
Master Thesis Mathematical Sciences

Optimal Departure Advice

Minimizing the waiting time and spreading the inflow at traffic lights

Supervisors:
Dr. Karma Dajani (UU)
Dr. Sandjai Bhulai (VU)
Dr. Rob van der Mei (CWI)
Frank Ottenhof (TrafficLink)

Author:
Maaike Hoogeboom

October 31, 2014

Abstract

During rush hours large congestions occur at intersections of main roads in residential areas.
TrafficLink is developing an app to provide personal travel advice in order to spread traffic and
decrease waiting times at traffic lights. This thesis focusses on the mathematics of the solution:
the algorithm for the optimal departure advice.

First, a fast method is developed to predict the time-dependent queue length distribution based on
the inflow and outflow at a traffic light. With this distribution the arrival time can be calculated
such that a user is with confidence level 1−α out of the queue before the deadline. Next, the users
are distributed over both available traffic lights and time slots. After having proved the convexity
of the value function of the total waiting time of the app users, the optimal solution can be found
by a local search algorithm. This optimal schedule results in lower mean queue lengths and shorter
waiting times, with users being on time with confidence level 1 − α. The higher the fraction of
users, the better the improvement.

Acknowledgement

First, I would like to thank all colleagues from TrafficLink and Trinité Automation, for the welcom-
ing and educational internship. Especially, I would like to thank my supervisor Frank Ottenhof for
the guidance and the opportunity to present my paper at the ITS European Congress in Helsinki.
During my internship I learned a lot about traffic management and all the processes that lead to
creating innovative software.

My supervisors of the VU University Amsterdam Dr. Sandjai Bhulai and Dr. Rob van der Mei
also deserve by gratitude. I really appreciated the discussions about the research and the practical
difficulties. My supervisor from University Utrecht, Dr. Karma Dajani was always willing to read
my thesis and to give comments on my drafts, for which I thank her a lot.

3

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 Trinité Automation & TrafficLink . 7
1.3 Outline of the problem . 7
1.4 Goals . 9
1.5 Thesis Overview . 9

2 Parameters traffic light 11
2.1 Arrival process . 11
2.2 Departure process . 12
2.3 Scenarios . 14

3 Theoretical formulas 15
3.1 Mean waiting time . 15
3.2 State distribution of an M/M/1 queue . 17

3.2.1 Time-dependent arrival rates . 20

4 Time-dependent queue length distribution 22
4.1 Transition matrix . 22

4.1.1 Distribution with transition matrix . 23
4.2 Approximation queue length distribution . 24

4.2.1 Improvement . 25
4.3 Computational results . 26

5 Departure advice for a single app user 32
5.1 Route and departure advice . 34

6 Schedule multiple app users 35
6.1 Multiple app users with the same deadline . 35
6.2 Multiple app users with different deadlines . 37
6.3 Proof convexity value function . 39

6.3.1 M/M/1/N queue . 46

7 Local Search 48
7.1 Local search results of the four methods . 51
7.2 Mean queue length for different fractions of users . 54

8 Departure advice for multiple app users 56
8.1 Latest arrival intervals . 56
8.2 Distribution over the routes . 57

8.2.1 Algorithm . 57
8.2.2 Length prediction interval Y . 61

8.3 Total Algorithm . 62
8.3.1 Input . 62
8.3.2 Output . 62

4

8.3.3 Algorithm . 63

9 Experimental results 66
9.1 Mean queue length . 66
9.2 One queue . 68
9.3 Two queues . 72

10 Conclusion 75

11 Extensions and Further Research 76
11.1 Flexible users . 76
11.2 Global optimum . 78
11.3 Green times . 79

11.3.1 Advised green times . 79
11.4 Inflow data and initial queue length . 80
11.5 General situation . 80

Appedix A: additional proof convex value function 81

Appendix B: mean queue length of an M/M/1/N queue 85

Appendix C: schedules different methods 86

Appendix D: simulation and travel time prediction models 89
D1. Approach of Trinité . 89
D2. Background . 90
D3. Freeway models . 93
D4. Urban network models . 99
D5. Discussion . 102

Symbols 105

References 106

5

1 Introduction

1.1 Motivation

Suppliers of all types of navigation systems are routing travellers. This often leads to contradictory
routing advices and in many cases even to network instability. Recent research [10] shows that if
15-20% of the users follow the advice of their navigation system, the network becomes unstable.
The system can be improved significantly by coordination of all travellers. A striking phenomenon
that supports this is that during the weekend the same number of vehicles is on the road as during
a working day. Since in the weekend the traffic is more spread over time, there are far less traffic
jams then during a normal working day. This shows that a better utilization of the road network
by spreading the traffic, through personal travel advice, will help.

What is missing is an integrated approach: a proper virtual coordinator who ensures that all
actors, public and private, tune their real time intentions. To realize this interconnected cooper-
ation in which travellers are optimally facilitated, Trinité created a unique collaboration between
Dutch companies, knowledge institutes and the government (the triple helix) which resulted in the
ambition 2016 program. This program frameworks how parties can collaborate by (electronically)
connecting them. The idea is that every physical road authority is coupled to a virtual road au-
thority, the so-called Digital Road Authority (DRA). The Digital Road Authority is a tool that
merges all traffic data from various sources into a smart travel advice. It is a coordinator that
connects public and private parties. All parties that are connected to the Digital Road Authority
can help each other to make their actions more effective.

A DRA is a virtual traffic manager that monitors the performance of the road network, and takes
action when necessary. Digital Road Authorities can be connected to all measurement and control
systems within their network, not only to roadside equipment (like sensors, ramp meters, traffic
regulation installations, cameras, radars, detection loops) but also to in-car systems and applica-
tions. To use Digital Road Authorities, the road network is typically subdivided in regions, each of
which is managed by a dedicated regional Digital Road Authority. These regions, are subdivided
in smaller local sub-regions. In this way, the road network can be seen as a virtual tree of national
networks, regional networks, local networks, and so on.

6

IJburg Pilot
Three pilots will be set up to start and test the Digital Road Authority. In this thesis we will focus
on the IJburg pilot. In this pilot citizens of the neighbourhood IJburg will have a tool available,
which is focussed on their area and optimizes traffic. In this Amsterdam Smart City project the
residents will have the possibility to get a personalized departure advice by means of an app. The
recommended departure time will be based on the occupation of the roads that have to be taken
to arrive at the destination at the desired time. The main focus in this case is the occupancy of
the roads to leave the neighbourhood. To reduce the congestion at these roads the travellers have
to be distributed over the time slots in an efficient and smart manner.

1.2 Trinité Automation & TrafficLink

Trinité Automation1 is the market leader in the field of dynamic traffic management. With the
software of Trinité it is possible to manage and optimize the flow of traffic in a large area fully
automatically. Trinité manages the rush-hour lanes, safety in tunnels, real-time video images of
traffic, and route information on Dynamic Route Information Panels (DRIPs) and many more. All
of this is done in an integral manner, from one interface. Trinité allows systems of different suppliers
to work together, and makes automatic tuning between road managers from different areas possible.

TrafficLink2 is a subsidiary of Trinité which sells a dynamic traffic management system that au-
tomatically controls all kinds of traffic managements tasks. With some basic functionalities an
intersection can easily be controlled, but with advanced functionalities more complex networks like
the area of Amsterdam are managed by TrafficLink.

1.3 Outline of the problem

During rush hours large queues are developing at the traffic lights on the main roads of residential
areas. The traffic lights at these roads do not have the capacity to handle the large demand of
traffic. Giving more green time to the congested road is in most cases no option, since the traffic
light can only handle fixed green times or the successive road has a higher priority.

In this thesis we will give personal departure advice to the residents of a neighbourhood by means
of an app. The main goal of these advices is to spread the inflow at the traffic lights and decrease
the waiting times. We will distinguish two cases:

• A single app user

• Multiple app users

Single app user
It is not possible to spread the inflow and decrease the queue length if there are only a few app
users. The personal departure advice will be to inform the user about the waiting time and ensure
that the user is on time at the destination.

1Information from the Trinité website, www.trinite.nl/trinite.
2Information from the TrafficLink website, www.trafficlink.nl.

7

Before a personal departure advice can be given, a couple of problems have to be solved. First, we
need a reliable travel time forecasting model to calculate the travel time from one point to another.
In the literature there are many different models available to calculate the travel time, a couple of
them are described in Appendix D. However, in this thesis we will focus on the queue at the traffic
light, so the precise calculation of the travel time is omitted.

Figure 1: Graphical overview of the route decision problem over two traffic lights.

The three steps needed to achieve a personal departure advice for a single app user are:

Steps:

1. The time-dependent queue length distribution has to be known to calculate the waiting time.

2. The latest arrival time at the queue such that the app user is, with a pre-set confidence level,
on time out of the queue has to be calculated.

3. A decision must be made about which route the app user has to take, via traffic light
1, 2, . . . , S.

The app distracts the preferred arrival time at the destination from the agenda of the user. Let D1

be the departure time from traffic light 1 such that the app user is on the desired arrival time at the
destination. Since the travel time will be calculated by the to be developed model, this departure
time is assumed to be given. The departure time at traffic light D1 will be used as the deadline to
be out of the queue at the traffic light. In this thesis we want to find the optimal personal arrival
time at the queue for every app user such that they are, with a pre-set confidence level, on time
out of the queue (before D1). This can be calculated by using the time-dependent queue length
distribution. If the latest arrival times for traffic lights 1, 2, . . . , S are known, we can decide which
route the user has to take. This will result in an advice of the departure time and corresponding
route.

Multiple users
When only a few persons use the app, the steps described above are enough to give a reliable
departure advice. When many residents of the neighbourhood will use the app, the app cannot
only give the optimal departure time but the users can also be distributed in a smart way over the
time slots. Most of the methods developed in the single person case can also be used for multiple
users. The components that are given in Figure 2 will all remain, only the algorithm will change.
The additional part of distributing the travellers over the time slots will be most challenging.

8

Figure 2: Components of the model.

IJburg
This thesis is inspired by the traffic problems in the neighbourhood IJburg. IJburg has two bridges
to connect the neighbourhood with the region, these are the only two ways to leave and enter the
neighbourhood. Especially in the morning and evening rush large queues are developing at these
bridges, since the traffic lights at the end of the bridges can not handle the large demand. Hence
IJburg is a special case of our model, since there are only two routes via traffic light 1 or 2.

1.4 Goals

In this thesis the following goals have to be achieved:

• Develop a model to describe the queue length in time.

• Give personal departure advice such that the user is on time at the destination.

• Divide the users over the traffic lights and spread the inflow over time per traffic light.

• Minimize the waiting times of the app users.

• Reduce the queue lengths.

Only the first two goals will be realized when a few citizens use the app. In the multiple users case
all goals will be fulfilled.

1.5 Thesis Overview

First, the dynamics at a traffic light have to be known, therefore the arrival and departure pro-
cesses at a traffic light are discussed in Section 2. In Section 3 different models to calculate the
waiting times, as found in the literature, are presented. These theoretical models do not meet the
requirements for the model. Therefore new methods to calculate the time-dependent queue length
distribution are developed and discussed in Section 4. In Chapter 5 this queue length distribution
is used to calculate the optimal arrival time such that the user is with confidence level 1 − α on
time out of the queue. Based on the arrival times the shortest route to the destination is selected,
hence after this section a personal departure advice can be given to a single user. In Chapter 6 the
case of multiple app users will be introduced. A value function will be used to minimize the total
waiting time of all app users. In this section it is shown that the value function is convex, so a local
search method will find the optimal schedule. The results of the local search algorithm are shown
in Chapter 7. The last problems of ensuring that all users are on time out of the queue and dividing

9

the users over the traffic lights are discussed in Section 8. In the last paragraph of Chapter 8, all
the parts are put together into one large algorithm. The performance of this algorithm is tested
with a simulation and the results are presented and discussed in Section 9. In the next chapter we
draw the final conclusions about the performance of our model. Some extensions of our model and
future research are discussed in the last section.

10

2 Parameters traffic light

Arrival and departure processes are important dynamics in queue length prediction models. In this
section we will focus on these two processes at a traffic light and the parameters belonging to them.

2.1 Arrival process

A traffic light has to adapt to the amount of traffic that arrives at the intersection. The number
of vehicles that pass a point at the road per unit of time is called the flow or intensity. These
intensities on a road are not steady, but fluctuate over time. There are many factors that influence
the intensities, for example weather conditions, events, vacation periods etc. The intensity pattern
also differs per type of road and per day of the week as shown in Figure 3.

Figure 3: Daily pattern of the flow at a local and intercity road for different days of the week.
Source [7].

Figure 4: Daily pattern of the flow at three different urban roads in Toronto. Source [16].

In Figure 4 the daily pattern of the flow is shown for three urban roads in Toronto. The dotted

11

lines indicate the area in which 95% of the observations lies. The detectors measured traffic in one
direction, since the observations have only a morning or evening peak, otherwise we would have
seen both.

Before a design of a traffic light control is made, the intensities at the characteristic periods have to
be known (morning and evening rush, intermediate period etc.). During rush hours the intensities
are increasing and decreasing a lot over time, due to these large fluctuations the intensities have
to be measured every 10 or 15 minutes. If the intensities do not fluctuate that much periods of 30
minutes are enough. In forecasting models the flow λ(t) is dependent on time and changes every
∆T minutes (usually 10 or 15 minutes), this is shown in Figure 5 by the black lines.

Figure 5: Discretization of the arrival flow.

2.2 Departure process

Different types of vehicles have different characteristics that must be taken into account. At de-
parture a truck or bus has a longer acceleration time than a car, so they need more time to depart
from a queue. If t1 and t2 are the mean acceleration times of a car and bus, respectively, then a
bus needs t2/t1 more time than a car. Therefore, in a queue a bus is equivalent to a t2/t1 car. This
value is called the pce-value (passenger car equivalent value), to determine the departure capacity,
these values can be used. The pce-values differ a little bit in the literature, in [20] the following
pce-values are given:

vehicle pce-value
car 1
truck 1.5
bus 2
motor 0.4
moped 0.2

Table 1: Passenger car equivalent value per type of vehicle, source [20].

If the percentage of trucks and buses are low, these values are negligible. The fractions per type of
vehicle are not known in most neighbourhoods. Since we are focusing on primarily residential areas,
the percentage of trucks and buses will be low, so the pce-values are not taken into account for now.

12

The departure process of a homogeneous flow of cars at a traffic light can be approximately given
by the graph in Figure 6.

Figure 6: The number of vehicles departing in time during green light and the linear approximation
of this process.

The headway times of the first vehicles leaving the queue during green time are dependent on the
acceleration and the reaction times of the drivers. During green time the mean headway time
decreases to a steady value. Research [20] has shown that 3 to 8 cars have to pass the traffic light
before the rest of the cars will depart in a linear process, as can be seen in Figure 6.

Let ts be equal to the sum of the acceleration and reaction times of the first vehicles leaving
the queue. th is the fixed headway time of the vehicles in the second phase of the green time.
Hence, the mean number of vehicles that depart during green time (T green) can be calculated by
T green−ts

th
.

The departure capacity can best be determined by measurements, but this is a time consum-
ing task, so in practice the departure capacity is often predicted.

Research [17] has shown that for the Netherlands 1900 pce/h for urban roads and 2000 pce/h
for lanes outside urban areas are acceptable basic values. This basic value has to be multiplied
with correction factors, i.e., factors that influence the departure capacity. There are many factors
that affect the departure capacity, for example the width of the lane, the quality of the road, the
weather and the slope of the road. Also driving direction, presence of bikers and blocking effects
have to be taken into account. A detailed list of factors and how they can be used as correction
factors of the departure capacity can be found in [17].

13

2.3 Scenarios

In this section a couple of scenarios of arrival flows during rush hours at a traffic light will be
presented. Since there is no real inflow data of IJburg available, we will use these scenarios to test
different models. The scenarios are based on available outflow data from the traffic light at IJburg
[6] and data from [20].

In Table 2 four rush hour scenarios are given. The outflow rate of all scenarios is µ = 12 ve-
hicles/minute and the arrival flows change every quarter.

time 7:00 7:15 7:30 7:45 8:00 8:15 8:30 8:45 9:00 9:15 9:30 9:45
high 6 8 11 14 14 15 13 12 10 9 8 8
medium 6 8 10 12 13 13 12 11 9 9 8 7
low 6 7 8 9 10 11 11 10 9 7 7 6
peak 6 7 7 8 10 14 10 8 7 6 6 5

Table 2: Four scenarios of arrival flows (vehicles/minute) per quarter during rush hour.

In the first scenario high the system is overloaded for a long time, so the mean queue length will
be high as can be seen in Figure 7. A medium and low scenario are also given, in the low scenario
the inflow is always lower than the outflow. The last scenario peak has over all a low inflow rate,
at only one time interval the arrival rate is high. This scenario can be seen as an example of a road
nearby a school, with the peak just before the start of the school day. The one high inflow rate has
a large impact on the mean queue length and on the profile of the scenario as shown in Figure 7.

Figure 7: Mean queue lengths over time of the four scenarios.

14

3 Theoretical formulas

To give a reliable advice about the optimal arrival time at a queue at a traffic light, the waiting
time distribution at this traffic light has to be known. A lot of research has been done on waiting
times and queueing, in this section a couple of results will be presented. First, some formulas used
in traffic engineering to calculate the average waiting time are shown. These formulas rely on many
parameters and do not work well for overloaded systems. Therefore, we continue with M/M/1
queues in the second subsection. In that section exact formulas are given to calculate the state
distribution of the queue which can be used to calculate the waiting time at a certain moment in
time.

3.1 Mean waiting time

In the field of traffic engineering the fixed-cycle traffic light (FCTL) queue is one of the best studied
models [8]. The first queueing models were developed between 1950s and 1960s. Webster is re-
garded as the founder of delay models, his formula is still the most famous result in FCTL queueing.
Therefore Webster’s formula will be presented as described in [20] and a couple of extensions will
be discussed.

Assumptions of Webster’s model:

• Traffic arrives uniformly distributed over time.

• In a cycle the inflow of traffic is less than the outflow.

• No initial queue.

In Figure 8 the situation of Webster’s model is sketched, here C indicates the length of the traffic
light cycle. The traffic light cycle consists of a red and green phase, g is the fraction of time the
traffic light is green. Arrivals occur uniformly with q cars/sec, during green time s cars/sec are
departing from the queue, so the queue is decreasing with s− q cars/sec during green light.

Figure 8: Queue length during a traffic light cycle under the assumptions of Webster’s model.

The total waiting time is equal to the surface beneath the stepped graph, this is approximatively
equal to the surface of the triangle.

15

The queue is empty at the start of the red period, so at the end of the red phase there are
q(1 − g)C cars in the queue. The queue will decrease with s − q cars/sec in the green phase, so
the queue is empty again after q(1−g)C

s−q seconds. Therefore, the total waiting time and the mean
waiting time per vehicle is given by:

Wtotal =
(1− g)Cq(1− g)C

2
+
q(1− g)C
s− q

q(1− g)C
2

=
qC2(1− g)2

2(1− q
s)

W =
Wtotal

qC
=
C(1− g)2

2(1− q
s)

If q
s ≥ 1 then Wtotal becomes negative, this is of course not possible, so the formula does not work

for q
s ≥ 1. The formulas are advised [20] to be used only for ρ = q

gs < 0.8, with ρ the occupation
rate at the traffic light.
Since in rush hours this equation does not apply, we need a different model which can handle over-
loaded systems. In reality traffic arrives approximately Poisson distributed, therefore the number
of vehicles that arrives during a cycle varies. If fewer cars arrive than depart in one cycle (gs� q),
the fluctuations per cycle are small and the consequences of uniform arrivals will be little. If this
is not the case, cars have to wait for the next green time which will have a huge influence on the
average waiting time.

The formula of Akcelik can handle inflow rates that are higher than the number of cars leav-
ing in the green time. Also Poisson distributed arrivals are assumed in this model. The first term
in Akcelik’s formula is equal to Webster’s formula, but the second term is based on the so-called
overflow queue (N0), this is the mean number of cars in the queue at the end of the green phase.
The overflow queue length is calculated by the formula given below as given in [20] and [17]:

N0 =

900sT
(
ρ− 1 +

√
(ρ− 1)2 + 12(ρ−ρ0)

3600sT

)
if ρ > ρ0

0 if ρ ≤ ρ0

Here T is the time period for which the given intensity holds and ρ0 is the saturation level at which
the overflow queue is zero. The formula of Akcelik [20] is given by:3

W =
C(1− g)2

2(1− q
s)

+
N0

gs

Note that gs is the departure rate over the whole traffic light cycle. The downside of this formula
is that it only works for an empty initial queue, which is often not the case in overloaded systems.
If in a period ρ > 1, then the initial state of the next period is larger than zero. Let qb be the
initial queue length, in the Highway Capital Manual [17] a formula is given to include the additional
waiting time due to non-empty initial states qb > 0.

If there is no initial queue Akcelik’s formula holds. Three scenarios are described in [17] when
qb > 0: In the first scenario qb plus the cars that arrive in the period T can be fully served in the

3In the Highway Capital Manual [17] a slightly different formula is given, which includes an extra factor for
upstream controlling and a factor for incremental delay factor based on the controller settings.

16

time period T , hence qb + qT < gsT . In the second scenario there is still some unmet demand left
after period T , but the unmet demand is smaller than qb, i.e., qb + qT > gsT and qT < gsT . The
case of increasing unmet demand, qT > gsT , is covered in the last scenario.

The formula that contains the additional waiting time due to an initial queue at beginning of
the period stated in the Highway Capital Manual is given below:

W2 =
1800qb(1 + dp)t

gsT
with

t =
{

min(T, qb
gs(1−min(1,ρ))) if qb > 0

0 if qb = 0

dp =

{
1− gsT

qb(1−min(1,ρ)) if t ≥ T
0 if t < T

With t the duration of the unmet demand in T and dp the delay parameter. Adding W2 to Akcelik’s
formula solves the problem of the initial queue for all scenarios described above. In the case of no
initial queue W2 is zero.

The formulas contain many factors that have to be set, but the main disadvantage is that the
formulas only give the mean waiting time. To know if someone will be on time with a certain preci-
sion the distribution or percentiles of the queue length has to be known. In the literature we have
found few formulas to calculate the percentiles of the queue length at a traffic light. Unfortunately
these formulas only hold for systems with lower inflow than outflow rates. Since we are especially
interested in overloaded systems, we will look for a different model.

3.2 State distribution of an M/M/1 queue

The time-dependent queue length distribution can be used to calculate the waiting time at a certain
moment in time. There are many formulas known in the literature to calculate the state distribution
of an M/M/1 queue, in this subsection we will present some of them.

Figure 9: Graphical representation of translating a queue at a traffic light into an M/M/1 queue.

Before the queue length distribution can be calculated, the dynamics of the queue need to be
set. We assume that the arrival times are Poisson(λ(t)) distributed, where λ(t) is the arrival rate
which changes over time. The outflow of the queue at a traffic light only occurs when the light is
green. To make the case more general we assume that the ‘service’ time of a car in the queue is
Exponential(µ) distributed 4, with of course FIFO discipline. The departure rate µ is dependent

4In reality this is of course not true, but we will relax this assumption later on (see Section 5 and 7).

17

on the length of the green time, it can be seen as the maximum number of vehicles that can cross
the junction at the green time divided by the length of the traffic light cycle. For now we assume
that the departure rate is fixed, so the green time does not change over time.
With these assumptions the queue is just a simple M/M/1 queue, with time-dependent arrival rates.

Let π(n) be the exact probability that there are n vehicles in the queue. If the queue is in steady-
state and the occupation rate ρ = λ

µ < 1, then the well-known formula π(n) = (1 − ρ)ρn is used
to calculate the state probabilities in the limit of an M/M/1 queue. However, in general the queue
at a traffic light is not in steady-state, since the inflow changes over time. The most theoretical
formulas to calculate the queue length distribution only hold for fixed arrival rates. We will discuss
a couple of these formulas and at the end of the paragraph we show how to rewrite these formulas
into the setting of time-dependent arrival rates.

Let π(i)
t (n) represents the probability that there are n vehicles in the queue at time t and i vehicles

at time t = 0. In 1954 Bailey [14] used generating functions and Laplace transformations to obtain
a formula to calculate this probability. For an empty initial state Bailey’s formula is given below.

π
(0)
t (n) =

1
µt
e−(λ+µ)tρn

∞∑
r=n+1

ρ−r/2rIr(2t
√
λµ) (1)

with Ir(z) =
∑
m≥0

(z/2)r+2m

m!(m+ r)!
the modified Bessel function

Pegden and Rosenshine [15] investigated the joint probability π
(0)
t (i, j) that during the interval

(0, t) i arrivals and j departures occur, when starting in an empty initial state. Sharma used this
method to develop a different formula for π(0)

t (n), since π(0)
t (n) =

∑
j≥0 π

(0)
t (j+n, j). This resulted

in the following formula (for detailed information see [15]):

π
(0)
t (n) = (1− ρ)ρn + e−(λ+µ)tρn

∞∑
m=0

(λt)m

m!

m+n∑
k=0

(m− k)
(µt)k−1

k!
(2)

An attractive feature of this formula is that it is the sum of a constant part and a time-dependent
part. The constant term is the steady-state limit of πt(n) as t→∞ and ρ < 1. Sharma’s formula
can be obtained directly from Bailey’s formula. To show this we need the generating function of
the modified Bessel function.

Corollary 3.1. The generating function of the modified Bessel function is given by:

∞∑
r=−∞

Ir(z)sr = e
z
2

(s+ 1
s

) (3)

18

Proof. To prove this corollary the generating function at the right hand side of Equation (3) will
be rewritten into the left hand side.

e
z
2

(s+ 1
s

) = e
zs
2 e

z
2s =

∞∑
j=0

1
j!

(zs
2

)j ∞∑
k=0

1
k!

(z
2s

)k
=
∞∑
j=0

1
j!

(z
2

)j
sj
∞∑
k=0

1
k!

(z
2

)k
s−k

=
∞∑

r=−∞

 ∑
j−k=r,j,k≥0

(z2)j+k

j!k!
sj−k

Take j = k + r and fill this in, then we will find the modified Bessel function.

=
∞∑

r=−∞

(∞∑
k=0

(z2)2k+r

(k + r)!k!

)
sr

=
∞∑

r=−∞
Ir(z)sr

Now Corollary 3.1 is proven, we are ready to prove the following lemma, as done in [15].

Lemma 3.2. Sharma’s formula (2) can be derived from Bailey’s formula (1).

Proof. By differentiation of both sides of Equation (3) with respect to s we get:

∞∑
r=−∞

rsr−1Ir(z) = e
z
2

(s+ 1
s

)

(
z

2

(
1− 1

s2

))

By substituting s = ρ−
1
2 =

√
µ
λ and z = 2t

√
λµ on both sides, the equation becomes:

∞∑
r=−∞

rρ−
1
2

(r−1)Ir(2t
√
λµ) = et

√
λµ(ρ−

1
2 +ρ

1
2)(t

√
λµ(1− ρ))

ρ
1
2

∞∑
r=−∞

rρ−
r
2 Ir(2t

√
λµ) = e(λ+µ)tt

√
λµ(1− ρ)

By rearranging and simplifying we get:

1− ρ = e−(λ+µ)t 1
t
√
λµ

√
λ
√
µ

∞∑
r=−∞

rρ−
r
2 Ir(2t

√
λµ)

1− ρ =
1
µt
e−(λ+µ)t

∞∑
r=−∞

rρ−
r
2 Ir(2t

√
λµ)

(1− ρ)ρn =
1
µt
e−(λ+µ)tρn

∞∑
r=−∞

rρ−
r
2 Ir(2t

√
λµ)

19

By multiplying both sides with ρn the last equation is found. The right hand side of this equation
is similar to Bailey’s formula (1), only the summation starts at r = −∞ instead of n+ 1. By using
this last equation, Bailey’s formula (1) can be written as:

π
(0)
t (n) =(1− ρ)ρn − 1

µt
e−(λ+µ)tρn

n∑
r=−∞

rρ−
r
2 Ir(2t

√
λµ)

Fill in the modified Bessel function and simplify

=(1− ρ)ρn − 1
µt
e−(λ+µ)tρn

n∑
r=−∞

rρ−
r
2

∞∑
m=0

(t
√
λµ)r+2m

m!(m+ r)!

=(1− ρ)ρn − 1
µt
e−(λ+µ)tρn

n∑
r=−∞

∞∑
m=0

r
(λt)m

m!
(µt)m+r

(m+ r)!

The last step is to substitute k = m+ r and invert the order of summation:

π
(0)
t (n) =(1− ρ)ρn + e−(λ+µ)tρn

∞∑
m=0

(λt)m

m!

m+n∑
k=0

(m− k)
(µt)k−1

k!

Hence we have derived Sharma’s formula out of Bailey’s formula.

Sharma’s formula (2) only holds when starting in an empty system. Conolly generalized Sharma’s
formula to an arbitrary initial state as can be found in [5]:

π
(i)
t (n) =(1− ρ)ρn + e−(λ+µ)tρn

∞∑
m=0

(λt)m

m!

m+n+i+1∑
k=0

(m− k)
(µt)k−1

k!
+ (4)

e−(λ+µ)tρn
∞∑
m=0

(µt)m+1(µt)m+max(i,n)

m!

{
(λt)−min(i,n)−1

(m+ |i− n|)!
− (µt)min(i,n)+1

(m+ n+ i+ 2)!

}

3.2.1 Time-dependent arrival rates

These formulas use fixed arrival rates, so a solution has to be found to include time-dependent
arrival rates. Suppose that the arrival rate changes every 4T minutes and the distribution at time
i4T is known, then the distribution at time (i+ 1)4T can be calculated as follows:

π(i+1)∆T (n) =
N∑
j=0

πi∆T (j)π(j)
∆T (n) for ∀n ∈ {0, 1, . . . , N}. (5)

A drawback of this method is that the summation creates a discrete process out of the continuous
formula. The state distribution can still be calculated every moment, for example if we want to
know the distribution at time i∆T + τ with 0 ≤ τ < ∆T , this can be calculated by:

πi∆T+τ (n) =
N∑
j=0

πi∆T (j)π(j)
τ (n) for ∀n ∈ {0, 1, . . . , N}.

20

For convenience we calculate the state distribution every ∆t minutes, so ∆T should be a multiple
of ∆t: ∆T = c∆t with c ∈ N>0.

Computationally Conolly’s formula (4) is superior above Bailey’s formula (1). The computational
time for fixed λ-value to calculate the probabilities for the states χ = {0, 1, . . . , 20} at time t is
around the 42 seconds with Conolly’s formula. For two intervals with two different λ-values the
distribution as given in Formula (5) has even a computational time of 14.30 minutes. Another
major drawback of Conolly’s formula is that it does not work if ρ ≥ 1. The formula exists of a
constant part and a time-dependent part, the constant term is the steady-state limit of πt(n) as
t → ∞ and ρ < 1. If ρ ≥ 1, πt(n) should go to zero, so the constant term must be canceled. In
Conolly’s formula πt(n) converges to the constant part (1−ρ)ρn if t is large and thus gives negative
values for ρ ≥ 1 as we will show in Subsection 4.3.

Conolly has developed a new formula which works for every value of ρ. This formula is more
complex, but for completeness it is given below:

πt(n) =
(

1− (λ+ µ)− |λ− µ|
2µ

)
ρn + e−(λ+µ)t

∑
m≥0

c(n)
m tm

where c(n)
m can be obtained from the differential equations:

c(1)
m =

m+ 1
µ

c
(0)
m+1 − c

(0)
m

c(n)
m =

m+ 1
µ

c
(n−1)
m+1 − ρc

(n−2)
m for n = 2, 3, . . .

where c(0)
m is the coefficient of tm in λ+µ

2µ

∑
m≥1

(
1/2
m

) (4λµ
(λ+µ)2

)
m
∑2m−2

k=0
((λ+µ)t)k

k! for details see [2].

This formula isolates the constant term when ρ < 1 and cancels it when ρ ≥ 1.

Due to the long calculation time, we will not use these theoretical formulas. In the next section we
will develop a new method to calculate the distribution in a faster way.

21

4 Time-dependent queue length distribution

As discussed in the previous section, the formulas found in the literature do not fit the require-
ments of our model. In this section we will develop and discuss different methods to calculate
the time-dependent queue length distribution. In the first subsection the queue length distribu-
tion is calculated using a transition matrix. With this transition matrix an approximation of the
queue length distribution will be presented in the third subsection. In the last subsection the
computational results of the different methods are compared and discussed.

4.1 Transition matrix

The time-dependent queue length distribution can be calculated with transition probabilities. The
transition rates of an M/M/1/N queue are given by the black arrows in Figure 10.

Figure 10: The black arrows are the transition rates of an M/M/1/N queue, the red arrows are
added by uniformization.

We assume that the maximum number of cars in the queue is N . This is a reasonable assumption
since a road is finite and a queue cannot become infinitely long. Therefore let N be the number of
vehicles that fit on the road or be an upper limit of the queue length.

The transition rates out of a state are λ + µ for states 1 ≤ x ≤ N − 1, λ for x = 0 and µ for
x = N . Therefore the time to move from one state to the next is not the same for every state, but
equal to some random variable T (x). Since the inter arrival and service times are both exponentially
distributed the time in a state T (x) is exponentially distributed for all states x ∈ χ = {0, 1, .., N}.
Let σ(x, y) be the transition rates, so σ(x, x + 1) = λ for 0 ≤ x ≤ N − 1 and σ(x, x − 1) = µ for
1 ≤ x ≤ N otherwise σ(x, y) = 0. By standard properties of the exponential distribution, T (x) is
exponentially distributed with rate

∑
y∈χ σ(x, y). The probability that the state moves from x to

y is given by p(x, y) = σ(x,y)∑
y∈χ σ(x,y) .

To calculate the state distribution at a specific time it is convenient if T (x) is equally distributed for
all x ∈ χ. Therefore dummy transitions are added to make the rate out of a state equal for all x ∈ χ,
this is called uniformization. Let γ = maxx∈χ

∑
y∈χ σ(x, y), if for a state x ∈ χ,

∑
y∈χ σ(x, y) < γ

then we add the dummy variable σ′(x, x) = γ−
∑

y∈χ σ(x, y). By including these dummy variables
the expected transition time is 1/γ for all states x ∈ χ.
In the case of the M/M/1/N queue, only two dummy variables have to be added: σ′(0, 0) = µ and
σ′(N,N) = λ, the red arrows in Figure 10. We will continue with this uniformized process.

Let ϕi(n) be the probability that at transition i the process is in state n. Then by forward
recursion the probabilities of the next transition can be calculated by:

22

ϕi+1(0) =
µ

λ+ µ
ϕi(1) +

µ

λ+ µ
ϕi(0)

ϕi+1(x) =
µ

λ+ µ
ϕi(x+ 1) +

λ

λ+ µ
ϕi(x− 1) if 1 ≤ x ≤ N − 1

ϕi+1(N) =
λ

λ+ µ
ϕi(N − 1) +

λ

λ+ µ
ϕi(N)

Therefore the probability to move from state x to state y with x, y ∈ N is given by:

p(x, y) =

λ

λ+µ y = x+ 1 or y = x = N
µ

λ+µ if y = x− 1 or y = x = 0

0 otherwise

In matrix form this is given by Pxy = p(x, y). At a traffic light the inflow λ is not fixed but will
change over time, therefore the distribution is dependent on λ. We will continue to write P (λ), to
show the dependence on λ.

P (λ) =

µ
λ+µ

λ
λ+µ 0 0 . . . 0

µ
λ+µ 0 λ

λ+µ 0 . . . 0

0 µ
λ+µ 0 λ

λ+µ

. . . 0
...

.
...

0 0 µ
λ+µ 0 λ

λ+µ

0 0 µ
λ+µ

λ
λ+µ

4.1.1 Distribution with transition matrix

The queue length distribution can also be calculated with the transition matrix P (λ). The matrix
gives the probability that a specific state change occurs. Let λ and µ be the transition rates per
interval of length t = 1, for example each minute. Due to uniformization the time to move from
one state to the next is Exponential(λ + µ) distributed for all states. Therefore the number of
steps that have to be taken in a time interval of length t is Poisson((λ + µ)t) distributed. The
probability that there are m steps in time interval t is Poisson(m, (λ+ µ)t) and the probability to
move from one state to another in m steps is given by the matrix multiplication Pm(λ). Hence if
π0 is the initial distribution at time 0 then the distribution at time t is given by:

πt =π0

∞∑
m=0

Poisson(m, (λ+ µ)t)Pm(λ)

=π0

∞∑
m=0

(λ+ µ)mtm

m!
e−(λ+µ)tPm(λ) (6)

=π0Plarge(λ, t) with Plarge(λ, t) =
∞∑
m=0

(λ+ µ)mtm

m!
e−(λ+µ)tPm(λ)

23

With πt = (πt(0), πt(1),, πt(N)) the distribution at time t. The distributions given by this for-
mula are similar to the distributions found by Conolly’s formula (4), but this method also holds for
arrival rates higher than the departure rate (λ > µ). Another important advantage of this method
is that Plarge(λ, t) only has to be recalculated when the λ value changes. Suppose that the inflow
changes every ∆T minutes, then:

π∆T = π0Plarge(λ1,∆T)
π2∆T = π∆TPlarge(λ2,∆T) = π0Plarge(λ1,∆T)Plarge(λ2,∆T) etc.

In general the state distribution is calculated in discrete time steps of ∆t minutes, so for con-
venience ∆T should be a multiple of ∆t. Then we get:

π∆t = π0Plarge(λ,∆t)
π2∆t = π∆tPlarge(λ,∆t) = π0P

2
large(λ,∆t) when 0 ≤ 2∆t ≤ ∆T etc.

The calculation time of this method is long since the sum in formula (6) goes to infinity. For
a fixed λ value the calculation time of the distribution is around 48 seconds, so the same as for
Conolly’s formula. When the λ value changes, only Plarge(λ,∆t) has to be recalculated. This saves
a lot of calculation time compared to Conolly’s formula. For two intervals with different λ-rates
the calculation time is 107 seconds, this is a major improvement.

Formula (6) gives exactly the same distribution as Conolly’s formula, but in a lower calculation
time. Since this formula is also directly applicable for λ ≥ µ and can easily deal with changing
arrival rates, this method is preferable over Conolly’s formula. Unfortunately the calculation time
is still too long, therefore we will search for an approximation of the queue length distribution.

4.2 Approximation queue length distribution

The time that the process stays in one state is Exponential(λ + µ) distributed for all states in
the uniformized case. Hence the expected time that the process stays in one state is 1

λ+µ . In this
approximation we take 1

λ+µ = 1
γ as the fixed discrete time step at which a transition occurs. Let

ϕ̂i(n) be the expected probability that the queue has length n at time step i
γ , then the expected dis-

tribution at time step i+1
γ can be calculated by ϕ̂i+1 = ϕ̂iP (λ) with ϕ̂i = (ϕ̂i(0), ϕ̂i(1),, ϕ̂i(N)).

This is a discrete-time process with time step i
γ . In general the state distribution is calculated

every ∆t minutes, then the expected distribution at time (k + 1)∆t is calculated by π̂(k+1)∆t =
π̂k∆tP

γ∆t(λ) = π̂k∆tP
(λ+µ)∆t(λ).

Just as in the previous method with the Plarge(λ) matrix, this approximation is very useful when
dealing with time-dependent arrival rates. If the arrival rate changes, only the λ value in the matrix
P (λ) has to be adapted. Suppose that the arrival rate changes every ∆T = 10 minutes and ∆t = 1,
then we have to adjust the P (λ) matrix every 10 iterations.

24

4.2.1 Improvement

The approximation in the previous section is very rough and can be improved by decreasing the
length of the fixed time step. In the previous section the time step is 1

λ+µ , this time step can decrease
by adding dummy transitions. The rate out of the state stays the same, but every time step the
system stays in the current state with rate δ. Hence the time in one state is Exponential(λ+µ+δ)
distributed until a transition occurs, note that a transition can also be to the current state. In
Figure 11 the transition diagram is shown.

Figure 11: The black arrows are the transition rates of an M/M/1/N queue, the red arrows are
added dummy variables.

Let ϕ̂i(n) be the expected probability that the process is in state n at time step i, where a time
step has length 1

λ+µ+δ . Then by forward recursion the probabilities of the next time step can be
calculated by:

ϕ̂i+1(0) =
µ

λ+ µ+ δ
ϕ̂i(1) +

µ+ δ

λ+ µ+ δ
ϕ̂i(0)

ϕ̂i+1(x) =
µ

λ+ µ+ δ
ϕ̂i(x+ 1) +

δ

λ+ µ+ δ
ϕ̂i(x) +

λ

λ+ µ+ δ
ϕ̂i(x− 1) if 1 ≤ x ≤ N − 1

ϕ̂i+1(N) =
λ

λ+ µ+ δ
ϕ̂i(N − 1) +

λ+ δ

λ+ µ+ δ
ϕ̂i(N)

Let C = λ+ µ+ δ, the transition matrix will look as follows:

P (λ) =
1
C

µ+ δ λ 0 0 . . . 0
µ δ λ 0 . . . 0

0 µ δ λ
. . . 0

...
.

0 0 µ δ λ
0 0 µ λ+ δ

Hence ϕ̂i+1 can be calculated by ϕ̂i by the forward recurrence ϕ̂i+1 = ϕ̂iP (λ). In reality the state
distribution is calculated every ∆t minutes, so

π̂(k+1)∆t = π̂k∆tP
C∆t(λ) = π̂k∆tP

(λ+µ+δ)∆t(λ) for ∀k ∈ N. (7)

25

Hence for ∆t = 1 the formula will be π̂k+1 = π̂kP
C(λ) = π̂kP

λ+µ+δ(λ) for all k ∈ N. In this
general approximation method the matrix P (λ) only has to be adapted when the inflow changes.
Therefore the matrix P

(λ+µ+δ)∆t(λ) can be fixed if we take time steps of length ∆t and only has
to be adjusted when the λ value changes.

The larger δ, the more precise the approximation is. When δ →∞ then the time steps go to zero
and the approximation converges to the real distribution. The previous method uses no dummy
variable δ = 0 and is a special version of this general approach.

4.3 Computational results

In this section the different methods to calculate the queue length distribution are discussed. We
will compare the theoretical matrix method (6) with the approximation method (7), but first we
will compare the two theoretical functions.

Conolly’s formula (4) and the matrix formula (6) give exactly the same time-dependent queue
length distribution if ρ < 1. Only the calculation time of the matrix approach is much lower,
especially when the λ value is time-dependent. Next to the long calculation time Conolly’s formula
has another major disadvantage: it does not work for ρ ≥ 1. If t is large πt(n) converges to the
constant part (1 − ρ)ρn of the formula, but this only holds if ρ < 1 and gives negative values if
ρ ≥ 1. In Figure 12 the probability that the queue is empty is shown over time for ρ = 12/10. For
1 ≤ t ≤ 6 Conolly’s formula gives the same probabilities as the matrix formula, but from t ≥ 7
Conolly’s probability converges to 1 − ρ. It depends on the value of ρ at which time Conolly’s
formula starts converging to the constant term, if ρ is higher the convergence is faster and vice
versa.

Figure 12: Probability that the queue length is 0 calculated with Conolly’s formula (red graph)
and the matrix formula (blue graph), with initial state 0, λ = 12 and µ = 10 so ρ = 1.2.

In the morning and evening rush hours there are moments that the inflow at the traffic lights will
be higher than the outflow, therefore Conolly’s formula is not applicable for our problem. Since
the calculation time of this formula is very long and it can not easily deal with time-dependent
arrival rates, we will not look at the new developed formula of Conolly that can handle processes
with ρ ≥ 1.

26

Hence in the remaining of this paragraph the performance of the approximation distribution (7)
will be compared to the theoretical distribution (6).

In the approximation method the state changes every 1
λ+µ+δ minute, so this is a discrete-time

process, in contrary to the theoretical formula that can be calculated continuously. In Figure 13
the theoretical and approximated distribution are shown at times t = 1, 2, 10.

Figure 13: For λ = 10, µ = 12 and i = 5 the state distributions are calculated with the theoretical
formula (red graph) and with the approximation approach with different values of δ (δ = 0 blue
graph, δ = 1 black graph, δ = 2 green graph, δ = 5 yellow graph), at time t = 1 left, t = 2 middle
and t = 10 right.

In these figures can be seen that the state distributions given by the theoretical formula represent
a fluent graph for all values of t. The most rough approximation of δ = 0 gives alternately high
and low probabilities for the queue length n. This behavior is due to the transition probabilities,
p(i, j) > 0 only if |i − j| = 1. In Figure 13 the initial queue length is 5, so at time step 1

λ+µ

only the states n = 4 and n = 6 have a positive probability (π 1
λ+µ

= π0P). At time 2
λ+µ only

n = 3, n = 5 and n = 7 have a positive probability, π 2
λ+µ

= π0P
2 and so on. In this way the

state distribution is fluctuating between even and odd values until the boundary states n = 0
and n = N are reached. If the dummy variable δ increases, then p(i, i) = δ

λ+µ+δ increases and
the time step decreases, therefore the fluctuations of the distributions decrease. As can be seen
in Figure 13 the approximation converges really fast to the theoretical formula when δ > 0. At
t = 1 only δ = 0 and δ = 1 deviate significantly of the theoretical formula, at t = 2 this is only δ = 0.

The probability that a queue is in state n over time is graphically shown in Figure 14. The
probabilities are shown every half minute, this is to show the fluctuations. If only the minute
probabilities where plotted, we would see a fluent line through the upper points (n = 1) or through
the lower points (n = 2 and n = 10) in the case of the rough approximation δ = 0. Also here the
approximation converges really fast if δ increases. If δ > 0 there are only small fluctuations from
the theoretical formula for low values of t.

The fluctuations of the rough approximation δ = 0 are there because the process can only re-
turn to the same state in an even number of steps, except when the process hits state 0 or N .
Hence if ∆t = 1 and λ + µ is even then the matrix calculations result in a fluent line and when
λ + µ is odd a fluctuating graph is shown. In the case of λ + µ even and an odd initial state, the
points in the peaks are calculated if n is odd and if n is even only the bottom points are shown. In

27

the first case the probability that the queue is in state n is overestimated and in the second case
this probability is underestimated.

Figure 14: For λ = 10, µ = 12 and i = 5 the probability that the queue is in state n = 1(left),
n = 2(middle) and n = 10(right) over time is shown with time step ∆t = 0.5. The red graph
is the probability calculated by the theoretical formula and the probabilities calculated by the
approximation matrix method are δ = 0 blue graph, δ = 1 black graph, δ = 2 green graph, δ = 5
yellow graph. The latter probabilities coincide with the theoretical graph on large scale and is
therefore most of the time not visible.

Since the odd states number are overestimated and the even states are underestimated, this esti-
mation effect is canceled by calculating the mean queue length. Therefore the mean queue length
calculated by the approximation method is almost the same as for the theoretical formula for all
values of δ, as can be seen in the left graph of Figure 15. In the right figure the absolute difference
between the approximated and theoretical value is given for different δ values. In this figure we
also see that when δ increases the differences will decrease, so the mean value will converge to the
theoretical mean value if δ →∞.

Figure 15: For λ = 10, µ = 12 and i = 5 the mean queue length over time by the theoretical
formula (red graph) and the approximation method are shown in the left figure with δ = 0 (blue
graph), δ = 1 (black graph), δ = 5 (green graph), δ = 10 (yellow graph), δ = 50 (black graph),
δ = 100 (green graph), δ = 200 (yellow graph). The right figure gives the absolute difference of the
approximated and theoretical value. In both graphs the time step is ∆t = 1.

28

Note that for t < 3 the rough approximation δ = 0 is closer to the theoretical mean value than
the approximations with δ = 1, 5, 10. This is because λ+ µ is an even number so the fluctuations
of the mean distribution, as shown in the above figures, are not visible. In Figure 16 the absolute
differences between the approximation and the theoretical formula are shown in time steps of half
a minute.

Figure 16: For λ = 10, µ = 12 and i = 5 the mean queue length over time by the theoretical
formula (red graph) and the approximation method are shown in the left figure with δ = 0 (blue
graph), δ = 1 (black graph), δ = 5 (green graph), δ = 10 (yellow graph), δ = 50 (black graph),
δ = 100 (green graph), δ = 200 (yellow graph). The right figure gives the absolute difference of the
approximated and theoretical value. In both graphs the time step is ∆t = 0.5.

Calculating the state distribution with states χ = {0, 1, . . . , 150} by the approximation approach
every minute for half an hour has a calculation time of around 1 second. Time-dependent arrival
rates will not alter the calculation time of the approximation a lot, since only the λ in the P (λ)
matrix has to be adjusted when λ changes. Therefore the calculation time is slightly higher when
we take time-dependent arrival rates, but the computation time of the matrix approach is still
really fast. For the same calculation the theoretical Formula (6) has a calculation time of around
20 seconds. Since the approximation method converges quickly to the theoretical distribution when
δ increases and the calculation time is much lower the approximation method will be used to cal-
culate the time-dependent queue length distribution.

In order to find the optimal δ value, the distribution calculated by the approximation method
is compared to the theoretical distribution for several different values of δ. In Table 3 the total
absolute differences between the approximation and theoretical distribution are given for these δ
values. The differences are calculated for the distributions at times t = 1 and t = 5. In Table 4
the total absolute differences between the mean value of the theoretical and approximation method
are given. This is calculated by summing the absolute differences between the mean values of the
theoretical and approximated method at time t = 1− 20.

In Table 3 we see that the approximation improves extremely by adding δ = 1 as dummy variable.
The distribution at time t = 1 also improves significantly by increasing δ > 1. If we look at the
distribution at a later time, e.g., t = 5, the results for increasing δ values still improve but not so

29

extremely as for t = 1. This results match with the figures at the beginning of this paragraph.
The differences presented in Table 4 also confirm the results in Figure 15 and 16. The mean is a
bit over- or underestimated for small values of δ and t, due to this effect the difference of δ = 0
can be smaller than the difference of δ = 1. The results in Table 4 confirm that if δ increases the
approximated mean converges to the theoretical mean.

Distribution t = 1 δ
µ λ 0 1 2 5 10 50 100 200
6 2 0.5553 0.0866 0.0773 0.0575 0.0404 0.0119 0.0063 0.0033
6 4 0.7770 0.0826 0.0321 0.0262 0.0195 0.0065 0.0035 0.0019
6 6 0.8858 0.1000 0,0244 0.0210 0.0162 0,0057 0.0031 0.0017
6 8 0.9434 0.1117 0.0298 0.0245 0.0193 0.0072 0.0040 0.0021
12 4 0.1304 0.0393 0.0376 0.0322 0.0262 0.0104 0.0059 0.0032
12 8 0.4648 0.0551 0.0176 0.0150 0.0125 0.0054 0.0031 0.0017
12 12 0.7356 0.0899 0.0126 0.0097 0.0083 0.0038 0.0023 0.0013
12 14 0.8239 0.1026 0.0147 0.0110 0.0095 0.0045 0.0027 0.0015
12 16 0.8856 0.1121 0.0195 0.0158 0.0137 0.0066 0.0040 0.0023

Distribution t = 5
6 2 0.0022 0.0010 0.0009 0.0007 0.0005 0.0002 0.0001 0.0001
6 4 0.1280 0.0027 0.0025 0.0020 0.0015 0.0005 0.0003 0.0003
6 6 0.5211 0.0022 0.0021 0.0017 0.0013 0.0005 0.0003 0.0001
6 8 0.8253 0.0131 0.0122 0.0103 0.0081 0.0030 0.0017 0.0009
12 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
12 8 0.0233 0.0003 0.0003 0.0003 0.0002 0.0001 0.0001 0.0000
12 12 0.3839 0.0017 0.0016 0.0014 0.0012 0.0006 0.0003 0.0002
12 14 0.6344 0.0053 0.0051 0.0046 0.0040 0.0019 0.0011 0.0006
12 16 0.8037 0.0120 0.0116 0.0106 0.0092 0.0044 0.0027 0.0015

Table 3: Total absolute differences between the distribution of the approximation and the theoretical
formula for different values of δ at time t = 1 and t = 5.

For a good approximation the total absolute difference of the distribution and mean should not be
too large, but also the calculation time shown in the last row of Table 4 should not be too long.
Based on these values we will take δ = 50 in further calculations.

The upper state value, N , also has to be set. The calculation time of the approximation has
a computational complexity of o(N3), so we want to keep N as small as possible. The value of N
will depend on the situation, if λ >> µ then N should be larger, since the state N should never be
reached. In most cases ρ will be just above 1 and only for a short period. In most calculations in
this thesis we will take N = 150.

Definition 4.1. In this thesis the time-dependent queue length distribution will be calculated by
the matrix approximation with δ = 50 and if not stated otherwise N = 150.

30

Mean t = 1− 20 δ
µ λ 0 1 2 5 10 50 100 200
6 2 0.2619 0.2624 0.2334 0.1780 0.1275 0.0390 0.0209 0.0108
6 4 0.1245 0.1366 0.1242 0.0991 0.0741 0.0246 0.0134 0.0068
6 6 0.1140 0.1036 0.0958 0.0788 0,0608 0.0215 0.0119 0.0063
6 8 0.0289 0.0265 0.0247 0.0208 0.0164 0.0061 0.0034 0.0018
12 4 0.0779 0.0803 0.0755 0.0651 0.0529 0.0212 0.0121 0.0065
12 8 0.0491 0.0563 0.0531 0.0468 0.0390 0.0168 0.0098 0.0053
12 12 0.1002 0.0945 0.0906 0.0812 0.0693 0.0318 0.0190 0.0105
12 14 0.0517 0.0465 0.0450 0.0406 0.0350 0.0165 0.0100 0.0056
12 16 0.0268 0.0246 0.0239 0.0218 0.0190 0.0093 0.0057 0.0032

Calculation Time 0.7366 0.5573 0.4702 0.5907 0.5525 0.6718 0.7432 2.2719

Table 4: Total absolute differences between the mean queue length of the approximated and theo-
retical formula for t = 1− 20 and different values of δ.

31

5 Departure advice for a single app user

Using the approximation from the previous section the time-dependent queue length distribution is
known, so now the waiting time for an arriving customer can be calculated. Since the ‘service’ time
is Exponential(µ) distributed, the mean ‘service’ time of a traveller is 1

µ . Let La(t) be the queue

length on arrival at time t, then the expected waiting time is given by E(La(t))+1
µ . Because the

arrival process is Poisson distributed, the PASTA property5 can be applied. Hence the state proba-
bilities of the queue length on arrival are the same as the state probabilities, P (La(t) = n) = πt(n)
for ∀ 0 ≤ n ≤ N .

Suppose that at arrival there are n vehicles in the queue, then the waiting time is Erlang(n+ 1, µ)
distributed, since the service times are independent Exponential(µ) distributed. Let Bk be the
exponential service time of vehicle k in the queue, then 6

P

(
n+1∑
k=1

Bk > τ

)
=

n∑
k=0

(
(µτ)k

k!
e−µτ

)
Using this the waiting time distribution W (t) can be calculated by:

P (W (t) > τ) =P

La(t)+1∑
k=1

Bk > τ

 =
N∑
n=0

P

(
n+1∑
k=1

Bk > τ

)
P (La(t) = n) =

N∑
n=0

n∑
k=0

(
(µτ)k

k!
e−µτ

)
πt(n)

If P (W (t) > τ) < α then at time t the waiting time is smaller or equal to τ with probabil-
ity 1 − α. Let τα(t) be the 1 − α upper confidence limit of the waiting time at time t, i.e.,
τα(t) = min(τ : P (W (t) > τ) < α). Let D be the deadline to be out of the queue, such that the
user arrives on time at the destination. Then the latest arrival time such that the app user is on
time out of the queue with confidence level 1− α is given by T a = max(t : t + τα(t) ≤ D). Hence
the app user should arrive before T a at the traffic light.

There is also an easier and faster way to calculate the latest arrival time which gives almost
the same result. In reality the outflow of cars from a queue at a traffic light is approximately
deterministic with a maximum of µ cars per minute. Let nα(t) ∈ N be the minimum number of
vehicles in the queue at time t such that P (La(t) > nα(t)) < α. Then with probability 1 − α the
number of vehicles in the queue at time t is lower than nα(t) and the expected waiting time of an
arriving vehicle is lower than 1

µ(nα(t) + 1). At every time interval ∆t the queue length distribution
is calculated, from where we find nα(t). The points nα(t) + 1 are drawn in Figure 17 for two
different λ-values.

To calculate the latest arrival time, such that the app user is with a pre-set confidence level on
time out of the queue, we have to solve the following equation:

t+
1
µ

(nα(t) + 1) = D ⇒ µt+ (nα(t) + 1) = µD ⇒ nα(t) + 1 = −µt+ µD

5The fraction of travellers that find the system on arrival in state X is exactly the same as the fraction of time
the system is in state X. This property only holds for Poisson arrivals.[1]

6Since at time τ maximum n users may depart from the traffic light this can also be seen by P
(∑n+1

k=1 Bk > τ
)

=∑n
k=0 Pois(k, µτ) =

∑n
k=0

(
(µτ)k

k!
e−µτ

)
.

32

Hence the latest arrival time T a can be calculated by the intersection of the graph nα(t) + 1 and
y = −µt+ µD, as shown in Figure 17. This is a very fast method since we only have to calculate
the intersection.

Figure 17: nα(t) + 1 is shown for λ = 10 (red) and λ = 11 (blue) with µ = 12 and 5 vehicles in
the initial state. The intersection with y gives the latest arrival time. Since nα(t) = min(nα ∈ N :
P (La(t) > nα) < α) is an integer the graph is not fluent.

The solution space of T a = max(t : t + τα(t) < D) with τα(t) = min(τ : P (W (t) > τ) < α) is a
subset of R. Since the state distribution is calculated at discrete times we only have πt(n) at t ∈ N.
It is hard to compare the latest arrival time T a with the intersection latest arrival time T a when
T a can only be an integer. Therefore t+ τα(t) is calculated for all t values with time step 0.1. The
state distributions πt,i(n) for 1 ≤ i ≤ 9 are calculated by interpolation of the two neighboring state
distributions: πt,i = i

10πt + 10−i
10 πt+1 for 1 ≤ i ≤ 9.

Arrival time Computational time (sec)
λ T a T

a
T a T

a

4 9.6 9.7500 47.50 0.3168
8 9.2 9.3333 71.14 0.3409
12 7.4 7.5714 126.44 0.3723
16 5.6 5.8333 196.85 0.2908
20 4.4 4.6957 415.98 0.2758

Table 5: The latest arrival times and computation times of the theoretical formula (T a) and the
intersection approach (T a) for different λ values, with µ = 12, D = 10 and initial state 5.

33

As can be seen in Table 5 the latest arrival times of both approaches are very close to each other.
The calculation of P (W (t) > τ) is computational intensive as shown in the fourth column of Table
5. In contrary, the calculation time of the intersection approach is really low, since nα(t) follows
directly from πt. The computational time to calculate nα(t) + 1 and the intersection with y is
less than 0.4 second, of which most is due to the calculation of πt, since the intersection between
nα(t) + 1 and y is calculated in less than 0.01 second. Therefore the fast intersection method will
be used to calculate the latest arrival time. For notational purposes we will, from now on, omit the
bar and write T a for the latest arrival time calculated by the intersection method.

5.1 Route and departure advice

The only step left is to decide which route the app user has to take, via traffic light 1, 2, . . . , S − 1
or S. The app should advise the user to take the route with the latest departure time at the origin.
Therefore the advised departure time at the origin will be

Departure Time = max(T a1 − d1, T
a
2 − d2, . . . , T

a
S − dS) (8)

with T ai the latest arrival time at the queue at traffic light i and di the travel time from the origin
to the queue at traffic light i.

The model for a single app user works as follows:
The app distracts the preferred arrival time at the destination from the agenda. The travel time
from the traffic light to the destination is calculated using a travel time forecasting model. The
departure time D from the intersection is based on the desired arrival time at the destination. This
departure time is the deadline at the traffic lights, i.e., the time that the user has to be out of the
queue. With this deadline the latest arrival time T a can be calculated by the intersection method.
The travel time from the origin to the queue is given by d, hence T a − d is the latest departure
time from the origin.
These calculations can be done for the routes via traffic lights 1, 2, . . . , S. With (8) a decision is
made about the route and departure time of the user, which will correspond to the route with the
shortest travel time.

34

6 Schedule multiple app users

In the previous section the optimal arrival time for a single app user was calculated. When only
a few travellers use the app, this method works well. Hence, in the starting period of the app in
IJburg these simple calculations can be used. When many citizens use the app, the app can not
only give the optimal departure time but the users can also be distributed in a smart way over the
time slots. In this section we will focus on this last aspect of distributing the users over time.

6.1 Multiple app users with the same deadline

In the previous section a fast approach is given to calculate the latest arrival time at the queue such
that the user is with a pre-set confidence level on time out of the queue. This method can only be
applied to one or a few app users, because scheduling a second app user with the same deadline
will influence the waiting time of the first scheduled app user etc. However, the general idea still
holds: in the case of multiple app users we also want that the app users are with a preset con-
fidence level of 1−α on time out of the queue and that the total waiting time is as small as possible.

The calculation of the time-dependent state distribution is described in Section 4.2.1. With this
distribution the 1−α upper confidence limit of the queue length is calculated at every time step ∆t.
With the intersection approach as shown in Figure 17, the latest arrival time of the app users can
be calculated. With some small adjustments this method can still be used in the general setting of
multiple app users to ensure that all users will be on time with confidence level 1− α. In Section
8.1 we will focus on this aspect.

Now that the approach to find the latest arrival time is known we can focus on the main problem:
how to schedule the app users?
It is not reasonable to assume that an app user will arrive at exactly the advised time. Therefore
we assume that an app user is able to arrive in a time interval of length ∆x. For simplicity we
will take ∆x = ∆t, so equal to the time steps in which the queue length distribution is calculated.
For every interval of length ∆x = ∆t, the state distribution is calculated by the mean of the two
boundary distributions.

Let ξi be the fixed inflow rate in time in vehicles per minute, i.e., the rate of inflow of the ve-
hicles that cannot be scheduled, that do not use the app. The value of ξi changes every ∆T
minutes, in most traffic management books the flow changes every 10 or 15 minutes. In IJburg the
flows are available per quarter, so we set ∆T = 15.
App users are scheduled in intervals of length ∆x, let ηi be the number of app users that are
scheduled in interval i. Then the inflow of app users per minute in an interval is given by η1

∆x and
the total inflow rate at interval i is λi = ξi + ηi

∆x vehicles per minute. Hence the value of λi is
different for all intervals, let λ = (λ1, λ2, ..., λn) where n is the number of intervals.

Since it is our goal to spread the inflow over the capacity, we do not want to put all app users
in the same interval. Therefore we take an interval of length ∆L to schedule the app users with
the same deadline, with ∆L = l∆x and l ∈ N>0. l can be made inflow dependent: l should be
larger when the inflow is high and smaller for a low inflow. For now ∆L = l∆x will be a fixed value.

35

Let MD be the number of app users which have D as their deadline, corresponding to deadline D
there is a latest arrival time T aD. Let AD be the latest arrival interval corresponding to this latest
arrival time. The latest arrival interval AD is calculated by AD = bT

a
D

∆xc, all users with deadline D
that are scheduled before or at this interval will be with a pre-set confidence level on time out of
the queue. The MD app users with latest arrival interval AD should be divided in l groups, which
can be scheduled in the intervals {AD − l + 1, AD − l + 2, . . . , AD}.

Our goal is to make the total waiting time of the app users as small as possible. The value function
V of a schedule with η1, η2, . . . , ηn users in the intervals 1, 2, . . . , n, is given below. Here Li(x, λ) is
the mean queue length at time i∆x when starting in initial state x, with λ = (λ1, λ2, . . . , λn) and
λi = ξi + ηi

∆x . Therefore 1
2(Li−1(x, λ) + Li(x, λ)) is the mean queue length in interval i. Hence the

value function is the sum of the waiting times of all app users. The goal is to find the schedule
(η1, η2, . . . , ηn) that minimizes this value function.

V (x, η1, η2, . . . , ηn) =
n∑
i=1

ηi
1
µ

Li−1(x, λ) + Li(x, λ)
2

with
AD∑

i=AD+l−1

ηi = MD

ηi ≥ 0 for i = 1, 2, . . . , l

The first constraint ensures that all app users with latest arrival interval AD are scheduled in the
intervals {AD − l + 1, AD − l + 2, . . . , AD}.

Minimizing the value function is just a linear programming problem which can be solved eas-
ily. In Table 6 the optimal schedules are given for 20 app users with latest arrival interval AD = 4,
l = 4 and for different ξ values.

µ = 12 Mean queue length
ξ η1 η2 η3 η4 t = 1 t = 2 t = 3 t = 4 Value
0 5 5 4 6 0.69 0.71 0.51 0.95 1.00
2 6 4 4 6 1.56 1.07 1.01 1.69 1.85
4 6 4 3 7 2.39 2.07 1.59 3.42 3.26
6 6 3 3 8 3.61 3.14 3.03 6.43 5.92
8 6 3 2 9 5.35 5.63 5.26 10.88 10.17
10 4 3 2 11 7.39 8.97 9.60 18.76 18.65
11 0 4 1 15 10.04 13.22 13.47 27.51 30.60
12 20 0 0 0 30.00 30.00 30.00 30.01 33.33
14 20 0 0 0 32.00 34.00 36.00 38.00 35.00

Table 6: The optimal schedule is given for 20 users with AD = l = 4 for different values of ξ. The
corresponding mean queue lengths at the four measure points and the minimum values are also
shown. The initial value is ρ

1−ρ with ρ = ξ/µ if µ > ξ otherwise the initial value is 10.

36

If ξ is small compared to µ the app users are almost evenly divided over the intervals. In general
more users are scheduled in the last interval. This is optimal since users in the last interval do not
influence the waiting times of users in previous intervals. If more users are scheduled in for example
the first interval this increases the queue length in the following intervals. Note that more people
are scheduled in the first interval due to the relative low value of the initial state.
All the users are scheduled in the first interval if ξ ≥ 12, this is due to the fact that ρ ≥ 1 even
without the 20 app users. In this case the queue length increases over time, so it is optimal to join
the queue as fast as possible.

In the case of one deadline the scheduling problem is easily solved by linear programming, but
when the number of intervals or the number of app users increase the computational time will
increase as well. Due to the long computation time LP is not an option in the case of multiple users
and multiple deadlines, so we need a different approach to find an optimal schedule. In Subsection
6.3 we will show that the value function is convex for an M/M/1 queue, so a local search method
will give the optimal schedule. In Figure 18 the value function is shown for ξ = 8, µ = 12 and
l = AD = 3.

Figure 18: The value function for (η1, η2, η3) is shown with η1 on the x axis and η2 on the y axis,
with µ = 12, ξ = 8 and MD = 15.

Before we will prove that the value function is convex, the value function for multiple users with
multiple deadlines is presented.

6.2 Multiple app users with different deadlines

The case of multiple deadlines, is very similar to the case of multiple users with the same deadline.
All the parameters defined in the previous section also hold in this case.

The goal is to make the total waiting time of the app users as small as possible. Suppose that
(η1, η2, . . . , ηn) is a schedule of the app users in the intervals 1, 2, . . . , n respectively. The value
function is the sum of the expected waiting times of all app users:

V (x, η1,η2, . . . , ηn) =
n∑
i=1

ηi
Li−1(x, λ) + Li(x, λ)

2µ

37

The goal is to find the schedule (η1, η2, . . . , ηn) that minimizes this value function. The optimal
schedule must satisfy a couple of constraints that are specified below. A user with deadline D, must
be scheduled before or at latest arrival interval AD = bT

a
D

∆xc such that the user is on time out of the
queue. Since a user does not want to arrive too early at the destination, a user must not be scheduled
too early. Therefore a vehicle can be scheduled in the l intervals {AD − l+ 1, AD − l+ 2, . . . , AD}.
Let Ni be the number of app users with latest arrival interval i. Ni = 0 for i < l since there are
no l intervals before i to schedule the user in.7 Therefore the schedule must satisfy the following
constraints:

i∑
j=1

ηj ≥
i∑

k=1

Nk for ∀i ∈ {l, . . . , n}

i−l+1∑
j=1

ηj ≤
i∑

k=1

Nk for ∀i ∈ {l, . . . , n}

The first constraint ensures that enough users are scheduled in the intervals before or at the latest
arrival intervals, i.e., that all users are on time. We do not want to schedule persons too early, so
by adding the second constraint all users are scheduled in the l intervals before or at their latest
arrival interval. The last constraint can be dropped, if we do not mind if users are scheduled earlier
than l intervals before their arrival deadline.

η1 + . . .+ ηi ≥ Nl + . . .+Ni

η1 + . . .+ ηi−l ≤ Nl + . . .+Ni−1

}
⇒ ηi−l+1 + . . .+ ηi ≥ Ni

Hence, the two constraints ensure that there are enough users scheduled in the intervals i−l+1, . . . , i.

Figure 19: Graphical representation of the intervals in which users with latest arrival interval i and
i+ 1 can be scheduled.

7Of course a user can have an arrival interval i < l, but then the user would have been scheduled in previous
iterations, so we do not take them into account anymore. This aspect will be discussed in Section 8

38

Definition 6.1. The optimization problem that has to be solved for multiple app users and multiple
deadlines is given by:

minimize
η

V (x, η) =
n∑
i=1

ηi
Li−1(x, λ) + Li(x, λ)

2µ

subject to
i∑

j=1

ηj ≥
i∑

k=1

Nk for ∀i ∈ {l, . . . , n}

i−l+1∑
j=1

ηj ≤
i∑

k=1

Nk for ∀i ∈ {l, . . . , n}

ηi ≥ 0 for i = 1, 2, . . . , n.

With η = (η1, η2, . . . , ηn) and λ = ξ + η
∆x .

The constraints are linear in ηi for ∀ 1 ≤ i ≤ n, so the solution space is convex in η = (η1, η2, . . . , ηn).
To prove that the optimization problem is convex, we only have to show that the value function is
convex in ηi for ∀ 1 ≤ i ≤ n. Note that Li(x, λ) depends on η, since λ = ξ + η

∆x .

6.3 Proof convexity value function

In this subsection it will be proven that the value function given in Definition 6.1 is convex in
η = (η1, η2, . . . , ηn). First, it will be shown that L(x, λ) is convex in λ, because then convexity of
L(x, λ) in η is trivial since λ = ξ + η

∆x .

First, we have to look at the process as described by the approximation method in Subsection
4.2.1. Every time step the state of the process increases by one with rate λ and decreases by one
with rate µ, the process stays in the current state with rate δ. To show convexity the λ value will
be adjusted. The time steps in the approximation method are given by 1

λ+µ+δ = 1
C , hence if λ

increases the time step will decrease and vice versa. To calculate the distribution at time interval
∆t more iterations (time steps) are needed when the λ value increases. For convenience we want
that the number of iterations are fixed for all λ values, i.e., the time step 1

λ+µ+δ should be fixed
for ∀λ. The dummy variable δ can be used to accomplish the fixed time steps: If λ → λ + 1 then
δ → δ−1 and vice versa if λ→ λ−1 then δ → δ+1. This can only be done if δ > λ for all values of
λ. It is plausible that λ has an upper value λmax, so the only assumption we have to make is that
δ > λmax. Since we have chosen δ = 50 the assumption is satisfied in the IJburg case, λmax < 50
in IJburg [6], otherwise δ should be chosen such that this condition holds.

We will show that for an M/M/1 queue the mean queue length in time is convex in λ = (λ1, λ2, . . . , λn).
Let Lt(x, λ) be the mean queue length at time step t starting with queue length x at time t = 0,
here the time step is 1

λ+µ+δ = 1
C . Since users are scheduled in intervals of length ∆x, every time

slot of length ∆x = 1 has its own λ value, i.e., every C time steps the λ value changes8. Therefore
we will often write t = kC + τ with k ∈ N and 0 ≤ τ < C.

8In the proof we take ∆x = 1, but for ∆x > 1 the proof is almost exactly the same.

39

An example of the λ values for X = αC + β with 0 ≤ β < C and α = bXC c is given in Fig-
ure 20. Note that the steps shown in this picture consist of C time steps of length 1

C , except the
first step from 0 to X − αC which consists of β time steps.

Figure 20: Intervals with corresponding λ values for X = αC + β.

Corollary 6.2. LkC+τ (x, λ) with 1 ≤ τ < C and k, x ∈ N depends on all λr with 1 ≤ r ≤ k+1 and
is independent of λr with r > k + 1. LkC(x, λ) with k, x ∈ N depends only on λr with 1 ≤ r ≤ k.

This can be easily seen by Figure 20.

The value of Lt+1(x, λ) can recursively be found from Lt(x, λ) in the following way:

L0(x, λ) = x

LkC(0, λ) = λkLkC−1(1, λ) + (C − λk)LkC−1(0, λ)
LkC(x, λ) = λkLkC−1(x+ 1, λ) + (C − λk − µ)LkC−1(x, λ) + µLkC−1(x− 1, λ) (9)
LkC+τ (0, λ) = λk+1LkC+τ−1(1, λ) + (C − λk+1)LkC+τ−1(0, λ)
LkC+τ (x, λ) = λk+1LkC+τ−1(x+ 1, λ) + (C − λk+1 − µ)LkC+τ−1(x, λ) + µLkC+τ−1(x− 1, λ)

with k ∈ N, x ∈ N>0 and 1 ≤ τ < C.
Note that the process Lt(x, λ) can never be larger than Lt(x + 1, λ), i.e., the same process with
higher initial state has a higher mean queue length, therefore

Lt(x+ 1, λ)− Lt(x, λ) > 0 for ∀x, t ∈ N (10)

To prove that Lt(x, λ) is convex in λ, we need the following two Lemmas 6.3 and 6.4. The first
lemma states that the mean queue length in time is convex in the initial state x.

Lemma 6.3. Lt(x+ 1, λ)− 2Lt(x, λ) + Lt(x− 1, λ) ≥ 0 for ∀t ∈ N and ∀x ∈ N>0.

Proof. We will prove this lemma by induction on t. For t = 0 and t = 1 the lemma holds:

For t = 0 and ∀x ≥ 1

L0(x+ 1, λ)− 2L0(x, λ) + L0(x− 1, λ) = x+ 1− 2x+ x− 1 = 0

For t = 1 and ∀x > 1, by the recursive formulas (9) we find:

L1(0, λ) = λ1L0(1, λ) + (C − λ1)L0(0, λ) = λ1

L1(x, λ) = λ1L0(x+ 1, λ) + (C − λ1 − µ)L0(x, λ) + µL0(x− 1, λ) = Cx− µ+ λ1

}
⇒

L1(2, λ)− 2L1(1, λ) + L1(0, λ) = µ.

L1(x+ 1, λ)− 2L1(x, λ) + L1(x− 1, λ) = 0

40

Suppose the lemma holds for t = kC + τ with 0 ≤ τ < C. We will now show that it also holds for
t+ 1, by using the recursive formulas (9) an rearrangement of the terms.

For ∀x > 1

Lt+1(x+ 1, λ)− 2Lt+1(x, λ) + Lt+1(x− 1, λ) =
= λk+1Lt(x+ 2, λ) + (C − λk+1 − µ)Lt(x+ 1, λ) + µLt(x, λ)
− 2(λk+1Lt(x+ 1, λ)− 2(C − λk+1 − µ)Lt(x, λ)− 2µLt(x− 1, λ)
+ λk+1Lt(x, λ) + (C − λk+1 − µ)Lt(x− 1, λ) + µLt(x− 2, λ)
= λk+1(Lt(x+ 2, λ)− 2Lt(x+ 1, λ) + Lt(x, λ))
+ (C − λk+1 − µ)(Lt(x+ 1, λ)− 2Lt(x, λ) + Lt(x− 1, λ))
+ µ(Lt(x, λ)− 2Lt(x− 1, λ) + Lt(x− 2, λ)) ≥ 0

Since we assumed that the lemma holds for t and ∀x ∈ N>0, the lemma is also true for t + 1 and
∀x ∈ N>1. The proof for x = 1 is almost identical to the proof for x > 1, therefore it is omitted
but for completeness it can be found in Appendix A. Hence we have proven that the lemma holds
for ∀x ∈ N>0 at t+ 1, so by induction on t the lemma is true for ∀t ∈ N and ∀x ∈ N>0.

With Lemma 6.3 we have proven that the mean queue length in time is convex in the initial value
x. We will use this lemma to prove that the partial derivative of the mean queue length Lt(x, λ)
to λ is increasing in the initial state x.

Lemma 6.4. ∂
∂λr

Lt(x+ 1, λ)− ∂
∂λr

Lt(x, λ) ≥ 0 for ∀x, t ∈ N and ∀1 ≤ r ≤ n.

Proof. We will prove this lemma by induction on t. For t = 0 and t = 1 the lemma is true, since
L0 does not depend on λ and L1(x, λ) only depends on λ1, so ∀x ∈ N:

∂

∂λr
L0(x, λ) = 0 for ∀1 ≤ r ≤ n (11)

∂

∂λr
L1(x, λ) =

{
1 if r = 1
0 otherwise

Suppose that the lemma holds for t = kC + τ with k ∈ N and 0 ≤ τ < C:

∂

∂λr
Lt(x+ 1, λ)− ∂

∂λr
Lt(x, λ) ≥ 0 for ∀x ∈ N and ∀1 ≤ r ≤ n (12)

We will show that the theorem also holds for t+ 1 and ∀x > 0. The proof for initial state x = 0 is
similar to the proof for x > 0 and can be found in Appendix A.

By Corollary 6.2 Lt+1(x, λ) does not depend on λr with r > k + 1, i.e., ∂
∂λr

Lt+1(x, λ) = 0 for
r > k+ 1, so the lemma holds for r > k+ 1. We now only have to show that the lemma also holds
for r ≤ k + 1.

41

First we will look at r = k + 1 for which two cases are distinguished:
Case 1: 1 ≤ τ < C then 1 < τ + 1 ≤ C , so LkC+τ = Lt and LkC+τ+1 = Lt+1 depend on the same
λ values, λr with r ≤ k + 1 (see Corollary 6.2).
Case 2: τ = 0 then τ + 1 = 1, here LkC = Lt depends on λ1, . . . , λk and LkC+1 = Lt+1 depends
on λ1, . . . , λk, λk+1, so the derivative of Lt to λk+1 is zero. In this case the computations can be
simplified.

We will first prove the lemma for case 1 of r = k + 1 by filling in the recursive formulas (9).

For ∀x > 0

Case 1: t = kC + τ with 1 ≤ τ < C and k ∈ N

∂

∂λk+1
Lt+1(x+ 1, λ)− ∂

∂λk+1
Lt+1(x, λ) =

=
∂

∂λk+1
(λk+1Lt(x+ 2, λ) + (C − λk+1 − µ)Lt(x+ 1, λ) + µLt(x, λ))

− ∂

∂λk+1
(λk+1Lt(x+ 1, λ) + (C − λk+1 − µ)Lt(x, λ) + µLt(x− 1, λ))

By working out the derivatives we get:

= λk+1
∂

∂λk+1
Lt(x+ 2, λ) + (C − λk+1 − µ)

∂

∂λk+1
Lt(x+ 1, λ) + µ

∂

∂λk+1
Lt(x, λ)

+ Lt(x+ 2, λ)− Lt(x+ 1, λ)−
(
λk+1

∂

∂λk+1
Lt(x+ 1, λ) + (C − λk+1 − µ)

∂

∂λk+1
Lt(x, λ)

+ µ
∂

∂λk+1
Lt(x− 1, λ) + Lt(x+ 1, λ)− Lt(x, λ)

)
Rearrangement of the terms gives

= λk+1

(
∂

∂λk+1
Lt(x+ 2, λ)− ∂

∂λk+1
Lt(x+ 1, λk)

)
+ (C − λk+1 − µ)

(
∂

∂λk+1
Lt(x+ 1, λk)−

∂

∂λk+1
Lt(x, λk)

)
+ µ

(
∂

∂λk+1
Lt(x, λ)− ∂

∂λk+1
Lt(x− 1, λ)

)
+ Lt(x+ 2, λ)− 2Lt(x+ 1, λ) + Lt(x, λ)

≥ 0

By the induction hypothesis (12) and Lemma 6.3 the lemma holds for case 1 of r = k+ 1. For case
2 a similar proof is given below.

42

Case 2: t = kC with k ∈ N

∂

∂λk+1
Lt+1(x+ 1, λ)− ∂

∂λk+1
Lt+1(x, λ) =

= λk+1
∂

∂λk+1
Lt(x+ 2, λ) + (C − λk+1 − µ)

∂

∂λk+1
Lt(x+ 1, λ) + µ

∂

∂λk+1
Lt(x, λ)

+ Lt(x+ 2, λ)− Lt(x+ 1, λ)−
(
λk+1

∂

∂λk+1
Lt(x+ 1, λ) + (C − λk+1 − µ)

∂

∂λk+1
Lt(x, λ)

+ µ
∂

∂λk+1
Lt(x− 1, λ) + Lt(x+ 1, λ)− Lt(x, λ)

)
= Lt(x+ 2, λ)− 2Lt(x+ 1, λ) + Lt(x, λ) ≥ 0

Since Lt(x, λ) = LkC(x, λ) does not depend on λk+1 ⇒ ∂
∂λk+1

Lt(x, λ) = 0 for ∀x ∈ N and by Lemma
6.3 the last inequality holds. Hence the lemma is true for case 2 of r = k + 1, therefore the lemma
holds for t+ 1 with r = k + 1.

The only step left is to show that the lemma also holds for r < k + 1:

For ∀x > 0

∂

∂λk+1
Lt+1(x+ 1, λ)− ∂

∂λk+1
Lt+1(x, λ) =

= λk+1
∂

∂λr
Lt(x+ 2, λ) + (C − λk+1 − µ)

∂

∂λr
Lt(x+ 1, λ) + µ

∂

∂λr
Lt(x, λ)

−
(
λk+1

∂

∂λr
Lt(x+ 1, λ) + (C − λk+1 − µ)

∂

∂λr
Lt(x, λ) + µ

∂

∂λr
Lt(x− 1, λ)

)
Rearrangement of the terms gives

= λk+1

(
∂

∂λk+1
Lt(x+ 2, λ)− ∂

∂λk+1
Lt(x+ 1, λk)

)
+ (C − λk+1 − µ)

(
∂

∂λk+1
Lt(x+ 1, λk)−

∂

∂λk+1
Lt(x, λk)

)
+ µ

(
∂

∂λk+1
Lt(x, λ)− ∂

∂λk+1
Lt(x− 1, λ)

)
Hence by induction hypothesis (12) the lemma is also true for r < k+ 1, therefore the lemma holds
for t+ 1. By induction on t Lemma 6.4 holds for all t, x ∈ N and ∀1 ≤ r ≤ n.

We are now ready to prove that the mean queue length in time is convex in λ. As an addition we
will also prove that the queue length is increasing in λ.

43

Theorem 6.5. Lt(x, λ) is increasing and convex in λ = (λ1, λ2, . . . , λn) for ∀t, x ∈ N

Proof. By induction on t we will show that this lemma is true. By (11) the theorem holds for t = 0
and t = 1. Suppose that the theorem holds for t = kC + τ with k ∈ N and 0 ≤ τ < C:

∂

∂λr
Lt(x, λ) ≥ 0 and

∂2

∂λ2
r

Lt(x, λ) ≥ 0 for ∀1 ≤ r ≤ n and ∀x ∈ N (13)

We will show that the theorem is also true for t + 1. The proof is only given for x ≥ 1, the proof
for x = 0 is similar and can be found in Appendix A.

By Corollary 6.2, Lt+1(x, λ) does not depend on λr with r > k + 1, i.e., ∂
∂λr

Lt+1(x, λ) = 0 for
∀r > k + 1, so the lemma holds for λr with r > k + 1. Now we only have to show that the lemma
holds for t+ 1 with r ≤ k + 1.

For r = k + 1 the two cases defined in the proof of Lemma 6.4 are again distinguished. We
will prove that the lemma holds in both cases by using the recursive formulas (9).

For x > 0

Case 1: t = kC + τ with 1 ≤ τ < C and k ∈ N

Lt+1(x, λ) =λk+1Lt(x+ 1, λ) + (C − λk+1 − µ)Lt(x, λ) + µLt(x− 1, λ)
∂

∂λk+1
Lt+1(x, λ) =λk+1

∂

∂λk+1
Lt(x+ 1, λ) + (C − λk+1 − µ)

∂

∂λk+1
Lt(x, λ) + µ

∂

∂λk+1
Lt(x− 1, λ)+

Lt(x+ 1, λ)− Lt(x, λ)

∂2

∂λ2
k+1

Lt+1(x, λ) =λk+1
∂2

∂λ2
k+1

Lt(x+ 1, λ) + (C − λk+1 − µ)
∂2

∂λ2
k+1

Lt(x, λ) + µ
∂2

∂λ2
k+1

Lt(x− 1, λ)+

2
∂

∂λk+1
Lt(x+ 1, λ)− 2

∂

∂λk+1
Lt(x, λ)

By the induction hypothesis (13) and inequality (10) ⇒ ∂
∂λk+1

Lt+1(x, λ) > 0 for ∀x ∈ N. Due to

assumption (13) and Lemma 6.4 ⇒ ∂2

∂λ2
k+1

Lt+1(x, λ) ≥ 0 for ∀x ∈ N. Hence for case 1 of r = k + 1

the lemma is true. The proof of case 2 is given below.

Case 2 : t = kC with k ∈ N
Lt+1(x, λ) =λk+1Lt(x+ 1, λ) + (C − λk+1 − µ)Lt(x, λ) + µLt(x− 1, λ)

∂

∂λk+1
Lt+1(x, λ) =Lt(x+ 1, λ)− Lt(x, λ)

∂2

∂λ2
k+1

Lt+1(x, λ) =0

By (10) Lt(x+ 1, λ)− Lt(x, λ) > 0, hence the lemma also holds for case 2 of r = k + 1. The only
thing left is to show that the theorem also holds for t+ 1 and λr with r < k + 1.

44

For r < k + 1 and x > 0

Lt+1(x, λ) =λk+1Lt(x+ 1, λ) + (C − λk+1 − µ)Lt(x, λ) + µLt(x− 1, λ)
∂

∂λr
Lt+1(x, λ) =λk+1

∂

∂λr
Lt(x+ 1, λ) + (C − λk+1 − µ)

∂

∂λr
Lt(x, λ) + µ

∂

∂λr
Lt(x− 1, λ)

∂2

∂λ2
r

Lt+1(x, λ) =λk+1
∂2

∂λ2
r

Lt(x+ 1, λ) + (C − λk+1 − µ)
∂2

∂λ2
r

Lt(x, λ) + µ
∂2

∂λ2
r

Lt(x− 1, λ)

By assumption (13) ⇒ ∂
∂λr

Lt+1(x, λ) ≥ 0 and ∂2

∂λ2
r
Lt+1(x, λ) ≥ 0 for ∀1 ≤ r ≤ n. Therefore the

theorem also holds for t+ 1 and λr with r < k + 1.
Hence the theorem is true for t+ 1 and by induction Theorem 6.5 holds for ∀t, x ∈ N.

Now we are ready to prove that the mean queue length is convex in η = (η1, η2, . . . , ηn). Since by
Theorem 6.5 the mean queue length is convex in λ and λk = ξk + ηk

∆x is linear in ηk for ∀k ∈ N, the
following lemma proves that Lt(x, λ) is convex in η.

Lemma 6.6. If g is convex and h a linear function then g(h(x)) is convex.

Proof. Suppose g is convex, i.e., αg(x) + (1− α)g(y) ≥ g(αx+ (1− α)y)
and h is linear, i.e., αh(x) + (1− α)h(y) = h(αx+ (1− α)y),
then αg(h(x)) + (1− α)g(h(y)) ≥ g(αh(x) + (1− α)h(y)) = g(h(αx+ (1− α)y))

In the same way it can be shown that since Lt(x, λ) is increasing in λ and λ = ξ+ η
∆x is increasing

in η, Lt(x, λ) is increasing in η.

Theorem 6.7. The mean queue length Lt(x, λ) is convex and increasing in η = (η1, η2, . . . , ηn).

We will now focus on the value function given in Definition 6.1. For simplicity the lambda indices
as given in the proof above are reversed in the value function. The situation is sketched in Figure
21.

Figure 21: The intervals with corresponding λ values.

In the value function we do not look at the small time steps 1
C , but only at time intervals of length

∆x = 1. Therefore, every C steps the mean queue length is calculated, so from now on LkC = Lk
for ∀k ∈ N. The lemmas and theorems given in this section hold for t = kC, so they can also be
used in this case. The value function in Definition 6.1 can be rewritten as:

Vn(x, η) =
n−1∑
i=1

1
2µ

(ηi + ηi+1)Li(x, λ) +
1

2µ
η1L0(x, λ) +

1
2µ
ηnLn(x, λ)

45

As we have shown, Lk(x, λ) depends only on λr with 1 ≤ r ≤ k. Therefore the partial derivatives
of the value function are given by:

For ∀x ∈ N and ∀k ∈ {1, . . . , n− 1}

∂

∂ηk
Vn(x, η) =

n−1∑
i=1

1
2µ

(ηi + ηi+1)
∂

∂ηk
Li(x, λ) +

1
2µ
Lk(x, λ) +

1
2µ
Lk−1(x, λ) +

1
2µ
ηn

∂

∂ηk
Ln(x, λ)

=
n−1∑
i=k

1
2µ

(ηi + ηi+1)
∂

∂ηk
Li(x, λ) +

1
2µ
Lk(x, λ) +

1
2µ
Lk−1(x, λ) +

1
2µ
ηn

∂

∂ηk
Ln(x, λ)

∂2

∂η2
k

Vn(x, η) =
n−1∑
i=k

1
2µ

(ηi + ηi+1)
∂2

∂η2
k

Li(x, λ) +
1
µ

∂

∂ηk
Lk(x, λ) +

1
2µ
ηn

∂2

∂η2
k

Ln(x, λ)

For ∀x ∈ N

∂

∂ηn
Vn(x, η) =

1
2µ
ηn

∂

∂ηn
Ln(x, λ) +

1
2µ
Ln(x, λ) +

1
2µ
Ln−1(x, λ)

∂2

∂η2
n

Vn(x, η) =
1

2µ
ηn

∂2

∂η2
n

Ln(x, λ) +
1
µ

∂

∂ηn
Ln(x, λ)

By Theorem 6.7 ∂
∂ηk

Li(x, λ) ≥ 0 and ∂2

∂η2
k
Li(x, λ) ≥ 0 for all 1 ≤ i, k ≤ n. Hence the value function

is convex and increasing in η.

Theorem 6.8. For an M/M/1 queue the value function defined in Definition 6.1 is convex and
increasing in η.

6.3.1 M/M/1/N queue

For an M/M/1 queue the mean queue length is convex in λ, as has been shown in the previous
paragraph. With some easy calculations given in Appendix B, it can be shown that this does not
hold for an M/M/1/N queue.

The mean queue length of an M/M/1/N queue is convex in the neighbourhood of the left bor-
der zero and concave at the right border N . In the value function, Lt is multiplied with η, this
reduces the concave property of Lt a little bit. Unfortunately the value function is still not convex
in the neighbourhood of N as can be seen in Figure 22.

Hence for an M/M/1/N queue the value function is not convex in η. When the road is long
enough, such that the road will never be fully occupied, there is no problem. There are some areas
where a junction is near to another junction, such that the road connecting these junctions can
be totally occupied during rush hours. In this case the queue will not stop growing, but develops
further at the roads connected to the last junction. Another argument for dealing with an M/M/1
queue is that the actions we will take do not change whether we are dealing with an M/M/1/N
or M/M/1 queue. When the queue is longer than a certain number of vehicles, X (smaller than
the the size of the road), the system will ask for longer green times. Therefore we will assume an
M/M/1 queue. Of course we do not have infinitely many states, but we will take N large enough

46

such that this upper state will never be reached. In this thesis N=150 if not stated otherwise, which
is large enough in most cases.

Figure 22: Value function for distributing 10 persons over 3 intervals with N = 150 and initial
state 149.

47

7 Local Search

In the previous section is shown that the value function in Definition 6.1 is convex in η, therefore
a local search algorithm will find the optimal schedule of the users. In this section the local search
algorithm is defined and results are discussed. The results will show that the calculation times of
the local search algorithm using the matrix approach can be long. Therefore some rough approxi-
mations of the mean queue length will be tested in this section, but first the value function will be
slightly modified such that it is better useable in reality.

The value function given in Definition 6.1 schedules relatively more people on the last time in-
terval as can be seen in Table 6. This is optimal since users on the last interval do not effect the
waiting times of the previous users. Therefore the value function works well if the time period ends
with low inflow rates, if the time period is a whole day from 5 am till 1 am for example. In this
case the relative high queue length at the end of the period does not matter, since there is very
little traffic on the road.

In practice only time ranges shorter or equal than an hour are used, since the predictions for
a time span longer than an hour are very uncertain and the calculation times will increase. In
the case of shorter time periods, putting more users on the last interval will effect the waiting
times of the users in the next period. This is especially the case for the time periods during rush
hours. Hence the initial queue length of the next period has to be taken into account in the value
function, therefore the term 1

µNnLn is added. In case of a longer interval the value function would
have continued with 1

2µηn+1Ln, since the value of ηn+1 is unknown, the number of users with latest
arrival interval n is used instead. The last queue length is important in the next time period since
also Ln+1 etc. depends on it, therefore 1

µ is used instead of 1
2µ .

This additional term includes the importance of a low queue length at the last interval to the
value function, i.e., the importance of a low initial state of the next period. With this adjustment
the value function and corresponding optimization problem becomes:

Definition 7.1. The optimization problem for multiple app users with multiple deadlines is given
by:

minimize
η

V (x, η) =
n∑
i=1

ηi
Li−1(x, λ) + Li(x, λ)

2µ
+

1
µ
NnLn(x, λ)

subject to
i∑

j=1

ηj ≥
i∑

k=1

Nk for ∀i ∈ {l, . . . , n}

i−l+1∑
j=1

ηj ≤
i∑

k=1

Nk for ∀i ∈ {l, . . . , n}

ηi ≥ 0 for i = 1, 2, . . . , n.

This value function is convex, since the addition Ln(x, λ) is convex in η (Theorem 6.7).
Therefore a local search algorithm is used to find the optimal schedule.

48

The local search algorithm in pseudo-code:

Take η an initial schedule
for i=1:n

if ηi > 0
for j=1:n and i 6= j

W=zeros(1,n)
W(i)=-1
W(j)=1
η′ = η +W
if η′ in solution space, then calculate the value of schedule η′

if Value η′< Value η then η = η′ and start again
else continue
end

end
end

end
end

The calculation time of the local search algorithm depends on the initial schedule. The initial
schedule can make a big difference, since the calculation of the value of a schedule over 12 inter-
vals of 2 minutes takes around 0.3 second (this is due to the matrix multiplications in the matrix
approach). The local search over this period with 10 deadlines and l = 3 with as initial solution
the optimal schedule, will already take around 20 seconds.9

Therefore, a good initial schedule should be chosen. In general the inflow should be spread as
much as possible, so an initial schedule should take this into account. The function

∑n
i=1 λ

2
i can be

used to find a schedule with spread inflow rates, with λi = ξi + ηi
∆x . This function is also convex in

λ, so the optimal schedule of this function will be used as initial schedule in the local search. Note
that this initial distribution does not take the initial value into account.

Although the local search is much faster with this initial distribution it is still too slow, in Section
7.1 will be shown that the calculation time can be larger than 10 minutes. Therefore, we will
consider some rough approximations of the mean queue length which are much faster than the
matrix approach described in Section 4.2.1. There are two fast approximations which will be used
to calculate the mean queue length:

• If the mean queue length is high enough, such that it will not hit zero in one time step, Lt+1

can be calculated by Lt+1 = Lt + λt+1 − µ.

• If λt < µ the mean queue length in steady-state is given by λt
µ−λt . If Lt is small enough and

λ does not fluctuate much over time, the steady-state formula can be used for Lt+1.

Between these two approximations there is a phase for which no fast approximation is available,
the matrix approach can be used in that case. Different combinations of the two approximations

9The calculations in this thesis are done in Matlab, so the calculation times can be different in other programming
languages.

49

and the matrix approach have been tested. Three combinations given by methods 2, 3 and 4 below
will be discussed in this section and compared to Method 1, the matrix approach. We will see that
the performance of the approximation will improve if the matrix approach is used on larger scale,
but then also the calculation time will increase.

Method 1: Matrix Approach for ∀t

Method 2: Lt =

max(Lt−1 + λt − µ, 0) if Lt−1 >

λt−1

µ−λt−1
+ 1

∨
λt−1 ≥ µ

∨
λt ≥ µ− 1

∧
Lt−1 ≥ 21

2µ

Matrix Approach if Lt−1 >
λt−1

µ−λt−1
+ 1

∨
λt−1 ≥ µ

∨
λt ≥ µ− 1

∧
Lt−1 < 21

2µ
λt

µ−λt otherwise

Method 3: Lt =

max(Lt−1 + λt − µ, 0) if Lt−1 > µ

∨
λt > µ∀t

Lt−1 + 0.4 if λt ∈ 〈µ− 1, µ− 1
2]
∧
Lt−1 ≤ µ

Lt−1 + 0.45 if λt ∈ 〈µ− 1
2 , µ]

∧
Lt−1 ≤ µ

λt
µ−λt otherwise

Method 4: Lt = max(Lt−1 + λt − µ, 0) for ∀t

Method 2 uses the fast approximations in the best way, Lt = max(Lt−1 +λt−µ, 0) is used when the
current queue length is large enough, Lt−1 > 2.5µ. Lt = λt

µ−λt is used when the current queue length

is small enough and the previous and current arrival rates are small enough, i.e., Lt−1 ≤ λt−1

µ−λt−1
+ 1

and λt−1 < µ and λt < µ− 1. In the other cases the matrix approach is used.

Method 3 does not use the matrix approach, only the fast approximations and two extra formulas
are used. The extra formulas are added to improve the connection between the two approxima-
tions. Without these two functions λt ∈ 〈µ− 1, µ〉 will lead to higher queue lengths than λt = µ if
Lt−1 < µ. Since in that case Lt is calculated by λt

µ−λt > µ for λt ∈ 〈µ− 1, µ〉 and by Lt = Lt−1 < µ
for λt = µ. With the two extra functions the queue length increases, when λt increases.
Since we are especially interested in overloaded systems only Lt = max(Lt−1 + λt − µ, 0) is used in
Method 4.

In Figure 23 the mean queue lengths calculated by Method 1, 2, 3 and 4 are shown for the four
scenarios defined in Section 2.3. For scenario high N has to be increased to 200, such that the
upper limit is not reached with a large probability in the matrix approach.

As can be seen in Figure 23, Method 2 (red graph) is the best approximation, but Method 3
performs also really well. As expected Method 4 is the worst approximation, in the low scenario it
stays zero all the time since λt < µ for all t. Based on these results we can conclude that the per-
formance of the approximation increases when the matrix approach is more often used. However,
due to more use of the matrix approach the calculation time will also increase, as can be seen in
Table 7. The calculation times of Method 3 and 4 are steady and very low, since they do not use
the matrix approach.

50

Figure 23: The mean queue lengths of Method 1 (green), Method 2 (red), Method 3 (blue) and
Method 4 (yellow) over time for the four scenarios described in Section 2.3. From left to right from
top to bottom scenarios: high, medium, low and peak. The mean queue lengths are calculated
every 5 minutes.

Scenario Method 1 Method 2 Method 3 Method 4
high 5.38864 1.28901 0.00004 0.00001
medium 2.83328 0.66927 0.00004 0.00001
low 2.25079 0.47554 0.00004 0.00001
peak 1.86006 0.58491 0.00004 0.00001

Table 7: Calculation times of the four methods for the four scenarios, where the mean queue length
is calculated in intervals of 5 minutes.

7.1 Local search results of the four methods

The two rough approximations Lt−1 + λt−µ and λt
µ−λt are both convex in λt, but the combination

of these approximations is not convex. A simple example that support this:

51

Take µ = 12 and x < µ = 12 the queue length at time t. Let λ1 = 10 and λ2 = 12 then ac-
cording to Method 3 1

2(Lt+1(x, λ1) + Lt+1(x, λ2)) = 1
2(5 + x+ 0.45) ≤ Lt+1(x, 1

2(λ1 + λ2)) = 11.

Therefore Method 3 is not convex, it can also be shown that Method 2 is not convex. How-
ever, Method 4 is convex, since it is not a combination of the approximations, but only uses
Lt = Lt−1 + λt − µ. For Method 2 and 3 a different search method could be used such that the
algorithm does not get trapped in a local minimum. For Method 2 this will not be useful, since the
calculation time of for example a genetic algorithm will often be longer than the calculation time
of Method 1. For Method 3 the solutions found by the local search algorithm are already really
good. Since we are especially interested in overloaded systems (Lt > µ) and in that case Method
3 is convex, we will also use the local search algorithm for Method 3.

The optimal schedules found by the local search algorithm will be shown for the four different
methods. Some results are given in the tables below, more optimal schedules can be found in
Appendix C. In these results 10 consecutive arrival intervals have been used with l = 3 and the
interval length to schedule a user is ∆x = ∆t = 2. The length of the fixed arrival rates is ∆T = 10,
so for the fixed total inflow Λ = (Λ1,Λ2,Λ3) the situation is as sketched below:

Figure 24: Graphical representation of the inflow rates per interval

Let σ be the fraction of citizens that use the app. The inflow of non app users ξ should be
adapted to the value of σ, for example if the fixed total inflow is Λ = (12, 10, 8) and σ = 1/4, then
ξ = (1 − σ)Λ = (9, 7.5, 6)10. The new total inflow per interval in vehicles per minute used in the
Methods is given by λ = ξ + η

∆x .

In the tables the number of users per latest arrival interval Ni are given. For the four differ-
ent methods the optimal schedules η found by the local search algorithm and the calculation times
are presented. The value of the schedules given in the tables are calculated using only the matrix
approach, Method 1.

i = 10, Λ = (12, 10, 8) and σ = 1/2
Ni 0 0 13 12 10 11 11 10 9 9 7 8

Method Schedule Time Value
1 3 10 8 8 8 9 11 10 9 9 7 8 129.94 39.16
2 7 8 8 8 8 9 9 10 9 9 8 7 1.39 40.63
3 7 8 8 8 8 9 9 10 9 9 8 7 0.24 40.63
4 1 15 7 7 7 10 10 10 9 9 7 8 0.15 40.28

10Note that ξ = (9, 7.5, 6) is a short notation for ξ = (9, . . . , 9, 7.5, . . . , 7.5, 6, . . . , 6), the inflow of non app users per
interval.

52

i = 20, Λ = (14, 10, 8) and σ = 1
Ni 0 0 28 28 26 21 21 20 20 20 17 16

Method Schedule Time Value
1 3 23 19 20 19 20 20 20 20 20 17 16 74.99 81.99
2 3 24 23 19 19 19 19 19 19 20 17 16 44.32 85.47
3 4 28 19 19 19 19 19 19 19 19 17 16 0.65 88.30
4 3 35 18 18 18 18 18 18 19 19 17 16 0.62 103.84

i = 5, Λ = (10, 10, 10) and σ = 1/4
Ni 0 0 6 5 4 5 4 4 3 5 5 7

Method Schedule Time Value
1 3 5 4 4 4 4 4 4 4 4 5 3 138.52 17.28
2 4 4 4 4 4 4 4 4 4 4 5 3 0.70 17.32
3 4 4 4 4 4 4 4 4 4 4 5 3 0.26 17.32
4 0 8 4 4 4 4 4 4 4 4 4 4 0.32 17.67

i = 20, Λ = (12, 12, 12) and σ = 1/2
Ni 0 0 11 12 13 13 12 10 11 14 12 12

Method Schedule Time Value
1 0 9 11 10 10 10 11 10 11 14 12 12 633.81 120.42
2 1 11 8 11 6 20 11 6 13 9 12 12 1047.99 129.25
3 0 13 13 4 19 0 12 11 11 13 12 12 0.62 126.24
4 0 3 19 12 11 11 12 11 11 10 10 10 0.41 138.71

Calculation time
The calculation times of Method 3 and 4 are very low, as can be seen in the tables. When the mean
queue length is low, the matrix approach is not or little used in Method 2, then the calculation
time of Method 2 is also low. If the mean queue length increases the calculation time of Method 2
is significantly longer than the calculation time of Method 3 and 4. In most cases the calculation
time of Method 2 is lower than the calculation time of Method 1, but their are exceptions as can
be seen in the last table. This is probably due to non-convexity of Method 2.

Performance
As expected we see that the worst schedules are usually found by Method 4, while Method 2 and
3 give the best schedules overall. In most cases the values of Method 3 are very good compared to
the optimal values of Method 1. In many parameter settings Method 3 give the same or a better
schedule than Method 2. (Due to non-convexity of Method 2 and 3 it is possible that Method 3
gives a better schedule than Method 2.) It can also happen that Method 4 gives the best schedule,
as shown in the first table. (This is very rare and is also due to non-convexity of Method 2 and 3.)

53

Conclusion
To summarize, Method 3 has an optimal ratio between performance and calculation time. The
schedules do not differ much from the optimal schedules found by Method 1 and the calculation
times are very low. Therefore Method 3 is a good method and will be used in the remaining of this
thesis.

If there is more time available to find a schedule, a combination of Method 3 with the other
methods can also be used.

• The optimal schedules found by Method 3 and Method 4 are compared and the best schedule
is used.

• Another option is to include Method 1 and 2. If the calculation time can be at most T , then
the schedules found by method 1 and 2 at time T can also be taken into account. The best
schedule found by Method 1, 2, 3 or 4 is used.

7.2 Mean queue length for different fractions of users

When few residents use the app, distributing the users over time has little effect on the queue
lengths at traffic lights. The more residents use the app, the more influence the app will have on
the queue lengths. In this section different fractions of app users will be distributed over time to
see the effect on the mean queue length. Since the users are distributed with as goal to minimize
the waiting times of the users, we suspect that the total mean queue length will decrease.

The optimal schedules are calculated for the scenarios described in Section 2.3, Method 3 is used
for the calculations. In Figure 25 the mean queue lengths for the optimal schedules are shown for
scenarios high for different σ values. As can be seen the mean queue length decreases when more
people use the app. Furthermore the number of intervals l in which a user can be scheduled has
influence on the mean queue length. If the users can be distributed over a larger time period the
mean queue length will decrease, as can be seen in Figure 25.

Figure 25: Mean queue lengths for optimal schedules of scenario high with σ values 0 (green graph),
1/4 (blue graph), 1/2 (red graph), 3/4 (yellow graph) and 1 (black graph). In the left figure users
can be scheduled in 3 intervals of 2 minutes and in the right figure in 5 intervals.

54

When the users can be scheduled in many intervals, the inflow will be spread such that the inflow
is evenly distributed over time. In reality many citizens want to depart in the same period, to be
on time for work for example. Due to the constraints of scheduling all users on time but not too
late, a peak in the inflow will still exist during these rush hours. This can also be seen in scenario
high, the peak in the mean queue length will decrease but does not disappear entirely.

In Figure 26 the queue length in time is shown for scenario peak for different values of σ and
l. Since the peak of the queue length is much lower in this scenario, the peak disappears when 3/4
of the citizens use the app and l = 5.

Figure 26: Mean queue lengths for the optimal schedule of scenario peak with σ values 0 (green
graph), 1/4 (blue graph), 1/2 (red graph), 3/4 (yellow graph) and 1 (black graph). In the left figure
users can be scheduled in 3 intervals of length 2 and in 5 intervals in the right picture.

For l = 3 the mean queue length does not improve by increasing σ > 2/4, this is due to the fact
that all users have to be on time out of the queue. The latest arrival intervals of the deadlines
during the peak are all within a small period, as shown in Figure 27. Since all users have to be on
time, more users have to be scheduled in this small time period when σ increases. By increasing
the number of distribution intervals l, we increase the period in which users can be scheduled which
solves the problem.

Figure 27: Latest arrival intervals of the deadlines during the peak are all within a small interval.

55

8 Departure advice for multiple app users

To make a schedule as done in the previous section, we need the latest arrival interval per user.
Furthermore a decision have to be made about which route a user has to take, via traffic light
1, 2, . . . , S. This section is about all the calculations that have to be done before the users can be
distributed over the time slots at a traffic light. In the last paragraph all calculations will be put
together into one algorithm.

8.1 Latest arrival intervals

To be able to schedule the users as have been done in the previous section we have to know the
latest arrival interval AD per deadline D. Users which are scheduled before or at interval AD will be
with a pre-set confidence level on time out of the queue, before D. We define A = (A1, A2, . . . , An)
with Ai the latest arrival interval of deadline i and N = (N1, . . . , Nn) with Ni the number of users
with latest arrival interval i. Ni can be calculated by summing the users of the deadlines which
have i as latest arrival interval.

It is difficult to fix the latest arrival intervals, since they will change when the schedule changes.
Therefore we have to recalculate the latest arrival intervals when a new schedule is found. The al-
gorithm to find the optimal schedule, which includes the method to find the latest arrival intervals,
consist of the following steps:

1. Calculate the latest arrival interval with the intersection method for all deadlines A without
users scheduled, N = 0.

2. Add every user to the right latest arrival interval, this gives a new N .

3. Calculate the optimal schedule with the local search algorithm, use N as in step 2.

4. Calculate the latest arrival intervals A with the intersection method, by taking into account
the schedule found in step 3.

5. Repeat step 2, 3 and 4 until the latest arrival intervals, A, are the same as in the previous
iteration.

To add every user to the right latest arrival interval, we will need the deadline per user. These are
stored in the vector Deadline with on element i the deadline of user i. Next to the non app users
ξ and the app users we have to schedule, there are also fixed scheduled app users γ. These users
already got a departure sign, but still have to arrive at the queue. γ = (γ1, . . . , γn) is the schedule
of fixed scheduled app users, with γi the number of fixed scheduled users that will arrive during
interval i.

With the intersection method as shown in Figure 17, the latest arrival intervals per deadline A
are calculated. The confidence bound used in this methods is calculated by the matrix approach,
therefore we need the total inflow λ in vehicles per minute per interval. This inflow λ is calculated
by the sum of the inflow of the non app users ξ, the fixed scheduled users γ, and the scheduled
users η. Since γ and η are the number of scheduled users per interval, they should be divided by
the interval length ∆x to get the number of vehicles per minute.

56

The pseudo code of the algorithm to find the optimal schedule is given by:

N’=0
repeat

N=N’
Calculate the optimal schedule with N
Output: Schedule η

for i=1:n
λ(i)=ξ(i)+γ(i)/∆x+η(i)/∆x

end
Calculate A by the intersection method with λ as defined above

for i=Users
N’(A(Deadline(i,1)))=N’(A(Deadline(i,1)))+1

end

until N’=N

The pseudo code to calculate the optimal schedule is left out, since this is discussed in detail in the
previous sections. (The pseudo code of the local search algorithm is given in Section 7.) If N = N ′,
then the latest arrival intervals do not change anymore and the optimal schedule is found.

Note that the algorithm can be trapped in an infinite loop of repeating A values. In that case
the vector A, of the repeating vectors, with in total the lowest arrival intervals is chosen. After
ten iterations the algorithm is stopped, since the A values will not change that much anymore and
to fasten the algorithm. From the last five vectors, the vector A with in total the lowest arrival
intervals is chosen.

8.2 Distribution over the routes

In most neighbourhoods there are multiple routes out of the residential area, the user could take
the route via traffic light 1, 2, . . . , S. For example in IJburg there are two routes, so the last step
is to divide the users over the traffic lights. The users are divided in almost the same way as in
the single user case, based on the latest arrival intervals and the travel times. Due to the increase
in calculation time we do not want to include the distribution over the traffic lights into the local
search algorithm. Therefore, the distribution of the users over the traffic lights has to be done
before the users are scheduled in a time slot at a traffic light.

8.2.1 Algorithm

The algorithm to distribute all users which have a deadline in interval Y over the traffic lights
will be described in this subsection. The length of prediction interval Y will be set in the next
paragraph. First some parameters and input variables are defined.

57

To distribute the users over the traffic lights the deadlines of every user at every traffic light are
needed. These deadlines are stored in the matrix Deadline with the users in the rows and in the
first column the deadlines of queue 1, in the second column the deadlines of queue 2 etc. Hence
Deadline(i, 1) gives the deadline of user i at queue 1.
We also have to know the travel times from the origin to the traffic lights. Since small roads do
not contain loops, there is no data available to measure the travel times in most residential areas.11

Therefore the travel time is calculated by the free-flow travel time, for more information see Ap-
pendix D2. These fixed travel times from the origin to the queues are stored in the matrix t in the
same way as the deadlines, so t(i, 1) is the travel time from the origin to queue 1 for user i.

There is an upper bound on the waiting time at a traffic light. Most of the time this upper
bound can be derived from historical data, if this data is not available the state limit N can be
used. N is chosen such that it will never be reached, therefore the upper waiting time can be
calculated by N/µ. The maximum waiting time can be calculated for all traffic light 1, 2, . . . , S and
the maximum waiting time of the system is Wmax = max(Wmax

1 , . . . ,Wmax
S).

Some users are scheduled immediately at a traffic light, due to one of the following causes:

1. For some users there is a route which has obviously the shortest travel time. If the detours of
the other routes are large enough this route is automatically chosen. The difference in travel
time between the optimal route and the other routes should be more than Wmax minutes,
then the user is immediately scheduled at the route with the shortest travel time.

2. Users which are already scheduled in a previous calculation and the departure messages for
the not chosen routes should already be sent. In the current calculation there is no choice
anymore the user is automatically scheduled on the same route and traffic light as in the
previous calculation.

The users which are not immediately scheduled will be distributed based on the latest arrival in-
tervals per queue and the travel times t. The latest arrival intervals per deadline of queue 1 are
stored in the vector A1. The departure time for user i for the route via traffic light 1 is calculated
by A1(Deadline(i, 1)) − t(i, 1). The same calculations can be done for the routes via traffic light
2, 3, . . . , S. The route with the latest departure time will be advised by the app and the user will
be assigned to the traffic light corresponding to this route.

The latest arrival intervals have to be calculated in the same way as described in the previous
section, only there are now multiple queues instead of one. If the number of users that are sched-
uled at in an interval changes the latest arrival intervals can also change. Therefore we have to
update the latest arrival intervals if the distribution of the users over the traffic lights changes.
When the latest arrival intervals do not change anymore, the departure times from the origin also
stay the same, so then the optimal distribution over the traffic lights has been found.

For two traffic lights (S = 2) the pseudo code of the algorithm is given below. Users which
have a deadline in interval Y are stored in the vector Users and the immediately scheduled users
are stored in UsersScheduled. The fixed scheduled users per interval at queue 1 and queue 2 are
given by γ1 and γ2. The inflow of non app users at queue 1 and queue 2 are ξ1 and ξ2, respectively.

11This is also the case for the neighbourhood IJburg.

58

Define immediately scheduled users due to cause 1
for i= Users

if |Deadline(i,1)-t(i,1)-Deadline(i,2)+t(i,2)|>W max

if Deadline(i,1)-t(i,1)>Deadline(i,2)-t(i,2)
i ∈ UsersScheduled1

else i ∈ UsersScheduled2
end

end
end

Users=Users \ (UsersSchedule1 ∪ UsersScheduled2)

N1’=0
N2’=0
repeat

N1=N1’
N2=N2’

Calculate latest arrival intervals
Calculate the optimal schedule at queue 1 with N1
Output: Schedule η1

for i=1:n
λ1(i)=ξ1(i)+γ1(i)/∆x+η1(i)/∆x

end
Calculate A1 with the intersection method with λ1 as defined above

Calculate the optimal schedule at queue 2 with N2
Output: Schedule η2

for i=1:n
λ2(i)=ξ2(i)+γ2(i)/∆x+η2(i)/∆x

end
Calculate A2 with the intersection method with λ2 as defined above

Divide the users over the traffic lights.
for i=Users

if A1(Deadline(i,1))-t(i,1)>A2(Deadline(i,2))-t(i,2)
N1’(A1(Deadline(i,1)))=N1’(A1(Deadline(i,1)))+1

else N2’(A2(Deadline(i,2)))=N2’(A2(Deadline(i,2)))+1
end

end

for i=UsersScheduled1
if A1(Deadline(i,1)) in interval Y

59

N1’(A1(Deadline(i,1)))=N1’(A1(Deadline(i,1)))+1
end

end

for i=UsersScheduled2
if A2(Deadline(i,2)) in interval Y

N2’(A2(Deadline(i,2)))=N2’(A2(Deadline(i,2)))+1
end

end
until N1’=N1 and N2’=N2

Define the users per queue and the immediately scheduled users due to cause 2
for j=Users

if A1(Deadline(j,1))-t(j,1)>A2(Deadline(j,2))-t(j,2)
j ∈ UsersQ1
if A2(Deadline(j,2))-t(j,2)<InfoTime+RunTime

j ∈ UsersScheduled1
end

else j ∈ UsersQ2;
if A1(Deadline(j,1))-t(j,1)<InfoTime+RunTime

j ∈ UsersScheduled2
end

end
end

UsersQ1= UsersQ1 ∪ UsersScheduled1
UsersQ2= UsersQ2 ∪ UsersScheduled2

Here InfoT ime is the number of intervals that is needed to inform a user 5 minutes before depar-
ture and RunTime is the time between two calculation times.

As can be seen in the code the immediately scheduled users are separated from the normal users
before starting the algorithm of distributing the users over the traffic lights. After the algorithm
the users which are immediately scheduled (in the next calculation) due to cause 2 are added
to UsersScheduled. As output of this algorithm the users per queue are known, UsersQ1 and
UsersQ2, and the number of users per latest arrival interval, N1 and N2. Thus now the optimal
schedule per queue can be made.

Just as in the previous paragraph the algorithm can be trapped in an infinite loop of repeat-
ing N1 and N2 values. In that case we take the combination of latest arrival intervals of queue 1
and 2 (A1 and A2) with in total the lowest values. To fasten the algorithm the loop is also stopped
after ten iterations. In that case the combination with in total the lowest arrival intervals is chosen
from the last five pairs of A1 and A2.

60

8.2.2 Length prediction interval Y

The users that have a deadline in a certain prediction interval Y will be distributed over the traffic
lights as shown in the previous section. But how large should this interval Y be?

When a user i has a deadline in the interval and is not immediately scheduled, then ∃j, k ∈
{1, 2, . . . , S} such that

|Deadline(i, j)− t(i, j)−Deadline(i, k) + t(i, k)| < Wmax

⇒ |Deadline(i, j)−Deadline(i, k)| < Wmax + tmaxi with tmaxi = max t(i, :).

In this case the latest arrival intervals of both queues j and k have to be known to schedule the
user at one queue. Therefore the deadlines of both queues should be together in interval Y at a
calculation time. Hence the interval should be larger than Wmax + tmax + ∆k minutes, where ∆k
is the time between two calculation times.

The user has to be informed about the approaching departure, therefore the app will give a warn-
ing signal 5 minutes before departure. By adding the maximum waiting time and travel time, the
information time is at most 5 + Wmax + tmax minutes. Therefore interval Y should at least be
5 + Wmax + tmax + Wmax + tmax + ∆k = 2Wmax + 2tmax + ∆k + 5 minutes. It can happen that
this is longer than 60 minutes, that is not desirable since predictions for a time span longer than
an hour are very uncertain. Therefore the length of Interval Y will be at most 60 minutes.

Figure 28: Length of interval Y .

For the users which have a deadline in interval Y but are not immediately scheduled, it can hap-
pen that the deadline of one traffic light lies outside interval Y . This deadline will be at most
Wmax + tmax minutes later than the deadlines in interval Y . By also calculating the latest arrival
intervals of the deadlines in the extra interval in Figure 28, all app users with a deadline in interval
Y can be divided. The waiting times outside interval Y can still increase, therefore the division of
these users is temporarily.

Hence if the difference between the deadlines is smaller than Wmax + tmax minutes, the dead-
lines should be together in interval Y at some calculation time, to schedule it definitely. The extra
interval is only used to distribute the users in interval Y over the traffic lights, i.e., for this interval
only the latest arrival intervals are calculated.

The length of prediction interval Y given in this section is an advice. If the interval is larger
fluctuations in inflow rates can be observed earlier and the algorithm can react better on this

61

change. For high fluctuations in inflow rates it is therefore useful to take a larger prediction inter-
val to schedule the users. Most of the time interval Y will be chosen between 30 and 60 minutes
and the extra interval between 15 and 30 minutes.

8.3 Total Algorithm

All separate parts are now developed, the only step left is to put everything together into one
algorithm. Before the total algorithm will be given first the input and output variables are discussed.

8.3.1 Input

The app distracts the preferred arrival time at the destination from the agenda of the user. The
travel times from the traffic lights to the destination are calculated by a travel time forecasting
model and are assumed to be given as input. The deadline at a traffic light is based on the travel
time from the traffic light to the destination, such that the user is on time at the destination. These
travel times are updated every τ minutes, so every τ minutes the deadlines are also updated by:

Deadline=Prefered Arrival Time - Travel Time (traffic light to destination)

Also the travel times from the origin to the traffic lights have to be known. Most of the time there is
no data available of the roads in a residential area, therefore these travel times are fixed calculated
by the free-flow travel time (see Appendix D2 for more information).

First we will assume that all travel times are fixed, calculated by the free-flow travel time. With
this assumption the deadlines at traffic lights 1, 2, . . . , S are also fixed. In a later stadium of the
app the travel times will change every τ minutes, so then the deadlines will be updated at every
calculation time.

Because the current time is t = 0, the parameters should adapt to this current time. For ex-
ample, in the case of fixed travel times, at every calculation the deadlines should be adapted to the
current time by distracting the number of intervals between two calculations, NIntervalRun. Also
the right arrival rates ξ should be selected.

8.3.2 Output

Five minutes before departure the app should give a warning signal and the route the user has to
follow. To accomplish this the algorithm has to be determine which users should get a sign in the
next period of length ∆k. Hence these are the users which departure times are less than 5 + ∆k
minutes away. The users which have to be informed, the departure times and corresponding routes
are all stored in the matrix TimeUsers. This matrix is the output of the algorithm after each
calculation, with in the first column the users that should get a sign, in the second column the
departure times and in the last column the route via traffic light 1, 2, . . . , S − 1 or S.

The informed users are fixed scheduled at an interval at a traffic light, let γ1i be the number
of users which are fixed scheduled at interval i at queue 1 and γ1 = (γ11, . . . , γ1n). These users
will arrive at traffic light 1, but we can not change the arrival intervals any more. For γ2, . . . γS
the same definition hold for queue 1, . . . , S, respectively.

62

Let UsersGone be the users which already got a departure sign. These users should not be taken
into account in the current calculation.

8.3.3 Algorithm

We distinguish the following parts in our model:

Part

1. First the parameters and deadlines have to be set and the users that have a deadline in
prediction interval Y have to be selected.

2. The fixed scheduled users have to be removed and the immediately scheduled users have to
be separated from the normal users. Then the users can be distributed over the traffic lights.

3. From Part 2 the users are divided over the traffic lights and per traffic light the latest arrival
intervals per deadline are known. Therefore a schedule per traffic light can be made.

4. The users that get a departure sign in the next period are selected, also the corresponding
departure times and routes are given.

5. The already scheduled users are updated for the next calculation time.

Below the algorithm is given in pseudo code for the case of two traffic lights. The code of part 2
and 3 are left out, since the code of Part 2 can be found in Section 8.2.1 and the calculation of a
schedule by the local search algorithm is discussed in detail in the previous sections and a part of
the pseudo code can be found in Section 8.1.

NInterval is the number of intervals in interval Y and NIntervalTotal is the number of intervals in
interval Y + extra.

Part 1
ξ1=ξTotal1(CurrentInterval:CurrentInterval+NIntervalTotal-1)
ξ2=ξTotal2(CurrentInterval:CurrentInterval+NIntervalTotal-1)

Deadline(:,1)=Deadline(:,1)-NIntervalRun
Deadline(:,2)=Deadline(:,2)-NIntervalRun

Users1=find(Deadline(:,1) ≤ NInterval)
Users2=find(Deadline(:,2) ≤ NInterval)
Users=(Users1 ∪ Users2) \ UsersGone

Part 2: See Section 8.2.1
Users are distributed over the traffic lights
Output: N1, N2, UsersQ1, UsersQ2

Part 3: See Section 8.1

63

Find the optimal schedule at queue 1 for UsersQ1 with N1
Output: Schedule η1

Find the optimal schedule at queue 2 for UsersQ2 with N2
Output: Schedule η2

Part 4
% queue 1
SortUsers1=Sort the UsersQ1 in increasing order of their deadline at queue 1

r=0
b=0
for j=find(η1>0)

for i=1:η1(j)
b=b+1;
if j-t(SortUsers1(b),1)-1<=InfoTime+RunTime

TimeUsers(r,1)=SortUsers1(b)
TimeUsers(r,2)=CurrentInterval+j-t(SortUsers1(b),1)
TimeUsers(r,3)=A
γ1(j)=γ1(j)+1

end
end
if j>tmax+NIntervalInfoTime+NIntervalRun

break
end

end

% queue 2
SortUsers2=Sort the UsersQ2 in increasing order of their deadline at queue 2.

b=0;
for j=find(η2>0)

for i=1:η2(j)
b=b+1;
if j-t(SortUsers2(b),2)-1<=InfoTime+RunTime

TimeUsers(r,1)=SortUsers2(b)
TimeUsers(r,2)=CurrentInterval-1+j-t(SortUsers2(b),2)
TimeUsers(r,3)=B
γ2(j)=γ2(j)+1

end
end
if j>tmax+NIntervalInfoTime+NIntervalRun

break
end

end

64

Part 5
UsersGone=UsersGone ∪ TimeUsers(:,1)

γ1’(1:NInterval-NIntervalRun)=γ1(NIntervalRun+1:NInterval)
γ2’(1:NInterval-NIntervalRun)=γ2(NIntervalRun+1:NInterval)
γ1=γ1’
γ2=γ2’

UsersScheduled1= UsersScheduled1 \ UsersGone
UsersScheduled2= UsersScheduled2 \ UsersGone

CurrentInterval=CurrentInterval+NIntervalRun

65

9 Experimental results

Since the pilot has not been started yet when this thesis was finished, there are no results from the
pilot to discuss. Therefore the algorithm is tested in a simulation, where of the results are discussed
in this section.

In the beginning of the thesis we assumed exponential departure and arrival rates, such that the
knowledge of M/M/1 queues could be used. In reality the departure times are not exponential dis-
tributed, but more deterministic. Therefore our model is tested in a simulation with deterministic
departure times.

First some results of the mean queue length are discussed for both exponential and determinis-
tic departure times.

9.1 Mean queue length

We have developed many different methods to calculate the mean queue length. In this section we
will compare the queue lengths calculated by these methods to the mean queue lengths found by
simulation.

In the left picture of Figure 29 the queue length is shown for 1000 simulations of scenario medium
defined in Section 2.3. In this simulation we assumed exponential departure times. The variation
of the queue length per simulation is very large, this is also visible in the standard deviation of the
queue length in the right picture of Figure 29.

Figure 29: For scenario medium the queue length of 1000 simulations are shown in the left picture
and in the right picture the mean queue length (black graph) and standard deviation (blue graph)
in time are given. The departure times are exponential distributed in this simulation.

In Figure 30 the same output is shown for 1000 simulations with deterministic departure times.
Figure 30 looks similar to Figure 29, only both the mean queue length and standard deviation are
a bit lower than in the exponential departure case. These differences are caused by the fluctuations
in the number of departures per minute in the exponential case. In the deterministic case every
minute µ vehicles will depart, but in the exponential case the departure times fluctuate a lot with

66

as mean µ departures per minute. If one departure time is very long, this has effect on the queue
length.

Figure 30: For scenario medium the queue length of 1000 simulations with deterministic departure
times are shown in the left picture. In the right picture the mean queue length (black graph) and
standard deviation (blue graph) in time are shown.

The developed methods to calculate the time-dependent queue length distribution and the mean
queue length are based on M/M/1 queues. Since there is a difference in the mean queue lengths of
systems with exponential and deterministic departure times, we have to know how this effects the
performance of the developed methods.

Figure 31: The striped graphs represent the mean queue lengths in time found by simulations with
exponential departure times. In the left figure the mean queue lengths in time calculated by the the
matrix approach (solid graphs) are shown and in the right figure the mean queue lengths calculated
by Method 3 (solid graphs).

In the left graph of Figure 31 can be seen that the mean queue lengths found by the matrix approach
are almost equal to the simulated mean queue lengths with exponential departure times. There-
fore, the matrix approach is very accurate in forecasting the mean queue length when the departure
times are exponentially distributed. Method 3 approximates the mean queue length really well as
shown in the right figure, only in the medium scenario the mean queue length is underestimated.

67

In Figure 32 the simulation results of the deterministic departure times are compared with the
mean queue lengths of the matrix approach and Method 3. For all scenarios the mean queue
lengths found by the matrix approach are higher than the simulated mean queue lengths, this con-
firms the results found in Figure 29 and 30. The mean queue lengths of Method 3 are close to the
simulated results. Only for the high scenario, there is a small difference between Method 3 and the
simulated mean queue length.

Figure 32: The striped graphs represent the mean queue lengths in time calculated by simulations
with deterministic departure times. In the left figure the mean queue length in time calculated
by the the matrix approach (solid graphs) is shown and in the right figure the mean queue length
calculated by Method 3 (solid graphs).

Hence, Method 3 provides good approximations of the mean queue length of a queue with deter-
ministic departure times. The matrix approach overestimates the mean queue length a little bit.
Since the matrix approach is used to calculate the confidence bound, this overestimation ensures
that more than 1−α fraction of the users will be on time out of the queue. Therefore, both Method
3 and the matrix approach perform well in the real case of deterministic departure times.

9.2 One queue

We will first test the algorithm, given in Section 8.3, on one queue to measure the effect of dis-
tributing the users over time. In the next paragraph, the dynamics of distributing the users over
the two queues are included.

The algorithm is used on the scenarios described in Section 2.3. We used intervals of length ∆x = 2
and every ∆k = 6 minutes the algorithm is calculated. Every set of parameters is simulated 50
times. The mean queue lengths of the simulations of the different scenarios for different fractions
of users are given in Figure 33.

When the fraction of citizens using the app increases, the mean queue length decreases in the
medium, low and peak scenario. In the low scenario the queue length is already low without dis-
tributing the road users. Hence, distributing a small fraction of users over l = 3 intervals can
already spread the inflow. Therefore the queue length decreases the most from σ = 0 to σ = 1/4.

68

Figure 33: Mean queue lengths for the different scenarios and different σ values. From left to right
from top to bottom scenario high (l = 5), medium (l = 5), low (l = 3) and peak (l = 3).

For the medium scenario the mean queue length decreases a lot for σ = 1/4 and σ = 2/4, but for
σ = 3/4 the mean queue length stays almost the same as can be seen in Figure 33. This is due to
the fact that all users should arrive on time, but not too early at the destination. Therefore, the
users have to be scheduled in the l intervals before or at their latest arrival interval. The latest
arrival intervals of the deadlines during the peak of inflow are all within a small period, as shown
in Figure 34. Since all users have to be on time, more users have to be scheduled in this small time
period when the σ value increases. (Because for σ = 3/4 much more users have to be scheduled
than for σ = 1/4.) Therefore the mean queue length will not always improve, when σ increases and
l stays the same. By increasing the distributing intervals l we increase the period in which users
can be scheduled which solves the problem, as can be seen in Table 9 and Figure 35.

Figure 34: The latest arrival intervals of the deadlines during the peak are within a small interval.

69

In scenarios high and medium we took l = 5 and for scenarios low and peak l = 3, since scenarios
with a higher queue length need more distributing space to lower the mean queue length. For
scenarios peak and medium the optimal schedules are also calculated by distributing the users over
more intervals, the results are shown in Figure 35. For all the fractions the mean queue lengths
decreased compared to the lower l values in Figure 33. Since there is now enough space to schedule
the users, all users will be on time and still the mean queue length will decrease when the fraction
of users increases. This shows that when both the mean queue length and the fraction of users is
high, more space should be given to schedule the users to ensure that the mean queue length will
decrease. Of course the number of intervals can not be too large, otherwise the users will be too
early at their destination. Since we have to distribute the users bounded by the constraints of l
distributing intervals, not all congestions can be removed completely.

Figure 35: Mean queue lengths for the optimal schedules for the scenario medium (l = 7) and peak
(l = 5) for different fractions of users.

For the high scenario a different pattern is seen in Figure 33. By raising the fractions of users the
peak becomes steeper and shifts to the left. This is due to the fact that all user have to be on
time, therefore many users have to arrive in a smaller area earlier in time. Increasing the number
of distributing intervals l has to eliminate this problem.
Another option is to increase the prediction interval, such that the algorithm can react earlier on
the increase in inflow. In Figure 33 the prediction interval of scenarios low and peak is 30 minutes,
for medium 40 minutes and for scenario high 50 minutes. If the prediction interval of scenario high
increases to 60 minutes the mean queue length will decrease as shown in Figure 36. In this case
the waiting time per app user will also decrease from 4.49 (σ = 1/4) to 4.41 (σ = 2/4) until 3.83
(σ = 3/4).

In Table 9 the results of the simulations are summarized. Since the waiting times are related to the
mean queue lengths the same results are seen as discussed above. The higher the fractions and the
more distributing intervals l, the lower the waiting times. We have seen that for some fractions the
mean queue lengths and waiting times do not improve, due to the fact that everyone has to be on
time out of the queue. We used a confidence level of 1− α = 0.90 to ensure that 90% of the users
is on time. The results in Table 9 show that this goal is more than achieved. This is because users
are not only scheduled at their latest arrival interval, but also on the l − 1 intervals before.

70

Figure 36: Scenario high with prediction interval of 60 minutes.

Waiting time number users number users
Scenario σ l per user on time too late

Peak 0.25 3 0.3656 391.1 8.7
0.50 3 0.3158 691.7 14.4
0.75 3 0.2687 1055.7 26.2

Peak 0.25 5 0.2930 392.1 8.1
0.50 5 0.2423 694.1 13.1
0.75 5 0.2241 1057.5 24.9

Low 0.25 3 0.2122 413.5 12.5
0.50 3 0.1900 753.1 24.9
0.75 3 0.1786 1125.7 38.3

Medium 0.25 5 1.0988 468.0 16.1
0.50 5 0.6129 869.9 23.1
0.75 5 0.6205 1289.3 27.7

Medium 0.25 7 0.6783 472.2 12.0
0.50 7 0.6072 870.8 22.2
0.75 7 0.4114 1289.3 27.7

High 0.25 5 4.8162 499.2 16.8
0.50 5 4.4267 931.7 23.3
0.75 5 5.2117 1392.6 44.4

Table 9: Results of the simulations.

In the simulations above the interval length ∆x = 2 is used, but also other values can be chosen.
When the interval length decreases, the mean queue length will also decrease, since the users can
be distributed more precisely. The users have to be scheduled in intervals of one minute or longer,
since more detailed intervals will not work in practice. Increasing the interval length will fasten the
algorithm, but the results will be less optimal since the users can be distributed over less intervals.
The results for the scenario peak with ∆x = 1 are given in Table 10. For the best balance between
calculation time and performance, we advise to schedule the users in intervals of two or three
minutes.

71

Waiting time number users number users
Scenario σ l per user on time too late

Peak 0.25 6 0.3780 380.9 17.7
0.5 6 0.2832 679.3 20.9
0.75 6 0.2738 1043.3 39.9

Table 10: Results peak scenario with interval length ∆x = 1.

For σ = 1/4 the mean queue length decreases a lot when the users are distributed over the intervals.
The question is from which fraction on we see significant results when scheduling the users over
time. In Figure 37 the mean queue lengths are given for low fractions of users for scenario medium
and high. When 4% of the citizens use the app the queue length will decreases a little bit, so when
more than 4% of the citizens use the app, distributing the users over time will be useful. When a
lower fraction of citizens uses the app, the app has too little influence to decrease the queue length.
In that case the departure advice for a single app user as described in Section 5.1 can be used.

Figure 37: Mean queue lengths for scenario medium (l = 5) and high (l = 7) for low fractions of
users.

9.3 Two queues

In the previous section the algorithm to distribute the users over time at one traffic light was tested.
In this paragraph, we include the distribution over the traffic lights into the simulation. We discuss
the special case of two traffic lights, S = 2, the results for multiple traffic lights will be similar.

Since the scenarios described in Section 2.3 are for one traffic light, some new scenarios are defined
in Table 11. The inflow λ, outflow µ and initial queue lengths are given for the two traffic light.
Every quarter the inflow rate will change, thus the scenarios are given for an hour.

In the first scenario traffic light 2 is more congested than traffic light 1, but the green times
are the same. In the second scenario the inflow rates are the same, but the first traffic light has
longer green times. In the last scenario traffic light 1 has increasing inflow rates, while at traffic
light 2 the inflow rates are decreasing.

72

Scenario λ1 λ2 µ1 µ2 Initial 1 Initial 2
1 (8,8,8,8) (12,12,12,12) 12 12 0 0
2 (8,10,10,10) (8,10,10,10) 12 8 0 0
3 (8,9,11,12) (12,12,11,9) 12 12 0 40

Table 11: Scenarios of an hour for two traffic lights.

When one traffic light has longer green times or has a lower inflow rates, the occupation rate is
lower and more users are sent to this traffic light. Therefore in the scenarios described in Table 11
more users are sent to the first queue, as can be seen in Table 12. In the last scenario more users
are sent to traffic light 1 in the beginning of the hour, but at the end more users are sent to the
second traffic light. Overall more users are sent to queue 1, since only in the last quarter traffic
light 2 has a lower occupation rate.

Waiting time number users number users number users number users
Scenario σ l per user scheduled 1 scheduled 2 on time too late

1 0.25 3 0.3636 151.8 105.4 254.2 3.0
0.50 3 0.3200 269.7 236.6 500.2 6.2
0.75 3 0.2533 387.4 363.7 739.9 11.2

2 0.25 3 1.1449 229.9 82.6 310.3 2.2
0.50 3 1.0871 352.5 169.2 518,5 3.2
0.75 3 1.0716 521.6 296.9 816.8 1.7

3 0.25 3 0.6707 176.4 122.5 293.3 5.6
0.50 3 0.5422 316.2 248.0 554.3 9.9
0.75 3 0.4868 451.7 373.7 810.0 15.4

Table 12: Results of the simulations of the scenarios described in Table 11.

In total the mean queue lengths of the queues will decrease, when the users are optimal distributed
over the traffic lights. As can be seen in Figure 38, the queue lengths of the second queues decrease
a lot when the fraction of users increases, while the first queues only increase a little bit. Hence
the higher the fraction of users, the lower the waiting times and mean queue lengths. The biggest
improvements are made by distributing σ = 1/4 of the citizens, since in this case the occupation
rates of both traffic lights can already be made more similar.

In Figure 39 the mean queue lengths are shown for two queues with on queue 1 scenario high and
on queue 2 a steady scenario with inflow λ = 10 on all intervals and an outflow of 12 vehicles
per minute. Compared to the results in the previous paragraph the queue length of scenario high
decreases a lot by including the second traffic light. Also the waiting time per person decreases a
lot, from 0.75 (σ = 1/4) to 0.60 (σ = 1/4) until 0.54 minute (σ = 3/4).

73

Figure 38: Mean queue lengths of the two queues of scenario 1 (top figures) and scenario 2 (bottom
figures) for different fractions of users.

Figure 39: Mean queue lengths of two queues with on queue 1 the high scenario and on queue 2 a
steady scenario of λ = 10 and µ = 12 for different fraction of users (l = 3).

74

10 Conclusion

The matrix approach appears to be the best method to calculate the time-dependent queue length
distribution. This method is much faster than the theoretical models found in the literature and
can easily deal with time-dependent arrival rates and overloaded systems. If few citizens use the
app, the time-dependent queue length distribution is used to calculate the optimal arrival time such
that the user is with confidence level 1− α on time out of the queue. The route with the shortest
travel time is advised to the user.

In the matrix approach we assumed exponential departure times instead of deterministic departure
times. Due to high randomness in the number of departures, this method overestimates the real
mean queue length a little bit. For the calculation of the confidence bound this is no problem, since
the upper bound is overestimated: even more users will be out of the queue before their deadline.

When a significant fraction of citizens use the app, the users can be distributed over both available
traffic lights and time slots. First, the users are distributed over the traffic lights depending on
the total travel time of the routes corresponding to the traffic lights. This distribution will be
determined by a local search algorithm, since the distributed users influence each other’s waiting
times at the traffic lights. As a result the users are distributed over the traffic lights such that
the waiting times are minimized and more users are sent to the fastest or least congested queue.
Therefore the occupation rates of both traffic lights will be more similar, when the fraction of users
increases.

Secondly per traffic light the users are scheduled over time by minimizing the value function of
the total waiting times of the app users, as defined in Definition 7.1. We proved that the mean
queue length calculated by the matrix approach is convex in η, this resulted in a convex value func-
tion. Hence, the optimal solution of the value function can be found by a local search algorithm.

The matrix approach used to calculate the mean queue length in the value function, is too slow
in the calculation of a real time problem with multiple users. Therefore a new fast method is
developed to approximate the mean queue length in time. This method is not convex in η, but
in most parameter settings the local search algorithm finds a schedule really close to the optimal
schedule. Therefore this method is used in the local search algorithm, since it has an optimal ratio
between calculation time and performance.

The optimal schedules result in lower mean queue lengths and shorter waiting times, with users
being with confidence level 1−α on time. The higher the fractions and the longer the distributing
intervals, the lower the waiting times and queue lengths. Since the user wants to arrive at a certain
time at the destination the user can be scheduled in maximum l intervals. Due to this constraint
not all congestions will disappear completely, but the mean waiting times and queue lengths will
always decrease. Since all users have to be on time, more users have to be scheduled in a smaller
time period when the σ value increases. Therefore in overloaded systems the mean queue length will
not always improve when σ increases and l stays the same. Increasing the number of distributing
intervals l will eliminate this problem.

75

11 Extensions and Further Research

In this section a couple of extensions of the model will be discussed. Most of the extensions can be
easily added to our model, but for some applications further research is needed.

11.1 Flexible users

In general there are two types of users:

• Type 1: users that want to arrive at a certain time.

• Type 2: users that want to arrive during an interval.

Figure 40: Fractions of the different types of arriving vehicles at a traffic light. Here σ is the
fraction app users and a fraction β of these users is flexible.

Until now only the first type of users are discussed. In this section we will show how the second
type of users can be included into the model.

In the app the user has the option to define an interval in which he wants to arrive. For ex-
ample a user with flexible working hours can use this feature to indicate that he wants to arrive
between 8 am and 9 am. The app should return a departure advice such that the travel time is as
short as possible and the user arrives in the preferred interval at the destination.

A user wants to know beforehand at what time he has to leave, such that the user has the possibility
to adapt to the departure time. For example a user must be able to adjust the waking alarm to the
departure time. Therefore the app should give a preliminary departure time, such that the user
can take this into account. The final advised time should not differ much from the preliminary
departure time otherwise the preliminary advice has no use. (Of course it can happen that due to
a large congestion it will differ a lot, but in that occasional case the user will understand).

Suppose that a user wants to arrive at the destination between T dest1 and T dest2 , with T dest1 < T dest2 .
To arrive at the destination during interval [T dest1 , T dest2], the user should depart in interval [D1, D2]
from the queue at the traffic light. (This will be calculated by the travel time forecasting model.)
Hence the user should be out of the queue before deadline D2. The latest arrival interval A2 for
this deadline should be calculated such that the user is with confidence level 1 − α before D2 out
of the queue. Let Amax = A2 be the latest arrival interval in which the user can be scheduled. The
user wants to arrive after T dest1 , so calculate A1 the latest arrival interval such that the user is with
a confidence level of 50% before D1 out of the queue. Let Amin = A1 be the earliest interval in
which the user can be scheduled. Hence the user has be scheduled in an interval between Amin and
Amax.

76

It is optimal to schedule a flexible user in the interval with the lowest queue length, call this
interval Aopt. Note that Amin ≤ Aopt ≤ Amax. If there is only a single flexible user the queue
length can be predicted by Method 3 and the interval with the lowest queue length is chosen. If
there are multiple flexible users, the flexible users will affect each other’s waiting time, therefore an
other method is needed. The flexible user can for example be distributed by a local search algorithm
to minimize the waiting time of the flexible users. Or by minimizing (ξi + η1

i /∆x + η2
i /∆x)2 over

η2, with η1
i the number of users of type 1 which have latest arrival interval i and η2

i the number of
flexible users with optimal arrival interval i.

The optimal arrival interval Aopt can be found for the queues at traffic lights 1, 2, . . . , S. The
optimal arrival interval corresponding to the route with the shortest travel time will be given as
preliminary advice. Twelve hours before departure this preliminary departure advice is given to
include as many not flexible η1 users as possible. Of course the optimal departure time can be
recalculated, if demanded by the user.

The final departure time of the flexible user should not deviate too much from the preliminary
advice, for example maximum 10 minutes. Therefore the final arrival interval i should lie between
the bounds max(Amin, Aopt − 10

∆x) and min(Amax, Aopt + 10
∆x). These bounds also ensure that the

arrival time lies between Amin and Amax. If for example ∆x = 2, the final arrival interval i lies
between max(Amin, Aopt − 5) ≤ i ≤ min(Amax, Aopt + 5).

The final departure advices will be calculated in the same way as for the normal users of type
1, by solving an optimization problem with the local search algorithm. The flexible users are easily
included in the optimization problem given in Definition 7.1, only the constraints still have to be set.

When few users are flexible the bounds defined above can be used as the constraints for the flexible
users. If multiple users are flexible, we want a more general approach. Let NU2

i be the number of
users which have interval i as final upper bound, and let NL2

i be the number of users with interval
i as lower bound. This can be translated in the following constraints for the flexible users:

i∑
j=1

η2
j ≥

i∑
k=1

NU2
k for ∀i ∈ {1, . . . , n}

i∑
j=1

η2
j ≤

i∑
k=1

NL2
k for ∀i ∈ {1, . . . , n}

η2
i ≥ 0 for i = 1, 2, . . . , n.

The first constraint ensures that all users are finally scheduled before the upper bound and the
second constraints ensures that all users are scheduled after the lower bound.

The constraints for type 1 users are already given in Definition 7.1. Hence, the value function
given in Definition 7.1 can be adjusted as follows such that flexible users are inserted.

77

Definition 11.1. The value function to find the optimal schedule for multiple users of type 1 and
2 with multiple deadlines is given by:

minimize
η

V (x, η) =
n∑
i=1

ηi
Li−1(x, λ) + Li(x, λ)

2µ
+

1
µ
NnLn(x, λ)

subject to
i∑

j=1

η1
j ≥

i∑
k=1

N1
k for ∀i ∈ {l, . . . , n}

i−l+1∑
j=1

η1
j ≤

i∑
k=1

N1
k for ∀i ∈ {l, . . . , n}

i∑
j=1

η2
j ≥

i∑
k=1

NU2
k for ∀i ∈ {1, . . . , n}

i∑
i=1

η2
j ≤

i∑
k=1

NL2
k for ∀i ∈ {1, . . . , n}

η1
i , η

2
i ≥ 0 for i = 1, 2, . . . , n.

With ηi = η1
i + η2

i , η = (η1, η2, . . . , ηn) and λ = ξ + η
∆x .

With the results from Section 6.3 it is easily shown that Definition 11.1 is a convex optimization
problem.

11.2 Global optimum

In this thesis optimal schedules are found such that the waiting times of the users are minimized.
As an additional result we have seen that the mean queue lengths are lower under these optimal
schedules, therefore also the waiting times of the non app users decrease.

In some cases it is the goal to find a global optimum, i.e., minimizing the waiting times of all
road users. In this case the users are distributed over the time intervals such that the total waiting
time of all road users is minimized. The corresponding optimization problem is given below:

Definition 11.2. The value function to find the global optimum for multiple users with multiple
deadlines is given by:

minimize
η

V (x, η) =
n∑
i=1

λi
Li−1(x, λ) + Li(x, λ)

2µ
+

1
µ
λnLn(x, λ)

subject to
i∑

j=1

ηj ≥
i∑

k=1

Nk for ∀i ∈ {l, . . . , n}

i−l+1∑
j=1

ηj ≤
i∑

k=1

Nk for ∀i ∈ {l, . . . , n}

ηi ≥ 0 for i = 1, 2, . . . , n.

With η = (η1, η2, . . . , ηn) and λ = ξ + η
∆x .

78

This is also a convex optimization problem, since the value function is a combination of the value
function of Definition 7.1 and additional terms of Li(x, λ). The value function in Definition 7.1 and
Li(x, λ) are both convex in η, hence the value function in Definition 11.2 is convex in η.

11.3 Green times

In this thesis fixed green times are used, but in reality this is not true for all traffic lights. There
are different kinds of traffic lights, which all have different programs to set their green times. Some
traffic lights have only one fixed green time or use a day pattern. For example, in the case of day
patterns the headway will get a longer green time during rush hour.

If the changes in green times are known, these can easily be inserted into our model. In that
case not only the inflow parameter λ changes over time, but also the departure rate µ is a function
in time. Changing the µ values in the calculations, works in general the same as for the λ values.
By the calculations of the latest arrival times with the intersection method the outflow is important,
since the line has as slope the outflow parameter µ. Hence when the µ value changes there will be
a node in this line, but the remainder of the approach is exactly the same.

There are also smart traffic lights, which change the green times based on the current traffic
conditions, so in that case µ is a state-dependent variable. For example, when a loop that detects
traffic jams is occupied for more than 10 minutes, a request can be send to increase the green time.
The state-dependent green times are difficult to simulate accurately, since whether the request is
approved also depends on the other routes at the intersection. Further research has to show how
state-dependent green times can be inserted in an accurate way.

If this problem of variable green times is solved, an advice about the optimal green times can
be given as discussed in the next paragraph.

11.3.1 Advised green times

If a traffic light can handle the demand of arriving vehicles, the green time is enough and no large
queue will develop at the traffic light. But in overloaded systems as during rush hours in IJburg,
the green time is not enough. In that case the queue length can decrease by giving the optimal
green times.

By the parameter λ(t) the current and expected inflow of vehicles is known, so the outflow should
be higher otherwise a queue will develop. Based on this inflow parameter the minimum outflow per
minute can be calculated such that there will be no congestion at the traffic light. This outflow
should be a bit higher than λ(t). The minimum outflow will be our advice to the traffic center,
where it can be translated into a preferred green which is enough to handle the expected demand.
If this advice is followed depends also on the other roads connected to the intersection.
If a direction gets more green time than needed, the minimum flow advice can also be handy, since
more green time can be given to congested directions.

79

11.4 Inflow data and initial queue length

Next to the green times also the inflow variable λ(t) should be known for our model. This λ(t)
represents the number of vehicles arriving at the queue per minute. This variable is used in most
traffic and queueing models, but it is difficult to determine in practice. There should be a loop
further down the road to count the number of arriving vehicles. In large roads this is often the
case, but in most residential areas like IJburg these loops are missing, therefore the parameter is
difficult to set.

There are two options to approximate the λ(t) values without loop information from down the
road. The first method uses a loop to measure traffic jams at a traffic light, this loop can be used
to determine if there is a jam and for how long. With this information something can be said
about the queue length and the inflow in time, but this is not precise. The second method can be
used if the outflows from all the roads connected to our main road are known. The inflow at the
queue can be predicted by adding the outflow of the incoming roads over time. The disadvantage
of this method is that the outflow of the incoming roads are not always known nor given in real
time. Sometimes the outflow on a lane is known, but at this lane a vehicle can turn in multiple
directions, in that case also turn fractions are needed. Future research must show if one of these
methods can be used to predict λ(t).

A corresponding problem is that the initial queue length is not always known. If the inflow and
outflow in time are known the current queue length can be calculated. But even the outflow at a
traffic light is not given in real time, so with the current data it is difficult to calculate the initial
queue length. Another option is to use special cameras which can measure the queue length and
inflow at a road, but these cameras are expensive and not often used in the Netherlands.

11.5 General situation

This thesis is written for residential areas, but the developed methods can also be used in other
situations. As shown in this section it is hard to set the parameters needed for our model. Therefore
it might be useful to look at the traffic lights at larger roads, were the parameters can more easily
be set.

We looked at journeys with as origin a location in a residential area, this is easier since the travel
time to the traffic light is short. If this travel time is long, the prediction has to be done over a
longer interval which makes the prediction less accurate. The travel time to the traffic light can be
shorter or larger than predicted due to all different kinds of congestions. Due to these uncertainties
distributing the users in intervals of length ∆x is less useful, since the arrival times will not be
accurate. You can also wonder how much influence the traffic light will have in the case of a long
journey, since there are so many different factors influencing the travel time.

Of course in all cases the predicted waiting time can be taken into account by calculating the
travel time. This can be used on all major intersections, so not only the ones in residential area.
Including the waiting times in the travel time forecasting model will improve the prediction espe-
cially on congested routes. Also distributing the flexible users still works. They are scheduled long
before departure, so the effect of future changes in travel time are the same as for residential areas.

80

Appedix A: additional proof convex value function

In the proof of the convex value function in Section 6.3 the initial state x = 0 is omitted. The proof
for this initial state is almost the same as for x > 1, but for completeness the lemmas and theorem
from Section 6.3 are also proven for x = 0. All proofs are with induction on t and the base cases
are already shown in Section 6.3.

Lemma 6.3: Lt(x+ 1, λ)− 2Lt(x, λ) + Lt(x− 1, λ) ≥ 0 for ∀t ∈ N and ∀x ∈ N>0.

Suppose the lemma holds for t = kC + τ with 0 ≤ τ < C, we will now show that it also holds for
t+ 1 and x = 0, by writing out the recursive formulas.

Lt+1(2, λ)− 2Lt+1(1, λ) + Lt+1(0, λ) =
= λk+1Lt(3, λ) + (C − λk+1 − µ)Lt(2, λ) + µLt(1, λ)− 2λk+1Lt(2, λ)− 2(C − λk+1 − µ)Lt(1, λ)
− 2µLt(0, λ) + λk+1Lt(1, λ) + (C − λk+1)Lt(0, λ)
= λk+1(Lt(3, λ)− 2Lt(2, λ) + Lt(1, λ)) + (C − λk+1 − µ)(Lt(2, λ)− 2Lt(1, λ) + Lt(0, λ))
+ µ(Lt(1, λ)− Lt(0, λ)) ≥ 0

The last inequality holds by (10) and since we assumed that the lemma holds for t and ∀x ∈ N>0.

Lemma 6.4: ∂
∂λr

Lt(x+ 1, λ)− ∂
∂λr

Lt(x, λ) ≥ 0 for ∀x, t ∈ N and ∀1 ≤ r ≤ n.

Suppose that the theorem holds for t = kC + τ with k ∈ N and 0 ≤ τ < C:

∂

∂λr
Lt(x+ 1, λ)− ∂

∂λr
Lt(x, λ) ≥ 0 for ∀x ∈ N and ∀1 ≤ r ≤ n (14)

We will show that the theorem also holds for t+ 1 and x = 0.

By Corollary 6.2 Lt+1(0, λ) does not depend on λr with r > k + 1, i.e., ∂
∂λr

Lt+1(0, λ) = 0 for
r > k + 1, so the lemma holds for r > k + 1. We now have to show that the lemma also holds for
r ≤ k + 1.

First we will look at r = k + 1 for which two cases are distinguished:
Case 1: 1 ≤ τ < C then 1 < τ + 1 ≤ C , so LkC+τ = Lt and LkC+τ+1 = Lt+1 depend on the same
λ values, λr with r ≤ k + 1 (see Corollary 6.2).
Case 2: τ = 0 then τ + 1 = 1, here LkC = Lt depends on λ1, . . . , λk and LkC+1 = Lt+1 depends
on λ1, . . . , λk, λk+1, so the derivative of Lt to λk+1 is zero. In this case the computations can be
simplified.

We will first prove the lemma for case 1 of r = k + 1 by filling in the recursive formulas (9).

81

Case 1: t = kC + τ with 1 ≤ τ < C and k ∈ N

∂

∂λk+1
Lt+1(1, λ)− ∂

∂λk+1
Lt+1(0, λ) =

=
∂

∂λk+1
(λk+1Lt(2, λ) + (C − λk+1 − µ)Lt(1, λ) + µLt(0, λ))

− ∂

∂λk+1
(λk+1Lt(1, λ) + (C − λk+1)Lt(0, λ))

= λk+1
∂

∂λk+1
Lt(2, λ) + (C − λk+1 − µ)

∂

∂λk+1
Lt(1, λ) + µ

∂

∂λk+1
Lt(0, λ) + Lt(2, λ1)− Lt(1, λ1)

−
(
λk+1

∂

∂λk+1
Lt(1, λ) + (C − λk+1)

∂

∂λk+1
Lt(0, λ) + Lt(1, λ1)− Lt(0, λ1)

)
= λk+1

(
∂

∂λk+1
Lt(2, λ)− ∂

∂λk+1
Lt(1, λ)

)
+ (C − λk+1 − µ)

(
∂

∂λk+1
Lt(1, λ)− ∂

∂λk+1
Lt(0, λ)

)
+ Lt(2, λ)− 2Lt(1, λ) + Lt(0, λ) ≥ 0

By the induction hypothesis (14) and Lemma 6.3 the lemma holds for case 1 of r = k+1 and x = 0.
For case 2 a similar proof is given below.

Case 2: t = kC with k ∈ N

∂

∂λk+1
Lt+1(1, λ)− ∂

∂λk+1
Lt+1(0, λ) =

= λk+1
∂

∂λk+1
Lt(2, λ) + (C − λk+1 − µ)

∂

∂λk+1
Lt(1, λ) + µ

∂

∂λk+1
Lt(0, λ)

+ Lt(2, λ)− Lt(1, λ)

−
(
λk+1

∂

∂λk+1
Lt(1, λ) + (C − λk+1)

∂

∂λk+1
Lt(0, λ) + Lt(1, λ)− Lt(0, λ)

)
= Lt(2, λ)− 2Lt(1, λ) + Lt(0, λ) ≥ 0

Since LkC(0, λ) does not depend on λk+1 ⇒ ∂
∂λk+1

Lt(0, λ) = 0 and by Lemma 6.3 the last inequality
holds. Hence, Lemma 6.4 is also true for case 2 of r = k + 1, therefore the lemma holds for t + 1
with r = k + 1 and x = 0.

The only step left is to show that the lemma also holds for r < k + 1:

82

∂

∂λr
Lt+1(1, λ)− ∂

∂λr
Lt+1(0, λ) =

= λk+1
∂

∂λr
Lt(2, λ) + (C − λk+1 − µ)

∂

∂λr
Lt(1, λ) + µ

∂

∂λr
Lt(0, λ)

−
(
λk+1

∂

∂λr
Lt(1, λ) + (C − λk+1)

∂

∂λr
Lt(0, λ)

)
= λk+1

(
∂

∂λk+1
Lt(2, λ)− ∂

∂λk+1
Lt(1, λ)

)
+ (C − λk+1 − µ)

(
∂

∂λk+1
Lt(1, λ)− ∂

∂λk+1
Lt(0, λ)

)
≥ 0

Hence by induction hypothesis (14) the lemma is also true for r < k+ 1, therefore the lemma holds
for t+ 1. By induction on t, Lemma 6.4 holds for x = 0 and ∀t ∈ N, ∀1 ≤ r ≤ n.

Theorem 6.5: Lt(x, λ) is increasing and convex in λ = (λ1, λ2, . . . , λn) for ∀t ∈ N

Suppose that the theorem holds for t = kC + τ with k ∈ N and 0 ≤ τ < C:

∂

∂λr
Lt(x, λ) ≥ 0 and

∂2

∂λ2
r

Lt(x, λ) ≥ 0 for 1 ≤ r ≤ n and ∀x ∈ N. (15)

We will show that the theorem is also true for t+ 1 and x = 0.
By Corollary 6.2, Lt+1(0, λ) does not depend on λr with r > k + 1, i.e., ∂

∂λr
Lt+1(0, λ) = 0 for

∀r > k + 1, so the lemma holds for r > k + 1. Now we have to show that the lemma also holds for
r ≤ k + 1.

For r = k + 1 the two cases defined in the proof of Lemma 6.4 are again distinguished. We
will prove that the lemma holds in both cases by using the recursive formulas.

Case 1: t = kC + τ with 1 ≤ τ < C and k ∈ N

Lt+1(0, λ) =λk+1Lt(1, λ) + (C − λk+1)Lt(0, λ)
∂

∂λk+1
Lt+1(0, λ) =λk+1

∂

∂λk+1
Lt(1, λ) + (C − λk+1)

∂

∂λk+1
Lt(0, λ) + Lt(1, λ)− Lt(0, λ)

∂2

∂λ2
k+1

Lt+1(0, λ) =λk+1
∂2

∂λ2
k+1

Lt(1, λ) + (C − λk+1)
∂2

∂λ2
k+1

Lt(0, λ) + 2
∂

∂λk+1
Lt(1, λ)− 2

∂

∂λk+1
Lt(0, λ)

By the induction hypothesis (15) and inequality (10) ⇒ ∂
∂λk+1

Lt+1(0, λ) > 0 for ∀x ∈ N. Due to

assumption (15) and Lemma 6.4 ⇒ ∂2

∂λ2
k+1

Lt+1(0, λ) ≥ 0 for ∀x ∈ N. Hence for case 1 of r = k + 1

the lemma is true. The proof of case 2 is given below.

83

Case 2: t = kC with k ∈ N

Lt+1(0, λ) =λk+1Lt(1, λ) + (C − λ)Lt(0, λ)
∂

∂λk+1
Lt+1(0, λ) =Lt(1, λ)− Lt(0, λ)

∂2

∂λ2
k+1

Lt+1(0, λ) =0

By (10) Lt(1, λ)−Lt(0, λ) > 0, hence the lemma also holds for case 2 of r = k+ 1 and x = 0. The
only thing left is to show that the theorem also holds for t+ 1 and λr with r < k + 1.

For r < k + 1

Lt+1(0, λ) = λk+1Lt(1, λk) + (C − λk+1)Lt(0, λ)
∂

∂λr
Lt+1(0, λ) = λk+1

∂

∂λr
Lt(1, λ) + (C − λk+1)

∂

∂λr
Lt(0, λ)

∂2

∂λ2
r

Lt+1(0, λ) = λk+1
∂2

∂λ2
r

Lt(1, λ) + (C − λk+1)
∂2

∂λ2
r

Lt(0, λ)

By assumption (15) ⇒ ∂
∂λr

Lt+1(x, λ) ≥ 0 and ∂2

∂λ2
r
Lt+1(x, λ) ≥ 0 for ∀1 ≤ r ≤ n. Therefore the

theorem also holds for t+ 1 with x = 0 and λr with r < k + 1. Hence the theorem is true for t+ 1
and by induction on t the theorem holds for ∀t ∈ N.

84

Appendix B: mean queue length of an M/M/1/N queue

In this appendix is shown that the mean queue length is not convex for an M/M/1/N queue. The
first time steps with time interval 1

C are given below.

For ∀x ∈ {1, . . . , N}

L0(x, λ) =x

L1(N,λ) =(C − µ)L0(N,λ) + µL0(N − 1, λ) = CN − µ

For ∀x ∈ {2, . . . , N − 1}

L1(x, λ) =λ1L0(x+ 1, λ) + µL0(x− 1, λ) + (C − λ1 − µ)L0(x, λ) = Cx− µ+ λ

L2(N,λ) =(C − µ)L1(N,λ) + µL1(N − 1, λ) = (C − µ)(CN − µ) + µ(CN − C − µ+ λ)

=C2N − 2Cµ+ λµ

∂

∂λ1
L2(N,λ) =µ

∂2

∂λ2
1

L2(N,λ) =0

L2(N − 1, λ) =λ1L1(N,λ) + µL1(N − 2, λ) + (C − λ1 − µ)L1(N − 1, λ)
∂

∂λ1
L2(N − 1, λ) =λ1

∂

∂λ1
L1(N,λ) + µ

∂

∂λ1
L1(N − 2, λ) + (C − λ1 − µ)

∂

∂λ1
L1(N − 1, λ)

+ L1(N,λ)− L1(N − 1, λ) = 2C − Cλ
∂2

∂λ2
1

L2(N − 1, λ) =0

L3(N,λ) =(c− µ)L2(N,λ) + µL2(N − 1, λ)
∂

∂λ1
L3(N,λ) =(c− µ)

∂

∂λ1
L(N,λ) + µ

∂

∂λ1
L2(N − 1, λ) = 3Cµ− µ2 − 2λµ

∂2

∂λ2
1

L3(N,λ) =− 2µ

Hence ∂2

∂λ2
1
Lt(x, λ) ≤ 0 for some values of x and t, therefore Lt(x, λ) is not convex in λ.

85

Appendix C: schedules different methods

In this appendix some optimal schedules found by the local search algorithm described in Section
7 are presented. For the four different methods described in Section 7.1 the optimal schedules are
given in the tables below for different parameter settings.

In these results 10 consecutive arrival intervals have been used with l = 3 and the interval length
to schedule a user is ∆x = ∆t = 2. The length of the fixed arrival rates is ∆T = 10 and let
σ be the fraction of citizens that use the app. The inflow of non app users ξ should be adapted
to the value of σ, for example if the fixed total inflow is Λ = (12, 10, 8) and σ = 1/4, then
ξ = (1 − σ)Λ = (9, 7.5, 6)12. The new total inflow per interval in vehicles per minute used in the
Methods is given by λ = ξ + η

∆x .

i = 5, Λ = (10, 11, 12) and σ = 1/4
Ni 0 0 4 5 5 6 5 6 6 5 6 7

Method Schedule Time Value
1 4 5 5 6 5 5 4 4 4 5 4 4 177.90 28.97
2 4 5 3 8 2 6 6 6 7 2 5 1 202.89 30.80
3 3 4 4 5 0 8 8 8 8 4 3 0 0.84 36.95
4 0 9 5 6 5 5 5 5 5 4 3 3 0.44 30.28

i = 5, Λ = (10, 11, 12) and σ = 1/2
Ni 0 0 9 10 10 11 10 11 12 12 12 13

Method Schedule Time Value
1 9 10 10 9 10 9 9 9 9 9 9 8 56.57 47.55
2 9 10 9 10 8 12 12 8 9 9 8 6 39.14 49.71
3 9 10 10 10 10 9 9 9 9 9 9 7 0.85 47.67
4 4 15 10 10 10 9 9 9 9 9 8 8 0.61 50.11

i = 2, Λ = (8, 10, 12) and σ = 1/4
Ni 0 0 3 4 4 5 4 5 5 7 6 7

Method Schedule Time Value
1 3 4 4 5 4 5 5 5 5 5 4 1 337.69 16.70
2 3 4 4 5 4 5 5 5 5 5 0 5 39.11 17.21
3 3 4 4 5 4 5 5 5 5 6 3 1 0.61 16.73
4 0 7 4 5 4 5 5 5 5 5 2 3 0.89 17.17

i = 2, Λ = (8, 10, 12) and σ = 1/2
Ni 0 0 8 7 9 9 10 11 11 10 12 13

Method Schedule Time Value
1 8 7 9 9 10 10 8 9 8 9 8 5 273.81 27.39
2 8 7 9 9 10 9 9 9 9 9 7 5 2.23 27.46
3 8 7 9 9 10 9 9 9 9 9 7 5 0.82 27.46
4 0 15 9 9 10 9 9 9 9 8 6 7 1.13 30.57

86

i = 10, Λ = (12, 10, 8) and σ = 1/4
Ni 0 0 7 6 7 5 5 4 5 4 4 3

Method Schedule Time Value
1 0 7 3 4 6 5 5 4 5 4 4 3 92.29 29.33
2 0 8 2 5 5 5 5 4 5 4 4 3 25.20 29.38
3 0 7 7 7 5 2 4 3 4 4 4 3 0.14 33.85
4 0 1 9 6 4 5 5 4 5 4 4 3 0.24 30.98

i = 10, Λ = (12, 10, 8) and σ = 1/2
Ni 0 0 13 12 10 11 11 10 9 9 7 8

Method Schedule Time Value
1 3 10 8 8 8 9 11 10 9 9 7 8 129.94 39.16
2 7 8 8 8 8 9 9 10 9 9 8 7 1.39 40.63
3 7 8 8 8 8 9 9 10 9 9 8 7 0.24 40.63
4 1 15 7 7 7 10 10 10 9 9 7 8 0.15 40.28

i = 20, Λ = (14, 10, 8) and σ = 1/2
Ni 0 0 14 14 12 11 11 10 10 10 9 8

Method Schedule Time Value
1 0 8 10 10 12 11 11 10 10 10 9 8 78.13 98.36
2 0 6 9 17 9 10 13 9 9 10 9 8 69.19 103.29
3 0 11 11 11 9 10 10 10 10 10 9 8 0.16 103,28
4 1 15 8 8 8 11 11 10 10 10 9 8 0.11 104.77

i = 20, Λ = (14, 10, 8) and σ = 1
Ni 0 0 28 28 26 21 21 20 20 20 17 16

Method Schedule Time Value
1 3 23 19 20 19 20 20 20 20 20 17 16 74.99 81.99
2 3 24 23 19 19 19 19 19 19 20 17 16 44.32 85.47
3 4 28 19 19 19 19 19 19 19 19 17 16 0.65 88.30
4 3 35 18 18 18 18 18 18 19 19 17 16 0.62 103.84

i = 4, Λ = (8, 10, 14) and σ = 1/2
Ni 0 0 8 8 9 10 10 10 12 12 14 15

Method Schedule Time Value
1 8 8 9 10 10 10 10 10 10 10 8 5 231.16 38.14
2 8 8 9 10 10 8 13 9 10 10 4 9 49.64 39.53
3 8 8 9 10 10 10 10 10 10 11 7 5 0.97 38.19
4 0 16 9 10 10 10 10 10 10 10 6 7 0.80 42.12

12Note that ξ = (9, 7.5, 6) is a short notation for ξ = (9, . . . , 9, 7.5, . . . , 7.5, 6, . . . , 6), the inflow of non app users per
interval.

87

i = 4, Λ = (8, 10, 14) and σ = 1
Ni 0 0 16 16 17 20 20 20 22 22 28 29

Method Schedule Time Value
1 16 16 17 19 18 18 18 18 18 18 19 15 255.61 53.03
2 16 16 17 18 18 18 18 18 18 18 19 16 2.84 53.08
3 16 16 17 18 18 18 18 18 18 18 19 16 1.14 53.08
4 7 25 17 18 18 18 18 18 18 18 17 18 0.79 61.11

i = 5, Λ = (10, 10, 10) and σ = 1/4
Ni 0 0 6 5 4 5 4 4 3 5 5 7

Method Schedule Time Value
1 3 5 4 4 4 4 4 4 4 4 5 3 138.52 17.28
2 4 4 4 4 4 4 4 4 4 4 5 3 0.70 17.32
3 4 4 4 4 4 4 4 4 4 4 5 3 0.26 17.32
4 0 8 4 4 4 4 4 4 4 4 4 4 0.32 17.67

i = 5, Λ = (10, 10, 10) and σ = 1/2
Ni 0 0 9 10 10 11 10 12 9 8 10 10

Method Schedule Time Value
1 7 9 8 8 9 8 8 9 8 8 9 8 436.77 29.31
2 8 8 8 9 8 9 8 9 8 8 9 7 1.08 29.42
3 8 8 8 9 8 9 8 9 8 8 9 7 0.44 29.42
4 2 15 8 8 8 8 8 8 8 8 9 9 0.40 31.28

i = 20, Λ = (12, 12, 12) and σ = 1/4
Ni 0 0 6 5 5 4 6 7 6 6 7 8

Method Schedule Time Value
1 0 0 6 5 5 5 5 7 6 6 7 8 1323.44 85.33
2 0 0 11 5 0 13 5 0 13 5 0 8 1490.98 92.87
3 0 0 7 7 7 5 0 7 7 7 7 6 1.23 87.94
4 0 1 10 6 5 6 6 5 6 5 5 5 1.06 92.62

i = 20, Λ = (12, 12, 12) and σ = 1/2
Ni 0 0 11 12 13 13 12 10 11 14 12 12

Method Schedule Time Value
1 0 9 11 10 10 10 11 10 11 14 12 12 633.81 120.42
2 1 11 8 11 6 20 11 6 13 9 12 12 1047.99 129.25
3 0 13 13 4 19 0 12 11 11 13 12 12 0.62 126.24
4 0 3 19 12 11 11 12 11 11 10 10 10 0.41 138.71

88

Appendix D: simulation and travel time prediction models

To predict the travel times of the app users, a reliable travel time prediction model has to be
developed. Based on the predicted travel times the deadlines at the traffic lights and the departure
times can be calculated as shown in this thesis.

In this appendix we look at two types of road networks: freeway networks and urban road networks.
Freeway networks are the main roads for which a lot of sensor data is available, so on most parts
of freeway road the traffic situation can be measured. The junctions at freeways are on/off ramps
or merge/bifurcation point of two freeways. On freeway networks delays due to congestion are
mostly incurred on links. On the contrary on urban roads the main cause of delay are incurred at
intersections. Urban networks are more complex then freeway networks, due to the high intensity
of junctions and the complex intersections which are hard to model. Therefore more models are
developed for freeway networks than for urban networks. In this appendix the relevant simulation
and travel-time prediction models found in the literature for both freeway and urban networks are
discussed.

First, we will describe the approach of Trinité to model traffic and give some general background
about travel time prediction and different ways to model traffic. In the third paragraph the two
main models to predict and simulate traffic on freeways are described, Fastlane and METANET.
The models to simulate traffic on urban road networks are described in the following paragraph.
In this subsection we discuss the Kashani model, which is the most common used model, and a
simple data-driven model. Finally, the described models are discussed and compared.

Approach of Trinité

In most papers a complex road network is divided into several parts. In this paragraph the approach
of Trinité of dividing the network in subnetworks, buildingblocks and links is shortly described. For
more information see [19]. A subnetwork is a subset of a road network and consists of several build-
ingblocks. A buildingblock is a stretch of road in one driving direction that can contain junctions.
A link is a part of a road in one direction without junctions or other choice points. For now the
focus will be on the link level.

Links are homogeneous motorway stretches, i.e., links have uniform characteristics, no on/off-
ramps and no major changes in geometry. Therefore a link is bounded by points where the road
capacity changes, like a merge or bifurcation point. There are two types of links: mainlinks and
accessorlinks. At every major change in characteristics of the road or geometry an accessorlink is
placed. Hence a mainlink is the link from merge point to the choice point and an accessorlink is
the link from the choice point to the the merge point. The road network can be seen as a set of
mainlinks which are connected by accessorlinks. This is graphically shown in Figure 41.

The flow of the mainlink has to be divided over the accessorlinks. If the relation is 1-to-1 than the
outflow of the mainlink is directly the inflow of the accessorlink. If there are more accessorlinks
connected to the mainlink, the outflow of the mainlink has to be distributed over the accessorlinks,
this is done by turn fractions. The inflow of the accessorlink is equal to the outflow of the mainlink
times the turn fraction.

89

Figure 41: Link structure, source [19].

A mainlink is build up out of segments of 100 meter. In a segment the macroscopic variables,
like density, flow, average speed etc, are uniform. Data from the road sensors give information
about these macroscopic variables. Not all segments include sensors, so by extrapolation of the
measurements the value of the flow and speed of every segment is determined. The reliability of
the measurements are also taken into account, less reliable measurements are less heavily counted
in the extrapolation.

The flow (velocity) of the link is the average value of the flow (velocity) values of all the seg-
ments of the links. The inflow of the link is the flow of the first segment and the outflow is the flow
of the last segment of the link.

Background

Prediction horizon

For prediction of travel times it is important to know the prediction horizon. The prediction horizon
is the time distance between the current time and the the period for which we calculate the travel
time. There are three types of prediction horizons:

• Direct (online): if predictions are made for the current time period, so the prediction horizon
is zero.
• Short-term: the travel time is calculated for vehicles that depart in the near future, within

60 minutes.
• Long-term: the travel time is predicted for a vehicle that departures in the future, after 60

minutes or more, for example the following day.

Per type of prediction horizon other data and methods are needed to predict travel times. In general
for a longer prediction horizon more assumptions have to be made. For a shorter time horizon real
time data is more valuable, since the current travel information has a large impact on the near
future traffic conditions.

90

Overview travel time prediction approaches

There are three types of approaches to predict the travel time: the näıve approach, the data driven
approach and simulation. Below these approaches are described and the pros and cons are dis-
cussed, for more information see [11].

Näıve approach:
Näıve methods to predict travel time generally do not rely on theoretical relations, but directly
use the available data. The näıve predictions that are most commonly used are historical pro-
files/averages or the instantaneous travel time. Due to the fact that travel time distributions are
very wide, i.e., the difference between travel times in a given period is large, predictions based on
only historical profiles are not accurate. The current road situation can significantly change in a
small period of time, i.e., traffic conditions are not stationary in time, so using the instantaneous
travel time is also inaccurate. Despite the low accuracy, näıve approaches are widely used because
they are simple and fast.

Data driven approach:
Data driven models use general parameterized mathematical models to calculate the expected travel
time over a route from current and historical data. This approach combines the two naive meth-
ods, so these models are still fast but also quite accurate. Data-driven models are very suitable for
stand-alone traffic applications, its not very suitable for network-wide prediction tasks because this
will lead to many parameters.

Simulation method:
For a specific time interval the traffic conditions are simulated by a traffic flow model. Because the
traffic conditions in de future are ’known’ the travel time can be calculated. In this method the
route choice of drivers also have to be taken into account, there are two ways to process the route
choice:
Turn fraction: The first and easiest way is to divide the traffic through turn fractions at junctions.
The turn fractions are computed by data of the traffic flows at the junction. In this case the route
choice of drivers is not modeled at all.
Dynamic traffic assignment: This model includes a route choice model and a dynamic network
loading model. The route choice model distributes the routes over the network, these route flows
are transferred to the dynamic network model which calculates the travel times. In every situation
the traffic will be divided over the roads until a user equilibrium is reached.
The simulation method is suitable for predictions of traffic times and decision support. Because
traffic is simulated, traffic conditions that never have occurred before can be modeled. The draw
back of this method is that it is time consuming to configure and maintain the model.

The näıve approach is no option for a reliable travel time prediction. The data-driven method
is not really suitable for a whole network, because this will result in too much degrees of freedom.
For a network the simulation method is the best approach, because in this case we need more as-
sumptions, which are hard to implement in a data-driven method. If the time horizon is small the
data-driven method will also be a good option. Both methods need data to calibrate and validate
the model. In our case we also want to simulate traffic situations that have never occurred before,
so this is in favor of the simulation approach.

91

In this appendix the focus will lie on simulation methods, but data-driven methods will also be
discussed.

Free-flow

The free-flow speed(FFS) is the average speed of the traffic stream when traffic is sparse, low flow
and density, and traffic control is not presented. When traffic is sparse drivers are not influenced by
the presence of other vehicles, so they can choose the speed at which they feel comfortable traveling
under the physical, environmental conditions. By the lack of traffic control the free-flow speed is
typically observed in the middle of road segments. The free-flow speed can be measured if there
are less than 1300 veh/h/lane on a road [16].

If field measurements of the free-flow speed are unavailable, the FFS can be estimated by ad-
justing the base FFS, for example the maximum speed limit. Adjustments can be made by the
influence of factors that effect the free-flow speed like the number of lanes, lane width, lateral
clearance or the number of access points, for more information see [16].

Most of the time a driver does not drive at the FFS, because interactions among vehicles and
effect of travel control have effect on the speed. The 85th percentile of the measurements or the
maximum speed is often used in travel time calculations, but this is not the FFS.

Fundamental diagrams

The fundamental diagrams describe the theoretical relations between the macroscopic traffic vari-
ables, flow q, density ρ and velocity v. These relations are based on two microscopic variables, the
time headway and the distance headway. The time headway is the difference between passing times
at a point on the road of two successive vehicles. The distance headway is the distance between
two successive vehicles at time instant t.

Figure 42: Fundamental diagrams: left the relation between density and flow and right between
density and velocity.

In the left graph of Figure 42 the fundamental relation between density and flow is given. In this

92

figure is shown that at low density the flow increases if the density increases. Due to the min-
imum distance headway of drivers the flow can not increase infinitely if density increases. The
flow increases with the density until the critical point, the capacity flow, is reached. Related to
the capacity flow also a critical speed and critical density are defined. After the capacity flow
(and corresponding critical density) is reached, the flow decreases until the drivers return to a save
headway again.
Something similar occurs in the relation between the density and speed in the right picture of Fig-
ure 42. If the density is low, drivers can choose the speed they prefer. When the density increases,
the driving behavior of other vehicles and the interaction of vehicles will influence the speed of car
drivers. So when density increases the velocity decreases. This is due to the fact that by driving
at a lower speed a driver need less distance headway to drive safely and comfortable. When the
critical density is reached, the speed of vehicles will take a drop until the headway is save again.

There are many different formulas to describe the fundamental relations shown in Figure 42. In the
simulation model Fastlane a formula is used to describe the fundamental relation between speed
and density. In the other freeway model, METANET, a different formula is used, but the shape of
both formulas are the same.

Freeway models

In this paragraph we describe the two most relevant macroscopic freeway models, Fastlane and
METANET.

Fastlane

In Fastlane the road network consists of links and nodes as described in [18]. Links are divided
into cells which are similar to the segments in the approach of Trinité. Within a link all cells have
the same length, ∆xm(=length of link m/number of cells in link m). In Fastlane the links are
also homogeneous, just as described in the approach of Trinité. In Figure 43 the cells in a link are
graphically described. In every iteration step of the simulation the density ρ, average speed v and
flow q are calculated for every cell.

Figure 43: Cell structure of Fastlane.

Derivation of the macroscopic traffic variables
Fastlane is based on the conservation of vehicles equation:

dρ

dt
+
dq

dx
= 0 (16)

The conservation of vehicles says that if the density in a link increases then more vehicles flow in

93

then out, and the other way around:

ρi(k) > ρi(k + 1)⇐⇒ qi−1,i(k) < qi,i+1(k)
ρi(k) < ρi(k + 1)⇐⇒ qi−1,i(k) > qi,i+1(k)

By discretization of equation (16) and using the Euler forward formula we get

ρi(k + 1)− ρi(k)
∆t

+
qi,i+1(k)− qi−1,i(k)

∆xi
= 0

ρi(k + 1)− ρi(k)
∆t

=
qi−1,i(k)− qi,i+1(k)

∆xi
ρi(k + 1)− ρi(k)

∆t
=
qi−1,i(k)− qi,i+1(k)

∆xi

ρi(k + 1) = ρi(k) +
∆t
∆xi

(qi−1,i(k)− qi,i+1(k))

Here the flow from one cell to another is given by:

qi,i+1 = min(di, si+1) (17)

di: demand of cell i, the number of vehicles that want to leave cell i and enter cell i+ 1.
si+1: supply of cell i+ 1, space available in cell i+ 1 for incoming vehicles from cell i.

So the flow from vehicles from cell i to cell i + 1 is bounded by the supply of cell i + 1 and
the demand of cell i, with:

di =
{

qi ρi < ρcrit,i
qmax,i ρi ≥ ρcrit,i

si =
{
qmax,i ρi < ρcrit,i
qi ρi ≥ ρcrit,i (congestion)

A cell can be in two stages: congested and non-congested. ρcrit is the density at which capacity
flow occurs. In congestion (ρi ≥ ρcrit,i) the demand of the cell is equal to the maximum flow qmax
of the cell, the supply is then equal to the flow of the cell. If there is no congestion the demand is
equal to the flow of the cell and the supply is equal to the capacity of the cell.

The velocity at every cell is calculated by the fundamental relation (see Background) that is based
on the density:

vi = vi(ρi) =

 vmax,i + vcrit,i−vmax,i
ρcrit,i

ρi ρi < ρcrit,i

vcrit,i
ρcrit,i

ρmax,i−ρcrit,i

(
ρmax,i
ρi
− 1
)

ρi ≥ ρcrit,i (congestion)
(18)

Here vcrit is the speed at which the capacity flow occurs. vmax and ρmax are respectively the
maximum speed and the maximum density of a road. If the density and velocity of a cell are
known the flow can be calculated by

qi = ρivi (19)

This equation follows directly from the definition of the three macroscopic traffic variables.

94

Nodes
Until now the calculations for the macroscopic variables are given for one cell to another. The
equations are the same for 1-to-1 links, but at bifurcation and merge nodes the dynamics are a bit
different. In both cases the density and speed are calculated in the original way. Some adjustments
have to be made to the original equation for the flow in and out of a link (17).

Figure 44: Bifurcation(left) and merge node(right).

Bifurcation node
At a bifurcation node, the demand of the incoming link should be divided over the outgoing links.
In Figure 44 (left picture) a bifurcation point is shown, here the demand of link i is equal to the
demand of link i to link j plus the demand of link i to link k, di = di,j +di,k. The demand to every
link leaving the bifurcation node is determined by turn fractions γ.

qi,j = min(di,j , sj) with di,j = γdi

qi,k = min(di,k, sk) with di,k = (1− γ)di

If the supply of one of the outgoing links in not large enough, the remainder of the vehicles stay at
the incoming link.

Merge node
Two or more links merge into one link at a merge point, for two links this is graphically shown
in Figure 44 (right picture). The supply of the outgoing link should be divided over de incoming
links. The supply of link k is distributed over the incoming links proportionally to the number of
lanes L of the links.
s′i,k = Li

Li+Lj
sk and s′j,k = Lj

Li+Lj
sk

If the demand of link j is smaller than the supply s′j,k, then there is extra room available for inflow
from link i to link k and vice versa. Hence the supply of link k is divided over the links as follow:

si,k = s′i,k + max(0, s′j,k − dj)
sj,k = s′j,k + max(0, s′i,k − di)

Hence for merge nodes the flow is given by:

qi,k = min(di, si,k)
qj,k = min(dj , sj,k)

The inflow into the network at the boundary is based on historical data. Schuppen, Wang and
Vranken made a model to predict the inflow at the boundary [19]. This prediction algorithm is
based on the predictions of the week profile and the relative errors. This algorithm is already in
use in the system of Trinité.

95

Multi-class model
Fastlane reproduces the differences of vehicle classes and the interactions between different vehicle
classes. Vehicle classes are defined by their different characteristics, such as maximum speed, vehi-
cle length, reaction times, minimum distance headways etc. The two most obvious vehicles classes
are person cars and trucks. At low density and high speed, headways have a large impact on traffic
flow. While at high density and low velocity vehicle length have large impact on traffic flow. These
two observation are illustrated in Figure 45. This lead to the passenger car equivalent (pce) value,
where the headway h and length of a vehicle l are taken into account.

pce value: πu =
lu + huvu

lcar + hcarvcar
(20)

where u refers to the vehicle class.

Figure 45: Top: no congestion, the headway of the different vehicle classes do not differ that much.
Bottom: congestion, the length of a vehicle has significant impact on the headway of a vehicle.
Source [13] .

The conservation of vehicles equation (16) and the equations we have derived for the velocity (18)
and flow (19) also hold per vehicle class. With these equations of the macroscopic variables the
traffic conditions can be simulated.

METANET

In METANET the motorway network is represented as a directed graph as described in [12] and [3].
Links represent homogeneous motorways and nodes the changes in road geometry. In this model a
link m is also divided into Nm segments of equal length Lm. The length of the discrete time step
of every iteration is denoted by T .

Different types of links
METANET uses five different types of links:

96

Figure 46: Link and node structure of METANET.

Motorway link: these are the general links used for homogeneous motorway stretches. The
traffic conditions in these links are described by the basic macroscopic variables, with on segment
i of link m density ρm,i(k), mean speed vm,i(k) and flow qm,i(k). Every iteration k these basis
macroscopic variables are defined for every segment i.

The density is based on the conservation of vehicles equation, so the equation for the density
is approximately the same as we have seen in Fastlane:

ρm,i(k + 1) = ρm,i(k) +
T

Lmlm
(qm,i−1(k)− qm,i(k)) (21)

(In this case the number of lanes lm is taken into account, this has to do with the definition of the
flow variable veh/h/lane or veh/h). The calculation of the flow is also the same as in Fastlane

qm,i(k) = ρm,i(k)vm,i(k)lm (22)

The mean speed in a segment is calculated by the empirical speed equation [18]:

vm,i(k + 1) = vm,i(k) +
T

τ
(V (ρm,i(k))− vm,i(k)) +

T

Lm
vm,i(k)(vm,i−1(k)− vm,i(k)) (23)

− νT

τLm

ρm,i+1(k)− ρm,i(k)
ρm,i(k) + κ

with V (ρm,i(k)) = vfree,m exp
(
− 1
am

(
ρm,i(k)
ρcrit,m

)am)
This speed update equation contains the average speed vm,i(k) in the current iteration k, the second
term T

τ (V (ρm,i(k))−vm,i(k)) expresses the behavior that the driver wants to achieve a desired speed
V (ρ). So if the desired speed is higher than the current average speed the speed will increase. The
third term T

Lm
vm,i(k)(vm,i−1(k) − vm,i(k)) gives the difference between de speed of incoming and

outgoing vehicles, so the increase (or decrease) of speed caused by the inflow of vehicles. The last
term νT

τLm

ρm,i+1(k)−ρm,i(k)
ρm,i(k)+κ expresses the speed increase (decrease) that drivers experience due to an

lower (higher) density in the following segment than in the current segment. So if the density in the
following segment ρm,i+1(k) is higher than in the current segment ρm,i(k) the speed will decrease.

97

The constant model parameters τ , ν and κ are the same for all links in the model. V (ρ) represents
the fundamental relation between the speed and density (note that this formula is different than
the one used in Fastlane (18)).
In the speed equation (23) additional terms can be added to model merging near on-ramps or lane
drops.

Next to these normal variables METANET also introduces destination-orientated variables:
Partial density, ρm,i,j(k): the density of vehicles in segment i of link m with destination link j ∈ Jm.
Composition rate, γm,i,j(k) ∈ [0, 1]: the portion of traffic volume of qm,i(k) with destination j ∈ Jm.
Where Jm is the set of destinations reachable via link m. The partial density is calculated as follows:

ρm,i,j(k + 1) = ρm,i,j(k) +
T

Lmλm
(γm,i−1,j(k)qm,i−1(k)− γm,i,j(k)qm,i(k))

with γm,i,j(k) =
ρm,i,j(k)
ρm,i(k)

Origin link: origin links receive traffic demand from outside the network and forward that into the
network. Origin links are characterized by their outflow and queue length. The length of the queue,
in number of vehicles, depends on the demand do and the outflow qo at an origin. As illustrated in
Figure 46 the queue length at origin o is given by:

wo(k + 1) = wo(k) + T (do(k)− qo(k))

An on-ramp is sometimes provided with ramp-metering. ro(k) ∈ [rmin, 1] is the metering rate for
origin link o. If ro(k) = 1 there is no ramp-metering, if ro(k) < 1 then the ramp-metering is active.
The outflow is given by:

qo(k) = ro(k) min{do(k) +
wo(k)
T

, qmax,o(k)p(k)}

with p(k) = min{1, ρmax − ρµ,1(k)
ρmax − ρcrit,µ

}

Here qmax,o is the free-flow on-ramp capacity and p(k) is the portion of the flow capacity that can
enter link µ. If ρµ,1 < ρcrit,µ then p(x) = 1 otherwise p(x) < 1. The outflow is thus the minimum
between the capacity of link µ and the flow of the queue plus the demand flow arriving at the queue
at the time interval [kT, (k + 1)T).

The partial queue length is the number of vehicles in the queue of origin o with destination j:

wo,j(k + 1) = wo(k) + T (ϑo,j(k)do(k)− γo,j(k)qo(k))

here ϑo,j(k) is the portion of arrivals at origin o at period k having link j as destination and
γo,j(k) = wo,j(k)/wo(k) the portion of vehicles in the queue at period k with destination link j.

The demand at an origin link is based on historical data and current data.

Destination link: destination links receive traffic flow from inside the network and forward it
outside the network. The traffic flow in the destination link is influenced by the condition at

98

the boundary of the network. If there is no information available of the traffic condition at the
boundary, it is assumed to be uncongested. The outflow of the destination link µ is limited by the
maximal outflow Qmax,µ(k)(boundary condition). Hence

qµ,Nµ(k) = min(qbµ,Nµ(k), Qmax,µ(k))

where qb is the outflow obtained by the basic equation (22) and Nµ is the last segment of link
µ. When the outflow is limited by congestion outside the network the speed has to be recalculated:

vµ,Nµ(k) =

{
vbµ,Nµ if qbµ,Nµ(k) < Qmax,µ(k)

vbµ,Nµ
Qmax,µ(k)

qbµ,Nµ (k)
if qbµ,Nµ(k) ≥ Qmax,µ(k)

Store-and-Forward link: to enable the model to approximately consider urban zones the store-
and-forward links are used. These links are characterized by their flow capacity, queue length and
constant travel time. The determination of the outflow and the queue length of a store-and-forward
link are similar to the equation given above for the origin links.

Dummy link: dummy links have zero length and do not effect traffic but are used to decom-
pose complex networks, they can be seen as help links.

Nodes
The nodes contain static information about the in and outflow of a link. On is the set of links
entering node n and Dn is the set of links leaving node n. The total traffic flow of all entering
links i ∈ On of node n at period k is given by Qn(k), which by every iteration is evolved by
Qn(k) =

∑
µ∈On qµ,Nµ(k).

For the outflow of the node and the corresponding inflow in an outgoing link we need turn fractions
βmn (k), the portion of traffic volume Qn(k) that leaves node n through link m. So the traffic flow
that leaves node n through link m is given by qm,0(k) = βmn (k)Qn(k) for all m ∈ Dn

We have to take into account the influence of the traffic situation of the incoming links on the
outgoing links and vice versa. At a bifurcation node, the densities of the outgoing links have to be
taken into account in the last segment of the incoming link:

ρm,Nm+1(k) =

∑
µ∈Dn ρ

2
µ,1(k)∑

µ∈Dn ρµ,1(k)

ρm,Nm+1(k) can be used in equation (23) for i = Nm. The quadratic term is used, because one
congested outgoing link may block the entering link even if the other leaving links are uncongested.
At a merge point, the speed of the incoming links has to be taken into account according to (8).
The mean speed value of incoming links are given by:

vm,0 =

∑
µ∈On vµ,Nµ(k)qµ,Nµ(k)∑

µ∈On qµ,Nµ(k)

99

Urban network models

In this paragraph two models to predict travel times on urban road networks are presented. First
we discuss a detailed urban network model, the Kashani model. Secondly we present a simple
model based on data-driven methods to predict the travel time.

Kashani model

In 1983 Kashani developed an urban traffic model which is further developed by van den Berg [9]
and Lin and Xi. In this paragraph the model of van den Berg is presented.

The focus will be on the traffic flow at a controlled intersection, because this is the most com-
plex situation in an urban traffic network. The equations for uncontrolled intersection or any other
flow restrictions can be derived in a similar way.

When describing an urban traffic network, the queues at an intersection are important. In this
model every destination at an intersection has his own lane, so cars arriving at an intersection can
move into the correct lane without blocking the traffic to other destinations. Hence every destina-
tion lane will contain its own queue. In practice this is not always the case. If there is only one origin
lane for multiple destinations at an intersection, cars go to their destination as long as their is space
in all destination links. As soon as one destination link is full the entire flow stops at the origin lane.

To model the traffic flows and queue length we need the following variables:

T : the simulation time step.
Oi: set of origins (incoming links) at intersection i.
Di: set of destination (outgoing links) at intersection i.

xo,i,d(k): the queue length at intersection i in the lane for traffic going from origin o to destination d
at time step k.

γo,i,d(k): the relative fraction of the traffic arriving from origin o at intersection i that are going to
destination d.

nao,i: the number of cars arriving at the queue in the link connecting o and i during the time interval
[kT, (k + 1)T).

nao,i,d: the number of cars arriving at the queue in the lane to destination d in link (o, i).
ndo,i,d: the number of cars departing from the lane to destination d in link (o, i).
so,d: the available storage space of link (o, d), expressed in the number of vehicles.

These variables are graphically shown in Figure 47. The traffic leaving link (α, β) to destination di
in time-period [kT, (k + 1)T) is determined by:

• The number of cars waiting and arriving at the intersection.

• The available space in the destination link.

• The capacity of the intersection, i.e., the number of cars that can pass an intersection in
saturated condition of link (α, β) per unit of time, Qsatα,β,di

.

100

Figure 47: Graphical representation of the variables of the Kashani model on two successive inter-
sections.

Hence for link (α, β), the number of cars leaving link (α, β) for destination di in time-period
[kT, (k + 1)T) is given by:

ndα,β,di(k) =
{

0 if gα,β,di = 0 (red light)
max(0,min{xα,β,di(k) + naα,β,di(k), sβ,di(k), TQsatα,β,di

}) if gα,β,di = 1 (green light)
(24)

The time for vehicles to run from the beginning of a link to the tail of the queue is given by
(δα,β(k) + ϕα,β(k))T , with

δα,β(k) = fix

(
sα,β(k)Lveh
vα,βlα,βT

)
ϕα,β(k) = rem

(
sα,β(k)Lveh
vα,βlα,βT

)
Where Lveh is the average vehicle length, lα,β the number of lanes in link (α, β) and vα,β the
free-flow speed on link (α, β). Fix(x) gives the largest integer smaller than x and rem(x) is the
remainder. The vehicles that enter the link in iteration k will take δα,β(k) + ϕα,β(k) iterations to
arrive at the tail of the queue. If a vehicle arrives at the tail of a queue in iteration k it should
have entered link (α, β) δα,β(k) or δα,β(k) + 1 steps ago. The fraction T−ϕα,β(k)

T = 1 − ϕα,β(k) of
the arriving vehicles will enter link (α, β) in time step k − δα,β(k), hence
naα,β = (1− ϕα,β(k))

∑
oi∈Oα n

d
α,β(k − δα,β(k)) + ϕα,β(k)

∑
oi∈Oα n

d
α,β(k − δα,β(k)− 1)

The number of vehicles arriving at the queue to destination di in link (α, β) is calculated from
naα,β and the corresponding turn-fraction:

naα,β,di(k) = γα,β,din
a
α,β(k)

101

The new queue lengths are derived by the old queue lengths plus the arriving vehicles minus the
departing vehicles in iteration k.

xα,β,di(k + 1) = xα,β,di(k) + naα,β,di(k)− ndα,β,di(k)

The new storage depends in a similar way on the number of cars leaving and entering a link:

sα,β(k + 1) = sα,β(k)−
∑
oi∈Oα

ndoi,α,β(k) +
∑
di∈Dα

ndα,β,di(k)

Instead of working with the number of vehicles n leaving or entering links, we could also use (aver-
age) flows q leaving or entering links. So the number of cars leaving link (α, β) for destination di,
ndα,β,di(k), will be given by the flow leaving link (α, β) for destination di, qdα,β,di(k). The equation
for qdα,β,di is derived by dividing the terms in equation (9) by the simulation time step, i.e., the
number of vehicles are divided by the time step, so we derive at the flow:

qdα,β,di =
{

0 if gα,β,di = 0 (red light)
max(0,min{xα,β,di(k)/T + qaα,β,di(k), sβ,di(k)/T,Qsatα,β,di

}) if gα,β,di = 1 (green light)

The definition of the queue length stays the same, the only difference is that the departing and
arriving flow are used to calculate the new queue length:

xα,β,di(k + 1) = xα,β,di(k) + (qaα,β,di(k)− qdα,β,di(k))T

The other equations are derived in a similar way.

Simple model

Urban networks are very complex to model, due to the queues and traffic lights at intersections.
This can be seen in the number of variables of the Kashani model. Therefore we have developed a
simple data-driven model.

The route on a network consist of a combination of two parts:

• Travel time on a link

• Waiting time at an intersection

The travel time at a link can be calculated straight forward by the length of link L divided by the
average speed on that link, L/v(t). If there is sensor data available, the time-dependent average
speed based on historical data is calculated for every link. In the calculation of travel time on a link
we take both the historical average speed and the current average speed into account. The average
speed v(t) will be a combination of the current and historical data: (1−K) · (historical average) +
K · (real time average), with K the value that gives the best estimates. If there are no sensor mea-
surements available on a link, the free-flow speed is taken, see Background for more information.

The waiting time w(t) at an intersection is modeled as the average waiting time at the queue
at the intersection. If there is data available of the average waiting time, the waiting time at an
intersection will be calculated as a combination of the current and historical data as described
above. If there is no data available over the average waiting time, a fixed value c(t) for the waiting
time is chosen. These values c(t) are time depended and the correct values have to be set in further
research.

102

Discussion

Freeway models

Both Fastlane and METANET divide the network into links, which are defined in the same way as
in the approach of Trinité. Furthermore, in both models the links are divided into segments and all
segments in a link have the same length. METANET uses a graph structure with links and nodes,
while Fastlane uses only links and transition flows. In both models the route choice of vehicles is
based on turn fractions.

For the flow inside the segment both models use the same straight forward formula: q = ρv. In both
models the density is based on the conservation of vehicles equation. In contrary to METANET,
Fastlane uses the transition flows between segments in this equation, where the demand and supply
of segments are taken into account. Therefore Fastlane’s method is preferable for calculating the
density.

For the speed in the segments the models use very different equations. Fastlane uses a formula
to describe the fundamental relation between the density and speed. METANET calculates the
speed by the empirical speed equation, which contains many terms to model the different influence
factors. The many model parameters which have to be set is a downside of METANET’s formula.
However the equation of METANET seems to be more accurate, since many features of the speed
in a segment are taken into account. The fundamental relation is only one of the inputs of the
equation of METANET.

The difference in characteristics of different vehicle classes can be easily taken into account by
Fastlane. Fastlane is also a simpler model than METANET and is already used by Trinité. In
METANET the origin-destination variables are already defined. Furthermore METANET has dif-
ferent types of links, so it can better describe the traffic situation of on- and of-ramps. The main
difference is that METANET is more complex than Fastlane, therefore it is also more suitable for
complex networks.

Based on the pros and cons for both models I think that Trinité should develop a highway model
that is a combination of both models. The model has to contain the best of the two models. As a
start Fastlane can be used, since it is already implemented and developing a new model will take
time. Some features of METANET like the origin and destination links and the speed equation can
be good additions to the model.

Urban networks

For urban networks there are not so many reliable models available. Kashani is by far the best
model we have found in our research. A drawback of this model are the many variables and that
it is difficult and time consuming to implement at once. Therefore we would like to start with the
Simple model, which is simple and fast to implement. This model is not a simulation model but a
data-driven method, so the results will not be very accurate. However it is a good model to start
with and to further build on, with as goal to develop a model similar to the Kashani’s model.

103

Another possibility, instead of the Simple model, is to use the freeway model also for the urban
road networks. Despite the difference in characteristics of urban and freeway networks, this is also
a good way to start.

In generally the focus lies on modeling the main roads, like the A-, N- and S-roads. For travel
time calculations also the travel times on the small roads are needed. The traffic situations on
these small road will not be simulated, because they are less important and there is few sensor data
available. Therefore the travel time on a small urban road link will be calculated by dividing the
length of the link by the free-flow speed.

104

Symbols

Symbol Definition
S Number of traffic lights.
λ Inflow at the queue in vehicles per minute.
µ Outflow of the queue in vehicles per minute.
ρ The occupation rate.
N Maximum number of vehicles in the queue, which is never reached.
∆T Length of the time interval in which the fixed arrival rate changes.
∆t Length of the time interval in which the distribution is calculated.
πt Exact distribution at time t.
πt(n) Probability that the process is in state n at time t.
π̂t Expected distribution at time t.
π̂t(n) Expected probability that the process is in state n at time t.
ϕi Exact distribution at transition i.
ϕi(n) Probability that the process is in state n at transition i.
ϕ̂i Expected distribution at transition i.
ϕ̂i(n) Expected probability that the process is in state n at transition i.
δ Rate that the process stays in the current state.
C Total rate out of a state, i.e., λ+ µ+ δ.
nα(t) 1− α upper confidence limit of the number of vehicles in the queue at time t.
D Deadline to be out of the queue.
T aD Latest arrival time such that the app user is with confidence level 1− α on time

out of the queue, before deadline D.
∆x Length of the time interval in which an app user can be scheduled.
ξi Fixed arrival flow in interval i in vehicles per minute, the rate of inflow

of the vehicles that do not use the app.
ξ Arrival flow of non app users per interval, i.e., ξ = (ξ1, . . . , ξn).
ηi Number of app users that are scheduled in interval i.
η Schedule of app users per interval, i.e., η = (η1, . . . , ηn).
λi Total arrival flow in interval i in vehicles per minute, i.e., λi = ξi + ηi/∆x+ γi/∆x.
λ Total arrival flow per interval in vehicles per minute, i.e., λ = (λ1, . . . , λn).
∆L Length of the time interval in which an app users can be scheduled.
l An app user can be scheduled in l intervals, i.e., ∆L = l∆x.
MD Number of app users with deadline D.
AD Latest arrival interval corresponding to the latest arrival time T aD, i.e., all users

with deadline D that are scheduled before or at this interval will be with a pre-set
confidence level on time out of the queue.

Li(x, λ) Mean queue length at time i∆x when starting in initial state x with arrival rates λ.
Ni Number of app users with latest arrival interval i.
σ Fraction of citizens that use the app.
∆k Time between two calculation times of the algorithm.
γi Number of fixed scheduled users in interval i, users which already got a departure sign.
γ Schedule of fixed scheduled app users per interval, i.e., γ = (γ1, . . . , γn).

105

References

[1] Adan, I. Resing. J. Queueing Theory, February 28, 2002

[2] Been, de B. Afrijcapaciteiten, aanzet tot herziening van bestaande richtlijnen, Tilburg, DTV
Consultants 1994

[3] Berg, van den M. Hegyi, A. de Schutter, B. Hellendoorn, J. A macroscopic traffic flow model
for integrated control of freeway and urban traffic networks, Proceedings of the 42nd IEEE
Conference on Decision and Control, Hawaii, pp. 2774-2779, 2003

[4] Bhulai, S. Koole, G. Stochastic Optimization, 2012

[5] Conolly, B.W. Langaris, C. On a New Formula fo the Transient State Probabilities for M/M/1
Queues and Computational Implications, Journal of Applied Probability, Vol. 30, No 1, pp.
237-246, March 1993

[6] Data IJburg webstats Amsterdam

[7] Englewood Cliffs, N.J., Transportation and Traffic Engineering Handbook, 2nd ed., Prentice-
Hall, 1982

[8] Leeuwaarden, van J.S.H. Delay analysis for the fixed-cycle traffic light queue, 2000

[9] Lin, S. Schutter, de B. Xi, Y. Hellendoorn, J. A simplified macropscopic urban traffic net-
work model for model-based predictive control, Proceedings of the 12th IFAC Symposium on
Transportation Systems, Redondo Beach, california, pp. 286-291, 2009

[10] Lint, H. Hoe meer realtime-adviezen hoe slechter de kwaliteit, Verkeerskunde 2008

[11] Lint, van H. Reader Innovation in dynamic traffic management, Integrated and Coordinated
Networkmanagement, 2012

[12] Kotsialos, A. Papageorgiou, M. Diakaki, C. Pavlis, Y. Middelman, F. Traffic flow modeling of
large-scale motorway networks using the macroscopic modeling tool METANET, IEEE trans-
actions on intelligent transportation systems. pp. 282-292, 2002

[13] Schreiter, T. Wageningen-Kessels, van F.L.M. Yuan, Y. Lint, van J.W.C. Hoogendoorn, S.P.
and TRAIL Research School, Fastlane, Traffic flow modeling and multi-class dynamic traffic
management, 2012

[14] Sharma, P.K. Gupta, D.V. Mohit, Computational Solutions of Transient M/M/1/∞ Queue,
VSRD Technical & Non-Technical JOURNAL, Vol 2 2011, pp. 160-168

[15] Sharma, O.P. Markovian Queues, Ellis Horwood, Chichester, 1990

106

[16] Wachs, M. Samuals, J.M. Skinner, R.E. Highway Capital Manual Transportation Research
Board, National Research Council, National Academy of Science, Chapter 8 Traffic Charac-
teristics, 2000

[17] Wachs, M. Samuals, J.M. Skinner, R.E. Highway Capital Manual Transportation Research
Board, National Research Council, National Academy of Science, Chapter 16 Signalized Inter-
section, 2000

[18] Wageningen-Kessels,van F. Techical documentation Fastlane, 2008

[19] Wang, Y. Vrancken, J. Ottenhof, F. Valé, M. Next generation traffic control in the Netherlands.

[20] Wilson, A. Handboek verkeerslichtenregelingen, january 2006

107

