and 
R2

a (adjusted R2) are listed. R2-values indicate the amount of variance explained by the 
model, R2

a is the R2 value that has been adjusted for the number of variables that were 
used in the equation (Hengl et al., 2004).  
  
In north.2008 and north.2009 models, the gt06 covariabele was dropped initially by the 
stepwise regression model selection function. Since these two models are the only ones 
without automatic inclusion and the gt06 map serves another purpose as well (basic grid 
map for predicting values), a manual addition to the model was decided on. By using an 
additional argument in the stepwise regression selection (scope = list(lower = ~ 

gt06)) it was made sure this resulted in balanced models. Highlighted covariates are 
appearing in each of the three year-region models, per region. 
 
 

4.2.1 Linear models for region North 

 
Table 6. Model summary for region north. Highlighted variables occur in all three models. 
Model name Parameters #data 

points 
R2 R2

a 

north.2007 om60 + om100 + om120 + gt06 + bbg06 + 
gronds + kwel2 + pawn + lgn6 + laf + slont 

1983 0.493 0.473 

north.2008 om60 + om100 + gt06* + ahn + bbg06 + kwel2 
+ pawn + lgn6 + lont + slaf 

2167 0.504 0.488 

north.2009 stone7 + stone8 + gt06* + ahn + bbg06 + 
kwel2 + lgn6 + laf + slont + vds 

1979 0.390 0.372 

*forced inclusion 

 
In the north models gt06, bbg06, kwel2 and lgn6 occur every year. ahn and pawn occur 
twice. Two hydrological parameters are present in each year, but not the same. Looking at 
both the composition and the coefficients of determination R2 and R2-adjusted, for 2007 
and 2008 are quite similar. In these years almost 50% of the variance was explained by 
the models. Looking at the gt06 covariate, the significance is high (for almost all 
categories in gt06) when looking at the forced instances, and almost not significant in 
2007, when the variable was added by the stepwise method itself. The significance of 
covariates can be found in the verbose model listings, appendix VI. 
 
 

4.2.2 Linear models for region East 

 
Table 7. Model summary for region east. Highlighted variables occur in all three models. 
Model name Parameters #data 

points 
R2 R2

a 

east.2007 om10 + om40 + om80 + om120 + gt06 + bbg06 + 
kwel2 + geom + draf + slont 

1364 0.331 0.310 

east.2008 om10 + om60 + om80 + om100 + gt06 + stone6 
+ stone8 + lgn6 + draf 

1180 0.307 0.288 

east.2009 om25 + om80 + om100 + gt06 + ahn + kwel2 + 
lgn6 + draf 

1249 0.266 0.248 
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In the models constructed for the east region, only om80, gt06 and draf occur in each 
year model. Organic matter is present from different depth layers in all years. There seems 
to be a sequence from 2007 to 2009: 2007 and 2008 are alike, so do 2008 and 2009 have 
similarities, but not so much for 2007 and 2009. R2 parameters are among the lowest, 
compared with the models for the other regions. 
 

4.2.3 Linear models for region Centre 

 
Table 8. Model summary for region centre. Highlighted variables occur in all three models. 
Model name Parameters #data 

points 
R2 R2

a 

centre.2007 gt06 + stone5 + stone6 + bbg06 + geom + vds 
 

452 0.584 0.558 

centre.2008 gt06 + geom + nhx 
 

379 0.452 0.426 

centre.2009 om10 + gt06 + stone5 + stone6 + stone8 + 
bbg06 + laf + vds 

348 0.529 0.489 

 
The models in the central sand regions are somewhat different from those constructed for 
the other regions. The 2008-model has only three parameters left after the stepwise 
regression. Since one of them (geom) is not selected in the last model, only gt06 occurs in 
all three of them. There is a variety of parameters in use in the three different years and 
none of the models look really similar. This region shows one of the highest R2/adj R2 
values of all models (2007), but this is probably linked to the compactness of the sample 
cloud, with little extremities. The Nitrogen-addition maps (stone) have a strong presence, 
save in 2008. This could be due to the contrast in land use in this region, which is also 
visible in the stone maps.  
 

4.2.4 Linear models for region South 

 
Table 9. Model summary for region south. Highlighted variables occur in all three models. 
Model name Parameters #data 

points 
R2 R2

a 

south.2007 om05 + om40 + om60 + gt06 + nhx + ahn + 
bbg06 + kwel2 + lgn6 + geom 

1603 0.493 0.481 

south.2008 om05 + om10 + om40 + om60 + gt06 + stone5 + 
stone6 + stone7 + nhx + bbg06 + kwel2 + lgn6 
+ geom + slaf + draf 

2523 0.594 0.584 

south.2009 om05 + om10 + om25 + om40 + om60 + gt06 + 
nhx + kwel2 + pawn + lgn6 + geom + slaf + 
slont 

2137 0.417 0.398 

 
The coefficient values and signs (+ or -) for each variable can be found in the appendix 
(VI, verbose model summary) listing, because of the number of classes in the categorical 
variables these are too long to present here. In the three models for the south region that 
were defined by the stepwise regression, several common parameters occur. These are 
highlighted. From the 8 possible organic matter map variables, three are always present 
(om05, om40 and om60). Other parameters that were present in all three models were 
gt06, nhx, kwel2, lgn6 and geom. In the model for 2008, the variables for added 
nitrogen(fertilizer and manure) stone5, stone6 and stone7 are included, where they are 
absent in the other two models. The hydrological parameter slaf is present in two models, 
just like bbg06 (statistical landuse). The best fit, as judged by the adjusted R2, is 
generated by the south.2008 model with a value of 0.584. This model also contains the 
most data points. 
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4.2.5 Covariable ranking for regional models 

 
Table 10. Rank table of selected covariates, based on regional models 
Rank Name of covariabele # times selected 
1 gt06 12 (2 x forced) 
2 bbg06, lgn6, kwel2  8 
3 om60, geom 6 
4 om10  5 
5 om40, om100, stone6, ahn, nhx, slont, draf 4 
6 om05, om80, pawn, stone5, stone8, laf, slaf, vds 3 
7 om25, om120, stone7 2 
8 lont, gronds, om05 1 
9 dront - 

 
Since twelve models have been made, for 4 regions and 3 different years, it may be 
interesting to see which covariates were selected, and how often. The ranking table is 
based on selection by the stepwise procedure. Absolute winner is the covariate with 
groundwater tables gt06, with presence in all twelve models. In two of these models the 
parameter was first rejected automatically however. The covariables with land use 
properties bbg06 and lgn6 rank at a high second place. 
 
This ranking does no justice to the significance of the parameters. It is also difficult to 
compare categorical variables with up to 21 levels to continuous variables. The significance 
of the parameters can be found in the verbose model summary, indicated by stars and 
dots (*** for highly significant, to (‘ ’) or no indication for the lowest significant level).  
 
Not once selected in the regional models was ‘dront’, being the drainage resistance at 
profound depth. Only once selected was the simplified soil map ‘gronds’, whereas the 
other soil maps vds and pawn were selected 3 times each. 
 
 

4.2.6 Linear models nation wide 

 
Table 11. Nationwide model summary. Common variables are shaded. 
Model name 
(.mod) 

Parameters #data 
points 

R2 R2
a 

all.regions.2007 om10 + stone5 + stone6 + nhx + gt06 + 
ahn + bbg06 + gronds + kwel2 + pawn +  
lgn6 + geom + dront + laf 

5383 0.472 0.462 

all.regions.2008 om60 + om80 + om100 + stone5 + stone6 + 
stone7 + stone8 + nhx + gt06 + ahn + 
bbg06 + kwel2 + pawn + lgn6 + geom + 
slaf + slont  

6243 0.554 0.547 

all.regions.2009 stone5 + stone6 + stone7 + stone8 + nhx 
+ gt06 + ahn + kwel2 + pawn + lgn6 + 
geom + dront + slaf + vds 

5721 0.435 0.426 

 
Common parameters in the all.regions models are stone5 and stone6, nhx, gt06, 
ahn, bbg06, lgn6, kwel2, pawn and geom.  The covariate maps with animal 
manure/fertilizer N are important and except for the first year 2007, all four of these 
stone-maps are included. Organic matter layer maps are present in two of the three years 
models. A combination of two hydraulic parameter maps seem to be an integral part of the 
models too, but the same set never occurs twice. All.regions.2008 appears to be the 
best model, as judged by the R2/adj-R2 statistic. The other two have similar scores.  
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A ranking is not made, since only three models were made. Not selected covariates include 
om05, om25, om40, om120, lont and draf. Compared to the regional models, the three 
nationwide models are based more often on the stone-maps and nhx parameter. In the 
regional models, nhx occurs almost only in the three south models. The layer maps with 
organic matter are not so popular in the nationwide models as they are in the regional 
models, only three out of eight available depth layers were included. The digital elevation 
model ahn is also present in all three nationwide models, were this is true for the regional 
models only in 4 of the 12 cases. 
   

4.3 Combined prediction results from regression and kriging 

From the final prediction images (the sum of the regression prediction and the kriging 
prediction) some statistics can be generated. These can be used to check for unusual or 
unrealistic outcomes, but also to compare with the original features of the sample data set, 
as given in Table 4 of Section 2.3. 
  
Regional models 
 
Table 12. Mean, median, sd, and min/max for regionally predicted values of NO3. 

N O R T H 
year mean median sd min max 
2007 45.8 27.3 51.7 0.02 987 
2008 33.8 21.5 36.7 0.01 824 
2009 27.4 16.9 35.3 0 1284 

E A S T 
year mean median sd min max 
2007 74.0 54.7 232.1 0.01 43061 
2008 90.6 34.3 130.3 0 3499 
2009 43.0 31.9 71.0 0.02 8737 

C E N T R E 
year mean median sd min max 
2007 34.2 11.1 88.8 0.11 3229 
2008 27.5 19.7 24.0 0.61 185 
2009 16.5 7.1 20.7 0.07 522 

S O U T H 
year mean median sd min max 
2007 88.0 66.9 91.3 0.01 3408 
2008 87.4 51.8 120.9 0 3088 
2009 95.1 44.3 14777 0 22392424 
Shaded: unlikely extreme values, probable prediction artefacts. 
 
In Table 12, the properties for the predicted values are presented per year and region, 
each of these being the result of one of the twelve unique models. Some of the prediction 
results show large maximum values, for instance south.2009. This maximum value is not a 
very realistic outcome and must be attributed to an unstable factor, maybe a singularity in 
the measurement locations. The highest predictions are much higher than those present in 
the sample data set. This is true for all almost all separate regions, save the moderate 
outcomes for the centre and east region in 2008 (lower than the maximum in the sample 
data in 2008). The predicted mean and median range of values are generally comparable 
to those in the sample data set.   
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Nationwide models 
 
Table 13. Mean, median, sd, and min/max for nationally predicted values of NO3. 
Calculations were performed per region, using nationwide predicted residuals. 

all.regions  N O R T H  
year mean median sd min max 
2007 47.5 30.8 50.0 0.01 962 
2008 35.1 22.0 38.0 0.03 811 
2009 27.5 18.0 27.8 0.10 516 

all.regions  E A S T 
year mean median sd min max 
2007 67.5 53.3 58.4 0.15 1295 
2008 51.7 36.1 53.6 0.05 854 
2009 39.1 26.7 40.7 0.14 851 

all.regions  C E N T R E  
year mean median sd min max 
2007 29.3 9.53 46.1 0.08 872 
2008 20.4 7.0 32.7 0.09 619 
2009 21.4 11.5 29.5 0.13 689 

all.regions  S O U T H  
year mean median sd min max 
2007 85.2 61.3 88.7 0.06 1355 
2008 83.4 51.2 103.9 0.03 2503 
2009 67.9 39.0 86.7 0.17 2600 
 

All.regions combined 
year mean median sd min max 
2007 61.8 40.4 69.0 0.01 1355 
2008 52.6 29.1 72.6 0.03 2503 
2009 42.6 23.7 59.3 0.10 2600 
 
The results for the three nationwide models are given in Table 13. Since the regions were 
calculated separately, but with the same model and data for each year, results per region 
can be compared with the regional model results. The nationwide models yield combined 
results also. This is not possible for the regional model results in Table 12, since the 
models were different for every region. 
 
Maximum predicted values for the nationwide models are without unrealistic high values, 
like in the results for the regional model predictions. They reflect the range of values in the 
sample data set (found in Table 4). The median value results of all.regions combined, 
match the trend and range of values from the sample data reasonably well. The minimum 
predicted values are always lower than the lowest sampled value of 1.02.  
 
Compared to the regional predictions, predicted mean  and median values are generally 
somewhat lower per region, with the exception of the north region. Here the all.regions 
combined prediction are higher than those of the regional models for this area.    
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4.4 Cross validation of kriging results 

Cross validation was used to obtain the results of Table 14 and Table 15. In addition, for 
each cross-validation result the MPE, or mean prediction error, was calculated. The MPE-
value should be close to zero. RMSPE (root mean square prediction error) and AKSE 
(average kriging standard error) are given as well. The latter two error values should 
approximate each other, indicating prediction stability.  
  
Table 14. LOO-Cross validation zscore and MPE results for the regional models* 

*best individual score in bold; RMSPE & AKSE: smallest difference 

 
Comparing the scores for the models, based on the three CV-parameters is difficult, since 
all models score reasonably. It can be noted that all three centre models have a high 
var(zscore) and for 2007 and 2008 somewhat worse mean zscores. The mean prediction 
error (MPE) results for these models on the other hand, are among the lowest values 
found. The RMPSE and AKSE errors are lower than for the other regional models. When 
examining the data cloud for the models in appendix VIb, the centre region point clouds 
have less data and appear less clustered when compared to the other regions. The best 
model, taking the three parameters into account seems to be one of the south models, 
since they score quite well in the zscore values.    
 
 
Table 15. LOOCV-zscore and MPE results for the nationwide models* 

 year var(zscore) mean(zscore) MPE RMSPE AKSE 

all.regions 2007 0.9411 -0.0054  0.00102 0.4165 0.4288 

all.regions 2008 0.9692 -0.0065 -0.00282 0.4083 0.4131 

all.regions 2009 0.9796 -0.0102 -0.00454 0.4237 0.4278 
*best individual score in bold; RMSPE & AKSE: smallest difference 

 
Since the nationwide models ‘all.regions’ were actually calculated in separated regions, 
for each of these the scores can be calculated as well, but as the input and models were 
the same, only the values of Table 15 are unique. The cross-validation results are very 
similar, but the results for 2008 seem slightly better overall, depending on which value is 
judged.   

 

region year var(zscore) mean(zscore) MPE RMSPE AKSE 

North 

2007 1.0440 -0.0144 -0.006095 0.4177 0.4075 

2008 0.9357 -0.0147 -0.006646 0.4007 0.4137 

2009 1.1074 -0.0030 -0.001479 0.4053 0.3833 

East 

2007 1.0186 -0.0097 -0.003652 0.4241 0.4197 

2008 0.9656 -0.0120 -0.004866 0.4508 0.4589 

2009 1.0143 -0.0210 -0.009602 0.4251 0.4222 

Centre 

2007 1.1456 -0.0114 -0.006578 0.3583 0.3365 

2008 1.0802 -0.0094 -0.004537 0.3963 0.3815 

2009 1.1449 -0.0122  0.004637 0.3444 0.3162 

South 

2007 0.9829 -0.0071 -0.003509 0.4161 0.4201 

2008 1.0349 -0.0041 -0.001445 0.3892 0.3801 

2009 1.0245 -0.0031 -0.000783 0.4318 0.4264 
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4.5 Year comparison of one region for 2007, 2008 and 2009 

In Section 4.1, the method for calculating the predictions for the south region in 2008 was 
explained. In this section, the outcomes of the predictions in region south for three 
consecutive years, 2007-2009 are presented and compared.   

2007

 

2008

 

2009

 
Figure 20. Variograms of three different years for region south.  
 
The variograms are very similar, no different behaviour is to be expected from the kriging 
prediction. The difference is in the data values, data configuration and the model selection 
of covariates, as was presented already in Section 4.2.4. 
  
In Figure 21, the regression-kriging predictions are displayed for the three different years. 
They reflect the small changes in the model selections: some white spots appear where 
they have predictions in one of the other maps, except for common no-data values like 
cities and infrastructure. 
 

2007 
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2008 

2009 
Figure 21. Prediction results for region South in 2007, 2008 and 2009. 
 

4.6 Uncertainties of the results for 2007, 2008 and 2009 

In order to judge prediction outcomes, it is necessary to define some way of uncertainty 
ranges. This can be done by calculating the upper and lower confidence limits of the 
predicted value. The distance between these two limits is then the range in which the 
predicted value is sure to be found (with a 95% confidence in this case). It is suggested 
that these maps always need to be studied when using the prediction results  
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Figure 22. Uncertainty maps for the three South region models, giving the range of values 
in which a predicted value can be found with 95% confidence. 
 
When looking at the predicted values for a location (for instance from Figure 21), studying 
the confidence class at the same location, for the corresponding year, gives an indication 
of the probability that the predicted value is indeed in the predicted range of results. From 
Figure 22, most of the surface is within the reddish colour classes. This indicates that the 
prediction results have a 95% certainty to range at least from 100-500, and probably 
more. The blue colour defines the narrowest class of confidence, where deep red means 
the widest class. It seems the narrow blue class value gains more weight in 2008, dropping 
in 2009 again. This is also the case for the extreme wide class (in dark red), achieving 
more presence in 2008, and with a decrease in favour of a narrower class in 2009. When 
comparing 2007 with 2009, the overall impression is that darker red is turning towards a 
more orange/yellow appearance. This would point towards a decreasing uncertainty 
between 2007 and 2009. The narrower dark blue class however has decreased presence in 
favour of yellow and light red, balancing the overall uncertainty as neutral compared to 
previous years.   
 

4.7 Comparison of a regional model prediction with a nationwide model outcome 

To evaluate the effects of RK-modelling for the same region with regional data only and 
that of combined nationwide modelling, the results of the region itself have to be 
compared. In this section, the region south from the model south.2008 is compared with 
all.regions.2008, for just the southern part. The same exercise could be repeated for 
any of the other three regions, but are put only in the appendices. 
  
Data from the year 2008 is used, first only regional data in a regional model (south.2008), 
then the data from all sandy regions are used to predict the same extent (south) but in a  
combined ‘nationwide’ model, all.regions.2008. What are the differences in model 
selection, and what can be said about the model accuracy? In Figure 23 the prediction 
outcome of both models is presented, in order to compare qualitatively. At general first 
view they seem equal, but small differences can be noted. For instance, the locations of 
the really green areas differ, some white unpredicted areas are different in both images.  
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Since the model composition is not the same, and the absence of a covariable (map) may 
lead to holes in the prediction maps, it is likely that white spots would occur in of the 
images, whereas they would not in the other. It seems however that both models predict 
generally at the same locations.  
 
Table 16. The linear model selections for the regression prediction phase, for south.2008 
and all.regions.2008. 
model included covariate 
(regional) 
south.2008 

om05 + om10 + om40 + om60 + gt06 + stone5 + stone6 + 
stone7 + nhx + bbg06 + kwel2 + lgn6 + geom + slaf + draf 

(combined) 
all.regions.2008 

om60 + om80 + om100 + stone5 + stone6 + stone7 + stone8 + 
nhx + gt06 + ahn + bbg06 + kwel2 + pawn + lgn6 + geom + 
slaf + slont  

 
The linear models from the two approaches for south in 2008 are sharing 11 covariates. 
Most obvious difference is the preference of the regional model for the superficial organic 
matter layers, while in the combined nationwide model the deeper layers with organic 
matter are included, next to elevation (ahn) and a soil relation (pawn). 
 
To see real differences, the RK-prediction results need to be subtracted from each other. 
This has been done in Figure 24, only for grid cells where in both results there are 
predictions. Now the differences are pronounced: blue means that the regional prediction 
was higher than the combined regions model prediction, while yellow to red areas indicate 
where this is just the opposite. The range of differences is not very large and the largest 
differences are also found in regions with high predictions (the dark blue and  in the 
absolute difference map coincides with that in the prediction maps). Most of the surface is 
in the two lower classes surrounding zero difference. Overall, by eyeball, the blue colours 
are more present. This points at the regional model predicting higher values.   
 
In the next two tables we will compare at a few calculated parameters. In Table 17, the 
model results are compared quantitatively also, using the cross-validation results. The 
scores are very close and no apparent winning approach is visible. This means both model 
predictions are comparably stable.  
 
Table 17. Comparison of CV-values for regional and nationwide model 
2008, south var(zscore) mean(zscore) MPE 
Regional 1.0349 -0.0041 -0.00145 

Nationwide 0.9692 -0.0065 -0.00282 

 
Table 18. mean, median, sd and min/max values for RK-prediction results for a national 
and regional model, south 2008 
model mean  median std. dev. min  max 
Regional 87.42 51.8 120.86 0 3088 

Nationwide 83.35 51.2 103.93 0.03 2503 

      

 
The mean, median and maximum of the predicted target value for NO3 are slightly higher 
for the regional model (Table 18). The regional model predicts somewhat higher values for 
all parameters. This could be different for other region-all.region comparisons though.   
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Figure 23. Results from regional prediction (A) and nationwide prediction (B) 
 

A 

B B 
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Figure 24. Difference between regional and nationwide model predictions for region south 
in 2008. 
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5 Discussion 

Regression Kriging was used in this research as a method for the interpolation of measured 
values at point locations, in order to predict at unsampled locations. In Chapter 4 the 
results from this interpolation were presented. In this chapter these results are discussed. 
 

5.1 Model results 

By means of multiple linear regression, in every year-region combination, selections of 
covariates were modelled to represent the mean component for each RK-prediction.  
From Section 4.2.6 it appears the three models for all regions include more common 
covariates than those of the twelve regional models. In the nationwide models, ten 
covariates are present in all three year-models, whereas with the data selection limited to 
regional models boundaries, as low as only three variables were selected (for the centre 
region). Some covariates, notably dront, were not included in regional models, but did 
appear in the nationwide models. Actually, when both the regional models and all.regions 
combined models are considered, all offered covariates were used at least once. Not used 
often were the organic matter at 5cm depth map (om05) and the soil map gronds.  
Most successful covariate is the gt06 map with the groundwater tables. This covariate was 
present in all models (albeit forced twice).  
 
Since all models received the same treatment for selecting covariates, the stepwise 
deletion method, it is fair to compare them based on the R2-a. The best models were then 
the south.2008 (58.4% variation explained) and centre.2007 (55.8% explained) regional 
models, followed by the all.regions.2008 model (54.7% explained).  
 
The linear model that was established for all 12 regional models and 3 all-regions 
combined models are only half of the regression kriging product. The residuals received 
from the linear prediction are very important however, since they form the mean 
component of the regression kriging prediction (see Figure 8). At many locations, this may 
be the main portion of, or even the only predicted value, as the effect of the kriging 
prediction is sometimes very local.  
 
Reclassification of covariate maps was not investigated. Since these maps hold many 
different classes one could argue that we should focus on classes that matter mainly to 
agriculture and nature. The risk of doing this is that classes become so general that we 
lose specific relationships. It may also be time consuming and would require either pre-
knowledge on the importance of a class, next to testing and assessing the significance of a 
class for the model selection. The practical way to deal with was to simply look at the 
presence of classes for each map in the sampled data and let the stepwise regression 
selection judge the importance of these classes. As an iteration step, in some later stage 
the classes can be grouped together or taken separately as input maps. 
 
  

5.2 Kriging results 

The residuals from the linear regression prediction were the input for the ordinary kriging 
predictions. Computationally, the kriging part is the most time-consuming part. Predictions 
could last for days when no limit was set on the amount of point pairs to consider for  the 
kriging. To have a practical measure, the limit was set at nmax=100, resulting in calculation 
time between 47 and 143 minutes on the available hardware. Higher numbers resulted in 
very long, impractical processing times. 
 

Page 55 of 175 



Regression Kriging of nitrate levels in upper groundwater in Dutch sandy soils 
 

Looking at the quantitative results from the cross validation, there seems to be little 
difference between the models. There are no obvious indications that the kriging prediction 
performed worse in one model or another. 
 
The variogram shapes and ranges do not display much variety. Between years in the same 
region, often the same range was found. The exponential model was chosen most of the 
time for the best model fit. The bandwidth of separation distance just between years for 
the same region, are similar to those between for instance a regional approach and a 
nationwide approach (see results in appendix IVb for all variogrammes). 
 
One recognizable effect can be seen in the results for the south region model predictions, 
when comparing the results for 2008 or (2007) with those of 2009. In the dataset with 
sample values, the samples from the TMV (located in nature reserves) are almost absent 
in 2009, while in 2007 and 2008 they are present. See Figure 3, where the peak is absent 
in early 2009, and compare the green line in Figure 16 with the data from those in the 
appendix IVb for South 2009 (page 105). In the map results after the kriging in Figure 21, 
the areas within class <25 NO3 per mg/l are almost the same for the three years, but 
maybe a bit less pronounced in 2009. Now when we look at the uncertainty maps in 2008 
en 2009 (Figure 22), and take a closer look at the blue class of < 25 (mg/l), in the map for 
2009 this class is almost not present.  This effect is also visible in the uncertainty maps for 
the nationwide predictions all.regions for 2008 and 2009 (see Appendix Vb). The absence 
of measurements in nature reserves in the sample data set, is translated in higher 
uncertainties for the map locations within nature reserves.  
 
An effect like this can also be seen in the centre region, where large contiguous nature 
reserve can be found. 
 
There are some known limitations of the regression kriging method. (Hengl et al., 2007), 
state a few weaknesses that can possibly explain some of the results: 
1. data quality 
2. under-sampling 
3. reliable estimation of covariance/correlation structure 
4. extrapolation outside the sampled feature space 
5. Predictors with uneven relation to the target variable 
6. intermediate scale modelling 
 
Ad 1. This is true for both the measured variable and the quality of the covariates. 
 
Ad 2. In some categories, under- sampling may have been experienced, since no minimum 
number of required observations was set. Missing categories were removed, but once a 
single observation was available in a class of a categorical variable, this variable was used. 
Having only a single representation for a category is not such good practice.  This may also 
explain why some of the model coefficients are not very significant (see appendix VI – 
verbose model summaries). 
 
Ad 3. The covariates may not be used in the right way, could be improved or there could 
be dependence on some other variable. In the same way, the variogram that is used to 
solve the kriging equation may be estimated poorly. There is always an amount of user-
judgement when making these. 
 
Ad 4.  This has limited application in this thesis. In some regional models extreme high 
values have been predicted, other than sampled values. This concerns only a limited range 
of cells, but should be further investigated.  
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Ad 5. The application of animal manure and artificial fertilizer is under a lot of attention 
from governing organizations and limited by national and EU-legislation (Boumans & 
Fraters, 2011; Willems et al., 2005). The legally allowed amount of applied manure and 
fertilizer is differentiated by land use categories. Grassland is considered to have higher 
denitrification capacities than other land use, for instance arable farming, and therefore is 
allowed to have a higher burden of nitrogen administered to it. Nitrate levels have not 
been reported to increase at the rate of this application, making the relation with applied 
manure uneven. The use of the stone-input maps can thus be considered as an uneven 
related predictor, which should be modelled differently. 
 
Ad 6. The regional modelling approach has the disadvantage that less data is available for 
relationship with the covariate maps. A slightly larger area includes more data, making 
relations stronger (and maybe some coincidental relations weaker). 
 
 
 
 

5.3 Final map results 

 
In general, the regional model predictions were predicting slightly higher values than those 
with the predictions that had all regions combined. This may have to do with the 
differences in linear models, extrapolating to higher values. 
  
Judging the maps by appearances, there seem to be only reasonable results. Covariate 
map influence is clearly visible, as the location of for instance natural terrain is well 
recognizable, especially in the maps for the centre region, where large contiguous nature 
areas are found. Manure and deposition are highly correlated with agricultural practices. 
These maps reflect the nitrate value found in groundwater. The groundwatertable map 
finally, is present in every model selection, stressing the importance of this covariate in 
explaining nitrate levels. The soil map and pawn map are closely related to this covariate.  
 
The choice to model regionally or combine all regions in a nationwide model can be made 
based on the properties of the prediction results. The nationwide results proved to be more 
stable, whereas the maps providing the uncertainties display a smaller bandwidth, 
meaning that the predictions bear a greater certainty. 
 
The uncertainties that are calculated by the procedure with the 95% confidence limits, are 
expressed in maps, that accompany each regression kriging prediction result. In this way a 
user will have the opportunity to see whether a prediction is ‘reliable’ or not, and how 
broad the uncertainty class is for a certain area or even location. It appears that these 
uncertainties are rather large for specific areas, and that the prediction outcomes can, and 
should be only used to identify change over the years per region, and to pinpoint certain 
areas that have problematic developments. Possibly, the practical width of the calculated 
confidence interval can be decreased somewhat by using Block kriging. In this variant of 
kriging, a block size is set for the predictions, reducing the variances. This was not pursued 
in this thesis. 
 
Concerning the kriging variances that were generated with the kriging predictions, there 
are some artefacts that were unexpected. A certain explanation cannot be given since this  
requires some added investigation. However, the number of points that are considered for 
the kriging equation at each target cell, is limited to 100, for practical reasons. In the 
dataset however, clusters of farms can be identified, totalling to almost these 100 points. 
This will make the prediction around likewise clusters a very local procedure. The 
mentioned artefacts are likely to be caused by this extreme clustering, and increasing the 
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number of points to use in the kriging process should generate variance maps without the 
artefacts.     
 
The maps should not be used to assess whether at a certain location a set standard is 
exceeded or not, without consulting the uncertainty maps. Assuming the predicted values 
as certain can be deceitful, given the width of the calculated 95%-confidence interval. 
More specifically, there are areas in the map however, that can be identified as being quite 
certain to have the a predicted value below the standard, since the associated interval 
width at these locations is of a very small magnitude. This mostly concerns the values far 
below the standard.  
 

5.4 Overall 

 
General points 
 
Data from two monitoring networks were used. The main reason for this was to provide 
data coverage for the non-agricultural soils. Even though the methods for obtaining a field 
sample are equal, there is a notable difference (see Figure 16). Measurement values 
obtained from the TMV-monitoring network generally have much smaller values, but also 
the threshold value seems to be lower. Another difference is the peak in seasonal timing of 
the two networks (see Figure 3). Then again, the data share of the nature monitoring 
network TMV is relatively small compared to that of the agricultural monitoring network 
LMM. In 2009 the data share from TMV is almost absent, when a break year in sampling 
for TMV was introduced.  Looking at the prediction-vs-observation diagrams for 2009, the 
‘spread’ of the data appears more clustered in around one group, compared with those of 
2007 and 2008, where there seem to be two groups. The effects on the model behaviour 
and regression kriging-results for that year do not differ substantially from 2007 and 2008. 
 
Factors which are not taken into account: 
− seasonal fluctuations of nitrate levels (spring/summer/autumn, difference in 

monitoring program). Solely discrimination in the year in which the sample was taken. 
Therefore a sample taken on January 5 in 2008 may still be effectively a late response 
of all factors influencing nitrate levels in the year 2007. LMM-data are gathered in 
summer or autumn while TMV-data are collected on purpose in wintertime.   

− effects caused by weather fluctuations (temperature, precipitation surplus, regional 
variations). Indirectly, the results may be present in the nitrate levels. 

− discrimination of farm type (arable vs dairy farming and intensity of land use). 
− soil variability within sandy soil types. For instance, (Sonneveld et al., 2010) found 

that glacial till within sandy soils in the North of the Netherlands correlated with a 
much lower nitrate level in upper groundwater than soils missing this glacial till. 
However, the geomorphological covariate map may explain some of these differences. 

 
Methodological weaknesses: 
− when overlaying covariate data with sample site locations, not all covariate classes are 

present in the same density in the sample data set. For some of these classes, no 
predictions are made. For the classes that are present, there was no minimal 
observation level (1 observation was enough). This might lead to overfitting (see point 
2 and 4 of the Regression Kriging limitations below). 

− overlaying the observations with the covariate grids, which were in 25 meter cell 
resolution sometimes forces observations in a nearby class or category, where in 
reality this relation is not true. This leads to a (small) decline in the linear relations we 
seek to establish. An example would be a sample taken in a grassland field, near the 
road or near a forest border, that could, wrongly, be attributed to the land use class 
‘infrastructure’ or ‘forest’. It does not seem to occur very often however (see Table 3). 
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Specific points 
 
In the modelling results, the same model-map year for stone-maps was selected in two 
models, specifically in east.2008 and in all.regions.2008. See also the description in 
Section 3.1. It can be argued whether this is okay or not. As a statistical correlation, it is 
allowed, but as a causal relation, it is up for debate. 
 
Data from the stone-input maps for combined nitrogen application of animal manure and 
fertilizer are valid for the year they are made for. A selection of  a certain year in the same 
year-model may have a debatable amount of nitrogen still in storage in the topsoil which is 
not yet decomposed and still available to plant roots for crop uptake. Possibly, part of this 
nitrogen is not used and will infiltrate with the groundwater later in that year, or the next 
year. Measurements in samples in the same year in the shallow groundwater below this, 
will not register this. It could also happen that sampling in a certain year takes place even 
before the application of manure or fertilizer that year. The route of artificial fertilizer may 
be much more rapid and be flushed out quickly, depending on circumstances. More 
certainty on this can be provided by further literature study. This realisation shows that it 
may be better to do the following two things: 
 

1. Only allow the stone-input maps for the model (year-1) or earlier. This means, that 
for instance for model year 2008 only stone 2008-1 = 2007, or earlier (2006 and 
2005) can be used in models. 

2. Artificial fertilizer and animal manure are currently combined in one nitrogen 
addition map. Offering the two variables separately might yield different results, as 
well as the possibility for interaction between variables in the linear models. More 
literature research on the valid years of application is necessary. 

 
 
 
Number of classes in the categorical covariates 
 
In some of the covariate maps, many classes occur. Some of these classes are not that 
significant, as can be judged from the verbose model listings (Appendix VI). 
Reclassification of these classes, or perhaps selection of only a few of the most significant 
classes as a single covariate map may change the model composition of the linear models. 
Regarding the groundwater table covariate gt06, for instance, three main classes could be 
used, instead of the 11 classes that were available in the models in this research. The land 
use maps lgn6 and bbg06 could also be simplified to fewer classes. 
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6 Conclusions and recommendations 

The research objective of this study was “to predict nitrate levels at unsampled locations in 
upper groundwater in sandy soils in the Netherlands using Regression Kriging, and to 
assess the accuracy of these predictions”, as written in Section 1.3. This objective was 
successfully achieved. Below, each of the research questions are answered. 
 
1. Which covariates are both relevant and available for this study? 
 
This question has been answered by the model selection. All covariates have been selected 
at least once in one of the models. The most successful covariate is gt06, the map with 
groundwater table classes.  If a ranking needs to be made: 
 
1 gt06 
2 bbg06, lgn6, kwel2  
3 om60, geom 
4 om10  
5 om40, om100, stone6, ahn, nhx, slont, draf 
6 om05, om80, pawn, stone5, stone8, laf, slaf, vds 
7 om25, om120, stone7 
8 lont, gronds, om05 

 
Important covariates are land use (bbg06, lgn6), geomorphology (geom), infiltration and 
seepage (kwel2) and the organic matter maps in various depth layers (omxx). After this, 
the maps which explain where and how much nitrogen is added come in view (nhx, 
stone). Hydraulic property-maps are not always the first explaining covariate, but these 
are occasionally selected (slont, draf, laf etc.). 
 
2. How can the covariates, determined in (1), be used in a regression model? 
 
The answer of this research question is closely related to the first one. After a stepwise 
multilinear approach, a selection of covariates forms a model. This model determines how 
well the covariate and the combination with other selected covariates are explaining the 
target value. Each covariate is assigned a regression coefficients. Each model is 
characterized by R2-values. This is a measure for the total variation explained by a model. 
The highest value found is in the regional model south.2008 with 0.594, or 59.4% of the 
variation explained. 
 
3. How can the regression model be combined with kriging (point support) in the 
case of nitrate levels in upper groundwater and how accurate are the regression 
kriging results? 
 
The results are given in Chapter 4. The regression model is  used to predict residual values 
for the sample data set using the covariates. These residuals are then modelled by means 
of a variogram. With this variogram a kriging prediction is made for the target locations.  
The regression model is also used to predict a regression prediction for the same target 
locations. The combined result of both prediction surfaces makes up the final RK-
prediction. Accompanying uncertainty width maps are calculated with a 95% confidence 
level. These allow for regional assessment and indication of areas with large problems, not 
for assessing exactly whether (predicted) values exceed a legal limit. 
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4. What are the differences between three years when the same methodology is 
applied, and can these differences be explained? 
 
Differences between years can be explained by the variation in distribution of the sample 
points, both geographically and value of measurements. The selection of linear model 
components depends strongly on the available data set. The kriging part of the regression 
kriging is of limited influence. It merely refines the products that are produced by the 
regression prediction.  
When looking at the prediction and uncertainty results from the south region for 2008 and 
2009, a difference in the predicted values for natural areas, as described in the discussion 
of Section 5.3. This can be a attributed by the difference in the sample data set for those 
years. 
 
5. Will the model, when constructed at two extents (national and regional), differ 
in structure and accuracy, and can these differences be explained? 
 
Yes. The covariates that are selected are different for regional and nationwide models.  
Compared to the regional models, the three nationwide models are based more often on 
the stone-maps and nhx parameter. In the regional models, nhx occurs almost only in the 
three south models. The layer maps with organic matter are not so popular in the 
nationwide models as they are in the regional models, only three out of eight available 
depth layers were included. The digital elevation model ahn is also present in all three 
nationwide models, were this is true for the regional models only in 4 of the 12 cases. 
 
The region that was compared in Section 4.7, had many common covariates in the linear 
regression model. They also differed, since the ahn (elevation) and pawn (soil/hydrology) 
covariate were only present in the nationwide model. 
 
The explanation apparently lies in the greater amount of data that is available. The 
measurements from other regions can be used to model relationships which normally 
would be weak or not so pronounced, because the data collection was not covering the 
region, or just partly. The difference in Elevation ahn for instance, might not be so large 
within one region, but when all regions are combined, it suddenly may be significant in 
explaining nitrate levels. This can however work in two directions: important relations in 
one region may not be that important in another and vice versa. Therefore, some local 
phenomena might be ‘suppressed’ by another, more often seen relation. 
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Finally 
 
When looking at the range of predicted values, the nationwide models seem to produce 
more stable results. Also, the uncertainty outcomes that pair with the predictions, seem to 
be of a smaller bandwidth at nationwide approach.  
 
Results from this research study can be used to evaluate policy measures at national scale. 
Regions having more problems with high nitrate concentration in groundwater levels can 
be identified, by making use of the information from covariate resources.  The predictions 
are surrounded by relatively large confidentiality estimates, making it not so suitable  for 
the evaluation of local results for legal standards regarding nitrate concentrations.  
 
 
Recommendations 
 
Split the data set: 

• Effects of mixing data from two measuring networks LMM & TMV can be seen: 
In 2009 fewer samples were taken in TMV (winter season) and in the plots of that 
year, effects can be seen in the diagrams of prediction-observed when comparing 
with the plots of previous years for the same region. Maybe splitting the dataset 
and repeating the method for both sets might improve results.  
 

Use ‘better’ data: 
• Use precipitation- and weather corrected nitrate measurements in the dataset 
• An update of the boundary files for the regions exists, matching the soil type in the 

region on a finer scale. This should provide better matches with soil-related maps. 
• Discriminate between animal manure N-load and fertilizer N-load  
• Newer versions for a few covariates have been introduced: the elevation model 

AHN-2 is available, with increased resolution, Bofek-2012 now replaces the 
predecessor pawn, which is regarded as outdated, and soil map-updates are soon 
to be released. Newer maps with more recent data might improve regression 
kriging results. Since the start of this research project for instance BBG 2008 and 
LGN7 were published, possibly more suitable than the maps that were used so far. 
The aforementioned maps reflect more or less the same timeframe as the data 
from the groundwater samples. The procedures should be repeated with the newly 
available data to check whether there is improvement. 

• Investigate whether categorical maps can be reclassified into fewer classes, 
enabling model selection on more significant map classes    

 
Modify data procedures: 

• Try different box-cox transformations (e.g. in geoR). This concerns data 
transformation techniques, enabling the linear modelling perhaps a better fit of the 
data.  

• Enable interactions between covariates in the modelling phase, this might also lead 
to stronger correlation in the linear regression. 

• Correct or exclude the measurements with LOD-values (lower than limit of 
detection), and extreme high values. This will smooth the sampling data around 
the median values. Though this will increase the R2, a critical look at the prediction 
results is needed.  

• Select fewer or only most significant covariates instead of accepting the stepwise 
results. 

• Use block kriging to decrease variances for the prediction results. This can 
decrease the range of uncertainty calculated with the 95% confidence-interval. 

• Speed up calculations by improving the coding, for instance by using parallel 
computing or more efficient grid-handling techniques (eg. R-Package ‘Raster’) 
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- Va  Data description of covariates 

 
- Vb  Data description of covariates  -  images 

 
- VI  Verbose model summary 
 
 

 
 
 
 

  

Data disclaimer 
  
In this research project, a data file containing point measurements is used. This data 
file is the result of collected field measurements undertaken by RIVM, by request of the 
Dutch ministries of Economic Affairs (EZ) and Infrastructure and Environment (I&M). It 
contains nitrate measurements at point level and some other attributes, next to GPS 
measured x-y coordinates of the location. Measurements were collected between 2006 
and 2010. The samples were taken with consent at private farm locations and results 
are therefore strictly confidential. 
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Appendix I – R code scripts  

- Base script for regional models (adapted to south.2008) 
 
# GIMA thesis script Cor de Jong 
# RK script south 2008 
 
rm(list = objects()) 
 
# assign working directory 
# located at network drive at RIVM!  
setwd(dir = "N:/GIMA/Afstuderen/VelddataLMM") 
 
# load libraries 
library(sp) 
library(maptools) 
library(gstat) 
library(rgdal) 
library(spatstat) 
library(foreign) 
library(lattice) 
library(shapefiles) 
 
# read data (field file having nitrachek measurements 2006-2010) 
no3xy <- read.table(file = "xyavgno3_3.txt", header = T, sep = "\t") 
 
# Make subset with essential data 
basicno3 <- subset (no3xy, select = c(x,y,jaar,avgno3)) 
basicno3 <- subset (basicno3, jaar ==2007 | jaar==2008 | jaar==2009) 
 
# Check and find duplicate locations 
dupch <- data.frame(X=basicno3$x, Y=basicno3$y) 
dupch2 <- duplicated(dupch) 
basicno3$duploc <- dupch2 
rm(dupch, dupch2) 
basicno3 <- subset(basicno3, duploc==FALSE) 
basicno3 <- subset (basicno3, select = c(x,y,jaar,avgno3)) 
# NB: this operation removes (18960-18949=) 11 duplicate locations 
 
# transform avgno3 and add log10no3 as a field 
basicno3$log10no3 <- log10(basicno3$avgno3) 
 
# convert data frame to SpatialPointsDataFrame and assign 'dutch' projection 
coordinates(basicno3) <- ~ x+y 
proj4string(basicno3) <- CRS("+init=epsg:28992") 
rm(no3xy) 
gc() # clean up memory 
 
# Read auxiliary data and make an archive ON (“Object Nest”) with it  
# read first continuous regional map data for south 
# om = organic matter, 8 maps at different depths 
om05 <- readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_os5") 
ON <- om05 
ON$om05 = ON$band1 
ON$band1 = NULL 
rm(om05) 
 
ON$om10 <- readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_os10")$band1 
ON$om25 <- readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_os25")$band1 
ON$om40 <- readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_os40")$band1 
ON$om60 <- readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_os60")$band1 
ON$om80 <- readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_os80")$band1 
ON$om100 <- readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_os100")$band1 
ON$om120 <- readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_os120")$band1 
ON$stone5 <- readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_stone05n")$band1 
ON$stone6 <- readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_stone06n")$band1 
ON$stone7 <- readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_stone07n")$band1 
ON$stone8 <- readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_stone08n")$band1 
ON$nhx <- readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_nh3_10")$band1 
ON$ahn <- readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_ahn")$band1 
ON$kwel2 <- readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_kwel2")$band1 
gc() 
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gc() 
# remark: in the maps with organic matter, om = -9 occurs!  
# replace this with om = NA (concerns built up area)  
ON$om05[ON$om05<0] <- NA 
ON$om10[ON$om10<0] <- NA 
ON$om25[ON$om25<0] <- NA 
ON$om40[ON$om40<0] <- NA 
ON$om60[ON$om60<0] <- NA 
ON$om80[ON$om80<0] <- NA 
ON$om100[ON$om100<0] <- NA 
ON$om120[ON$om120<0] <- NA 
gc() 
gc() 
 
# groundwater tables; as factor 
ON$gt06 <- as.factor(readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_gt06")$band1) 
ON$bbg06 <- 
+ as.factor(readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_bbg06")$band1) 
ON$gronds <- 
+ as.factor(readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_gronds")$band1) 
ON$pawn <-as.factor(readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_pawn")$band1) 
ON$lgn6 <- as.factor(readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_lgn6")$band1) 
ON$geom <- 
+ as.factor(readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_aggeom")$band1) 
ON$draf <- 
+ as.factor(readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_drwst_afw")$band1) 
ON$dront<- 
+ as.factor(readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_drwst_ontw")$band1) 
ON$laf <- as.factor(readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_l_afw")$band1) 
ON$lont <- 
+ as.factor(readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_l_ontw")$band1) 
ON$slaf <- 
+ as.factor(readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_slafst_afw")$band1) 
ON$slont <- 
+ as.factor(readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_slafst_ontw")$band1) 
ON$vds <- as.factor(readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/Afstuderen/Data/south/s_vds")$band1) 
gc() 
gc() 
gc() 
proj4string(ON) <- CRS("+init=epsg:28992") # assign dutch projection 
 
# The GRID "ON" now contains all auxiliary data, these values must be added to  
# the point selection of basicno3 
# overlay with measurement data to pointfile (from package "sp": command 'over') 
ovlall <- over(basicno3, ON) 
basicno3$om05 <- ovlall$om05 
basicno3$om10 <- ovlall$om10 
basicno3$om25 <- ovlall$om25 
basicno3$om40 <- ovlall$om40 
basicno3$om60 <- ovlall$om60 
basicno3$om80 <- ovlall$om80 
basicno3$om100 <- ovlall$om100 
basicno3$om120 <- ovlall$om120 
basicno3$stone5 <- ovlall$stone5 
basicno3$stone6 <- ovlall$stone6 
basicno3$stone7 <- ovlall$stone7 
basicno3$stone8 <- ovlall$stone8 
basicno3$nhx <- ovlall$nhx 
basicno3$gt06 <-ovlall$gt06 
basicno3$ahn <- ovlall$ahn 
basicno3$bbg06 <- ovlall$bbg06 
basicno3$gronds <- ovlall$gronds 
basicno3$kwel2 <- ovlall$kwel2 
basicno3$pawn <-ovlall$pawn 
basicno3$lgn6 <-ovlall$lgn6 
basicno3$geom <-ovlall$geom 
basicno3$draf <-ovlall$draf 
basicno3$dront <-ovlall$dront 
basicno3$laf <-ovlall$laf 
basicno3$lont <-ovlall$lont 
basicno3$slaf <-ovlall$slaf 
basicno3$slont <-ovlall$slont 
basicno3$vds <-ovlall$vds 
rm(ovlall) 
 
# data clean-up, to assure every point in the measuring set has data in all covariate  
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# layers, also prevent problems with unequal nr of residuals later: 
# select only those pts within the region "south"; these have a value, others don't   
# check with summary(basicno3south) where NA's occur.  
# clean missing data: some pts do not have a value for map ahn,kwel2 and om10  
# use only those points that have coverage in the organic matter map 
basicno3south <- subset(basicno3, basicno3$om10 > 0)  
basicno3south <- subset(basicno3south, basicno3$gt06 > 0) 
# Next, dispose of points with 'NA' data in ahn-map 
basicno3south <- subset(basicno3south, (basicno3south$ahn >= min(basicno3south$ahn, na.rm=T))) 
# dispose of points with 'NA' data in kwel2-map 
basicno3south <- subset(basicno3south, (basicno3south$kwel2 >= min(basicno3south$ahn, na.rm=T)))  
# dispose of points with 'NA' data in stone-map 
basicno3south <- subset(basicno3south, basicno3south$stone5 != "")  
# note: 125 points, 2% of total (mostly 2008 (#64)) 
# examine these missing points in: stonmiss <- subset(basicno3south, is.na  
# (basicno3south$stone5)) 
# dispose of points with 'NA' data in draf-map 
basicno3south <- subset(basicno3south, basicno3south$draf != "")  
# dispose of points with 'NA' data in dront-map 
basicno3south <- subset(basicno3south, basicno3south$dront != "")  
# dispose of points with 'NA' in geom-map 
basicno3south <- subset(basicno3south, basicno3south$geom != "")  
#clean up memory a bit 
rm(basicno3) 
gc() 
gc() 
gc() 
gc() 
 
# work with 2008 data 
south.2008 <- subset(basicno3south,jaar==2008) 
rm(basicno3south) 
summary(south.2008) 
 
# any missing data or empty levels? --> use drop.levels  
table(south.2008$gt06) 
south.2008$gt06 <- droplevels(south.2008$gt06) 
table(south.2008$bbg06) 
south.2008$bbg06 <- droplevels(south.2008$bbg06) 
table(south.2008$pawn) 
south.2008$pawn <- droplevels(south.2008$pawn) 
table(south.2008$gronds) 
south.2008$gronds <- droplevels(south.2008$gronds) 
table(south.2008$lgn6) 
south.2008$lgn6 <- droplevels(south.2008$lgn6) 
table(south.2008$geom) 
south.2008$geom <- droplevels(south.2008$geom) 
table(south.2008$draf) 
south.2008$draf <- droplevels(south.2008$draf) 
table(south.2008$dront) 
south.2008$dront <- droplevels(south.2008$dront) 
table(south.2008$laf) 
south.2008$laf <- droplevels(south.2008$laf) 
table(south.2008$lont) 
south.2008$lont <- droplevels(south.2008$lont) 
table(south.2008$slaf) 
south.2008$slaf <- droplevels(south.2008$slaf) 
table(south.2008$slont) 
south.2008$slont <- droplevels(south.2008$slont) 
table(south.2008$vds) 
south.2008$vds <- droplevels(south.2008$vds) 
 
## commence stepwise regression 
 
south.2008.mod <- lm(log10no3 ~ . -x -y -jaar -avgno3, data=south.2008) 
summary(south.2008.mod) # basic model; includes all possible variables 
# now optimize with stepwise deletion (automatic determination of most significant parameters  
# yields best lm; k-factor=penalty factor) 
south.2008.mod2 <- step(south.2008.mod, k=4) # optimized model 
summary(south.2008.mod2) 
 
## plot some diagnostics 
# draw QQ-plot 
qqnorm(residuals(south.2008.mod2), main="residuals south.2008.mod2") 
qqline(residuals(south.2008.mod2)) 
# draw plot of residuals with predictions 

Page 73 of 175 



Regression Kriging of nitrate levels in upper groundwater in Dutch sandy soils 
 

south.2008$pred <- predict(south.2008.mod2) 
plot(south.2008$log10no3,south.2008$pred) 
plot(south.2008$pred,residuals(south.2008.mod2)) 
 
# check influence of x-y coordinates given last two plots: results in worse fit 
# maybe spatial dependency given the decrease in residuals with increasing no3 values 
 
if(T){ 
+  south.2008.mod2xy <- lm(formula = log10no3 ~ x + y + om05 + om10 + om40 + om60 + gt06 + stone5+ 
+  stone6 + stone7 + nhx  + bbg06 + kwel2 + lgn6 + geom + slaf + draf, data = south.2008)) 
  summary(south.2008.mod2xy) 
  south.2008$pred.xy <- predict(south.2008.mod2xy) 
  plot(south.2008$log10no3,south.2008$pred.xy,xlim=c(0,3),ylim=c(0,3)) 
  plot(south.2008$pred.xy,residuals(south.2008.mod2xy)) 
} 
 
# conclusion: a small influence of y-coordinates exists : avgno3 decreases with y- 
# coordinate increase; this means that the more south the higher nitrate will be 
 
################################### 
# data clean up, to save memory, first save large file and reload 
save(ON, file="ON") 
rm(ON) 
gc() 
gc() 
load("ON") 
names(ON) 
summary(ON) 
# clean up unused data to liberate memory (beware: specify anew for each model): 
ON$om25 <- NULL 
ON$om80 <- NULL 
ON$om100 <- NULL 
ON$om120 <- NULL 
ON$stone8 <- NULL 
ON$gronds <- NULL 
ON$pawn <- NULL 
ON$dront <- NULL 
ON$lont <- NULL 
ON$laf <- NULL 
ON$slont <- NULL 
ON$vds <- NULL 
 
gc() 
gc() 
gc() 
gc() 
 
# construct dataframe df.ON and move all NA data to df.ON.NA, on which no predictions take place  
# x,y from bbox(ON) 
df.ON <- expand.grid(x=seq(73876, by=25,length = 5582),y=seq(337773, by=25,length = 3566))  
 
# merge covariate data from ON to df.ON 
df.ON <- cbind(df.ON, ON@data) 
 
# check "ON" for categorical variables with missing observations in south.2008 
table(south.2008$gt06) 
#  0   2   4   5   6   7   8   9  10  11  
# 12  48 265 123  56 411 290 670 590  58  
table(ON$gt06) 
#       0       1       2       3       4       5       6       7       8       9      10      11  
# 1005884   17456  170603    8343  994555  297245  221240 1280750  554267 2135791 1717174  694479  
# in ON classes exist for which there are no observations in the sample data (levels 1 & 3) 
 
Likewise for the other categorical variables: 
table(south.2008$bbg06) 
# 11   51   60   61   62  
# 12 2272  190   38   11  
 
table(south.2008$lgn6) 
#   1   2   3   4   5   6  10  11  12  25  26  35  36  37  38  39  40  45  61  
# 747 534 126  79 184 545  41 105  91   1   1   1  15   6   7  19   2  12   7  
 
table(south.2008$geom) 
# 6   7   8  10  12  13  14  15  16  22  
# 6  81 225  58 310 898 583  31 324   7  
table(south.2008$draf) 
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# 3    4    5    6    7  
#42  398 1321  732   30  
table(south.2008$slaf) 
# 2   3   4   5   6   7   8   9  
# 1   8  14  65 297 950 780 408  
 
# now remove all NA's for gt06 from df.ON  
df.ON.NA <- df.ON[is.na(df.ON$gt06),] 
df.ON <- df.ON[!is.na(df.ON$gt06),] 
gc() 
gc() 
 
# factor variables in south.2008.mod2 are: gt06, bbg06, lgn6, geom, draf, slaf 
# levels in gt06 for 2008 are:  
table(south.2008$gt06) 
#  0   2   4   5   6   7   8   9  10  11  
# 12  48 265 123  56 411 290 670 590  58  
 
# commence removal until all levels are processed 
gt06.levels <- levels(south.2008$gt06) 
ON.levels <- levels(df.ON$gt06) 
dim(df.ON) 
for (ii in 1:length(ON.levels)){ 
  if (sum(ON.levels[ii]==gt06.levels)==0) 
    df.ON$gt06[df.ON$gt06==ON.levels[ii]] <- NA 
} 
if(sum(is.na(df.ON$gt06)>0)) { 
  df.ON.NA <- rbind(df.ON.NA,df.ON[is.na(df.ON$gt06),]) 
  df.ON <- df.ON[!is.na(df.ON$gt06),] 
}   
gc() 
gc() 
 
#repeat for other factor variables: 
lgn6.levels <- levels(south.2008$lgn6) 
ON.levels <- levels(df.ON$lgn6) 
dim(df.ON) 
for (ii in 1:length(ON.levels)){ 
 if (sum(ON.levels[ii]==lgn6.levels)==0) 
   df.ON$lgn6[df.ON$lgn6==ON.levels[ii]] <- NA 
} 
if(sum(is.na(df.ON$lgn6)>0)) { 
 print(sum(is.na(df.ON$lgn6)>0)) 
 df.ON.NA <- rbind(df.ON.NA,df.ON[is.na(df.ON$lgn6),]) 
 df.ON <- df.ON[!is.na(df.ON$lgn6),] 
}   
gc() 
gc() 
 
bbg06.levels <- levels(south.2008$bbg06) 
ON.levels <- levels(df.ON$bbg06) 
dim(df.ON) 
for (ii in 1:length(ON.levels)){ 
  if (sum(ON.levels[ii]==bbg06.levels)==0) 
    df.ON$bbg06[df.ON$bbg06==ON.levels[ii]] <- NA 
} 
if(sum(is.na(df.ON$bbg06)>0)) { 
  print(sum(is.na(df.ON$bbg06)>0)) 
  df.ON.NA <- rbind(df.ON.NA,df.ON[is.na(df.ON$bbg06),]) 
  df.ON <- df.ON[!is.na(df.ON$bbg06),] 
}   
gc() 
gc() 
 
geom.levels <- levels(south.2008$geom) 
ON.levels <- levels(df.ON$geom) 
dim(df.ON) 
for (ii in 1:length(ON.levels)){ 
  if (sum(ON.levels[ii]==geom.levels)==0) 
    df.ON$geom[df.ON$geom==ON.levels[ii]] <- NA 
} 
if(sum(is.na(df.ON$geom)>0)) { 
  print(sum(is.na(df.ON$geom)>0)) 
  df.ON.NA <- rbind(df.ON.NA,df.ON[is.na(df.ON$geom),]) 
  df.ON <- df.ON[!is.na(df.ON$geom),] 
}   
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gc() 
gc() 
 
draf.levels <- levels(south.2008$draf) 
ON.levels <- levels(df.ON$draf) 
dim(df.ON) 
for (ii in 1:length(ON.levels)){ 
  if (sum(ON.levels[ii]==draf.levels)==0) 
    df.ON$draf[df.ON$draf==ON.levels[ii]] <- NA 
} 
if(sum(is.na(df.ON$draf)>0)) { 
  print(sum(is.na(df.ON$draf)>0)) 
  df.ON.NA <- rbind(df.ON.NA,df.ON[is.na(df.ON$draf),]) 
  df.ON <- df.ON[!is.na(df.ON$draf),] 
}   
 
gc() 
gc() 
gc() 
gc() 
 
slaf.levels <- levels(south.2008$slaf) 
ON.levels <- levels(df.ON$slaf) 
dim(df.ON) 
for (ii in 1:length(ON.levels)){ 
  if (sum(ON.levels[ii]==slaf.levels)==0) 
    df.ON$slaf[df.ON$slaf==ON.levels[ii]] <- NA 
} 
if(sum(is.na(df.ON$slaf)>0)) { 
  print(sum(is.na(df.ON$slaf)>0)) 
  df.ON.NA <- rbind(df.ON.NA,df.ON[is.na(df.ON$slaf),]) 
  df.ON <- df.ON[!is.na(df.ON$slaf),] 
}   
gc() 
gc() 
gc() 
gc() 
 
# add empty field 'pred' to df.ON.NA 
df.ON.NA$pred <- NA 
 
# predict values for all valid locations in df.ON 
df.ON$pred <- predict(south.2008.mod2,df.ON) 
gc() 
gc() 
gc() 
gc() 
 
# combine the two data frames 
df.ON.pred <- rbind(df.ON,df.ON.NA) 
gc() 
gc() 
 
rm(df.ON, df.ON.NA) # can both be removed 
 
# re-order x and y in combined data frame 
df.ON.pred <- df.ON.pred[order(df.ON.pred$y, df.ON.pred$x),] 
gc() 
gc() 
 
# add (df.ON.pred["pred"]) to ON; this will be the prediction grid mask 
ON$pred <- df.ON.pred$pred 
names(ON) 
gc() 
gc() 
 
# temporally save dataframes and remove from memory to enable the kriging calculation 
save(ON, file="ON") 
save(df.ON.pred, file="df.ON.pred") 
 
gc() 
gc() 
gc() 
gc() 
gc() 
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# export to Asciigrid for display in ArcGIS 
ON$btpred <- 10^(ON$pred) # !transform, only valid for quick scan, grid is also used as mask for 
kriging! 
writeGDAL(ON["btpred"], "R:/MIL/Werkmappen/jongdc/GIMA/modeloutput/south/2008/s_mask08.gtif", 
drivername = "GTiff", type= "Float32", mvFlag=-9999) 
# free memory 
rm(ON, df.ON.pred) 
gc() 
gc() 
gc() 
gc() 
 
### Kriging 
 
# add column with residuals to south.2008 
south.2008$residuals <- residuals(south.2008.mod2) 
 
# calculate variogram of residuals 2008 
g.res <- gstat(formula = residuals ~1, data = south.2008) 
vg.res <- variogram(g.res, boundaries = c(25,50,75,100,150,250,350,500,750,1000,1500,4000))  
# check range; zoom in when needed  
plot(vg.res, plot.nu = T) 
vgm.res <- vgm(nugget=0.10, psill=0.20, range=2000, model="Exp")  
 
# adapt to fit with correct variogram parameter 
vgm.res <- fit.variogram(vg.res,vgm.res) 
plot(vg.res, vgm.res, plot.nu = T, main = "Residuals") 
 
#load mask for prediction locations 
predgrid <- readGDAL("R:/MIL/Werkmappen/jongdc/GIMA/modeloutput/south/2008/s_mask08.gtif") 
proj4string(predgrid) <- CRS("+init=epsg:28992") 
 
# point kriging of residuals 
system.time(df.ON.kr <- krige(residuals ~1, south.2008, newdata = predgrid, vgm.res, nmax=100, 
+ debug.level=-1)) 
names(df.ON.kr)[1] = "res.pred" 
names(df.ON.kr)[2] = "res.var" 
names(df.ON.kr) 
 
# kriging above takes about 77 minutes of calculation time (jaar=2008, nmax=100) 
gc() 
gc() 
gc() 
 
# now add regression prediction df.ON.pred to residual kriging prediction (df.ON.kr)  
load("df.ON.pred") 
 
df.ON.kr$pred <- df.ON.pred$pred + df.ON.kr$res.pred 
df.ON.kr$var <- df.ON.kr$res.var 
df.ON.kr$sd <- sqrt(df.ON.kr$var) 
 
# Backtransform predicted logno3; make new variable btfno3 
df.ON.kr$btfno3 <- 10^(df.ON.kr$pred+0.5*df.ON.kr$var) # for log10 
gc() 
gc() 
gc() 
 
# export grids for further use in GIS 
 
writeGDAL(df.ON.kr["btfno3"], 
+ "R:/MIL/Werkmappen/jongdc/GIMA/modeloutput/south/2008/s_btno3_08.tif", drivername = "GTiff", 
+ type= "Float32", mvFlag=-9999) 
writeGDAL(df.ON.kr["var"], "R:/MIL/Werkmappen/jongdc/GIMA/modeloutput/south/2008/s_var_08.tif", 
+ drivername = "GTiff", type= "Float32", mvFlag=-9999) 
writeGDAL(df.ON.kr["sd"], "R:/MIL/Werkmappen/jongdc/GIMA/modeloutput/south/2008/s_sd_08.tif", 
+ drivername = "GTiff", type= "Float32", mvFlag=-9999) 
 
#save final products regression kriging south 2008 
 
save(df.ON.kr, file="R:/MIL/Werkmappen/jongdc/GIMA/modeloutput/south/2008/df.ON.kr.s08") 
save(south.2008, file="R:/MIL/Werkmappen/jongdc/GIMA/modeloutput/south/2008/south.2008") 
save(south.2008.mod2, file="R:/MIL/Werkmappen/jongdc/GIMA/modeloutput/south/2008/south.2008.mod2") 
save(vgm.res, file="R:/MIL/Werkmappen/jongdc/GIMA/modeloutput/south/2008/south.2008.vgm.res") 
save(vg.res, file="R:/MIL/Werkmappen/jongdc/GIMA/modeloutput/south/2008/south.2008.vg.res") 
save(g.res, file="R:/MIL/Werkmappen/jongdc/GIMA/modeloutput/south/2008/south.2008.g.res") 
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## Uncertainties 
 
# check if still loaded in memory, otherwise: 
load("R:/MIL/Werkmappen/jongdc/GIMA/modeloutput/south/2008/df.ON.kr.s08") 
# calculate 2.5% lower boundary 
df.ON.kr$lb <- df.ON.kr$pred - 1.96 * df.ON.kr$sd 
# calculate 97.5% upper boundary 
df.ON.kr$ub <- df.ON.kr$pred + 1.96 * df.ON.kr$sd 
 
# Backtransform LB predicted logno3;  
df.ON.kr$lbtr <- 10^(df.ON.kr$lb) # for log10 
df.ON.kr$ubtr <- 10^(df.ON.kr$ub) #  for log10 
# Determine conf95% range:  
df.ON.kr$conf95 <- df.ON.kr$ubtr - df.ON.kr$lbtr 
 
 
# export grids for use in GIS 
writeGDAL(df.ON.kr["lbtr"], "R:/MIL/Werkmappen/jongdc/GIMA/modeloutput/south/2008/s_lb_08.tif", 
+ drivername = "GTiff", type= "Float32", mvFlag=-9999) 
writeGDAL(df.ON.kr["ubtr"], "R:/MIL/Werkmappen/jongdc/GIMA/modeloutput/south/2008/s_ub_08.tif", 
+ drivername = "GTiff", type= "Float32", mvFlag=-9999) 
writeGDAL(df.ON.kr["conf95"], 
+ "R:/MIL/Werkmappen/jongdc/GIMA/modeloutput/south/2008/s_wiconf_08.tif", drivername = "GTiff", 
+ type= "Float32", mvFlag=-9999) 
 
### Crossvalidation  
 
# Leave one out crossvalidation (LOOCV); takes a while... 
south.2008.cv <- krige.cv(residuals~1, south.2008, model = vgm.res, nmax=100, nfold = 
+ nrow(south.2008)) 
 
summary(south.2008.cv) 
var(south.2008.cv$zscore) 
mean(south.2008.cv$zscore) 
hist(south.2008.cv$zscore) 
bubble(south.2008.cv, z="residual") 
 
# save LooCV results 
save(south.2008.cv, file="R:/MIL/Werkmappen/jongdc/GIMA/modeloutput/south/2008/south.2008.cv") 
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- Script for nationwide model (requires 4 regional runs) 
 
# Nationwide model 
# RK script, GIMA-thesis Cor de Jong  
# directories adapted to windows environment "S:/R/jongdc/GIMA/Data/"  
# Linux-Rstudio-server uses different directory paths () 
# 
### up to line 560 script is generic! Calculation per region after then! 
# When model is still in memory (only valid for equal years), repeat with same variogramme 
 
## STEP 1: SAMPLE DATA 
 
rm(list = objects()) 
 
# assign working directory 
# located at network drive at RIVM  
setwd("S:/R/jongdc/GIMA/Data/VelddataLMM") 
# linux: setwd(dir = "/s-schijf/jongdc/GIMA/Data/VelddataLMM") 
 
# load libraries 
library(sp) 
library(gstat) 
library(rgdal) 
library(foreign) 
library(lattice) 
library(raster) 
library(maptools) 
 
# read data (field file having nitrachek measurements 2006-2010) 
no3xy <- read.table(file = "xyavgno3_3.txt", header = T, sep = "\t") 
no3xy$avgno3 <- no3xy$avgNO3 
no3xy$jaar <- no3xy$Jaar 
# Make subset with essential data 
basicno3 <- subset (no3xy, select = c(x, y, jaar, avgno3)) 
basicno3 <- subset (basicno3, jaar == 2007 | jaar == 2008 | jaar == 2009) 
 
# Check for and find duplicate locations 
dupch <- data.frame(X=basicno3$x, Y=basicno3$y) 
dupch2 <- duplicated(dupch) 
basicno3$duploc <- dupch2 
rm(dupch, dupch2) 
basicno3 <- subset(basicno3, duploc == FALSE) 
basicno3 <- subset (basicno3, select = c(x, y, jaar, avgno3)) 
# NB: this operation has removed (18960-18949 = ) 11 duplicate locations 
 
# add log10no3 as a field 
basicno3$log10no3 <- log10(basicno3$avgno3) 
 
# convert table to pointmap and assign 'dutch' projection 
coordinates(basicno3) <- ~ x+y 
proj4string(basicno3) <- CRS("+init=epsg:28992") 
 
rm(no3xy) 
gc() 
 
##  STEP 2: OVERLAYS 
 
# The GRIDS "NON", "EON", "CON" and "SON" now contain all auxiliary data, these values must be  
# added to the point selection of basicno3 
# overlay with measurement data to pointfile (from package "sp": command 'over') 
 
# EAST 
 
load("S:/R/jongdc/GIMA/Data/modeloutput/all4/NON") 
load("S:/R/jongdc/GIMA/Data/modeloutput/all4/EON") 
load("S:/R/jongdc/GIMA/Data/modeloutput/all4/CON2") 
load("S:/R/jongdc/GIMA/Data/modeloutput/all4/SON") 
 
# overlay spatialpointsdataframe "basicno3" with spatialgriddataframes "NON, EON, CON, # SON" to  
# obtain pointvalues 
# check for same CRS (with identicalCRS(x,y)), if FALSE then assign again with proj4string(object) 
# <- CRS("+init=epsg:28992") 
 
proj4string(NON) <- CRS("+init=epsg:28992") 
north <- over(basicno3, NON) 
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proj4string(EON) <- CRS("+init=epsg:28992") 
east <- over(basicno3, EON) 
proj4string(CON) <- CRS("+init=epsg:28992") 
centre <- over(basicno3, CON) 
proj4string(SON) <- CRS("+init=epsg:28992") 
south <- over(basicno3, SON) 
 
# make regional files from basicno3 
northpoints <- basicno3 
eastpoints <- basicno3 
centrepoints <- basicno3 
southpoints <- basicno3 
 
# 1 of 4 add overlay data to regional files; NORTH 
 
northpoints$om05 <- north$om05 
northpoints$om10 <- north$om10 
northpoints$om25 <- north$om25 
northpoints$om40 <- north$om40 
northpoints$om60 <- north$om60 
northpoints$om80 <- north$om80 
northpoints$om100 <- north$om100 
northpoints$om120 <- north$om120 
northpoints$stone5 <- north$stone5 
northpoints$stone6 <- north$stone6 
northpoints$stone7 <- north$stone7 
northpoints$stone8 <- north$stone8 
northpoints$nhx <- north$nhx 
northpoints$gt06 <-north$gt06 
northpoints$ahn <- north$ahn 
northpoints$bbg06 <- north$bbg06 
northpoints$gronds <- north$gronds 
northpoints$kwel2 <- north$kwel2 
northpoints$pawn <-north$pawn 
northpoints$lgn6 <-north$lgn6 
northpoints$geom <-north$geom 
northpoints$draf <-north$draf 
northpoints$dront <-north$dront 
northpoints$laf <-north$laf 
northpoints$lont <-north$lont 
northpoints$slaf <-north$slaf 
northpoints$slont <-north$slont 
northpoints$vds <-north$vds 
rm(north) 
 
# data clean-up, to assure every point in the measuring set has data in all covariate # layers,  
# also prevent problems with unequal # of residuals later 
# check with summary(northpoints) where NA's occur 
 
northpoints <- subset(northpoints,northpoints$om10 > 0)  
northpoints <- subset(northpoints,(northpoints$ahn >= min(northpoints$ahn, na.rm=T)))  
northpoints <- subset(northpoints,(northpoints$kwel2 >= min(northpoints$kwel2,  na.rm=T))) 
northpoints <- subset(northpoints, northpoints$stone5 != "") 
northpoints <- subset(northpoints, northpoints$draf != "")  
northpoints <- subset(northpoints, northpoints$dront != "") 
northpoints <- subset(northpoints, northpoints$geom != "")  
#clean up memory  
rm(basicno3) 
gc() 
gc() 
gc() 
gc() 
 
# 2 of 4 add overlay data to regional files; EAST 
 
eastpoints$om05 <- east$om05 
eastpoints$om10 <- east$om10 
eastpoints$om25 <- east$om25 
eastpoints$om40 <- east$om40 
eastpoints$om60 <- east$om60 
eastpoints$om80 <- east$om80 
eastpoints$om100 <- east$om100 
eastpoints$om120 <- east$om120 
eastpoints$stone5 <- east$stone5 
eastpoints$stone6 <- east$stone6 
eastpoints$stone7 <- east$stone7 
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eastpoints$stone8 <- east$stone8 
eastpoints$nhx <- east$nhx 
eastpoints$gt06 <-east$gt06 
eastpoints$ahn <- east$ahn 
eastpoints$bbg06 <- east$bbg06 
eastpoints$gronds <- east$gronds 
eastpoints$kwel2 <- east$kwel2 
eastpoints$pawn <-east$pawn 
eastpoints$lgn6 <-east$lgn6 
eastpoints$geom <-east$geom 
eastpoints$draf <-east$draf 
eastpoints$dront <-east$dront 
eastpoints$laf <-east$laf 
eastpoints$lont <-east$lont 
eastpoints$slaf <-east$slaf 
eastpoints$slont <-east$slont 
eastpoints$vds <-east$vds 
rm(east) 
 
# data clean-up 
eastpoints <- subset(eastpoints, eastpoints$om10 > 0 
eastpoints <- subset(eastpoints, eastpoints$$ahn >= min(eastpoints$ahn, na.rm=T))) 
eastpoints <- subset(eastpoints, eastpoints$kwel2 >= min(eastpoints$kwel2, na.rm=T))) 
eastpoints <- subset(eastpoints, eastpoints$stone5 != "") 
eastpoints <- subset(eastpoints, eastpoints$draf != "")  
eastpoints <- subset(eastpoints, eastpoints$dront != "")  
eastpoints <- subset(eastpoints, eastpoints$geom != "")  
 
# 3 of 4 add overlay data to regional files; CENTRE 
 
centrepoints$om05 <- centre$om05 
centrepoints$om10 <- centre$om10 
centrepoints$om25 <- centre$om25 
centrepoints$om40 <- centre$om40 
centrepoints$om60 <- centre$om60 
centrepoints$om80 <- centre$om80 
centrepoints$om100 <- centre$om100 
centrepoints$om120 <- centre$om120 
centrepoints$stone5 <- centre$stone5 
centrepoints$stone6 <- centre$stone6 
centrepoints$stone7 <- centre$stone7 
centrepoints$stone8 <- centre$stone8 
centrepoints$nhx <- centre$nhx 
centrepoints$gt06 <-centre$gt06 
centrepoints$ahn <- centre$ahn 
centrepoints$bbg06 <- centre$bbg06 
centrepoints$gronds <- centre$gronds 
centrepoints$kwel2 <- centre$kwel2 
centrepoints$pawn <-centre$pawn 
centrepoints$lgn6 <-centre$lgn6 
centrepoints$geom <-centre$geom 
centrepoints$draf <-centre$draf 
centrepoints$dront <-centre$dront 
centrepoints$laf <-centre$laf 
centrepoints$lont <-centre$lont 
centrepoints$slaf <-centre$slaf 
centrepoints$slont <-centre$slont 
centrepoints$vds <-centre$vds 
rm(centre) 
 
# data clean-up 
centrepoints <- subset(centrepoints, centrepoints$om10 > 0)  
centrepoints <- subset(centrepoints, centrepoints$ahn >= min(centrepoints$ahn, na.rm=T))) 
centrepoints <- subset(centrepoints, centrepoints$kwel2 >= min(centrepoints$kwel2, na.rm=T))) 
centrepoints <- subset(centrepoints, centrepoints$stone5 != "") 
centrepoints <- subset(centrepoints, centrepoints$draf != "")  
centrepoints <- subset(centrepoints, centrepoints$dront != "") 
centrepoints <- subset(centrepoints, centrepoints$geom != "")  
 
# 4 of 4 add overlay data to regional files; SOUTH 
 
southpoints$om05 <- south$om05 
southpoints$om10 <- south$om10 
southpoints$om25 <- south$om25 
southpoints$om40 <- south$om40 
southpoints$om60 <- south$om60 
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southpoints$om80 <- south$om80 
southpoints$om100 <- south$om100 
southpoints$om120 <- south$om120 
southpoints$stone5 <- south$stone5 
southpoints$stone6 <- south$stone6 
southpoints$stone7 <- south$stone7 
southpoints$stone8 <- south$stone8 
southpoints$nhx <- south$nhx 
southpoints$gt06 <-south$gt06 
southpoints$ahn <- south$ahn 
southpoints$bbg06 <- south$bbg06 
southpoints$gronds <- south$gronds 
southpoints$kwel2 <- south$kwel2 
southpoints$pawn <-south$pawn 
southpoints$lgn6 <-south$lgn6 
southpoints$geom <-south$geom 
southpoints$draf <-south$draf 
southpoints$dront <-south$dront 
southpoints$laf <-south$laf 
southpoints$lont <-south$lont 
southpoints$slaf <-south$slaf 
southpoints$slont <-south$slont 
southpoints$vds <-south$vds 
rm(south) 
 
# data clean-up 
 
southpoints <- subset(southpoints, southpoints$om10 > 0)  
southpoints <- subset(southpoints, southpoints$ahn >= min(southpoints$ahn, na.rm=T))) 
southpoints <- subset(southpoints, southpoints$kwel2 >= min(southpoints$kwel2, na.rm=T))) 
southpoints <- subset(southpoints, southpoints$stone5 != "")  
southpoints <- subset(southpoints, southpoints$draf != "")  
southpoints <- subset(southpoints, southpoints$dront != "") 
southpoints <- subset(southpoints, southpoints$geom != "")  
 
 
# STEP 3 Combine regional pointfiles to one file 
### 
all.regions <- rbind.SpatialPointsDataFrame(northpoints, eastpoints, centrepoints, southpoints) 
### 
# start modelling LM for one year: select 2007, 2008 or 2009 
### 
 
all.regions.2009 <- subset(all.regions, all.regions$jaar == 2009) 
 
summary(all.regions.2009) 
 
### prepare for LM 
 
table(all.regions.2009$gt06) 
all.regions.2009$gt06 <- droplevels(all.regions.2009$gt06) 
levels(all.regions.2009$gt06) 
table(all.regions.2009$pawn) 
# zorgt later voor NA, verwijderen 1 los record 
all.regions.2009 <- subset(all.regions.2009, all.regions.2009$pawn !=21) 
all.regions.2009$pawn <- droplevels(all.regions.2009$pawn) 
table(all.regions.2009$gronds) 
all.regions.2009$gronds <- droplevels(all.regions.2009$gronds) 
table(all.regions.2009$lgn6)  # missing levels? 
all.regions.2009 <- subset(all.regions.2009, all.regions.2009$lgn6 !=28) 
all.regions.2009 <- subset(all.regions.2009, all.regions.2009$lgn6 !=18) 
all.regions.2009$lgn6 <- droplevels(all.regions.2009$lgn6) 
table(all.regions.2009$lgn6) 
table(all.regions.2009$geom) 
all.regions.2009$geom <- droplevels(all.regions.2009$geom) 
table(all.regions.2009$draf) 
all.regions.2009$draf <- droplevels(all.regions.2009$draf) 
table(all.regions.2009$dront) 
all.regions.2009$dront <- droplevels(all.regions.2009$dront) 
table(all.regions.2009$laf) 
all.regions.2009$laf <- droplevels(all.regions.2009$laf) 
table(all.regions.2009$lont) 
all.regions.2009$lont <- droplevels(all.regions.2009$lont) 
table(all.regions.2009$slaf) 
all.regions.2009$slaf <- droplevels(all.regions.2009$slaf) 
table(all.regions.2009$slont) 
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all.regions.2009$slont <- droplevels(all.regions.2009$slont) 
table(all.regions.2009$vds) 
all.regions.2009$vds <- droplevels(all.regions.2009$vds) 
all.regions.2009 <- subset(all.regions.2009, all.regions.2009$vds !=12) 
table(all.regions.2009$bbg06) 
all.regions.2009$bbg06 <- droplevels(all.regions.2009$bbg06) 
levels(all.regions.2009$bbg06) 
summary(all.regions.2009$bbg06) 
 
# predict for 2009 
 
# commence stepwise regression 
all.regions.2009.mod <- lm(log10no3 ~ . -x -y -jaar -avgno3, data=all.regions.2009) 
summary(all.regions.2009.mod) 
# stepwise (improve lm; k-factor=penalty factor) 
all.regions.2009.mod2 <- step(all.regions.2009.mod, k=4) 
 
###################################################################################### 
## STEP 4 
 
# Treatment in 4 blocks; predict by region and krige with nationwide model 2009 
# run STEP 4 for each region, model and variogram do not change 
 
rm(SON,CON,EON,NON) 
# rm(*.levels); all unnecessary files) 
 
## first run: south; SON 
load("S:/R/jongdc/GIMA/Data/modeloutput/all4/SON") 
gc() 
gc() 
gc() 
 
 
# clean-up of unused covariates: 
# used are: stone5 + stone6 + stone7 + stone8 + nhx + gt06 + ahn + kwel2 + pawn + lgn6 + geom +  
# slaf + dront + vds 
# then unused are: om05,om10,om25,om40, om60, om80, om100, om120, gronds, bbg06, slont, laf, lont, 
draf 
SON$om05 <- NULL 
SON$om10 <- NULL 
SON$om25 <- NULL 
SON$om40 <- NULL 
SON$om60 <- NULL 
SON$om80 <- NULL 
SON$om100 <- NULL 
SON$om120 <- NULL 
SON$gronds <- NULL 
SON$bbg06 <- NULL 
SON$slont <- NULL 
SON$draf <- NULL 
SON$lont <- NULL 
SON$laf <- NULL 
gc() 
gc() 
gc() 
 
# make regional dataframe df.SON and split data into df.SON.NA (no predictions) and df.SON  
# (predictions) 
df.SON <- expand.grid(x=seq(73875.89,by=25,length=5582), y=seq(337772.81,by=25,length=3566))  
# x,y taken from extent(SON) 
# combine with covariate data from SON 
df.SON <- cbind(df.SON, SON@data) 
 
# remove all NA's in gt06 
df.SON.NA <- df.SON[is.na(df.SON$gt06),] 
df.SON <- df.SON[!is.na(df.SON$gt06),] 
gc() 
gc() 
 
# factor variables are gt06, lgn6, pawn, geom, slaf, dront, vds 
 
# levels present in gt06 for 2009:   
table(all.regions.2009$gt06) 
# 0    1    2    3    4    5    6    7    8    9   10   11  
#78   10  294   23  749  589  302  844  639 1351  730  112  
gt06.levels <- levels(all.regions.2009$gt06) 
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SON.levels <- levels(df.SON$gt06) 
dim(df.SON) 
for (ii in 1:length(SON.levels)){ 
  if (sum(SON.levels[ii]==gt06.levels)==0) 
    df.SON$gt06[df.SON$gt06==SON.levels[ii]] <- NA 
} 
if(sum(is.na(df.SON$gt06)>0)) { 
  df.SON.NA <- rbind(df.SON.NA,df.SON[is.na(df.SON$gt06),]) 
  df.SON <- df.SON[!is.na(df.SON$gt06),] 
}   
gc() 
gc() 
 
vds.levels <- levels(all.regions.2009$vds) 
SON.levels <- levels(df.SON$vds) 
dim(df.SON) 
for (ii in 1:length(SON.levels)){ 
  if (sum(SON.levels[ii]==vds.levels)==0) 
    df.SON$vds[df.SON$vds==SON.levels[ii]] <- NA 
} 
if(sum(is.na(df.SON$vds)>0)) { 
  print(sum(is.na(df.SON$vds)>0)) 
  df.SON.NA <- rbind(df.SON.NA,df.SON[is.na(df.SON$vds),]) 
  df.SON <- df.SON[!is.na(df.SON$vds),] 
}   
gc() 
gc() 
 
lgn6.levels <- levels(all.regions.2009$lgn6) 
SON.levels <- levels(df.SON$lgn6) 
dim(df.SON) 
for (ii in 1:length(SON.levels)){ 
 if (sum(SON.levels[ii]==lgn6.levels)==0) 
   df.SON$lgn6[df.SON$lgn6==SON.levels[ii]] <- NA 
} 
if(sum(is.na(df.SON$lgn6)>0)) { 
 print(sum(is.na(df.SON$lgn6)>0)) 
 df.SON.NA <- rbind(df.SON.NA,df.SON[is.na(df.SON$lgn6),]) 
 df.SON <- df.SON[!is.na(df.SON$lgn6),] 
}   
 
gc() 
gc() 
pawn.levels <- levels(all.regions.2009$pawn) 
SON.levels <- levels(df.SON$pawn) 
dim(df.SON) 
for (ii in 1:length(SON.levels)){ 
  if (sum(SON.levels[ii]==pawn.levels)==0) 
    df.SON$pawn[df.SON$pawn==SON.levels[ii]] <- NA 
} 
if(sum(is.na(df.SON$pawn)>0)) { 
  print(sum(is.na(df.SON$pawn)>0)) 
  df.SON.NA <- rbind(df.SON.NA,df.SON[is.na(df.SON$pawn),]) 
  df.SON <- df.SON[!is.na(df.SON$pawn),] 
}   
 
gc() 
gc() 
geom.levels <- levels(all.regions.2009$geom) 
SON.levels <- levels(df.SON$geom) 
dim(df.SON) 
for (ii in 1:length(SON.levels)){ 
  if (sum(SON.levels[ii]==geom.levels)==0) 
    df.SON$geom[df.SON$geom==SON.levels[ii]] <- NA 
} 
if(sum(is.na(df.SON$geom)>0)) { 
  print(sum(is.na(df.SON$geom)>0)) 
  df.SON.NA <- rbind(df.SON.NA,df.SON[is.na(df.SON$geom),]) 
  df.SON <- df.SON[!is.na(df.SON$geom),] 
}   
 
gc() 
gc() 
slaf.levels <- levels(all.regions.2009$slaf) 
SON.levels <- levels(df.SON$slaf) 
dim(df.SON) 
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for (ii in 1:length(SON.levels)){ 
  if (sum(SON.levels[ii]==slaf.levels)==0) 
    df.SON$slaf[df.SON$slaf==SON.levels[ii]] <- NA 
} 
if(sum(is.na(df.SON$slaf)>0)) { 
  print(sum(is.na(df.SON$slaf)>0)) 
  df.SON.NA <- rbind(df.SON.NA,df.SON[is.na(df.SON$slaf),]) 
  df.SON <- df.SON[!is.na(df.SON$slaf),] 
}   
 
gc() 
gc() 
dront.levels <- levels(all.regions.2009$dront) 
SON.levels <- levels(df.SON$dront) 
dim(df.SON) 
for (ii in 1:length(SON.levels)){ 
  if (sum(SON.levels[ii]==dront.levels)==0) 
    df.SON$dront[df.SON$dront==SON.levels[ii]] <- NA 
} 
if(sum(is.na(df.SON$dront)>0)) { 
  print(sum(is.na(df.SON$dront)>0)) 
  df.SON.NA <- rbind(df.SON.NA,df.SON[is.na(df.SON$dront),]) 
  df.SON <- df.SON[!is.na(df.SON$dront),] 
}   
 
gc() 
gc() 
 
 
# no removal of missing values from continuous variables (should not be any) 
df.SON.NA$pred <- NA 
df.SON$pred <- predict(all.regions.2009.mod2, df.SON) 
 
gc() 
gc() 
 
# combine both dataframes 
df.SON.pred <- rbind(df.SON, df.SON.NA) 
gc() 
gc() 
 
# reorder x and y in combined file 
df.SON.pred <- df.SON.pred[order(df.SON.pred$y, df.SON.pred$x),] 
gc() 
gc() 
gc() 
 
# add (df.SON.pred["pred"]) to SON   
SON$pred <- df.SON.pred$pred 
names(SON) 
gc() 
gc() 
gc() 
gc() 
gc() 
 
# temporalily save dataframes and remove from memory to free space for kriging calc 
 
save(df.SON.NA, file="S:/R/jongdc/GIMA/Data/modeloutput/all4/2009/df.SON.NA") 
save(df.SON.pred, file="S:/R/jongdc/GIMA/Data/modeloutput/all4/2009/df.SON.pred") 
rm(df.SON.NA, df.SON.pred) 
gc() 
gc() 
 
# save(SON, file="SON") 
# export to Asciigrid to examine in ArcGIS 
SON$btpred <- 10^(SON$pred) # ! just for quick look, image also in use for prediction locations 
writeGDAL(SON["btpred"], "S:/R/jongdc/GIMA/Data/modeloutput/all4/2009/all.regions.mask09s.tif", 
drivername = "GTiff", type= "Float32", mvFlag=-9999) 
# liberate memory 
rm(SON)  
rm(lgn6.levels, pawn.levels, slaf.levels, dront.levels, vds.levels, geom.levels, gt06.levels, 
SON.levels, ii) 
 
gc() 
gc() 
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gc() 
gc() 
 
### STEP 5  Kriging 
 
# Add field with recently calculated residuals from lm to all.regions.2009 
# check when ok, otherwise ignore 
 
all.regions.2009$residuals <- residuals(all.regions.2009.mod2) 
 
# kriging preparation --------------------------------------------------- 
 
 
# calculate variogram of residuals 2009; check if variogram is OK.  
# Should be equal for # every region in all.regions.2009! 
g.res <- gstat(formula = residuals ~1, data = all.regions.2009) 
vg.res <- variogram(g.res, boundaries = c(50,100,200,400,600,1000,1600,2400,3000)/5)  
 
# kriging range indicates kriging exerts especially a local effect  
 
plot(vg.res, plot.nu = T) 
vgm.res <- vgm(nugget=0.1, psill=0.20, range=600, model="Sph") #adjust to fit 
vgm.res <- fit.variogram(vg.res,vgm.res) 
 
win.graph(7, 5, 12) 
plot(vg.res, vgm.res, main = "Residuals", plot.nu = T) 
savePlot(filename="S:/R/jongdc/GIMA/Data/modeloutput/all4/2009/variogram all.regions north 2009", 
+ type="png") 
dev.off() 
 
#load prediction mask 
predgrid <-readGDAL("S:/R/jongdc/GIMA/Data/modeloutput/all4/2009/all.regions.mask09s.tif") 
proj4string(predgrid) <- CRS("+init=epsg:28992") 
 
# point kriging residual 
# sometimes an error occurs with singularity issues "Error in predict.gstat(g, newdata = predgrid, 
# block = block, nsim = nsim, : LDLfactor". 
# this applies to a restricted number of cells. To prevent losing all output, add the # following 
# command option to krige: "set=list(cn_max=1e10),"  
# commence kriging and keep time  
system.time(df.SON.kr <- krige(residuals ~1, all.regions.2009, newdata = predgrid, vgm.res, 
nmax=100, set=list(cn_max=1e10), debug.level=-1)) 
names(df.SON.kr)[1] = "res.pred" 
names(df.SON.kr)[2] = "res.var" 
names(df.SON.kr) 
 
gc() 
gc() 
gc() 
 
# add regression prediction(df.SON.pred)to residual kriging part (df.SON.kr)  
load("S:/R/jongdc/GIMA/Data/modeloutput/all4/2009/df.SON.pred") 
 
df.SON.kr$pred <- df.SON.pred$pred + df.SON.kr$res.pred 
df.SON.kr$var <- df.SON.kr$res.var 
df.SON.kr$sd <- sqrt(df.SON.kr$var) 
 
# Backtransform predicted logno3; make new variable btfno3 
df.SON.kr$btfno3 <- 10^(df.SON.kr$pred+0.5*df.SON.kr$var) # for log10 
 
gc() 
gc() 
gc() 
 
# export grids for use in GIS 
writeGDAL(df.SON.kr["btfno3"], "S:/R/jongdc/GIMA/Data/modeloutput/all4/2009/all4btno3_09s.tif", 
drivername = "GTiff", type= "Float32", mvFlag=-9999) 
writeGDAL(df.SON.kr["var"], "S:/R/jongdc/GIMA/Data/modeloutput/all4/2009/all4n_var_09s.tif", 
drivername = "GTiff", type= "Float32", mvFlag=-9999) 
writeGDAL(df.SON.kr["sd"], "S:/R/jongdc/GIMA/Data/modeloutput/all4/2009/all4n_sd_09s.tif", 
drivername = "GTiff", type= "Float32", mvFlag=-9999) 
 
#save final results regression kriging all.regions 2009, south part 
save(df.SON.kr, file="S:/R/jongdc/GIMA/Data/modeloutput/all4/2009/df.SON.kr.09") 
save(all.regions.2009, file="S:/R/jongdc/GIMA/Data/modeloutput/all4/2009/all.regions.2009s") 
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save(all.regions.2009.mod2, 
file="S:/R/jongdc/GIMA/Data/modeloutput/all4/2009/all.regions.2009s.mod2") 
save(vgm.res, file="S:/R/jongdc/GIMA/Data/modeloutput/all4/2009/all.regions.2009s.vgm.res") 
save(vg.res, file="S:/R/jongdc/GIMA/Data/modeloutput/all4/2009/all.regions.2009s.vg.res") 
save(g.res, file="S:/R/jongdc/GIMA/Data/modeloutput/all4/2009/all.regions.2009s.g.res") 
 
rm(df.SON, df.SON.pred, predgrid) 
gc() 
 
# Uncertainties 
 
# check if still loaded in memory, otherwise: 
load("S:/R/jongdc/GIMA/Data/modeloutput/all4/2009/df.SON.kr.09") 
# calculate 2.5% lower boundary 
df.SON.kr$lb <- df.SON.kr$pred - 1.96 * df.SON.kr$sd 
# calculate 97.5% upper boundary 
df.SON.kr$ub <- df.SON.kr$pred + 1.96 * df.SON.kr$sd 
 
# Backtransform LB predicted logno3;  
df.SON.kr$lbtr <- 10^(df.SON.kr$lb) # for log10 
df.SON.kr$ubtr <- 10^(df.SON.kr$ub) #  for log10 
df.SON.kr$conf95 <- df.SON.kr$ubtr - df.SON.kr$lbtr 
 
 
# export grids for use in GIS 
writeGDAL(df.SON.kr["lbtr"],   
+ "S:/R/jongdc/GIMA/Data/modeloutput/all4/2009/all.regions.s09_lb.tif", drivername =  
+ "GTiff", type= "Float32", mvFlag=-9999) 
writeGDAL(df.SON.kr["ubtr"], 
+ "S:/R/jongdc/GIMA/Data/modeloutput/all4/2009/all.regions.s09_ub.tif", drivername =  
+ "GTiff", type= "Float32", mvFlag=-9999) 
writeGDAL(df.SON.kr["conf95"], 
+ "S:/R/jongdc/GIMA/Data/modeloutput/all4/2009/all.regions.s09_conf.tif", drivername = 
+ "GTiff", type= "Float32", mvFlag=-9999) 
 
# Repeat STEPS 4 and 5 for the other three regions: CON, EON and NON 
# in order to make nationwide map 
 
### STEP 6 Crossvalidation   
# identical for each region; no need to perform for other regions 
# since data = all.regions.2009 and model and variogram remain unchanged 
 
# Leave one out crossvalidation (LOOCV) 
all.regions.2009.cv <- krige.cv(residuals~1, all.regions.2009, model = vgm.res,  
+ nmax=100, nfold = nrow(all.regions.2009)) 
 
summary(all.regions.2009.cv) 
var(all.regions.2009.cv$zscore) 
mean(all.regions.2009.cv$zscore) 
hist(all.regions.2009.cv$zscore) 
bubble(all.regions.2009.cv, z="residual") 
 
# save LooCV results 
save(all.regions.2009.cv, file="S:/R/jongdc/GIMA/Data/modeloutput/all4/2009/all.regions_s09.cv")  
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Appendix II – Utilized software and versions 

Extended R-workstation based on multi-core 64 bit Windows7 and 16Gb of memory 
 
R-version 3.0.3 (2013-09-25 “Warm Puppy”) with RStudio 0.98.1028  
 
Packages: 
sp  1.0-15  
gstat  1.0-19 
geospt  1.0-0 
rgdal  0.8-16 
lattice 0.20-29 
zoo  1.7-11 
spacetime 1.1-0 
xts  0.9-7 
foreign 0.8-61 
shapefiles 0.7 
intervals 0.14.0 

 
 
ArcGIS 9.3.1 with extensions (Spatial Analyst) 
ArcGIS10.1 with extensions (Esri site license) 
 
Besides the Windows-machine, a RedHat linux server was available with 32 Gb memory 
and multi-core processing, sporting RStudio Server. R-code is generally compatible 
between the platforms, save the occasional specific screen output command and directory 
structure. 
 
 
 
 
The R-environment can be downloaded freely from http://cran.r-project.org/ and is 
available for Windows, Linux and MAC-OSx platforms. 
 
R-studio is available for download at http://www.rstudio.com/. 
 
ArcGIS is developed and maintained by Esri, Redlands USA and works on the Windows 
platform. 
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Appendix III - Modelbuilder™ diagram 

Modelbuilder is a schematic scripting tool in ArcGIS, enabling automating processes using 
a graphic representation of commands.  The script for tailoring covariate maps to equally 
aligned cell-sizes (25m resolution) and dividing of the four regions is listed in Figure 26. 
 
Each of the auxiliary maps needs to be available in the same grid format with a cell size of 
25 m and aligned to the same origin. Next, each of the maps is cut, matching the region 
boundaries to produce an auxiliary map dataset for each of the four regions. This is 
explained in Figure 25, using ESRI’s ArcGIS Modelbuilder functions. A blue oval shape 
depicts an input map, yellow squares are processes and green ovals are intermediate or 
end products. 
 
 
Example for variable gt06 (groundwater tables) 

 
Figure 25. Modelbuilder diagram for variable gt06 
 
First, the map is transformed from vector to raster in 25 m grid cells (1). The output is 
then aligned with the map AHN (2) and the cell size is adjusted (3), after which the same 
origin and cell size are equal for the whole research project. In this particular case, a 
reclassification of the categories is needed (4) to reduce the possible number of values 
from 23 to 12. The last step breaks down the map into four regions (5) by using a regional 
mask. This procedure is similar for the other auxiliary parameter maps.  
 
The combination of all map operations yields the following model (Figure 26), making it 
possible to generate all necessary data sets from all map variables. Unfortunately the scale 
is insufficient to show details, though the four regional output groupings can be recognized 
where many lines converge. The AHN-image is visible at the left, from which all map 
extents are derived.    

1 

2 

3 4 
5 
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Figure 26. Modelbuilder diagram for all variables 
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Appendix IVa – Model summary 

YEAR-REGIONAL MODELS 
Model name 
(.mod) 

Parameters #data 
points 

R2 R2a 

north.2007 om60 + om100 + om120 + gt06 + bbg06 + gronds 
+ kwel2 + pawn + lgn6 + laf + slont 

1983 0.493 0.473 

north.2008 om60 + om100 + gt06* + ahn + bbg06 + kwel2 + 
pawn + lgn6 + lont + slaf 

2167 0.504 0.488 

north.2009 stone7 + stone8 + gt06* + ahn + bbg06 + 
kwel2 + lgn6 + laf + slont + vds 

1979 0.390 0.372 

     
east.2007 om10 + om40 + om80 + om120 + gt06 + bbg06 + 

kwel2 + geom + draf + slont 
1364 0.331 0.310 

east.2008 om10 + om60 + om80 + om100 + gt06 + stone6 + 
stone8 + lgn6 + draf 

1180 0.307 0.288 

east.2009 om25 + om80 + om100 + gt06 + ahn + kwel2 + 
lgn6 + draf 

1249 0.266 0.248 

     
centre.2007 gt06 + stone5 + stone6 + bbg06 + geom + vds 

 
452 0.584 0.558 

centre.2008 nhx + gt06 + geom 
 

379 0.452 0.426 

centre.2009 om10 + gt06 + stone5 + stone6 + stone8 + 
bbg06 + laf + vds 

348 0.529 0.489 

     
south.2007 om05 + om40 + om60 + gt06 + nhx + ahn + 

bbg06 + kwel2 + lgn6 + geom 
1603 0.493 0.481 

south.2008 om05 + om10 + om40 + om60 + gt06 + stone5 + 
stone6 + stone7 + nhx + bbg06 + kwel2 + lgn6 
+ geom + slaf + draf 

2523 0.594 0.584 

south.2009 om05 + om10 + om25 + om40 + om60 + gt06 + 
nhx + kwel2 + pawn + lgn6 + geom + slaf + 
slont 

2137 0.417 0.398 

     
*= added manually, parameter originally rejected by automated model selection (see 4.1) 
 
NATIONWIDE MODELS 
Model name 
(.mod) 

Parameters #data 
points 

R2 R2a 

all.regions.2007 om10 + stone5 + stone6 + nhx + gt06 + 
ahn + bbg06 + gronds + kwel2 + pawn +  
lgn6 + geom + dront + laf 

5383 0.472 0.462 

all.regions.2008 om60 + om80 + om100 + stone5 + stone6 + 
stone7 + stone8 + nhx + gt06 + ahn + 
bbg06 + kwel2 + pawn + lgn6 + geom + 
slaf + slont  

6243 0.554 0.547 

all.regions.2009 stone5 + stone6 + stone7 + stone8 + nhx 
+ gt06 + ahn + kwel2 + pawn + lgn6 + 
geom + dront + slaf + vds 

5721 0.435 0.426 
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 Appendix IVb – Variogrammes and data depiction 

Data north 2007 
Semivariogram 

 

Residuals vs predictions 

 
QQ-plot

 

Predictions vs observations 
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Data north 2008 
Semivariogram

 

Residuals vs predictions

 
QQ-plot

 

Predictions vs observations
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Data north 2009 
Semivariogram 

 

Residuals vs predictions

 
QQ-plot

 

Predictions vs observations
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Data east 2007 
Semivariogram 

 

Residuals vs predictions 

 
QQ-plot

 

Predictions vs observations 
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Data east 2008 
Semivariogram 

 

Residuals vs predictions 

 
QQ-plot

 

Predictions vs observations 
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Data east 2009 
Semivariogram 

 

Residuals vs predictions 

 
QQ-plot

 

Predictions vs observations 
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Data centre 2007 
Semivariogram 

 

Residuals vs predictions 

 
QQ-plot

 

Predictions vs observations 
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Data centre 2008 
Semivariogram 

 

Residuals vs predictions 

 
QQ-plot

 

Predictions vs observations 
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Data centre 2009 
Semivariogram 

 

Residuals vs predictions 

 
QQ-plot

 

Predictions vs observations 
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Data south 2007 
Semivariogram 

 

Residuals vs predictions 

 

QQ-plot

 

Predictions vs observations 

 

 
For 95%confidentiality map, see after data South 2009 
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Data south 2008 
Semivariogram 

 

Residuals vs predictions 

 
QQ-plot

 

Predictions vs observations 

 

 
For 95%confidentiality map, see after data South 2009
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Data south 2009 
Semivariogram 

 

Residuals vs predictions 

 

QQ-plot

 

Predictions vs observations 

 

 
 

Page 105 of 175 



Regression Kriging of nitrate levels in upper groundwater in Dutch sandy soils 
 

Data South 2007 and South 2008 
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Data South 2009  
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Data all regions 2007 

 

Semivariogram long range

 

QQ-plot

 

Semivariogram short range
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Data all regions 2008 
Semivariogram short range 

 

Long range 

 

QQ-plot

 

Histogram of crossvalidation-zscore  
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Data all regions 2009 
Semivariogram 

 

QQ-plot 
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Appendix Va - Data description of covariates 

In this appendix a short description of the covariate maps referred to in this report is 
listed. Since only selected parts of the Netherlands were used for prediction (only the 
sandy soils), the clipping method of generating input data may have omitted some 
categories in the variables. A distinction is made between categorical and continuous data. 
Grid codes correspond with those listed in the verbose model listings, found in Appendix 
VI. For instance, in the bbg06 covariate map listing, bbg0660 corresponds with grid code 
60, “bos” or forest in English. Images of the covariate maps are available in Appendix Vb. 
 
Categorical data (model parameter name, official map name) 

 
1. bbg06, BBG06 (CBS) 
GRID map, 25m resolution 
Statistical interpretation of satellite imagery, aligned with TOP10vector map of the 
Netherlands. Aimed at urban areas, also with land use categories. In Dutch: Bestand 
Bodemgebruik 2006.  
 
Table 19. Classification of BBG06 after (CBS, 2008). 
Group Group name Grid code Description (in Dutch) 
1 Traffic area 10 spoorterrein 
  11 wegverkeersterrein 
  12 vliegveld 
2 Urban area (dense) 20 woonterrein 
  21 detailhandel/horeca 
  22 openbare voorzieningen 
  23 sociaal-culturele voorzieningen 
  24 bedrijventerrein 
3 Semi-urban area 30 stortplaats 
  31 wrakkenopslagplaats 
  32 begraafplaats 
  33 delfstofwinplaats 
  34 bouwterrein 
  35 semiverhard overig 
4 Recreational area 40 park en plantsoen 
  41 sportterrein 
  42 volkstuin 
  43 dagrecreatief terrein 
  44 verblijfsrecreatief terrein 
5 Agricultural area 50 glastuinbouw 
  51 overig agrarisch terrein 
6 Forested area and Nature  60 bos 
  61 open droog natuurlijk terrein 
  62 open nat natuurlijk terrein 
7 Fresh water 70 IJsselmeer/Markermeer 
  71 afgesloten zeearm 
  72 Rijn en Maas 
  73 Randmeer 
  74 spaarbekken 
  75 recreatief binnenwater 
  76 binnenwater delfstofwinning 
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  77 vloei- en/of slibveld 
  78 overig binnenwater 
8 Tidal water (marine) 80 Waddenzee, Eems, Dollard 
  81 Oosterschelde 
  82 Westerschelde 
  83 Noordzee 
9 Foreign (non-NL) 90 buitenland 

 
 
 
2. geom, GKN (Alterra) 
Vector map, converted to GRID map, 25m resolution 
Geomorphology map (Geomorfologische Kaart Nederland) of the Netherlands at 1:50000 
scale, made in 2003. This map is a simplification of a much more detailed version, having 
429 possible subdivisions of 18 different categories. Reference can be found in (Koomen & 
Maas, 2004). The simplified geomorphology map has 25 units.  
 
Table 20. grid codes for simplified geomorphology map 
Grid Code Main class Description (in Dutch) 
0 A Wanden 
1 B (hoge) Geïsoleerde verhogingen 
2 BEB Bebouwde kom 
3 C Hoge heuvels, ruggen, welvingen 
4 D Plateaus 
5 Db  
6 Dijk  
7 E Terrasvormen 
8 F Plateau-achtige vormen 
9 G Waaiervormige glooiingen 
10 H Niet-waaiervormige glooiingen 
11 Hw  
12 K (lage) Geïsoleerde verhogingen 
13 L Lage heuvels, ruggen, welvingen 
14 M Vlakten 
15 N Niet-dalvormigen laagten 
16 R Ondiepe dalen 
17 Recr  
18 S Matig diepe dalen 
19 T Zeer diepe dalen 
20 Terp Terplichamen 
21 Vv  
22 W Water 
23 Zee Zee 
24 Vib  
   
 
 
 
3. gronds, Simplified Soil map (Alterra) 
Vector map, converted to GRID map, 25m resolution 
Scale 1:50000, grouped soil type map, derived from (detailed) soil map (Alterra/Stiboka, 
2006). 
Table 21. grid codes for simplified soil map 
Grid code Category (Dutch) English 
10 Veen  Peat 
20 Zand Sand 
21 Moerig op zand Humic sand 
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30 Lichte zavel Light sandy clay 
40 Zware zavel Heavy sandy clay 
50 Lichte klei Light clay 
60 Zware klei Heavy clay 
70 Leem Loam 
98 Bebouwing  Built-up area 
99 Water  Water 
 
 
 
4. vds, Aggregated soil map (RIVM,  based on (Alterra/Stiboka, 2006)) 
Vector map, converted to GRID map, 25 m resolution. Original scale 1:50000 
 
Table 22. grid codes for aggregated soil map 
Grid code Name (Dutch) English 
0 Bebouwd Built-up area 
4 Löss Loess 
6 Moerig Humic sand 
7 Oude klei Old (Tertiary) clay  
8 Rivierklei River clay 
10 Veen Peat 
12 Water Water 
13 Zand Sand 
14 Zeeklei Marine clay 
   
Recoded as “other”:   
1 Bebouwd/dijk Dyke 
2 Bovenland No translation 
3 Groeve Mine/pit 
5 Mijnstort Mine debris dump site 
9 Terp Man-made hill 
11 Vergraven Disturbed soil 
 
 
 
 
5. pawn, PAWN map (NHI) 
Vector map, converted to GRID map, 25m resolution 
PAWN is an acronym denoting ‘Policy Analysis for the Water management of the 
Netherlands’. It refers to a clustering of soil units, originally at a scale 1:250 000 (Wösten, 
de Vries, Denneboom, & van Holst, 1998). The version in use for this research project is 
the translation for the 1:50 000 scale soil map (Alterra/Stiboka, 2006) in 2008 during the 
NHI-project (Nationaal Hydrologisch Instrumentarium) by commission of Deltares. Below is 
an abridged table of the units that were distinguished. Soil depth is limited to 1,20 meter. 
Not all codes are present in the selection of sandy soil regions of the Netherlands, used for 
this Regression Kriging study. 
 
Table 23. Grid codes for the PAWN-classification. Abridged after (Wösten et al., 1998) 
Grid code Description (in Dutch) English   
1 Veraarde bovengrond op diep veen Peaty earthy topsoil on peaty subsoil 
2 Veraarde bovengrond op veen op zand Peaty earthy topsoil on peat on sandy subsoil 
3 Kleidek op veen Clayey topsoil on peaty subsoil 
4 Kleidek op veen op zand Clayey topsoil on peat on sandy subsoil 
5 Zanddek op veen op zand Sandy topsoil on peat on sandy subsoil 
6 Veen op ongerijpte klei Peat on non-ripened clayey subsoil 
7 Stuifzand Dune sand 
8 Leemarm zand Loam-poor sand 
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9 Zwaklemig fijn zand Slightly loamy sand 
10 Zwaklemig fijn zand op grof zand Slightly loamy sand on coarse sandy subsoil 
11 Sterk lemig fijn zand op (kei-)leem Loamy sand on boulder clay 
12 Enkeerdgronden (fijn zand) Sandy man-made thick earth soils 
13 Sterk lemig zand Loamy sand 
14 Grof zand Coarse sand 
15 Zavel met homogeen profiel Sandy (clay) loam  
16 Lichte klei met homogeen profiel Clay (loam) 
17 Klei met zware tussenlaag of ondergrond Clay (loam) on heavy clayey subsoil 
18 Klei op veen Clay (loam) on peaty subsoil 
19 Klei op zand Clay loam on fine sandy subsoil 
20 Klei op grof zand Clay loam on coarse sandy subsoil 
21 Leem Loam 
22 Water Water and marshy land 
23 Stedelijk gebied Built-up area 
   
  
6. gt06, GT2006 (Alterra) 
SWAP Model output GRID map, 25m resolution 
Watertable depth class grid map. Based upon soil map (4) 1:50000, but improved by (van 
der Gaast, Massop, Vroon, & Staritsky, 2006). GHG stands for the (average) upper limit 
where the groundwater table is situated in centimeters below the field surface level. GLG 
means the (average) deepest limit. Updates from field scale research have improved the 
original map. ‘Opinio generalis’ was that water tables are lower since the first maps were 
made in 1960s to 1980s. Accuracy is described in (van der Gaast et al., 2006).  
     
Table 24. Groundwater table classification with upper and lower limits of water levels. 
Grid code Groundwater table code GHG (upper limit) -cm GLG (lower limit) -cm 
0 - Not defined Not defined 
1 I - < 50 
2 II - 50 – 80 
3 IIb 25 - 40 50 – 80 
4 III < 40 80 – 120 
5 IIIb 25 – 40 80 – 120 
6 IV > 40 80 – 120 
7 V < 40 > 120 
8 Vb 25 – 40 > 120 
9 VI 40 – 80 > 120 
10 VII 80 – 140 > 120 
11 VIII > 140 > 120 
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7. lgn6, LGN6 (Alterra) 
GRID map, 25m resolution 
Land use grid map in 39 classes, based on satellite imagery from 2007 and 2008. 
Geometry and thematic division were harmonized with BBG03 and Top10-vector (2006). 
Small changes in classification with LGN5 (20,21,22,44 and 46). Aggregation files for main 
classes were used. Crop accuracy was estimated at 84.5%. References can be found in 
(Hazeu, Schuiling, Dorland, Oldengarm, & Gijsbertse, 2010). 
 
Table 25. LGN6 classification table 
Grid 
code 

Group name Sub 
group 

Class + description 

1 Agricultural area  Agricultural grassland 
2  Maize 
3  Potatoes 
4  Sugar beet / Field beet 
5  Cereals 
6  Other crops 
61  Tree nursery 
62  Fruit orchard  
8  Greenhouse horticulture 
9  Orchard (other) 
10  Bulb growing 
26  Built-up countryside 
11 Forest  Deciduous forest 
12  Coniferous forest 
16 Water  Fresh water 
17  Saltwater 
18 Built-up area  Buildings in primary built-up area 
19  Buildings in secondary built-up area 
20  Forest within primary built-up area 
22  Forest within secondary built-up area 
23  Grassland within primary built-up area 
24  Fallow within rural built-up area 
28  Grassland within secondary built-up area 
25 Infrastructure  Main roads & railroads 
30 Natural area Coastal Salt marshes 
31 Open sand in coastal areas 
32 Dunes, low vegetation (<1m) 
33 Dunes, high vegetation (>1m) 
34 Dunes covered with heather 
35 Heathland Shifting sands or river sand 
36 Moor / Heather 
37 Moderately grassy moorland 
38 Highly grassy moorland 
39 Peat moor Peat moor 
40 Forest on peat moor 
41 Swamp Other swamp vegetation 
42 Reedy land / canebrake 
43 Forest in swamp area 
45 Natural grassland 

 
 
 

Page 121 of 175 



Regression Kriging of nitrate levels in upper groundwater in Dutch sandy soils 
 

 
8. various, Hydrological parameters (Alterra)  
Various GRID maps, 25m resolution 
In Alterra project 1339 “Hydrologie op basis van karteerbare kenmerken” (van der Gaast 
et al., 2006), several grid maps for hydrological properties have been constructed, 
including:  
 

1. Length of ditches per grid cell: 
laf (summed length of ditches, superficial discharge) 0-46 m/grid cell 
lont (summed length of ditches, profound discharge) 0-46 m/grid cell 
 

2. Distance to nearest discharge medium: 
slaf (distance to discharge by ditch, superficial) 0-10000m 
slont (distance to discharge by ditch, profound) 0-10000m  

 
3. Resistance maps: amount of time before water reaches the nearest water 

discharge unit 
draf (drainage resistance for superficial discharge) <50d – 25000d 
dront (drainage resistance for profound drainage) <50d – 25000d 

Numbers correspond with numbers in Figure 27. Ranges of units are indicated. 
 
The maps have nine different classes, ranging from close range or small (0 or 1) to 
far/highest (9). The grids have either a proximity meaning, for instance the distance to the 
nearest ditch or the nearest tube drainage system, or a density meaning. Superficial 
discharge is not the same as run-off, which is very fast compared to drainage. 
 

 
Figure 27. Scheme (modified) from the Alterra modellers for deducing the hydrological 
properties maps. Taken from Alterra report 1139, p41. 
 
laf = lengte waterlopen voor afwatering   lont = lengte waterlopen voor ontwatering 
slaf = slootafstand afwatering   slont = slootafstand ontwatering 
draf = drainageweerstand afwatering  dront = drainageweerstand ontwatering 

1 

2 

3 

laf 
lont 

slaf 
slont 

draf 
dront 
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Continuous data 

9. ahn, AHN-1 digital elevation model (RWS) 
GRID map, 25m resolution 
Digital elevation Model for the Netherlands, by LIDAR-measurements, originally at 5 meter 
resolution. Values in cm-1, ranging from -1230 to 33913 cm. In the selected regions, 
these values might be in a slightly moderate range. 
 
10. kwel2, Seepage and infiltration map (Alterra) 
GRID map, 25m resolution 
Modeled results using the tool ‘Hydromap’ from the Alterra project 1339, “Hydrologie op 
basis van karteerbare kenmerken” (van der Gaast et al., 2006). Grid map giving vertical 
velocity of groundwater displacement in mm/day. This can have positive (upward or 
seepage) or negative (downward or infiltration) direction.) Accuracy unknown. (Note; the 
dutch abbreviation indicates only upward transport, this was chosen poorly) 
 
11. nhx, NHx-deposition in 2010 (RIVM/PBL) 
GRID map, 1000m resolution 
Model outcome for NHx (reduced nitrogen compounds) in mole N/ha in 2010 from the OPS 
dispersion model6. This model calculates average concentrations of substances in the 
atmosphere and deposition from there based on registered emission sources in Europe. 
The other years 2007, 2008 and 2009 are linear derivations via a scale parameter, yielding 
exactly the same patterns and therefore these were not considered for input separately. 
Accuracy unknown. 
 
12. omxx, Organic matter maps (Alterra) 
GRID maps, 25m resolution 
Set of maps, depicting organic matter content in mass % at eight soil depths (5-10-25-40-
60-80-100-120cm). Data from the construction of maps of the physical-chemistry 
conditions of Dutch soils (de Vries, 1999), updated with newer data from BIS7. Accuracy 
unknown. 
 
13. stone5 .. stone8, Manure and fertilizer addition map for 2005, 2006, 2007, 2008 
(Alterra/RIVM) 
GRID map, 250m resolution in STONE-plot format 
(kg Nitrogen per grid cell per annum). Data from the MAMBO8 model (link), adding up 
artificial fertilizer N and animal manure N for each of the 6505 STONE-plots9. These 
STONE-model plots are a combination of land use, soil type and hydrological conditions. 
Each plot is considered as unique and homogeneous. The actual attribute data was derived 
by WUR-LEI (Agricultural Economics Institute) and CBS (Netherlands Statistics) from their 
census data sources. Aggregated data to prevent privacy issues. (Note: this covariabele 
should have been named like “Nman” or “Nfert”, but since this format was prepared for 
STONE-grid cells, that name was given to it.) (Kruseman, Luesink, Blokland, Hoogeveen, & 
De Koeijer, 2011; Wolf et al., 2003) 
  

6 OPS is an acronym for “Operationele Prioritaire Stoffen” model, see http://www.rivm.nl/ops 
7 BIS is an acronym for “Bodemkundig Informatie Systeem”, a soil database by WUR/Alterra 
8 MAMBO is an acronym for “Mest en Ammoniak Model Beleids Ondersteuning”, (Kruseman, G. et al,     
2011)  
9 STONE is an acronym for “Samen Te Ontwikkelen Nutriënten Emissiemodel”, (Wolf, J. et al, 2003) 
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Appendix Vb - Data description of covariates - images 

1. BBG06  
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2. geom  
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3. gronds  
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4. vds  
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5. pawn  
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6. gt06  
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7. lgn6  
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8a. laf  
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8b. lont  
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Appendix VI - Verbose model summary 

In this appendix the model listings are presented, as given by the R-command ‘summary’.  
 
NORTH.2007 
 
Call: 
lm(formula = log10no3 ~ om60 + om100 + om120 + gt06 + bbg06 +  
    gronds + kwel2 + pawn + lgn6 + laf + slont, data = north.2007) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.26347 -0.30383 -0.00808  0.27774  1.39253  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.0517496  0.6957270   1.512  0.13077     
om60        -0.0014179  0.0005963  -2.378  0.01752 *   
om100       -0.0107017  0.0037426  -2.859  0.00429 **  
om120        0.0116977  0.0037848   3.091  0.00203 **  
gt062       -0.1209652  0.4684257  -0.258  0.79625     
gt063       -0.0987239  0.4756487  -0.208  0.83560     
gt064       -0.1095778  0.4701918  -0.233  0.81575     
gt065       -0.1417886  0.4703844  -0.301  0.76312     
gt066        0.1086236  0.4715884   0.230  0.81786     
gt067        0.0112239  0.4707210   0.024  0.98098     
gt068        0.0471567  0.4707773   0.100  0.92022     
gt069        0.1267895  0.4705560   0.269  0.78762     
gt0610       0.0438451  0.4728976   0.093  0.92614     
gt0611      -0.0002595  0.4809721  -0.001  0.99957     
bbg0611      0.0872628  0.4942344   0.177  0.85987     
bbg0612     -0.7060962  0.5672392  -1.245  0.21336     
bbg0651      0.0963622  0.4656476   0.207  0.83608     
bbg0660     -1.3996853  0.5143468  -2.721  0.00656 **  
bbg0661     -1.8122761  0.5694748  -3.182  0.00148 **  
bbg0662     -0.9686347  0.6863513  -1.411  0.15832     
bbg0678     -0.3598651  0.6942149  -0.518  0.60426     
gronds20     0.2351863  0.0512643   4.588 4.77e-06 *** 
gronds21     0.0794647  0.0665425   1.194  0.23255     
gronds30     0.3624874  0.1773714   2.044  0.04112 *   
gronds40     0.5170535  0.4599234   1.124  0.26106     
gronds50     0.6165498  0.3021409   2.041  0.04143 *   
gronds60     0.6128928  0.3225856   1.900  0.05759 .   
kwel2        0.0176427  0.0041678   4.233 2.41e-05 *** 
pawn2        0.1542847  0.1133014   1.362  0.17345     
pawn3       -0.0550947  0.1271875  -0.433  0.66494     
pawn4       -0.2197801  0.2213453  -0.993  0.32087     
pawn5        0.0173020  0.1092898   0.158  0.87423     
pawn6       -0.8527258  0.4194220  -2.033  0.04218 *   
pawn7       -0.1580441  0.1738940  -0.909  0.36354     
pawn8        0.0818073  0.1559927   0.524  0.60004     
pawn9        0.2558073  0.1139656   2.245  0.02491 *   
pawn11      -0.0571943  0.1145380  -0.499  0.61759     
pawn12       0.3132706  0.1561139   2.007  0.04492 *   
pawn13       0.0599806  0.1163425   0.516  0.60623     
pawn15      -0.7358530  0.6622158  -1.111  0.26662     
pawn16      -0.8257450  0.3527683  -2.341  0.01935 *   
pawn17      -0.7527901  0.3455890  -2.178  0.02951 *   
pawn18      -0.7430296  0.3343847  -2.222  0.02639 *   
pawn19      -0.3313232  0.2702993  -1.226  0.22044     
lgn62        0.3263205  0.0396062   8.239 3.18e-16 *** 
lgn63        0.3682191  0.0358075  10.283  < 2e-16 *** 
lgn64        0.2902438  0.0548065   5.296 1.32e-07 *** 
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lgn65        0.2504449  0.0414512   6.042 1.83e-09 *** 
lgn66        0.3203473  0.1087952   2.944  0.00327 **  
lgn610       0.0295097  0.2065048   0.143  0.88638     
lgn611       0.5354774  0.2077763   2.577  0.01004 *   
lgn612       0.4162022  0.2317963   1.796  0.07272 .   
lgn616       0.2209583  0.2318962   0.953  0.34080     
lgn623       0.6961387  0.4575516   1.521  0.12831     
lgn625      -0.2364387  0.4594733  -0.515  0.60690     
lgn626      -0.3667322  0.3280249  -1.118  0.26371     
lgn636       0.7336303  0.3314756   2.213  0.02700 *   
lgn637       0.7626899  0.4089600   1.865  0.06234 .   
lgn645      -0.3154253  0.1243609  -2.536  0.01128 *   
laf2        -0.1606095  0.2303050  -0.697  0.48565     
laf3        -0.1744700  0.2300197  -0.759  0.44825     
laf4        -0.2574901  0.2306431  -1.116  0.26439     
laf5        -0.2471460  0.2312128  -1.069  0.28524     
laf6        -0.4404772  0.2327098  -1.893  0.05853 .   
laf7        -0.4140158  0.2322515  -1.783  0.07481 .   
laf8        -0.5370517  0.2358012  -2.278  0.02286 *   
laf9        -0.5591825  0.2446204  -2.286  0.02237 *   
slont2       0.0150049  0.0914816   0.164  0.86973     
slont3       0.0478255  0.0893470   0.535  0.59252     
slont4       0.1534357  0.0884558   1.735  0.08297 .   
slont5       0.1312583  0.0910744   1.441  0.14969     
slont6       0.2707116  0.0888157   3.048  0.00234 **  
slont7       0.2094812  0.0908158   2.307  0.02118 *   
slont8       0.2650114  0.0950278   2.789  0.00534 **  
slont9       0.2979247  0.0973616   3.060  0.00224 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4548 on 1908 degrees of freedom 
Multiple R-squared:  0.4926, Adjusted R-squared:  0.4729  
F-statistic: 25.03 on 74 and 1908 DF,  p-value: < 2.2e-16  
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NORTH.2008 
 
Call: 
lm(formula = log10no3 ~ om60 + om100 + gt06 + ahn + bbg06 + kwel2 +  
    pawn + lgn6 + lont + slaf, data = north.2008) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.25915 -0.30723 -0.03577  0.27739  1.89346  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.530e+00  6.414e-01   2.386 0.017126 *   
om60        -2.441e-03  5.005e-04  -4.878 1.15e-06 *** 
om100       -1.782e-03  8.170e-04  -2.181 0.029316 *   
gt061       -6.238e-01  3.209e-01  -1.944 0.052085 .   
gt062       -3.782e-01  1.008e-01  -3.752 0.000180 *** 
gt063       -5.434e-01  1.784e-01  -3.046 0.002351 **  
gt064       -4.700e-01  1.048e-01  -4.484 7.71e-06 *** 
gt065       -5.859e-01  1.023e-01  -5.725 1.18e-08 *** 
gt066       -5.068e-01  1.068e-01  -4.744 2.23e-06 *** 
gt067       -4.805e-01  1.070e-01  -4.490 7.51e-06 *** 
gt068       -3.965e-01  1.081e-01  -3.669 0.000250 *** 
gt069       -4.075e-01  1.053e-01  -3.870 0.000112 *** 
gt0610      -3.746e-01  1.105e-01  -3.390 0.000712 *** 
gt0611      -3.476e-01  1.514e-01  -2.296 0.021777 *   
ahn          5.377e-05  2.240e-05   2.400 0.016477 *   
bbg0611      2.237e-02  4.766e-01   0.047 0.962561     
bbg0651      6.242e-02  4.431e-01   0.141 0.887997     
bbg0660     -1.381e+00  4.845e-01  -2.851 0.004398 **  
bbg0661     -1.495e+00  5.645e-01  -2.648 0.008153 **  
bbg0662     -1.734e+00  5.816e-01  -2.981 0.002904 **  
kwel2        1.383e-02  3.481e-03   3.973 7.32e-05 *** 
pawn2       -1.277e-01  9.774e-02  -1.306 0.191641     
pawn3       -2.020e-01  1.091e-01  -1.851 0.064280 .   
pawn4       -1.026e-01  1.427e-01  -0.719 0.472236     
pawn5       -8.579e-02  9.255e-02  -0.927 0.354035     
pawn6       -2.388e-01  1.802e-01  -1.325 0.185163     
pawn7       -3.028e-01  1.601e-01  -1.891 0.058762 .   
pawn8       -5.413e-03  1.221e-01  -0.044 0.964647     
pawn9        8.784e-02  9.763e-02   0.900 0.368363     
pawn10       2.031e-01  1.773e-01   1.145 0.252287     
pawn11      -1.252e-01  9.765e-02  -1.282 0.199935     
pawn12       3.024e-01  1.447e-01   2.089 0.036805 *   
pawn13       5.812e-02  9.963e-02   0.583 0.559725     
pawn15      -3.641e-01  3.262e-01  -1.116 0.264483     
pawn16      -2.677e-01  1.424e-01  -1.880 0.060264 .   
pawn17      -3.633e-01  1.113e-01  -3.265 0.001113 **  
pawn18      -1.833e-01  1.010e-01  -1.816 0.069569 .   
pawn19      -3.844e-01  1.491e-01  -2.578 0.010016 *   
lgn62        3.613e-01  3.799e-02   9.511  < 2e-16 *** 
lgn63        4.524e-01  3.324e-02  13.608  < 2e-16 *** 
lgn64        2.915e-01  5.019e-02   5.808 7.27e-09 *** 
lgn65        3.047e-01  3.724e-02   8.182 4.79e-16 *** 
lgn66        2.501e-01  7.004e-02   3.571 0.000364 *** 
lgn610       2.286e-01  2.220e-01   1.030 0.303164     
lgn611       4.993e-01  1.901e-01   2.627 0.008679 **  
lgn612       5.246e-01  2.039e-01   2.572 0.010168 *   
lgn625       8.063e-01  6.247e-01   1.291 0.196930     
lgn626       7.013e-01  4.416e-01   1.588 0.112417     
lgn636       5.777e-01  3.314e-01   1.743 0.081475 .   
lgn637       8.655e-01  3.744e-01   2.312 0.020875 *   
lgn638       1.170e+00  3.669e-01   3.188 0.001454 **  
lgn641      -2.274e-01  3.194e-01  -0.712 0.476667     
lgn645      -7.536e-02  1.205e-01  -0.625 0.531721     
lont2       -1.543e-01  4.422e-01  -0.349 0.727091     
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lont3       -2.015e-01  4.424e-01  -0.456 0.648762     
lont4       -1.544e-01  4.427e-01  -0.349 0.727313     
lont5       -1.976e-01  4.430e-01  -0.446 0.655683     
lont6       -2.170e-01  4.433e-01  -0.490 0.624462     
lont7       -3.220e-01  4.434e-01  -0.726 0.467702     
lont8       -3.512e-01  4.436e-01  -0.792 0.428605     
lont9       -3.071e-01  4.481e-01  -0.685 0.493114     
slaf2        3.252e-02  1.042e-01   0.312 0.754940     
slaf3        4.905e-03  1.023e-01   0.048 0.961771     
slaf4        2.341e-01  9.448e-02   2.478 0.013279 *   
slaf5        2.853e-01  9.496e-02   3.004 0.002692 **  
slaf6        3.241e-01  9.338e-02   3.470 0.000530 *** 
slaf7        3.392e-01  9.595e-02   3.535 0.000416 *** 
slaf8        3.016e-01  9.880e-02   3.053 0.002297 **  
slaf9        3.217e-01  9.987e-02   3.221 0.001297 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4374 on 2098 degrees of freedom 
Multiple R-squared:  0.5038, Adjusted R-squared:  0.4877  
F-statistic: 31.32 on 68 and 2098 DF,  p-value: < 2.2e-16  
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NORTH.2009 
 
Call: 
lm(formula = log10no3 ~ stone7 + stone8 + gt06 + ahn + bbg06 +  
    kwel2 + lgn6 + laf + slont + vds, data = north.2009) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.07065 -0.28395 -0.04377  0.26296  1.92579  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.969e+00  5.149e-01   3.823 0.000136 *** 
stone7       3.853e-03  1.602e-03   2.405 0.016280 *   
stone8      -3.687e-03  1.551e-03  -2.378 0.017496 *   
gt062       -4.380e-01  9.605e-02  -4.560 5.44e-06 *** 
gt063       -4.679e-01  1.343e-01  -3.483 0.000506 *** 
gt064       -4.847e-01  9.583e-02  -5.058 4.63e-07 *** 
gt065       -4.850e-01  8.937e-02  -5.427 6.46e-08 *** 
gt066       -3.369e-01  8.974e-02  -3.754 0.000179 *** 
gt067       -4.397e-01  9.319e-02  -4.718 2.56e-06 *** 
gt068       -3.619e-01  9.324e-02  -3.881 0.000107 *** 
gt069       -2.224e-01  9.075e-02  -2.450 0.014365 *   
gt0610      -2.162e-01  9.910e-02  -2.182 0.029246 *   
gt0611      -5.642e-02  1.599e-01  -0.353 0.724288     
ahn          5.812e-05  2.186e-05   2.658 0.007927 **  
bbg0611     -3.513e-01  4.651e-01  -0.755 0.450101     
bbg0612     -3.461e-01  6.119e-01  -0.565 0.571802     
bbg0651      1.508e-02  4.325e-01   0.035 0.972181     
bbg0660     -9.107e-01  4.759e-01  -1.914 0.055796 .   
bbg0662     -1.869e+00  6.617e-01  -2.824 0.004790 **  
bbg0678     -2.520e-02  6.509e-01  -0.039 0.969125     
kwel2        1.567e-02  3.754e-03   4.176 3.10e-05 *** 
lgn62        2.913e-01  3.553e-02   8.200 4.35e-16 *** 
lgn63        2.976e-01  3.244e-02   9.174  < 2e-16 *** 
lgn64        2.367e-01  5.174e-02   4.574 5.09e-06 *** 
lgn65        2.404e-01  3.671e-02   6.548 7.45e-11 *** 
lgn66        2.319e-01  7.656e-02   3.029 0.002484 **  
lgn610       2.600e-01  2.177e-01   1.194 0.232606     
lgn611      -1.319e-01  1.618e-01  -0.815 0.415024     
lgn612      -3.068e-01  2.356e-01  -1.302 0.193129     
lgn616       2.219e-01  2.174e-01   1.021 0.307617     
lgn625       7.331e-01  6.125e-01   1.197 0.231501     
lgn626       5.611e-01  3.064e-01   1.832 0.067165 .   
lgn636       5.914e-01  5.147e-01   1.149 0.250658     
lgn637       5.365e-01  5.720e-01   0.938 0.348438     
lgn641      -1.246e-01  3.166e-01  -0.394 0.693877     
lgn645      -2.497e-01  2.172e-01  -1.149 0.250516     
laf2        -4.942e-01  2.527e-01  -1.956 0.050614 .   
laf3        -4.908e-01  2.525e-01  -1.944 0.052014 .   
laf4        -5.952e-01  2.528e-01  -2.354 0.018666 *   
laf5        -5.614e-01  2.531e-01  -2.218 0.026700 *   
laf6        -7.271e-01  2.547e-01  -2.855 0.004350 **  
laf7        -6.316e-01  2.549e-01  -2.478 0.013290 *   
laf8        -6.887e-01  2.569e-01  -2.680 0.007416 **  
laf9        -8.237e-01  2.631e-01  -3.131 0.001771 **  
slont2      -1.206e-01  7.938e-02  -1.520 0.128785     
slont3      -8.540e-02  7.785e-02  -1.097 0.272756     
slont4      -2.953e-02  7.669e-02  -0.385 0.700291     
slont5      -2.381e-02  7.988e-02  -0.298 0.765637     
slont6       1.266e-01  7.847e-02   1.613 0.106865     
slont7       3.953e-02  8.036e-02   0.492 0.622876     
slont8       7.430e-02  8.282e-02   0.897 0.369773     
slont9       4.226e-02  8.858e-02   0.477 0.633335     
vds8         3.311e-01  2.525e-01   1.311 0.189885     
vds10       -1.885e-01  3.332e-02  -5.656 1.78e-08 *** 
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vds13        3.480e-02  3.238e-02   1.075 0.282625     
vds14       -2.244e-01  5.291e-02  -4.241 2.33e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4302 on 1923 degrees of freedom 
Multiple R-squared:  0.3899, Adjusted R-squared:  0.3724  
F-statistic: 22.34 on 55 and 1923 DF,  p-value: < 2.2e-16  
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EAST.2007 
 
Call: 
lm(formula = log10no3 ~ om10 + om40 + om80 + om120 + gt06 + bbg06 +  
    kwel2 + geom + draf + slont, data = east.2007) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.34417 -0.32417  0.00993  0.31260  1.38341  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.1627065  0.3658019   0.445 0.656541     
om10        -0.0153918  0.0035055  -4.391 1.22e-05 *** 
om40        -0.0026568  0.0008872  -2.995 0.002799 **  
om80         0.0388828  0.0110427   3.521 0.000444 *** 
om120       -0.0327584  0.0105945  -3.092 0.002030 **  
gt062        0.4128320  0.1570043   2.629 0.008652 **  
gt064        0.4181232  0.1235981   3.383 0.000738 *** 
gt065        0.3791895  0.1223440   3.099 0.001980 **  
gt066        0.5841136  0.1362538   4.287 1.94e-05 *** 
gt067        0.3566603  0.1293930   2.756 0.005924 **  
gt068        0.7116877  0.1250868   5.690 1.57e-08 *** 
gt069        0.6746497  0.1208836   5.581 2.90e-08 *** 
gt0610       0.6828732  0.1252212   5.453 5.89e-08 *** 
gt0611       0.6844391  0.1357799   5.041 5.28e-07 *** 
bbg0634     -0.8863613  0.5265835  -1.683 0.092566 .   
bbg0651     -0.3822667  0.2362498  -1.618 0.105888     
bbg0660     -0.8580007  0.2603191  -3.296 0.001007 **  
kwel2        0.0300312  0.0105890   2.836 0.004637 **  
geom4        0.0418590  0.3038533   0.138 0.890451     
geom6       -0.8059465  0.2356915  -3.419 0.000646 *** 
geom8       -0.1075786  0.1429072  -0.753 0.451712     
geom10      -0.0701548  0.1958883  -0.358 0.720298     
geom11       0.1014728  0.4879738   0.208 0.835302     
geom12       0.0116317  0.1327098   0.088 0.930170     
geom13      -0.0670924  0.1299158  -0.516 0.605640     
geom14      -0.1422969  0.1303999  -1.091 0.275368     
geom15      -0.5150570  0.1801359  -2.859 0.004313 **  
geom16      -0.2513288  0.1338076  -1.878 0.060562 .   
geom22      -0.1931407  0.3573618  -0.540 0.588969     
draf4        0.2439962  0.0814126   2.997 0.002777 **  
draf5        0.3421993  0.0804635   4.253 2.26e-05 *** 
draf6        0.2544499  0.0849237   2.996 0.002784 **  
draf7        0.5278256  0.2559507   2.062 0.039382 *   
slont2       1.2235775  0.2031945   6.022 2.23e-09 *** 
slont3       1.0802398  0.1962516   5.504 4.44e-08 *** 
slont4       1.1697987  0.1937984   6.036 2.05e-09 *** 
slont5       1.1616250  0.1939724   5.989 2.72e-09 *** 
slont6       1.1910057  0.1952454   6.100 1.39e-09 *** 
slont7       1.2802197  0.1964717   6.516 1.02e-10 *** 
slont8       1.2417021  0.1972517   6.295 4.17e-10 *** 
slont9       1.1696831  0.2112489   5.537 3.71e-08 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4682 on 1323 degrees of freedom 
Multiple R-squared:  0.3307, Adjusted R-squared:  0.3104  
F-statistic: 16.34 on 40 and 1323 DF,  p-value: < 2.2e-16 
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Regression Kriging of nitrate levels in upper groundwater in Dutch sandy soils 
 

EAST.2008 
 
Call: 
lm(formula = log10no3 ~ om10 + om60 + om80 + om100 + stone6 +  
    stone8 + gt06 + lgn6 + draf, data = east.2008) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.26780 -0.36704 -0.03534  0.33557  1.40809  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.678168   0.159069   4.263 2.18e-05 *** 
om10        -0.017478   0.003931  -4.447 9.56e-06 *** 
om60        -0.007670   0.002961  -2.591 0.009703 **  
om80         0.111106   0.021471   5.175 2.69e-07 *** 
om100       -0.100698   0.019819  -5.081 4.38e-07 *** 
stone6      -0.002719   0.001301  -2.090 0.036867 *   
stone8       0.002793   0.001321   2.114 0.034702 *   
gt062        0.298667   0.165111   1.809 0.070730 .   
gt064        0.267431   0.134737   1.985 0.047401 *   
gt065        0.205116   0.136838   1.499 0.134156     
gt066        0.268829   0.154638   1.738 0.082400 .   
gt067        0.189603   0.139916   1.355 0.175645     
gt068        0.606576   0.135713   4.470 8.61e-06 *** 
gt069        0.651036   0.133983   4.859 1.34e-06 *** 
gt0610       0.564433   0.138121   4.087 4.68e-05 *** 
gt0611       0.465810   0.151544   3.074 0.002164 **  
lgn62        0.230234   0.040299   5.713 1.41e-08 *** 
lgn63        0.178674   0.105882   1.687 0.091783 .   
lgn64       -0.050409   0.240983  -0.209 0.834343     
lgn65        0.279372   0.069002   4.049 5.49e-05 *** 
lgn66        0.094201   0.141728   0.665 0.506400     
lgn611      -0.545291   0.098353  -5.544 3.66e-08 *** 
lgn612      -0.564593   0.291910  -1.934 0.053342 .   
lgn625       0.039776   0.351587   0.113 0.909945     
lgn626       0.728139   0.249777   2.915 0.003624 **  
lgn636      -0.968827   0.497515  -1.947 0.051739 .   
lgn642       0.420246   0.497541   0.845 0.398485     
lgn645      -0.042420   0.098499  -0.431 0.666794     
draf4        0.268682   0.096012   2.798 0.005221 **  
draf5        0.358341   0.093004   3.853 0.000123 *** 
draf6        0.416549   0.096831   4.302 1.84e-05 *** 
draf7        0.324259   0.266800   1.215 0.224478     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4947 on 1148 degrees of freedom 
Multiple R-squared:  0.3066, Adjusted R-squared:  0.2879  
F-statistic: 16.38 on 31 and 1148 DF,  p-value: < 2.2e-16  
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EAST.2009 
 
Call: 
lm(formula = log10no3 ~ om25 + om80 + om100 + gt06 + ahn + kwel2 +  
    lgn6 + draf, data = east.2009) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.16092 -0.37001 -0.05292  0.37028  1.50329  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  6.959e-01  1.576e-01   4.416 1.09e-05 *** 
om25        -5.103e-03  9.105e-04  -5.605 2.58e-08 *** 
om80         3.971e-02  1.480e-02   2.683  0.00739 **  
om100       -3.868e-02  1.426e-02  -2.712  0.00678 **  
gt062        2.319e-01  1.740e-01   1.333  0.18292     
gt064        1.248e-01  1.433e-01   0.871  0.38407     
gt065        1.591e-01  1.437e-01   1.107  0.26834     
gt066        2.070e-01  1.526e-01   1.356  0.17541     
gt067        9.897e-02  1.519e-01   0.652  0.51473     
gt068        3.381e-01  1.445e-01   2.340  0.01947 *   
gt069        4.141e-01  1.415e-01   2.927  0.00348 **  
gt0610       3.339e-01  1.450e-01   2.303  0.02143 *   
gt0611       3.545e-01  1.639e-01   2.163  0.03073 *   
ahn          7.659e-05  1.707e-05   4.486 7.93e-06 *** 
kwel2        2.906e-02  1.125e-02   2.583  0.00992 **  
lgn62        3.715e-01  4.126e-02   9.004  < 2e-16 *** 
lgn63        5.333e-01  9.541e-02   5.590 2.80e-08 *** 
lgn64        5.942e-01  1.228e-01   4.838 1.48e-06 *** 
lgn65        2.650e-01  6.223e-02   4.258 2.22e-05 *** 
lgn66        1.594e-01  1.222e-01   1.305  0.19223     
lgn611       2.423e-01  1.170e-01   2.070  0.03868 *   
lgn623       5.484e-01  4.911e-01   1.117  0.26436     
lgn625      -3.220e-01  3.474e-01  -0.927  0.35419     
lgn626       4.542e-01  2.011e-01   2.258  0.02412 *   
lgn641      -6.642e-03  4.920e-01  -0.014  0.98923     
lgn642      -2.540e-01  3.498e-01  -0.726  0.46780     
lgn645      -5.609e-02  1.041e-01  -0.539  0.58996     
draf4        1.671e-01  7.478e-02   2.235  0.02559 *   
draf5        1.570e-01  7.182e-02   2.186  0.02904 *   
draf6        3.188e-01  7.918e-02   4.027 6.00e-05 *** 
draf7        4.885e-01  3.562e-01   1.371  0.17049     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4893 on 1218 degrees of freedom 
Multiple R-squared:  0.2657, Adjusted R-squared:  0.2476  
F-statistic: 14.69 on 30 and 1218 DF,  p-value: < 2.2e-16  
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Regression Kriging of nitrate levels in upper groundwater in Dutch sandy soils 
 

CENTRE.2007 
 
Call: 
lm(formula = log10no3 ~ stone5 + stone6 + gt06 + bbg06 + geom +  
    vds, data = centre.2007) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.15228 -0.25873 -0.00632  0.22815  1.00688  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  2.180475   0.510931   4.268 2.44e-05 *** 
stone5       0.004487   0.001271   3.532 0.000458 *** 
stone6      -0.004490   0.001324  -3.390 0.000763 *** 
gt061       -0.235214   0.277501  -0.848 0.397132     
gt062       -0.029519   0.231268  -0.128 0.898493     
gt063       -0.276103   0.458524  -0.602 0.547392     
gt064        0.163277   0.227747   0.717 0.473817     
gt065       -0.091414   0.237284  -0.385 0.700245     
gt066        0.244848   0.237563   1.031 0.303285     
gt067        0.796598   0.321425   2.478 0.013588 *   
gt068        0.248816   0.357453   0.696 0.486759     
gt069        0.490190   0.230690   2.125 0.034174 *   
gt0610       0.554558   0.234823   2.362 0.018647 *   
gt0611       0.795352   0.255174   3.117 0.001952 **  
bbg0651     -0.983879   0.390001  -2.523 0.012009 *   
bbg0660     -2.255815   0.418819  -5.386 1.20e-07 *** 
bbg0661     -2.580530   0.573048  -4.503 8.66e-06 *** 
bbg0678     -0.909755   0.554083  -1.642 0.101350     
geom9        0.127671   0.217533   0.587 0.557581     
geom10      -0.111606   0.222750  -0.501 0.616607     
geom12       0.117967   0.185802   0.635 0.525831     
geom13      -0.125162   0.117324  -1.067 0.286667     
geom14      -0.167991   0.187397  -0.896 0.370524     
geom16      -0.115397   0.212632  -0.543 0.587616     
vds8        -0.379208   0.156096  -2.429 0.015542 *   
vds10       -0.121783   0.165788  -0.735 0.463008     
vds13       -0.042249   0.147323  -0.287 0.774422     
vds14       -0.012639   0.167146  -0.076 0.939759     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3846 on 424 degrees of freedom 
Multiple R-squared:  0.584, Adjusted R-squared:  0.5575  
F-statistic: 22.05 on 27 and 424 DF,  p-value: < 2.2e-16 
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CENTRE.2008 
 
Call: 
lm(formula = log10no3 ~ nhx + gt06 + geom, data = centre.2008) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.97948 -0.25679 -0.07953  0.20878  1.32694  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  5.017e-01  2.753e-01   1.822  0.06921 .   
nhx         -5.593e-05  4.478e-05  -1.249  0.21245     
gt061        3.452e-02  2.666e-01   0.130  0.89703     
gt062        1.016e-01  2.452e-01   0.414  0.67879     
gt063       -2.887e-01  4.843e-01  -0.596  0.55145     
gt064        3.818e-01  2.452e-01   1.557  0.12031     
gt065        1.134e-01  2.573e-01   0.441  0.65969     
gt066        5.286e-01  2.646e-01   1.997  0.04654 *   
gt067        6.330e-01  3.428e-01   1.847  0.06560 .   
gt068        4.851e-01  3.487e-01   1.391  0.16501     
gt069        6.609e-01  2.510e-01   2.634  0.00881 **  
gt0610       8.010e-01  2.538e-01   3.156  0.00173 **  
gt0611      -6.836e-01  2.885e-01  -2.370  0.01832 *   
geom10       3.702e-01  1.756e-01   2.109  0.03566 *   
geom12       5.429e-01  1.341e-01   4.048 6.31e-05 *** 
geom13       5.207e-01  2.019e-01   2.579  0.01029 *   
geom14       2.645e-01  1.311e-01   2.018  0.04430 *   
geom16       3.423e-01  1.571e-01   2.179  0.02999 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4162 on 361 degrees of freedom 
Multiple R-squared:  0.4515, Adjusted R-squared:  0.4257  
F-statistic: 17.48 on 17 and 361 DF,  p-value: < 2.2e-16  
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Regression Kriging of nitrate levels in upper groundwater in Dutch sandy soils 
 

CENTRE.2009 
 
Call: 
lm(formula = log10no3 ~ om10 + stone5 + stone6 + stone8 + gt06 +  
    bbg06 + laf + vds, data = centre.2009) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.76840 -0.18852 -0.04166  0.14811  1.31326  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.603880   0.227213   2.658 0.008261 **  
om10        -0.012154   0.005883  -2.066 0.039655 *   
stone5       0.002947   0.001387   2.124 0.034443 *   
stone6      -0.009424   0.002066  -4.561 7.27e-06 *** 
stone8       0.006884   0.001621   4.247 2.85e-05 *** 
gt061        0.221024   0.258227   0.856 0.392677     
gt062        0.313407   0.216952   1.445 0.149552     
gt063       -0.019667   0.423542  -0.046 0.962992     
gt064        0.416132   0.212445   1.959 0.051007 .   
gt065        0.021447   0.219891   0.098 0.922362     
gt066        0.154510   0.221491   0.698 0.485940     
gt067        0.323689   0.330120   0.981 0.327571     
gt068        1.160130   0.407156   2.849 0.004665 **  
gt069        0.615659   0.212147   2.902 0.003965 **  
gt0610       0.844237   0.212324   3.976 8.66e-05 *** 
gt0611       0.790462   0.242497   3.260 0.001235 **  
bbg0660     -0.782863   0.148029  -5.289 2.29e-07 *** 
laf3        -0.085087   0.054281  -1.568 0.117980     
laf4        -0.090790   0.077314  -1.174 0.241152     
laf5        -0.168015   0.087046  -1.930 0.054467 .   
laf6         0.495077   0.126921   3.901 0.000117 *** 
laf7         0.362032   0.105376   3.436 0.000669 *** 
laf8         0.078562   0.085157   0.923 0.356936     
laf9         0.130694   0.227149   0.575 0.565448     
vds8        -0.317481   0.112320  -2.827 0.005001 **  
vds10       -0.118286   0.123613  -0.957 0.339339     
vds13        0.107419   0.097660   1.100 0.272186     
vds14        0.067884   0.136364   0.498 0.618958     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3507 on 320 degrees of freedom 
Multiple R-squared:  0.5292, Adjusted R-squared:  0.4894  
F-statistic: 13.32 on 27 and 320 DF,  p-value: < 2.2e-16  
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SOUTH.2007 
 
Call: 
  lm(formula = log10no3 ~ om05 + om40 + om60 + nhx + gt06 + ahn +  
       bbg06 + kwel2 + lgn6 + geom, data = south.2007) 
 
Residuals: 
  Min       1Q   Median       3Q      Max  
-1.62829 -0.33387  0.03042  0.34728  1.94725  
 
Coefficients: 
  Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.300e+00  2.206e-01   5.892 4.65e-09 *** 
om05         2.158e-02  6.583e-03   3.278 0.001068 **  
om40         5.631e-03  2.561e-03   2.199 0.028042 *   
om60        -7.143e-03  2.655e-03  -2.690 0.007217 **  
nhx          1.123e-04  2.700e-05   4.161 3.34e-05 *** 
gt062       -5.609e-01  1.807e-01  -3.104 0.001945 **  
gt064       -4.051e-01  1.497e-01  -2.706 0.006876 **  
gt065       -5.317e-01  1.539e-01  -3.456 0.000564 *** 
gt066       -1.871e-01  1.617e-01  -1.157 0.247308     
gt067       -1.389e-01  1.466e-01  -0.947 0.343541     
gt068       -2.108e-01  1.498e-01  -1.407 0.159507     
gt069        6.071e-04  1.469e-01   0.004 0.996703     
gt0610       1.131e-01  1.503e-01   0.753 0.451821     
gt0611      -9.241e-02  1.672e-01  -0.553 0.580504     
ahn          5.301e-05  1.666e-05   3.183 0.001489 **  
bbg0660     -9.204e-01  2.094e-01  -4.396 1.18e-05 *** 
kwel2        2.819e-02  6.949e-03   4.056 5.23e-05 *** 
lgn62        1.238e-01  3.549e-02   3.487 0.000501 *** 
lgn63        5.797e-03  5.269e-02   0.110 0.912405     
lgn64        2.565e-01  6.893e-02   3.721 0.000205 *** 
lgn65        1.112e-01  4.991e-02   2.229 0.025987 *   
lgn66        1.950e-01  4.744e-02   4.110 4.17e-05 *** 
lgn610       4.223e-01  1.266e-01   3.336 0.000870 *** 
lgn611      -5.440e-01  2.061e-01  -2.640 0.008382 **  
lgn612      -5.598e-01  2.158e-01  -2.594 0.009585 **  
lgn626      -3.242e-01  3.537e-01  -0.917 0.359382     
lgn645      -3.003e-01  1.472e-01  -2.040 0.041547 *   
lgn661       4.575e-01  1.888e-01   2.423 0.015511 *   
geom7        3.879e-01  1.884e-01   2.059 0.039695 *   
geom8        1.273e-01  1.841e-01   0.692 0.489288     
geom9       -4.268e-01  5.228e-01  -0.816 0.414397     
geom10       2.129e-01  1.976e-01   1.078 0.281333     
geom12       3.065e-01  1.826e-01   1.678 0.093484 .   
geom13       2.144e-01  1.795e-01   1.194 0.232500     
geom14       1.477e-01  1.784e-01   0.828 0.407649     
geom15       1.684e-01  1.966e-01   0.857 0.391817     
geom16       8.403e-03  1.799e-01   0.047 0.962759     
geom22       2.666e-01  5.207e-01   0.512 0.608683     
--- 
  Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4899 on 1565 degrees of freedom 
Multiple R-squared:  0.4933,  Adjusted R-squared:  0.4814  
F-statistic: 41.19 on 37 and 1565 DF,  p-value: < 2.2e-16 
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Regression Kriging of nitrate levels in upper groundwater in Dutch sandy soils 
 

SOUTH.2008 
 
Call: 
lm(formula = log10no3 ~ om05 + om10 + om40 + om60 + stone5 +  
    stone6 + stone7 + nhx + gt06 + bbg06 + kwel2 + lgn6 + geom +  
    draf + slaf, data = south.2008) 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.55062 -0.29139  0.05603  0.32940  1.29702  
Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  9.768e-01  5.560e-01   1.757 0.079083 .   
om05        -4.875e-02  1.248e-02  -3.907 9.59e-05 *** 
om10         5.518e-02  1.110e-02   4.970 7.14e-07 *** 
om40         5.372e-03  2.665e-03   2.016 0.043930 *   
om60        -5.501e-03  2.498e-03  -2.202 0.027731 *   
stone5       1.963e-03  7.607e-04   2.581 0.009906 **  
stone6       1.636e-03  8.163e-04   2.005 0.045110 *   
stone7      -3.899e-03  1.143e-03  -3.411 0.000657 *** 
nhx          4.167e-05  1.733e-05   2.405 0.016251 *   
gt062       -5.104e-01  1.709e-01  -2.987 0.002847 **  
gt064       -3.262e-01  1.472e-01  -2.216 0.026790 *   
gt065       -4.228e-01  1.521e-01  -2.779 0.005487 **  
gt066       -1.084e-01  1.610e-01  -0.673 0.500715     
gt067       -1.186e-01  1.467e-01  -0.809 0.418778     
gt068       -1.112e-01  1.475e-01  -0.754 0.450957     
gt069        1.487e-02  1.460e-01   0.102 0.918914     
gt0610       2.243e-01  1.473e-01   1.523 0.127911     
gt0611      -7.432e-02  1.603e-01  -0.464 0.642973     
bbg0651      1.298e-01  1.490e-01   0.871 0.383902     
bbg0660     -1.139e+00  1.869e-01  -6.096 1.26e-09 *** 
bbg0661     -1.092e+00  3.645e-01  -2.996 0.002759 **  
bbg0662     -7.729e-01  4.087e-01  -1.891 0.058743 .   
kwel2        2.995e-02  6.066e-03   4.938 8.41e-07 *** 
lgn62        3.247e-01  2.911e-02  11.153  < 2e-16 *** 
lgn63        2.356e-01  4.791e-02   4.919 9.28e-07 *** 
lgn64        1.929e-01  5.971e-02   3.231 0.001249 **  
lgn65        2.928e-01  4.223e-02   6.935 5.18e-12 *** 
lgn66        4.442e-01  3.035e-02  14.636  < 2e-16 *** 
lgn610       6.815e-01  8.452e-02   8.063 1.15e-15 *** 
lgn611       1.558e-01  1.403e-01   1.110 0.267090     
lgn612       7.661e-02  1.469e-01   0.521 0.602088     
lgn625      -5.450e-01  5.064e-01  -1.076 0.281943     
lgn626      -5.155e-01  4.888e-01  -1.055 0.291689     
lgn635       1.800e-01  5.919e-01   0.304 0.761096     
lgn636      -1.751e-01  3.696e-01  -0.474 0.635733     
lgn637      -5.894e-01  4.131e-01  -1.427 0.153698     
lgn638      -5.570e-01  3.545e-01  -1.571 0.116277     
lgn639      -5.075e-01  3.610e-01  -1.406 0.159924     
lgn640      -5.191e-01  4.002e-01  -1.297 0.194747     
lgn645       1.053e-01  1.443e-01   0.730 0.465681     
lgn661       7.344e-01  1.856e-01   3.957 7.79e-05 *** 
geom7        9.797e-01  2.070e-01   4.733 2.33e-06 *** 
geom8        6.534e-01  2.014e-01   3.244 0.001193 **  
geom10       9.110e-01  2.105e-01   4.328 1.57e-05 *** 
geom12       7.509e-01  2.015e-01   3.727 0.000198 *** 
geom13       7.622e-01  1.998e-01   3.815 0.000140 *** 
geom14       6.692e-01  1.999e-01   3.348 0.000825 *** 
geom15       3.630e-01  2.173e-01   1.670 0.095011 .   
geom16       5.778e-01  2.005e-01   2.882 0.003990 **  
geom22       6.777e-01  2.699e-01   2.511 0.012108 *   
draf4       -1.066e-01  1.404e-01  -0.759 0.447870     
draf5       -2.370e-01  1.521e-01  -1.558 0.119300     
draf6       -1.235e-01  1.565e-01  -0.789 0.429966     
draf7       -3.678e-01  1.820e-01  -2.021 0.043434 *   
slaf3        1.672e-01  5.101e-01   0.328 0.743075     
slaf4        4.213e-02  4.993e-01   0.084 0.932763     
slaf5       -3.853e-01  4.965e-01  -0.776 0.437765     
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slaf6       -7.374e-02  5.028e-01  -0.147 0.883430     
slaf7       -1.422e-02  5.046e-01  -0.028 0.977522     
slaf8        6.869e-02  5.056e-01   0.136 0.891948     
slaf9       -1.414e-01  5.070e-01  -0.279 0.780266     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 0.4803 on 2462 degrees of freedom 
Multiple R-squared:  0.5935, Adjusted R-squared:  0.5835  
F-statistic:  59.9 on 60 and 2462 DF,  p-value: < 2.2e-16 

SOUTH.2009 
 
Call: 
lm(formula = log10no3 ~ om05 + om10 + om25 + om40 + om60 + nhx +  
    gt06 + kwel2 + pawn + lgn6 + geom + slaf + slont, data = south.2009) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.81319 -0.37211  0.06602  0.37878  1.65725  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.960e+00  8.531e-01   2.297 0.021707 *   
om05        -1.594e-01  3.381e-02  -4.713 2.60e-06 *** 
om10         2.057e-01  3.400e-02   6.051 1.71e-09 *** 
om25        -1.299e-02  5.749e-03  -2.260 0.023950 *   
om40         1.312e-02  5.166e-03   2.539 0.011180 *   
om60        -9.259e-03  3.501e-03  -2.644 0.008243 **  
nhx          5.702e-05  2.114e-05   2.696 0.007066 **  
gt062       -5.591e-01  2.282e-01  -2.450 0.014363 *   
gt064       -5.675e-01  1.914e-01  -2.964 0.003070 **  
gt065       -6.578e-01  1.982e-01  -3.319 0.000918 *** 
gt066       -5.034e-01  2.028e-01  -2.483 0.013110 *   
gt067       -3.815e-01  1.895e-01  -2.014 0.044144 *   
gt068       -3.895e-01  1.910e-01  -2.040 0.041514 *   
gt069       -2.112e-01  1.882e-01  -1.123 0.261770     
gt0610       6.647e-02  1.911e-01   0.348 0.727979     
gt0611      -4.158e-01  2.106e-01  -1.975 0.048454 *   
kwel2        4.385e-02  7.742e-03   5.664 1.69e-08 *** 
pawn3        1.349e+00  6.537e-01   2.063 0.039201 *   
pawn4       -8.400e-01  4.872e-01  -1.724 0.084838 .   
pawn5        1.917e-01  3.431e-01   0.559 0.576399     
pawn7        3.041e-01  3.499e-01   0.869 0.384822     
pawn8        2.902e-01  3.241e-01   0.895 0.370634     
pawn9       -1.700e-01  2.961e-01  -0.574 0.566019     
pawn10      -1.512e-01  2.992e-01  -0.505 0.613354     
pawn11      -2.152e-01  3.022e-01  -0.712 0.476353     
pawn12      -2.492e-02  2.986e-01  -0.083 0.933513     
pawn13      -1.247e-01  3.005e-01  -0.415 0.678172     
pawn14      -3.219e-01  3.176e-01  -1.014 0.310891     
pawn15       2.374e-02  3.309e-01   0.072 0.942810     
pawn16      -6.325e-01  3.388e-01  -1.867 0.062055 .   
pawn18      -5.456e-01  3.461e-01  -1.577 0.115015     
pawn19      -4.888e-01  3.095e-01  -1.579 0.114412     
pawn20      -4.657e-01  3.455e-01  -1.348 0.177900     
lgn62        2.844e-01  3.301e-02   8.614  < 2e-16 *** 
lgn63        1.945e-01  5.611e-02   3.466 0.000538 *** 
lgn64        3.049e-01  6.275e-02   4.858 1.27e-06 *** 
lgn65        2.550e-01  4.884e-02   5.222 1.95e-07 *** 
lgn66        3.518e-01  3.661e-02   9.610  < 2e-16 *** 
lgn610       5.218e-01  1.080e-01   4.833 1.44e-06 *** 
lgn611      -5.298e-01  1.466e-01  -3.615 0.000307 *** 
lgn612      -8.339e-01  1.728e-01  -4.825 1.50e-06 *** 
lgn626       5.883e-02  2.679e-01   0.220 0.826235     
lgn645      -8.793e-02  2.035e-01  -0.432 0.665796     
geom6        1.118e-02  5.976e-01   0.019 0.985079     
geom7        3.227e-01  5.365e-01   0.601 0.547603     
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geom8        4.071e-01  5.343e-01   0.762 0.446256     
geom10       3.598e-01  5.393e-01   0.667 0.504726     
geom11       3.049e-01  7.535e-01   0.405 0.685810     
geom12       3.353e-01  5.337e-01   0.628 0.529883     
geom13       3.184e-01  5.333e-01   0.597 0.550601     
geom14       2.519e-01  5.343e-01   0.472 0.637310     
geom15      -3.295e-02  5.424e-01  -0.061 0.951571     
geom16       1.058e-01  5.346e-01   0.198 0.843166     
geom22       1.248e-01  5.733e-01   0.218 0.827741     
slaf3       -9.481e-02  5.942e-01  -0.160 0.873252     
slaf4        1.981e-02  5.510e-01   0.036 0.971321     
slaf5       -6.497e-01  5.405e-01  -1.202 0.229487     
slaf6       -4.352e-01  5.371e-01  -0.810 0.417871     
slaf7       -4.305e-01  5.364e-01  -0.802 0.422384     
slaf8       -3.233e-01  5.366e-01  -0.602 0.546912     
slaf9       -4.891e-01  5.369e-01  -0.911 0.362465     
slont3      -1.237e-01  8.354e-02  -1.481 0.138832     
slont4      -2.580e-01  7.793e-02  -3.310 0.000948 *** 
slont5      -1.479e-01  7.846e-02  -1.885 0.059557 .   
slont6      -8.793e-02  7.798e-02  -1.128 0.259576     
slont7      -9.049e-02  8.229e-02  -1.100 0.271617     
slont8      -3.143e-02  9.076e-02  -0.346 0.729144     
slont9      -1.317e-01  9.283e-02  -1.418 0.156203     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.5304 on 2069 degrees of freedom 
Multiple R-squared:  0.4171, Adjusted R-squared:  0.3983  
F-statistic:  22.1 on 67 and 2069 DF,  p-value: < 2.2e-16  
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ALL.REGIONS.2007 
 
Call: 
lm(formula = log10no3 ~ om120 + stone5 + stone6 + nhx + gt06 +  
    ahn + bbg06 + gronds + kwel2 + pawn + lgn6 + geom + dront +  
    laf, data = all.regions.2007) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.56249 -0.33239  0.00063  0.32595  1.75183  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  7.372e-01  5.532e-01   1.333 0.182682     
om120        1.823e-03  8.363e-04   2.180 0.029272 *   
stone5       6.272e-04  3.134e-04   2.001 0.045447 *   
stone6      -6.623e-04  3.290e-04  -2.013 0.044128 *   
nhx          6.848e-05  1.801e-05   3.803 0.000144 *** 
gt061       -1.878e-01  1.857e-01  -1.011 0.312011     
gt062       -2.969e-01  9.876e-02  -3.006 0.002657 **  
gt063       -1.436e-01  1.378e-01  -1.042 0.297626     
gt064       -2.235e-01  9.364e-02  -2.386 0.017047 *   
gt065       -2.709e-01  9.392e-02  -2.884 0.003939 **  
gt066       -3.946e-02  9.568e-02  -0.412 0.680040     
gt067       -4.527e-02  9.329e-02  -0.485 0.627482     
gt068        6.865e-03  9.380e-02   0.073 0.941658     
gt069        8.253e-02  9.220e-02   0.895 0.370738     
gt0610       1.051e-01  9.374e-02   1.121 0.262250     
gt0611       7.966e-02  1.018e-01   0.783 0.433922     
ahn          3.025e-05  9.772e-06   3.096 0.001975 **  
bbg0611      3.725e-01  5.001e-01   0.745 0.456377     
bbg0612     -6.008e-01  5.881e-01  -1.022 0.307055     
bbg0634     -5.642e-01  7.566e-01  -0.746 0.455873     
bbg0651      1.353e-01  4.820e-01   0.281 0.778901     
bbg0660     -1.056e+00  4.928e-01  -2.143 0.032165 *   
bbg0661     -1.350e+00  5.465e-01  -2.471 0.013510 *   
bbg0662     -1.086e+00  5.611e-01  -1.936 0.052924 .   
bbg0678     -1.487e-01  6.240e-01  -0.238 0.811628     
gronds20     2.342e-01  4.302e-02   5.445 5.42e-08 *** 
gronds21     1.851e-01  5.501e-02   3.365 0.000770 *** 
gronds30     2.391e-01  1.081e-01   2.213 0.026974 *   
gronds40     1.385e-01  1.211e-01   1.144 0.252830     
gronds50     1.245e-01  1.282e-01   0.971 0.331724     
gronds60    -1.070e-02  1.326e-01  -0.081 0.935684     
gronds70    -3.704e-01  4.939e-01  -0.750 0.453279     
kwel2        2.014e-02  3.222e-03   6.250 4.44e-10 *** 
pawn2        2.488e-01  1.090e-01   2.282 0.022537 *   
pawn3        1.402e-01  1.103e-01   1.272 0.203586     
pawn4        8.340e-02  1.515e-01   0.551 0.581929     
pawn5        1.293e-01  1.031e-01   1.254 0.210060     
pawn6       -8.700e-02  2.910e-01  -0.299 0.765018     
pawn7        1.518e-01  1.285e-01   1.181 0.237518     
pawn8        1.108e-01  1.190e-01   0.932 0.351580     
pawn9        2.781e-01  1.052e-01   2.643 0.008247 **  
pawn10       2.408e-01  1.149e-01   2.096 0.036110 *   
pawn11       8.933e-02  1.073e-01   0.832 0.405177     
pawn12       3.921e-01  1.077e-01   3.639 0.000276 *** 
pawn13       2.551e-01  1.055e-01   2.417 0.015664 *   
pawn14       2.997e-01  1.233e-01   2.431 0.015099 *   
pawn15       1.696e-02  1.656e-01   0.102 0.918404     
pawn16      -8.607e-02  1.614e-01  -0.533 0.593950     
pawn17       1.361e-01  1.686e-01   0.807 0.419478     
pawn18      -1.968e-02  1.581e-01  -0.125 0.900911     
pawn19       2.450e-01  1.477e-01   1.659 0.097241 .   
pawn20       3.283e-01  1.589e-01   2.067 0.038822 *   
pawn21       6.841e-01  4.872e-01   1.404 0.160311     
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lgn62        1.599e-01  2.036e-02   7.853 4.87e-15 *** 
lgn63        2.699e-01  2.687e-02  10.045  < 2e-16 *** 
lgn64        3.206e-01  3.986e-02   8.042 1.08e-15 *** 
lgn65        2.408e-01  2.770e-02   8.694  < 2e-16 *** 
lgn66        2.524e-01  3.800e-02   6.642 3.41e-11 *** 
lgn610       3.797e-01  1.034e-01   3.672 0.000243 *** 
lgn611       1.121e-01  9.970e-02   1.125 0.260777     
lgn612      -5.974e-02  1.086e-01  -0.550 0.582349     
lgn616       1.608e-01  1.968e-01   0.817 0.413757     
lgn623       2.031e-01  3.382e-01   0.601 0.548192     
lgn625       2.715e-01  3.370e-01   0.806 0.420533     
lgn626       1.307e-01  1.164e-01   1.123 0.261488     
lgn636       1.770e-01  2.534e-01   0.699 0.484852     
lgn637       1.688e-01  3.117e-01   0.541 0.588203     
lgn638       2.651e-04  3.959e-01   0.001 0.999466     
lgn641       5.409e-02  3.421e-01   0.158 0.874369     
lgn645      -1.375e-01  6.557e-02  -2.096 0.036095 *   
lgn661       3.220e-01  1.699e-01   1.895 0.058117 .   
geom2       -5.294e-01  3.496e-01  -1.514 0.130001     
geom3       -7.964e-02  1.470e-01  -0.542 0.588023     
geom6       -1.704e-01  1.501e-01  -1.136 0.256111     
geom8       -1.296e-01  9.791e-02  -1.324 0.185530     
geom9       -6.710e-03  1.664e-01  -0.040 0.967832     
geom10      -1.721e-01  1.045e-01  -1.647 0.099694 .   
geom11       1.606e-02  4.864e-01   0.033 0.973658     
geom12       6.553e-03  9.223e-02   0.071 0.943358     
geom13      -7.863e-02  8.973e-02  -0.876 0.380924     
geom14      -1.341e-01  9.074e-02  -1.478 0.139479     
geom15      -1.148e-01  1.069e-01  -1.074 0.282892     
geom16      -2.145e-01  9.177e-02  -2.337 0.019466 *   
geom22      -7.972e-02  2.897e-01  -0.275 0.783216     
geom4       -1.569e-01  2.922e-01  -0.537 0.591408     
geom7        8.968e-02  1.068e-01   0.840 0.401045     
dront3       1.413e-01  4.292e-02   3.293 0.000998 *** 
dront4       2.342e-01  4.437e-02   5.279 1.35e-07 *** 
dront5       2.241e-01  4.730e-02   4.739 2.21e-06 *** 
dront6       2.900e-01  4.993e-02   5.810 6.63e-09 *** 
dront7       2.592e-01  8.792e-02   2.948 0.003213 **  
laf2         1.540e-02  2.140e-01   0.072 0.942659     
laf3         5.307e-02  2.139e-01   0.248 0.804029     
laf4         3.024e-02  2.143e-01   0.141 0.887763     
laf5         2.100e-03  2.152e-01   0.010 0.992214     
laf6        -1.417e-01  2.167e-01  -0.654 0.513332     
laf7        -1.466e-01  2.161e-01  -0.678 0.497702     
laf8        -2.095e-01  2.176e-01  -0.963 0.335823     
laf9        -2.432e-01  2.288e-01  -1.063 0.287942     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4749 on 5284 degrees of freedom 
Multiple R-squared:  0.4718, Adjusted R-squared:  0.462  
F-statistic: 48.16 on 98 and 5284 DF,  p-value: < 2.2e-16 
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ALL.REGIONS.2008 
 
Call: 
   lm(formula = log10no3 ~ om60 + om80 + om100 + stone5 + stone6 +  
        stone7 + stone8 + nhx + gt06 + ahn + bbg06 + kwel2 + pawn +  
        lgn6 + geom + slaf + slont, data = all.regions.2008) 
  
 Residuals: 
   Min       1Q   Median       3Q      Max  
 -1.58346 -0.32860 -0.00323  0.32693  1.81543  
  
 Coefficients: 
   Estimate Std. Error t value Pr(>|t|)     
 (Intercept)  1.496e+00  4.192e-01   3.568 0.000362 *** 
 om60        -1.485e-03  4.613e-04  -3.220 0.001289 **  
 om80         2.175e-03  9.668e-04   2.250 0.024487 *   
 om100       -2.487e-03  1.162e-03  -2.140 0.032420 *   
 stone5       7.671e-04  3.118e-04   2.461 0.013896 *   
 stone6      -1.423e-03  4.771e-04  -2.982 0.002875 **  
 stone7       2.051e-03  7.866e-04   2.607 0.009160 **  
 stone8      -1.409e-03  6.730e-04  -2.094 0.036287 *   
 nhx          3.990e-05  1.430e-05   2.789 0.005303 **  
 gt061       -1.711e-01  1.518e-01  -1.127 0.259729     
 gt062       -1.701e-01  7.179e-02  -2.369 0.017867 *   
 gt063       -2.402e-01  1.587e-01  -1.513 0.130295     
 gt064       -1.251e-01  6.952e-02  -1.800 0.071920 .   
 gt065       -2.433e-01  6.980e-02  -3.485 0.000495 *** 
 gt066       -9.843e-02  7.327e-02  -1.343 0.179191     
 gt067       -3.111e-02  6.955e-02  -0.447 0.654657     
 gt068        5.808e-02  7.013e-02   0.828 0.407616     
 gt069        8.323e-02  6.825e-02   1.219 0.222708     
 gt0610       1.283e-01  6.974e-02   1.840 0.065885 .   
 gt0611      -5.320e-02  7.989e-02  -0.666 0.505508     
 ahn          3.425e-05  8.898e-06   3.849 0.000120 *** 
 bbg0611     -3.497e-01  3.680e-01  -0.950 0.341999     
 bbg0651     -3.555e-01  3.666e-01  -0.970 0.332185     
 bbg0660     -1.536e+00  3.775e-01  -4.067 4.82e-05 *** 
 bbg0661     -1.610e+00  4.350e-01  -3.701 0.000217 *** 
 bbg0662     -1.492e+00  4.496e-01  -3.318 0.000912 *** 
 kwel2        1.572e-02  2.924e-03   5.378 7.79e-08 *** 
 pawn2       -1.354e-01  9.133e-02  -1.483 0.138228     
 pawn3       -3.128e-01  9.595e-02  -3.260 0.001119 **  
 pawn4       -2.224e-01  1.199e-01  -1.855 0.063578 .   
 pawn5       -1.314e-01  8.527e-02  -1.540 0.123501     
 pawn6       -3.907e-01  1.841e-01  -2.122 0.033846 *   
 pawn7       -8.391e-02  1.115e-01  -0.752 0.451883     
 pawn8        4.661e-02  9.591e-02   0.486 0.627019     
 pawn9        9.013e-03  8.786e-02   0.103 0.918293     
 pawn10      -6.640e-02  9.471e-02  -0.701 0.483231     
 pawn11      -2.310e-01  8.985e-02  -2.571 0.010177 *   
 pawn12       1.738e-01  8.868e-02   1.960 0.050046 .   
 pawn13      -1.304e-02  8.841e-02  -0.147 0.882756     
 pawn14      -6.954e-02  1.062e-01  -0.655 0.512788     
 pawn15      -1.304e-01  1.217e-01  -1.071 0.284144     
 pawn16      -3.139e-01  1.003e-01  -3.130 0.001757 **  
 pawn17      -4.867e-01  1.017e-01  -4.784 1.76e-06 *** 
 pawn18      -2.292e-01  8.891e-02  -2.578 0.009952 **  
 pawn19      -1.056e-01  9.233e-02  -1.144 0.252642     
 pawn20      -1.738e-01  1.136e-01  -1.530 0.126057     
 lgn62        3.281e-01  1.917e-02  17.117  < 2e-16 *** 
 lgn63        3.823e-01  2.644e-02  14.458  < 2e-16 *** 
 lgn64        2.845e-01  3.832e-02   7.422 1.31e-13 *** 
 lgn65        3.259e-01  2.557e-02  12.746  < 2e-16 *** 
 lgn66        4.527e-01  2.419e-02  18.715  < 2e-16 *** 
 lgn610       6.913e-01  7.647e-02   9.041  < 2e-16 *** 
 lgn611       1.787e-01  9.465e-02   1.888 0.059067 .   
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 lgn612       8.897e-02  1.021e-01   0.871 0.383787     
 lgn625      -5.876e-02  2.682e-01  -0.219 0.826591     
 lgn626       4.415e-01  1.962e-01   2.250 0.024458 *   
 lgn635       8.435e-02  5.361e-01   0.157 0.875000     
 lgn636      -2.226e-02  2.403e-01  -0.093 0.926177     
 lgn637      -1.264e-02  2.694e-01  -0.047 0.962583     
 lgn638       2.310e-02  2.494e-01   0.093 0.926197     
 lgn639      -3.756e-01  2.622e-01  -1.433 0.151965     
 lgn640      -5.588e-01  3.692e-01  -1.514 0.130191     
 lgn641      -1.927e-01  3.460e-01  -0.557 0.577546     
 lgn642       5.613e-01  4.794e-01   1.171 0.241712     
 lgn645      -5.721e-03  6.369e-02  -0.090 0.928429     
 lgn661       6.083e-01  1.706e-01   3.565 0.000367 *** 
 geom2       -2.374e-01  2.822e-01  -0.841 0.400229     
 geom6       -6.063e-01  2.338e-01  -2.593 0.009540 **  
 geom8       -1.930e-01  1.492e-01  -1.293 0.196055     
 geom9       -5.066e-01  2.081e-01  -2.434 0.014970 *   
 geom10      -1.416e-01  1.542e-01  -0.918 0.358560     
 geom11      -6.809e-02  5.021e-01  -0.136 0.892143     
 geom12      -6.896e-02  1.478e-01  -0.466 0.640893     
 geom13      -1.040e-01  1.470e-01  -0.707 0.479392     
 geom14      -2.064e-01  1.472e-01  -1.402 0.160906     
 geom15      -2.370e-01  1.597e-01  -1.484 0.137785     
 geom16      -2.294e-01  1.479e-01  -1.551 0.120954     
 geom22      -1.861e-01  2.348e-01  -0.792 0.428206     
 geom7        1.367e-01  1.562e-01   0.875 0.381420     
 slaf2        5.858e-02  1.034e-01   0.567 0.570963     
 slaf3        4.660e-02  1.002e-01   0.465 0.642043     
 slaf4        1.732e-01  9.529e-02   1.818 0.069104 .   
 slaf5        1.820e-01  9.513e-02   1.913 0.055738 .   
 slaf6        2.459e-01  9.350e-02   2.630 0.008560 **  
 slaf7        2.766e-01  9.370e-02   2.952 0.003168 **  
 slaf8        3.209e-01  9.411e-02   3.410 0.000654 *** 
 slaf9        2.389e-01  9.488e-02   2.518 0.011816 *   
 slont2      -3.557e-02  6.807e-02  -0.523 0.601301     
 slont3       5.570e-02  6.708e-02   0.830 0.406367     
 slont4       6.044e-02  6.673e-02   0.906 0.365090     
 slont5       1.485e-01  6.753e-02   2.200 0.027874 *   
 slont6       1.147e-01  6.762e-02   1.696 0.089946 .   
 slont7       1.349e-01  6.847e-02   1.971 0.048770 *   
 slont8       2.146e-01  7.017e-02   3.058 0.002240 **  
 slont9       1.217e-01  7.237e-02   1.682 0.092611 .   
 --- 
   Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
  
 Residual standard error: 0.4778 on 6148 degrees of freedom 
 Multiple R-squared:  0.554,  Adjusted R-squared:  0.5472  
 F-statistic: 81.24 on 94 and 6148 DF,  p-value: < 2.2e-16  
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ALL.REGIONS.2009 
 
Call:    
  lm(formula = log10no3 ~ stone5 + stone6 + stone7 + stone8 + nhx +  
        gt06 + ahn + kwel2 + pawn + lgn6 + geom + dront + slaf +  
        vds, data = all.regions.2009) 
Residuals: 
   Min       1Q   Median       3Q      Max  
 -1.73807 -0.34174 -0.01295  0.34677  1.97089  
  
 Coefficients: 
   Estimate Std. Error t value Pr(>|t|)     
 (Intercept)  9.335e-01  1.910e-01   4.888 1.05e-06 *** 
 stone5       7.556e-04  3.311e-04   2.282 0.022516 *   
 stone6      -1.070e-03  5.095e-04  -2.100 0.035785 *   
 stone7       1.975e-03  8.397e-04   2.352 0.018692 *   
 stone8      -1.605e-03  7.100e-04  -2.261 0.023822 *   
 nhx          5.657e-05  1.597e-05   3.541 0.000401 *** 
 gt061       -9.983e-03  1.862e-01  -0.054 0.957248     
 gt062       -1.449e-01  8.336e-02  -1.738 0.082180 .   
 gt063       -6.262e-02  1.376e-01  -0.455 0.648932     
 gt064       -1.545e-01  8.074e-02  -1.914 0.055705 .   
 gt065       -1.786e-01  8.033e-02  -2.223 0.026249 *   
 gt066       -1.093e-01  8.360e-02  -1.307 0.191284     
 gt067       -4.184e-02  8.065e-02  -0.519 0.603920     
 gt068        5.603e-03  8.104e-02   0.069 0.944880     
 gt069        9.295e-02  7.916e-02   1.174 0.240359     
 gt0610       1.500e-01  8.096e-02   1.853 0.063924 .   
 gt0611      -1.162e-01  9.484e-02  -1.225 0.220526     
 ahn          4.502e-05  9.869e-06   4.562 5.17e-06 *** 
 kwel2        1.902e-02  3.345e-03   5.688 1.35e-08 *** 
 pawn2       -6.526e-02  7.513e-02  -0.869 0.385097     
 pawn3       -1.377e-01  9.885e-02  -1.394 0.163518     
 pawn4       -2.162e-01  1.137e-01  -1.902 0.057280 .   
 pawn5       -5.768e-02  7.206e-02  -0.800 0.423505     
 pawn6       -4.344e-01  2.676e-01  -1.623 0.104614     
 pawn7        2.722e-01  1.492e-01   1.824 0.068168 .   
 pawn8        1.761e-01  1.076e-01   1.636 0.101822     
 pawn9        8.944e-02  9.358e-02   0.956 0.339268     
 pawn10       8.960e-02  1.027e-01   0.872 0.383233     
 pawn11      -5.871e-02  9.662e-02  -0.608 0.543453     
 pawn12       2.896e-01  9.581e-02   3.023 0.002515 **  
 pawn13       6.455e-02  9.433e-02   0.684 0.493775     
 pawn14      -1.973e-01  1.247e-01  -1.583 0.113549     
 pawn15      -1.159e-01  1.375e-01  -0.843 0.399131     
 pawn16      -3.411e-01  1.208e-01  -2.824 0.004754 **  
 pawn17      -2.406e-01  1.237e-01  -1.945 0.051875 .   
 pawn18      -1.130e-01  1.311e-01  -0.862 0.388749     
 pawn19       2.476e-02  1.007e-01   0.246 0.805700     
 pawn20      -1.744e-01  1.441e-01  -1.210 0.226227     
 lgn62        3.173e-01  2.003e-02  15.842  < 2e-16 *** 
 lgn63        3.123e-01  2.781e-02  11.229  < 2e-16 *** 
 lgn64        3.622e-01  3.857e-02   9.390  < 2e-16 *** 
 lgn65        2.829e-01  2.691e-02  10.513  < 2e-16 *** 
 lgn66        4.572e-01  2.759e-02  16.569  < 2e-16 *** 
 lgn610       6.615e-01  9.044e-02   7.314 2.96e-13 *** 
 lgn611      -3.919e-01  7.021e-02  -5.581 2.50e-08 *** 
 lgn612      -9.533e-01  9.314e-02 -10.235  < 2e-16 *** 
 lgn616       1.226e-02  2.051e-01   0.060 0.952325     
 lgn623       5.404e-01  4.992e-01   1.083 0.279012     
 lgn625       4.406e-02  2.891e-01   0.152 0.878874     
 lgn626       2.728e-01  1.449e-01   1.883 0.059798 .   
 lgn636      -1.182e+00  2.129e-01  -5.552 2.96e-08 *** 
 lgn637      -1.245e+00  3.600e-01  -3.459 0.000546 *** 
 lgn641       2.992e-02  2.912e-01   0.103 0.918164     
 lgn642      -1.666e-01  3.542e-01  -0.470 0.638028     
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 lgn645      -3.256e-02  8.285e-02  -0.393 0.694306     
 lgn661       4.471e-01  1.596e-01   2.802 0.005094 **  
 geom2       -3.721e-01  2.857e-01  -1.302 0.192872     
 geom6       -2.143e-01  2.339e-01  -0.916 0.359584     
 geom8        5.814e-02  1.399e-01   0.416 0.677787     
 geom9       -2.101e-01  2.034e-01  -1.033 0.301547     
 geom10      -7.969e-02  1.464e-01  -0.544 0.586281     
 geom11       2.213e-01  3.784e-01   0.585 0.558649     
 geom12      -6.189e-03  1.382e-01  -0.045 0.964284     
 geom13      -4.092e-02  1.371e-01  -0.298 0.765438     
 geom14      -1.300e-01  1.374e-01  -0.946 0.344264     
 geom15      -2.279e-01  1.539e-01  -1.481 0.138683     
 geom16      -2.269e-01  1.383e-01  -1.641 0.100942     
 geom22      -2.259e-01  2.175e-01  -1.039 0.299050     
 geom7        6.599e-02  1.462e-01   0.451 0.651779     
 dront3      -1.146e-02  4.698e-02  -0.244 0.807309     
 dront4       5.964e-02  4.887e-02   1.220 0.222364     
 dront5       6.087e-02  5.158e-02   1.180 0.237973     
 dront6       1.239e-01  5.428e-02   2.283 0.022447 *   
 dront7      -7.144e-03  1.189e-01  -0.060 0.952092     
 slaf2        1.253e-01  1.056e-01   1.187 0.235321     
 slaf3        1.243e-01  1.057e-01   1.176 0.239541     
 slaf4        1.340e-01  1.001e-01   1.339 0.180689     
 slaf5        1.868e-01  1.002e-01   1.864 0.062405 .   
 slaf6        2.137e-01  9.859e-02   2.168 0.030235 *   
 slaf7        2.403e-01  9.900e-02   2.427 0.015257 *   
 slaf8        3.288e-01  9.926e-02   3.313 0.000929 *** 
 slaf9        2.381e-01  1.009e-01   2.360 0.018294 *   
 vds7        -6.745e-02  1.234e-01  -0.546 0.584790     
 vds8         4.527e-02  8.566e-02   0.528 0.597219     
 vds10       -1.044e-01  3.441e-02  -3.035 0.002414 **  
 vds11        5.907e-01  1.640e-01   3.602 0.000318 *** 
 vds13       -3.041e-02  5.873e-02  -0.518 0.604630     
 vds14       -2.143e-01  1.011e-01  -2.120 0.034050 *   
 --- 
 Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
  
 Residual standard error: 0.498 on 5633 degrees of freedom 
 Multiple R-squared:  0.4349,  Adjusted R-squared:  0.4262  
 F-statistic: 49.84 on 87 and 5633 DF,  p-value: < 2.2e-16
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