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1 Introduction

Johannes Kepler (born 27 December 1571 and died 15 November 1630, for more info see [1])
was a renowned astronomer, who is generally remembered for his three laws of planetary mo-
tion. In the Astronomia Nova (published in 1609), Kepler used the high-quality astronomical
observations of Tycho Brahe (born 14 December 1546 and died 24 October 1601, for more info
see [2]) to redefine the foundations of celestial kinematics, and to prove the first two laws that
are named after him: that any planet moves in an ellipse with the sun in one of the foci, and
that it sweeps out equal areas in equal times. However, there is much more to this work than
just the first two laws of planetary motion by which Kepler is remembered today.

In this paper, I will try to give an account of Kepler’s battle with the Mars orbit. I will stick
to the structure as laid out by his Astronomia Nova as much as possible. This is done in
a modern approach where Kepler’s train of thought is followed, however omitting sidetracks
where possible. This paper is mainly concerned with the different circular orbit constructions
developed and employed by Kepler. Finally, I will show how this paved the road to oval orbits
and the ellipse in particular.

The Astronomia Nova marks a crucial turning point in the history of astronomy and even
the exact sciences as a whole. Kepler would be the first to describe the planetary orbits
as ellipses, while all previous models were based on combinations of uniform circular motion.
Since antiquity, these circular motions were thought to be absolutely necessary for metaphysical
reasons. Kepler’s work went hand in hand with a new physical conception of celestial mechanics,
discarding some of this superfluous metaphysics, and would be crucial to Newton’s work almost
a century later.

In the Mysterium Cosmographicum (published in 1596), Kepler investigated a relation between
the sizes of the planetary orbits (summarised in [1, pp. 290-292]). He noted that the speed
of the planets was lower when their distance from the Sun was greater (e.g. Venus is slower
than Mercury, Saturn is slower than Jupiter). Kepler hypothesised a physical cause of motion
of the planets in the Sun, to explain this behaviour. This physical cause would be some kind
of solar force moving the planets, that weakened with distance (analogous to light). Because
it weakened with distance, it would also explain why the planetary speeds correlate with the
planet’s distance from the Sun.

Kepler’s reasoning on physical grounds was not just limited to the Mysterium Cosmographicum,
but would continue to play an important part in his theories. The Astronomia Nova is aimed
at the mathematical construction of the Mars orbit in particular. Since Kepler was seeking
to establish an astronomy based on physical grounds, he did not think a complex system of
epicycles (as suggested by Copernicus) could exist. Instead, the construction that Ptolemy
used in the Almagest (second century CE) was more suited to Kepler’s ideas about the actual
physical state.

The first full-fledged attempt at modelling the Mars orbit, is what Kepler called his vicarious
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hypothesis. Here the meaning of vicarious is ‘substitute’, the hypothesis being a substitute for
the actual state of the orbit. Kepler constructed this model by trying to combine Ptolemy’s
model for the Mars orbit with the accuracy of Tycho Brahe’s observations. After trying several
other models, he would eventually conclude that the orbit is not circular and abandon the
circles for an elliptic orbit.

A common misconception about Kepler’s work is that he had all the tools at hand, and merely
had to put the pieces together. This builds on the idea that the ‘time was ripe’ for change and
discovery, in which Kepler would simply be a person who was in the right place at the right
time. The way that Kepler obtained the accurate observational data of Tycho Brahe, seems
to contribute to this notion of combined coincidences. In order to put this notion to the test,
I will investigate the mathematical problems Kepler faced, how he devised methods to solve
them, and how he went about calculating the results.

Apart from mathematical problems, Kepler also had other difficulties during his time which
I will not describe at length but I will refer to other works where applicable. Interesting to
observe is the way he dealt with established notions and ideas regarding celestial mechanics.
Although he might have objected to these established ideas, we will see that the path Kepler
took in the Astronomia Nova was as much laid out by addressing these ideas as it was in finding
a truthful model.

The Astronomia Nova exists in modern translation [3], which I have consulted in the writing
of this paper. Some of the models that Kepler has constructed have also been discussed in
modern literature (such as [4], [5], [6] and [7]), which I have gratefully made use of. However,
these works are either not concise or deeply delve into specific aspects of Kepler’s work. This
makes the current literature on this subject hard to access for today’s students. My discussion
of the contents of the Astronomia Nova will be different from this specialist literature in the
sense that I will concentrate on the mathematics which Kepler used throughout this work. I
will discuss the input data which Kepler uses, the various circular orbits he constructs, and
finally how he came to the oval orbits and ellipse in particular.

In this discussion of all the steps that Kepler takes, I will show how he went at great lengths
to construct various circular orbits. But the circular orbit proves to be fruitless time and time
again, so Kepler resorts to the only option that remains: to sacrifice the circular orbit for the
greater good. Without the supposed circularity of the orbit, he is finally able to come up with
a construction of the Mars orbit (an ellipse) that can accurately reflect Tycho’s observational
data. Taking all the hardships along the way into account, this can only lead to the conclusion
that Kepler’s achievements were not as straight-forward as simply connecting the dots.
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2 Terminology and geometrical devices

I assume the reader has some basic knowledge of astronomical terms and techniques (as in [8,
ch. 1-2]), but sometimes terminology does more harm than good. For the sake of clarity, I will
start with a list of terms commonly used throughout this paper.

This will be followed by some geometrical devices, employed by classic astronomers and math-
ematicians since the second century BCE until Kepler’s time. All these constructions are
described from a heliocentric perspective, unless stated otherwise.

• Ecliptic - The plane of the path that the the center of the Earth describes around the
center of the Sun (or Sun around Earth, in a geocentric model)

• Aphelion - The point in the orbit of a celestial body, where the body is farthest away
from the Sun

• Perihelion - The point in the orbit of a celestial body, where the body is nearest to the
Sun

• Apogee - Geocentric version of aphelion; the point in orbit farthest away from Earth

• Perigee - Geocentric version of perihelion; the point in orbit closest to Earth

• Apsides - Aphelion and perihelion, or apogee and perigee in a geocentric model

• Node - Intersection of the orbit of a celestial body with the plane of the ecliptic

• Opposition - Two celestial bodies are in opposition when their (ecliptical) longitudes are
180◦ apart

• Conjunction - Two celestial bodies are in conjunction when their (ecliptical) longitudes
are the same

• Sidereal period - Time taken for a celestial body to finish a full cycle (of its orbit), relative
to the fixed stars

• Synodic period - Time taken for a celestial body to finish a full cycle, reappearing at the
same point in relation to the Earth (or Sun, in a geocentric model)

• Anomaly (true) - The angle about the Sun from aphelion to the true position of the planet

• Anomaly (mean) - The time measured in degrees from aphelion, in such a way that the
full sidereal period is 360◦ (or angle about an equant from aphelion to planet)

• Inclination (of an orbit) - The angle to which an orbit is tilted with reference to the plane
of the ecliptic

• Limit (of an orbit) - The point of maximum latitude in an orbit (where the latitude is
equal to inclination of the orbit)

• Parallax - The difference between the position of a celestial body as seen from the center
of the Earth and its position as seen from the location of the observer on the surface of
the Earth.
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2.1 Celestial sphere

Figure 1: Celestial sphere

The celestial sphere is a hypothetical sphere of arbitrary (large)
radius, with Earth E at its center. The Celestial equator (green)
is a projection of Earth’s equator on the celestial sphere, pro-
jected from the center of the Earth. The Ecliptic (orange) is
a projection of the apparent path of the Sun on the celestial
sphere. The two intersections of the celestial equator with the
ecliptic are called equinoxes. In the start of the spring, the Sun
is in the vernal equinox and in the start of the autumn the Sun
is in the autumnal equinox.

The angle from the center E, between a celestial body X and its perpendicular projection Z
on the ecliptic (∠ZEX, or the arc ZX) is its (ecliptical) latitude. A celestial body’s (ecliptical)
longitude is the angle from the vernal equinox to the body’s horizontal component on the ecliptic
(∠V EZ, or the arc V Z). Note that the latitude ranges from 0◦ at the ecliptic, to 90◦ at the
ecliptic poles. The longitude ranges from 0◦ to 360◦ at the vernal equinox. Viewed from the
ecliptic North pole, longitude increases in the counter-clockwise direction.

2.2 Equant point

Figure 2: Equant point

The planet X moves along the circle centered on the sun S, but
has uniform angular velocity about the equant point R.

When the planet is nearest to the equant (the upper intersec-
tion between blue and green), its speed along the orbit is least.
Alternatively, when the planet is farthest away from the equant
(the lower intersection between blue and green), its speed along
the orbit is greatest.

2.3 Eccentric circle

Figure 3: Eccentric circle

The planet X moves uniformly (with constant speed) along a
circle whose center C is eccentric to (deviates from) the Sun S.

The orbit is characterised by the eccentricity SC, often described
in terms of radius CX. Since the Sun is off-center, point A is
aphelion and point P is perihelion.
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2.4 Deferent with epicycle

Figure 4: Deferent carrying
an epicycle

The planet X moves uniformly along an epicycle (light blue)
whose center C is carried uniformly by the deferent (dark blue)
about the Sun S, which is also the center of the deferent.

The angular velocities are equal but opposite in sense such that
the radius CX of the epicycle maintains a fixed direction in space
(relative to the stars).

Ptolemy proved that the eccentric
and epicycle-deferent constructions
were geometrically equivalent.

Figure 5: Equivalent con-
structions

This idea is illustrated in figure 5, where the path to X given
by the eccentric circle would be S → C1 → X and the path
given by the epicycle-deferent would be S → C2 → X. Note
that C2X and SC1 are equal in size and orientation. The same
holds for C1X and SC2.

In both cases, the planet’s final orbit is given by the dotted
circle.

2.5 Eccentric with equant point

Figure 6: Eccentric circle
with an equant point

The planet moves along an eccentric circle centered on C, with
uniform angular velocity about an equant point R. This equant
point lies on the same diameter as the Sun S, but on the opposite
side of C.

When the planet is furthest from the Sun at aphelion A, its speed
along the orbit is least. But when the planet is nearest to the
Sun at perihelion P , its speed along the orbit is greatest.

Ptolemy used this construction in his geocentric model, for which
he claimed that observations were best represented by taking
RC = SC. This is usually called halving or bisecting the eccen-
tricity ; the equant point R is twice as far from S as the eccentric
center C.
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3 Gathering the information required to build an accurate model

Before Kepler can make a serious attempt at creating an accurate model of the Mars orbit, he
needs to gather enough information to base his model on. Tycho Brahe had left Kepler with
an immense catalogue of systematic and very accurate observations, which will prove to be of
great use. From this catalogue, Kepler is able to select all kinds of combinations of observations
suited to his calculations.

Kepler based his reasoning on observations where Mars and Sun are in opposition (also called
acronychal observations because the planet would be observed at nightfall). Oppositions are
freed from the influence of Earth’s motion, because here the Earth is on the line of sight from
the Sun to Mars. Therefore, observed longitudes of Mars at opposition are as if they would
have been observed from the Sun directly. That means the problem can be treated purely as
the motion of Mars relative to the Sun, avoiding extra calculation regarding Earth’s position
(which might not be exactly known). Also, for Kepler that meant he avoids committing to
either heliocentrism or geocentrism at this point. As Kepler puts it in the start of chapter 12:

“Means are not wanting of investigating the planets’ first inequality through obser-
vations, even when these are entangled in the second inequality. Nevertheless, in
this second part, I prefer to follow the footsteps of the authorities and make use of
acronychal observations, in order to establish my credibility. For I want to be sure
that later, when I bring forth something contrary to accepted opinion, no one can
complain that the briar-path of his own method was unexplored.” [3, p. 216]

The ‘first inequality’ and ‘second inequality’ were astronomical terms used in Kepler’s time.
They were used for the observed deviations of the motion of the planet from uniform motion,
which the ancient Greeks had considered as ideal. The ‘first inequality’ depends on the position
of Mars in the ecliptic, and the ‘second inequality’ depends on the position of Mars with respect
to the Sun. In modern astronomical theories, the ‘first inequality’ is explained by the elliptical
shape of the Mars orbit around the Sun, and the ‘second inequality’ by the rotation of the
Earth around the Sun.

Through all kinds of inventive constructions, Kepler tries to deduce information regarding the
Mars orbit. Tycho’s data is not always in the format that Kepler requires, for which he has
to devise methods to convert them. In particular, this concerns oppositions between the Sun
and Mars provided by Tycho. In his own celestial model, Tycho uses a method that does not
make use of the true position of the Sun, but a mean position. This ‘mean Sun’ was employed
by Ptolemy, Tycho and Copernicus. Kepler cannot allow this fictitious mean Sun in his theory
based on physical causes.

Theoretically, Kepler could go back to Tycho’s tables and simply read off the observations where
the true Sun and Mars are 180◦ apart. However, the observations were never made exactly at
opposition. So Kepler intends to find the location of the true oppositions of Mars with the
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Sun, through interpolation of the planetary motion around the mean oppositions. Tycho had
already constructed tables of planetary motion for Sun and Mars, which Kepler makes use of.

But Kepler points out that there resides another problem in Tycho’s tables: computed longi-
tudes of Mars are incorrectly referred (or ‘reduced’) from the ecliptic to the Mars orbit. The
computed longitude of Mars (which is done with respect to its own orbit as will be shown later)
is defined to be the same as Mars’ ecliptical longitude. Perhaps this deviation was not noticed
because there was a very minor difference between the two, but Kepler could not allow it. In
order to to this correctly, Kepler devises a method to determine the amount by which he needs
to adjust the longitude to find the correct longitude with respect to the Mars orbit. For this
method, he makes use of the inclination of the orbit to the ecliptic and the positions of the
nodes.

However, before Kepler there was no such thing as one specific (constant) inclination of the
Mars orbit. This is because latitude was usually treated as a problem more or less separate
from longitude. Latitude was computed with additional circular motions going up and down,
superimposed on the longitude model. This varying latitude can be understood as a factor
introduced by use of the mean Sun in constructing the orbit. In his act of removing the mean
Sun from the model of the Mars orbit, Kepler could show that the inclination of the Mars orbit
is actually fixed with respect to the ecliptic.

Kepler’s plan is thus to start by finding the positions of the nodes and the inclination of the
Mars orbit. When the nodes and the inclination have been found and shown to be fixed in space
and time, the position of the planet can be determined in relation to its orbit. With the tables
of planetary motion given, Kepler can convert Tycho’s mean oppositions to true oppositions.
And with the position of the planet in relation to its orbit known, the true oppositions can
be correctly ‘reduced’ from the ecliptic to the Mars orbit. These reduced true oppositions can
then be used to attempt constructions of the full Mars orbit, i.e. they are the raw data from
which the parameters of the models should be calculated.
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3.1 Tycho’s astronomical data and use of the mean Sun

Tycho’s tables mostly consisted of a big set of systematic observations of various celestial bodies.
Additionally, there were supplementary tables such as tables for planetary motion (computed
by interpolating the observations over time). The observations typically listed date and time,
(ecliptical) longitude and (ecliptical) latitude of the observed stellar body.
A table listing 10 of Tycho’s oppositions selected by Kepler [3, p. 186] is shown below:

Figure 7: Part of a table listing 10 of Tycho’s Mars-Sun oppositions, selected by Kepler

As mentioned before, the use of the mean Sun in the oppositions provided by Tycho is a
problem for Kepler. The mean Sun is the point where the Sun would be if it moved uniformly
with respect to the stars. In modern terms, the mean Sun differs from the true Sun since the
Earth’s orbit is not a perfect uniform circle. Tycho employed this construction just like it had
been used ever since Ptolemy described it in his model.

From a modern point of view we can understand the central role of the concept of the mean
Sun by observing that, crudely speaking, the planetary orbits can be considered to be concen-
tric circles. However, the Sun is not at the center of these circles, but rather a bit off from
it. Nevertheless the center of the circles is obviously a crucial point in astronomical theory.
Therefore it is given its own designation (the mean Sun) and is often used as a reference point
in astronomical tables and calculations. In the Copernican system, the mean Sun is even used
as the center of construction of every planetary orbit.

The mean Sun is equally fundamental from a geocentric point of view. As the Earth moves
uniformly on its circle, the location of the mean Sun will appear to make a uniform circular
motion around it. Therefore the position of the mean Sun is the natural and pure ‘time-keeper’
of the solar system. As such the mean Sun, rather than the true Sun, was used as the reference
point for the other planets. This was a sound choice, since the deviation of the true Sun from
the mean Sun depends on the Earth’s position and is thus quite irregular and a poor choice
as ‘time-keeper’ of the solar system: since the motions of the other planets are independent
of the motion of the Earth, it would be very unwise to take the true Sun, whose position is
contaminated by the Earth’s motion, as their basic reference point.
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This is why use of the mean Sun was never questioned; it did not seem to be erroneous. However,
Kepler could only justify use of the true Sun. According to him, use of the mean Sun should
be avoided because there was no physical ground for using it. Because Kepler intends to base
his construction of the Mars orbit on the true Sun, he needs to convert these mean oppositions
to true oppositions.

To make sure there wouldn’t be discussion about this crucial change, Kepler defends his choice
to exchange mean for true Sun (further elaborated in [9, pp. 71-76]). When comparing the
longitude (of Mars) in Tycho’s oppositions with the position given by Tycho’s model for the
Sun, Kepler says in chapter 8:

“You see here that the sun’s mean position differs from opposition to Mars’ apparent
position on the ecliptic by as much as 131

4

′
, nearly thrice the error which could arise

through a change of hypothesis [by using true Sun instead of mean Sun, WK].
Therefore, the exactness of their hypothesis [employing the mean Sun, WK] did not
prevent my seeking another.” [3, p. 188]

Before Tycho, astronomical models were usually based on far less accurate observations. The
measurements provided by Tycho were at least accurate up to two arc minutes (according to
Kepler [3, p. 276], but see [10] for a closer study on Tycho’s instruments and accuracy). The
observations were consistent with a wide variety of possible models, each of which matching
the observational data within the observations’ margin of error.

This wide variety of possible models can be illustrated by the difference in the models of Ptolemy
and Copernicus. Both models were based on similar astronomical data (Copernicus actually
tried to reproduce the Ptolemaic orbits), yet their construction was entirely different. According
to Kepler, Ptolemy stated that the observations he used to build his model were accurate up
to 10 arc minutes. [3, p. 286] Since Tycho’s observations were far more accurate, the margin of
error was much smaller. One can imagine that such a constraint would deeply cut down on the
number of possible models that would fit the observational data. A lot of orbits that would fit
Ptolemy’s and Copernicus’ data, would be incompatible with Tycho’s observations.

Apart from the accuracy of the observations, Kepler’s wish for physical reasons behind each
mathematical construction and artefact is an even stricter constraint on the construction of the
orbit. He would for instance wonder what the physical meaning of an eccentric orbit would be;
it did not at all strike him as obvious that a planet would orbit an empty point in space. This
combination of only allowing models with physical foundation and the precision of Tycho’s
observations (as a merciless test of models), would guide the path taken in the Astronomia
Nova. In calculating the various models with physical foundation, Kepler would show that they
cannot match the observations within the margin of error. A closer look at the errors would
eventually show that his only option would be to drop the circular orbit.
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3.2 Finding the positions of the nodes of the Mars orbit

The first step Kepler takes in gathering the required information to construct the Mars orbit,
is finding the positions of the nodes. Kepler will first show that the orbits of Mars and Earth
are fixed with respect to the fixed stars, i.e. the positions of Sun and other planets (including
the Earth) have no effect on the positions of the nodes. Then he will calculate the positions of
the nodes. This implies that the positions of the nodes are also fixed in space.

If the orbits of Mars and Earth are fixed, then the Mars orbit will cut the ecliptic in two points
with a longitude of 180◦ apart as seen from the Sun. To check this, Kepler first selects four
observations of Mars at zero latitude where in surrounding observations the latitude changes
from negative to positive. This means that Mars should be at the location of the first node.
For these observations Kepler shows that they are all integer multiples of 687 days apart, which
is equal to one sidereal revolution of Mars. The same holds for two other observations of Mars
at zero latitude with latitude changing from positive to negative, being the other node.

Figure 8: Planes of the Mars and
Earth orbits intersecting

Kepler states that at the exact moment where the lat-
itude of Mars changes from positive to negative or the
other way around, its latitude must be zero (and there-
fore Mars is in the node). In case of the planetary ro-
tation being counter-clockwise on the orbit in figure 8,
these moments would be when Mars is at N1 and N2

respectively. Since the selected observations are all one
sidereal revolution of Mars apart, Kepler concludes that
Mars must be in the same location in space. Note that
this (zero latitude) is the only case where it is obvi-
ous that the observed latitude of Mars is equal to the
latitude as if it would be observed from the Sun.

This is Kepler’s calculation following from the last two observations of the ascending node (N2

in figure 8) in chapter 12:

“III. On the evening of 1593 December 10, Mars was observed at the ascending node.
For after correction of the horizontal variations it retained no more than 0◦ 0′ 45”
north latitude.
IV. On 1595 October 27 at 12h 20m, Mars’ true latitude after the removal of parallax
was 0◦ 2′ 20” south. On the 28th, when the parallax had similarly been removed,
the latitude was 0◦ 0′ 25” north. Therefore, in the meanwhile, it was at the ascend-
ing node.
Counting backwards 687 days, the number of days in Mars’ revolution on its ec-
centric, starting from noon 28 October, one ends on 1593 December 10, and on the
preceding night Mars was observed near the node. Count back another 687. This
brings you to 1592 January 23, when the planet was observed right at the node. If
you do the same a third time, you come out at 1590 March 7.” [3, p. 218]
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Using Tycho’s parameters for the movement of Mars relative to the Sun, he shows that the
(heliocentric) longitudes of the two nodes turn out to be about 180◦ apart (this does not mean
that they are also half a sidereal period apart in time):

“Now, how are the sidereal positions of the two nodes found? Thus: one finds
an approximate value for the mean motion of Mars at each place, using tables for
Mars. [...], you will find that on the morning of 1594 December 30, the mean
position of Mars is 27◦ 141

2

′
Scorpio, and on the morning of 1595 October 28 it

was at 5◦ 31′ Taurus. [...] If, on the other hand, you make use of the Tychonic
equations, 11◦ 30′ must be subtracted from the former figure and 11◦ 17′ added to
the latter. Accordingly, the one comes out to be 15◦ 441

2

′
Scorpio, and the other,

16◦ 48′ Taurus, which are Mars’ equated eccentric positions. As you see, the nodes
are nearly opposite one another at about 161

8

◦
Taurus and Scorpio, when viewed

from the centre of the planetary system” [3, p. 220]

Figure 9: Difference between mean
and true longitude

The Tychonic equations that Kepler mentions are used
to calculate the true longitude by adding to or subtract-
ing from the mean longitude. As illustrated in figure 9,
the mean longitude (anomaly) α is not equal to the
true longitude (anomaly) β. The difference between
mean and true longitude is given by these Tychonic
equations.

Note that Kepler has computed the (heliocentric) longi-
tudes of the nodes as seen from the true Sun. Therefore
the result adds an argument to his theory that the true
Sun, not the mean Sun, is important. Since the (he-
liocentric) longitudes are about 180◦ apart, Kepler can
now confirm that the positions of the nodes are fixed
in space. This means that the (heliocentric) locations of the nodes do not vary for different
positions of Earth and Mars. Because of the small distance between the mean and true Sun
compared to the distance from these suns to Mars, the intended change from mean to true Sun
also poses no significant influence on the locations of the nodes.

Kepler now has approximate values for the longitude of the descending node (N1 in figure 8)
at 16◦ 7′ 30” Scorpio, and the longitude of the ascending node (N2 in figure 8) at 16◦ 7′ 30”
Taurus. The longitudes of the nodes also define the longitudes of the ‘limits’ (see explanation
in section 2), since they are 90◦ apart. Therefore, the longitude of the upper limit is 16◦ 7′ 30”
Leo, and the longitude of the lower limit is 16◦ 7′ 30” Aquarius.

By definition, the latitude of Mars at the nodes should be exactly 0◦. If the inclination of the
Mars orbit to the ecliptic is fixed, the (heliocentric) latitude of Mars at the upper and lower
limit should be equal to the inclination (North and South respectively). Before he can use this,
Kepler will first have to show that the inclination is fixed.
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3.3 Finding the inclination of the Mars orbit to the ecliptic

Now that the positions of the nodes have been found, Kepler needs the inclination of the Mars
orbit with respect to Earth’s orbit (the marked angle in figure 8). To calculate the location
of Mars relative to its orbit, he also needs to prove that this inclination is fixed as his model
assumes. Since the inclination is the maximum angular distance between planet and ecliptic as
seen from the Sun, it can never be directly observed from Earth.

Kepler devised three different ways to evade this difficulty, each independent from the choice
between mean or true Sun. All these methods rely on a completely different configuration
of Sun, Earth and Mars, and can be seen as a way to maintain generality in the hypothesis.
Otherwise, Kepler would only be determining the inclination based on the assumption that it
is fixed instead of proving that it is fixed.

3.3.1 First method

Figure 10: Mars equidistant
from Earth and Sun

Kepler notes that when Mars M is equidistant from Earth E and
Sun S, and at the same time in its limit, the apparent latitude
of Mars will be equal to the inclination of the orbit. This can
be understood by dropping a perpendicular from Mars on the
ecliptic, the intersection of this perpendicular with the ecliptic
being M ′ as in figure 10. Now the triangles MEM ′ and MSM ′ are congruent, because they
share two equal lengths (MM ′ and EM = MS) and a right angle (at M ′). Therefore, the
inclination of the orbit ∠MSM ′ is equal to the observed latitude of Mars ∠MEM ′.

Figure 11: Mars equidistant
as viewed from above

This configuration is illustrated in figure 11, as viewed from
above. Kepler notes that approximate values for the ratio of
the radii of the orbits of Earth and Mars can be based on values
from Copernican theory. This of course needs to be corrected for
use of the true Sun, so when he performs the calculation, Kepler
uses a ratio of ES : MS = 1.000 : 1.375. [3, p. 223]

The configuration EM = MS defines an isosceles triangle in
which all the sides are known. Therefore, the angle Mars-Earth-
Sun at which Mars should be observed is given by:

cos∠MES =
ES

2MS
=

1.000

2 · 1.375

Kepler looks up the value from an inverse table of trigonometric functions and gives the angle
as 68◦ 40′. He picks five of Tycho’s observations that satisfy this configuration, which each
list about 1◦ 50′ as the apparent latitude. Since the apparent latitude is equal to the inclina-
tion in this configuration, this method gives an inclination of 1◦ 50′ resulting from these five
observations.
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3.3.2 Second method

Figure 12: Mars at 90◦

When Earth and Sun lie in the line of the nodes of Mars (which
happens twice a year), and Mars is at exact quadrature (the angle
Sun-Earth-Mars being 90◦), then the apparent latitude of Mars
will be equal to the inclination of the orbit (∠MEZ = ∠XSY
in figure 12). This is a much rarer occurrence than the configuration of the first method, but
it has the advantage of making no presuppositions about the relative size of the orbits. Kepler
has four observations of this type, which all seem to point to an inclination of 1◦ 50′.

Figure 13: Mars anywhere

However, in none of these four observations is Mars in exact
quadrature. So Kepler generalises the method: provided that
Earth and Sun are in the line of the nodes, then from an obser-
vation of Mars anywhere in its orbit it is possible to calculate
the inclination. For in figure 13 the observed ∠MEZ = ∠ASB,
when ∠MES = ∠ASN . From the law of sines for spherical
triangles follows that:

sin∠XSY
sin∠XSN

=
sinXY

sinXN
=

sin∠XNY
sin∠XYN

=
sin∠ANB
sin∠ABN

=
sinAB

sinAN
=

sin∠ASB
sin∠ASN

Since X is the limit of the orbit, we have ∠XSN = 90◦. Therefore, the inclination is given by:

sin∠XSY =
sin∠ASB
sin∠ASN

=
sin∠MEZ

sin∠MES

If the observations are taken near quadrature (where ∠MES ≈ 90◦), this reduces to ∠XSY ≈
∠MEZ. In other words, the sought ∠XSY is approximately equal to the observed ∠MEZ.
If the observations are not near quadrature, the arcs NZ (and NM) can be estimated from
the approximate position of Mars in its orbit and hence ∠ XSY can be computed In all cases,
Kepler can thus confirm the inclination of 1◦ 50′ following from these four observations.

3.3.3 Third method

Figure 14: Side-section of
Mars and Sun in opposition

At the moment of opposition Earth, Sun and Mars are in the
same vertical plane (figure 14 displays this section of the vertical
plane). Again, the relative sizes of ES and MS are required for
this method. This time, Kepler uses ES : MS = 1.000 : 1.664 as
values corrected for use of the true Sun (as opposed to the values
in paragraph 3.3.1).

The observed ∠MEZ equals 180◦ −∠MES, for Z (the perpendicular projection of M) on the
ecliptic. From the law of sines follows ∠SME:

sin∠SME =
ES

MS
sin∠MES
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These two angles can be used to obtain the heliocentric latitude of Mars ∠MSE:

∠MSE = 180◦ − ∠MES − ∠SME = ∠MEZ − ∠SME

This heliocentric latitude of Mars is not yet the final value of the inclination, but can be used
in a similar way as in the generalised second method.

Figure 15: Mars and Sun in
opposition

Given the positions of the nodes, the inclination of the orbit is
obtained with this method:

sin∠XSY =
sin∠MSE

sin∠MSN

Since the location of the node N is known and Mars is in oppo-
sition, ∠MSN is approximately known. Because the inclination

is small ∠MSN ≈ ∠ESN , which was the last thing needed to be able to calculate the inclina-
tion. Kepler thus finds an inclination of 1◦ 50′ from one observation that satisfies the planetary
configuration of this method.

All three methods confirm an inclination of 1◦ 50′ derived from totally different planetary
configurations. Kepler concludes from these results that the plane of the Mars orbit remains
fixed at a constant inclination to the ecliptic. On the basis of the inclination and the location
of the nodes, it is now possible for Kepler to determine the position of the planet in relation to
its orbit.
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3.4 Reducing the positions from the ecliptic to the Mars orbit

Having established the positions of the nodes and the inclination of the orbit, Kepler moves on
to the last thing he needs in order to convert Tycho’s mean oppositions to true ones. There is
now enough information to compute the position of Mars in relation to its orbit, which is needed
to correctly reduce the positions from the ecliptic to the Mars orbit. Because the inclination
is so small, the change following from reducing the positions to the orbit was smaller than
observational accuracy. Kepler insists on performing this correction however, because he needs
his data as accurate as possible before attempting to construct an orbit.

Figure 16: Referring Mars to
the ecliptic or its own orbit

Here Kepler points out that the method to reduce the position
from the ecliptic to the location on the Mars orbit which had been
used in constructing Tycho’s table, is incorrect. The procedure
used for this reduction assumed that the arcs NM and NZ (the
ecliptical longitude) were of equal length. This assumption comes
down to ∠NZM = ∠NMZ (when not in a node), which only
holds when Mars is in either of the limits (i.e. its distance to the
nodes is 90◦). This means that if NZ < 90◦, the length of NZ
is also less than the length of NM in the Mars orbit.

Reducing the position from the ecliptic to the Mars orbit was not common practise before
Tycho, and Kepler explains the reasoning behind this procedure in chapter 9:

“Now when we observe the planets, we do not feel convinced that we have defined
their exact positions until we have referred them to the ecliptic. This is done by
indicating the point on the ecliptic at which the circle of latitude passing through
the planet is found. The ecliptic position is used, therefore, to aid our memory
and comprehension. But when, on the other hand, we compute the planet in its
own hypothesis, we are concerned with the exact path of the planet, and not with
the ecliptic to which it is inclined. Therefore, to be able to compare the observed
position with the computed position, we must either extend the arc between the
ecliptic position and the nearer node, or abridge the arc between the body of the
planet and the same node, so that from the former operation the position on the
orbit might be given, and from the latter, the ecliptic position. This is actually
accomplished by adding or subtracting, according as the node precedes or follows
the planet’s position.
Such care concerning the planets Ptolemy considered unnecessary. Copernicus did
not forego it in treating the moon, and Tycho Brahe diligently embraced the cause
of precision [i.e. Tycho did not adhere to the notion that arcs NM and NZ are of
equal length, WK]. [...]
However, as was said above, those who constructed the [Tycho’s, WK] tables thought
that the planet is not exactly at opposition to the sun unless AC (the observed
distance of the planet from the node) is equal to arc AB [the distance between
the ecliptic position of the planet and the node, WK], the elongation of the place
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opposite the [mean, WK] sun from the same node.” [3, pp. 193-194]

When Mars is in one of the nodes or limits there is no correction needed for the values from
Tycho’s tables, because here the arcs NM and NZ (as in figure 16) are indeed of equal length.
That leaves four cases in which the longitude needs to be adjusted; for Mars being in one of the
quadrants between nodes and limits. If Mars has already passed the nearest node (between N1

and the lower limit, or N2 and the upper limit in figure 8), a value needs to be added. If Mars
has not yet passed the nearest node (between N1 and the upper limit, or N2 and the lower limit
in figure 8), a value needs to be subtracted.

This alternating correction is caused by the way the longitudes are computed; they are reckoned
from the nearest node. When reckoned from the nearest node, the angles of the arcs NM and
NZ are always shorter than 90◦ and therefore NM > NZ. This means that when NM is
subtracted from the nearest node to find NZ, too much has been subtracted. And when NM
is added to the nearest node to find NZ, too much has been added.

This value that needs to be added or subtracted (the difference between NM and NZ) is
calculated with spherical trigonometry (see (3) in [11, p. 36]). From the inclination i follows
that tanNZ = cos i ·tanNM . The difference between NM and NZ can therefore be calculated
as NM − NZ = NM − arctan (cos i tanNM), which has a maximum value of almost 53” at
NM ≈ 45◦. Kepler gives values for the correction up to 55” (about 5 to 6 degrees from the
maximum at NM ≈ 45◦), which is possibly related to rounding of intermediate values.
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3.5 Computing the true oppositions with respect to the Mars orbit

Figure 17: Different loca-
tions for mean and true op-
positions

Having established a method to correctly refer longitudes to the
Mars orbit, Kepler returns to the table of 10 oppositions he
picked from Tycho’s data (the table shown in paragraph 3.1).
Because true oppositions are near mean oppositions, he can in-
terpolate from Tycho’s observations to find the moment of true
opposition. This is illustrated in figure 17, with the mean op-
positions S̄E1M1, S̄E3M3 in orange and the true oppositions
SE2M2, SE4M4 in green.

Kepler performs this interpolation by using Tycho’s tables on the
average motion of the Sun and Mars (see footnote [3, p. 201]) at
each opposition. Finally, he uses the construction determining
the position of Mars with respect to its orbit, to correct the
error in longitude introduced by referring to the ecliptic. For the
second opposition from the table, this procedure is executed in chapter 15 as follows:

“II. On the night following 1582 December 28, at 11h 30m, Mars was observed at
16◦ 47′ Cancer, while the true position of the sun was 17◦ 13′ 45” Capricorn. The
moment of opposition had therefore passed. Now the sun’s diurnal [day and night,
WK] motion was 61′ 18”, that of Mars 24′, and their sum, 85′ 18” [= 1◦ 25′ 18”,
WK]. At this moment, the distance between the stars [Sun and Mars, WK] was
26′ 45”. Therefore, as 1◦ 25′ 18” is to 24 hours, so is 26′ 45” to 7 hours 32 minutes.
Subtracting this from 11 hours 30 minutes gives December 28 at 3h 58m after noon
as the moment of true opposition. Its position on the ecliptic was 16◦ 54′ 32” Cancer,
and by reduction to the orbit (a 50” correction), 16◦ 551

2

′
Cancer. The latitude was

4◦ 6′ North, as given by Brahe’s table of oppositions.” [3, p. 236]

In this computation, Kepler first lists the actual observation on which the second entry from
the 10 mean oppositions listed by Tycho is based. Secondly, he gives the position of the true
Sun which has been calculated with Tycho’s solar model. Tycho’s solar model was so accurate,
that it was deemed not necessary to systematically observe the Sun any more. Since Kepler
is looking for an opposition, the point opposing the Sun is used: 17◦ 13′ 45” Cancer. Because
Mars and the point opposing the Sun move in opposite directions (Mars always has a retrograde
motion in the ecliptic as seen from the Earth during oppositions with the Sun), the values for
their average motion are added together.

These average motions are listed in Tycho’s tables for their respective longitudes, calculated on
the basis of 24 hours. The combined average motion is then interpolated to the distance that
has to be covered for an opposition. The result of the linear interpolation, 16◦ 54′ 32” Cancer,
is a position in the ecliptic. This is then corrected to a position in the Mars orbit of 16◦ 55′ 30”
Cancer, as described in paragraph 3.4. Finally, this is used to calculate the time difference and
therefore how much time needs to be added or subtracted to find the time of opposition.
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After having converted the 10 mean to true oppositions, Kepler adds two later observations of
true oppositions (one made by himself and one made by David Fabricius). He now has a table
of 12 true oppositions [3, p. 248] on which he can base his theory for the Mars orbit:

Figure 18: Table of 12 true oppositions

The column with mean longitude refers to the mean longitude of Mars, and has been included
for calculations. The mean longitude is used not only in the computation of the Tychonic
equations as explained in paragraph 3.2, but in planetary models in general from the time of
Ptolemy onwards. The first entry (marked S) in this column refers to the amount of signs that
have been passed.

Each sign is 30◦ wide, with Aries being the first sign. The order of signs is Aries, Taurus,
Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Sagittarius, Capricorn, Aquarius and Pisces. With
this system, the first entry of 1S 25◦ 49′ 31” is the same as 10◦ 49′ 31” Taurus. The second
entry of 3S 9◦ 24′ 55” is the same as 9◦ 24′ 55” Cancer, and so forth.

Note that the (true) longitudes of the oppositions listed in the table have been defined with
respect to the Mars orbit. Curiously, this shows that Kepler has divided the Mars orbit into
signs just like it is the case for the ecliptic. This has been done in such a way that the sign,
degree and minutes of the nodes (in the ecliptic) are transferred to the Mars orbit and the rest
of the orbit is divided accordingly.
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4 Following the methods of the ancients: the vicarious hypothesis

Kepler makes use of Ptolemy’s ancient model of the eccentric orbit with equant, because the
theory he had described in the Mysterium Cosmographicum would justify this model on physical
grounds. The primary reason to use the eccentric equant is because it was made plausible by
the solar force that Kepler hypothesised. However, Kepler does not exactly follow Ptolemy’s
method. First of all, Ptolemy described a geocentric Mars orbit but Kepler will describe it from
a heliocentric point of view. But also in determining the model, Kepler makes some changes.

Traditionally, constructing an eccentric orbit with equant is based on three parameters of the
orbit: its center, radius and the location of the equant point. These three factors combined
will also determine the location of aphelion, or apogee in the geocentric model. In a bisected
eccentricity model, the distance from the Sun (or Earth, in Ptolemy’s case) to the center of the
orbit is the same as the distance from the center to the equant point. Therefore, these three
parameters are enough to determine the entire construction of the model.

Constructing the orbit seems simple once sufficiently many locations of Mars on its orbit are
known. The center of the circular orbit can be found from the location of three points on the
orbit, as the circumcenter of the triangle formed by these three points. Consequently, the radius
of the circle is determined by the distance between the center and any of the three points. The
line of apsides can be found by comparing the change in mean longitudes, where the apsides
mark change from acceleration and deceleration or the other way around. Finally, the equant
can be placed along the line of apsides such that the mean anomalies are correct.

However, the locations of Mars are not known exactly, which makes the problem rather trou-
blesome. What is known are just two sets of angles, from the table of true oppositions listed
at the end of the previous chapter. These angles follow from the differences in longitudes; one
set of angles about the Sun (differences in the true longitudes) and one set about the equant
(differences in the mean longitudes). Kepler figured out a very inventive (but cumbersome)
method to construct the parameters of the orbit from this information.

After determining the parameters of the orbit, Kepler tries to verify his model. First, he tests it
with respect to longitudes, after that he tests it with respect to latitude. Since the inclination of
Mars is very small, he uses the latitude to calculate distances from Sun to apsides. Eventually,
Kepler finds that this model is not accurate enough and rejects the vicarious hypothesis as
actual Mars orbit (although he does use some elements of the vicarious hypothesis in later
constructions).
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4.1 From oppositions to eccentric with equant

As mentioned earlier, Kepler planned on using the Ptolemaic eccentric with equant (figure 6).
However, Ptolemy’s practise of halving the eccentricity (i.e., assuming SC = RC in figure 19
where R is the equant point, C the center of the circle and S the central body: for Ptolemy
the Earth, for Kepler the Sun) did not strike Kepler as obviously true. According to Kepler,
Ptolemy had justified halving the eccentricity in the case of Mercury and Venus but it seemed
like he had merely assumed it for the other planets. [3, pp. 251, 430]

By halving the eccentricity, Ptolemy was able to determine the eccentricity and the place of the
apogee from three observations of the planet. Kepler decides to treat the ratio between SC and
RC as an unknown, and states that he will now need four observations to determine the orbit
including eccentricity and the distance between center and equant. The required observations
are taken from the table of 12 true oppositions (as listed in paragraph 3.5).

Figure 19: The longitudes of
four Mars observations

The differences in (true and mean) longitude of these 4 observa-
tions define two sets of directions, illustrated in figure 19. The
angles at the Sun S (the angles between the pink lines), are given
by the differences in (true) longitudes of Mars. The angles at the
equant R (the angles between the orange lines), are given by the
differences in mean longitudes of Mars. These two sets of four
angles define four intersections Xi, being the intersections of the
pink and orange lines. Apart from the differences in longitudes,
only the location of the Sun S is fixed.

By construction, the line that joins S and R is the line of apsides;
this line also contains aphelion A and perihelion P . Since the
location of S is fixed only the distance SR and the position of C on SR need to be known to
define the rest of the model, assuming that the Xi are on a circle with center C. Because there
is no length defined by what is given (differences in longitudes and location of S), the distance
SR can be arbitrarily chosen. Now all the angles and lengths (proportionate to SR) in figure 19
can be calculated.

Kepler’s plan is to assume that the four intersections Xi lie on the same circle, whose center C
is located on the line segment between S and R. From this assumption (and the assumption
that SR has an assumed length), he wants to try and deduce the ratio SC : RC, the radius of
the circle and the position of R with respect to the ecliptic.

The only fixed reference to the fixed stars that Kepler has, are the true longitudes which are
defined with respect to the ecliptic. To use this in finding the orientation of the orbit, Kepler
needs to relate the true longitudes to the line of apsides. This means that in order to actually
construct this orbit, the radius CXi, the angles AXiS, AXiR and the lengths SC, RC are
required. Since all angles are related by construction, this comes down to finding the angle that
SA (the location of aphelion) makes with one of the fixed directions SXi.
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4.2 Approximating the parameters of the orbit iteratively

To execute the procedure of the previous paragraph, Kepler picks 4 of the 12 observations from
the table of true oppositions (as listed in paragraph 3.5). These four observations are chosen to
be more or less distributed around the ecliptic, and in the shortest time frame as possible (to
limit external errors such as precession). Kepler picks the entries IV, VI, VII and VIII from
the table, to execute this computation in chapter 16.

The first step in approximating the parameters of the orbit is choosing initial rough approxi-
mations of the mean (∠ARX1) and true anomaly (∠ASX1) of the first observation X1. These
initial values can be picked on the basis of the Copernican and Ptolemaic models, which give
values that cannot be very far wrong. [12] From now on, I will refer to ∠ARX1 and ∠ASX1

(mean and true anomaly of X1) as α and β respectively.

Figure 20: Cyclic quadrilat-
eral of Mars observations

As stated before, the distance SR is chosen as an unit length.
From the choice of angles α, β and the length SR, it is possible
to compute all the elements of triangle SX1R. Since ∠X1SX4

and ∠X1RX4 are given, it is also possible to compute all the
elements in triangle SX4R. Thus all elements in triangle X1SX4

are known, and so forth for all the angles and lengths displayed
in figure 20. In particular, the four marked angles a = ∠X2X1S,
b = ∠SX1X4, p = X2X3S and q = SX3X4 can be calculated.

The first thing that Kepler needs to check is that the points Xi

lie on the same circle. He notes that if they lie on the same circle,
the four Xi form a cyclic quadrilateral. In a cyclic quadrilateral, the sum of the four angles
a, b, p, q should be equal to 180◦. Therefore, proving that the points Xi lie on the same circle,
comes down to proving that a+ b+ p+ q = 180◦.

Getting the sum s = a + b + p + q to equal 180◦ is done iteratively: If s is not equal to 180◦,
then the assumed angle α should be altered (without changing β) until s does equal 180◦. The
meaning of altering α is tilting the directions of the mean longitudes at R as a whole (the
orange lines of figure 19), with respect to aphelion A. When the sum of these angles does equal
180◦, it has been proven that the points Xi lie on the same circle.

Kepler describes this process of iteration as simply trying (a lot of) different values for α,
guessing new values based on how the difference s− 180◦ changed. To explain this in modern
notation, I will add an index n to indicate the iteration step: for the angles as αn, and for the
sums (a + b + p + q) as sn. Call the current value for α, αn, the old value αn−1, and the new
value αn+1. The same is done for the sums s as sn, sn−1 and sn+1 respectively.

With this notation, say that |sn − 180◦| > |sn−1 − 180◦|; then αn has been chosen wrongly.
Kepler advises that if αn > αn−1, then αn+1 should be chosen to be smaller: αn+1 < αn−1.
But if αn < αn−1, then αn+1 should be chosen to be larger: αn+1 > αn−1.
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Otherwise, in the case of |sn − 180◦| < |sn−1 − 180◦|, you’re on the right path and should
continue: if αn > αn−1, then choose αn+1 > αn. And if αn < αn−1, then choose αn+1 < αn.

Once it has been established that the points Xi lie on the same circle (e.g. s = 180◦), Kepler
must check whether C lies on the line of apsides (AP , or SR). This is another process of
iteration: Checking the location of C is done with the aid of ∠CSX4, which I will call γ. If C
lies on the line of apsides, γ should be equal to ∠X1SX4 − β. Both of these angles are known,
which means that if γ is not equal to their sum β should be altered until it does.

However, changing β will involve an alteration in α because R lies on the line of apsides by
definition. The result is that you must go back to tweaking α such that a+ b+ p+ q is equal
to 180◦ again. Once this is the case, β can be checked (and changed if necessary) with respect
to γ. So this second step of iteration will repeatedly includes the previous iteration process.
About the complexity and intensity of this method, Kepler notes in chapter 16:

“If this wearisome method has filled you with loathing, it should more properly fill
you with compassion for me, as I have gone through it at least seventy times at the
expense of a great deal of time, and you will cease to wonder that the fifth year has
now gone by since I took up Mars, although the year 1603 was nearly all taken up
by optical investigations.” [3, p. 256]

With this method, Kepler eventually determined what he would refer to as the vicarious
hypothesis. That is, an eccentric (circular) orbit with an equant point that has the follow-
ing parameters (for a chosen radius CXi of 100.000) [3, p. 269]:

• Total eccentricity (SR) = 18.564

• Center to Sun (SC) = 11.332

• Center to equant (RC) = 7.232

• Aphelion (A) in Leo 28◦ 48′ 55” (for March 1587)
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4.3 Testing the vicarious hypothesis with respect to longitudes

Kepler first tests if the vicarious hypothesis of the previous paragraph gives the same longitudes
as listed in the table of true oppositions. He uses the mean longitudes of the 12 listed oppositions
as input for computing the longitude of Mars. This longitude as computed with the vicarious
hypothesis is then checked with the longitudes from the tables.

In chapter 18, Kepler provides a table with his intermediate steps for computing the positions
of Mars. I will repeat this procedure to show how he did this, based on the data he provided
for observation IV (6 March 1587). This procedure is based on the parameters of the vicarious
hypothesis (SC,RC, the position of aphelion A) and the mean longitude (as listed in the table).

Figure 21: Aspects of calcu-
lating the longitude given by
the vicarious hypothesis

Kepler starts with the mean longitude of 6S 0◦ 47′ 40” (6S =
Libra) for observation IV and the location of aphelion as
4S 28◦ 48′ 55” (4S = Leo). For reasons unclear to me Kepler sys-
tematically adjusted all the mean longitudes by 3′ 55”, resulting
in the mean longitude of 6S 0◦ 51′ 35”. The angle MRA is the
difference between these two; 32◦ 2′ 40”, of which the sine is given
by Kepler as 53.058 (with unit 100.000; 0, 53058 in decimals).

He then makes use of the (ambiguous case of) the law of sines;

sin∠RMC

RC
=

sin∠MRA

CM
to get sin∠RMC = RC · sin∠MRA.

The sine of ∠MRA and length of RC are known, Kepler cal-
culates the product: 7.232 · 0, 53058 = 3.837 = sin∠RMC.
Now he calculates the inverse sine of this value: sin−1(3.837) =
2◦ 11′ 57”, which he calls ‘part of the equation’ (which is actually just the angle RMC).
The angle MCA is found by simply subtracting this ‘part of the equation’ from angle MRA:
32◦ 2′ 40”− 2◦ 11′ 57” = 29◦ 50′ 43”.

Kepler uses the law of tangents in triangle MCS, using ∠MSC + ∠CMS = ∠MCA:

CM − SC
CM + SC

tan
1

2
∠MCA = tan

1

2
(∠MSC − ∠CMS)

Next, Kepler again uses the property ∠MSC + ∠CMS = ∠MCA to write ∠MSC as:

∠MSC =
1

2
(∠MSC + ∠CMS) +

1

2
(∠MSC − ∠CMS) =

1

2
∠MCA+

1

2
(∠MSC − ∠CMS)

Angle MSC is equal to angle MSA which is sought, so combining the above gives:

∠MSA =
1

2
∠MCA+ tan−1

(
CM − SC
CM + SC

tan
1

2
∠MCA

)

Kepler first calculates the tangent of half the angle MCA: tan 14◦ 55′ 21” = 26.650 (with unit

100.000, so 0, 2665 in decimals). Then the quotient
CM − SC
CM + SC

=
100.000− 11.332

100.000 + 11.332
= 79.643.
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The quotient is multiplied with the tangent of half the angle MCA: 79.643 · 0, 2665 = 21.225.
This corresponds to the angle: tan−1(21.225) = 11◦ 59′ 0”. This intermediate value is then
added to half the angle MCA to get ∠MSA: 14◦ 55′ 21” + 11◦ 59′ 0” = 26◦ 54′ 21” = ∠MSA.
He adds this to the value of Aphelion: 4S 28◦ 48′ 55” + 26◦ 54′ 21” = 175◦ 43′ 16”, thus
obtaining longitude of 25◦ 43′ 16” Virgo. He notes that it should have been 25◦ 43′ 0” Virgo
according to observation, which means the vicarious hypothesis is only off by 0′ 16”.

The agreement with observation is extremely good in the cases of the 4 observations he used
to compute the vicarious hypothesis, as well as the 8 observations not used. Apart from one,
all calculated longitudes differ less than 2′ with the longitudes from the table of oppositions.
Kepler notes in chapter 18 that his method (using the true Sun), is even more accurate than
Tycho’s to calculate the longitudes of Mars at opposition:

“Finally, you see how nothing prevents the transposition of acronychal observations
from the mean to the apparent [i.e., true, WK] motion of the sun, so as to keep
me from, not just imitating, but even surpassing, the certitude of the Tychonic
calculation, which has been raised as an objection against my abandoning the sun’s
mean motion.” [3, pp. 276, 279]
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4.4 Testing the vicarious hypothesis with respect to latitudes

After testing the vicarious hypothesis with respect to longitudes, Kepler tests his model with
respect to latitudes in chapter 19. He takes the observed latitude at two of the oppositions
listed in the table (g and h in figure 22 below), when Mars is near the lower and upper limit
respectively (M1 and M2 in figure 22, where E1 and E2 are the corresponding positions of the
Earth, S is the Sun and C the center of the circular Mars orbit). The plan is use the inclination
of the orbit and these latitudes to determine the length SC. The length SC obtained in this
manner is then compared with the length as calculated for the vicarious hypothesis.

Figure 22: Oppositions near northern and southern limit of Mars

The inclination i of Mars’ orbit had been established as 1◦ 50′. Now the two distances Sun-Mars
M1S and M2S can be calculated as before (third method for finding the inclination):

M1S = E1S ·
sin∠M1E1S

sin∠SM1E1
= E1S ·

sin(180◦ − g)

sin(g − i)

M2S = E2S ·
sin∠M2E2S

sin∠SM2E2
= E2S ·

sin(180◦ − h)

sin(h− i)

Kepler notes that he takes the lengths for E1S as 97.500 and E2S as 101.400 from Tycho’s
Progymnasmata (for a radius of 100.000 of the Earth orbit around the mean Sun). He then
calculates the lengths M1S as 163.150 and M2S as 139.000, using this method. From these
values he can also calculate the radius of the Mars orbit as half of the sum of M1S and M2S,
which is 151.075.

Since M1 and M2 are near aphelion and perihelion (the upper limit was found to be a bit
over 16◦ Leo and aphelion at almost 29◦ Leo), it is safe to extrapolate and find the distance
Mars-Sun at aphelion and perihelion. Kepler uses the difference between these two, SA − SP
in figure 19. Since CA = CP , SA = CA + SC = CP + SC = SP + 2SC and therefore
SA−SP = SP + 2SC −SP = 2SC. The eccentricity SC is now calculated as 12.075, or 8.000
for a chosen radius of 100.000 of the Mars orbit. [3, p. 283]

This gives an independent check on the length SC, which was found to be 11.332 in the vicarious
hypothesis. Such a large discrepancy in the length SC would yield an error greater than the
observational inaccuracy. To prove that this error did not come from using the true Sun instead
of the mean Sun, Kepler also performs the calculation for mean Sun. But when using the mean
Sun, the length SC is 9.943, which is still far from the 11.332 given by the vicarious hypothesis.
Kepler concludes that his theory will not produce correct distances, when using the latitudes
and the value obtained for SC before.
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5 Other circular orbits

Since the vicarious hypothesis turned out to be flawed with respect to distances (following from
latitudes), Kepler attempts to mend the model to give more accurate distances. Obtaining more
accurate Mars-Sun distances is the key problem that I will discuss in this section. However,
while attending to distances, Kepler needs to make sure that the longitudes following from the
new models he constructs also stay accurate. These two requirements eventually prove to be
impossible to satisfy with a circular orbit.

Kepler tries three alternative circular orbits for the vicarious hypothesis, before definitely aban-
doning the circular orbit. Each of these alternatives is based on a bisection of the eccentricity,
as Ptolemy would have done. The choice for this bisected eccentricity model originates from
the discrepancy in the eccentricity as shown in paragraph 4.4. Note that for the bisected ec-
centricity model, SC and RC in figure 19 are of equal size. Since this chapter will frequently
make use of the radius and eccentricity of the orbit, I will refer to them as r and e respectively.

Kepler’s first attempt employs the vicarious hypothesis, but only changed to have a bisected
eccentricity. The second attempt follows from a more elaborate determination of aphelion and
perihelion, and is based on the values of r and e that follow from this determination. The final
attempt is based on determining distances (and thus r and e) of other points on the orbit. I
will show how this turns out for observations chosen near quadrants instead of aphelion.

All of these circular orbits, seem to be (increasingly) constructed to show that it really isn’t
possible to maintain the supposed circularity of the orbit. This is important for Kepler because
abandoning the circle would have been a delicate matter at the time. For a more detailed view
on this see [7, ch. 7], or even from a metaphysical point of view in [13],[14].

Before going into these alternative orbits in detail, I first need to note that I will now skip a large
part of the Astronomia Nova mostly concerned with the Earth orbit. After briefly listing some
important notions discussed in the omitted chapters, I will continue with the alternative circular
orbits that Kepler devised. The exact contents of these omitted chapters are not necessary to
understand the rest of this paper.
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5.1 Omitted sections between vicarious hypothesis and other circular orbits

Part three (Chapters 22-40) of the Astronomia Nova is mostly concerned with the Earth orbit.
Here Kepler develops new ideas about the Earth orbit, which tie in to his ideas about the
planetary orbits. Important fact here is that Kepler uses an equant for Earth, just like the
other planets. Kepler also concocted a ‘law of motion’ following from a physical theory that
explained why the speed at apsides would be inversely proportional to the distance between
planet and Sun, for which I refer to [6, pp. 10-16] and [4, pp. 255-256].

Ptolemy did not use an equant for the Earth/Sun construction, but did for every other planet.
This had seemed out of place, and showing that the Earth orbit could also be modelled with an
eccentric equant construction made a lot of sense to Kepler. This model of an eccentric equant
with bisected eccentricity for the Earth orbit is explored in [6, p. 7] and [4, p. 255]. In a way,
showing that this construction was possible, would illustrate that Earth was no special planet
and therefore negate a counterargument to abandoning the geocentric system.

Kepler also developed an independent method (in chapter 28) to calculate the eccentricity of
the Earth orbit, by using five sets of observations of Sun and Mars. With this eccentricity, he
constructed the bisected eccentricity model for the Earth orbit. Using this model, distances
between Earth and Sun can be accurately determined for any moment in time. Kepler had
previously (in paragraph 4.4) used a table provided by Tycho, but uses this model to produce
a more accurate table of Sun-Earth distances in chapter 30.
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5.2 Bisecting the eccentricity of the vicarious hypothesis?

After using latitude to find out that the vicarious hypothesis does not provide correct distances
at the end of chapter 19, Kepler shortly describes an alternative model. He points out that a
quick solution to the problem of the distances might be to bisect the total eccentricity in the
vicarious hypothesis. This would fit perfectly to Ptolemy’s established method of bisecting the
eccentricity. The way this is done is by simply moving the center C such that it is exactly
between the Sun S and the equant point R.

Halving the total eccentricity found in the vicarious hypothesis (SR in figure 19) of 18.564 gives
9.282, a value which is close to the two values derived from the latitudes (8.000 and 9.943 in
paragraph 4.4). So it seems like Ptolemy might have been right when he chose to halve the
eccentricity for the Mars orbit after all. The model that follows from this bisected eccentricity
orbit with an equant point, has the following parameters (for radius 100.000):

• Total eccentricity (SR) = 18.564

• Center to Sun (SC) = 9.282

• Center to equant (RC) = 9.282

• Aphelion (A) in Leo 28◦ 48′ 55” (for March 1587)

However, this model does not provide accurate longitudes. Kepler uses this model to calculate
longitudes for the opposition of 1593 (VII) and the opposition of 1582 (II). He does this by
executing the method as described in paragraph 4.3, with the new values for SC and RC.

For opposition VII the difference in longitude is about 3′, and for II the calculation differs
about 8′ from the vicarious hypothesis. [3, p. 285] Kepler concludes that these errors are
impossible to allow, as opposed to Ptolemy who only claimed an accuracy up to 10′:

“Since the divine benevolence has vouchsafed us Tycho Brahe, a most diligent ob-
server, from whose observations the 8′ error in this Ptolemaic computation is shown,
[...] For if I had thought I could ignore eight minutes of longitude, in bisecting the
eccentricity I would already have made enough of a correction in the hypothesis
found in ch. 16. Now, because they could not have been ignored, these eight min-
utes alone will have led the way to the reformation of all of astronomy, and have
constituted the material for a great part of the present work.” [3, p. 286]

Because the value of half the total eccentricity is extremely close to the length SC as determined
in paragraph 4.4, Kepler continues to try bisected eccentricity models. Since it did not work
to include this in the vicarious hypothesis, which provides accurate longitudes, he then tried to
find another way to incorporate longitudes to the bisected eccentricity model.
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5.3 Addressing the distance problem more thoroughly

The longitudes following from Kepler’s first attempt at solving the distance problem (in the
previous paragraph) were not correct. This means that it is not possible to use the bisected
eccentricity model with the parameters as determined for the vicarious hypothesis. Since he has
to start from scratch, Kepler uses a more elaborate approach to redetermine the distances from
Sun to apsides and the location of aphelion at the same time. He will also have to recompute
the eccentricity e, because the previous value was based on the vicarious hypothesis.

Kepler’s first attempt at establishing the location of aphelion and distance to Sun is based on
the method of chapter 25 (omitted from this paper) for finding these parameters. This method
requires three distances Sun-Mars and the angles between Mars and Earth at the true Sun.
Conveniently, in each of the chapters 26, 27 and 28, he had already calculated these values for a
different position of Mars when investigating the Earth orbit. However, Kepler points out that
this method does not yield the same results when using different sets of distances and angles.

From Kepler’s first calculation with this method, the longitude of aphelion turns out to be nearly
2◦ different from the vicarious hypothesis (which yields approximately correct longitudes). And
apart from that, this method gives him different values for aphelion and eccentricity for any
different set of three distances. This prompts Kepler to express the suspicion that the orbit
is not determined by three points (i.e. that it is not a circle). Hence, Kepler notes that the
distance of each point on the orbit should be separately determined. [3, p. 435] In particular,
he starts by determining the distances at aphelion and perihelion more precisely.

Figure 23: 5 observations of
Mars near aphelion

Kepler’s method for doing this for aphelion, is to take five obser-
vations of Mars each approximately a sidereal period apart from
the next, with Mars at five different points Mi near aphelion A
(the Mi are not shown in figure 23 since they practically coincide
with A at this scale). For these observations, the Earth will be
at five different points Ei on its orbit. In each case he knows the
distance Earth-Sun EiS from the table constructed in a chapter
which I have not discussed in this paper, and the angles MiEiS
as the difference in observed longitudes of Mars and Sun.

The trick now lies in another iterative process to determine the
length SA. Kepler begins by assuming an approximate value of
the lengths MiS ≈ SA, from which the angles SMiEi can be

calculated with the law of sines:
MiS

sin∠MiEiS
=

EiS

sin∠SMiEi
.

The last angle MiSEi follows from ∠SMiEi and ∠MiEiS: MiSEi = 180◦ − SMiEi −MiEiS.

Now the heliocentric position of Mars at the Mi near aphelion, is obtained from MiSEi by
adding or subtracting it to the heliocentric position of the Earth (when the Earth’s heliocentric
longitude is less or greater than Mars’ heliocentric longitude respectively). Note that the angles
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MiSEi obtained this way are not entirely accurate because of the inclination, so Kepler has to
correct for the small error introduced this way.

Kepler notes that this heliocentric position of Mars will only come out the same in each case
(each of the five Mi) if a correct length for the MiS ≈ SA has been assumed. He uses this
notion to determine SA through an iterative process of trial and error as before. This way, the
length of SA turns out to be about 166.780 (for a chosen radius of 100.000 for the Earth orbit).

The same procedure is undertaken for a suitable point in the Mars orbit near perihelion, but
here Kepler computes SP (called αθ in chapter 42) with only three observations. I now quote a
passage from Kepler in literal translation to give the reader a feel for this ad-hoc argumentation,
without giving detailed explanations and figures which are unnecessary for my purpose.

“In the diagram, let Mars’s eccentric position be θ, the positions of the earth, ζ, µ, η;

and let

ζα be 19◦ 13′ 56” Scorpio
ζθ 20◦ 59′ 15” Capricorn
µα 5◦ 47′ 3” Libra
µθ 14◦ 18′ 30” Capricorn

or 20′

ηα 23◦ 26′ 13” Leo
ηθ 16◦ 56′ 0” Pisces

Therefore,

αζθ is 61◦ 45′ 19”
αµθ 98◦ 31′ 27”

or 32′ 57”
αηθ 156◦ 30′ 13”

When the length of the common side αθ is assumed to be 138, 400, its position
comes out thus:

Through ζ 29◦ 55′ 20” Aquarius
µ 29◦ 53′ 36” (or 54′ 36”) Aquarius
η 29◦ 59′ 10” Aquarius

But if it was 55′ 20” at ζ, it should have been 56′ 56” at µ, and 58′ 32” at η, for
that is the amount of the precession of the equinoxes. It can thus be seen from the
diagram that the line αθ determined through η goes too far forward, and through
µ, ζ, too far back, in relation to that through η. Other things remain unchanged,
this happened because I assumed too small a value for αθ. Therefore, if I make it
a hundred parts longer, the following positions come out:

From ζ 29◦ 57′ 10” Aquarius;
from µ 29◦ 55′ 36” (or 29◦ 57′ 6”) Aquarius;
from η 29◦ 58′ 17” Aquarius

So now the positions of αθ have been made to be too close to one another, and more
so now in closeness than before in remoteness. Therefore, the most correct length
of αθ will be about 138, 430.
At this point the plane is inclined 1◦ 48′ (as it was before at the opposite position),
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and the secant is 49 units greater than the radius. But as 100, 000 is to 138, 430,
so is this 49 to 68. Therefore, the correct length of the radius [the distance from
Sun to perihelion, WK] is approximately 138, 500, at least from these observations
involving long interpolations.” [3, pp. 441-442]

So Kepler has two sets of points; one set near aphelion and one set near perihelion. For these
points he knows distances, mean and true longitude, and therefore the approximate time interval
in which Mars moves from aphelion to perihelion and angular distance between them. In the
models that Kepler considers, aphelion and perihelion are the only pair of points on the circle
for which holds that they are 180◦ and exactly half a sidereal period apart (i.e. they differ
exactly 180◦ in both true and mean longitude).

By extrapolation from the two sets of points near the apsides, it is possible to reach an even more
accurate estimate for the positions of aphelion A and perihelion P . From Tycho’s tables, Kepler
knows the approximate speed of Mars near the apsides which he uses for this extrapolation.
This procedure gives a position of aphelion in Leo 28◦ 40′, which only differs by 9′ from that of
the vicarious hypothesis. With the position of aphelion and the distances SA as 166.780 and
SP as 138.500 (for a chosen radius of 100.000 for the Earth orbit), he now has enough data to
attempt a second bisected eccentricity model.
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5.4 A bisected eccentricity model from more precisely determined apsides

In the previous paragraph, Kepler found accurate distances from Sun S to apsides A and P .
Also, the location of aphelion was redetermined with a method independent of the vicarious
hypothesis. With this new information, Kepler will attempt to construct a new model with
bisected eccentricity. He will redetermine the parameters for this construction and verify it with
respect to longitude. After verifying with respect to longitude, he compares this new model
with the previous bisected eccentricity model (the model of paragraph 5.2).

Because the location of aphelion has already been redetermined, Kepler now only needs to
determine the new eccentricity e. He does this by using the same method he used in para-
graph 4.4. The distance of Sun to aphelion SA is equal to the sum of radius and eccentricity
r + e. For the distance Sun to perihelion SP , this is r − e. The difference between these two
(SA− SP ) will be 2e, which is 166.780− 138.500 = 28.280. This gives a value for e as 14.140.

However, for comparison (with other models such as the vicarious hypothesis) the radius of
the Mars orbit r is chosen as 100.000. This means the value for e needs to be divided by
166.780 + 138.500

2 · 100.000
, which means that e is equal to 9.264. Kepler notes how close this is to

9.282, being half the total eccentricity of the vicarious hypothesis. [3, p. 445]

So, this second bisected eccentricity model has the following parameters (for r = 100.000):

• Total eccentricity (SR) = 18.528

• Center to Sun (SC) = 9.264

• Center to equant (RC) = 9.264

• Aphelion (A) in Leo 28◦ 40′ (for March 1587)

Kepler now verifies the model following from these parameters, with respect to longitude. He
does this by comparing it to the vicarious hypothesis which yields accurate longitudes. The
advantage of verifying the model this way, is that he can calculate values for any point on the
orbit. So instead of relying on the limited set of observations (and their observational error),
he can pick longitudes for which he expects problems.

Kepler notes that at a mean anomaly of 90◦, the difference in longitude with the vicarious
hypothesis is only 24” (which is negligible). But at the octants, mean anomalies of 45◦ or
135◦, the difference in longitude with the vicarious hypothesis is significant. At 45◦ the model
produces a longitude which is 8′ 21” larger than that of the the vicarious hypothesis. And at
135◦ the longitude is 8′ less than that of the vicarious hypothesis. [3, p. 447]

After comparing with the vicarious hypothesis, Kepler compares this result with the previous
bisected eccentricity model (the bisection of the eccentricity of the vicarious hypothesis). This
previous model had produced differences (with respect to the vicarious hypothesis) of the same
order at the octants, but with opposite signs. A comparison of the two orbits is illustrated
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in figure 24 below. The left figure represents the construction of the current paragraph, with
SC1 = C1R = 9.264 and aphelion A1 in Leo 28◦ 40′. The right figure represents the vicarious
hypothesis with bisected eccentricity (from paragraph 5.2), with SC2 = C2R = 9.282 and
aphelion A2 in Leo 28◦ 48′ 55”.

The dotted circle has been added to illustrate the difference in eccentricity, which is greater in
the right figure. The points G1 and H1 represent the longitudes of Mars at octants, resulting
from computation with the model of the current paragraph. Likewise, the points G2 and H2

represent the longitudes of Mars at octants, resulting from computation with the model of
paragraph 5.2. Finally, the points U and V represent accurate longitudes of Mars at octants,
resulting from computation with the vicarious hypothesis of paragraph 4.2.

Note that the longitudes of the octants (the directions of SU and SV ) as viewed from the Sun
S, should be the same for both orbits. Also, the marked angles around R1 and R2 (between
octants and the line of apsides) are supposed to be 45◦. However, the image displays an
exaggerated difference in eccentricity and shifted aphelion and is therefore not to scale. This
makes it impossible for all these directions to be visually correct, for which I will have to appeal
to the reader’s imagination.

Figure 24: Exaggerated comparison of the two bisected eccentricity orbits

Even though the latest model (the left orbit in the image) has more accurate values for the
distances SA and SP , the longitudes it yields are still not correct. Kepler notes that this
makes it seem as if Mars is moving too slowly around quadrants, compared to its speed around
apsides. However, he extensively shows that this is not the case because the speeds cannot be
very different from the ones resulting from this model when assuming a circular orbit.

With the advantage of hindsight, it can of course be explained with the fact that the orbit is
elliptical. Because the actual orbit is inclined near the quadrants, the path traversed by the
planet is shorter than it would be if it were circular. This seems like Kepler is suggesting that
the problem lies with the supposed circularity of the orbit. He does not literally say so, but
I don’t think he would have thoroughly investigated the problem if he did not have reason to
believe so. In any case, he now moves on to deal the crushing blow to the circular orbit.
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5.5 A final circular orbit derived from observations near quadrants

The very last attempt at a circular orbit is based on a bisected eccentricity model following from
distances Sun-Mars for points other than apsides. These distances are determined with the first
method Kepler tried for establishing the position of aphelion more accurately (in paragraph 5.3).
He pointed out that this method led to inconsistencies, unless the three selected observations
would be clustered around aphelion. For this final attempt, I will show how it plays out when
using observations clustered around the quadrants (90◦ and 270◦ of anomaly).

Figure 25: The Mars orbit
must be an oval

Kepler does not actually construct the orbit, but merely uses it
to compare the distances for apsides. Recall that these distances
could be determined from radius and eccentricity; for Sun to
aphelion as r + e and for Sun to perihelion as r − e. I will not
go into the same level of detail as Kepler, but will illustrate how
this method gives a check on the radius r when using the same
eccentricity e = 9.264 as the previous paragraph.

Kepler calculates the distance Sun to quadrant (SQ in figure 25)
as 154.272 (for a chosen radius of 100.000 for the Earth orbit).
[3, p. 515] As before (in paragraph 5.4), this distance should be

divided by
166.780 + 138.500

2 · 100.000
, which gives SQ = 101.069 for a

chosen radius of 100.000 for the Mars orbit of the previous paragraph (the dark blue circle).
Since ∠QRS is a right angle, from the Pythagorean theorem follows that QR2 = SQ2 − RS2

and CQ2 = QR2 + RC2. This means that r2 = CQ2 = SQ2 − RS2 + RC2 = SQ2 − 3RC2,

which gives the radius r =
√

101.1532 − 3 · 9.2642 = 99.787.

Hence, this final circular orbit is illustrated by the smaller light blue circle in figure 25. That its
radius is smaller, points to the supposition that the true orbit lies inside the larger circle but
outside the smaller circle. The conclusion is that the orbit must be an oval since it coincides
with the smaller circle at quadrants, but with the larger circle at the apsides. [3, p. 453]

Kepler now supposes that the law of motion that he had suggested earlier in relation to the
Earth (omitted from this paper) applies to the Mars orbit as well. This means that the speed
of Mars along its orbit would be in inverse proportion to the distance between Mars and the
Sun. With respect to the larger circle (dark blue), the distances in the oval orbit are shorter
at quadrants. Therefore, the law of motion implies that the speed along the oval at quadrants
should be greater than it would be on the larger circle.

Between quadrants and apsides the speed gradually changes, so at the first octant the planet
will be less far on its orbit and at the third octant it will be farther (with respect to the circular
orbit). And this was exactly what he found to be erroneous about the model of the circle; giving
too great a longitude at the first octant and too small at the third octant (in paragraph 5.4).
This is the final argument for Kepler to ditch circle in favour of oval.
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6 Dropping the circular orbit: a peek at ovals

We have seen how Kepler is struggling with various forms of circular orbits, following from
commonplace methods to construct planetary orbits. At the same time, in showing how all these
methods are failing the test of the accuracy of Tycho’s observations, he is carefully stacking
up reasons to ditch the circular orbit. First we have seen how the vicarious hypothesis did not
suffice. After various attempts, paragraph 5.4 has shown that constructions with Ptolemy’s
method of bisecting the eccentricity are also fruitless. But the final blow however, was dealt by
the circular orbit derived from observations near quadrants.

When taking the distances from Sun to apsides and Sun to quadrants in account, it becomes
obvious that is impossible for the orbit to be circular. The circular orbit that gives correct
distances for the apsides, gives too long distances for quadrants. At the same time, the circular
orbit that gives correct distances for the quadrants, gives too short distances for apsides. In
short; as opposed to any circular orbit in between, the distances should be longer at apsides
but shorter at quadrants. Since it is impossible to meet both of these criteria with a circular
orbit, the only solution is that the orbit must be some kind of oval.

Because ovals are not commonplace, Kepler first tries to base his model on slight modifications
of existing models. Along with his reasoning based on physical grounds, this leads him to
try an epicyclic model. On the basis of some physical and metaphysical reasons, he modifies
the epicyclic construction which results in an oval orbit. Eventually he would not be able to
actually construct the orbit solely based on (meta)physical arguments, so he returns to altering
the vicarious hypothesis.

Kepler’s first full construction of an oval orbit is based on combining the correct aspects of
the vicarious hypothesis and the bisected eccentricity model. Whereas the vicarious hypothesis
yields accurate longitudes, the bisected eccentricity model yields accurate distances. His idea is
to combine these two into one model which would satisfy both. Kepler does not have a physical
justification for this model, but hopes this construction will somehow prove to be useful.

After struggling with ovals for some time, Kepler will come to use an ellipse to approximate
the oval orbit. This is due to the fact that there was quite a lot known about the properties
of ellipses, but not a lot about ovals. Eventually, he would end up with two oval orbits; one
egg-shaped and the other elliptical. Kepler would then show that the egg-shaped orbit is not
correct, leading to the conclusion that the Mars orbit is indeed elliptical.
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6.1 An oval orbit based on an epicyclic construction

Kepler had previously (while still considering a circular hypothesis) rejected an epicyclic con-
struction for the Mars orbit. This was done on the grounds that if one used the true Sun
as center of calculation, it involved the planet moving on the epicycle at a varying speed. For
metaphysical reasons, this varying speed along the epicycle was out of the question. But Kepler
now pointed out that if the planet were allowed to move on the epicycle at a constant speed,
the result would be an oval orbit (as illustrated in figure 26).

Since the varying speed along the epicycle was the main reason for rejecting the epicyclic
construction, he noted that the epicycle should be reconsidered now that the objection was
removed. Again, Kepler would explore the option of constructing the orbit through the use of
an established method (although slightly adjusted). This would turn out to be fruitless as he
could not think of a good method to properly construct this, but it shows that he would go to
great lengths to justify the steps he has taken.

Figure 26: The orbit follow-
ing from an epicyclic con-
struction

This epicyclic construction involves a deferent centered on the
Sun S and an equant point R. The deferent carries an epicycle
with radius equal to the length SR. The planet on the epicycle
moves at constant speed, while the epicycle center (D,E, F,G)
would move uniformly with respect to the equant.

If the epicycle center would have moved at the same speed along
the deferent, EX2 and GX4 (e.g. the pink lines) would remain
parallel to SR. In this case the resulting orbit would be a circle
about center R (as illustrated in figure 5).

However, because the epicycle center moves uniformly with re-
spect to the equant, the epicycle center moves much slower near
aphelion (at D) than near perihelion (at F ). Therefore, at 90◦ about the equant (at E) the
planet on the epicycle has moved more than 90◦ along the epicycle.

This model would result in an oval orbit (the orange oval in figure 26), but Kepler could not
find a proper way to determine how to construct this model. Eventually, he would resort to a
construction which employs the vicarious hypothesis to obtain an oval orbit.
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6.2 An oval orbit based on corrected distances for the vicarious hypothesis

Figure 27: The construction
for correcting the distances
of the vicarious hypothesis

Recall that the vicarious hypothesis yields accurate longitudes
but incorrect distances. Kepler now introduces a new model
which uses these longitudes but attempts to correct the distances.
These corrected distances are taken from the bisected eccentric-
ity model. But this bisected eccentricity model is constructed
without using the equant, i.e. just an eccentric circle. Kepler
does this by taking the parameters of the vicarious hypothesis
from paragraph 4.2 and the parameters of the bisected vicarious
hypothesis (without the equant) from paragraph 5.2.

As illustrated in figure 27, this construction employs two circles;
one with center C1 (dark blue) and one with center C2 (light
blue). The location of C1 is determined by the eccentricity of
the bisected vicarious hypothesis: SC1 = 9.282. The locations
of C2 and R are determined by the distances Sun to center and Sun to equant of the vicarious
hypothesis: SC2 = 11.332, SR = 18.564. Both of these models have the same longitude for
aphelion A, and therefore share the line of apsides.

Now for the trick to apply the corrected distances to the vicarious hypothesis. For a given mean
longitude (i.e. a given angle α at R) the position H of the planet is found with the vicarious
hypothesis. This gives SH, the correct direction of Mars as seen from the Sun S. Kepler now
takes α at C1, resulting in F such that C1F is parallel to RH. This gives SF which should be
the correct distance from Sun to Mars. These two aspects are combined by taking the distance
SF along SH (i.e. SF = SG). This yields G as true position of Mars.

Figure 28: The oval orbit
traced by the construction
for correcting the distances
of the vicarious hypothesis

The whole orbit can now be constructed from different values of
α (illustrated in figure 28), and it turns out to be egg-shaped
with the point of the egg towards perihelion. [3, p. 467] Note
that this construction is opportunistic because Kepler has not
given a reason for using just the eccentric circle instead of the
eccentric with equant. Also, he had no reason based on physical
grounds to justify that the combination of two faulty models can
produce a correct model for the Mars orbit.

Perhaps the eccentric circle had been made plausible by the
epicyclic construction of the previous paragraph. But since the
angular speed of the planet along the epicycle is not equal to
the angular speed of the epicycle center along the deferent, this
would not make the eccentric circle geometrically equivalent to
the epicyclic construction.

However, the action of combining the two models in an attempt
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to cancel out their flaws would prove to be useful. Although Kepler struggles with this egg-
shaped oval orbit for a few more chapters of the Astronomia Nova, its difficulty would force
him to use an approximation ellipse. A closer look at this approximation ellipse can be found
in [5, pp. 180-182] and [15].

The ellipse was used for approximating the area of the egg-shaped oval orbit, but would even-
tually bring Kepler to the correct ellipse (see also [6, pp. 10-21] and [4, pp. 256-260]). When
comparing the longitudes following from the approximation ellipse with ones following from the
bisected eccentricity orbit, he finds that the correct orbit should be exactly in the middle. This
is how he arrives at the final ellipse; a shape that’s exactly between an ellipse and a circle is of
course not an egg-shaped oval.
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7 Conclusion

We have now seen a wide variety of methods devised by Kepler and the great lengths at which
he went to calculate them. Most of these constructions are set in the old ways, following from
the massive authority of Ptolemy’s Almagest. Note that for nearly 1500 years, this work had
dominated the field of astronomy. Even Copernicus’ heliocentric model, which we now regard
as a marvellous innovation, was not yet universally accepted during Kepler’s time.

Kepler was the first to pursue a model that gave the (true) Sun an actual physical meaning in
the construction of a planetary orbit. But this surely was not the only aspect on which he has
challenged the methods of Ptolemy and other authorities on astronomy. He had gotten himself
into more trouble by considering an eccentricity that was not bisected, and eventually by even
discarding the circular orbit altogether. Surely, Kepler must have felt a need (be it his own,
or imposed by contemporaries) to back up his claims against these notions that were so well
established.

The wide variety of circular orbits Kepler pained to construct and verify with Tycho’s data,
might be the best way to illustrate this need to defend his theories. Apparently he felt like
he could not ditch the circular orbit without exhausting all options. The path Kepler took in
the Astronomia Nova was as much laid out by addressing these established ideas, as it was
in finding a truthful model. For such a paradigm shift from (metaphysical) circular orbits to
elliptical orbits, could not have taken place unless there really was no other way.

Let’s go back to the idea that Kepler found the elliptical orbit by coincidence, simply being in
the right place at the right time. Did he really have all the tools at hand, just having to put
the pieces together? With the benefit of hindsight, we can say that Tycho’s exceptional data
indeed did enable Kepler’s achievements. But without his exceptional cunning in defying the
authorities, it would have been nearly impossible to accomplish what Kepler did. Nor would
anyone else have had as much use of Tycho’s data as Kepler, for Tycho’s accuracy would be
the main reason Kepler could back up his dismissing of inaccurate orbits.

Although Kepler tries to make it look strikingly obvious that there is a physical foundation
to celestial mechanics, few astronomers of his time would have been impressed by this kind of
reasoning. I cannot stress how important it must have been to refute the established methods,
in order for them to accept the ellipse. Even with modern tools, it would still be a painful
task to go through all the steps of computing these models with great accuracy. Kepler must
have been remarkably creative to devise methods to solve his mathematical problems, as well
as accurately calculating them.

This leads me to conclude that Kepler was not simply the person in the right place at the right
time. Kepler’s achievements were not some tasks that were ready to be fulfilled by anyone.
Through years of perseverance, Kepler’s exceptional talent would prove to be the crucial factor
in his discoveries. In other words, if he had been some random person and not exactly who he
was, Kepler’s three laws of planetary motion might have been discovered only much later.
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