
How to choose article and number for nouns when
translating from Japanese to Dutch in the context of

syntax-based machine translation

L.D.S.P. Broers (3117243)
Supervisor: Jan Odijk (Utrecht University)

Second reader: Yoad Winter (Utrecht University)

13th October 2014

Abstract

When translating from a language which does not have distinction in number
(singular/plural) or an indication of definiteness for nouns (Japanese), into a lan-
guage which does have these distinctions (Dutch), it is not straightforward to make
these decisions.

This problem in machine translation is studied using a compositional translation
framework. This framework uses synchronized (isomorphic) grammars to deal with
translation. As the grammars are reversible, no separate analysis and production
for both languages are necessary. The basic expressions and rules in both languages
correspond in meaning, and when rules with the same meaning are applied in both
languages, the resulting sentences are each other’s translations.

The grammar also uses features to indicate syntactic and semantic properties
of the words and phrases. The rules check for certain settings of the features to
decide whether or not they are applicable. If necessary, features of the resulting
output expressions are set as well. A rule also has conditions, which all have to
be met before a rule can be applied. These restrictions are intended to prevent
ungrammatical combinations from being generated.

The features ‘divisible’, ‘generic’ and ‘count/mass noun’ are the ones the rules
make the most use of in deciding number and definiteness for nouns.

The output created by the rules consists of all possible translations. A bonus
system is used to order the possible translations by plausibility.

Contents

1 Introduction 4

2 Context and background 7

3 Related literature 9

1

4 Translation framework 11
4.1 Rule-based machine translation methods 11

4.1.1 Transfer method . 12
4.1.2 Interlingua model . 14
4.1.3 Compositional translation framework 15

4.2 Syntax-based statistical machine translation 19
4.2.1 Word-based . 19
4.2.2 Phrase-based . 20
4.2.3 Synchronous models . 22
4.2.4 Tree-string transducers . 23
4.2.5 String-tree transducers . 24
4.2.6 Tree-tree transducers . 24

4.3 Translation method choice . 24
4.3.1 Parsing and dictionary . 24
4.3.2 Translation method . 26

5 Articles 27
5.1 Nouns in Dutch . 27
5.2 Nouns in Japanese . 28
5.3 Using articles . 29
5.4 Using no articles . 30

6 Number 32
6.1 Forms indicating singularity/plurality in Japanese 32
6.2 Numeral classifiers . 32
6.3 Set nouns . 37
6.4 Generic NPs . 40

7 Translation theory 40
7.1 Features . 41

7.1.1 N and NP . 41
7.1.2 PrN: Pronouns . 43
7.1.3 PersPrN: Personal Pronouns . 43
7.1.4 Proper Nouns . 44
7.1.5 Affixes . 45
7.1.6 V and VP . 45
7.1.7 Numerals . 45
7.1.8 Quantifiers . 46
7.1.9 P . 46

7.2 Mini grammar . 46
7.2.1 RBasicNPgeneric=x: Basic NP rules 47
7.2.2 RPersPronoun: To make an NP of a Personal Pronoun 51
7.2.3 RPronoun: To make an NP of a Pronoun 52
7.2.4 RSingPluralN: Make N’ singular or plural 52
7.2.5 RSentence: Basic sentence rule 53
7.2.6 RGenericNPgeneric=x: Creating a generic NP 67

2

7.2.7 RPNtoNP: Proper Nouns . 67
7.2.8 RHonAff: Adding honorific affixes to Proper Nouns 69
7.2.9 RPlurSuff: Adding group-forming suffixes 70
7.2.10 RAimedAtNP: ‘aimed at’ + NP 71
7.2.11 RIdentSent: Identificational sentences 72
7.2.12 RPredSent: Predicational sentences 73
7.2.13 RPredSentAdj: Predicational sentences with adjectives 74
7.2.14 RAsNP: ‘as’ (toshite) . 75
7.2.15 RTopic: Making a topic phrase of a ga/ni/wo/de phrase (i) 76
7.2.16 RAlso: ‘also/too’ (mo) . 80
7.2.17 RDirSuff: Directional suffixes . 81
7.2.18 RNomVerb: Nominalizing verbs 82
7.2.19 RNumeral: Numerals . 82
7.2.20 RQuant: Quantifiers specifying sing/plur 83

7.3 Overview of the mapping rules . 85
7.4 Example derivations . 86

7.4.1 ‘The book is red.’ . 86
7.4.2 ‘Anna is reading the book.’ . 89
7.4.3 ‘I saw everything.’ . 92
7.4.4 ‘Mama likes cats.’ . 95
7.4.5 ‘Elephants eat leaves.’ . 99

7.5 Evaluation . 106

8 Conclusion 108

A Rules for deciding which article a Dutch noun gets 119

B Parsing 121
B.1 Parsing of Japanese by humans and by machines 121

B.1.1 Parsing of Japanese by humans 121
B.1.2 Parsing of Japanese by machine 123

B.2 Railroad diagrams . 123
B.2.1 Mason’s “Augmented Syntax Diagrams” 124
B.2.2 Analysis of the Proper Noun structure 124
B.2.3 Analysis of the simple NP structure 126
B.2.4 Some small examples using my railroad diagram mappings 127
B.2.5 Scrambling . 127

3

1 Introduction

Japanese is a language without definite and indefinite articles like ‘the’ and ‘a’ in
English. Dutch is a language which has two definite articles (‘de’ for the grammatical
male and female genders, and ‘het’ for neuter) and one indefinite article (‘een’). When
translating from a language without overt articles to a language which does have them,
how is a system to decide which one to choose (and whether to insert an article at all)?

In Japanese, the same word can be used for singular and plural: in most cases, there is
no difference between the singular and plural word. A human reader can easily understand
when the author meant singular or plural by looking at the context of the word, but using
context isn’t very easy for a machine translation system. So, are there hints in the same
sentence that a machine translation system could use to decide the correct number?

The main question of this thesis is “When do you have to insert a definite, indefinite
or no article and when do you have to choose a singular or plural form for nouns when
translating from Japanese to Dutch in the context of syntax-based machine translation?”.

This is not a new subject, as it’s one of the most obvious differences between Japanese
and English. Many people have already written about this problem, which I review
in section 3. The reason I am also looking into this topic, is that available machine
translation systems still make errors in these areas.

However, I’m looking at translation between Japanese and Dutch, while so far other
systems have looked at translation between Japanese and English (and sometimes another
language, but not Dutch yet). Number marking and definiteness on their own aren’t that
different between English and Dutch, but to determine number and definiteness of nouns,
it is necessary to use information from elsewhere in the sentence. And there, English and
Dutch aren’t exactly the same. The most notable difference is the word order:

In declarative sentences, Dutch has Verb-second word order, which means that the
finite verb (which agrees with the subject) is in the second position of the sentence.
The rest of the verbs are at the end of the sentence. In subordinate clauses, Dutch
sentences have the Subject-Object-Verb word order. This same SOV order is used when
the sentence doesn’t start with the subject, but for example with an adverb.

English has Subject-Verb-Object word order in both declarative sentence and sub-
ordinate clauses. A related difference between English and Dutch word orders, is that
Dutch show a great deal of scrambling, which appears to be typical of OV-languages [50],
and scrambling can be of influence to determine definiteness of nouns in Dutch.

The usage of verb tenses also differs between English and Dutch, which sometimes
causes a preference for a certain definiteness in a noun clause.

The fact that Dutch distinguishes two grammatical genders (male/female and neutral)
for nouns, makes it necessary to choose between the definite male/female article ‘de’ or
the neutral article ‘het’. In English, there is only the definite article ‘the’. This distinction
also influences the morphology of the other words in the noun clause (articles, adverbs,
adjectives). Even though most of the time, article use between Dutch and English seems
similar, there are differences where English uses an article, while Dutch doesn’t. An
example are sentence structures with job names, for example in (1).

(1) Mijn vader is leraar. (Dutch)

4

*My father is teacher. (literal translation into English)
My father is a teacher. (correct English sentence)

A similar case occurs with generics: abstract generics in English often appear without
an article, while in Dutch an article is often required, as in (2).

(2) Time flies. (English)
*Tijd vliegt. (incorrect translation into Dutch, without article)
De tijd vliegt. (correct Dutch sentence, with article)

Also, if all translation systems work by translating via English, this could make de-
tails from one language get lost in translation to the other language (which is something
you can already see happening when you use an existing translation system like Google-
Translate where it gives different results when you translate from language A to English
to language B, instead of directly from language A to B).

The goal of this thesis is to make explicit rules that make use of grammatical informa-
tion, and which can be automatically processed. If the cases for using articles and number
can be represented in a schematic way that a computer will be able to parse easily, the
translations might improve too. This is more ‘syntax-based’ than ‘statistics-based’, hence
the title of this thesis.

I will first look at the context and background (chapter 2) and the related literature
(chapter 3). Next, I will look at existing translation frameworks and define the one I
will be working with (chapter 4). I propose here a compositional translation system
based on the Rosetta framework, used by Philips in the 1980s (detailed in section 4.1.3).
This framework uses synchronized (isomorphic) grammars to deal with translation. As
the grammars are reversible, no separate analysis and production for both languages are
necessary. There are basic expressions in both languages which correspond in meaning
(a basic expression is, for example, a single noun), as well as rules that have the same
meaning (which are called corresponding rules). When the corresponding rules are applied
to the corresponding basic expressions and the output of other corresponding rules in both
languages, the resulting sentences are each other’s translations.

I do restrict this thesis’ research to single sentences, as the Rosetta system and most
other machine translation systems also work on single sentences. I briefly discuss this
problem in section 5.3, because the choice between definite or indefinite also depends on
the context from preceding sentences.

In chapter 5 and 6 I will look at ways of determining the correct article and number
for nouns when translating from Japanese to Dutch. In chapter 7 I will give the details of
the translation theory, including the compositional translation rules. This chapter is the
main part of the thesis: the rules of the translation system, and the features that need
to be attached to the words which are necessary for the rules.

The features are used to indicate syntactic and semantic properties of the words and
phrases. Without these, it’s not possible to make decisions about number and definiteness
in the compositional translation framework.

5

The rules check for certain settings of the features to decide whether or not they are
applicable. If necessary, features of the resulting output expressions are set as well. These
restrictions are intended to prevent ungrammatical combinations from being generated.

The features ‘divisible’, ‘generic’ and ‘count/mass noun’ are the ones the rules make
the most use of in deciding number and definiteness for nouns.

The output created by the rules consists of all possible translations. A bonus system
is used to order the possible translations by plausibility.

The appendix contains topics related to the main topic of this thesis: rules for deciding
which article a Dutch noun gets (chapter A), parsing and the internal structure of NPs
(chapter B).

6

2 Context and background

The best-known machine translation system available at the moment is Google Trans-
late [27]. It does not always translate articles and plurality correctly. An example can
be seen in (3), where Google Translate does recognize that ‘banana’ is the fruit and
should be translated as the Dutch word ‘banaan’ in 2013, but a year later it seems to
be translated as a name (which could make sense, as there is a Japanese author called
‘Yoshimoto Banana’. However, the author’s name is written in hiragana characters, while
I typed ‘banana’ in katakana characters). It doesn’t make a choice for an article or for
number. When changing the colour to something more plausible (4), in 2013 ‘banana’
was translated as a name, and a year later as a fruit.

(3) banana-wa akairo datta. (entered into GoogleTranslate in Japanese characters)
banana-TOP red is-PAST
“A/The banana(s) was/were red.”
Banaan was rood. (Google Translate Japanese to Dutch, 2013-02-19)
Banana was rood. (Google Translate Japanese to Dutch, 2014-01-27)
banana/‘Banana’ was red.

(4) banana-wa kiiro datta.
banana-TOP yellow is-PAST
“A/The banana(s) was/were yellow.”
Banana was geel. (Google Translate Japanese to Dutch, 2013-02-19)
Banaan was geel. (Google Translate Japanese to Dutch, 2014-01-27)
‘Banana’/banana was yellow.

Google bases its machine translation on statistics [71]. They apply statistical learning
techniques to a large amount of text in both the source and target language, as well
as aligned human-translated text, to build a translation model (and statistical machine
translation models use monolingual data of the target language to create a language model
of target language). They also allow a certain amount of user feedback [72]. However,
no linguistic or grammatical knowledge is used directly in this way of translating. To
train a statistical translation model, it needs texts which have already been translated by
humans (‘aligned texts’ or ‘parallel texts’, the same text in both languages). The more
human-translated texts are available, the better the statistical machine translation will
be for new texts [28].

Until the 1990s, machine translation was mostly based on rules and heuristics, making
heavy use of dictionaries containing relevant information. In the 1950s and 1960s, some
statistics were used to discover grammatical and lexical regularities, but other approaches
used a linguistic basis [35]. Most developed systems used a transfer or interlingua ap-
proach ([35], see also section 4 for descriptions of these approaches).

However, the ‘pure syntax-based models’ ran into limitations: a lot of syntactic in-
formation was necessary to be able to translate texts and a lot of ambiguities couldn’t be
solved on the basis of grammar alone. So in the last decade of the 20th century, research
started to focus more on statistical machine translation, which since then has become the

7

main method for machine translation (though a number of research groups at universities
have continued with transfer- and interlingua-based projects [35]).

In the statistical approach, the information for translating mostly comes from the lan-
guage data itself. Probability models like Hidden Markov Models, Probabilistic Context-
free Grammars and n-grams (see also section 4.2.2 for more on n-grams) can be used to
describe probabilities in a language, but it is a topic of debate whether or not probabilistic
information should be within the grammar itself [32]. In the rule-based view, the theory
of a language can be described by rules for the syntax, morphology and semantics, and a
translation dictionary.

Chomsky [17] claims that statistical models are only a simulation of linguistic problems
because they don’t look at the structure of the language, and thus don’t give any insight
into the language itself. Statistics like Bayesian models1 give good results, but the models
are very simple and don’t really take into account the structure of languages.

Norvig [69] replies that it is possible to gain insight into the phenomenon of language
by examining the properties of the statistical model. He does agree that a statistical
(Markov) model alone can’t model all of language, but only a tree-structure2 model can’t
do that either, so Norvig says that “a probabilistic model3 which covers words, trees,
semantics, context, discourse, etc. would be the best tool for representing facts about
language, for algorithmically processing language, and for understanding how humans
process language.” [69].

Chomsky also states that when you integrate statistical analysis with fundamental
properties of languages (like the prosodic cues that mark word boundaries), you do get
better results [17].

This integration can also be seen in the hybrid approaches to machine translation.
Because it is very difficult to cover all possible constructions and ambiguities in a language
using only a rule-based approach, something else is needed to be able to create better
translations: world knowledge or statistics, though it has been tried to create machine
translation systems using only statistics.

Nowadays most of the commercial systems use a hybrid of statistically-trained and
rule-based approaches. All competitors in machine translation competitions use statistical
methods [69].

Norvig [69] writes that “of the 4000 language pairs covered by machine translation
systems, a statistical system is by far the best for every pair except Japanese-English,
where the top statistical system is roughly equal to the top hybrid system.”

The fact that a purely statistical system wasn’t the best for Japanese-English, shows
that at least for Japanese it is also useful to look at a syntax-based approach.

An idea for a hybrid syntax/statistical system can be to first use syntactic rules as far
as possible (to produce a list of possible translations), and then (for example) sort those
sentences by most common words or word combinations using statistics.

1A Bayesian model calculates the probability that a variable will take on a specific value. The most
simple model, Naive Bayes, assumes the variables are independent [91].

2Representing sentences as tree structures is a common method in linguistics.
3A Bayesian model is an example of a probabilistic model.

8

3 Related literature

Most literature focusing on translating articles and number when translating is about
Japanese to English. I have not come across any which is about translating from Japanese
to Dutch directly.

Nishida [68] translates from Japanese to English and has information in their ‘word
dictionary’ about the conventional use of articles for every noun.

Rösner [87] has written a paper about a prototypical Japanese to German translation
system for titles of Japanese papers they had worked on for 2.5 years. The standard
structure of those titles are noun phrases, but they still have to infer missing articles and
plurals. For this, they use heuristics. The heuristics they give as an example in their
paper are the following.
‘SLEX’ is their semantics-to-German dictionary. :OBJECT and :NAME are representa-
tions in this semantic dictionary.

• a nominalized case frame has to be realized with definite article in singular (“Die
Generierung natürlicher Sprache”).

• the :OBJECT role of a nominalized case frame should be realized indefinite and
plural (”Die Generierung von Titeln’), except in cases with an exception information
in SLEX (”Die Wartung von Software”).

• concepts that have a :NAME role will be realized definite and singular (“Die
Fourier-Transformation”).

• If no heuristic is applicable and if no SLEX information is found we use as title
defaults ‘indefinite’ and ‘singular’ (“Ein Verfahren”).

Murata e.a. [66] also uses heuristics to decide which article and number to use for
nouns when translating from Japanese to English. Their heuristics are rules that create
non-exclusive categories [66]), so the categories resulting from the rules could overlap
(different rules could apply to the same sentence). They first transform the sentences
into dependency structure representations. These structures are used to first decide the
referential property for each noun (generic or non-generic and definite or indefinite), then
the number (uncountable or countable and singular or plural). They use 86 heuristic
rules for the referential property and 48 heuristic rules for the number. Their rules look
at context (other words in the same sentence), as illustrated in the rules below. Their
system applies all possible rules for a certain noun and looks at the accumulated scores
to make a decision. The default values are ‘definite’ for the referential property and
‘singular’ for the number. The first number between brackets is the possibility (1 or 0),
the second number is the plausibility (value of 0 to 9).

• When a noun is accompanied by a particle (WA), and the predicate has past tense,
then {indefinite (1,0), definite (1,3), generic (1,1)}
Example: INU-WA(dog) MUKOUE(away there) IKIMASHITA(went)
The dog went away.

9

• When a noun is accompanied by a particle HE(to), MADE(up to) or KARA(from),
then {indefinite (1, 0) definite (1, 2) generic (1, 0)}
Example: KARE-O(he) KUUKOU-MADE(airport) MUKAE-NI(to meet) YUKI-
MASHOO(let us go)
Let us go to meet him at the airport.

• When a noun is accompanied by a particle (WA), and the predicate has present
tense, then {indefinite (1,0), definite (1,2), generic (1,3)}
Example: INU-WA YAKUNITATSU(useful) DOUBUTSU(animal) DESU(is)
Dogs are useful animals. (but: ‘a dog’ and ‘the dog’ are also possible because of
the generic subject)

• When a predicate, SUKI(like), TANOSHIMU(enjoy), etc. has a generic noun as an
object4, and the noun is accompanied by GA(for SUKI), or WO(for TANOSHIMU),
then {singular (1,0), plural (1,2), uncountable (1,0)}
Example: WATASHI-WA(I) RINGO-GA(apple) SUKI-DESU(like)
I like apples.

They also note that definiteness of a noun can be decided by the meaning of the noun
itself (‘chikyuu’ - the earth, ‘uchyuu’ - the universe5), or that a noun is definite if it has
appeared before (‘He has a car and a truck, but only the car is insured’).

Bond e.a. [8] also uses heuristics to improve the translations for articles and number
in the ALT-J/E machine translation system, which improved the accuracy by 8% in
comparison to the system before Bond’s article/noun heuristics were added. In his book
[6] he notes that the accuracy of translating determiners (articles and possessives) became
85% because of his additions to the system, but that it made no sense to try and improve
on the determiners before other parts of the translations were improved.

Knight and Chander [44] found that when ‘the’ was inserted to all article locations
in an English text with the articles replaced by blanks, 67% was correct. When humans
have to guess the missing articles, their scores are between 94% and 96%. These results
would imply that in 4-6%, there are several options for the articles. If you use a simple
algorithm that always chooses ‘the’, 67% of the articles will already be correct.

4If the noun which acts as an object for these verbs is not a proper noun or specified using a word
like ‘that’, then it’s a generic noun.

5‘Uchyuu’ is not always definite singular, as the same word can be used for words like ‘daitai-uchyuu’
(alternate universe(s)) or ‘ryoushi-uchyuu’ (quantum universe(s)).

10

4 Translation framework

4.1 Rule-based machine translation methods

Rule-based translation methods use rules to perform the translation from one language
into another. The rules are written by humans with (much) linguistic knowledge, so the
strength of this method is that it’s good at syntactic and semantic analyses, but it’s
difficult and in practice not feasible to write rules that cover the entire language [15].

The rules can be applied in a certain order to prevent linguistically incorrect results,
but most systems don’t have ordered rules. A sentence is translated by repeating pat-
tern matching and applying transformations of the sentence’s syntactic/semantic tree
structure [40].

Figure 1: The possible levels of analysis in machine translation in the so-called ‘Vauquois
triangle’, a figure taken from [20], based on the one created by Bernard Vauquois in 1968
in a slightly different form [36]. The arrows in the center and the node at the top contain
the translation methods.

The source text can be analyzed on several levels, as can be seen in figure 1. After the
analyses, rules/heuristics and algorithms are used to create the syntactic structure of the
target language (‘syntactic transfer’) or the semantic structure (‘semantic transfer’) [94].
The words are replaced by words in the target language and the words are re-ordered and
morphological changes are applied to make them fit into the target language’s syntax.

In section 4.1.1, I describe the syntactic and semantic transfer methods. These transfer
methods are used when the analysis is done on word structure, syntactic structure and/or
semantic structure. One step higher up in the Vauquois triangle, an interlingua model is

11

used, where the source language text is translated into an abstract, language-independent
representation. This model is described in section 4.1.2.

4.1.1 Transfer method

The transfer model was widely used from the mid-1960s till the end of the 1980s [94].
This model is a bit more complicated than just translating word by word (including some
morphological analysis and maybe some word rearrangements), which is called a direct
or dictionary approach.

The drawback of a transfer model is that it needs rules for every translation direction.
For example, to translate between Dutch and English you need a model for Dutch to
English and another model for English to Dutch. If you add a third language, you need
models for Dutch-French, Dutch-English, French-Dutch, French-English, English-Dutch
and English-French. If you add a fourth, you’ll need even more models. So for n languages
you need n ∗ (n− 1) transfer models. Using an interlingua model, which uses an abstract
intermediate representation (further explained in section 4.1.2), is advantageous if you
want to translate between more than three languages.

The ‘semantic transfer’ model was widely used in Japan in the 1990s. In this, the
source text was analyzed syntactically and (at least partially) semantically prior to the
transfer phase. In the transfer phase, the semantic representations of both the source
and target texts were mapped onto each other [13]. The semantic transfer gives better
results than the purely syntactic transfer method, where the source text is only parsed
into syntactic structures, because some ambiguities in meaning are solved in the semantic
parsing stage.

When translating using the transfer approach, all information from the entire sentence
is available everywhere, so at any place in the sentence you can use information from
other places in the sentence (which is not always the case in the compositional translation
approach described in section 4.1.3). For example, if you take the sentence in (5), the
first thing you have to decide is the words. As Japanese doesn’t use spaces except in
books for very young children, it first needs to be decided which characters make up the
words (which is not a trivial step, but I assume that a module is used to split up the
text in words, for example a morphological parser like ChaSen/IPADIC [78], Juman [79]
or MeCab/Unidic [80]). The dictionary should contain at least some basic information
about the words and their translations, for example as in (6).

(5) 石が白いです。(The sentence as appearing in a Japanese text)
石　が　白い　です(The sentence split into words)
ishi ga shiroi desu (the words in our alphabet6)
stone SUBJ white to-be (English gloss)

(6) 石(ishi), N, de steen / een steen / de stenen / stenen
が(ga), PARTICLE indicating that preceding phrase = SUBJECT　

6Japanese kanji-characters can be pronounced in different ways, so-called ‘on’ and ‘kun’ readings.
It is not really necessary to know how a kanji is pronounced if the word and its translation are in the
dictionary, though a large Japanese dictionary like JMdict [11] does contain the pronunciation as well.

12

白い(shiroi), ADJ, wit / witte
です(desu), Vauxiliary, zijn

The next step is going to be the translation into Dutch, but this is where the difficulties
start: which choice should be made for the translation of ishi? Should it be singular or
plural and should an article be added and if so, which one? And the verb form depends
on the choice for the noun form, so to translate the verb into the correct verb form,
information from the rest of the sentence is necessary. To decide on solutions for these
translation problems, rules are created which are applied in a certain order (all systems
described in chapter 3 use these kind of rules).

A theoretical example of a Japanese-to-Dutch transfer system could work like this:

1. 石が白いです。
Source language = Japanese; Target language = Dutch.
Now we need

• a parser that decides which characters belong together to form words.

• a dictionary that maps all Japanese words to Dutch words.

• rules for the regular Japanese sentence structure.

• rules for the regular Dutch sentence structure.

• rules to relate the Japanese and Dutch structures to each other.

2. Get basic part-of-speech information about each word.

• 石(ishi), N, steen, singular; stenen, plural

• が(ga), PARTICLE indicating that preceding phrase = SUBJECT　

• 白い(shiroi), ADJ, wit

• です(desu), Vauxiliary, is, singular; zijn, plural

3. Get syntactic information about the verb ‘desu’.

• Auxiliary verb

• Polite form

• At the end of a sentence:

– NP-ga-NP-desu

– NP-ga-ADJ-desu

– NP-desu

– ...

• Can be followed by end-of-sentence particles like ‘ka’ (question particle).

4. Parse the source sentence:

• ishi ga shiroi desu = NP-SUBJ ADJ Vaux

5. Translate Japanese words into Dutch:

13

• ishi (category = N) ⇒ steen/stenen (category = N)

• ga (category = subject particle) ⇒ (no equivalent in Dutch for nouns)

• shiroi (category = ADJ) ⇒ wit (category = ADJ)

• desu (category = Vaux) ⇒ is/zijn (category = Vaux)

6. Map the translated words onto a basic Dutch sentence structure:

• Literally translated: steen/stenen wit is/zijn

• Dutch sentence order: steen/stenen is/zijn wit

7. Choose correctly inflected forms. The system has rules to decide which one to
choose; maybe it chooses singular by default. Only one of the options is chosen.

• Singular: steen is wit

• Plural: stenen zijn wit

8. See if there are any rules in the system about whether to add articles:

• Singular: de steen is wit

• Plural: de stenen zijn wit

4.1.2 Interlingua model

In the interlingua approach, the source language text is translated into an abstract,
language-independent representation, which is then used to create the target language
text. After both a complete syntactic and a complete semantic analysis are done, it is
possible to create an ‘interlingua’ (a meaning representation not containing specific ele-
ments of the source and target language). The interlingua can contain just the meaning,
or also a language-independent description of the linguistic form (for example ‘active’
or ‘passive’) that was used in the source text so that effects such as focus can be recre-
ated properly in the target [13]. From this interlingua representation, the text can be
translated into one or more target languages. So, n+ n− 1 transfer models are needed.

The difficulty with the interlingua approach is how to exactly define ‘meaning’ in a
language-neutral way and how detailed the representation should be, as for example
different languages make different distinctions; the English ‘wear’ can be translated into
different words in Japanese depending on where the object is worn (as can be seen in
table 1) [20, 36]. You could say the English word ‘wear’ is tenfold ambiguous and has ten
different meanings, or that English ‘wear’ is not ambiguous, but that all the Japanese
translations have the same meaning and that a form is chosen depending on different
conditions formulated in terms of the target language (Japanese) elements.

To understand meaning, world knowledge needs to be stored as well, but this has to be
entered into a system by humans, which requires a lot of work and so the biggest problem
with this approach is the incompleteness of data for non-specialized domains [20].

14

Japanese Object which is worn
haoru coat, jacket
haku shoes, trousers
kaburu hat
hameru ring, gloves
shimeru belt, tie, scarf
tsukeru brooch, clip
kakeru glasses, nechlace
hayasu moustache
kiru general, unspecific

Table 1: Different words in Japanese as translations for the English word ‘wear’ and/or
‘put on’, depending on the object which is worn [36].

One commercial system, used in the middle 1990s, used the interlingua approach:
KANT [20, 70]. It uses explicitly coded lexicons, grammars, and semantic rules to perform
translation from Controlled English into multiple languages. For the interlingual system,
it uses “an explicit intermediate representation which acts as a ‘pivot7’ between the source
and target languages” [20, 70].

4.1.3 Compositional translation framework

In the compositional translation method, a set of basic expressions and syntactic rules
are specified for each language. It is called ‘compositional’ because the meaning of an
expression is composed of the meaning of its parts (basic expressions) and the way they
are combined. A basic expression consists of a form and a meaning. It can be a single
word or a few words, like fixed idioms (for example kant-en-klaar (‘ready-made’)).

Taking the example from (5), the basic expressions would be the following. The basic
expressions are written as a B followed by the word itself.

Japanese basic expressions Dutch basic expressions basic meanings
N(Bishi) Nsing(Bsteen) stone’
N(Bishi) Nplur(Bstenen) stones’
ADJ(Bshiro) ADJ(Bwit) white’
Vauxiliary (Bdesu) Vauxiliary,sing (Bis) is’
Vauxiliary (Bdesu) Vauxiliary,plur (Bzijn) are’

The translation rules in Rosetta are local, so if there are any dependencies on items in
other nodes, they have to be solved locally in the grammar.

To translate, you need corresponding basic expressions, as well as rules that corres-
pond in meaning (these are called ‘corresponding rules’, as they are applied at the same
moment in each language’s derivation). Then you build syntactic structures in parallel
for both languages, by sequentially applying rules to the basic expressions or to the parts

7A pivot is an element around which a list of items is divided [18]. In this case, the source language
is on one side of the pivot and the target language on the other side, so the pivot is the interlingua.

15

that have been created by using rules. When you have applied the same meaning rules
in both languages, the results are each other’s translation [86].

For the example sentence, the rules (following the simple example system used in
Rosetta [86], which is a simplified version of the real Rosetta system and doesn’t use
(surface) trees, but only labelled strings of the form X(α)) could be:

• Japanese rules:
RJapanese1 : N(α)⇒ NP (α)
RJapanese2 : ADJ(α) + Vauxiliary(β)⇒ V P (αi β)
RJapanese3 : V P (α) +NPsubj(β)⇒ S(β ga α)

• Dutch rules:
RDutch1a : Nsing(α)⇒ NP (de α)
RDutch1b : Nsing(α)⇒ NP (een α)
RDutch1c : Nplur(α)⇒ NP (de α)
RDutch1d : Nplur(α)⇒ NP (α)
RDutch2 : ADJ(α) + Vauxiliary(β)⇒ V P (β α)
RDutch3a : V Psing(α) +NPsing(β)⇒ S(β α)
RDutch3b : V Pplur(α) +NPplur(β)⇒ S(β α)

Two grammars are isomorphic if each basic expression in one grammar has at least one
meaning-equivalent basic expression in the other grammar, and each rule in one grammar
has at least meaning-equivalent rule in the other grammar [86]. So, if corresponding rules
have the same meaning and corresponding basic expressions have the same meaning, then
the translations of the sentences are guaranteed to have the same meaning.

In this method, the grammars/rules for both languages have to be developed simul-
taneously to be able to assure isomorphy between both grammars, which is not the case
with other approaches. The grammars are also reversible, so you don’t need separate
grammars for translating from one language to another and the other way around.

In the following table, the grammars/rules of both languages are mapped to their
meaning, so indirectly they’re mapped onto the rules of the other language. When rules
are on the same row, they have the same meaning.

Japanese syntactic rule Dutch syntactic rule meaning rule
RJapanese1 RDutch1a S1a
RJapanese1 RDutch1b S1b
RJapanese1 RDutch1c S1a
RJapanese1 RDutch1d S1b
RJapanese2 RDutch2 S2
RJapanese3 RDutch3a S3
RJapanese3 RDutch3b S3

16

Mappings between the basic expressions (for the translation):
Japanese basic expression Dutch basic expression meaning
N(Bishi) Nsing(Bsteen) stone’
N(Bishi) Nplur(Bstenen) stones’
ADJ(Bshiro) ADJ(Bwit) white’
Vauxiliary(Bdesu) Vauxiliary,sing(Bis) is’
Vauxiliary(Bdesu) Vauxiliary,plur(Bzijn) are’

Adding the distinctions ‘singular’ and ‘plural’ to the rules in this simple example isn’t
a problem, but if you add these (and more) distinctions to the rules this way, but this
will cause an explosion of features in a larger system. Then you get many similar rules
where only the (number-)feature differs.

In the compositional translation method used in Rosetta, these features aren’t listed
in the subscripts of the rules, but the words themselves have attributes like number
(singular/plural/unspecified), form (finite, participle, infinitive, etc) and tense (present,
past, unspecified, etc.) [86]. The problem is of course that Japanese makes less distinctions
than Dutch, so for example nouns don’t automatically have the attribute ‘plural’. These
things need to be decided when analyzing the sentence prior to translating.

The two sentences (in both languages) are each other’s translation, because they have
syntactic derivation trees (D-trees) with the same geometry and corresponding basic
expressions at the leaves and corresponding rules at the nodes (‘isomorphic trees’). In
the trees below you can see two syntactic derivations for the example sentence, and the
corresponding semantic derivation tree. The syntactic derivation trees consist of the
names of the basic expressions and the names of the syntactic operations, while the
semantic derivation trees contain the meanings of the basic expressions and the meaning
rules (see the tables above). By applying these rules, you get a derived tree (S-tree). A
derivation tree is shows how a sentence is derived: it specifies which rules are applied to
which basic expressions and results from earlier appliances.

The semantic derivation trees contain all the information necessary for the translation,
so they play the role of an interlingua.

Example syntactic derivation trees:

RDutch3

RDutch1a

N(Bsteen)

RDutch2

ADJ(Bwit) Vaux(Bzijn)

RJapanese3

RJapanese1

N(Bishi)

RJapanese2

ADJ(Bshiro) Vaux(Bdesu)

Example semantic derivations:

17

S3

S1a

stone’

S2

white’ be’

S3

S1b

stone’

S2

white’ be’

The interlingua is not independently defined, but it is a result of creating two iso-
morphic grammars. So when you add a third language, it can still cause changes in the
already existing grammars, for example if the third language has a semantic distinction
that doesn’t exist in the other two languages [86].

When translating in the compositional translation framework, the only information
you can use in each node, is available within that node of the syntactic derivation trees
itself.

However, if you construct your grammar well, you can get information about the
entire sentence at the top level of the tree, which is called the surface tree (S-tree)
level in Rosetta: a tree in which constituency (phrases), grammatical relations, syntactic
categories, attribute:value pairs (like tense:past) and linear order are all represented [86].

The S-tree of the sentence above would look like figure 2 in a graphical representation:

Figure 2: Graphical S-tree of the sentence ‘De steen is wit’, according to the graphical
S-tree representation used in the Rosetta system [86].

In the S-tree, the leaves correspond to the words in the actual sentence. The ‘B’ in
front of most of the leaf nodes means that it’s a basic expression.

The Rosetta system generates all possible translations, but there are differences in
quality. Rosetta’s priority is preservation of the sentence’s meaning, so they accept dif-
ferences in syntactic form (like active/passive) if they are inevitable [86]. The rules are
local, but the syntactic differences appear on a global level. They thus use a ‘preference’
or ‘bonus’ system to order all possible translations.

With every rule application, the D-tree can receive a bonus value which is increased
or decreased every time a rule is applied to the sentence. In the default case, the bonus
value of the D-tree is 0 and rules don’t change the value. Only under certain conditions

18

a rule gives a bonus. Then, the bonus value changes: each parent node gets the sum of
its children’s bonuses plus the bonus assigned by the rule applied in that node. If there
is more than one output sentence at the end, the bonus values determine the order in
which the output sentences appear [86].

For example, the two English output translations for the Dutch sentence 7 can be
seen in 8. The bonus given by the Rosetta system is higher for sentence 8.(1), so that one
gets ordered higher. They do try to preserve the syntactic order of arguments as much
as possible.

(7) Twee kinderen aten veel snoepjes niet op (Dutch sentence)
Two children ate many sweets not up (word-by-word English translation)

(8) (1) Two children did not eat many sweets
(2) Many sweets two children did not eat

The bonus system can also be used to rank preferred syntactic constructions, for
example give a lower rank to passive constructions in Spanish, certain topicalizations in
English, or the (2)-sentences in example 9 and 10 below [86].

(9) de mooie vrouw (the beautiful woman)
(1) the beautiful woman
(2) the woman that is beautiful

(10) zij kan komen (she can come)
(1) she can come
(2) she is able to come

4.2 Syntax-based statistical machine translation

In the last decade, more researchers have started looking into the so-called ‘syntax-
based statistical machine translation’, in which syntax is combined with statistics to
improve the translations. Figure 3 shows different options that can be used. The structure
of the triangles in this figure has obviously been based on the Vauquois triangle mentioned
earlier (figure 1).

4.2.1 Word-based

The basic idea is that each word is translated into its corresponding target language
word and that these translated words are reordered to create a sentence in the target
language. The simplest word-by-word translation systems contains word lists for all
possible word forms (eat, ate, eaten, ...), as it just looks up every word in the dictionary
and returns the translations in the same order as the source sentence. A slightly more
sophisticated word-based translation system analyzes the words morphologically prior
to looking them up in the dictionary, so only the base forms (like ‘eat’) need to be in
the dictionary and rules are needed for things like tense and number [96]. Typically, no
large reorderings take place and there is a strong localization effect [105], which means
that word clusters in a sentence tend to stay in the same place in the target language
sentence (as the system does not make (much) use of rules which try to change the order

19

Figure 3: Statistical machine translation models using syntax. The arrows indicate the
direction of the translation model (decoding goes in the other direction). From [3].

of the words in a translated sentence). In the word-based method, each word is assigned
a probability of how often it occurs in the language (in the source texts used for training
the system). The lexicon probabilities are based on single words [105].

4.2.2 Phrase-based

The basic idea is that a sentence in the source language is split into phrases, those
phrases are translated, and then the translations of those phrases are combined (and
may be reordered) into a new sentence in the target language. A way of splitting a
sentence into phrases can be by using n-grams. An n-gram (most often 2-gram, 3-gram
or 4-gram) is a consecutive sequence of n items (in this case, n consecutive words in a
sentence). A ‘phrase’ can be just a sequence of words (n-gram), and it doesn’t have to
be syntactically motivated [105]. Punctuation marks are also treated as words, so when
you create n-grams you get a lot of ‘phrases’ containing dots and commas. This can be
useful to see which kind of words are often preceded by a comma, for example. Because
the word-based model doesn’t really use the context for translating, it makes errors when
the translation of a certain word depends on the surrounding words. A way of looking at
context is looking at n-grams.

Koehn e.a. [47] used a language model based on 3-grams. When you use 2-grams, you
get a lot of combinations like ‘in the’, ‘this is’, ‘is a’, ‘of a’, ‘with a’, etc. These phrases
are not very informative, as it’s not clear in which contexts they are used. With 4-grams,
the amount of occurrences becomes very low very quickly, so 3-grams is the best choice.

20

Koehn [46] notes that not all grammatical problems in machine translation can be
solved using n-grams. He notes that a system might produce good n-grams, while the
grammar of the sentences is incorrect.

Small word order changes are usually done well by using the phrase-based statistical
machine translation, but word order changes over long distances fail most of the time [26].
Local reordering and local idiomatic expressions are strengths of the phrase-based models
in comparison to the word-based models [82].

To get around small word-order changes, you could use unordered n-grams, called
n-perms [14, 42]. N-perms are all the permutations of the n-grams. Unordered n-grams
are not useful when the order of words is important, for example in the sequence ‘article,
adjective, noun’ in English. However, they can be useful when you want to check how
often certain words occur together and the order doesn’t matter (for example, in languages
with a (partly) free syntactic phrase order where a phrase is just one word), or split verbs
(which occur frequently in Dutch). A Dutch example is ‘afstappen’ (to get off), which gets
split into ‘stap [...] af’, with possibly a lot of words between the brackets. In English you
generally don’t have such large distances between words belonging together, so looking
at (un)ordered n-grams might be enough to notice if a word is missing in a sentence.
What does occur in English (and is a large source of mistakes for non-native speakers)
are prepositions belonging to certain verbs, for example ‘give [a discount] on’. The verb
‘give’ can occur with many different prepositions, but if [give a discount] appears in the
sentence, there is a large chance that ‘on’ is present in the sentence somewhere as well
(though not necessarily; you can also have a sentence like ‘He gave me a discount’).

Lin e.a. [51] created unordered (‘rotated’) n-grams to find all n-grams containing a
certain word. All n-grams they found were rotated (each word in the n-gram appeared
in the first position once) and these rotated n-grams were all stored with the count and
POS-tags of the original n-gram. At the end they sorted the rotated n-grams, so all n-
grams which contained the target word (even it wasn’t at the first position in the original
n-gram) were listed consecutively in the sorted output.

An example of a rotated n-gram (from Lin e.a. [51]) is:

faster than a cheetah

than a cheetah >< faster

a cheetah >< than faster

cheetah >< a than faster

Liu e.a. [54] mentioned that using “a syntax-based language model improved the
fluence and semantic accuracy”. Khalilov e.a. [43] compared a syntax-augmented trans-
lation system with an n-gram translation system. ‘Syntax-augmented’ means that there
is only proper linguistic syntax (syntax with noun phrases NP, verb phrases VP, etc) in
the output language [65]. The syntax model in Khalilov’s experiments had more missing
words than the n-grams system (25.17% missing words in the syntax-augmented transla-
tion and 15.44% in the n-grams, mostly content words) and had a bit more problems with
unknown words (21.85% errors in the syntax system, 17.45% in the n-grams system). It
did make correct word choices (including word forms) more often (27.15% errors in the

21

syntax system, 34.23% in the n-grams system) and also created the correct word order
more often (15.89% errors in the syntax system, 23.49% in the n-grams system). How-
ever, the running time of the syntax-augmented algorithm was longer than the n-gram
one. Koehn e.a. [47] also tried to limit the phrases their program learned to only syntactic
phrases (subtrees of a syntactic parse tree), so phrases like “house the” were filtered out.
However, this did not improve the results - it scored worst of all their models. They
assume it’s because their system had less data to work with in that case.

4.2.3 Synchronous models

Synchronous models have tree structures in both the source and target language models,
but they don’t have an interlingua.

According to Razmara [82], syntax-based models have two subcategories: synchronous-
grammar-based models and tree-transducer-based models. A synchronous model can be
a [82]:

• synchronous context-free grammar (SCFG)
A context-free grammar consists of a finite set of production rules of the form
A → α, where A is a non-terminal symbol and α is a sequence of terminal and
non-terminal symbols, and there is exactly one terminal symbol on the left hand
side [37].
A synchronous context-free grammar is when you have a context-free grammar of
both languages and they’re aligned (“synchronized”) to each other, as in example 4
below.

Figure 4: Example of a synchronous context-free grammar. On the left there is the
context-free grammar for the Dutch sentence ‘de steen is wit’ (‘the stone is white’), on
the right the context-free grammar for the corresponding Japanese sentence ‘ishi ga shiroi
desu’.

• synchronous tree-substitution grammar (STSG)
A synchronous tree-substitution grammar is a translation model with pairs of ele-
mentary trees containing terminal and non-terminal symbols, and the non-terminals
in those two trees are linked. A rule is only applied to linked non-terminals [56, 16].
One of those trees can contain words in the source language, while the other tree
contains the words in the target language. An example can be seen in figure 5.

22

• synchronous tree-adjoining grammar (STAG)
A tree-adjoining grammar is a model in which part-of-sentence trees can be com-
bined in specific ways (adjoined : a tree is inserted in another tree, moving down the
subtree of the node it replaces (which is only possible if the node labels correspond),
or substituted : a non-terminal node of a tree is replaced by another tree, which is
also only possible if the node labels correspond) [39] . The part-of-sentence trees
are small trees with English words at (specific) leaves and show the structure of
the sentence in which those words should appear. This makes it possible to have
long-distance dependencies (trees with gaps in them), necessary if an expression
expects some other word to fill in the gap.
A synchronous tree-adjoining grammar is created by pairing the elementary trees of
the ‘natural language’ (syntactic tree) and ‘logical form language’ (semantic tree)
grammars and linking the corresponding nodes, resulting in a new grammar whose
elements are linked pairs of elementary trees [88]. Not all syntactic nodes have to
be linked to a semantic node, only if there is an operation that must occur at both
ends of the link, and it’s also possible for a syntactic node to link to more than one
semantic node and the other way around.
STAG can also be used for machine translation by linking source and target lan-
guage tree structure together (as can be seen in figure 6). TAG requires O(n6) time
required for parsing, but they also mention that it requires O(2n6) time for bilingual
parsing in the worst case, which is only needed when developing the system, not
when using it afterwards [19].

• generalized multitext grammar (GMTG)
Texts that are translations of eachother are called a ‘multitext’. Multitext gram-
mar (MTG) models generate arbitrarily many parallel texts via production rules
of arbitrary length to parse texts for translational equivalence (to find out which
components of both texts are equivalent) [62]. Generalized multi-text grammar
generalizes MTG by allowing rewrites of string tuples instead of just single strings,
and it is notated slightly differently (with tuples, for example as [(S), (S)]→ [(PN
V P), (PN V P)] with the left side being the source language and the right side
being the target language) [63].

4.2.4 Tree-string transducers

A tree-to-string transducer is a system which starts with the syntax tree of a sentence
in the source language and uses tree-to-string templates to transform it into a string
in the target language [55]. The target string doesn’t have any labelling. In figure 7
there is an example of a template used by a tree-to-string transducer (from [55]). Such
a template always gives the same result wherever it is applied. On the left-hand side of
the template, there is a subtree pattern. On the right-hand side there is a sequence of
variables and words in the target language (没 means ‘not’ and 有 means ‘is/are’). The
variables are transformed by applying other templates, until no variables are left. The
templates are created using statistical algorithms which also make use of n-grams for the
target language [55].

23

4.2.5 String-tree transducers

A string-to-tree transducer is a system which starts with a string in the source language
and creates a tree structure in the target language. The tree in the target language is
created by applying tree-forming rules [25]. An example can be seen in figure 8.

4.2.6 Tree-tree transducers

A tree-to-tree transducer contains rules for copying, transforming, deleting, reordering,
and translating subtrees [29, 82]. The ‘translation’ operation translates all the words in
the leaf nodes into the target language.

An example of translating an English sentence into Japanese using a tree-to-tree
transducer can be seen in figure 9 from [102]. First, the word order of the English
sentence is changed so it looks more like the Japanese word order. Then the particles,
which don’t exist in English but are necessary in Japanese, are inserted. Next is the
translation of the English words into Japanese words and finally the translation can be
read from the nodes. There are more possibilities for word and particle choices during
translation, but the transformation rules have probabilities attached, so the ones with
the highest probability are chosen [45].

4.3 Translation method choice

4.3.1 Parsing and dictionary

Whichever translation method I choose, the Japanese text first has to be split into
words before it can be translated. First, the sentence should be parsed; split into words
and those words should get information attached to them, for example part-of-speech
(POS) tags, which can be general or more specific.

After parsing, there’s the option to create a tree-structure of the source language
sentence and use that to create a string or tree structure as the translation into the
target language.

It is possible to parse the text using an existing parser and then (manually or automat-
ically) add annotations to the tags it gives to the words to improve translation quality
[34]. Because the translation of an NP can also depend on things outside of the NP-
phrase, an idea would be to add information about number and article to the NP-tags,
derived from hints in the rest of the sentence, which could then be used to translate
them correctly locally. To decide which information you have and don’t have available,
a translation method/framework choice needs to be made.

Another important thing to decide is which information is available in the dictionary.
At least the following information is necessary:

• Word type: noun, verb, case suffix (though case suffixes can also be introduced by
rules).

• Grammatical form (inherent features like gender and mass/count noun distinction,
and non-inherent features like number, case and tense). Non-inherent features do
not necessarily have to be in the dictionary, as that information can also be in rules

24

(for example, a rule about whether or not a noun can be made plural, for which
mass/count noun information is also necessary). The stem of the verb can be in
the dictionary, so the tense can be in the rules and be translated separately.

• Translation/meaning.

There is one dictionary available which contains Japanese words and translations into
several languages (all Japanese words have an English translation and some also have
a Dutch translation), namely JMdict [11]. This is a downloadable dictionary in XML-
format. However, the dictionary isn’t immediately usable for (word-by-word) machine
translation. Especially the Dutch entries look more like dictionary entries meant for
humans, as can be seen in the example from the JMdict [12] in (11).

(11) <entry>
<ent seq>1014740</ent seq>
<r ele>
<reb>アウトコース</reb>
</r ele>
<r ele>
<reb>アウト・コース</reb>
</r ele>
<info>
<audit>
<upd date>2013-05-10</upd date>
<upd detl>Entry created</upd detl>
</audit>
</info>
<sense>
<pos>&n;</pos>
<lsource ls wasei=“y”>out course</lsource>
<gloss>outside track</gloss>
</sense>
<sense>
<gloss>outside pitch (baseball)</gloss>
<gloss xml:lang=“dut”>(1) [honkb.] outside</gloss>
<gloss xml:lang=“dut”>(2) [golf] out course [= eerst 9 holes van een golfbaan]</gloss>
<gloss xml:lang=“dut”>(3) [atlet.] buitenbaan</gloss>
<gloss xml:lang=“ger”>(n) Außenbahn</gloss>
<gloss xml:lang=“ger”>die vom Schlagmann entfernte Seite. .</gloss>
</sense>
</entry>

The steps the parser has to take are:

• Identify the words.

– Split the sentence into words and (case-indicating) particles.

25

– Check if those words are in the dictionary and get their word type, grammatical
form and meaning.

• Identify the word order / sentence structure.

– Scrambling is possible in Japanese (and to a certain extent in Dutch, see
section B.2.5), so the parser should be able to recognize different word orders.

• Identify ‘phrases’ (words that belong together).

– In Japanese this could be done by splitting on the particles and verbs.

– Also identify subordinate clauses (and split these in phrases as well, if neces-
sary).

• Identify the structure of the sentence.

– Add cases to the words/phrases. The case is decided from the particle following
the phrase or from the position in the structure. This can be used for the
translation.

4.3.2 Translation method

I think a method like the Rosetta (compositional translation) method as described
in section 4.1.3, or the synchronous context-free grammar from section 4.2.3 would be
most useful. The synchronous context-free grammar is also similar to the compositional
translation method in that they use synchronous grammars, but apparently it’s impossible
for the entire language of Dutch to be written in a context-free way, as structures like
cross-serial dependencies (ancmbndm) occur [81, 86]. You could solve the problem by
setting the maximum for n and m to 4, which is enough for daily language use. However,
the grammar becomes more complex when you need to incorporate these restrictions into
the rules. Maybe it even becomes so complex, that it’s more manageable when you use
the unrestricted version. Though parts of the language (for example, one kind of phrase,
like an Noun Phrase) can be written as a context-free grammar.

So, because the compositional method does not depend on writing a context-free
grammar, this method might be the better choice to look at the problem of this thesis:
“When do you have to insert a definite or indefinite article and when do you have to
choose a singular or plural form for nouns when translating from Japanese to Dutch in
the context of syntax-based machine translation?”.

The papers about the synchronous models (section 4.2.3), on combining syntax with
statistics, are all quite recent. The compositional translation method from Rosetta ori-
ginates in the 1980s, but I think it does fit in with the current research (even though the
modern syntax-based systems do use more statistics).

Even though I’ll be looking at translation from Japanese to Dutch in this thesis,
an advantage of the compositional translation method is that it’s reversible: you don’t
have to make two grammars (one for Japanese-to-Dutch and another one for Dutch-to-
Japanese).

26

5 Articles

In this chapter, we first take a quick look at nouns in Dutch (section 5.1) and Japanese
(section 5.2). It is important to look at the structure of nouns in both languages, as for
both languages a grammar will be described in section 7. Then we take a look at when
articles should (section 5.3) or shouldn’t (section 5.4) be used in Dutch when translating
from Japanese.

5.1 Nouns in Dutch

Officially there are three grammatical genders for nouns in Dutch: male, female and
neutral. However, in Dutch spoken in The Netherlands, the male/female distinction has
disappeared almost entirely and male has become the standard (not so in the Dutch-
speaking part of Belgium) [83]. For both male and female singular nouns, the article is
‘de’. For neutral nouns, the singular article is ‘het’. About three-quarters of the Dutch
nouns are preceded by ‘de’ [53], so if you do make a guess, guessing ‘de’ will be correct
about 75% of the time. Plural nouns that get an article, always get ‘de’.

However, the article a noun takes can be expected to be present in noun’s lexical entry
in the dictionary. Rules for determining articles can be found in Appendix A.

Oosterhof [74], in his book about generic sentences, mentioned the following cases for
when articles are and aren’t used:

• In kind predicate sentences, which are sentences in which the predicate can only
refer to a kind/species, the definite singular is the most unmarked case (12), not
the bare plural (13). For some speakers of Dutch, the bare plural sentence is
unacceptable [74].

(12) ‘De dodo is uitgestorven.’
The dodo is died out.
‘The dodo has gone extinct.’

(13) ‘Dodo’s zijn uitgestorven.’
Dodos are died out.
‘Dodos have died out.’

• As subjects of characterizing sentences (which is a sentence that expresses a gener-
alization, but the subject noun phrase does not refer to a kind), bare plurals (plurals
without an article) are highly unmarked (14, 15). The second best choice is the
indefinite singular (16). However, if such a sentence contains the word er (‘there’,
dummy subject), the indefinite singular can’t be generic anymore (as in (17)). In
direct object position the definite singular is the best choice. [74]

(14) ‘Chinezen eten met twee stokjes.’
Chinese eat with two sticks-DIM.
‘Chinese people eat with chopsticks.’

(15) ‘Wielen zijn rond.’
Weels are round.
‘Weels are circular.’

27

(16) ’Een Chinees eet met twee stokjes.’
A Chinese eat with two sticks-DIM.
‘A Chinese person eats with chopsticks.’

(17) ‘Er is een Chinees die met twee stokjes eet.’
There is a Chinese that with two sticks-DIM eat.
‘There is a Chinese person who eats with chopsticks.’

• For mass nouns, in subject position and PP-complement8 (18, 19) the bare mass
term is best, for object position the mass term with definite article is best. [74]

(18) ‘Hij vertelde een verhaal over de uitvinder van marsepein.’
He told a story about the inventor of marzipan.

(19) ‘Hij vertelde een verhaal over de uitvinder van de marsepein.’
He told a story about the inventor of the marzipan.

• Higher taxonomic levels correspond to a lower frequency of definite singulars (and,
correspondingly, to a higher frequency of bare plurals) [74]. For example, when a
word for a set of animal species ‘higher up in the taxonomic order’ (like ‘mammal’)
is used, the definite singular (‘the’) is used less than when a word for a specific
animal species is used (like ‘horse’).

• Definite and indefinite singulars are used more frequently with animal names than
with nationality names; definite plurals appear more frequently with nationality
names [74].

• When a noun is a proper name, no article is used [74].

• Definite and indefinite singulars appear more frequently with ‘mens’ (‘human/man’)
than with ‘man’ (‘man’) and ‘vrouw’ (‘woman’). The opposite result was found for
bare plurals [74].

• Complement positions in postnominal PPs are to some degree similar to the dir-
ect object position (20). The complement position is the objective or subjective
genitive.

(20) ‘Het doden van ongeboren kinderen is in Ierland verboden.’
The killing of unborn children is in Ireland forbidden.
‘Killing unborn children is forbidden in Ireland.’

5.2 Nouns in Japanese

Just as in Dutch and English, a Japanese noun phrase can consist of just a noun, but
also contain adjectives, adverbs, numbers, classifiers, pronouns, etc. The main difference
is that there exist no equivalents for ‘the’ and ‘a(n)’.

8A PP-complement in Japanese is indicated by the particle ‘ni’[33] or ‘de’[24].

28

Nouns can also have modifiers: preceding (like adjective phrases) or succeeding (only
particles, as listed in table 2, and bound morphemes like honorific suffixes, as listed
in table 7). Bond [6] lists the following noun-preceding modifiers: special adnominal-
modifiers (rentaishi) such as aru ‘(a) certain’9; finite adjective and verb phrases; other
nouns, either directly or with an adnominal modifier; and certain prefixes (such as shin-
‘new’).

In Japanese grammar, sentences are viewed as being composed of sets of phrases called
bunsetsu. A bunsetsu typically consists of a content expressions and a function word that
indicates the role of the content expression in the overall sentence [13]. These function
words can be particles indicating case (like ‘-ga’ for subject and ‘-wo’ for object), or
words corresponding to prepositions in English (like ‘-kara’ (meaning ‘from’)), called
postpositions by Bond [6].

Ono [73] 10 divides the postpositions into 3 classes, which can be seen in table 2. A
phrase can have more than one postposition, but only one can be a case marker, and it’s
not possible to have ‘ga’ or ‘wo’ combined with ‘wa’ or ‘mo’.

Type Number Examples
case (3) -ga ‘nominative’, -wo ‘accusative’, -ni ‘dative’
semantic (8) -ni ‘locative/goal’, -e ‘locative/goal’, -de ‘locative/instrumental’,

-to ‘commitative’, ‘-kara ‘source’, -made ‘goal’,
-yori ‘source/comparative’, -no ‘adnominal’

adverbial (10) -wa ‘topic’, -mo ‘emphatic’, -nado ‘such as’, -dake ‘only’,
-made ‘even’, -bakari ‘only’, -sae ‘even’, -demo ‘even’,
-shika ‘only’, -sura ‘even’, -chuu ‘during’

Table 2: Postpositions divided into 3 classes according to Ono [73], from Bond [6]. I
added ‘during’ from Bond [6], which was not in Ono’s original table.

5.3 Using articles

Bond [6] notes that in many cases, reference to known entities is marked by a focus
marker (‘-wa’ (the topic particle) or ‘-mo’ (‘also’)), where in English a definite article
would be used. He also notes that Japanese can mark the subject of characterizing
sentences with the grammaticalized phrase -to-iu “called”, followed by a nominalizer and
a case-marker, as in (21). Other nominalizers Bond lists are no “thing”, mono “thing”,
and koto “abstract thing”, tokoro “place”, and jikan “time”. These nominalizers make a
noun phrase of the preceding clause.

(21) zou-to-iu-mono-ga banana-ga suki-da [6]
elephant-QUO-called-NOMINALIZER-NOM banana-NOM like
(things called) Elephants like bananas.

9Actually aru is a verb meaning ‘to be’ (for non-living things) used as a nominal modifier.
10Reproduced in Bond [6].

29

In section 6.2, Bond [6] notes that semantically, common nouns in Japanese and
mass/uncountable nouns in English can be viewed as the name of a kind, as they can be
used for kind reference with generic predicates, as in (31). To get a specific/individual
reading, a classifier has to be added (32). In English, nouns have an individual reading
by default. So, the standard reading would be the ‘kind’ reading, where the NP would be
definite singular. In the next chapter (chapter 6) I will go into more detail about number
(singular and plural forms of nouns).

However, if you also look at context, the first time an NP is encountered it is indefinite.
The following times the ‘definite singular’ could apply.

Context: When an NP has been referenced to at least once in preceding
sentences (by use of a name, an indefinite NP, or another noun), its value
should be definite, with number the same as the preceding NP.
Each time a new NP is encountered, set the value for definiteness to ‘indefinite’, except
if there is a rule stating otherwise. Remember its value for number. The next time this
same NP is encountered, the value for ‘definiteness’ becomes ‘definite’ (or otherwise if
there’s an applicable rule). Something like:

if (NP not in NPlist) then def=indef, num=(use rule for number)

else def=def (OR use rule), num=(num from NPlist)

where NPlist = list/database or such containing NPs that have been encountered in this
text (and their referents, as ‘Jan’ and ‘the boy’ in example 22 point to the same entity).

(22) Jan kwam binnen. De jongen ging zitten.
Jan entered. The boy sat down.

However, for this you need discourse rules and the Rosetta system doesn’t look at
context, so I will leave this aside for the moment as it’s outside of the current scope
of this thesis, and all existing machine translation systems don’t look at context either.
However, it is desirable to have a system that looks past the sentence boundaries.

5.4 Using no articles

Bond [6] mentions the noun suffix ‘-muke’ that requires its head to be generic (referring
to a kind [74]), as in (23). So when a noun phrase contains the suffix ‘-muke’, the noun
gets translated as an indefinite plural. In example (24), there is a difference between the
English and Dutch translations: with the suffix ‘-toshite’, the Dutch translation does not
get an article when it’s predicatively used, which is the case here. The noun does get an
article when it’s an identificational sentence like (25), which is a sentence in which two
referential noun phrases are equated [67].

(23) hataraku josei muke-no zasshi [6]
working woman aimed-at-ADN magazine
a magazine aimed at working women
Dutch: een tijdschrift gericht op werkende vrouwen

30

(24) watashi-wa tsuuyaku-toshite hataraku [6]
I-TOP interpreter-as work
I work as an interpreter
Dutch: Ik werk als tolk.

(25) watashi-wa Utrecht-no shichou desu
I-TOP Utrecht-POSS mayor be
I am the mayor of Utrecht.
Dutch: Ik ben de burgemeester van Utrecht.

In the next chapter (chapter 6), we look more closely at number: singularity and
plurality of nouns. This topic has been touched on a bit in this chapter as well, but more
details can be found in the next one.

31

6 Number

This section contains descriptions and rules for indicating singularity and plurality for
nouns in both Dutch and Japanese.

6.1 Forms indicating singularity/plurality in Japanese

Nouns in Japanese don’t have distinct singular and plural forms. There are several
suffixes which indicate plural, but all of them are optional.

Bond [6] lists the collectivizing suffixes in table 3:

Japanese Gloss Politeness
-kata/-gata and others Very polite
-tachi and others Polite
-ra and others Neutral
-domo and others Humble

Table 3: Collectivizing suffixes in Japanese, according to Bond [6].

The suffixes ‘-tachi’, ‘-domo’, ‘-gata’ and ‘-ra’ are plural suffixes used only if the ante-
cedent is animate (with humans or personified animals [6, 7, 1]). Bond [6] also notes that
‘collectivizing suffixes can be used only with noun phrases with locatable individuated
referents (corresponding to English countable definite noun phrases). However, ‘-tachi’
doesn’t always indicate plural. Martin ([57] in [95]) mentions that ‘Yamada-sensei-tachi’
doesn’t mean multiple entities of Yamada-sensei (‘Yamada’ is a name, ‘sensei’ a suffix
meaning ‘teacher’), but ‘a group of people Yamada-sensei is a member of’. So ‘-tachi’ is
more a ‘collectivizer’ than a ‘plural’.

Another plural suffix is ‘-ra’, which can be used when the noun consists of more than
one individual entity [6]. An example of this is ‘korera’ (these), which consists of ‘kore’
(this) + ‘ra’ (plural).

6.2 Numeral classifiers

A plural in Japanese can be indicated by using a numeral classifier, as in example (26-
27) from [9]. As numerals cannot directly modify nouns, a classifier needs to be inserted
(‘-tsu’, ‘-hako’, etc), which depends on the kind of noun that is modified (see [99] for
a list), as well as the genitive particle ‘no’. This is similar to the case of ‘pluralizing’
uncountable nouns like ‘fruit’, which becomes twee stuks fruit (‘two pieces of fruit’) in
Dutch. In this case, no article is necessary. According to Koiso ([48] in [6]), there exist
more than three hundred numeral classifiers. Downing [21] estimates the amount between
200 and 300. However, individual speakers use between 30 to 80, and even less in actual
daily use ([21]). In Downing’s collection of 500 samples (textual and spoken), 24% of the
classifiers was the uninformative general classifier ‘-tsu’.

32

(26) 2-tsu-no koppu
2-piece-GEN cup
Dutch: “2 koppen”
English: “2 cups”

(27) 2-hako-no pen
2-box-GEN pen
Dutch: “2 dozen pennen”
English: “2 boxes of pens”)

The structure of the noun phrase in (27) is of the form XC-no-N, where C is a group
classifier, which will be translated into English as X’ C’ of N’, where N will be plural if
it is headed by a fully or strongly countable noun or a plural only [6]. In Dutch, it would
be X’ C’ N’ with N plural. Bond [6] also translates (28) into the same construction in
English (a C’ of N’), even though the Japanese construction is N-no-C. However, when
you have ‘N1-no-N2’ it is possible to translate it both as N2’ of N1’ and N1”s N2’ in
English.

(28) pen-no hako
pen-GEN box
Dutch: “een doos pennen”
English: “a box of pens”

Syntactically, numeral classifiers (‘C’) are a subclass of nouns (‘N’; ‘N2’ in the example
above). The main difference is that classifiers cannot stand alone, but postfix to numerals
or combine with quantifiers like suu (‘some’) or the interrogative nan(i) (‘what’), as can
be seen in (29) [6]. In combination with a numeral, classifiers can form their own noun
phrase, as in example (30) from [6].

(29) ni-hiki ‘two animals’ (numeral)
suu-hiki ‘some animals’ (quantifier)
nan-biki ‘how many animals’ (interrogative)

(30) [context in which some letters are salient]
ni-tsuu-wo yonda (‘tsuu’ is a counting word specifically for letters [99])
two-CL-ACC read
I read two (of the) letters

Bond [6] notes that semantically, common nouns in Japanese and mass/uncountable
nouns in English can be viewed as the name of a kind, as they can be used for kind
reference with generic predicates, as in (31). To get a specific/individual reading, a
classifier has to be added (32). In English, nouns have an individual reading by default.

(31) watashi-wa keeki-ga suki-da
I-TOP cake-NOM like
I like cake.

33

(32) watashi-wa hito-tsu-no keeki-wo tabeta
I-TOP one-CL-ADN cake-ACC eat-PAST
I ate one cake

However, also in Japanese there are fully countable nouns which can be directly modi-
fied by numerals: the nouns that refer to discrete enumerable individuals, like all numeral
classifiers, words that denote times, wins/losses/draws etc. [6].

In table 4, taken from Bond [6], the major numeral-classifier patterns are listed. It
is important to know how such measure phrases can be scrambled in Japanese, as it is
necessary to know to which noun a numeral-classifier construction refers.

Type: Form: Example: Translation: Comment:
pre-nominal Q-no T-m ni-hiki-no inu-ga ‘two dogs’ indefinite, introduces

important referents
appositive TQ-m inu ni-hiki-ga ‘two dogs’ indefinite
floating T-m Q inu-ga ni-hiki ‘two dogs’ indefinite, introduce new

number information about
a known referent,

Q T-m ni-hiki [...] inu-ga ‘two dogs’ used when the nominal has
other modifiers

partitive T-no Q-m inu no ni-hiki-ga ‘two of the dogs’ the quantified N is definite,
quantifier restricts a subset
of a known amount

anaphoric/deictic T-m ni-hiki-ga ‘the two dogs’ definite

Table 4: Patterns of numeral-quantifier constructions, from Bond [6]. T is a the quantified
noun phrase, Q a numeral-classifier and m is a case-marker.

An interesting observation from Gunji and Hasida [31] is that “prenominal measure
phrases (for example san-nin-no gakusei11) are normally used to refer to a definite group
of people or things of a definite mass”. When a counting word follows the noun (called
‘postnominal measure phrases’), for example gakusei sannin (‘students 3-people’, ‘3 stu-
dents’), the phrase is (usually) introduced to the discourse for the first time. For example,
san-nin-no gakusei (‘3-people-POSS students’, ‘3 students’) may refer to a set of three
students that has already been introduced in the discourse, while ‘gakusei san-nin’ usually
introduces a new set of three students into the discourse [31]. So when the three students
have already been introduced in the discourse, the definite article should be used.

In table 4 there are several phrases in Japanese that are all translated into English as
‘two dogs’. It is possible to scramble words/phrases and still get the same translation,
but there are restrictions: if the counting word+classifier is associated with the subject
(ga), the object phrase (wo) cannot be inbetween. If the counting phrase is associated
with the object, it’s no problem for the subject to be inbetween [31, 92].

11san-nin-no gakusei is glossed as ‘3-people-POSS students’ and means ‘3 students’.

34

That the object cannot appear inside a subject phrase, is a result of the way scrambling
works in Japanese. Scrambling is possible with entire phrases (moving the entire subject
or object phrase, for example), or within phrases (changing the order of the words inside
the VP phrase, for example, though it is possible that the meaning changes with clause-
internal scrambling) [97]. It is also not possible to scramble a topic phrase into the middle
of an object phrase, as can be seen in example 33 from [97].

In (34) below, there is an object-marker -wo inbetween the noun and the measure
phrase, but in English the measure phrase would be included in the object. The ‘three
men’ are newly introduced. It is not possible that ‘sannin’ (three people) refers to ‘onna’
(woman), as a measure phrase cannot immediately precede a noun: there should be a
connecting particle ‘no’ inbetween: ‘sannin no onna’ (see also the first case in table 4).

(33) a. Watashi-wa akai hon-o mita.
I-TOPIC red book-ACC saw
‘I saw the red book’
b. *Akai watashi-wa hon-o mita
red I-TOPIC book-ACC saw
‘The red I saw the book’12

(34) Otoko-wo sannin onna-ga mitsuketa.
man-OBJ three woman-NOM find-PAST
“There were three men who the woman found.”

Bond [8] notes that when you want to count nouns that don’t have distinct singu-
lar/plural forms, you need a classifier. This is the same in Dutch: you can use een stuk...
(‘a piece of...’) for Dutch nouns like rommel (‘junk/rubbish’), honger (‘hunger’), vee
(‘cattle’), hersenen (‘brain/brains’), notulen (‘minutes/notes’), etc., as in: drie hoopjes
rommel (‘three little piles of rubbish’), drie stuks vee (‘three head of cattle’), twee stel
hersenen (‘two brains’), veel gevallen van honger (‘many cases of hunger’), etc.

There are also nouns, like ‘cake’, that can be used in both countable and uncountable
(mass) noun phrases [8]. This is the same in Dutch: Ik hou van cake (‘I like cake’) and
Ik wil een cake (‘I want a cake’).

Bond [8] divides the noun phrases into three categories:

• Generic noun phrases refer to a kind/species. They can be expressed with ‘the’, ‘a’
and nothing, but only no article is acceptable in all contexts, so Bond e.a.’s system
generates generic noun phrases as bare noun phrases. The number is determined by
the countability preference (which is in their dictionary). ‘Mammoths are extinct’.

• Referential noun phrases refer to some specific referent. Number and countability
are ideally determined by the properties of the referent.
‘Two dogs chase a cat ’.

• Ascriptive noun phrases are used to ascribe a property to something, for example
‘a mammoth’ in ‘That animal is a mammoth’ [10]. Normally they have the same

12The translation for sentence b was added by me.

35

number and countability as the noun phrase whose property they are describing.
In this example, Bond [8] chooses the article ‘an’, but doesn’t explain why. I think
this is because it’s a predicative sentence, which takes an indefinite predicate (if
you’d take a definite predicate, you’d have an identificational sentence).
‘Hathi is an elephant ’.

Bond [8, 6] used a number of conditions to determine the category, with ‘referential’
as the default. If it says ‘...according to...’ in the list below, it means that the necessary
information is in the dictionary they used. Information about countability of nouns is
also in their dictionary (the ALT-J/E dictionary) [5].

1. if the Japanese is explicitly plural then countable and plural
tachi → plural and countable

2. some lexical items are plural by default (in English)
men “noodles”

3. determine according to determiner
one dog, all dogs

4. determine according to classifier
hito-kire-no-keeki a slice of cake
hito-yama-no-keeki a pile of cakes

5. determine according to quantifier
ono’ono-no keeki each cake
ryouhou-no keeki both cakes

6. determine according to complement (= the phrase that assigns a property to the
head noun)
zenkoku no gakkou “schools/*a school all over the country”

7. ascriptive NPs match their subjects
A computer is a piece of equipment

8. match with antecedent13

Two men, strangers, came in

9. determine according to verb
I gather flowers/*a flower
wadai-ga tsukita I ran out of topics/*a topic

10. use default value

(a) uncountable, weakly countable14 become:
uncountable and singular

13Bond uses the word ‘antecedent’ here, even though it is an apposition. As an antecedent is the noun
phrase earlier in the sentence to which is referred, I think he calls it thus because ‘strangers’ refers back
to ‘two men’.

14Weakly countable: uncountable nouns that are readily convertible to countable, such as ‘beer’.[5]

36

(b) pluralia tanta become:
countable and plural

(c) countable and strongly countable15 become:
countable and singular or plural according to the dictionary default

Instead of numerals, measure words like subete (‘all’), sorezore/onoono (‘each’), hotondo
(‘most’), hanbun (‘half’), takusan (‘much/many’), kazukazu (‘many’), sukoshi (‘a little/few’),
samazama (‘various’), etc. also have to be connected to the noun by no [31, 7]. Both
takusan and kazukazu translate to ‘many’, but in the case of kazukazu the word itself
implies that the noun phrase it modifies is made up of discrete entities, and thus should
be translated as plural [7].

An example can be seen in (35) from [31] and in (36) from [98].

(35) subete-no gakusei
all-GEN students
Dutch: “alle studenten” OR “iedere student”
English: “all (the) students” OR “every student”

(36) onoono no fairu ni-tsuite samazama no jouhou ga hyouji-sareru.
each-POSS file about various-POSS information-SUBJ is-displayed
Various information is displayed about each file (It displays various information about
each file).

6.3 Set nouns

Jan Rijkhoff [84, 85] grouped nouns into four types, which can be seen in both table 5
and 6. The word ‘space’ in the tables’ upper left corner, means that these features are
based on spatial aspects of the nouns. The grouping is based on the semantic features
‘shape’ and ‘structure/homogeneity’.

• The feature shape (in both tables) means that the entity referred to by the noun
has a well-defined (physical) outline.

• When the feature structure is positive, the noun is divisible and the property
indicated by the noun holds for all parts of the space the entity referred to by the
noun occupies.

• The feature homogeneity specifies for number. When it is positive, it means that
the entity of the noun is strictly singular in number.

I do think that both ‘structure’ and ‘homogeneity’ refer to the same aspect, looking at
the types of nouns in the table, but his second table is more extensive as he added the
type ‘general nouns’ here.

15Strongly countable: countable nouns that can be converted to uncountable, such as ‘cake’.[5]

37

SPACE -STRUCTURE +STRUCTURE

-SHAPE conceptual mass

+SHAPE
set

individual collective

Table 5: Different types of nouns from Rijkhoff’s 1992 distinction [84].

SPACE -HOMOGENEITY +HOMOGENEITY

-SHAPE
general

sort mass

+SHAPE
set

singular object collective

Table 6: Different types of nouns from Rijkhoff’s 2002 distinction [85].

The types in these tables that have been renamed, are described in a similar way by
Rijkhoff:

• Conceptual nouns and sort nouns:
The referent of a conceptual/sort noun is not divisible and also doesn’t have a def-
inite physical outline. The real-world referent is characterized by the property of
the noun. Rijkhoff [84] gives the example of the pseudo-English noun ‘grapiness’,
which can mean “one or more individual grapes, a mass characterized by ’grapiness’
(e.g. juice of grapes), or one or more collectives (bunches) of grapes”.

Rijkhoff [84] does write that concept nouns are rather common in Southeast Asian
languages, where they are also used for referents that are individuals, so that the
best test for deciding whether a noun is a concept noun is to check whether or not
it can occur in a direct construction with a cardinal numeral. Conceptual nouns do
need classifiers when combined with numerals: numeral classifiers, in Japanese for
example ‘-tsu’ and ‘-nin’ (see also section 6.2 above).

• Individual nouns and singular object nouns:
The referents of these nouns do have shape, but are not divisible. Rijkhoff [84]
notes that many European languages have a large number of individual nouns, for
example count nouns like ‘car’, which aren’t divisible in the way that when you
divide it, you get two cars (see the example below at the ‘mass noun’ item). The
phrasing ‘singular object noun’ does make this meaning more clear.

The common noun types in both tables are mass nouns, collective nouns and set nouns.

• Mass nouns are nouns like ‘water’ and ‘furniture’. The referents of these nouns do
have structure (they are divisible), but they do not have a definite shape (physical
outline). For example, the mass noun ‘water’ is divisable: when the space for which
this property ‘water’ holds, is divided, all parts of that space are still ‘water’. The

38

count noun ‘car’, for example, is not divisible: when the space which ‘car’ occupies
is divided, you don’t get two cars.

• Collective nouns define a ‘collection’ of individual entities which all share the
same property and have a definite (physical) outline in space. If this collection
is divided, the property still holds for each part. Examples would be nouns like
‘family’ or ‘bunch’ (a bunch of grapes, a bunch of flowers).

• Set nouns have a physical outline (+SHAPE) and are divisible, but they are not
specified for number: they can refer to one entity or more than one entity.
They do not need classifiers when combined with numerals. The difference with
individual/singular object/collective nouns is that with collective nouns, the nu-
meral acts as a multiplier, which is reflected in some form of plural marking: ‘one
car’, ‘two car-s’. When a numeral is followed directly by a set noun (so, without
the use of a classifier), the numeral refers to the number of individuals within the
set. Rijkhoff [84] again gives a pseudo-English example of ‘two car’ or ‘a car-set of
two’, if ‘car’ were a set noun. Plural nouns in Dutch are always set nouns. Dutch
examples can be seen in (37).

The ‘set’ category is also relevant to the number problem for Japanese nouns: is
the noun a group (set) consisting of separate entities (+SET) or not (-SET). This
is a semantic feature, but since Rosetta has no explicit semantic component, we
treat it here as a syntactic feature. The reason that Rosetta does not have this dis-
tinction, was the idea that similarity in meaning or translation equivalence would
be enough for translation.

This distinction is visible in Japanese as well, as it’s not possible to use counter
words (‘hito-tsu’) with -SET nouns (see the example in (38)). The word ‘mizu’ also
doesn’t occur with any other counter words/classifiers, though there is a counter
word for ‘drops of liquid’ (滴, teki), as can be seen in 39.

(37) Mass noun, -SET: hout (‘wood’), water (‘water’)
Mass noun, +SET: vee (‘cattle’), meubilair (‘furniture’), politie (‘police’)
Count noun, -SET: man (‘man’), hond (‘dog’), auto (‘car’), postzegel (‘stamp’)
Count noun, +SET: groep (‘group’), kudde (‘herd, flock’), horde (‘horde’)

(38) *一つの水
*hitotsu no mizu
*one watermassnoun,−SET

(39) 一滴の水
itteki no mizu
one drop of water

There is also a new category in the second table, presumably added for symmetry
with the set noun type:

39

• General nouns are nouns that don’t distuinguish between classifiers used with
singular object nouns (sortal classifiers, like ‘many’ in English) and classifiers used
with mass nouns to indicate size/volume/weight (mensural classifiers, like ‘much’
in English).

6.4 Generic NPs

In English (and Dutch), a bare plural (plural noun without an article) or a singular
NP with an article can denote a generic NP. In Japanese, this is not possible, as all NPs
are ‘bare’ (without articles) and don’t have separate singular/plural forms. However, no
NP is uniquely identified in the (Dutch/English) syntax itself as a generic NP [89]. In
Japanese, the sentences in (40) and (41) are generic, because the topic marker ‘wa’ is
used [89]. In (42), the subject particle ‘ga’ is used, so that sentence/noun phrase can be
interpreted as a generic or specific interpretation.

(40) Itariazin-wa yooki-da
Italian-TOP cheerful-COP
‘Italians are cheerful’

(41) Tori-wa tobun-da
bird-TOP fly-COP
‘A bird flies’

(42) Tori-ga tonde-iru
bird-TOP flying
‘A/The bird is flying’

When a plural marking like ‘-tachi’ is used, the noun phrase is specific, not generic [89].
So, if encountering a noun phrase followed by the particle ‘wa’, in Dutch you would

get a bare plural or definite singular (which are the most unmarked cases, as described by
Oosterhof in section 5 with examples in (12)-(13)). When ‘ga’ is used, all article/number
options are still possible.

Generic terms behave syntactically like proper nouns, as they don’t interact with a
modal operators (a word like ‘usually’, ‘possibly’, etc), quantifiers (‘all’, ‘many’, etc) or
negatives [90]. An example can be seen in 43 from [90].

(43) Every woman likes dogs.
Every woman likes Peter.

7 Translation theory

In this section I’ll describe the theory on how to choose the correct article and number
for nouns when translating from Japanese to Dutch. To indicate definiteness and num-
ber for nouns, I use features (detailed in section 7.1). Next, I describe the translation
mechanism for proper nouns and normal noun phrases with rules based on the Rosetta
system.

40

7.1 Features

Features are properties containing extra information about the word, which is necessary
for the grammar of the language or for translation.

Each node in a derivation (D-)tree, regardless of their category, has a feature ‘bonus’.
The feature ‘bonus’ is a property of the nodes in the D-tree. The default value of this
feature is the integer value 0, but when a rule is applied that gives a bonus, this value is
increased. Not all rules give a bonus. The bonus can be raised or lowered in the rules,
but only positive bonus points are used here to prevent a net bonus of 0. The bonuses
of the child nodes are summed with the bonus of the parent node, so at the top of the
tree all bonuses are summed up, which becomes the score for this result tree. The bonus
values are used for sorting the possible translations, as each translation is a tree with a
certain bonus score.

For example, you have the following tree and you can apply various rules.

S+2

A+1

B

C+1

D E

S+1

A

B

C+1

D E

Applying a rule with a bonus of 1 in A and also a rule with a bonus of 1 in C, results
in a total bonus value of 2 in S. Another rule which can also be applied in A, does not
give a bonus. Then the total bonus value of S is 1, as the rule with bonus in C has been
applied. So the first set of applied rules gives a higher bonus value, and as a result that
sentence is ordered higher than the second sentence.

In a compositional translation system, it tries to get all possible translations. A bonus
system is used to create an ordering, for when you only want one result (see also at
the end of section 4.1.3 for details about the bonus system in the Rosetta compositional
translation framework).

7.1.1 N and NP

Features an N and NP have in both Dutch and Japanese:

• sex: this is the natural gender (values: male, female, undefined). This feature
will only be filled if it is known whether or not a proper noun is used for males
or females, otherwise its value is ‘undefined’ (also the case for objects without a
natural gender, like a table). If the noun 16 in the noun phrase has a sex indicated,
this value of ‘sex’ will become the sex value of the NP.

• divisible: True or False

16This can be a proper noun, or a normal noun which is only used for a specific natural gender, like
an occupation (for example, Dutch ‘secretaresse’ means ‘female secretary’). In the first part of section 5
there are examples of nouns that indicate a certain gender.

41

Some verbs require their object or subject to have the +SET feature and/or be
of the mass noun type (so, ‘mass ±SET’ or ‘count +SET’, or even shorter: ‘mass
noun’ or ‘+SET noun’). As these nouns are divisible, this is the name of the feature.
Examples are V = gather (gather flowers), run out of (run out of topics). Dutch
examples: verzamelen (object); scheiden, uit elkaar gaan (subject). More about set
nouns can be read in section 6.3.

• generic: True or False

• animate: True or False (indicates whether or not the noun is animate; for example,
a dog is animate, but a road isn’t). If the NP has been created from a PN, this
feature is always True.

• person: 1st/2nd/3rd. A normal noun is always 3rd person, but pronouns are nouns
as well and those do differ between 1st/2nd/3rd person. With a pronoun, the value
‘definite’ should be set to definite (rule 7.2.2).

Extra features for Dutch Ns and NPs:

• case: nom/gen/dat/acc

• number: singular/plural

• gender: this is the grammatical gender; utrum17 (male/female, ‘de’) or neutrum
(‘het’). Utrum singular nouns get the article ‘de’ in Dutch, while neutrum singular
nouns get the article ‘het’. When plural, all nouns get the article ‘de’.

• definite: def/indef. These are the values ‘definite’ (‘de’ (singular and plural), ‘het’
(singular), or ‘empty’ (in case of proper nouns)) or ‘indefinite’ (‘een’ (singular) or
‘empty’ (plural)).

– If the article is ‘de’ or ‘het’, the value is definite. The articles in Dutch are “de”
or “het” for singular, depending on the grammatical gender (which should be
indicated in the Dutch dictionary), and “de” for plural. As the distinction
between male and female grammatical gender has disappeared in Standard
Dutch [106], it is only important to know whether or not a (proper) noun is
male/female or neutral, if it needs an article.

– If the article is ‘een’, then the value is indefinite. The indefinite article “een”
is used for singular and no article for plural. The indefinite article is used with
proper nouns if it’s not clear which one is meant: “Een Karin uit mijn klas”
(‘A Karin from my class’, meaning that there are multiple girls called Karin
in the class and the speaker does not know which Karin).

• countmass: count noun or mass noun

• canBeBare: True or False (indicates whether a noun can occur as a bare noun).
For example, nouns indicating an occupation (without adjectives, so just the bare
N) can appear as bare nouns. An example can be seen in (44) and (45) from

17Also called ‘common gender’ [84].

42

Rijkhoff [84], who calls these nouns ‘predicate nouns’. While ‘een soldaat’ in (45)
is an individual/singular object noun (see tables 5 and 6 in section 6.3), ‘soldaat’
in (44) “seems to have been deprived of its nominal (i.e. individual) aspect, i.e.
’soldaat’ is ”aspectless” here.”

(44) Jan is soldaat.
Jan is soldier.

(45) Jan is een soldaat.
Jan is a soldier.

7.1.2 PrN: Pronouns

Indefinite pronouns are words like ‘alles’ (everything), ‘iemand’ (someone), ‘iedereen’
(everyone).
Definite pronouns are words like ‘deze’ (this one), ‘degene’ (the person), ‘die’ (that one),
‘dezelfde’ (the same one).

Features an pronoun has in both Dutch and Japanese:

• sex: this is the natural gender (values: male, female, undefined). This feature
will only be filled if it is known whether or not a proper noun is used for males
or females, otherwise its value is ‘undefined’ (also the case for objects without a
natural gender, like a table).

• animate: True or False (indicates whether or not the noun is animate; for example,
a dog is animate, but a road isn’t). If the NP has been created from a PN, this
feature is always True. Animate pronouns are for example ‘iemand’ (someone),
‘iedereen’ (everyone), and ‘degene’ (the person), while inanimate pronouns are for
example ‘alles’ (everything), ‘deze’ (this one), and ‘dezelfde’ (the same one).

Extra features for Dutch pronouns:

• person: 1st/2nd/3rd. A normal noun is always 3rd person, as are these pronouns.
Also, the value ‘definite’ should be set to definite (rule 7.2.3).

• case: nom/gen/dat/acc

• number: singular/plural

• definite: def/indef. These are the values ‘definite’ or ‘indefinite’.

7.1.3 PersPrN: Personal Pronouns

Features a personal pronoun has in both Dutch and Japanese:

• sex: this is the natural gender (values: male, female, undefined). This feature will
only be filled if it is known whether or not a pronoun is used for males or females,
otherwise its value is ‘undefined’ (also the case for objects without a natural gender,
like a table).

43

• animate: True or False (indicates whether or not the noun is animate; for example,
a dog is animate, but a road isn’t). For personal pronouns, this is always True.

Extra features for Dutch personal pronouns:

• person: 1st/2nd/3rd. A normal noun is always 3rd person, but personal pronouns
are nouns as well and those do differ between 1st/2nd/3rd person. With a personal
pronoun, the value ‘definite’ should be set to definite (rule 7.2.2).

• case: nom/gen/dat/acc

• number: singular/plural

• gender: this is the grammatical gender; utrum18 (male/female, ‘de’) or neutrum
(‘het’). Utrum singular nouns get the article ‘de’ in Dutch, while neutrum singular
nouns get the article ‘het’. When plural, all nouns get the article ‘de’.

7.1.4 Proper Nouns

For proper nouns, it’s a bit easier to choose number and article. By far in most
cases, proper nouns don’t get an article in Dutch. There is one class of proper nouns
which does get an article, but these proper nouns are always preceded by the definite
article (which should be specified in the dictionary): de Verenigde Staten (‘the United
States’), de Europese Unie (‘the European Union’), de Seychellen (‘the Seychelles’, called
just ‘Seychelles’ in English but requiring an article in Dutch). You could say these are
common nouns with a proper noun meaning.

As proper nouns behave as definite nouns in the grammar, whether they get an article
or not, the feature ‘definite’ will get have the value ‘definite’ for proper nouns. However,
the article for proper nouns is empty, except when it is specified in the dictionary (as in
the examples above).

Most proper nouns are also singular, but when they’re +SET, this is indicated in
Japanese by collectivizing suffixes (also described in section 6.1).

Features a PN has in both Dutch and Japanese:

• number: singular/plural (in Japanese it’s default value is singular, plural when a
plural affix is attached)

• sex: natural gender; male/female/undefined

• hon: True or False (whether or not the PN has an honorific affix attached. The
Dutch equivalents can be seen in table 7.)

• divisible: True or False

• animate: True or False (indicates whether or not the noun is animate; for example,
a dog is animate, but a road isn’t). If the NP has been created from a PN, this
feature is always True.

18Also called ‘common gender’ [84].

44

7.1.5 Affixes

Features an affix (aff) has in Japanese:

• sex: natural gender; male/female/undefined

• type: honorific (-san, -sama etc), group (kata/gata/tachi/ra/domo).

In Dutch, an affix is actually a noun which has special features. As well as all the N
features, it also has a feature ‘type’:

• type: honorific (meneer, mevrouw etc).

7.1.6 V and VP

Features a V and VP has in both Dutch and Japanese:

• tense: past/present, infinitive

• objectDivisible: True/False (True if the object of V must be +SET or a mass
noun, False if the object of V must be -SET or not a mass noun).

• subjectDivisible: True/False (True if the subject of V must be +SET or a mass
noun, False if the subject of V must be -SET or not a mass noun).

• indirectobjectDivisible: True/False (True if the indirect object (dative) of V
must be +SET or a mass noun, False if the indirect object of V must be -SET or
not a mass noun).

• objectPrefGeneric: True/False (True if V prefers its object to be generic).

• subjectPrefGeneric: True/False (True if V prefers its subject to be generic).

• indirectobjectPrefGeneric: True/False (True if V prefers its indirect object to
be generic).

Extra features specific for Dutch Vs and VPs:

• number: singular/plural

• person: 1st (I)/2nd (you)/3rd (he)/1st (we)/2nd (you)/3rd (they)

7.1.7 Numerals

Features a Numeral has in Dutch:

• requires number (also indicated by num in the rules in section 7.2): singular/plural
(which number does the noun following this numeral need to have? Dutch examples
are: 1 boek(*en); 2 boek*(en); anderhalf boek(*en); 1,5 boek*(en)

45

7.1.8 Quantifiers

Quantifiers are words like ‘many’, ‘each’, ‘various’, etc. A table listing a number of
quantifiers with their translations can be found in section 7.2.20, which contains the
quantifier rules. Japanese quantifiers are actually nouns, which act as a quantifier when
they are followed by the genitive particle ‘no’.

Features a Quantifier has in Dutch:

• requiresNumber: singular/plural/both. Whether the noun needs to be singu-
lar/plural/both (singular if ‘elk(e)’ (each), otherwise plural).

• requiresCountmass: count/mass. Whether the noun needs to be a count noun
or a mass noun.

• definite: def/indef. Whether the quantifier needs to be definite or not (‘de meeste’
or ‘veel’).

7.1.9 P

The P is a preposition or a postposition. In Japanese, these are indicated by particles
and in Dutch these are translated by prepositional or postpositional phrases. Examples
are the directional suffixes like ‘from’, of which there are some examples in section 7.2.17.

Features a P has in Dutch:

• type: pre/post (preposition or postposition)

7.2 Mini grammar

The rules necessary for the translation system would be as below. They are written as
follows for each language (Dutch and Japanese):

• Input: Which objects does the rule apply to?

• Output: What is the result of the rule?

• C: Conditions that apply to the input. If there is more than one condition that
applies, the conditions are connected by the logical &.

• A: Actions that are applied by the rule to create the output. If there is more than
one action applied, the actions are listed using the & character.

It is possible to have multiple C/A pairs, as well as nested pairs, for example:

• C1

– C2
A2

46

– C3
A3

• A1

• C4
A4

In such a case, all conditions need to be checked and applied to the input structure.

7.2.1 RBasicNPgeneric=x: Basic NP rules

The parameter x in the rule name is used when the value of NP.generic can be both True
or False.

• Japanese, RBasicNPJPgeneric=x:
Input: N’(α)
Output: NP(α)
C:
N’ contains an N, possibly with Adjective, relative clause etc.
NP.generic = False
A:
NP.generic = x

• Dutch, RBasicNPNLgeneric=x:
Input: N’(α)
Output: NP(α)
C:
N’ contains an N, possibly with Adjective, relative clause etc. It already has a value
for the feature ‘number’ and ‘countmass’.
A:
NP.countmass = N’.countmass &
NP.number = N’.number &
NP.generic = x

• Dutch, RindefsingcountNLgeneric=x:
Input: N’(α)
Output: NP(ART(een) N’(α))
C:
N’.num = sing &
N’.def = indef ∨ undefined
A:
NP.num = N’.num &
NP.def = indef &
NP.countmass = N’.countmass &
NP.divisible = N’.divisible &

47

NP.gen = N’.gen &
NP.sex = N’.sex &
NP.animate = N’.animate &
NP.generic = x

• Dutch, RindefplurcountNLgeneric=x:
Input: N’(α)
Output: NP(N’(α))
C:
N’.num = plur &
N’.def = indef ∨ undefined
N’.countmass = count &
N’.divisible = True
A:
NP.num = N’.num &
NP.def = indef &
NP.countmass = N’.countmass &
NP.divisible = N’.divisible &
NP.gen = N’.gen &
NP.sex = N’.sex &
NP.animate = N’.animate &
NP.generic = x

• Dutch, RdefnsingcountNLgeneric=x:
Input: N’(α)
Output: NP(ART(het) N’(α))
C:
N’.num = sing &
N’.def = def ∨ undefined
N’.gender = neutrum &
N’.countmass = count &
N’.divisible = False
A:
NP.num = N’.num &
NP.def = def &
NP.countmass = N’.countmass &
NP.divisible = N’.divisible &
NP.gen = N’.gen &
NP.sex = N’.sex &
NP.animate = N’.animate &
NP.generic = x

• Dutch, RdefusingcountNLgeneric=x:
Input: N’(α)

48

Output: NP(ART(de) N’(α))
C:
N’.num = sing &
N’.def = def ∨ undefined
N’.gender = utrum &
N’.countmass = count &
N’.divisible = False
A:
NP.num = N’.num &
NP.def = def &
NP.countmass = N’.countmass &
NP.divisible = N’.divisible &
NP.gen = N’.gen &
NP.sex = N’.sex &
NP.animate = N’.animate &
NP.generic = x

• Dutch, RdefplurcountNLgeneric=x:
Input: N’(α)
Output: NP(ART(de) N’(α))
C:
N’.num = plur &
N’.def = def ∨ undefined
N’.countmass = count &
N’.divisible = True
A:
NP.num = N’.num &
NP.def = def &
NP.countmass = N’.countmass &
NP.divisible = N’.divisible &
NP.gen = N’.gen &
NP.sex = N’.sex &
NP.animate = N’.animate &
NP.generic = x

• Dutch, RindefmassNLgeneric=x:
Input: N’(α)
Output: NP(N’(α))
C:
N’.num = sing &
N’.def = indef ∨ undefined
N’.countmass = mass &
N’.divisible = True
A:
NP.num = N’.num &

49

NP.def = indef &
NP.countmass = N’.countmass &
NP.divisible = N’.divisible &
NP.gen = N’.gen &
NP.sex = N’.sex &
NP.animate = N’.animate &
NP.generic = x

• Dutch, RdefnmassNLgeneric=x:
Input: N’(α)
Output: NP(ART(het) N’(α))
C:
N’.num = sing &
N’.def = def ∨ undefined
N’.gender = neutrum &
N’.countmass = mass &
N’.divisible = True
A:
NP.num = N’.num &
NP.def = def &
NP.countmass = N’.countmass &
NP.divisible = N’.divisible &
NP.gen = N’.gen &
NP.sex = N’.sex &
NP.animate = N’.animate &
NP.generic = x

• Dutch, RdefumassNLgeneric=x:
Input: N’(α)
Output: NP(ART(de) N’(α))
C:
N’.num = sing &
N’.def = def ∨ undefined
N’.gender = utrum &
N’.countmass = mass &
N’.divisible = True
A:
NP.num = N’.num &
NP.def = def &
NP.countmass = N’.countmass &
NP.divisible = N’.divisible &
NP.gen = N’.gen &
NP.sex = N’.sex &
NP.animate = N’.animate &
NP.generic = x

50

Japanese syntactic rule Dutch syntactic rule meaning rule
RBasicNPJPgeneric=T/F RBasicNPNLgeneric=T/F LBasicNPgeneric=T/F

RBasicNPJPgeneric=T/F RindefsingcountNLgeneric=T/F LindefsingcountNPgeneric=T/F

RBasicNPJPgeneric=T/F RindefplurcountNLgeneric=T/F LindefplurcountNPgeneric=T/F

RBasicNPJPgeneric=T/F RdefnsingcountNLgeneric=T/F LdefnsingcountNPgeneric=T/F

RBasicNPJPgeneric=T/F RdefusingcountNLgeneric=T/F LdefusingcountNPgeneric=T/F

RBasicNPJPgeneric=T/F RindefmassNLgeneric=T/F LindefmassNPgeneric=T/F

RBasicNPJPgeneric=T/F RdefnmassNLgeneric=T/F LdefnmassNPgeneric=T/F

RBasicNPJPgeneric=T/F RdefumassNLgeneric=T/F LdefumassNPgeneric=T/F

7.2.2 RPersPronoun: To make an NP of a Personal Pronoun

Personal pronouns are also nouns, but they do have their own category, as there fea-
tures differ slightly from the normal noun features. The personal pronouns are words like
I/we/you/he/she/it/they.

• Japanese, RPersPronounJP:
Input: PersPrN(η)
Output: NP(PersPrN(η))
C: True
A:
NP.sex = PersPrN.sex &
NP.animate = PersPrN.animate

• Dutch, RPersPronounNL:
Input: PersPrN(η)
Output: NP(PersPrN(η))
C: True
A:
NP.def = def &
NP.person = PersPrN.person &
NP.sex = PersPrN.sex &
NP.gnd = PersPrN.gnd &
NP.case = PersPrN.case &
NP.num = PersPrN.num &
NP.animate = PersPrN.animate &
NP.canBeBare = False

Japanese syntactic rule Dutch syntactic rule meaning rule
RPersPronounJP RPersPronounNL LPersPronoun

51

7.2.3 RPronoun: To make an NP of a Pronoun

Indefinite pronouns are words like ‘alles’ (everything), ‘iemand’ (someone), ‘iedereen’
(everyone).
Definite pronouns are words like ‘deze’ (this one), ‘degene’ (the person), ‘die’ (that one),
‘dezelfde’ (the same one).

• Japanese, RPronounJP:
Input: PrN(η)
Output: NP(PrN(η))
C: True
A:
NP.sex = PrN.sex &
NP.animate = PrN.animate

• Dutch, RPronounNL:
Input: PrN(η)
Output: NP(PrN(η))
C: True
A:
NP.sex = PrN.sex &
NP.animate = PrN.animate &
NP.person = PrN.person
NP.def = PrN.def &
NP.case = PrN.case &
NP.num = PrN.num &
NP.canBeBare = False

Japanese syntactic rule Dutch syntactic rule meaning rule
RPronounJP RPronounNL LPronoun

7.2.4 RSingPluralN: Make N’ singular or plural

In Japanese there is no true plural (for the group-forming suffixes, see rule 7.2.9), so the
Japanese rule does nothing and also corresponds to both Dutch rules.

All features from N’ are also copied to the output.

• Japanese, RSingPluralNJP:
Input: N’(η)
Output: N’(η)
C: True
A: @

• Dutch, RSingNNL:
Input: N’(η)

52

Output: N’(η)
C:
N’.number = undefined19

A:
N’.number = sing

• Dutch, RPluralNNL:
Input: N’(η)
Output: N’(η)
C:
N’.number = undefined
A:
N’.number = plur

Japanese syntactic rule Dutch syntactic rule meaning rule
RSingPluralNJP RSingNNL LSingN
RSingPluralNJP RPluralNNL LPluralN

7.2.5 RSentence: Basic sentence rule

This rule takes a V and between 0 to 3 NPs, and makes a sentence of the input.
The NPs are distinguished by a number: NP1 for NP-ga, NP2 for NP-wo and NP3 for
NP-ni. These are variables in a tree-structure model. ‘NPx(α)-particle’ is shorthand for
a valid NP+particle structure (which can be created by using other rules).
Notice that particles like ‘de’ and ‘e’ aren’t in this basic sentence rule.
The locative ‘NP-de’ can be seen as an adverbial, and the ‘NP-de’ in passive sentence is
introduced by a rule for passive sentence. The particle ‘e’ is used for motion to a location
(lative case) and can only be used with verbs that indicate motion. The particle ‘ni’ can
also be used in the lative case, which I also don’t address explicitly here; these cases have
to be translated using prepositions in Dutch.
I’m leaving out these cases for the moment in this basic sentence rule.

The number of NPs and the particles the NPs get, depend on the properties of the
verb. If there are any properties that must be true, they are listed in the Conditions C. If
the conditions hold true, the Actions A are applied. An Action ‘@’ means ‘take no action’.

If you only want to create a VP, use this rule with an empty NP1.

Some verbs require their object or subject to be divisible. The rules C2 through C7 are
used for these cases. The feature V.objectDivisible (and similarly V.subjectDivisible and
V.indirectobjectDivisible) is True if V requires its object to have the divisible feature.
Examples are V = gather (gather flowers), run out of (run out of topics). Dutch examples:
verzamelen (object); scheiden, uit elkaar gaan (subject). For these cases there are the

19In the dictionary, the number value is listed as ‘undefined’.

53

sub-rules C2 and C3, in which a certain NP can only combine with a certain VP if all
conditions apply.

Whether or not a noun phrase is generic depends for example on the tense of the verb
(typically, the verb is in the present tense in a generic sentence, see conditions C16-21
in 7.2.5), or whether the verb requires a generic object (C10, C14 and C22). In these
cases, the particle of the NP2-clause is preferred to be -ga instead of -wo (so you get
sentences like NP1-wa NP2-ga suki da).

Examples of verbs that allow/prefer a generic object are for example suki, kirai and
tanoshimu. Of these, only ‘tanoshimu’ is technically a verb. The words ‘suki’ and ‘kirai’
are actually adjectives that get translated as a verb in Dutch and English, but combined
with the copular verb ‘da/desu’ they do form a VP.

There are also (temporal) adverbs that specify one specific point in time which influ-
ence genericity, for example when the word ‘today’ is present, the sentence isn’t generic
(as in ‘Elephants eat grass today’).

The first time an NP is encountered, it is often an indefinite NP in Dutch (more on ‘first
time encounters’ can be read in section 5.3). Most of the time (at least in English [38],
and I assume most likely also in Dutch), an NP is definite. For this reason, the preferred
count noun NP translation is the definite singular.
The definite singular is also the most unmarked case for generic count NPs, as described
in example sentence 12, section 5. The sub-rules C8 through C11 are for adding articles
and number to count nouns.

The sub-rules C12 through C15 are for adding articles and number to mass nouns.
For generic mass NPs in subject (NP1) and PP-complement (NP3) positions, the bare
noun is the most unmarked case (described in example sentence 18, section 5). In object
position (NP2) the definite singular is preferred.
For non-generic cases, these are also the preferred forms. To create generic NPs, rule 7.2.6
can be used.

As more than one NP in the sentence can be generic, it is possible to apply more than
one condition. The conditions C16 through C25 are for setting NPs to generic depending
on the verb tense.

• Japanese, RSentenceJP:
Input: V(α), NP1(β), NP2(γ), NP3(δ)
Output: S(NP1(β)-ga NP3(δ)-ni NP2(γ)-wo V(α))
C1:
True (always apply the following actions)

– C2:
V.objectDivisible=True &
NP2.divisible=True

54

A2: @

– C3: V.objectDivisible=False
A3: @

– C4: V.subjectDivisible=True &
NP1.divisible=True
A4: @

– C5: V.subjectDivisible=False
A5: @

– C6: V.indirectobjectDivisible=True &
NP3.divisible=True
A6: @

– C7: V.indirectobjectDivisible=False
A7: @

– C8: NP1.generic = False20

A8: @

– C9: NP2.generic = False
A9: @

– C10:
NP2.generic = False &
V.objectPrefGeneric = True
A10: @

– C11: NP3.generic = False
A11: @

– C12: NP1.generic = False
A12: @

– C13: NP2.generic = False
A13: @

– C14:
NP2.generic = False &

20These numbered C-rules for Japanese correspond to the numbered C-rules for Dutch.

55

V.objectPrefGeneric = True
A14: @

– C15: NP3.generic = False
A15: @

– C16:
NP1.generic = True &

∗ C17:
V.tense = present
A17: bonus += 1

∗ C18:
V.tense = past
A18: @

A16:
@

– C19:
NP2.generic = True &

∗ C20:
V.tense = present
A20:
bonus += 1

∗ C21:
V.tense = past
A21: @

∗ C22:
V.objectPrefGeneric = T
A22: @

A19:
@

– C23:
NP3.generic = True &

56

∗ C24:
V.tense = present
A24:
bonus += 1

∗ C25:
V.tense = past
A25: @

A23:
@

A1:
NP1.case = nom &
NP2.case = acc &
NP3.case = dat

• Dutch, RSentenceNL:
Input: V(α), NP1(β), NP2(γ), NP3(δ)
Output: S(NP1(β) V(α) NP3(δ) NP2(γ))21

C122:
NP1.canBeBare = False &
NP2.canBeBare = False &
NP3.canBeBare = False &
NP1.number = V.number &
NP1.person = V.person &

– C2:
V.objectDivisible=True &
NP2.divisible=True
A2: @

– C3:
V.objectDivisible=False
A3: @

– Examples for C2 and C3:

∗ Count noun: Japanese:
kitte wo atsumeru

21This order is for main clauses in Dutch (verb-second). For subordinate clauses there would be other
rules, as the verb appears at the end of the sentence then. In a full grammar, you would add both the
main clause order and the subordinate clause order.

22Bare nouns can only appear in other contexts, which are detailed in other rules.

57

stamp-OBJ collect
NP(kitte) + V(atsumeru) ⇒ VP(NP(kitte)-wo VP(atsumeru))
Dutch:
NPnum=plur,divisible=true(postzegels) + VobjectDivisible=true(verzamelen) ⇒
VP(NP(postzegels) V(verzamelen))

∗ Mass noun: Japanese:
Willem wa chikara wo tsukaitsukushita
Willem-TOPIC power-OBJ used up/ran out
‘Willem used up his energy’
Dutch:
Willem heeft (zijn)23 energie opgebruikt.

– C4: V.subjectDivisible=True &
NP1.divisible=True
A4: @

– C5: V.subjectDivisible=False
A5: @

– C6: V.indirectobjectDivisible=True &
NP3.Divisible=True
A6: @

– C7: V.indirectobjectDivisible=False
A7: @

– C8:
NP1.generic = False &
NP1.countmass = count &

∗ C8a:
NP1.number = sing &
NP1.def = def
A8a:
bonus += 1

∗ C8b:
NP1.num = plur
A8b: @

23The possessive isn’t explicit in Japanese, but it sounds better in the translation to use a possessive
here instead of a normal article or no article. I won’t go into this problem in this thesis.

58

∗ C8c:
NP1.num = sing &
NP1.def = indef
A8c: @

A8:
@

– C9:
NP2.generic = False &
NP2.countmass = count &

∗ C9a:
NP2.number = sing &
NP2.def = indef
A9a:
bonus += 1

∗ C9b:
NP2.num = plur
A9b: @

∗ C9c:
NP2.num = sing &
NP2.def = def
A9c: @

∗ C10:
V.objectPrefGeneric = True &

· C10a:
NP2.def = def &
NP2.num = sing
A10a:
@

Example:
Mama wa neko ga suki desu.
Mama houdt van de kat.
‘Mama likes the cat.’

· C10b:
NP2.def = def &
NP2.num = plur
A10:

59

@

Example:
Mama wa neko ga suki desu.
Mama houdt van de katten.
‘Mama likes the cats.’

A9:
@

– C11:
NP3.generic = False &
NP3.countmass = count

∗ C11a:
NP3.number = sing &
NP3.def = indef
A11a:
bonus += 1

∗ C11b:
NP3.num = plur
A11b: @

∗ C11c:
NP3.num = sing &
NP3.def = def
A11c: @

A11:
@

– C12:
NP1.generic = False &
NP1.countmass = mass &

∗ C12a:
NP1.num = sing &
NP1.def = indef
A12a:
bonus += 1

∗ C12b:
NP1.num = plur

60

A12b: @

∗ C12c:
NP1.num = sing &
NP1.def = def
A12c: @

A12:
@

– C13:
NP2.generic = False &
NP2.countmass = mass &

∗ C13a:
NP2.number = sing &
NP2.def = def
A13a:
bonus += 1

∗ C13b:
NP2.num = plur
A13b: @

∗ C13c:
NP2.num = sing &
NP2.def = indef
A13c: @

∗ C14:
V.objectPrefGeneric = True &
NP2.def = def &
NP2.num = sing
A14:
@

Example:
Mama wa sake ga suki desu.
Mama houdt van de sake.
‘Mama likes the sake.’

A13:
@

61

– C15:
NP3.generic = False &
NP3.countmass = mass &

∗ C15a:
NP3.number = sing &
NP3.def = indef
A15a:
bonus += 1

∗ C15b:
NP3.num = plur
A15b: @

∗ C15c:
NP3.num = sing &
NP3.def = def
A15c: @

A15:
@

– C16:
NP1.generic = True &

∗ C17a:
NP1.countmass = count &
NP1.number = plural &
NP1.def = indef &
V.tense = present
A17a:
bonus += 1

∗ C17b:
NP1.countmass = count &
NP1.number = sing &
NP2.def = indef &
V.tense = present
A17b: @

∗ C17c:
NP1.countmass = mass &
V.tense = present
A17c:

62

bonus += 1

∗ C18a:
NP1.countmass = count &
NP1.number = plural &
NP1.def = indef &
V.tense = past
A18a: @

∗ C18b:
NP1.countmass = count &
NP1.number = sing &
NP2.def = indef &
V.tense = past
A18b: @

∗ C18c:
NP1.countmass = mass &
V.tense = past
A18c: @

A16:
@

– Examples:

∗ Japanese:
zou-to-iu-mono-ga happa-wo taberu
elephants-such as-things-SUBJ leaf-OBJ eat
(Things such as) elephants eat leaves
‘Elephants eat leaves’.
Dutch:
C17a: Olifanten eten bladeren.
C17b: Een olifant eet bladeren.
C17c: Vee eet gras.

∗ Japanese:
subject: NP1(zou) ⇒ NP(NP1(zou)-to-iu)
zou-to-iu-mono-wa banana-ga suki
elephants-such as-things-TOPIC banana-SUBJ like
(Things such as) elephants like bananas
‘Elephants like bananas’.

∗ Japanese:
jazu-to-iu-mono-ga kikitai

63

jazz-what-is-called-thing-SUBJ want-to-hear
I want to hear what is called jazz.
‘I want to hear jazz.’

Dutch:
C17c (jazz = mass noun)
Ik wil jazz horen. (here, the subject in Japanese becomes the object in
Dutch/English)

– C19:
NP2.generic = True &

∗ C20a:
NP2.countmass = count &
NP2.number = plur &
NP2.def = def &
V.tense = present
A20a:
bonus += 1

∗ C20b:
NP2.countmass = count &
NP2.number = sing &
NP2.def = def &
V.tense = present
A20b: @

∗ C20c:
NP2.countmass = mass &
V.tense = present
A20c: @

∗ Example for C20:
Japanese:
zou-wa happa-to-iu-mono-wo taberu
elephant-TOPIC leaf-such-as-thing-OBJ eat
Elephants eat (things such as) leaves.
Dutch:
C20a: Olifanten eten bladeren.
C20b: Olifanten eten gras.

∗ C21a:
NP2.countmass = count &
NP2.number = plur &
NP2.def = def &

64

V.tense = past
A21a:
bonus += 1

∗ C21b:
NP2.countmass = count &
NP2.number = sing &
NP2.def = def &
V.tense = past
A21b: @

∗ C21c:
NP2.countmass = mass &
V.tense = past
A21c: @

∗ C22:
V.objectPrefGeneric = True &

· C22a:
NP2.countmass = count &
NP2.def = indef &
NP2.num = plur
A22a:
bonus += 1

Example :
Mama wa neko ga suki desu.
Mama houdt van katten.
‘Mama likes cats.’

· C22b:
NP2.countmass = mass &
NP2.def = indef &
NP2.num = sing
A22b:
bonus += 1

Example:
Mama wa sake ga suki desu.
Mama houdt van sake.
‘Mama likes sake.’

A19:
@

65

– C23:
NP3.generic = True &

∗ C24a:
NP3.countmass = count &
NP3.number = plur &
NP3.def = def &
V.tense = present
A24a:
bonus += 1

∗ C24b:
NP3.countmass = count &
NP3.number = sing &
NP3.def = def &
V.tense = present
A24b: @

∗ C24c:
NP3.countmass = mass &
V.tense = present
A24c: @

∗ C25a:
NP3.countmass = count &
NP3.number = plur &
NP3.def = def &
V.tense = past
A25a:
bonus += 1

∗ C25b:
NP3.countmass = count &
NP3.number = sing &
NP3.def = def &
V.tense = past
A25b: @

∗ C25c:
NP3.countmass = mass &
V.tense = past
A25c: @

A23:

66

@

A1:
NP1.case = nom &
NP2.case = acc &
NP3.case = dat &
V.number = Np1.number &
V.person = Np1.person

Japanese syntactic rule Dutch syntactic rule meaning rule
RSentenceJP RSentenceNL LSentence

7.2.6 RGenericNPgeneric=x: Creating a generic NP

• Japanese, RGenericNPtoiuJPgeneric=x:
Input: N’(η)
Output: NP(N’(η)-to-iu-NOMINALIZER)
NOMINALIZER = mono/koto
C:
x = True
A:
NP.generic = x

Japanese syntactic rule Dutch syntactic rule meaning rule
RGenericNPtoiuJPgeneric=x RindefplurcountNLgeneric=x Lindefplurcountgeneric=True

7.2.7 RPNtoNP: Proper Nouns

A rule that makes a normal N’ from a PN:

• Japanese, RPNtoNJP:
Input: PN(ε)
Output: N’(PN(ε))
C: True
A:
N’.animate = PN.animate

• Dutch, RPNtoNNL:
Input: PN(ε)
Output: N’(PN(ε))
C:
N’.sex = PN.sex &
N’.gender = utrum &
N’.countmass = count &

67

N’.animate = True

The value of ‘gender’ depends on the kind of PN. The rules for this are:

• Names of humans and animals are male/female: “de”. These personal names op-
tionally get an article if they are preceded by an adverb/adjective: “de kleine Karin”
(the little Karin) or “kleine Karin” (little Karin). Here, you can use a rule that
makes a normal noun from a proper noun, as the resulting proper noun behaves
like a normal noun (with articles/adverbs/adjectives/singular/plural).

• Names of countries and cities are neuter: “het” [83]. Country/city names get an
article if they are preceded by an adverb/adjective: “het mooie Utrecht” (‘the
beautiful (city of) Utrecht)’; “het kleine Nederland” (‘the small (country of) the
Netherlands’).

• Japanese, RPNtoNPJP:
Input: PN(ε)
Output: NP(PN(ε))
C: True
A:
NP.animate = PN.animate

• Dutch, RPNtoNPNL:
Input: PN(ε)
Output: NP(PN(ε))
C:
NP.sex = PN.sex &
NP.gender = utrum &
NP.countmass = count &
NP.animate = True

The difference between N’(PN) and NP(PN) is that N’ can be used to derive ‘de kleine
Karin’ (the little Karin), while the NP is just for ‘Karin’ without any adjectives or other
modifiers.

Example:

• Japanese:
PN(Wiremu) ⇒ NPanimate=True(PN(Wiremu))
Dutch:
PN(Willem) ⇒ NPsex=male,gender=utrum,count=count,animate=True

(PNsex=male,gender=utrum,count=count(Willem))

Japanese syntactic rule Dutch syntactic rule meaning rule
RPNtoNJP RPNtoNNL LPNtoN
RPNtoNPJP RPNtoNPNL LPNtoNP

68

7.2.8 RHonAff: Adding honorific affixes to Proper Nouns

The next rules are for adding affixes to proper nouns (basic expressions, the affixes, are
shown in table 7 on page 71 (based on table 19 on page 126)). Honorific affixes can only
be added when the ‘hon’ feature is still False, as you cannot have multiple honorific affixes.

• Japanese, RHonAffJP:
Input: PN1(ε), aff(ζ)
Output: PN2(PN1(ε) aff(ζ))
C:
PN1.sex = aff.sex &
aff.type = honorific &
PN1.hon = False &
PN1.divisible = False
A:
PN2.sex = PN1.sex &
PN2.hon = True &
PN2.divisible = PN1.divisible

• Dutch, RHonAffNL:
Input: PN1(ε), aff(ζ)
Output: PN2(aff(ζ) PN1(ε))
C:
PN1.sex = aff.sex &
aff.type = honorific &
PN1.hon = False &
PN1.divisible = False
A:
PN2.def = indef &
PN2.hon = True &
PN2.sex = PN1.sex &
PN2.num = PN1.num &
PN2.divisible = PN1.divisible

• Examples:

– Japanese:
PNsex=male,num=sing,hon=False,divisible=False(Wiremu) + affsex=male,num=sing(kun)
⇒
PNsex=male,num=sing,hon=True,divisible=False(Wiremu-kun)
Dutch:
affsex=male,num=sing(meneer) + PNsex=male,num=sing,hon=False,divisible=False(Willem)
⇒ PNsex=male,num=sing,def=indef,hon=True,divisible=False(meneer Willem)

69

Japanese syntactic rule Dutch syntactic rule meaning rule
RHonAffJP RHonAffNL LHonAff

7.2.9 RPlurSuff: Adding group-forming suffixes

This rule can be applied to proper nouns, as there is a rule that makes an N’ from a PN,
and a rule which makes an NP from an N’. However, the NP should be animate.
The pluralizing affixes are also listed in table 7 on page 71.

• Japanese, RPlurSuffJP:
Input: PN(η)
Output: NP(PN(η)-aff(ζ))
C:
PN.animate = True &
PN.divisible = False &
PN 6= PN(η)-aff(ζ)
A:
NP.divisible = True &
aff.type = group24

• Dutch, RPlurSuffNL:
Input: PN(η)
Output: NP(PN(η) en de anderen)
C:
PN.num = sing &
PN.def = def &
PN.animate = True &
PN.divisible = False
A:
NP.num = plur &
NP.divisible = True

• Example:

– Japanese:
NP(Wiremu) ⇒ NP(NP(Wiremu)-tachi)
Dutch:
NP(Willem) ⇒ NP(NP(Willem) en de anderen)

Japanese syntactic rule Dutch syntactic rule meaning rule
RPlurSuffJP RPlurSuffNL LPlurSuff

24Values of aff.type = group are -kata/-gata/-tachi/-ra/-domo.

70

Japanese basic expressions Dutch basic expressions basic meanings
affnum=sing(san) affsex=m(meneer), affsex=f (mevrouw),

affsex=undef (∅) Mr/Mrs’
affnum=sing(sensei) affsex=m(meester), affsex=f (juffrouw),

affsex=undef (∅) teacher’
affnum=sing(sama) affsex=m(hooggeachte meneer),

affsex=f (hooggeachte mevrouw),
affsex=undef (hooggeachte) Esteemed Mr/Mrs’

affnum=sing(chan) affsex=undef (kleine) little’
affsex=m,num=sing(bou) affsex=m(kleine) little’
affsex=m,num=sing(kun) affsex=m(∅) Mr’
affnum=sing(senpai) affsex=undef (∅) senior’
affnum=sing(hakase) affsex=undef (professor) professor’
affnum=plur(tachi) affnum=plur(en de anderen) and the others’
affnum=plur(kata) affnum=plur(en de anderen) and the others’
affnum=plur(gata) affnum=plur(en de anderen) and the others’
affnum=plur(ra) affnum=plur(en de anderen) and the others’
affnum=plur(domo) affnum=plur(en de anderen) and the others’

Table 7: Basic expressions for Japanese and Dutch honorific affixes.

7.2.10 RAimedAtNP: ‘aimed at’ + NP

• Japanese, RAimedAtNPJP:
Input: NP(η)
Output: NP(NP(η Particle(muke))
C: True
A: @

• Dutch, RAimedAtNPNL:
Input: NP(η)
Output: NP(gericht op NP(η))
C1:
NP.num = plur &
NP.countmass = count &
NP.def = indef
A1:
bonus += 1
C2:
NP.countmass = mass &
NP.def = indef
C3:
NP.num = sing &
NP.def = def
A3:

71

bonus += 1
C4:
NP.num = plur &
NP.def = def
A4:
@

• Examples:

– Japanese:
NP(josei) ⇒ NP(NP(josei) Particle(muke))
Dutch:
C1: NP(vrouw) ⇒ PP(gericht op NPnum=plur,def=indef (vrouwen)).
C3: NP(vrouw) ⇒ PP(gericht op NPnum=sing,def=def (de vrouw)).
C4: NP(vrouw) ⇒ PP(gericht op NPnum=plur,def=def (de vrouwen)).

Japanese syntactic rule Dutch syntactic rule meaning rule
RAimedAtNPJP RAimedAtNPNL LAimedAtNP

7.2.11 RIdentSent: Identificational sentences

An identificational sentence has a definite NP in predicate position (NP2). A predica-
tional sentence has an indefinite NP2. If the N2 is an occupation (which is one of the
kind of nouns that has the canBeBare-feature value set to True), then there’s no article
in Dutch.

• Japanese, RIdentSentJP:
Input: NP1(β), NP2(γ)
Output: S(NP1(β) wa NP2(γ) V(da))
C: True
A: @

• Dutch, RIdentSentNL:
Input: NP1(β), NP2(γ)
Output: S(NP1(β) V(zijn) NP2(γ))
C:
NP1.num = V.num &
NP1.sex = NP2.sex &
NP2.def = def &

– C1:
NP2 = bare N &
NP2.canBeBare = True

72

A1: @

– C2: NP2.canBeBare = False
A2: @

A: @

• Examples:

– Japanese:
NP1(Tokyo) + NP2(shuto) ⇒ S(NP1(Tokyo) wa NP2(shuto) V(desu))
Dutch:
NP1(Tokyo) + NP2(hoofdstad) ⇒ S(NP1num=sing(Tokyo)
Vnum=num(NP2),person=person(NP2)(is) NP2num=sing,def=def (de hoofdstad))

– Japanese:
NP1(Wiremu) + NP2canBeBare=true(sensei)⇒ S(NP1(Wiremu) wa NP2canBeBare=true(sensei)
V(desu))
Dutch:
NP1(Willem) + NP2canBeBare=true(docent) ⇒ S(NP1num=sing,sex=male(Willem)
Vnum=num(NP1),person=person(NP1)(is) NP2num=sing,def=indef,sex=male,canBeBare=true(docent))

Japanese syntactic rule Dutch syntactic rule meaning rule
RIdentSentJP RIdentSentNL LIdentSent

7.2.12 RPredSent: Predicational sentences

Just as verbs can prefer a generic argument, NP2 here could also prefer a generic
argument (NP1). However, I don’t explicitly check for that in these rules.

• Japanese, RPredSentJP:
Input: NP1(β), NP2(γ)
Output: S(NP1(β) ga NP2(γ) V(da))
C: True
A: @

• Dutch, RPredSentNL:
Input: NP1(β), NP2(γ)
Output: S(NP1(β) V(zijn) NP2(γ))
C:
NP1.num = V.num &
NP2.def = indef &

73

– C1:
NP2 = bare N &
NP2.canBeBare = True
A1: @

– C2: NP2.canBeBare = False
A2: @

A:
@

• Example:

– Japanese:
NP1(Wiremu) + NP2(ningen) ⇒ S(NP1(Wiremu) ga NP2(ningen) V(desu))
Dutch:
NP1(Willem) + NP2(mens) ⇒ S(NP1num=sing,sex=male(Willem)
Vnum=num(NP2),person=person(NP2)(is) NP2num=sing,def=indef,sex=male(een mens))

– Japanese:
NP1(Wiremu) + NP2(sensei) ⇒ S(NP1(Wiremu) ga NP2(sensei) V(desu))
Dutch:
NP1(Willem) + NP2(docent) ⇒ S(NP1num=sing,sex=male(Willem)
Vnum=num(NP2),person=person(NP2)(is) NP2canBeBare=True(docent))

Japanese syntactic rule Dutch syntactic rule meaning rule
RPredSentJP RPredSentNL LPredSent

7.2.13 RPredSentAdj: Predicational sentences with adjectives

Just as verbs can prefer a generic argument, ADJ here could also prefer a generic
argument (NP1). However, I don’t explicitly check for that in these rules.

• Japanese, RPredSentAdjJP:
Input: NP1(β), ADJ(γ)
Output: S(NP1(β) ga ADJ(γ) V(da))
C: True
A: @

• Dutch, RPredSentAdjNL:
Input: NP1(β), ADJ(γ)
Output: S(NP1(β) V(zijn) ADJ(γ))
C: True

74

– C1:
NP1.num = plur &
NP1.def = indef &
NP1.generic = True
A1:
@

– C2:
NP1.num = sing &
NP1.def = def &
NP1.generic = False
A2:
bonus += 1

– C3:
NP1.num = plur &
NP1.def = def &
NP1.generic = False
A3:
@

A:
V.number = NP.number
V.person = NP.person

• Example:

– Japanese:
NP1(bara) + ADJ(akai) ⇒ S(NP(bara) ga ADJ(akai) V(desu))
Dutch:
NP(roos) + ADJ(rood) ⇒ S(NPnum=plur,def=indef (rozen)
Vnum=num(NP),person=person(NP)(zijn) ADJ(rood))

There is also the Japanese word ‘aru’, which is the ‘to be’-verb for inanimate objects.
I didn’t write a rule for this, however. An example would be ‘resutoran ga aru’, meaning
‘there are restaurants’.

Japanese syntactic rule Dutch syntactic rule meaning rule
RPredSentAdjJP RPredSentAdjNL LPredSentAdj

7.2.14 RAsNP: ‘as’ (toshite)

• Japanese, RAsNPJP:
Input: NP(η)
Output: NP(NP(η) Particle(toshite))

75

C: True
A: @

• Dutch, RAsNPNL:
Input: NP(η)
Output: AdvP(als NP(η))
C:
NP.canBeBare = True &
NP.num = sing &
NP.def = indef
A: @

• Example:

– Japanese:
NP(sensei) ⇒ NP(NP(sensei) Particle(-toshite))
Dutch:
NPcanBeBare=True,sex=male(docent)⇒AdvP(als NPdef=indef,num=sing,sex=male(docent))
For example in the sentence ‘Hij werkt als docent’ (he works as a teacher).

Japanese syntactic rule Dutch syntactic rule meaning rule
RAsNPJP RAsNPNL LAsNP

7.2.15 RTopic: Making a topic phrase of a ga/ni/wo/de phrase (i)

Topicalization in Japanese doesn’t have to correspond with putting the topicalized phrase
in front of the sentence in Dutch, but that is a subject you could write another thesis
about, so that is a problem outside the scope of this thesis.
If the NP is a topic, a definite NP is preferred in Dutch.
These rules should only be applicable once (in Japanese this is blocked by the inclusion
of case particles, but in Dutch there are no visible case particles), so for this reason these
topicalization rules can only be applied once per sentence.
As these rules should be reversible, they actually should be formulated in a more complex
way.

• Japanese, RTopicSubjJPi:
Input: S[...NP(NP1i(β)-ga)...V]
Output: S[NP(NP1i(β)-wa)...V]
C: True
A: @

• Dutch, RTopicSubjNLi:
Input: S[...NP1i(β)...V]
Output: S[NP1i(β)...V]

76

C: True
A: @

• Japanese, RTopicObjJPi:
Input: S[...NP(NP2i(γ)-wo)...V]
Output: S[NP(NP2i(γ)-wa)...V]
C: True
A: @

• Dutch, RTopicObjNLi:
Input: S[...NP2i(γ)...V]
Output: S[NP2i(γ)...V]
C: True
A: @

• Japanese, RTopicPPJPi:
Input: S[...PP(NPi(η)-Particle(θ))...V]
Output: S[PP(NPi(η)-Particle(θ) wa)...V]
C: True
A: @

• Dutch, RTopicPPNLi:
Input: S[...PPi(ϑ)...V]
Output: S[PPi(ϑ)...V]
C: True
A: @

Each NP in a sentence has an index i. If NPs have the same index, they refer to the
same entity. The index is a parameter of this rule.
The particles ‘ni’ and ‘de’ get translated with words like ‘in’, ‘at’, ‘with’, etc.

Japanese syntactic rule Dutch syntactic rule meaning rule
RTopicSubjJPi RTopicSubjNLi LTopicSubji
RTopicObjJPi RTopicObjNLi LTopicObji
RTopicPPJPi RTopicPPNLi LTopicPPi

For each of the above rules, the following conditions can also be applied to the output
(the -wa clause).

• Japanese, RTopicTensePastJP:
C:
V.tense = past

77

A:
bonus += 1

• Dutch, RTopicTensePastNL:
C:
V.tense = past &
NP1.num = V.num &

– C1:
NP1.num = sing &
NP1.def = def
A1:
bonus += 1

– C2:
NP1.num = plur &
NP1.def = def
A2:
@

– C3:
NP1.num = sing &
NP1.def = indef
A3:
@

– C4:
NP1.num = plur &
NP1.def = indef
A4:
@

A:
@

• Examples:
Japanese: densha-wa hashitta
train-TOPIC run-PAST
“The train(s) ran.”
Dutch:
C1: De trein reed.
C2: De treinen reden.

78

C3: Een trein reed.25

C4: Treinen reden.

• Japanese, RTopicTensePresentJP:
C:
V.tense = present
A:
@

• Dutch, RTopicTensePresentNL:
C:
NP1.num = V.num &
V.tense = present

– C1:
NP1.num = plur &
NP1.def = indef
A1:
bonus += 1

– C2:
NP1.num = sing &
NP1.def = indef
A2:
@

– C3:
NP1.def = def
A3:
@

A:
@

• Examples:
Japanese: densha-wa hashiru
train-TOPIC run
“The train(s) run.”
Dutch:

25In Dutch it’s more natural to say ‘Er rijdt een trein’ (There runs a train). ‘Een trein’ is a non-specific
NP, and when such an NP appears in subject position, the temporary subject er (‘there’) is normally
used.

79

C1: Treinen rijden.
C2: Een trein rijdt.
C3: De trein rijdt. & De treinen rijden.

Japanese syntactic rule Dutch syntactic rule meaning rule
RTopicTensePastJP RTopicTensePastNL LTopicTensePast
RTopicTensePresentJP RTopicTensePresentNL LTopicTensePresent

7.2.16 RAlso: ‘also/too’ (mo)

The particle ‘mo’ means ‘also’. It attaches to an NP, which is not part of a sentence yet.
When the NP is inserted into a sentence structure and the particle ‘ga’ or ‘wo’ has to be
added while the NP has ‘mo’ attached already, ‘ga’ and ‘wo’ are not added. If an NP
has another particle attached, for example ‘ni’, ‘de’, or ‘kara’, ‘mo’ follows that particle
(resulting in ‘ni-mo’, ‘de-mo’, etc). These correct particle structures would be created by
using other rules (not specified here).

• Japanese, RAlsoJP:
Input: NP(η)
Output: NP(NP(η-mo))
C: True
A: @

• Dutch, RAlsoNL:
Input: NP(η)
Output: NP(ook NP(η))
C1:
NP.def = def
A1:
bonus += 1
C2:
NP.def = indef
A2:
@

• Examples:

– Japanese:
NP(Wiremu) ⇒ NP(NP(Wiremu)-mo)
NP(hon) ⇒ NP(NP(hon)-mo)
Dutch:
NP(Willem) ⇒ NP(ook NP(Willem))
NP(boek) ⇒ NP(ook NP(het boek))

80

– Japanese:
NP(hon) ⇒ NP(NP(hon)-mo)
Dutch:
NP(boek) ⇒ NP(ook NP(boeken))

Japanese syntactic rule Dutch syntactic rule meaning rule
RAlsoJP RAlsoNL LAlso

7.2.17 RDirSuff: Directional suffixes

• Japanese, RDirSuffJP:
Input: Particle(ζ), NP(η)
Output: NP(NP(η) Particle(ζ))
C: True
A: @

• Dutch, RDirSuffPreNL:
Input: P(ζ), NP(η)
Output: PP(P(ζ) NP(η))
C:
P.type = pre
A:
@

• Dutch, RDirSuffPostNL:
Input: P(ζ), NP(η)
Output: PP(NP(η) P(ζ))
C:
P.type = post
A:
@

• Examples:

– Japanese:
Particle(e) + NP(Toukyou) ⇒ NP(NP(Toukyou) Particle(e))
Dutch:
Ptype=pre(naar) + NP(Tokyo) ⇒ PP(Ptype=pre(naar) NP(Tokyo))

– Japanese:
NP(yama) + Particle(no) + NP(shita) + Particle(e) ⇒ NP(NP(yama)-no-
NP(shita)-Particle(e))
Dutch:
NP(de berg) + Ptype=post(af) ⇒ PP(NP(de berg) Ptype=post(af))

81

Particles from Japanese lexicon Prepositions from Dutch lexicon meaning
e naar(Ptype=prep) to’
kara vanaf(Ptype=prep) from’
made tot(Ptype=prep) up to’
(NP-no) shita e af(Ptype=post) down’

Japanese syntactic rule Dutch syntactic rule meaning rule
RDirSuffJP RDirSuffPreNL LDirSuff
RDirSuffJP RDirSuffPostNL LDirSuff

7.2.18 RNomVerb: Nominalizing verbs

• Japanese, RNomVerbJP:
Input: VP(α)
Output: NP(VP(α)-NOMINALIZER)
nominalizer = no, mono, koto
C: True
A: @

• Dutch, RNomVerbNL:
Input: VP(α)
Output: NP(VP(α))
C:
NP.def = def &
NP.num = sing &
NP.gnd = neutr &
VP.person = infinitive
A: @

• Examples:

– kaku (to write) ⇒ kaku-koto
schrijven-nominalizer
schrijven (Example sentence: ‘Brieven schrijven is leuk.’)

– Japanese: watashi wa tegami-wo-kaku-koto-ga suki desu. (I like to write let-
ters)
Dutch: Brieven schrijven vind ik leuk.

Japanese syntactic rule Dutch syntactic rule meaning rule
RNomVerbJP RNomVerbNL LNomVerb

7.2.19 RNumeral: Numerals

• Japanese, RNumeralJP:
Input: NUMERAL(ν), NP(η)

82

Output: NP(NUMERAL(ν)-CLASSIFIER26-no-NP(η)27

C: True
A: @

• Dutch, RNumeralNL:
Input: NUMERAL(ν), NP(η)
Output: NP(NUMERAL(ν) NP(η))
C:
NUMERAL.requiresnumber = NP.num
NP.def = indef

• Examples:

– Japanese:
NUMERAL(1) + NP(yakusoku)⇒ NP(NUMERAL(1)-tsu-no-NP(yakusoku))
Dutch:
1 + NP(belofte)⇒NP(NUMERALrequiresnumber=sing(1) NPdef=indef,num=sing(belofte))

Japanese syntactic rule Dutch syntactic rule meaning rule
RNumeralJP RNumeralNL LNumeral

7.2.20 RQuant: Quantifiers specifying sing/plur

• Japanese, RQuantJP:
Input: QUANTIFIER(µ), NP(η)
Output: NP(QUANTIFIER(µ)-no-NP(η))
C: True
A: @

• Dutch, RQuantNL:
Input: QUANTIFIER(µ), NP(η)
Output: NP(QUANTIFIER(µ) NP(η))
C:
QUANTIFIER.requiresCountmass = NP.countmass &
QUANTIFIER.def = NP.def &
QUANTIFIER.requiresNumber = NP.num

• Example:

26The classifier is chosen on the basis of the features of the NP; default is the classifier ‘-tsu’, as in
‘1-tsu’.

27As can be seen in table 4 on page 34, other word orders in Japanese can give the same translation,
but for the moment I am not expanding on those here.

83

– Japanese:
QUANTIFIER(hotondo) + NP(hito)⇒NP(QUANTIFIER(hotondo)-no-NP(hito))
Dutch:
QUANTIFIERcountmass=count,def=def,num=plur(de meeste) + NPcountmass=count(mens)
⇒ NP(QUANTIFIER(de meeste)-NPcountmass=count,def=def,num=plur(mensen)

Quantifiers in Japanese lexicon Quantifiers/Articles in Dutch lexicon meaning
onoono elke + NPdef=indef,num=sing each’
zenbu/subete al het/de + NPcountmass=mass,def=def,num=sing all’
zenbu/subete alle + NPcountmass=count,def=indef,num=plur all’
ryouhou beide + NPcountmass=count,def=indef,num=plur both’
zenkoku NPcountmass=count,def=indef,num=plur + in het all over

hele land the country’
takusan/kazukazu veel + NPcountmass=count,def=indef,num=plur many’
samazama diverse + NPcountmass=count,def=indef,num=plur various’
hotondo de meeste + NPcountmass=count,def=def,num=plur most’
hanbun de halve + NPcountmass=count,def=def,num=sing most’
sukoshi een beetje + NPcountmass=mass,def=indef,num=plur a little’
sukoshi een paar + NPcountmass=count,def=indef,num=plur a few’

Japanese syntactic rule Dutch syntactic rule meaning rule
RQuantJP RQuantNL LQuant

84

7.3 Overview of the mapping rules

Japanese syntactic rule Dutch syntactic rule meaning rule
RBasicNPJPgeneric=x RBasicNPNLgeneric=x LBasicNPgeneric=x

RBasicNPJPgeneric=x RindefsingcountNLgeneric=x LindefsingcountNPgeneric=x

RBasicNPJPgeneric=x RindefplurcountNLgeneric=x LindefplurcountNPgeneric=x

RGenericNPtoiuJPgeneric=x RindefplurcountNLgeneric=x Lindefplurcountgeneric=True

RBasicNPJPgeneric=x RdefnsingcountNLgeneric=x LdefnsingcountNPgeneric=x

RBasicNPJPgeneric=x RdefusingcountNLgeneric=x LdefusingcountNPgeneric=x

RBasicNPJPgeneric=x RindefmassNLgeneric=x LindefmassNPgeneric=x

RBasicNPJPgeneric=x RdefnmassNLgeneric=x LdefnmassNPgeneric=x

RBasicNPJPgeneric=x RdefumassNLgeneric=x LdefumassNPgeneric=x

RPersPronounJP RPersPronounNL LPersPronoun
RPronounJP RPronounNL LPronoun
RSingPluralNJP RSingNNL LSingN
RSingPluralNJP RPluralNNL LPluralN
RSentenceJP RSentenceNL LSentence
RPNtoNJP RPNtoNNL LPNtoN
RPNtoNPJP RPNtoNPNL LPNtoNP
RHonAffJP RHonAffNL LHonAff
RPlurSuffJP RPlurSuffNL LPlurSuff
RAimedAtNPJP RAimedAtNPNL LAimedAtNP
RIdentSentJP RIdentSentNL LIdentSent
RPredSentJP RPredSentNL LPredSent
RPredSentAdjJP RPredSentAdjNL LPredSentAdj
RAsNPJP RAsNPNL LAsNP
RTopicSubjJPi RTopicSubjNLi LTopicSubji
RTopicObjJPi RTopicObjNLi LTopicObji
RTopicPPJPi RTopicPPNLi LTopicPPi

RTopicTensePastJP RTopicTensePastNL LTopicTensePast
RTopicTensePresentJP RTopicTensePresentNL LTopicTensePresent
RAlsoJP RAlsoNL LAlso
RDirSuffJP RDirSuffPreNL LDirSuff
RDirSuffJP RDirSuffPostNL LDirSuff
RNomVerbJP RNomVerbNL LNomVerb
RNumeralJP RNumeralNL LNumeral
RQuantJP RQuantNL LQuant

85

7.4 Example derivations

The basic expressions are written as a B followed by the word itself.

7.4.1 ‘The book is red.’

• I’m going to derive a Japanese sentence 本が赤いです。 (hon ga akai desu) and a
Dutch sentence (multiple possible translations) simultaneously. Because the gram-
mars are reversible, you can go from Japanese to Dutch, but also from Dutch to
Japanese.

• Basic expressions from dictionary28:

Japanese basic expressions Dutch basic expressions
Bhon (N): Bboek (N):
- N.sex = undefined - N.sex = undefined
- N.divisible = False - N.divisible = False
- N.generic = False - N.generic = False
- N.animate = False - N.animate = False
- N.person = 3rd - N.person = 3rd

- N.case = undefined
- N.number = undefined
- N.gender = neutrum
- N.def = undefined
- N.countmass = count
- N.canBeBare = False

Bakai (Adj): Brood (Adj):
no features defined no features defined

There is a rule that takes the basic expression N(Bboek) and makes it N’(Bboek)
singular or N’(Bboeken) plural. It copies all the features of N, and also sets the
number feature (sing/plur). This rule is described in 7.2.4 and I assume below this
rule has been applied.

• Applying rules:

Japanese rules Dutch rules
Apply rule 7.2.1 RBasicNPJPgeneric=False: Apply rule 7.2.1 RindefsingcountNLgeneric=False:
Input: N’(Bhon) Input: N’(Bboek)
Output: NP(N’(Bhon)) Output: NP(ART(een) N’(Bboek))
- NP.sex = undefined - NP.sex = undefined
- NP.divisible = False - NP.divisible = False
- NP.generic = False - NP.generic = False
- NP.animate = False - NP.animate = False

28To look up the words in the dictionary, the Japanese characters are used.

86

- NP.person = 3rd - NP.person = 3rd
- NP.case = undefined
- NP.number = sing
- NP.gender = neutrum
- NP.def = indef
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RdefnsingcountNLgeneric=False:
Input: N’(Bboek)
Output: NP(ART(het) N’(Bboek))
- NP.sex = undefined
- NP.divisible = False
- NP.generic = False
- NP.animate = False
- NP.person = 3rd
- NP.case = undefined
- NP.number = sing
- NP.gender = neutrum
- NP.def = def
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RindefplurcountNLgeneric=False:
Input: N’(Bboeken)
Output: NP(N’(Bboeken))
- NP.sex = undefined
- NP.divisible = True
- NP.generic = False
- NP.animate = False
- NP.person = 3rd
- NP.case = undefined
- NP.number = plur
- NP.gender = neutrum
- NP.def = def
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RdefplurcountNLgeneric=False:
Input: N’(Bboeken)
Output: NP(ART(de) N’(Bboeken))
- NP.sex = undefined
- NP.divisible = True
- NP.generic = False
- NP.animate = False
- NP.person = 3rd
- NP.case = undefined
- NP.number = plur
- NP.gender = neutrum

87

- NP.def = def
- NP.countmass = count
- NP.canBeBare = False

Apply rule 7.2.13 RPredSentAdjJP: Apply rule 7.2.13 RPredSentAdjNL:
Input: NP(N’(Bhon)), ADJ(Bakai) Input: NP1(Bboek), ADJ(Brood)
Output: Output (bonus):
S(NP1(NP(N’(Bhon))) ga S(NP(NP(ART(het) N’(Bboek)) V(is)
ADJ(Bakai) V(da))29 ADJ(Brood))

V.number = NP.number
V.person = NP.person
Output (no bonus):
S(NP(NP(ART(de) N’(Bboeken)))
V(zijn) ADJ(Brood))
V.number = NP.number
V.person = NP.person

Figure 10: Syntactic derivation trees and the semantic interlingua derivation tree for
‘The book is red’. In the Dutch syntactic derivation tree and the semantic interlingua
derivation tree, there are multiple rules in one node. This is a shorthand notation to
avoid writing four very similar trees with only a different rule in one of the nodes. The
+1 means that a bonus of 1 has been applied.

29The verb ‘desu’ is the more polite conjugation of ‘da’.

88

7.4.2 ‘Anna is reading the book.’

• Japanese sentence 杏奈は本を読んでいる。 (Anna wa hon wo yondeiru) and pos-
sible Dutch translations.

• Basic expressions from dictionary30:

Japanese basic expressions Dutch basic expressions
BAnna (PN) BAnna (PN)
- PN.number = sing - PN.number = sing
- PN.sex = female - PN.sex = female
- PN.hon = False - PN.hon = False
- PN.divisible = False - PN.divisible = False
- PN.animate = True - PN.animate = True
Bhon (N): Bboek (N):
- N.sex = undefined - N.sex = undefined
- N.divisible = False - N.divisible = False
- N.generic = False - N.generic = False
- N.animate = False - N.animate = False
- N.person = 3rd - N.person = 3rd

- N.case = undefined
- N.number = undefined
- N.gender = neutrum
- N.def = undefined
- N.countmass = count
- N.canBeBare = False

Byondeiru (V)31: Blezen (V):
- V.tense = present32 - V.tense = present
- V.objectDivisible = False - V.objectDivisible = False
- V.subjectDivisible = False - V.subjectDivisible = False
- V.indirectobjectDivisible = False - V.indirectobjectDivisible = False
- V.objectPrefGeneric = False - V.objectPrefGeneric = False
- V.subjectPrefGeneric = False - V.subjectPrefGeneric = False
- V.indirectobjectPrefGeneric = False - V.indirectobjectPrefGeneric = False

The rule 7.2.4 that takes the basic expression N(Bboek) and makes it N’(Bboek)
singular or N’(Bboeken) plural, has been applied. It copies all the features of N,
and also sets the number feature (sing/plur).

• Applying rules:

30To look up the words in the dictionary, the Japanese characters are used.
31Information about verb forms should be present as well.
32I didn’t write any rules to get tense.

89

Japanese rules Dutch rules
Apply rule 7.2.7 RPNtoNPJP: Apply rule 7.2.7 RPNtoNPNL:
Input: PN(BAnna) Input: PN(BAnna)
Output: NP(PN(BAnna)) Output: NP(PN(BAnna))

- NP.number = sing
- NP.sex = female - NP.sex = female
- NP.hon = False - NP.hon = False
- NP.divisible = False - NP.divisible = False
- NP.animate = True - NP.animate = True

- NP.countmass = count
- NP.gender = utrum

Apply rule 7.2.1 RBasicNPJPgeneric=False: Apply rule 7.2.1 RindefsingcountNLgeneric=False:
Input: N’(Bhon) Input: N’(Bboek)
Output: NP(N’(Bhon)) Output: NP(ART(een) N’(Bboek))
- NP.sex = undefined - NP.sex = undefined
- NP.divisible = False - NP.divisible = False
- NP.generic = False - NP.generic = False
- NP.animate = False - NP.animate = False
- NP.person = 3rd - NP.person = 3rd

- NP.case = undefined
- NP.number = sing
- NP.gender = neutrum
- NP.def = indef
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RdefnsingcountNLgeneric=False:
Input: N’(Bboek)
Output: NP(ART(het) N’(Bboek))
- NP.sex = undefined
- NP.divisible = False
- NP.generic = False
- NP.animate = False
- NP.person = 3rd
- NP.case = undefined
- NP.number = sing
- NP.gender = neutrum
- NP.def = def
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RindefplurcountNLgeneric=False:
Input: N’(Bboeken)
Output: NP(N’(Bboeken))
- NP.sex = undefined
- NP.divisible = True
- NP.generic = False

90

- NP.animate = False
- NP.person = 3rd
- NP.case = undefined
- NP.number = plur
- NP.gender = neutrum
- NP.def = def
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RdefplurcountNLgeneric=False:
Input: N’(Bboeken)
Output: NP(ART(de) N’(Bboeken))
- NP.sex = undefined
- NP.divisible = True
- NP.generic = False
- NP.animate = False
- NP.person = 3rd
- NP.case = undefined
- NP.number = plur
- NP.gender = neutrum
- NP.def = def
- NP.countmass = count
- NP.canBeBare = False

Apply rule 7.2.5 RSentenceJP: Apply rule 7.2.5 RSentenceNL:
Input: Input:
V(Byondeiru), V(Blezen),
NP1(NP(N’(PN(BAnna)))), NP1(NP(N’(PN(BAnna)))),
NP2(NP(N’(Bhon))) NP(ART(een) N’(Bboek)) ∨

NP(ART(het) N’(Bboek)) ∨
NP(N’(Bboeken)) ∨
NP(ART(de) N’(Bboeken))

Output: Output (C8 in the rule):
S(NP1(NP1(N’(PN(BAnna))))-ga S(NP1(NP(N’(PN(BAnna)))
NP2(NP(N’(Bhon)))-wo V(Byondeiru)) V(Bleest) NP2(NP(ART(het))

N’(Bboek)))bonus=1

S(NP1(NP(N’(PN(BAnna)))
V(Bleest)
NP2(NP(N’(Bboeken))))
S(NP1(NP(N’(PN(BAnna)))
V(Bleest)
NP2(NP(ART(de) N’(Bboeken))))
S(NP1(NP(N’(PN(BAnna)))
V(Bleest)
NP2(NP(ART(een) N’(Bboek))))

NP1.case = nom NP1.case = nom
NP2.case = acc NP2.case = acc

V.number = NP1.number

91

V.person = NP1.person

Figure 11: Syntactic derivation trees and the semantic interlingua derivation tree for
‘Anna is reading the book’.

7.4.3 ‘I saw everything.’

The following sentence is from a fiction story by Yoshimoto Banana, 夜と夜の旅人
(Yoru to yoru no tabibito, published in English as “Night and night’s travelers”). I will
use the transcribed Japanese words for better readability.

• Sentence:
私はすべてを見ていた。[104] (watashi wa subete wo miteita).

• Basic expressions from dictionary33:

Japanese basic expressions Dutch basic expressions
Bwatashi (PersPrN): Bik (PersPrN):
- PersPrN.sex = undefined - PersPrN.sex = undefined

- PersPrN.person = 1st
- PersPrN.animate = True - PersPrN.animate = True

- PersPrN.case = undefined

33To look up the words in the dictionary, the Japanese characters are used.

92

- PersPrN.num = sing
- PersPrN.gnd = utrum

Bsubete (PrN): Balles (PrN):
- PrN.sex = undefined - PrN.sex = undefined

- PrN.person = 3rd
- PrN.animate = False - PrN.animate = False

- PrN.case = undefined
- PrN.num = sing
- PrN.def = indef

Bmiru (V)34: Bzien (V)35:
- V.tense = past - V.tense = past
- V.objectDivisible = False - V.objectDivisible = False
- V.subjectDivisible = False - V.subjectDivisible = False
- V.indirectobjectDivisible = False - V.indirectobjectDivisible = False
- V.objectPrefGeneric = False - V.objectPrefGeneric = False
- V.subjectPrefGeneric = False - V.subjectPrefGeneric = False
- V.indirectobjectPrefGeneric = False - V.indirectobjectPrefGeneric = False

- V.number = undefined
- V.person = undefined

Assume there is a rule that takes the basic expression V(Bzien) and makes it past
singular (V(Bzag)) or plural V(Bzagen). It copies all the features of V, and also
sets the number feature (sing/plur).
I assume below that this rule has been applied.

• Applying rules:

Japanese rules Dutch rules
Apply rule 7.2.2 RPersPronounJP: Apply rule 7.2.2 RPersPronounNL:
Input: PersPrN(Bwatashi) Input: PersPrN(Bik)
Output: NP(PersPrN(Bwatashi)) Output: NP(PersPrN(Bik))
- NP.person = 1st - NP.person = 1st &
- NP.sex = undefined - NP.sex = undefined &
- NP.animate = True - NP.animate = True &

- NP.case = undefined &
- NP.num = sing &
- NP.gnd = utrum &
- NP.def = def
- NP.canBeBare = False

Apply rule 7.2.3 RPronounJP: Apply rule 7.2.3 RPronounNL:
Input: PrN(Bsubete) Input: PrN(Balles)
Output: NP(PrN(Bsubete)) Output: NP(PrN(Balles))

34Information about verb forms should be present as well.
35This is the past tense of the verb ‘zien’, but I didn’t write rules to create past tense. The sentence

rule will specify person and number.

93

- NP.sex = undefined - NP.sex = undefined
- NP.divisible = False - NP.divisible = False
- NP.generic = False - NP.generic = False
- NP.person = 3rd - NP.person = 3rd
- NP.animate = False - NP.animate = False

- NP.case = undefined
- NP.num = sing
- NP.def = def
- NP.canBeBare = False

Apply rule 7.2.5 RSentenceJP: Apply rule 7.2.5 RSentenceNL:
Input: Input:
V(Bmiteita), V(Bzag)36,
NP1(NP(PersPrN(Bwatashi))), NP(PersPrN(Bik)),
NP2(NP(PrN(Bsubete))) NP(PrN(Balles))
Output: Output:
S(NP1(NP(PersPrN(Bwatashi)))-ga S(NP1(NP(PersPrN(Bik)))
NP2(NP(PrN(Bsubete)))-wo V(V(Bmiteita))) V(V(Bzag)) NP2(NP(PrN(Balles))))
- NP1.case = nom - NP1.case = nom
- NP2.case = acc - NP2.case = acc

Figure 12: Syntactic derivation trees and the semantic interlingua derivation tree for ‘I
saw everything’.

36As one of the conditions in RSentence is that NP1.num = V.num, ‘zagen’ is not possible anymore.

94

7.4.4 ‘Mama likes cats.’

• Japanese sentence ママは猫が好きだ。 (Mama wa neko ga suki da) and possible
Dutch translations.

• Basic expressions from dictionary37:

Japanese basic expressions Dutch basic expressions
Bmama (PN38) Bmama (PN)
- PN.number = sing - PN.number = sing
- PN.sex = female - PN.sex = female
- PN.hon = False - PN.hon = False
- PN.divisible = False - PN.divisible = False
- PN.animate = True - PN.animate = True
Bneko (N): Bkat (N):
- N.sex = undefined - N.sex = undefined
- N.divisible = False - N.divisible = False
- N.generic = False - N.generic = False
- N.animate = True - N.animate = True
- N.person = 3rd - N.person = 3rd

- N.case = undefined
- N.number = undefined
- N.gender = utrum
- N.def = undefined
- N.countmass = count
- N.canBeBare = False

Bsuki da (V)39: Bhouden van (V):
- V.tense = present40 - V.tense = present
- V.objectDivisible = False - V.objectDivisible = False
- V.subjectDivisible = False - V.subjectDivisible = False
- V.indirectobjectDivisible = False - V.indirectobjectDivisible = False
- V.objectPrefGeneric = True - V.objectPrefGeneric = True
- V.subjectPrefGeneric = False - V.subjectPrefGeneric = False
- V.indirectobjectPrefGeneric = False - V.indirectobjectPrefGeneric = False

The rule 7.2.4 that takes the basic expression N(Bkat) and makes it N’(Bkat) sin-
gular or N’(Bkatten) plural, has been applied. It copies all the features of N, and
also sets the number feature (sing/plur).
Similar for the verb V(Bhouden van). I assume below that these rules have been
applied.

37To look up the words in the dictionary, the Japanese characters are used.
38‘Mama’ can be viewed as a proper noun in both languages, as it’s used in the same way as a name.
39Information about verb forms should be present as well.
40I didn’t write any rules to get tense.

95

• Applying rules:

Japanese rules Dutch rules
Apply rule 7.2.7 RPNtoNPJP: Apply rule 7.2.7 RPNtoNPNL:
Input: PN(Bmama) Input: PN(Bmama)
Output: NP(PN(Bmama)) Output: NP(PN(Bmama))

- NP.number = sing
- NP.sex = female - NP.sex = female
- NP.hon = False - NP.hon = False
- NP.divisible = False - NP.divisible = False
- NP.animate = True - NP.animate = True

- NP.countmass = count
- NP.gender = utrum

Apply rule 7.2.1 RBasicNPJPgeneric=False: Apply rule 7.2.1 RindefsingcountNLgeneric=False:
Input: N’(Bneko) Input: N’(Bkat)
Output: NP(N’(Bneko)) Output: NP(ART(een) N’(Bkat))
- NP.sex = undefined - NP.sex = undefined
- NP.divisible = False - NP.divisible = False
- NP.generic = False - NP.generic = False
- NP.animate = True - NP.animate = True
- NP.person = 3rd - NP.person = 3rd

- NP.case = undefined
- NP.number = sing
- NP.gender = neutrum
- NP.def = indef
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RdefusingcountNLgeneric=False:
Input: N’(Bkat)
Output: NP(ART(de) N’(Bkat))
- NP.sex = undefined
- NP.divisible = False
- NP.generic = False
- NP.animate = True
- NP.person = 3rd
- NP.case = undefined
- NP.number = sing
- NP.gender = utrum
- NP.def = def
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RindefplurcountNLgeneric=False:
Input: N’(Bkatten)
Output: NP(N’(Bkatten))
- NP.sex = undefined
- NP.divisible = True

96

- NP.generic = False
- NP.animate = True
- NP.person = 3rd
- NP.case = undefined
- NP.number = plur
- NP.gender = utrum
- NP.def = def
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RdefplurcountNLgeneric=False:
Input: N’(Bkatten)
Output: NP(ART(de) N’(Bkatten))
- NP.sex = undefined
- NP.divisible = True
- NP.generic = False
- NP.animate = True
- NP.person = 3rd
- NP.case = undefined
- NP.number = plur
- NP.gender = utrum
- NP.def = def
- NP.countmass = count
- NP.canBeBare = False

Apply rule 7.2.1 RBasicNPJPgeneric=True: Apply rule 7.2.1 RindefsingcountNLgeneric=True:
Input: N’(Bneko) Input: N’(Bkat)
Output: NP(N’(Bneko)) Output: NP(ART(een) N’(Bkat))
- NP.sex = undefined - NP.sex = undefined
- NP.divisible = False - NP.divisible = False
- NP.generic = True - NP.generic = True
- NP.animate = True - NP.animate = True
- NP.person = 3rd - NP.person = 3rd

- NP.case = undefined
- NP.number = sing
- NP.gender = neutrum
- NP.def = indef
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RdefusingcountNLgeneric=True:
Input: N’(Bkat)
Output: NP(ART(de) N’(Bkat))
- NP.sex = undefined
- NP.divisible = False
- NP.generic = True
- NP.animate = True
- NP.person = 3rd
- NP.case = undefined

97

- NP.number = sing
- NP.gender = utrum
- NP.def = def
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RindefplurcountNLgeneric=True:
Input: N’(Bkatten)
Output: NP(N’(Bkatten))
- NP.sex = undefined
- NP.divisible = True
- NP.generic = True
- NP.animate = True
- NP.person = 3rd
- NP.case = undefined
- NP.number = plur
- NP.gender = utrum
- NP.def = def
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RdefplurcountNLgeneric=True:
Input: N’(Bkatten)
Output: NP(ART(de) N’(Bkatten))
- NP.sex = undefined
- NP.divisible = True
- NP.generic = True
- NP.animate = True
- NP.person = 3rd
- NP.case = undefined
- NP.number = plur
- NP.gender = utrum
- NP.def = def
- NP.countmass = count
- NP.canBeBare = False

Apply rule 7.2.5 RSentenceJP: Apply rule 7.2.5 RSentenceNL:
Input: Input:
NP(PN(Bmama)), NP1(PN(Bmama))
NP(N’(Bneko)), NP2(N’(Bkatten))
V(Bsuki da) V(Bhouden van)
Output: Output (C22bonus+=1)
S(NP(PN(Bmama))-wa S(NP1(PN(Bmama))
NP(N’(Bneko))-ga V(Bhoudt van)
V(Bsuki da)) NP2(N’(Bkatten))
Output: Output (C10a)
S(NP(PN(Bmama))-wa S(NP1(PN(Bmama))
NP(N’(Bneko))-ga V(Bhoudt van)
V(Bsuki da)) NP2(N’(de Bkat))

98

Output: Output (C10b)
S(NP(PN(Bmama))-wa S(NP1(PN(Bmama))
NP(N’(Bneko))-ga V(Bhoudt van)
V(Bsuki da)) NP2(N’(de Bkatten))

Figure 13: Syntactic derivation trees and the semantic interlingua derivation tree for
‘Mama likes cats’.

7.4.5 ‘Elephants eat leaves.’

• Japanese sentence 像は葉っぱと言うものを食べる。 (zou-wa happa-to-iu-mono-
wo taberu) and possible Dutch translations. This is one of the example sentences
for C20 in 7.2.5.

• Basic expressions from dictionary41:

Japanese basic expressions Dutch basic expressions
Bzou (N): Bolifant (N):
- N.sex = undefined - N.sex = undefined
- N.divisible = False - N.divisible = False
- N.generic = False - N.generic = False
- N.animate = True - N.animate = True
- N.person = 3rd - N.person = 3rd

- N.case = undefined
- N.number = undefined

41To look up the words in the dictionary, the Japanese characters are used.

99

- N.gender = utrum
- N.def = undefined
- N.countmass = count
- N.canBeBare = False

Bhappa (N): Bblad (N):
- N.sex = undefined - N.sex = undefined
- N.divisible = False - N.divisible = False
- N.generic = False - N.generic = False
- N.animate = False - N.animate = False
- N.person = 3rd - N.person = 3rd

- N.case = undefined
- N.number = undefined
- N.gender = neutrum
- N.def = undefined
- N.countmass = count
- N.canBeBare = False

Btaberu (V)42: Beten (V):
- V.tense = present43 - V.tense = present
- V.objectDivisible = False - V.objectDivisible = False
- V.subjectDivisible = False - V.subjectDivisible = False
- V.indirectobjectDivisible = False - V.indirectobjectDivisible = False
- V.objectPrefGeneric = True - V.objectPrefGeneric = True
- V.subjectPrefGeneric = False - V.subjectPrefGeneric = False
- V.indirectobjectPrefGeneric = False - V.indirectobjectPrefGeneric = False

The rule 7.2.4 that takes the basic expression N(Bolifant) and makes it N’(Bolifant)
singular or N’(Bolifanten) plural, has been applied. It copies all the features of N,
and also sets the number feature (sing/plur).
Similar for the noun N(Bblad)) and the verb V(Beten). I assume below that these
rules have been applied.

• Applying rules:

Japanese rules Dutch rules
Apply rule 7.2.1 RBasicNPJPgeneric=False: Apply rule 7.2.1 RindefsingcountNLgeneric=False:
Input: N’(Bzou) Input: N’(Bolifant)
Output: NP(N’(Bzou)) Output: NP(ART(een) N’(Bolifant))
- NP.sex = undefined - NP.sex = undefined
- NP.divisible = False - NP.divisible = False
- NP.generic = False - NP.generic = False
- NP.animate = True - NP.animate = True
- NP.person = 3rd - NP.person = 3rd

- NP.case = undefined

42Information about verb forms should be present as well.
43I didn’t write any rules to get tense.

100

- NP.number = sing
- NP.gender = neutrum
- NP.def = indef
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RdefusingcountNLgeneric=False:
Input: N’(Bolifant)
Output: NP(ART(de) N’(Bolifant))
- NP.sex = undefined
- NP.divisible = False
- NP.generic = False
- NP.animate = True
- NP.person = 3rd
- NP.case = undefined
- NP.number = sing
- NP.gender = utrum
- NP.def = def
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RindefplurcountNLgeneric=False:
Input: N’(Bolifanten)
Output: NP(N’(Bolifanten))
- NP.sex = undefined
- NP.divisible = True
- NP.generic = False
- NP.animate = True
- NP.person = 3rd
- NP.case = undefined
- NP.number = plur
- NP.gender = utrum
- NP.def = def
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RdefplurcountNLgeneric=False:
Input: N’(Bolifanten)
Output: NP(ART(de) N’(Bolifanten))
- NP.sex = undefined
- NP.divisible = True
- NP.generic = False
- NP.animate = True
- NP.person = 3rd
- NP.case = undefined
- NP.number = plur
- NP.gender = utrum
- NP.def = def
- NP.countmass = count

101

- NP.canBeBare = False
Apply rule 7.2.1 RBasicNPJPgeneric=True: Apply rule 7.2.1 RindefsingcountNLgeneric=True:
Input: N’(Bzou) Input: N’(Bolifant)
Output: NP(N’(Bzou)) Output: NP(ART(een) N’(Bolifant))
- NP.sex = undefined - NP.sex = undefined
- NP.divisible = False - NP.divisible = False
- NP.generic = True - NP.generic = True
- NP.animate = True - NP.animate = True
- NP.person = 3rd - NP.person = 3rd

- NP.case = undefined
- NP.number = sing
- NP.gender = neutrum
- NP.def = indef
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RdefusingcountNLgeneric=True:
Input: N’(Bolifant)
Output: NP(ART(de) N’(Bolifant))
- NP.sex = undefined
- NP.divisible = False
- NP.generic = True
- NP.animate = True
- NP.person = 3rd
- NP.case = undefined
- NP.number = sing
- NP.gender = utrum
- NP.def = def
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RindefplurcountNLgeneric=True:
Input: N’(Bolifanten)
Output: NP(N’(Bolifanten))
- NP.sex = undefined
- NP.divisible = True
- NP.generic = True
- NP.animate = True
- NP.person = 3rd
- NP.case = undefined
- NP.number = plur
- NP.gender = utrum
- NP.def = def
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RdefplurcountNLgeneric=True:
Input: N’(Bolifanten)
Output: NP(ART(de) N’(Bolifanten))

102

- NP.sex = undefined
- NP.divisible = True
- NP.generic = True
- NP.animate = True
- NP.person = 3rd
- NP.case = undefined
- NP.number = plur
- NP.gender = utrum
- NP.def = def
- NP.countmass = count
- NP.canBeBare = False

Apply rule 7.2.1 RBasicNPJPgeneric=False: Apply rule 7.2.1 RindefsingcountNLgeneric=False:
Input: N’(Bhappa) Input: N’(Bblad)
Output: NP(N’(Bhappa)) Output: NP(ART(een) N’(Bblad))
- NP.sex = undefined - NP.sex = undefined
- NP.divisible = False - NP.divisible = False
- NP.generic = False - NP.generic = False
- NP.animate = False - NP.animate = False
- NP.person = 3rd - NP.person = 3rd

- NP.case = undefined
- NP.number = sing
- NP.gender = neutrum
- NP.def = indef
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RdefnsingcountNLgeneric=False:
Input: N’(Bblad)
Output: NP(ART(het) N’(Bblad))
- NP.sex = undefined
- NP.divisible = False
- NP.generic = False
- NP.animate = False
- NP.person = 3rd
- NP.case = undefined
- NP.number = sing
- NP.gender = neutrum
- NP.def = def
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RindefplurcountNLgeneric=False:
Input: N’(Bbladeren)
Output: NP(N’(Bbladeren))
- NP.sex = undefined
- NP.divisible = True
- NP.generic = False
- NP.animate = False

103

- NP.person = 3rd
- NP.case = undefined
- NP.number = plur
- NP.gender = neutrum
- NP.def = def
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RdefplurcountNLgeneric=False:
Input: N’(Bbladeren)
Output: NP(ART(de) N’(Bbladeren))
- NP.sex = undefined
- NP.divisible = True
- NP.generic = False
- NP.animate = False
- NP.person = 3rd
- NP.case = undefined
- NP.number = plur
- NP.gender = neutrum
- NP.def = def
- NP.countmass = count
- NP.canBeBare = False

Apply rule 7.2.1 RBasicNPJPgeneric=True: Apply rule 7.2.1 RindefsingcountNLgeneric=True:
Input: N’(Bhappa) Input: N’(Bblad)
Output: NP(N’(Bhappa)) Output: NP(ART(een) N’(Bblad))
- NP.sex = undefined - NP.sex = undefined
- NP.divisible = False - NP.divisible = False
- NP.generic = True - NP.generic = True
- NP.animate = False - NP.animate = False
- NP.person = 3rd - NP.person = 3rd

- NP.case = undefined
- NP.number = sing
- NP.gender = neutrum
- NP.def = indef
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RdefnsingcountNLgeneric=True:
Input: N’(Bblad)
Output: NP(ART(het) N’(Bblad))
- NP.sex = undefined
- NP.divisible = False
- NP.generic = True
- NP.animate = False
- NP.person = 3rd
- NP.case = undefined
- NP.number = sing
- NP.gender = neutrum

104

- NP.def = def
- NP.countmass = count
- NP.canBeBare = False

Apply rule 7.2.6 RGenericNPtoiuJPgeneric=True Apply rule 7.2.1 RindefplurcountNLgeneric=True:
Input: N’(Bhappa) Input: N’(Bbladeren)
Output: NP(N’(Bhappa)-to-iu-mono) Output: NP(N’(Bbladeren))

- NP.sex = undefined
- NP.divisible = True
- NP.generic = True
- NP.animate = False
- NP.person = 3rd
- NP.case = undefined
- NP.number = plur
- NP.gender = neutrum
- NP.def = def
- NP.countmass = count
- NP.canBeBare = False
Apply rule 7.2.1 RdefplurcountNLgeneric=True:
Input: N’(Bbladeren)
Output: NP(ART(de) N’(Bbladeren))
- NP.sex = undefined
- NP.divisible = True
- NP.generic = True
- NP.animate = False
- NP.person = 3rd
- NP.case = undefined
- NP.number = plur
- NP.gender = neutrum
- NP.def = def
- NP.countmass = count
- NP.canBeBare = False

Apply rule 7.2.5 RSentenceJP: Apply rule 7.2.5 RSentenceNL:
Input: Input:
NP(N’(Bzou)), NP(ART(een) N’(Bolifant))
NP(N’(Bzou)), NP(ART(de) N’(Bolifant))C8generic=F :bonus+=1

NP(N’(Bzou)), NP(N’(Bolifanten))C16generic=T :bonus+=1

NP(N’(Bzou)), NP(ART(de) N’(Bolifanten))
NP(N’(Bhappa)), NP(ART(een) N’(Bblad))C9generic=F :bonus+=1

NP(N’(Bhappa)), NP(ART(het) N’(Bblad))
NP(N’(Bhappa)), NP(N’(Bbladeren))C22ageneric=T :bonus+=1

NP(N’(Bhappa)), NP(ART(de) N’(Bbladeren))C20ageneric=T :bonus+=1

NP(N’(Bhappa)-to-iu-mono) NP(N’(Bbladeren))C20a+C22ageneric=T :bonus+=2

V(Btaberu) V(Beten)
Output: Output (bonus = 3):
S(NP1(NP(N’(Bzou)))-ga S(NP1(NP(ART(de) N’(Bolifant)))
NP2(NP(N’(Bhappa)-to-iu-mono))-wo V(Beten)

105

V(Btaberu)) NP2(NP(N’(Bbladeren))
De olifant eet bladeren.

Output: Output (bonus = 3):
S(NP1(NP(N’(Bzou)))-ga S(NP1(NP(N’(Bolifanten)))
NP2(NP(N’(Bhappa)-to-iu-mono))-wo V(Beten)
V(Btaberu)) NP2(NP(N’(Bbladeren))

Olifanten eten bladeren
There are other derivations with less
bonus points, which get ranked lower.

Figure 14: Syntactic derivation trees and the semantic interlingua derivation tree for
‘Elephants eat leaves’. Only the two derivations with the highest bonus (3) are included.

7.5 Evaluation

Evaluating the rules in a working system requires a working system with an imple-
mented lexicon/dictionary and implemented rule set, for both languages. It requires the
dictionary to be set up in a structure that includes features and values. A reference
corpus (a corpus containing real texts) is then necessary for testing. However, the rules
above only describe a part of the phenomena that appear in a real sentence. So, the test
suite for these rules should focus on the described phenomena.

106

In section 4.3.1, I showed an example from JMdict. There isn’t any existing Japanese-
Dutch dictionary to use, as the Dutch translations in JMdict are very minimal and of a
non-useful format. However, XML is useful for a formal representation of the lexicon, as
it has a tree structure (useful for adding features to a word) and the option to add extra
information to the tags (like the language of certain information). Another markup lan-
guage based on XML could also be used, for example LMF (Lexical Markup Framework)
or TEI (Text Encoding Initiative).

When the input is an existing sentence, there should also be a parser which divides the
sentence into separate words, which can be checked in the dictionary for part-of-speech.
However, existing sentences contain word conjugations, so these should be recognized as
well 44.

For a human reader, a translated sentence looks better if the conjugations are correct
(for example ‘eats’ instead of just ‘eat’), so extra rules to implement conjugations for the
output would also need to be added.

A test suite, a set containing sentences that cover all relevant cases, can be used to
test the translation quality of the system.

As an example, the NTT (Nippon Telegraph and Telephone Corporation) Linguistic
Intelligence Research Group has a machine translation test set online from 1998 [30]. In
this test set, the difficulty (and length) of the sentences increases as the sentence numbers
get higher. One of the test sentences from this set can be seen in 46-47. There are quite
a few sentences which appear multiple times in the set, because of the multiple ways you
can write a word in Japanese. In (46) the kanji-character 釦 for ‘button’ is used, while
in (47) the katakana-characters ボタン are used. In the dictionary entries above, such
differences are listed in the ‘reading elements’ tags.

(46) 01070 彼女は釦を付ける。
She sews on buttons.
——–
She sews on a button.

(47) 01080 彼女はボタンを付ける。
She sews on buttons.
——–
She sews on a button.

However, not all sentences have the singular/plural distinction in their English transla-
tion. For example, ‘私は林檎を食べる。’ only has ‘I eat apples.’ as a translation. This
would be the preferred translation, that would get the highest bonus in a compositional
translation system. However, there are some reasons why this test set cannot be used
as-is. As can be seen in (48), alternative translations are listed in brackets. In some
cases, like (49), there is an alternative translation between brackets with ‘OR’, while the
alternative translation in (48) doesn’t include an ‘OR’. There also are a lot of comments
in Japanese about the alternative translations in (49), of which one is between brackets

44I wrote more on parsing and the dictionary in section 4.3.1.

107

above the line, but written in two separate sentences below the line. So, this test suite is
not formal to be used immediately for testing without any editing.

(48) 09430 彼は口が利けない。
He cannot (is unable to) speak.
——–
He cannot speak.

(49) 24260 彼は人の前に並んだ。
He stood in front of the people (OR, in front of everybody). (彼は人（複数）の前
に立った)
(He lined up in front of a person. He stood in front of a person. 何れもおかしい
い。というのも日本語原文がおかしいのであって、並ぶといえば複数のものが列
をなして立つことをいい、一人がまたは一個の物体が並ぶといわない。)
——–
He lined up in front of a person.
He stood in front of a person.

The example in (50) is of a sentence which can be translated as a fixed expression (the
first translation) or literally (the second translation). These are very different, but fixed
expressions would be in the dictionary in their entirety. If you only have a dictionary
with separate words, you will only be able to get a more literal translation.

(50) 09440 彼女は口を拭った。
She feigned innocence.
She wiped her mouth.

So, while there are useful sentences in this test set, there are still things that require
editing or more sophisticated parsing to prepare it for actual use.

And of course, if you want to use this test set with another language than English, it
has to be edited manually to add that language as well.

8 Conclusion

In this study, I tried to find a way to improve the quality of machine translation with
respect to one specific area: number and definiteness of noun phrases, when translating
between a language that does differentiate between number and definiteness (Dutch) and
a language that doesn’t have these differences in its word forms or phrases (Japanese).
The question I asked in the beginning was: “When do you have to insert a definite,
indefinite or no article and when do you have to choose a singular or plural form for
nouns when translating from Japanese to Dutch in the context of syntax-based machine
translation?”

108

After studying the literature to find out what other people had already written about
this problem, I discovered that no-one has really written about this translation prob-
lem between Dutch and Japanese (only between English and Japanese). As there are
differences between English and Dutch, it is not possible to copy all findings from the
English-Japanese translation literature exactly to Dutch. For this reason I also looked at
the literature on Dutch numbers and determiners.

I approached the question using the theoretical ‘compositional translation’ framework,
based on the Rosetta framework used by Philips in the late 1980s. This is a machine
translation framework in which a set of basic expressions and syntactic rules is specified
for each language. It uses synchronized (isomorphic) grammars to deal with translation.
I made an analysis of the translation problem in the spirit of this translation framework
and described a concrete grammar fragment to show how the approach can be made to
work.

The notation of rules is based on the Rosetta system, but it does differ from the
simplified notation used in the Rosetta book [86], because I needed to use a notation
which made the different conditions and features more clear. Though without examples,
it’s not that clear for a human reader to quickly see what kind of sentences result from a
specific rule.

The main advantage of this framework is that the grammars are reversible, so you don’t
need separate grammars for generation and analysis of both languages (for translating
from one language to another and the other way around). These reversible grammars
create sentences that are each other’s translations. This framework intentionally derives
all possible translations, and a bonus system is used to rank them into a preferred order.

Writing grammar fragments for natural language requires sophisticated grammars, with
powerful operations, and syntactic categories with features to express properties of words
and phrases. To achieve a better translation, attaching features to the words and phrases
is most important, because then you can write/use rules that add and use these features
to decide on number and definiteness of the nouns. When you have a finite amount of
features, each with a finite amount of values, it would theoretically be possible to write a
grammar without using features. However, then you would not have the option to make
generalizations the way you can do when using features, and the grammar rules would
become very complex and impossible for a human to manage, as there will be too many
rules for a human to calculate (it would be possible to calculate for a computer, but to
enter these rules into a computer, human input is necessary).

However, when you have features which could have an infinite amount of values, it is
necessary to use features (you can’t do without them). There is one feature in the system
I described where this is the case: the topicalization rule 7.2.15 which makes use of an
index. This index could have an infinite amount of values. Using such a rule with an
index wouldn’t be possible if you don’t use features.

The rules check for certain settings of the features to decide whether or not they are
applicable. If necessary, features of the resulting output expressions are set as well.

109

When it is possible to make a choice based on grammatical or semantic properties, all
conditions for a specific rule should be met before it can be applied. These restrictions
are intended to prevent ungrammatical combinations from being generated. However, it
is still possible that multiple rules can be applied. Then the output consists of all possible
translations, as the compositional translation system generates all possible output sen-
tences. However, a bonus system is used to order the possible translations by plausibility
and/or preference.

The most important features for deciding on number and definiteness are ‘divisible’
(is the noun divisible, so does it consist of separate entities (+SET) and/or is it a mass
noun?), ‘generic’ (is it used as a generic noun or not?) and ‘countmass’ (is it a count
noun or a mass noun?). The features ‘divisible’ and ‘generic’ are semantic properties,
which have the largest influence, but the compositional translation framework does not
have an explicit semantic component. Because of this, all semantic restrictions have to
be included in the syntax, which makes the syntax a lot more complicated. So, adding
an explicit semantic component for including semantic restrictions on combining certain
phrases, would be more efficient and manageable.

I did look exclusively at single sentences, as the Rosetta system and most other
machine translation systems also work on single sentences. However, a full treatment of
the phenomena requires taking the preceding context into account as well.

To be able to use this system, a dictionary with a rich set of features attached to
the words is required. Setting this up still requires a lot of manual work, as there are no
existing systems for translating between Dutch and Japanese in which I could have tested
these rules. Testing it in the Rosetta framework isn’t possible anymore either, because
the implemented version is not running anymore 45.

To improve the translation quality, you can use syntactical rules. However, to order
the results you get with these rules (as there is often more than one possible output),
you can use statistics (I used a simple ‘bonus’ mechanism in the rules, but this could be
extended to refine the result ordering).

Future work can include building a dictionary and translation program using these
rules, extending them to include other details and part-of-speech classes, and including
information from preceding sentences (context) as well.

45Personal comment from Jan Odijk, who has worked on this system at Philips.

110

References

[1] Namiko Abe. Personal pronouns - Japanese language, June 2013. http://

japanese.about.com/od/Grammar/a/Personal-Pronouns.htm.

[2] Anne Abeillé, Yves Schabes, and Aravind K. Joshi. Using lexicalized tags for
machine translation. In Proceedings of the 13th International Conference on Com-
putational Linguistics (COLING’90, 1990.

[3] Amr Ahmed and Greg Hanneman. Syntax-based statistical machine translation: A
review. Association for Computational Linguistics, 2005.

[4] Erica Asai. Orandago – kanshi, February 2012. http://easai.web.fc2.com/

linguistics/Dutch/537/.

[5] Timothy Baldwin and Francis Bond. Learning the countability of english nouns
from corpus data. In Proceedings of the 41st Annual Meeting of the Association for
Computational Linguistics, pages 463–470, July 2003.

[6] Francis Bond. Translating the untranslatable: A solution to the problem of gener-
ating English determiners. CSLI Publications, Stanford, California, 2005.

[7] Francis Bond and Satoru Ikehara. When and how to disambiguate? countability
in machine translation. In MIDDIM-96 Seminar (the International Seminar on
Multimodal Interactive Disambiguation), Le Col de Porte, France, August 1996.

[8] Francis Bond, Kentaro Ogura, and Satoru Ikehara. Countability and number in
Japanese to English machine translation. In COLING, pages 32–38, 1994.

[9] Francis Bond, Kentaro Ogura, and Satoru Ikehara. Classifiers in Japanese-to-
English machine translation. In COLING, pages 125–130, 1996.

[10] Francis Bond, Kentaro Ogura, and Tsukasa Kawaoka. Noun phrase reference in
Japanese-to-English machine translation. In Proceedings of the Sixth International
Conference on Theoretical and Methodological issues in machine translation, pages
1–14, 1995.

[11] Jim Breen. The JMdict project, July 2013. http://www.csse.monash.edu.au/

~jwb/jmdict.html.

[12] Jim Breen. Jmdict.gz - the full JMdict file, including English, German, French,
Russian and Dutch glosses, July 2013. http://ftp.monash.edu.au/pub/nihongo/
JMdict.gz.

[13] Jaime Carbonell, Elaine Rich, David Johnson, Masaru Tomita, Muriel Vasconcellos,
and Yorick Wilks. JTEC panel report on machine translation in Japan, January
1992.

[14] E. Carrera and H. Flake. Automated structural classification of mal-
ware. http://www.sourceconference.com/publications/bos08pubs/

carrera-AutomatedStructuralMalwareClassification.pdf.

111

http://japanese.about.com/od/Grammar/a/Personal-Pronouns.htm
http://japanese.about.com/od/Grammar/a/Personal-Pronouns.htm
http://easai.web.fc2.com/linguistics/Dutch/537/
http://easai.web.fc2.com/linguistics/Dutch/537/
http://www.csse.monash.edu.au/~jwb/jmdict.html
http://www.csse.monash.edu.au/~jwb/jmdict.html
http://ftp.monash.edu.au/pub/nihongo/JMdict.gz
http://ftp.monash.edu.au/pub/nihongo/JMdict.gz
http://www.sourceconference.com/publications/bos08pubs/carrera-AutomatedStructuralMalwareClassification.pdf
http://www.sourceconference.com/publications/bos08pubs/carrera-AutomatedStructuralMalwareClassification.pdf

[15] Paisarn Charoenpornsawat, Virach Sornlertlamvanich, and Thatsanee Charoen-
porn. Improving translation quality of rule-based machine translation. In Pro-
ceedings of the 2002 COLING workshop on Machine translation in Asia - Volume
16, COLING-MTIA ’02, pages 1–6, Stroudsburg, PA, USA, 2002. Association for
Computational Linguistics.

[16] David Chiang. An introduction to synchronous grammars, June 2006.

[17] Pinker/Chomsky Q&A from MIT150 Panel: The Golden Age - A look at the
original roots of artificial intelligence, cognitive science, and neuroscience, 2011.
http://languagelog.ldc.upenn.edu/myl/PinkerChomskyMIT.html.

[18] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, Cambridge, Massachusetts, USA, 2nd
edition, 2001.

[19] Steve DeNeefe and Kevin Knight. Synchronous tree adjoining machine translation.
In Proceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing, pages 727–736, Singapore, August 2009. ACL and AFNLP.

[20] Bonnie J. Dorr, Eduard Hovy, and Lori Levin. Machine translation: Interlingual
methods. In Keith Brown, editor, Encyclopedia of Language and Linguistics 2nd
edition, pages 383–394. Elsevier Science, 2004.

[21] Pamela Downing. The anaphoric use of classifiers in japanese. In Colette G. Craig,
editor, Noun Classes and Categorization: Proceedings of a symposium on categor-
ization and noun classification, Eugene, Oregon, pages 345–376. John Benjamins
Publishing Company, 1986.

[22] Janet Dean Fodor. Comprehending sentence structure. In D.N. Osherson, editor,
An Invitation to Cognitive Science: Language, chapter 8, pages 209–246. MIT Press,
Cambridge, MA, USA, 1995.

[23] Janet Dean Fodor and Atsu Inoue. Information-paced parsing of japanese. In
Reiko Mazuka and Noriko Nagai, editors, Japanese Sentence Processing, chapter 2.
Lawrence Erlbaum Associates, Inc., Publishers, Hillsdale, New Jersey, USA, 1995.

[24] Victoria Fromkin, Robert Rodman, and Nina Hyams. An introduction to language.
Wadsworth, Cengage Learning, Boston, MA, USA, 9th edition, 2011.

[25] Michel Galley, Mark Hopkins, Kevin Knight, and Daniel Marcu. What’s in a trans-
lation rule? In Proceedings of the Joint Conference on Human Language Technolo-
gies and the Annual Meeting of the North American Chapter of the Association of
Computational Linguistics (HLT-NAACL), 2004.

[26] Ulrich Germann. Syntax-aware phrase-based statistical machine translation: sys-
tem description. In Proceedings of the 7th workshop on statistical machine transla-
tion, pages 292–297, Montréal, Canada, June 2012. Association for Computational
Linguistics. http://statmt.org/wmt12/pdf/WMT35.pdf.

112

http://languagelog.ldc.upenn.edu/myl/PinkerChomskyMIT.html
http://statmt.org/wmt12/pdf/WMT35.pdf

[27] Google Translate. http://translate.google.com/.

[28] Inside Google Translate, 2013. http://translate.google.com/about/.

[29] Jonathan Graehl and Kevin Knight. Training tree transducers. In HLT-NAACL,
pages 105–112, Boston, Massachusetts, May 2004.

[30] NTT Linguistic Intelligence Research Group. Machine translation test set (ver-
sion 2), September 1998. http://www.kecl.ntt.co.jp/icl/lirg/resources/

mt-test-set-1.txt.

[31] Takao Gunji and Kôiti Hasida. Measurement and quantification. In Takao Gunji
and Kôiti Hasida, editors, Topics in Constraint-Based Grammar of Japanese, Stud-
ies in Linguistics and Philosophy, chapter 3, pages 39–79. Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands, 1998.

[32] Michael Hammond. Introduction to the mathematics of language, April 2006. http:
//dingo.sbs.arizona.edu/~hammond/ling178-sp06/.

[33] Yasunari Harada. On the distinction between complement and adjunct in japanese.
In The sixth Japanese-Korean joint conference on formal linguistics, pages 35–48,
1991.

[34] Bryant Huang and Kevin Knight. Relabeling syntax trees to improve syntax-based
machine translation quality. In Proceedings of the Human Language Technology
Conference of the North American Chapter of the ACL, pages 240–247, New York,
USA, June 2006. Association for Computational Linguistics.

[35] John Hutchins. Machine translation: History. In Keith Brown, editor, Encyclopedia
of Language and Linguistics 2nd edition, pages 375–383. Elsevier Science, 2004.

[36] W. John Hutchins and Harold L. Somers. An introduction to machine trans-
lation. Academic Press, London, UK, 1992. http://www.hutchinsweb.me.uk/

IntroMT-TOC.htm.

[37] Johan Jeuring and Doaitse Swierstra. Languages and compilers (talen en compilers),
November 2011.

[38] Stig Johansson and Knut Hofland. The tagged LOB corpus: Description and ana-
lyses. In Willem Meijs, editor, Corpus Linguistics and Beyond: Proceedings of the
Seventh International Conference on English Language Research on Computerized
Corpora, volume 59, Amsterdam, The Netherlands, 1987. Editions Rodopi B.V.

[39] Aravind K. Joshi and Yves Schabes. Tree-adjoining grammars. In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages, volume 3, pages 69–123.
Springer-Verlag, New York, NY, USA, 1997.

[40] Hiroyuki Kaji. An efficient execution method for rule-based machine translation.
In Proceedings of the 12th COLING, pages 824–829, Budapest, Hungary, 1988.
http://aclweb.org/anthology//C/C88/C88-2167.pdf.

113

http://translate.google.com/
http://translate.google.com/about/
http://www.kecl.ntt.co.jp/icl/lirg/resources/mt-test-set-1.txt
http://www.kecl.ntt.co.jp/icl/lirg/resources/mt-test-set-1.txt
http://dingo.sbs.arizona.edu/~hammond/ling178-sp06/
http://dingo.sbs.arizona.edu/~hammond/ling178-sp06/
http://www.hutchinsweb.me.uk/IntroMT-TOC.htm
http://www.hutchinsweb.me.uk/IntroMT-TOC.htm
http://aclweb.org/anthology//C/C88/C88-2167.pdf

[41] Yuki Kamide. Incrementality in japanese sentence processing. In Mineharu Na-
kayama, Reiko Mazuka, Yasuhiro Shirai, and Ping Li, editors, The Handbook of
East Asian Psycholinguistics, volume II: Japanese, chapter 33, pages 249–256. Cam-
bridge University Press, 2006.

[42] E. Karim, A. Walenstein, A. Lakhotia, and L. Parida. Malware phylogeny
generation using permutations of code. Journal in Computer Virology, 1(1-
2):13–23, November 2005. http://www.cacs.louisiana.edu/~walenste/pubs/

2005-jicv-karim-walenstein-lakhotia-parida.pdf.

[43] M. Khalilov and J.A.R. Fonollosa. N-gram-based statistical machine translation
versus syntax augmented machine translation: comparison and system combina-
tion. In Proceedings of the 12th Conference of the European Chapter of the ACL,
pages 424–432, Athens, Greece, March-April 2009. Association for Computational
Linguistics. http://aclweb.org/anthology-new/E/E09/E09-1049.pdf.

[44] Kevin Knight and Ishwar Chander. Automated postediting of documents. In Pro-
ceedings of the 12th National Conference on Artificial Intelligence: AAAI-94, pages
779–784, Seattle, USA, 1994.

[45] Kevin Knight and Jonathan Graehl. An overview of probabilistic tree transducers
for natural language processing. In Proceedings of the Sixth International Con-
ference on Intelligent Text Processing and Computational Linguistics (CICLing),
Lecture notes in computer science. Springer Verlag, 2005.

[46] P. Koehn. What is a better translation? reflections on six years of running eval-
uation campaigns. http://homepages.inf.ed.ac.uk/pkoehn/publications/

tralogy11.pdf.

[47] Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical phrase-based trans-
lation. In Proceedings of the 2003 Conference of the North American Chapter of
the Association for Computational Linguistics on Human Language Technology -
Volume 1, NAACL ’03, pages 48–54, Stroudsburg, PA, USA, 2003. Association for
Computational Linguistics.

[48] H. Koiso. On classifiers. Master’s thesis, Department of Literature, Chiba Univer-
sity, 1994.

[49] J.G. Kooij. Aspekten van woordvolgorde in het Nederlands. Publikaties van de
Vakgroep Nederlandse Taal- en Letterkunde, Leiden, The Netherlands, 1978. http:
//www.dbnl.org/tekst/kooi003aspe01_01/kooi003aspe01_01_0005.php.

[50] Jan Koster. The word orders of english and dutch: Collective vs. individual check-
ing. Groninger Arbeiten zur germanistischen Linguistik, 43:1–42, 1999.

[51] D. Lin, K. Church, H. Ji, S. Sekine, D. Yarowsky, S. Bergsma, K. Patil, E. Pitler,
R. Lathbury, V. Rao, K. Dalwani, and S. Narsale. New tools for web-scale n-grams.
http://nlp.cs.nyu.edu/publication/papers/heng-ngram.pdf.

114

http://www.cacs.louisiana.edu/~walenste/pubs/2005-jicv-karim-walenstein-lakhotia-parida.pdf
http://www.cacs.louisiana.edu/~walenste/pubs/2005-jicv-karim-walenstein-lakhotia-parida.pdf
http://aclweb.org/anthology-new/E/E09/E09-1049.pdf
http://homepages.inf.ed.ac.uk/pkoehn/publications/tralogy11.pdf
http://homepages.inf.ed.ac.uk/pkoehn/publications/tralogy11.pdf
http://www.dbnl.org/tekst/kooi003aspe01_01/kooi003aspe01_01_0005.php
http://www.dbnl.org/tekst/kooi003aspe01_01/kooi003aspe01_01_0005.php
http://nlp.cs.nyu.edu/publication/papers/heng-ngram.pdf

[52] Seymour Lipschutz. Schaum’s outline of theory and problems of set theory and
related topics. Schaum’s outline series. McGraw-Hill, 1998.

[53] F. Litmaath. Genus: Het lidwoord in het nederlands, December 2013. http:

//www.inventio.nl/genus/uitleg.html#doc1.

[54] D. Liu and D. Gildea. Syntactic features for evaluation of machine translation.
http://www.cs.rochester.edu/~gildea/pubs/liu-gildea-eval05.pdf.

[55] Ding Liu and Daniel Gildea. Improved tree-to-string transducer for machine trans-
lation. In Proceedings of the third workshop on statistical machine translation, pages
62–69, Columbus, Ohio, USA, June 2008. Association for Computational Linguist-
ics.

[56] Andread Maletti. Why synchronous tree substitution grammars? In Human Lan-
guage Technologies: Conference of the North American Chapter of the Association
of Computational Linguistics – Proceedings of the Conference, pages 876–884, Los
Angeles, California, USA, June 2010. The Association for Computational Linguist-
ics.

[57] Samuel E. Martin. A reference grammar of Japanese. Yale University Press, New
Haven, CT, USA, 1975.

[58] James A. Mason. ASDParser algorithm overview, 1995. http://www.yorku.ca/

jmason/ASDParserOverview.html.

[59] James A. Mason. Augmented syntax diagram grammars, August 1996. http:

//www.yorku.ca/jmason/asdgram.htm.

[60] James A. Mason. ASDParser algorithm details - Part 1: Phrase structure repres-
entation, 2008. http://www.yorku.ca/jmason/ASDParserDetailsPart1.html.

[61] James A. Mason. Augmented syntax diagram (ASD) home page, December 2012.
http://www.yorku.ca/jmason/asdindex.htm.

[62] I. Dan Melamed. Multitext grammars and synchronous parsers. In Proceedings of
the 2003 Conference of the North American Chapter of the Association for Compu-
tational Linguistics on Human Language Technology - Volume 1, NAACL ’03, pages
79–86, Stroudsburg, PA, USA, 2003. Association for Computational Linguistics.

[63] I. Dan Melamed, Giorgio Satta, and Benjamin Wellington. Generalized multi-
text grammars. In Proceedings of the 42nd Annual Meeting on Association for
Computational Linguistics, ACL ’04, Stroudsburg, PA, USA, 2004. Association for
Computational Linguistics.

[64] Michael Meng and Markus Bader. Ungrammaticality detection and garden path
strength: Evidence for serial parsing. Language and Cognitive Processes, 15(6):615–
666, 2000.

[65] Moses - moses/syntaxtutorial, June 2012. http://www.statmt.org/moses/?n=

Moses.SyntaxTutorial.

115

http://www.inventio.nl/genus/uitleg.html#doc1
http://www.inventio.nl/genus/uitleg.html#doc1
http://www.cs.rochester.edu/~gildea/pubs/liu-gildea-eval05.pdf
http://www.yorku.ca/jmason/ASDParserOverview.html
http://www.yorku.ca/jmason/ASDParserOverview.html
http://www.yorku.ca/jmason/asdgram.htm
http://www.yorku.ca/jmason/asdgram.htm
http://www.yorku.ca/jmason/ASDParserDetailsPart1.html
http://www.yorku.ca/jmason/asdindex.htm
http://www.statmt.org/moses/?n=Moses.SyntaxTutorial
http://www.statmt.org/moses/?n=Moses.SyntaxTutorial

[66] Masaki Murata and Makoto Nagao. Determination of referential property and
number of nouns in Japanese sentences for machine translation into English. In In
Proceedings of the 5th TMI, pages 218–225, 1993.

[67] Masato Niimura. A syntactic analysis of copular sentences. Nanzan Linguistics,
Special Issue 3, 1:203–237, 2007.

[68] Fujio Nishida and Shinobu Takamatsu. Japanese-English translation through in-
ternal expressions. In COLING, pages 271–276, 1982.

[69] Peter Norvig. On Chomsky and the two cultures of statistical learning, 2011.
http://norvig.com/chomsky.html.

[70] Erik Nyberg, Teruko Mitamura, and Jaime G. Carbonell. The KANT machine
translation system: From R&D to initial deployment. Research Showcase - Carnegie
Mellon University, Computer Science Department, School of Computer Science,
1997.

[71] Franz Josef Och. Statistical machine translation live,
2006. http://googleresearch.blogspot.nl/2006/04/

statistical-machine-translation-live.html.

[72] Franz Josef Och. Doubling up, 2008. http://googleresearch.blogspot.nl/

2008/09/doubling-up.html.

[73] Kiyoharu Ono. Syntactic behaviour of case and adverbial particles in Japanese.
Australian Journal of Linguistics, 16(1):81–129, 1996.

[74] Albert Oosterhof. The semantics of generics in Dutch and related languages. John
Benjamins Publishing, Amsterdam, The Netherlands, 2008.

[75] Orandago nyuumon - Integral Dutch Course Nihongoban - 2.1 Kanshi. http:

//dutch21.free.fr/ch02.html.

[76] Web rangaku kotohajime, maki no 3, meishi to kanshi. http://www.asahi-net.

or.jp/~mx2y-soy/oranda/kap03.html.

[77] Roxanne Marie Parent. Asd networks.com - augmented Syntax Diagrams - Java
Demos, November 2013. http://www.asdnetworks.com/home/.

[78] Chasen demonstration, December 2013. http://www.edrdg.org/~jwb/

chasendemo.html.

[79] Try juman, December 2013. http://reed.kuee.kyoto-u.ac.jp/nl-resource/

cgi-bin/juman.cgi.

[80] Mecab/unidic demonstration, December 2013. http://www.edrdg.org/~jwb/

mecabdemo.html.

[81] G.K. Pullum. The great Eskimo vocabulary hoax and other irreverent essays on the
study of language. The University of Chicago Press, Chicago/London, 1991.

116

http://norvig.com/chomsky.html
http://googleresearch.blogspot.nl/2006/04/statistical-machine-translation-live.html
http://googleresearch.blogspot.nl/2006/04/statistical-machine-translation-live.html
http://googleresearch.blogspot.nl/2008/09/doubling-up.html
http://googleresearch.blogspot.nl/2008/09/doubling-up.html
http://dutch21.free.fr/ch02.html
http://dutch21.free.fr/ch02.html
http://www.asahi-net.or.jp/~mx2y-soy/oranda/kap03.html
http://www.asahi-net.or.jp/~mx2y-soy/oranda/kap03.html
http://www.asdnetworks.com/home/
http://www.edrdg.org/~jwb/chasendemo.html
http://www.edrdg.org/~jwb/chasendemo.html
http://reed.kuee.kyoto-u.ac.jp/nl-resource/cgi-bin/juman.cgi
http://reed.kuee.kyoto-u.ac.jp/nl-resource/cgi-bin/juman.cgi
http://www.edrdg.org/~jwb/mecabdemo.html
http://www.edrdg.org/~jwb/mecabdemo.html

[82] Majid Razmara. Application of tree transducers in statistical machine translation.
Depth report, Simon Fraser University, Canada, 2011.

[83] Jan Renkema. Genus: Het geslacht van zelfstandige naamwoorden, December 2013.
http://www.inventio.nl/genus/uitleg.html#doc2.

[84] Jan Rijkhoff. The Noun Phrase: A typological study of its form and structure.
Universiteit van Amsterdam, Amsterdam, The Netherlands, 1992.

[85] Jan Rijkhoff. The Noun Phrase. Oxford Studies in Typology and Linguistic Theory.
Oxford University Press, 2002.

[86] M.T. Rosetta. Compositional Translation. Kluwer Academic Publishers, Dordrecht,
The Netherlands, 1994.

[87] Dietmar Rösner. When Mariko talks to Siegfried - experiences from a Japan-
ese/German machine translation project. In COLING, pages 652–654, 1986.

[88] Stuart M. Shieber and Yves Schabes. Generation and synchronous tree-adjoining
grammars. Computational Intelligence, 7(4):220–228, 1992.

[89] Neal Snape, Maŕıa del Pilar Garćıa Mayo, and Ayşe Gürel. Spanish, Turkish, Ja-
panese and Chinese L2 learners’ acquisition of generic reference. In Melissa Bowles,
editor, Proceedings of the 10th Generative Approaches to Second Language Acquis-
ition Conference, Somerville, MA, USA, 2009.

[90] Sangweon Suh. Extracting Generic Statements for the Semantic Web. PhD thesis,
University of Edinburgh, 2006.

[91] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to data mining.
Pearson Education, Inc., Boston, MA, USA, 2006.

[92] Koichi Tateishi. The syntax of ‘subjects’. CSLI Publications, Stanford, California,
1994.

[93] Shingo Tokimoto. Serial sentence processing in japanese. In The Second Inter-
national Conference on Cognitive Science and The 16th Annual Meeting of the
Japanese Cognitive Science Society Joint Conference (ICCS/JCSS99), pages 3–15,
1999.

[94] Sneha Tripathi and Juran Krishna Sarkhel. Approaches to machine translation.
Annals of Library and Information Studies, 57:388–393, December 2010.

[95] Natsuko Tsujimura. An introduction to Japanese linguistics. Blackwell Publishers
Inc., Cambridge, Massachusetts, USA, 1996.

[96] Frank van Eynde. Automatische vertaling. Colloquium Neerlandicum, 11, 1991.

[97] Véronique van Gelderen. Scrambling Unscrambled. Landelijke Onderzoeksgroep
Taalwetenschap: LOT (Netherlands Graduate School of Linguistics), Utrecht, The
Netherlands, 2003.

117

http://www.inventio.nl/genus/uitleg.html#doc2

[98] Onoonosama no eigo/eiyaku - eiwajiten/waeijiten - Weblio jisho, April
2013. http://ejje.weblio.jp/content/%E3%81%8A%E3%81%AE%E3%81%8A%E3%

81%AE%E3%81%95%E3%81%BE.

[99] Wikipedia. Japanese counter words, March 2013. http://en.wikipedia.org/

wiki/Japanese_counter_word.

[100] Place–manner-time (wikipedia), 2012. https://en.wikipedia.org/wiki/Place%

E2%80%93manner%E2%80%93time.

[101] Time–manner–place (wikipedia), 2012. https://en.wikipedia.org/wiki/Time%

E2%80%93manner%E2%80%93place.

[102] Kenji Yamada and Kevin Knight. A syntax-based statistical translation model. In
ACL, pages 523–530, 2001.

[103] Hiroko Yamashita. Structural computation and the role of morphological markings
in the processing of japanese. Language and Speech, 43(4):429–459, 2000.

[104] Banana (吉本ばなな) Yoshimoto. Shirakawayofune (白河夜船). Kadokawa Bunko
(角川文庫), 1992.

[105] Richard Zens, Franz Josef Och, and Hermann Ney. Phrase-based statistical ma-
chine translation. In KI 2002: Advances in Artificial Intelligence, Lecture Notes in
Computer Science Volume 2479, pages 18–32. Springer Verlag, 2002.

[106] Hendrikje Ziemann, Fred Weerman, and Esther Ruigendijk. Nederlands later
geleerd: gebruik van lidwoorden en flexie van bijvoeglijke naamwoorden door Duits-
talige kinderen en volwassenen. Internationale Neerlandistiek, 49(3), October 2011.
http://www.internationaleneerlandistiek.nl/vol49/nr03/a01.

118

http://ejje.weblio.jp/content/%E3%81%8A%E3%81%AE%E3%81%8A%E3%81%AE%E3%81%95%E3%81%BE
http://ejje.weblio.jp/content/%E3%81%8A%E3%81%AE%E3%81%8A%E3%81%AE%E3%81%95%E3%81%BE
http://en.wikipedia.org/wiki/Japanese_counter_word
http://en.wikipedia.org/wiki/Japanese_counter_word
https://en.wikipedia.org/wiki/Place%E2%80%93manner%E2%80%93time
https://en.wikipedia.org/wiki/Place%E2%80%93manner%E2%80%93time
https://en.wikipedia.org/wiki/Time%E2%80%93manner%E2%80%93place
https://en.wikipedia.org/wiki/Time%E2%80%93manner%E2%80%93place
http://www.internationaleneerlandistiek.nl/vol49/nr03/a01

A Rules for deciding which article a Dutch noun gets

As mentioned in section 5, this information can be expected to already be in the
dictionary. However, if a noun is encountered that is not in the dictionary, these rules
can be used.

On Japanese sites to learn Dutch [75, 4, 76], the following rules for articles are listed:

• Use ‘de’ with singular male and female nouns, use ‘het’ with singular neutral nouns.
As the gender is not visible from the noun, learn them by heart.

• When a noun is plural, always use ‘de’.

• All singular diminutive nouns have ‘het’.

• The English indefinite article ‘a(n)’ and the Dutch indefinite article ‘een’ have the
same meaning.

• Use ‘het’ with the following prefixes and suffixes: be-, ge-, ont-, ver-46, -isme, -ment,
-sel, -(t)je (etc.)

• Use ‘de’ with the following suffixes: -de, -te, -heid, -ie, -ij, -ing, -nis, -iteit, -st (etc.)

No rules are listed for when not to use an article.

The following are rules for deciding on the gender of a noun in Dutch (translated
from [83], with extra references listed if I added items from other sources):

• Male words (‘de’):

1. Words with the suffixes -aar, -aard, -er and -erd.
For example: leugenaar, dronkaard, bakker , engerd (except ‘baker’, which is
female as it’s traditionally a female occupation)

2. Verb stems used as nouns.
For example: bloei, dank, groei, schrik, slaap

3. Words indicating male persons and animals.
For example: oom, neef, dief, verpleger, hengst, reu, haan

• Female words (‘de’):

1. Words with the native suffixes
-heid, -nis, -schap: waarheid, kennis, beterschap
-de or -te: liefde, diepte
-ij, -erij, -arij, -enij and -ernij: voogdij, bedriegerij, rijmelarij, artsenij, razernij
-ing or -st following a verb stem: wandeling, winst (but dienst is male).

46It is also possible to have words starting with ‘ver-’ and still need ‘de’, for example in ‘de vergadering’,
so I don’t think it’s correct to include this suffix in this list.

119

2. Words with the foreign suffixes or elements
-ie, -tie, -logie, -sofie, -agogie: familie, politie, biologie, filosofie, demagogie
(but kanarie is male)
-iek, -ica: muziek, logica (but lambiek is male)
-theek, -teit, -iteit: discotheek, puberteit, subtiliteit
-tuur, -suur: natuur, censuur
-ade, -ide, -ode, -ude: tirade, asteröıde, periode, amplitude
-age, -ine, -se: tuigage, discipline, analyse
-sis, -xis, -tis: crisis, syntaxis, bronchitis

3. Words indicating female persons and animals.
For example: tante, nicht, dievegge, verpleegster, merrie, teef, kip

• Words that are both male and female (‘de’):

1. Most object names that originally were exclusively female.
For example: bank, kast, naald, pijp

2. General geographical names and names of heavenly bodies.
For example: stad, rivier, maan, ster

3. Adjectives and past participles used as nouns.
For example: zieke, blinde, betrokkene, gewonde

4. Words that can be used to indicate both males and females.
For example: baby, deugniet, arts, babbelkous

• Neutral words (‘het’):

1. Diminutives.
For example: tientje, bloempje, lammetje

2. Verb stems with the prefixes ‘be-’, ‘ge-’ and ‘ont-’.
For example: beraad, gedoe, ontslag

3. Verbs used as nouns.
For example: het spreken, het voetballen, het gebeuren [53]

4. Most verb stems used as nouns.
For example: het werk, het feest, het cijfer [53]

5. Adjectives used as nouns.
For example: het fijne, het gekke, het donker, het donkere [53]

6. Almost all two-syllable nouns that begin with ‘be-’, ‘ge-’ or ‘ver-’ if the first
syllable is not stressed.
For example: het bezwaar, het bestek, het benul,
het gevaar, het gezin, het gemak,
het verlof, het verband, het vernuft
and NOT de gever, de bezem, de verte [53]

7. Multi-syllable words that start with unstressed ‘ge-’ followed by a verb stem.
For example: het gedonder, het geroddel, het geouwehoer [53]

120

8. Collective nouns that start with unstressed ‘ge-’ and end with unstressed ‘-te’.
For example: het gedierte, het gebergte, het gesteente
and not, for example, geboorte and gelofte [53]

9. The majority of loanwords.
For example: het toilet, het manuscript, het cadeau [53]

10. The names of countries and cities.
For example: Engeland, Brussel,
het Amerika van vroeger [53]

11. The names of languages, metal, colours, directions of the wind.
For example: het Frans, het Papiaments, het Chinees,
het goud, het ijzer, het kwik,
het rood, het pimpelpaars, het lichtblauw,
het oosten, het noordoosten, het zuidwesten [53]

12. Words ending in ‘-isme’, ‘-ment’ and unstressed ‘-sel’ [4, 53].
For example: het egöısme, het kapitalisme, het protestantisme,
het evenement, het sacrament, het cement,
het doopsel, het voedsel, het speeksel (though there are exceptions to the ‘-sel’
rule, for example de wissel)

B Parsing

This part of the appendix is about parsing the input and the notation, as it’s important
to know what information is available to make a translation. For the section on parsing
(B.1), I looked at psycholinguistic experiments to see how humans parse Japanese, fol-
lowed by a description of how a computer can parse this language. The following section
(B.2) describes a syntax diagram notation for the internal structure of NPs, and ends
with a discussion of the problem of scrambling (chapter B.2.5).

B.1 Parsing of Japanese by humans and by machines

Parsing (either by humans or by a computer) is done by reading through a sentence
sequentially and doing something with those strings. In the psycholinguistic literature,
this is called ‘serial parsing’ and the evidence from experiments shows that this is the
parsing strategy humans use [22, 103, 41, 64, 93, 23].

B.1.1 Parsing of Japanese by humans

When humans hear or read a sentence, it is not the case that they perceive the entire
sentence all at once - it becomes available one word at a time (either by hearing the sen-
tence being spoken, or reading the sentence). The human sentence processing mechanism
already starts interpreting the sentence before knowing it entirely: you don’t have to wait
till the end of the sentence before being able to understand the first few words.

121

A question is whether or not the processor builds all possible sentence structures simul-
taneously (parallel processing), or just chooses one possibility and ignores the rest of the
possible sentence structures (serial processing). When a sentence doesn’t fit the expected
pattern, as is the case with ambiguous and garden-path sentences (like the well-known
‘A horse raced past the barn fell’), the processor has to choose another structure (in the
case of the parallel processing mechanism), or backtrack and explore another possible
syntactic structure (in the case of the serial processor).

Tokimoto [93] experimentally explored evidence for and against parallelism in Ja-
panese sentence processing. Because of the results of his experiment, he concluded that
structure building in human sentence processing is serial: “The human sentence processor
does not construct parallel representations unless required by lexical ambiguity.”

Fodor [23] noted that every Japanese sentence is “infinitely ambiguous up to its final
word, and often multiply ambiguous even when complete”, because Japanese is a head-
final language (all important information like verbs, nouns, etc comes at the end), any
argument can be left out of the sentence if it is already clear from the context, and phrases
can be scrambled (see also section B.2.5). They conducted experiments and concluded
that even though Japanese seems like a language full of ambiguities, the parser works in
a way similar to the parser for English. They propose a so-called ‘ranked flagged serial
parsing model’, in which “the processor pursues only one analysis at a time, but at a choice
point posts a flag to note the existence of each alternative. Then if the parse later breaks
down, the processor can go back and select one of these alternatives to pursue” [23]. The
possible alternative sentence structures are ranked by their difficulty: the alternatives
that are most difficult, take longer to compute. So their model is not purely serial, but it
contains a little bit of parallel processing. However, unlike in a standard parallel model,
not all possible sentence structures are completely developed.

Numerous experiments on the human parsing mechanism have shown that the sentence
processor likes “simple but compact structures, which have no more tree branches than are
necessary, and minimal tree-distance (walking up one branch and down another) between
any pair of adjacent words” [22]. This is what the parsing mechanisms bases its guesses on
when it first encounters a sentence. It does make use of grammatical information as soon
as it becomes available, for example case markings. The parser attaches new information
by a principle like Minimal Attachment or Local Association [23], which means that it
builds the simplest possible structure.

Yamashita [103] observed in her experiments that there was a strong preference for a
simplex clause when encountering three different cases in succesion. The sentence in (51)
is a simplex sentence, but (52) contains the same case-markings in the same order in a
sentence with a relative clause.

(51) Mary-ga John-ni ringo-wo ageta
Mary-NOM John-DAT apple-ACC gave
Mary gave an apple to John.

(52) Mary-ga John-ni [ringo-wo tabeta hito-wo] shoukai-shita
Mary-NOM John-DAT [apple-ACC ate person-ACC] introduced
Mary introduced [the person who ate an apple] to John.

122

Kamide [41] described an eye-tracking experiment which also showed that Japanese
was parsed incrementally, so data was processed as soon as it came in. Sentences with a
ga-ni-wo (simplex) structure were preferred in her experiments as well. She noted that
“the Japanese processor can not only process pre-head arguments incrementally, but
can also predict a plausible sub-sequent argument using case-marking information and
real-world knowledge.”

B.1.2 Parsing of Japanese by machine

To parse the Japanese input text, a dictionary is needed. The most complete open-
source Japanese dictionary I’ve been able to find is JMdict [11], of which an example
entry can be seen in section 4.3.1.

When using a serial notation for the language, like railroad diagrams (described in
section B.2), taking the shortest path is similar to the way humans parse a sentence:
incrementally, trying to fit each incoming word into a structure as quickly as possible. A
depth-first search (like Mason uses for his Augmented Syntax Diagrams in section B.2.1)
would be most similar to the way humans parse the input, but a breadth-first search can
be used as well to quickly ‘close’ certain paths in the railroad diagram.

B.2 Railroad diagrams

Railroad diagrams (also called ‘syntax diagrams’) are a way to graphically represent
context-free grammars in Backus-Naur Form (BNF), as this notation is easier to un-
derstand by both humans and automatical parsers. Railroad diagrams are mostly used
to describe the syntax of a programming language, but people have also used them for
English (as ‘Augmented Syntax Diagrams’ [59, 77], see below in section B.2.1. In this
notation only the nodes contain information, not the edges. The way to read these dia-
grams is from left to right, following the arrows. These diagrams are useful, because you
can see all the possible structures of a sentence/phrase at once. It is also shorter than
drawing all possible tree structures separately.

Railroad diagrams can be a useful notation for natural language as well, because it’s
a serial notation: if you have a string of words, you can ‘walk through’ the diagram and
choose the paths that fit your string of words to decide on the structure. It is similar
to the way humans parse linguistic input, as described in section B.1. Even though the
normal railroad diagrams are context-free, natural language isn’t entirely context-free.
So if I want to use these for natural language, I can introduce context by making use
of features (which I also used in the rules described in section 7) and context-nodes.
These context-nodes can contain information about the context of previous sentences,
for example that the subject or topic of the previous sentence was a man. This problem
was also described in section 5.3, but just as in the mini grammar, I did not include the
context here either.

I chose not to draw the tree structure models as used in the Rosetta system, because
it’s easier to express loops in a railroad diagram than to try and draw loops in tree

123

structures. When writing rules, you can show loops by making use of the + or ∗ as used
in regular expressions, where + means ‘1 or more’ and ∗ means ‘0 or more’.

But similar to the Rosetta system, I am making use of features. These are necessary to
make words related to the noun get the same number (singular/plural) so the translation
is consistent. Loops are important to be able to express repetitions of (for example)
adjectives easily. In many languages, it is possible to insert a long string of adjectives:
‘the big blue soft (etc...) cushion’.

B.2.1 Mason’s “Augmented Syntax Diagrams”

When I had started drawing the railroad diagrams for Japanese and Dutch (simple)
noun phrases, I came across someone who had created similar syntax diagrams with
features in 1996 and wrote about it on his website, which was last updated in December
2012 at the time of writing [61]. An example of such a diagram, which he calls an
‘augmented syntax diagram’ (ASD), can be seen in figure 15 for the structure of an NP.
The structures of ADJ and PP would be in a separate diagram.

Figure 16 is an image from his website where he shows the structures a noun phrase
in English can take, and figure 17 shows all possible structures for an English cardinal
number phrase.

He has only created ASDs for English and hasn’t used them for translation. When
given an English phrase, the parser performs a depth-first search to try and find matching
grammar nodes. It uses a depth-first search so it first returns one possible parse and its
semantic type, after which it can backtrack and try to find other possible parses. This
parser could also be modified to a breadth-first search [58]. If the parser reaches a dead
end, it should also be able to backtrack to the most recent point of ambiguity and then
try an alternative route [60]. If a breadth-first search was used, some paths would just
end and others would reach the final node.

The parser can set feature values and semantic values of nodes, like number and case,
in a phrase structure. These features and values belong to objects (nodes are objects; a
feature can be any string and a value can be any Java object, as the author implemented
it in Java). The parser maintains a set of feature-value pairs at the top level of the phrase
structure for the current subphrase (the current search path) being parsed [58].

B.2.2 Analysis of the Proper Noun structure

Proper nouns are tagged as such in the JMdict (n-pr), though at the moment of writing
there are only five proper nouns in this dictionary. However, often-used morphological
parsers like ChaSen/IPADIC [78], Juman [79] and MeCab/Unidic [80] do recognize proper
nouns.

In Japanese, honorific suffixes are often attached to proper names, though it is also
possible to have a proper noun without a honorific in Japanese. In Dutch, it is much
more common to not use any ‘honorifics’, so if there is not a really well-fitting translation,
it’s probably best to leave off the honorific entirely.

124

The most common (honorific) suffixes that can follow proper nouns are listed in
table 18 (singular) and table 3 (plural). A similar table can be found in section 7.2.9
(table 7).

Most of these suffixes fall into the ‘suffix’ (suf) or ‘noun used as a suffix’ (n-suf) POS-
category in JMdict. Only ‘senpai’ is tagged as a noun (‘n’), and ‘sensei’ and ‘kun’ have
both POS-tags. The ‘suffix’ category also contains many more suffixes, but most aren’t
used with pronouns.

Suffix: JMdict POS: Used for: Possible Dutch translation:
A-san suf male and female meneer / mevrouw (for older people

(Mr., Miss, Mrs., Ms.) and/or people the speaker doesn’t
know well; or nothing, for younger
people or people familiar to the
speaker)

A-sama suf male and female hooggeachte meneer /
(very respectful version hooggeachte mevrouw
of ‘-san’)

A-kun suf, n male (mostly) (probably, translating it with
nothing is best)

A-chan suf male and female kleine A
little children (but probably, translating
or grandparents it with nothing is best)

A-bou suf male babies and kleine A
young boys

A-senpai n male and female (probably translating it with
senior colleagues, nothing is best)
students of a higher grade

A-sensei suf, n male and female teachers meneer / mevrouw /
meester / juffrouw

A-hakase n-suf professor (‘Dr.’ or ‘Doctor’ professor A
as a doctorate/PhD title)

Table 18: Suffixes (honorifics) in Japanese and their Dutch translations. ‘A’ is a proper
noun. When encountering these suffixes with a proper noun, the translation of the proper
noun will be singular.

There is a short list of suffixes that indicate plural: ‘-kata’, ‘-gata’, ‘-tachi’, ‘-ra’, and
‘-domo’ (see also table 3). All of these suffixes can follow proper nouns, but a name
cannot (in general) be pluralized. It’s best then to translate the plural suffix then as “en
de anderen” (“and the others”).

The structure of the ‘proper noun’ node in the railroad diagrams in figure 22 and
figure 20 is detailed as a railroad diagram in figure 18.

125

Japanese basic expressions Dutch basic expressions basic meanings
affnum=sing(san) affgnd=m(meneer), affgnd=f (mevrouw),

affgnd=?(∅) Mr/Mrs’
affnum=sing(sensei) affgnd=m(meester), affgnd=f (juffrouw),

affgnd=?(∅) teacher’
affnum=sing(sama) affgnd=m(hooggeachte meneer),

affgnd=f (hooggeachte mevrouw),
affgnd=?(hooggeachte) Esteemed Mr/Mrs’

affnum=sing(chan) affgnd=?(kleine) little’
affgnd=m,num=sing(bou) affgnd=m(kleine) little’
affgnd=m,num=sing(kun) affgnd=m(∅) Mr’
affnum=sing(senpai) affgnd=?(∅) senior’
affnum=sing(hakase) affgnd=?(professor) professor’
affnum=plur(tachi) affnum=plur(en de anderen) and the others’
affnum=plur(kata) affnum=plur(en de anderen) and the others’
affnum=plur(gata) affnum=plur(en de anderen) and the others’
affnum=plur(ra) affnum=plur(en de anderen) and the others’
affnum=plur(domo) affnum=plur(en de anderen) and the others’

Table 19: Honorific affixes in Japanese and their translations into Dutch and English.

B.2.3 Analysis of the simple NP structure

I thought to start with simple NPs of the structure (article-adverb-adjective-noun sin-
gular/plural), but quite soon I found that there are many more possible structures for
an NP without it becoming a complex NP (which is an NP that contains an S, or sen-
tence [49]).

The basic NP diagram for Dutch and Japanese, containing article/adverb/adjective/noun
can be seen in figure 19. A noun is obligatory in a noun phrase (in both languages), but
all other nodes are optional. The features are not shown, but they are attached to the
nodes (which are the squares that contain the information). The reason is that this dia-
gram just shows the syntactic structures. The diagrams can easily be extended to include
more NP-internal structures.

The extended version for Japanese can be seen in figure 20 and 21, and for Dutch in
figure 22 and 23. To translate, each node in one language is mapped to a node in the
other language’s diagram (mappings are indicated by numbers on the images, but it is
not the case that the same number on each graph maps the node to the same number on
the other graph, for example number 5 on the Japanese graph maps to 25 on the Dutch
graph). A dictionary is used to find the translations for the words. These diagrams can
be used for parsing to map the words onto the nodes. Then rules are applied to make
decisions about extra nodes that might need to be added in the other language (like an
article node in Dutch). The rules described in section 7.2 for the features might also be
used for these graphs with a few alterations.

126

In the extended NP-structure diagrams I drew, there are nodes with “van” in Dutch
(figure 22) and “no” (meaning “of”, or genitive “’s”) in Japanese (figure 20). It might
seem that the phrase starting with “van” is a PP, but Kooij [1] argues for Dutch that it’s
part of the NP and not a separate PP. He calls ‘NPs with a PP included’ (the “van” part
is a subtree in the NP-structure) larger NPs. There’s another argument for including
“no” in the NP-structure instead of viewing this genitive particle as part of a PP: PPs
starting with ‘in’ or ‘over’ are translated into Japanese as an NP followed by a particle,
while the translation of ‘of’ is a “no” that appears inside of the NP itself.

B.2.4 Some small examples using my railroad diagram mappings

The question is, what are the results when using these railroad diagrams? Using the
mapping between figures 20-21 and 22-23, I compared a few NPs with Google Trans-
late [27], which uses statistics for translation (and does not use context either). The
comparison can be found in table 20.

B.2.5 Scrambling

We already saw some various word orders within an NP, but those could all be described
using one railroad diagram.

With only a noun phrase and a verb phrase, there is no other possible word order in
a sentence. But if the sentences get longer, putting all possible word orders into rules
also causes an explosion of rules, if you keep to the strict isomorphy rules. When the
isomorphy rules are relaxed a bit, this does not have to be the case: if you allow ‘identity
rules’ which don’t need to get a corresponding rule. These rules take the meaning of the
input and give the same meaning as a result (similar to identity functions47). However,
even though scrambling is possible in Japanese (and to a certain extent in Dutch), there
is still a base word order which can be used for machine translation (though the system
should be able to recognize the different word orders and construct a correct ‘base word
order’ sentence in the target language from it).

The basic word order in Japanese is subject-object-verb, though subjects are optional
and it is possible to change the word order (for emphasis) as the words are case-marked
by using particles. Tsujimura [95] writes that “In formal speech or written language, it
is rare to see sentences with the object-subject word order, and many Japanese speakers
intuitively feel that the subject-object word order is more basic.”

Scrambling in Dutch can only happen in a few cases. The subject normally appears
before the finite verb, as in (53). However, the adpositional phrase can also appear
before the finite verb instead of the subject. In that case, the subject moves to the
position directly following the finite verb, as in (54). The object can also appear in front
of the finite verb, as in (55). In short, every phrase could appear in front of the finite
verb (except for other verbs), but it’s not common to put other phrases than the subject
in front of the verb. Phrases appearing in front of the finite verb can be a topic/given

47An identity function (IA : A → A such that IA(a) = a for every element a ∈ A) [52], so the output
is the same as the input, in short I(x) = x.

127

Japanese sentence Japanese diagram Dutch diagram GoogleTranslate
Japanese to Dutch
(2014/05/16)

赤い本 4 5 35 26 25 Red book
akai hon een rood boek

36 26 25
het rode boek
37 26 25
de rode boeken
26 25
rode boeken

一冊の赤い本 19 16 10 4 5 43 26 25 Red een boek
issatsu no akai hon één rood boek

杏奈の赤い本 13 10 4 5 30 29 26 25 Rode boek van Anna
Anna no akai hon Anna’s rode boek

36 26 25 13 11
het rode boek van Anna
(All other 4 options for
‘akai hon’ in Dutch can
appear here as well, so
instead of 36 you can also
have 35, 37, or only ‘26 25’.)

この赤い本 25 4 5 49 26 25 Het rode boek
kono akai hon dit rode boek

51 26 25
deze rode boeken

たくさんの赤い本 19 10 4 5 40 26 25 Rode veel boeken
takusan no akai hon veel rode boeken

Table 20: Small examples using the railroad diagrams and comparing them with Google-
Translate results.

information (Dat weet ik niet, literally ‘That know I not’ meaning “I don’t know that”),
or the phrase has been put at the front of the sentence for emphasis.

(53) [Jan] leest [op zondag] [het boek].
[Jan] reads [on Sunday] [the book].

(54) [Op zondag] leest [Jan] [het boek].
[On Sunday] reads [Jan] [the book].

(55) [Het boek] leest [Jan] [op zondag].
[The book] reads [Jan] [on Sunday].
‘Jan reads the book on Sunday.’

An object determiner phrase can also appear on both sides of an adverb, as can be
seen in example (56) and (57) from [97] (brackets added by me).

128

(56) Iedereen weet dat Jan [op zondag] [het boek] heeft gelezen.
everyone knows that Jan [on Sunday] [the book] has read

(57) Iedereen weet dat Jan [het boek] [op zondag] heeft gelezen.
everyone knows that Jan [the book] [on Sunday] has read
‘Everyone knows that Jan has read the book on Sunday.’

Adpositional phrases in Japanese have the same order as in German and Dutch (time-
manner-place) [101], but in English this order is exactly the other way around (place-
manner-time) [100]. Examples of this can be seen in (58) and (59). Particles that can be
used for ‘manner’ are ‘de’ and ’ni’, particles that can be used for ‘place’ are ‘e’ and ’ni’.

(58) Adpositional phrases in Japanese/German/Dutch:
time - manner - place
kinou - kuruma de - mise e (Japanese)
gisteren - met de auto - naar de winkel (Dutch)
yesterday - by car - to the store

(59) Adpositional phrases in English:
place-manner-time
to the store - by car - tomorrow

References

[1] Kooij, J.G.: Aspekten van woordvolgorde in het Nederlands, Publikaties van de Vak-
groep Nederlandse Taal- en Letterkunde, Leiden, The Netherlands, 1978. http:

//www.dbnl.org/tekst/kooi003aspe01_01/kooi003aspe01_01_0005.php

129

http://www.dbnl.org/tekst/kooi003aspe01_01/kooi003aspe01_01_0005.php
http://www.dbnl.org/tekst/kooi003aspe01_01/kooi003aspe01_01_0005.php

Figure 5: Example of a part of an English-French STSG, from [16]

130

Figure 6: Example of a part of an English-French STAG transfer lexicon, from [2]

Figure 7: Example of a template (from [55]) used by a tree-to-string transducer, from
English to Chinese.

131

Figure 8: Example of a derivation from French to English using a string-to-tree trans-
ducer. From [25].

Figure 9: Example of the different operations applied by the tree-to-tree transducer
from [102].

132

Figure 15: ‘Augmented syntax diagram’ for a noun simple phrase (bottom) [59]. The
nodes containing a $ symbol are empty nodes.

Figure 16: The structures a noun phrase in English can take, notated as augmented
syntax diagrams [61].

133

Figure 17: The structures a cardinal number phrase in English can take, notated as
augmented syntax diagrams [61].

134

Figure 18: Railroad structure diagram for proper nouns.

Figure 19: Basic structure for a Dutch and Japanese noun phrase.

135

Figure 20: Railroad structure diagram for Japanese noun phrases, first half.

136

Figure 21: Railroad structure diagram for Japanese noun phrases, second half.

137

Figure 22: Railroad structure diagram for Dutch noun phrases, first half.
138

Figure 23: Railroad structure diagram for Dutch noun phrases, second half.
139

	Introduction
	Context and background
	Related literature
	Translation framework
	Rule-based machine translation methods
	Transfer method
	Interlingua model
	Compositional translation framework

	Syntax-based statistical machine translation
	Word-based
	Phrase-based
	Synchronous models
	Tree-string transducers
	String-tree transducers
	Tree-tree transducers

	Translation method choice
	Parsing and dictionary
	Translation method

	Articles
	Nouns in Dutch
	Nouns in Japanese
	Using articles
	Using no articles

	Number
	Forms indicating singularity/plurality in Japanese
	Numeral classifiers
	Set nouns
	Generic NPs

	Translation theory
	Features
	N and NP
	PrN: Pronouns
	PersPrN: Personal Pronouns
	Proper Nouns
	Affixes
	V and VP
	Numerals
	Quantifiers
	P

	Mini grammar
	RBasicNPgeneric=x: Basic NP rules
	RPersPronoun: To make an NP of a Personal Pronoun
	RPronoun: To make an NP of a Pronoun
	RSingPluralN: Make N' singular or plural
	RSentence: Basic sentence rule
	RGenericNPgeneric=x: Creating a generic NP
	RPNtoNP: Proper Nouns
	RHonAff: Adding honorific affixes to Proper Nouns
	RPlurSuff: Adding group-forming suffixes
	RAimedAtNP: `aimed at' + NP
	RIdentSent: Identificational sentences
	RPredSent: Predicational sentences
	RPredSentAdj: Predicational sentences with adjectives
	RAsNP: `as' (toshite)
	RTopic: Making a topic phrase of a ga/ni/wo/de phrase (i)
	RAlso: `also/too' (mo)
	RDirSuff: Directional suffixes
	RNomVerb: Nominalizing verbs
	RNumeral: Numerals
	RQuant: Quantifiers specifying sing/plur

	Overview of the mapping rules
	Example derivations
	`The book is red.'
	`Anna is reading the book.'
	`I saw everything.'
	`Mama likes cats.'
	`Elephants eat leaves.'

	Evaluation

	Conclusion
	Rules for deciding which article a Dutch noun gets
	Parsing
	Parsing of Japanese by humans and by machines
	Parsing of Japanese by humans
	Parsing of Japanese by machine

	Railroad diagrams
	Mason's ``Augmented Syntax Diagrams''
	Analysis of the Proper Noun structure
	Analysis of the simple NP structure
	Some small examples using my railroad diagram mappings
	Scrambling

