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Abstract 
Both open-channel flows and density currents are able to create supercritical-flow bedforms. The 

morphodynamics of these supercritical-flow bedforms are, however, still poorly understood. This is 

mainly due to a lack of measurements of flow processes occurring within these types of flows. Cyclic 

steps have successfully been simulated in open-channel flow using a depth-resolved numerical 

model. The equilibrium conditions at which certain supercritical-flow bedforms are stable are 

investigated. The temporal variation in Froude number is indicative of at which conditions cyclic 

steps are in a macroscopic equilibrium at a variability of grain sizes, discharges and sediment 

concentrations. The depth-resolved model provides insight into the dynamic interaction between 

velocity structure, shear stresses, and sediment concentrations within the flows and resulting erosion 

and deposition patterns, which, in their turn affect the flow-properties again. The velocity structure 

downstream of a hydraulic jump displays highest flow velocities near the bed, whilst lowest or even 

negative velocities are located at the top of the flow, causing the flow to remain exerting shear 

stresses on the bed even after the hydraulic jump. The sediment concentrations within the flow only 

decrease after a 30 second, or half a meter lag, causing most of the deposition to take place at the 

last two-thirds of subcritical region of the flow. The resulting depositional pattern consists of 

upstream-dipping backset laminations deposited on the stoss-side of the bedform, cross-cut by the 

erosive surface of the lee-side of the cyclic step, this interplay between erosion and deposition also 

causes an upstream migration of the cyclic steps.  

__________________________________________________________________________________ 

Introduction 
Unidirectional fluid flow over an erodible bed usually leads to the formation of bedforms due to the 

morphodynamic interaction of a flow and a sedimentary bed, such bedforms have been observed in 

both open-channel flows as well as in density currents. Two main types of bedforms can also be 

created by an overall supercritical-flow; antidunes and cyclic steps. Supercritical-flow bedforms have 

been modelled in flume experiments in both open-channel as well as density flows (Jorritsma, 1973; 

Taki & Parker, 2004; Alexander et al., 2010; Spinewine et al., 2009; Cartigny et al., 2013). Additionally 

there are field observations of these bedforms in free-surface flows (Simons et al., 1965; Grand, 

1997; Fielding, 2006). Bedforms with similar geometries and internal structures have also been 
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observed on the seafloor (Smith, 2005; Lamb et al., 2006; Fildani et al., 2006; Heiniö & Davies, 2009; 

Paull et al., 2010; Ayranci et al., 2012; Hughes-Clarke et al., 2012), though the interpretation of the 

process creating these sediment waves is debated. Numerical modelling studies on supercritical 

bedforms have been performed, using depth-averaged models, both in open-channel setting 

(Winterwerp et al., 1992; Parker & Izumi, 2000; Mastbergen & Van Den Berg, 2003; Fagherazzi & Sun, 

2003; Parker & Sun, 2005) and under subaqueous conditions (Fildani et al., 2006; Kostic & Parker, 

2006; Kostic et al., 2010; Cartigny et al., 2011; Covault et al., 2014).  

These depth-averaged models have provided valuable insights in the morphodynamics of bedform 

development. The fundamental instability underlying the initiation of bedforms, as well as the 

dynamic flow processes associated with them, are however, still poorly constrained.  The 

simplification in internal flow structure limits information on bed-flow interaction that can be 

extracted from the depth-averaged models. Differences in sediment concentration, turbulence and 

velocity may affect the bed interaction significantly.  

More detailed numerical simulations of the flow-processes and bed-flow interactions allow a more 

detailed constrain of the parameters governing the formation of bedforms; data which is difficult to 

obtain from the actual natural flows or physical experiments. In this study a fully depth-resolved 

computational fluid dynamics (CFD) commercial code that uses a Reynolds-averaged Navier-Stokes 

approach (RANS) is deployed in order to gain further insights in the processes forming and 

maintaining the supercritical-flow bedforms over time, at different conditions.   

The main research questions of this study are: (1) can supercritical bedforms be modelled using a 

depth-resolved model? This type of numerical algorithm has never been used to simulate the 

development of supercritical-flow bedforms, the model outcomes are first to be compared to 

physical modelling results to validate the use of the model. (2) At which conditions do supercritical 

bedforms develop from an initially smooth slope? The effects of grain size, specific discharge and 

sediment concentration on flow conditions will be investigated. (3) How does the morphodynamic 

interaction between flow and bedform work? How does the bed-morphology affect the flow-

properties? The model allows for quantification of flow-properties as excess-shear stress, sediment 

concentration and flow-velocity over depth.  (4) An attempted has been made to model supercritical-

flow bedforms in a turbidity current, with the experimental work of Jorritsma (1973) as a basis. 

Although stable conditions under which supercritical bedforms have been formed have proven 

difficult to model, the bed-flow interaction has been simulated. The effects of different physical flow 

properties on the bed and vice-versa around a hydraulic jump in a turbidity current will be 

investigated.  
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Background 
Flows are either Froude subcritical (Fr<1) or supercritical (Fr>1), as a flow shifts from a supercritical - 

to a subcritical flow regime, a hydraulic jump is present. This fluid-dynamic process can be observed 

in free-surface conditions as well as in turbidity currents (Komar, 1971; Long et al., 1990; Hager, 

1992; Kostic et al., 2010). In supercritical flow conditions there are two main types of bedforms that 

can be present (Kennedy, 1960; Alexander et al., 2001; Cartigny et al., 2013) (1) Antidunes: antidunes 

are short wavelength, relative to cyclic-steps, 

symmetrical bedforms associated with 

continuously supercritical flow and (2) Cyclic steps: 

cyclic steps are generally more asymmetrical, 

longer wavelength bedforms, associated with 

trains of hydraulic jumps. On the stoss-side of the 

cyclic step, depositional subcritical flow is present, 

while at the lee-side there is an erosive 

supercritical flow (Winterwerp et al., 1992; Parker, 

1996; Cartigny et al., 2013 There are also two 

transitional bedforms related to Froude-

supercritical flow: unstable antidunes and chutes-

and-pools (Kennedy, 1960; Kennedy, 1961; 

Alexander et al., 2001; Cartigny et al., 2013), an 

overview of the different supercritical-flow 

bedforms is shown in figure 1. 

Figure 1: An illustration of different kinds of supercritical 
bedforms as found in Cartigny et al., (2013). 

 

Fluid-dynamic framework 

Flow regimes and hydraulic jumps 
The Froude number is an important number in hydrodynamics, as the Froude number distinguishes 

between subcritical flows where surface waves can migrate both upstream and downstream, and 

supercritical flows which only allow downstream migration of surface waves. The Froude number (Fr) 

is the dimensionless ratio between flow velocity and wave propagation velocity, but it also 

represents the ratio between the ŦƭƻǿΩǎ inertia and gravitational forces when applied to depth-

average flow properties.  

Ὂὶ        Equation 1.1 

In which u is the depth-averaged flow velocity, g the acceleration due to gravity and h the flow 

depth.  If Fr>1 the flow is supercritical, and if Fr<1 the flow is deemed subcritical.  

The transition between supercritical to subcritical-flow is associated with the formation of hydraulic 

jumps, which can be explained in terms of specific energy. The specific energy is the sum of kinetic 

ŜƴŜǊƎȅ όѹˊǳчύ ŀƴŘ ǇƻǘŜƴǘƛŀƭ ŜƴŜǊƎȅ όˊƎh)Σ ǿƘŜǊŜ ˊ ƛǎ ǘƘŜ ŘŜƴǎƛǘȅ ƻŦ ǘƘŜ ŦƭǳƛŘΦ The specific energy can 

be expressed in meters of water column height by dividing by ˊƎΦ !ǎǎǳƳƛƴƎ ǳƴƛŦƻǊƳ ŘŜƴǎƛǘȅ ŀƴŘ 

velocity distributions this results in equation 1.2. The specific energy (E) is expressed in metres of 
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water column, in which the first term corresponds with the potential energy head (Es), and the 

second with the kinetic energy head (Ek), q is the specific discharge.  

Ὁ Ὁ Ὁ ᶿ”ὫὬ ”ό ᶿὬ
ό
Ὤ

ό

ό
   Equation 1.2 

This function implies that the energy in a flow is the sum of the kinetic energy and potential energy. 

As the Froude number (equation 1.1) is a ratio between the fluids inertia and gravitational forces, it 

can be said that the square of the Froude number is proportional to the kinetic and potential energy 

(equation 1.3). This also means that there is a critical flow velocity (uc) and critical flow depth (hc) (at 

constant discharge), at which the flow changes from a supercritical to subcritical flow regime (and 

vice versa),  

 

ϵ ό
ᶿὊὶό     Equation 1.3 

 

The critical flow depth can be used to non-dimensionalise the flow depth (h/hc), and specific energy 

expressed in hydraulic head (E/hc).  

 

Figure 2: a plot of flow depth versus specific energy expressed in hydraulic head. Ek and Es are the kinetic energy and 
potential energy components of the total specific energy E. Altered after Open Channel Hydraulics for Engineers ch.3 pg. 47. 

If h/hc is lower than unity, potential energy (Es) dominates in the flow, and the flow is subcritical. In 

case h/hc is exceeds unity, kinetic energy (Ek) is the dominant form of energy, and the flow is in a 

supercritical flow regime.  

When a flow changes from a supercritical regime, (for example point A in figure 2) to a subcritical 

regime (for example point B in figure 2). The energy gradient in the flow is negative at first, going 

from point A to point C, over the line. The energy gradient then becomes positive: going from point C 

to point B over the line. This positive energy gradient is physically impossible as no energy is added to 

the system. For this reason a change in flow from supercritical to subcritical cannot happen gradually, 

but has to be instantaneous (a hydraulic jump). The overall loss in specific energy whilst going from a 
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supercritical-flow to subcritical flow, as explained by the described theory, can be explained by the 

development of rollers and vortices: turbulent kinetic energy creation and dissipation.  

Submerged hydraulic jumps 
Hydraulic jumps are also known to occur in density flows, such as turbidity currents (Komar, 1971; 

Garcia & Parker, 1989; Long et al., 1990; Kostic et al., 2010). Turbidity currents are driven by their 

excess weight due to sediment suspended in the flow. As the Froude number is an indication 

between a flows inertia and gravitational forces, the component describing the forces due to gravity 

ought to be adjusted to a subaqueous situation as the gravity force is only applied on the excess 

density. The densimetric Froude number (Frd) describes the Froude number in a submerged setting 

as found in Mastbergen & Van Den Berg (2003).  

Ὂὶ       Equation 1.4 

In which C is the depth-averaged sediment concentration (as fraction) and ʁ  is the relative density 

difference of the sediment-water mixture:‐ ” ”Ⱦ” . Similar to the normal Froude number, a 

value of unity is classically expected to be the value of critical flow, this is however only valid for 

unstratified flows and the critical-flow Froude number differs from unity in stratified flow such as 

turbidity currents (Waltham, 2001). 

Hydraulic jump classification  
The Froude number before the hydraulic jump has implications for the intensity of the hydraulic 

jump created and hence, also its flow structure. If the Froude number before the jump is relatively 

low,  little energy will be lost in the jump, and the jump will behave less vigorous than if the Froude 

numbers before the jump are high (table 1 provides a classification scheme of different hydraulic 

jumps formed at a variance of Froude numbers).  

Name Froude number Energy 
dissipation 

Characteristics Illustration 

Undular jump 1.0-1.7 <5% Standing waves 

 
Weak jump 1.7-2.5 5-15% Smooth rise 

 
Oscillating jump 2.5-4.5 15-45% Unstable; avoid 

 
Steady jump 4.5-9.0 45-70% Best design range 

 
Strong jump >9.0 70-85% Choppy; 

intermittent 
 

Table 1: a classification scheme for hydraulic jumps as in Ven Te Chow, 1973. Illustrations from Open Channel Hydraulics for 
Engineers ch.3.  
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Bedforms in a supercritical flow-regime 
Supercritical-flow currents tend to transport and erode large quantities of sediment as they typically 

have steeper velocity gradients in comparison to similar subcritical flows, during sediment transport 

several bedforms can be identified. A four-fold classification of supercritical bedforms has been 

proposed by Cartigny et al. (2013): stable antidunes, unstable antidunes, chutes-and-pools and cyclic 

step, in order of increasing peak flow intensity. Figure 3 provides a bedform stability diagram for 

bedforms in a supercritical flow regime (in open-channel flows).  

 

Figure 3: The bed load stability diagram from Cartigny (2012), the solid blue lines are from Van den Berg & Van Gelder 
(1998). The dotted lines are added by Cartigny (2012). The diamonds are observed cyclic step morphologies, squares are 
chutes and pools, triangles are antidunes and circles represent the upper plane bed. The data has been obtained in several 
studies, and different grain sizes (Gilbert, 1914; Kennedy, 1961; Guy et al., 1966; Winterwerp, 1986; Cartigny, 2012).  

These supercritical bedforms are not only found in free-surface flows, but have also been observed 

on the sea-floor (Hughes-Clarke et al., 2012), are found in flume experiment of turbidity currents 

(e.g. Jorritsma, 1973; Spinewine et al., 2009) and have been modelled numerically using depth-

averaged models (Fildani et al., 2006; Kostic & Parker, 2006; Kostic et al., 2010; Cartigny et al., 2011; 

Covault et al., 2014).  

Stable antidunes 
Antidunes are relatively short-wavelength, low amplitude type of bedform, associated with (near)-

constant supercritical flow conditions creating in-phase surface waves and bedforms. Stable 

antidunes are known to move upstream or remain stationary, depending on flow intensity and grain 

size of the bed. (Simons et al., 1965; Hand, 1974; Alexander et al., 2001; Cartigny et al.,  2013), in 

case of upstream migration; erosion will occur on the lee-side of the dune, and deposition on the 

stoss side. The antidunes are found in trains, this is observed in flume experiments and in nature as 

well (Simons et al., 1965; Grand, 1997; Fielding, 2006; Kostic et al., 2010; Cartigny et al., 2013). 
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Unstable antidunes 
At flow intensities (peak Froude numbers) that are slightly higher than that of stable antidunes, 

unstable antidunes (sometimes referred to as breaking antidunes) can be formed. In case of unstable 

antidunes, hydraulic jumps periodically occur creating an upstream migrating (positive) surges that 

later get washed out into downstream moving (negative) surges (Kennedy, 1961; Cartigny et al., 

2013). The unstable antidunes migrate upstream due to erosion on the lee-side and deposition on 

the stoss-side. This deposition may cause oversteepening of the stoss-side, increasing the bedform 

amplitude, requiring so much kinetic energy for the supercritical-flowing water to pass, that potential 

energy starts to dominate and a hydraulic jump (surge) develops as a result.  

Chutes-and-Pools 
Chutes-and-pools consist of near-planar to angle-of-repose downstream dipping surfaces over which 

supercritical flow scours the sediment (chutes), and troughs in which the water is in a subcritical flow 

regime (pools). These two stages of flow are separated by a hydraulic jump or surge. Chute-and-pool 

surges are not washed out downstream like the surge in unstable antidunes, but are gradually 

transformed in supercritical flow again. The supercritical flow on the lee-side of the bedform causes 

erosion, while deposition occurring in the pools, resulting in upstream migration. The upstream 

migration happens in a stepwise manner due to superimposed antidunes (Cartigny et al., 2013).  

Cyclic steps 
The cyclic steps show similarities with the chute-and-pool morphology but are found in flows of even 

higher peak flow intensity. A cyclic step is the highest-energy bedform found in this bedform stability 

diagram, see figure 3. Cyclic steps are asymmetrical bedforms, with a gentle, upstream stoss-side, 

and a steeper downstream lee-side, the flow regime at the stoss-side of the step is subcritical and 

overall depositional (Cartigny et al., 2013). The lee-side is characterised by supercritical, erosive flow 

over the bed. To accommodate the transition between a supercritical and subcritical flow regime, a 

hydraulic jump is found where slope of the lee-side decreases, and the stoss-side begins. Trains of 

cyclic steps migrate upstream in a stable manner (contrary to chutes-and-pools), and no other 

bedforms appear to be superimposed. 

Methodology 
To answer the posed research questions a depth-resolved numerical model is used, the numerical 

code used is FLOW-3D®, which is a multiphase computational fluid dynamics code based on 

Reynolds-Averaged Navier-Stokes (RANS) equations. The auxiliary models used here are a turbulence 

model (the RNG k- -ʁmodel), and a sediment scour model. The kernel version used is the yet 

unvalidated FLOW-3D 11.0.0.16 beta. The FAVORTM (Fractional Area-Volume Obstacle 

Representation) capabilities of FLOW-3D® version 11 allow accurate, discrete modelling of complex 

intra-cell fluid-sediment and free-surface-interface geometries.    

The experiments of Cartigny et al. (2013) are used to validate the applicability of the code.  At the 

same time, this provides insights in the dynamics of supercritical bedform development. The 

supercritical bedform development will be studied in turbidity currents as well, using the 

experiments of Jorritsma (1973) as a framework. To answer the first question, whether or not it is 

possible to simulate bedform development in a depth-resolved numerical model, the conditions 

described in Kennedy (1960), Kennedy (1961), Alexander et al. (2001) Cartigny et al. (2013) and the 

conditions as observed in the FLOW-3D® are compared. Using flow data as Froude numbers, mean 

water depth and flow velocity, as well as data on bed parameters as observed bedform and their 
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migration period, the numerical simulations will be compared to the experimental results. Once the 

model is validated the other aims can be approached as well.  

Turbulence modelling 
Turbulence is the chaotic and unstable motion that occurs in fluids when there are insufficient 

stabilizing viscous forces within the flow. The most elemental method to describe turbulence is by 

using the Reynolds number, which is proportional to the inertial forces of the flow, divided by the 

viscous forces, as described by equation 2.1, in which h is a characteriǎǘƛŎ Ŧƭƻǿ ŘŜǇǘƘΣ ŀƴŘ ˄ ǘƘŜ 

kinematic viscosity of the fluid. At high Reynolds numbers, the viscous forces are unable to dampen 

flow instabilities this leads to the formation of eddies over a range of spatial and temporal scales. 

ὙὩ
ᶻ

         Equation 2.1 

Although the Reynolds number is a measure of turbulence intensity, the modelling of turbulence in 

an actual flow is much more complex and cannot be characterized by one scalar.  There is an entire 

array in possibilities that can be used to describe turbulence in a flow. To describe all models and 

methods in great detail would far exceed the scope of this study. Hence, only a short description of 

the main turbulent modelling methods will be given, and the model used, the two-equation RNG 

model, will be elaborated upon. The methods of describing turbulence will be discussed from the 

most detailed one, direct numerical simulation, to the most straightforward one used in a depth 

averaged models. Several turbulence models can be used in FLOW-3D. FLOW-3D is a code based on 

Reynolds Averaged Navier-Stokes equations (RANS) so not all models are an option. The models 

available in FLOW-3D are: the Prandtl-mixing length model, one-equation turbulent energy model, 

two-equation k- -̟model, two equation k-  ʁmodel, RNG k-ʶ model and, the large eddy simulation 

model.  

Direct numerical simulation 
The most accurate method of simulating turbulence is direct numerical simulation (DNS). In DNS the 

Navier-Stokes equations are solved without any turbulence model and this implies the whole range 

of spatial and temporal scale must be resolved from the smallest turbulence scale: the Kolmogrov 

ǎŎŀƭŜ όʹύ ǳǇ ǘƻ ǘƘŜ ƛƴǘŜƎǊŀƭ ǎŎŀƭŜ ƻŦ ǘƘŜ ƳƻŘŜƭΦ ¢ƘŜ ŎƻƳǇǳǘŀǘƛƻƴŀƭ Ŏƻǎǘs of direct numerical 

simulation are very high, even at relatively low Reynolds numbers, as the number of time-steps 

required to be computed increases as a power law of the Reynolds number (Lee et al., 2013). For 

most applications turbulence closure models that do not resolve every spatial and temporal scale are 

valid to describe turbulence, DNS is mainly used in fundamental research on turbulence.  

Large eddy simulation 
Large-eddy simulation (LES) in principal is low-pass-filtering of the solutions of Navier-Stokes 

equations, in order to eliminate the small scale solution, which saves computational cost. This results 

in a filtered velocity field. Large eddies are solved explicitly and smaller eddies are accounted for 

using a sub-grid scale model (SGS model), and represented by an eddy-viscosity. LES can be applied 

to filter on spatial as well as temporal scales. Even though the only the larger scale eddies are 

computed explicitly, solving the Navier-Stokes equations still requires a lot of computational cost.  

Two-equation k-ʶ ƳƻŘŜƭ ŀƴŘ wbD ƪ-ʶ ƳƻŘŜƭ 
The two-equation k-ʶ ƳƻŘŜƭ and renormalization group two-equation k-ʶ ƳƻŘŜƭ (RNG-model) are 

based upon the turbulence viscosity hypothesis, assuming that momentum transferred by turbulent 

eddies can be modelled using an eddy viscosity, and solves two equations, for (1) turbulent kinetic 

energy (kTύ ŀƴŘ όнύ ǘǳǊōǳƭŜƴǘ ŘƛǎǎƛǇŀǘƛƻƴ όʶT). The turbulent kinetic energy is the energy of turbulent 
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velocity fluctuations, as described in equation 2ΦнΣ ƛƴ ǿƘƛŎƘ ǳΩ ǾΩ ŀƴŘ ǿΩ ŀǊŜ components of velocity 

fluctuations in the x, y and z direction, respectively. The two equations in the two-equation models 

allow the models to take into account history effects of the flow like convection and diffusion of 

turbulent energy.  

Ὧ  ό ὺӶ  ύ         Equation 2.2 

The transport equations for turbulent kinetic energy and turbulent dissipation are the partial 

differential equations 2.3 and 2.4. In which PT is the turbulent production, DT the turbulent diffusion, 

these terms are calculated via yet another set of differential equations. Cʁ ¢ is an empirically derived 

constant, as are the other CʁȄ variables.  

ό ὺ ύ   ὖ Ὀ ‐     Equation 2.3 

ό ὺ ύ   
 
ὖ Ὀ ὅ     Equation 2.4 

The empirically derived constant C2ʁ is what makes the RNG model different from the standard two-

equation k-ʶ ƳƻŘŜƭΣ ŀǎ ƛǘ ƛǎ ŎƻƳǇǳǘŜŘ ŦǊƻƳ ǘƘŜ ǘǳǊōǳƭŜƴǘ ƪƛƴŜǘƛŎ ŜƴŜǊƎȅ ŀƴŘ ǘǳǊōǳƭŜƴǘ ǇǊƻŘǳŎǘƛƻƴ ƛƴ 

the RNG-model.  

There is a relation between the turbulent energy dissipation in the model, and the turbulent kinetic 

energy. Equation 2.5 describes this relation in which the maximum turbulent mixing length (TLEN) is 

introduced, which is a user-defined parameter. It is recommended that the TLEN is about 7% of the 

smallest domain dimension, the height of the stream in this case (FLOW-3D user manual: M.H. 

Shojaee Fard and F.A. Boyaghchi, 2007). The dynamic viscosity of the flow should however be in the 

order of 0-50 Pa.s, so a TLEN in the order of 0.01m is recommended (personal communication R. 

Rouzairol and E. Hansen). The ‐  is a minimum value of turbulent dissipation, to prevent 

unphysical small values, which would lead to an overestimation of the eddy viscosity, equation 2.5 is 

thus purely an equation to limit unrealistic outcomes of turbulent dissipation calculated by equation 

2.4 

‐ πȢπψυȾ         Equation 2.5 

The turbulent kinematic viscosity (ὺ  , an eddy viscosity and property of turbulent flow rather than 

an intrinsic material property, can be calculated from the turbulent kinetic energy and turbulent 

dissipation energy.  

ὺ πȢπψυ         Equation 2.6 

Using the kinematic viscosity in combination with the turbulent kinematic viscosity, the dynamic 

viscosity (µ) can be calculated, see equation 2.7, where ˄m is the kinematic viscosity; an intrinsic 

material property. 

‘ ”’ ’         Equation 2.7 

The dynamic viscosity is an important parameter in the sediment dynamics, it plays a role in the drag 

function, Shields-Rouse equation (3.5), functions for the local Shields number (3.6) and the 

dimensionless particle diameter. Altogether of significant impact on the sediment transport 

dynamics. The sensitivity analysis done on the TLEN (and hence dynamic viscosity) also shows the 
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influence of TLEN on tƘŜ ǎŜŘƛƳŜƴǘ ǘǊŀƴǎǇƻǊǘ ŘȅƴŀƳƛŎǎΣ ǘƘƛǎ ǿƛƭƭ ōŜ ŜƭŀōƻǊŀǘŜŘ ǳǇƻƴ ƛƴ ǘƘŜ άƳƻŘŜƭ 

ŎƘƻƛŎŜέ ǎŜƎƳŜƴǘΦ  

One-equation turbulent energy model 
The one-equation turbulent energy model is to a large degree similar to two-equation turbulence 

closure models. The turbulent kinetic energy is computed via equations 2.2 and 2.3. The main 

ŘƛŦŦŜǊŜƴŎŜ ƘƻǿŜǾŜǊ ƛǎ ǘƘŀǘ ǘƘŜ ǘǳǊōǳƭŜƴǘ ŘƛǎǎƛǇŀǘƛƻƴ ʶT is not computed via equation 2.4 but rather is 

more simply related to the turbulent kinetic energy (kT) via equation 2.8, similar to equation 2.5. The 

equation does not limit the partial differential equation 2.4, but replaces it to compute the turbulent 

dissipation.  

‐ πȢπψυȾ          Equation 2.8 

The turbulent kinematic viscosity and dynamic viscosity are calculated in the same way as in the two-

equation model, via equations 2.6 and 2.7. The outcomes will however be slightly different.  

Prandtl mixing length model 
The simplest model which can be used in RANS-modelling and FLOW-3D is the Prandtl mixing length 

model. In the model the assumption is made that the fluid viscosity is increased by turbulent mixing 

in high-shear regions (read: near solid objects, walls, or a packed sediment bed). The model assumes 

that turbulence production and dissipation are in balance in every cell of the flow, meaning there can 

be no transport of turbulent energy over cell boundaries, leading to especially high turbulent energy 

values near objects.  

ὖ Ὃ ‐         Equation 2.9 

Via equation 2.7 the turbulence dissipation is calculated in the Prandtl mixing length model as well. 

And the turbulent kinematic viscosity is computed in a simple equation (2.10).  

ὺ πȢπψυȾ ὝὒὉὔЍὯὝ       Equation 2.10 

The Prandtl mixing length model is only deemed valid for stable and steady flows however (FLOW-3D 

user manual).  

Depth averaged turbulence modelling 
Although depth averaged models are not based on RANS-equations, this does not mean turbulence 

can be ignored. The depth averaged four-equation-model of Parker et al. (1986), is commonly used 

as a basis for depth-averaged modelling of turbidity currents (e.g. Kostic & Parker, 2006; Fildani, 2006 

and Covault et al., 2014), depth-averaged turbulence modelling is not an option in this study, as the 

model used is not depth-averaged but depth-resolved. The four equations of the model describe 

conservation of mass and momentum, suspended sediment, and the fourth: turbulent kinetic energy. 

The model is discussed extensively in Kostic & Parker (2006) and this will not be done for the entire 

model herein. The fourth equation takes the form of equation 2.11, as described in Parker et al., 

(1986). Herein K is the mean turbulent kinetic energy per mass-unit, h the layer thickness, C the 

sediment volumetric concentration, U the flow velocity, u* is the bed shear velocity, ew is a measure 

of water entrainment from the top of the flow ew=we/U, in which we is the entrainment velocity, R is 

ǘƘŜ ǎǳōƳŜǊƎŜŘ ǎǇŜŎƛŦƛŎ ƎǊŀǾƛǘȅ όҐмΦср ŦƻǊ ǉǳŀǊǘȊύΣ  ʶ0 is the mean layer-averaged rate of turbulent 

energy dissipation.  

όzὟ ὟὩ ‐Ὤ ὙὫὺὅὬ ὙὫὅὬὟὩ ὙὫὬὺ Ὁ ὶὅ  Equation 2.11 
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The first two terms on the right-hand side of the equation represent the production of turbulent 

energy. The third ǘŜǊƳ ʶ0h represents the depth-averaged rate of turbulent energy dissipation. The 

Last three terms describe the loss of turbulent energy due to work against the density gradient.  

Incorporating turbulence is crucial for depth-averaged modelling as well, as without the turbulent 

energy equations 3 and 4 of the four-equation model can create a loop self-accelerating the turbidity 

current. More sediment will be entrained than is settled down, resulting in a denser current, which 

accelerates, increases velocity and increases entrainment even more etc. etc. Energy dissipated 

trough turbulence is thus needed to prevent this from happening, as is the case in physical reality as 

well.  

Model choice 
Direct numerical simulation is not a method that is required in studies not focussed on fundamental 

turbulence research, nor is the computational power available to solve the Navier-Stokes equations 

without any turbulence model for the scale of this study. Large eddy simulation is available in FLOW-

3D, although it provides more information on turbulence than a Reynolds averaged model. A very 

fine mesh is however needed and the computational cost is still too high to model the bedforms 

processes at the core of this study.   

The two-equation models are able to model turbulence on the scale of this study within an 

acceptable time, meaning the model should be able to run overnight and still produce appropriate 

results. The two equations for turbulent energy and turbulent dissipation in the two-equation models 

provide reasonable approximations for many types of flows, except at inflow boundary regions (Rodi, 

1980), the model also is widely used. The RNG-model is preferred over the standard k- -ʁmodel as Cʁ ¢н 

is solved from the turbulent dissipation and ς energy rather than an empirically derived constant, 

Sabbagh-Yazdi et al. (2007) has compared the RNG-model with the standard k- -ʁmodel and found 

that the RNG-model was in better agreement with measured data.  

The one-equation turbulent energy model is inferior to the two-equation models as it does not solve 

turbulent dissipation via a transport equation but only lets it vary with the turbulent kinetic energy. 

The one-equation model is not able to account for history effects of turbulence dissipation such as 

convection and diffusion, the two-equation models do take this into account.  

The Prandtl mixing length model assumes that turbulent dissipation is in equilibrium with the 

turbulent production (and buoyancy) production at every grid-cell. This is only valid for steady flows, 

and as the formation and migration of bedforms per definition is unsteady and dynamic this model is 

not appropriate to use.  

The depth averaged based turbulence model can obviously not be used in RANS-simulations. The 

depth average model assumes uniformity of flow properties over the depth of the flow.  

Both the RNG two-equation model and the one-equation turbulent energy model have been tested 

in the simulations, and both of them allow the simulations to transport sediment in a manner such 

that supercritical bedforms can be formed from an initially flat bed, and are able to migrate. The 

model choice however has significant effects on the rate of erosion within the model. Figures 3 and 4 

illustrate the difference in erosion and depositional character of one of the simulations that has been 

tested. The two-equation RNG-model erodes significantly more sediment at first, but after about 400 

seconds an equilibrium is reached and the system becomes slightly depositional. The one-equation 

model on the other hand erodes less at first, but remains an overall erosional system over the entire 

time-span of the model. If the dynamic viscosity is examined, as in figure 5, it can be seen that in the 

one-equation model, dynamic viscosities are higher over the entire flow resulting in higher overall 
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critical shields numbers. In the two-equation model turbulence dissipates faster, leading to lower 

dynamic viscosities, and via the shear-stress-calculation to lower local Shields numbers and erosion 

(this result can be seen in figure 3).  

Although both the one- and two-equation turbulence models to work, the decision has been made to 

use the RNG-two-equation turbulence model because of its more elaborate approximation of 

turbulent dissipation, while still maintaining an acceptable computational time.  

 

 

 

 

 

Figure 3: The dynamic viscosity (in Pa.s) of the two-equation RNG-model (on top) versus the dynamic viscosity of the one-
equation turbulent energy model (bottom).  
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Sediment scour modelling 
The sediment scour model in FLOW-3D® estimates sediment motion via erosion, transport via 

suspended and bed-load mechanisms and deposition by computing (1) advection, (2) settling due to 

gravity, (3) entrainment due to shear stresses (4) and computing bed-load transport. Sediment can 

exist in two states in FLOW-3D®, either as packed sediment that is unable to move, existing at its 

critical packing fraction, or, in a suspended low concentration.  

Advection 
The transported suspended sediment by advection is calculated by equation 3.1.  

ȟ ᶯ◊ὧȟ π         Equation 3.1 

In which the velocity u is the mean velocity of the sediment mixture, and c the concentration of 

sediment.  

Settling  
Sediment is typically heavier than water, it will sink due to its excess density or drift, relative to the 

surrounding fluid. The drift rate is dependent on the balance between the buoyant forces that cause 

drift and drag forces which work against this drift.  By combining the momentum equations for (1) 

the sediment species and (2) the total mixture, a new momentum equation which calculates udrift can 

be constructed (eq. 3.2). The udrift is the velocity needed to compute the transport of sediment due to 

drift. udrift is not the relative velocity between the fluid and the sediment (which is ur,i), but a more 

abstract velocity, the relative velocity between the sediment and mean velocity of the entire fluid 

mixture.  

ȟ όϽɳό ȟ
ȟ
ὖɳ

ȟ ȟ
όȟ     Equation 3.2 

In which P is the pressure, fs,i is the volume fraction of sediment, Ki ǘƘŜ ŘǊŀƎ ŦǳƴŎǘƛƻƴΣ ˊs,i the density 

of a species of sediment, and ur,I the relative velocity of a species of sediment (ur,i=us,i ς uf).  

The assumption is made that sediment motion is near-steady at a computational timescale, and that 

pressure gradients are proportional to the acceleration of gravity. Appreciating these assumptions, 

equation 3.2 can be used into equation 3.3 as one if its simplified solutions for the relative velocity. 

 όȟ ”ȟ ”ӶὪȟ        Equation 3.3 

By solving the function for the relative velocity, and the Stokes drag function, the udrift,I can be 

computed in equation 3.4. 

ό ȟ ρ Ὢȟόȟ В Ὢȟόȟ      Equation 3.4 

Entrainment 
Sediment is entrained in the water if the local shear stress exceeds the critical shear stress at a given 

location. Entrainment cannot be calculated for each individual grain so empirical formulas are used. 

The critical shear stress at a given location is a function of the densities of the fluid and the sediment, 

the grain size of the sediment and the (dynamic) viscosity of the fluid, this is done via the Shields-

Rouse-equation of (Gou, 2002), equation 3.5. Additionally, the model also deals with the effect of 

ŀǊƳƻǳǊƛƴƎΣ ƛƴ ǿƘƛŎƘ ƭŀǊƎŜǊ ƎǊŀƛƴǎ άǇǊƻǘŜŎǘέ ǎƳŀƭƭŜǊ ƻƴŜǎ, and the model corrects for the bed slope. 

The equation describing the model for the critical shear stress create an algorithm to solve the 

critical Shields stress at a given point in time and space.  
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    Equation 3.5 

 

In which R* is a dimensionless parameter defined as: Ὑᶻ Ὠȟ
Ȣ ȟ ᴁᴁ ȟ

  

The local Shield number is calculated based on the local shear stress, and given by equation 3.6.  

—
ȟ ȟ

         Equation 3.6 

In which the local shear stress is divided by the product of the gravitational acceleration, grain size 

and density difference of the grains. High shear stress, low relative density of the grains, or small 

grain sizes will thus lead to higher local Shields numbers and hence, more sediment entrainment.  

The local shear-stress is represented by a stress tensor in the Navier-Stokes equations, in short 

though: it can be said that the local shear stress is a product of the viscous forces and the shear 

velocity (equation 3.7), where µ is the dynamic viscosity and  the shear velocity, this is not exactly 

how the shear stress is calculated in FLOW-3D but merely an illustration.   

† ‘          Equation 3.7 

 

The entrainment lift velocity (ulift), which also is a volumetric flux, of the sediments is then calculated 

in equation 3.8, and is a function of both the local shields number (i), critical shields number (cr,i), 

ƎǊŀǾƛǘȅ όƎύΣ ǘƘŜ ŘƛŦŦŜǊŜƴŎŜǎ ƛƴ ŘŜƴǎƛǘȅ όˊs,i- f́), and dimensionless grain size (d*).  There is also is an 

entrainment coefficient involved in equation 3.7 όʰi), it has a default value of 0.018 (corresponding 

with Mastbergen and Van Den Berg, 2003). Higher values for the entrainment coefficient lead to 

more sediment entrainment. This entrainment coefficient can be altered in the physics module of the 

FLOW-3D sediment scour model.  

ό ὲὨzȢ — — ȟ
Ȣ ᴁᴁ ȟ ȟ       Equation 3.8 

Bed-load transport 
The model for bed-load transport in FLOW-3D is based on the Meyer, Peter and Muller equation. It 

predicts the volume of sediment that flows over the packed bed interface. First of all, a 

dimensionless bed-load transport rate is calculated, which is a function of the critical and local 

Shields number, critical Shields number, and a bed-load coefficient, this again is a parameter which 

can be changed in the FLOW-3D scour model, the default value is set to 8: a higher value would lead 

to more transport. Equation 3.9 computes the volumetric bed-load transport rate (volume per unit 

width over time), the first term of which is the dimensionless bed-load-transport-ŜǉǳŀǘƛƻƴΣ ʲi is the 

bed-load coefficient.  

ήȟ — — ȟ
ȢᶻὫ ȟ Ὠȟ       Equation 3.9 
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The thickness of the bed-load layer is calculated via the grain size of the sediment, critical and local 

Shields number in equation 3.10, and the fraction of sediment in bed-load transport in the cell in 

equation 3.11. 

πȢσὨzȢ  
ȟ

ρ )       Equation 3.10 

Ὢȟ πȢρψ
ᶻ ȟ

ρ        Equation 3.11 

This allows equation 3.12 to compute the velocity of the bed-load (ubedload), in which the volumetric 

bed-load ǘǊŀƴǎǇƻǊǘ ǊŀǘŜ ƛǎ ŘƛǾƛŘŜŘ ōȅ ǘƘŜ ƘŜƛƎƘǘ ƻŦ ǘƘŜ ƭŀȅŜǊ ʵi, and the volume fraction of sediment 

fb,i.  

ό ȟ

ȟ
         Equation 3.12 

The volume fraction of sediment in the bed-load-layer is empirically obtained, it is a function of the 

packed sediment fraction, grain size, and local and critical Shields numbers. A ubedload vector is 

created. The resulting mass-flux of the model is described in equation 3.13Φ Lƴ ǿƘƛŎƘ ʵi is the 

thickness of the bed-load layer, fs,i thŜ ǾƻƭǳƳŜ ŦǊŀŎǘƛƻƴ ƻŦ ǎŜŘƛƳŜƴǘ ŀƴŘ ˊs,i the density of the 

sediment. 

ὗȟ ό  Ὢȟ”ȟ        Equation 3.13

Combining the four computed sediment scour components allows for an estimation of the sediment 

transport via the scour model in FLOW-3D. 

Model setup: free-surface flow 
The first simulations performed are done using a free-surface flow (i.e. subaerial open-channel flow), 

the model is constructed to have dimensions similar to that of the Eurotank flume laboratory in 

Utrecht. The resulting data of the model can then be compared to the physical experiments as 

described in Cartigny et al. (2013). Details on the exact conditions used can be found in Cartigny et al. 

(2013) and are not reiterated here. 

Mesh 
The meshed area is 12m x 0.15m x 1m (x,y,z). The number of cells in the x-direction is 360, implying a 

cell size of 3.3cm. The number of cells in the y-direction is 3, corresponding to a 5cm cell size. In the 

z-direction 35 cells are present, the minimum size of which is 1.8cm (at the bed-fluid interface), and 

the maximum size is 8.5cm. Aspect ratios stay limited to 2.5 at a maximum. The physical experiment 

had a y-scale of 0.48m, but in order to limit computational time, the number of cells in the y-

direction is limited to 3, making it a de facto 2D model.  

Geometry 
The inlet for the water is located in the top left of the model and is of a weir-type. This allows the 

fluid-sediment mixture to flow in and over the bed, and create its own equilibrium slope as there is 

no realistic limit to the height of the bed on the inlet boundary of the model. On the right-hand-side 

an outflow is created with a small obstacle placed below the bed, this is to prevent excessive erosion 

caused by the flow. In the experiments of Cartigny et al. (2013), a standing body of standing water is 

located at the outlet, this slows down the flow and allows for deposition after erosion. The body of 

ambient water was too difficult to mimic correctly so a wedge-shaped object is placed below the bed 
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to slow the water instead and prevent erosion of the entire bed. Figure 4 displays the setup of the 

model in an X-Z cross-section. 

 

 

Figure 4: The model geometry with inflow on the bottom left, and outflow on the right. The red component in the packed 
sediment bed, the blue component is a solid non-erodible object. Scale is in meters and the flow is from left to right.  

Boundary conditions 
The Xmin inflow boundary condition is a specified flow velocity and height, generally corresponding 

with discharges as described in the physical experiments of Cartigny et al. (2013) or Alexander et al. 

(2001). Unfortunately neither of the authors provide inflow sediment concentrations, as a 

recirculating tank is used. The Xmax has an outflow boundary condition. Ymin and Ymax are 

symmetry boundaries, implying a free-slip boundary. The Zmin boundary is a wall, an object with 

sediment-sized surface roughness is also placed below the sediment bed in case the flow erodes to 

the flume floor. The Zmax boundary is a specified pressure of 0 Pascal differential pressure and a 

fluid fraction of 0 (the air above the free-surface).  

Physics 
The gravity is -9.81 m/s² in the z-direction. Within the scour model, the grain size is differed between 

160 and 450 µm. The bed-load coefficient (BLC) is set to 4 (Wong & Parker, 2006), the entrainment 

coefficient to a default 0.018, drag coefficient to 0.5, and angle of repose of 30 degrees. The 

turbulence model used is the RNG k- -ʁmodel with a TLEN of 0.005m, which yielded realistic dynamic 

viscosities between 0-1Pa.s.  

Output and numerics 
The simulations will run for 1800 seconds each, of which the first 200 seconds are usually required to 

reach a macroscopic slope and flow equilibrium. Data is saved every two seconds leading to 900 

time-steps to be analysed per simulated run.  

Model setup: turbidity current  
The turbidity current model has a larger modelled volume than the free-surface flow, the main 

reason for this is that mean equilibrium slopes are higher and the model thus needs to be larger in 

the z-direction. Not as many simulations have been run in the turbidity current cases as in the free-

surface model. The validity of the FLOW-3D® model in subaqueous cases is not tested against 

physical experiments as thoroughly as in the free-surface flows. The data of Jorritsma (1973) is used 

as a framework however.  

Mesh 
The mesh of the turbidity current simulation is larger than in the free-surface flows. The mesh is 

24x0.15x2m (x,y,z). With 920 cells in the x-direction, 3 in the y-direction and 67 in the z-direction. 
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Averages cell size is are 2.6cm x 5cm x 2cm (x,y,z) in the interesting areas where bed-interaction 

occurs.  

Geometry 
The inlet is different than in the free-surface case. A jet-type inlet is used to prevent excessive 

erosion on the bed directly at the inlet. A 2 degrees inclined bed is used. The model is filled with 

ambient water to the top. Figure 5 visualizes the geometry.  

 

 

Figure 5: A visualization of the setup of the subaqueous simulations. The blue component is a 140um packed sediment bed, 
the red components are solid non-erodible objects.  

Boundary conditions 
The inflow boundary condition on the Xmin boundary is specified as a fixed 1.1 m/s velocity of a 1200 

kg/m³ water-sediment mixture through a 10-cm high inlet, corresponding with discharges of 

WƻǊǊƛǘǎƳŀ όмфтоύΩǎ Ǌǳƴ млΦ ¢ƘŜ ·ƳŀȄ ƛǎ ŀƴ ƻǳǘŦƭƻǿ ōƻǳƴŘŀǊȅ ŎƻƴŘƛǘƛƻƴΦ ¸ƳƛƴΣ ¸ƳŀȄ ŀƴŘ ½Ƴƛƴ ŀǊŜ 

walls and Zmax is a specified 0Pa differential pressure with fluid fraction 1 at the top. 

Physics 
The scour model uses 140µm sediment, all other physical parameters are similar to those used in the 

free-surface model 

Output and numerics   
The simulations will run for 500 seconds each, and data is saved every second, the simulation is only 

500 seconds because the model is larger, and this way an acceptable computing time is still 

maintained. 

Data analysis 
The results of the modelled simulations were analysed in a 2D X-Z plane as well as using a 1D probe 

time-series at fixed locations every 1m the main locations used however are the x=2m, x=8m (the 

same distance Cartigny et al. 2013 used for analysis of 1-D flow data) and, near the end of the flume 

(x=10m).  

The flow data from the stationary 1D-probes is analysed using Matlab®. Parameters investigated are 

the 50th and 90th percentile of the Froude numbers, as illustrated in figure 6, the Matlab script used 

can be found in appendix 2. The local Froude number is a given output value by FLOW-3D and 

corresponds with equation 1.1. The depth averaged velocity 50th and 90th percentile have been 
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obtained in a similar manner. 

 

Figure 6: a graphic illustration of how the Froude 50 and 90 have been identified in the Matlab scripts. A cumulative 
distribution of the Froude numbers observed over the run on a fixed location. The curve is used to extract parameters such 
as Froude median and 90th percentile.   

The period of bedform migration has been obtained via a discrete Fourier analysis on the time-series 

(Cartigny et al., 2013). Details on the calculations can be found in appendix 2. 

Normalized mean plots of several flow- and bed properties have been made, at which averaging over 

multiple cyclic steps is done. The time-normalization is needed to construct plots of flow and bed 

properties over multiple cyclic steps which do not have the exact same period of migration. In this 

way average flow properties and bed properties can be analysed rather than individual ones, 

individual bedforms can show a significant amount of variance to one another. The fixed location 

probe data has been used for the time-normalization, the time between two bedform-peaks has 

been normalized to 1000 normalized time units, as the rate of bedform migration varies slightly. In 

order to allow this time-normalization, interpolation between several points has been done. 

Appendix 3 provides the basic calculations of the time-normalization procedure in Matlab.  

The turbidity current cases require additional calculations of the Froude number, as FLOW-3D® does 

not provide densimetric Froude numbers. The densimetric Froude number has been calculated using 

a depth-averaging method and the depth-integrated method as described in Garcia & Parker (1993), 

the Matlab scripts elaborating on the methods can be found in appendix 4.  
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Results: free-surface flow 
Model verification 
It is important to use a valid model in numerical simulation, otherwise the results have no physical 

basis, and are thus useless. The first aim was thus to test the validity of the used depth-resolved 

numerical model, this is done for free-surface flow using physical experimental data from Kennedy 

(1960), Alexander et al. (2001) and Cartigny et al. (2013). During simulation 1, a specific discharge of 

0.093m²/s with a sediment concentration of 150kg/m³ is set as the inflow condition. The system is 

allowed to create its own equilibrium slope (which reaches ~1.6 degrees on average). The discharge 

ŎƻƴŘƛǘƛƻƴǎ ŎƻǊǊŜǎǇƻƴŘ ŎƭƻǎŜƭȅ όǿƛǘƘƛƴ р҈ύ ǿƛǘƘ ǎŜǾŜǊŀƭ ƻŦ /ŀǊǘƛƎƴȅ Ŝǘ ŀƭΦ όнлмоύΩǎ ǊǳƴǎΥ ммΣ мнΣ мр ŀƴŘ 

16. All of /ŀǊǘƛƎƴȅ Ŝǘ ŀƭΦΣ όнлмоύΩǎ runs yielded different bedforms: antidunes, chutes-and-pools, cyclic 

steps and cyclic steps. The results of all simulations at all locations analysed can be found in appendix 

1. Simulation 1 resulted in an equilibrium slope after approximately 300 seconds (see figure 7).  

 

Figure 7: temporal evolution of the mean slope of the entire simulation  

Proximal 
The results are divided in proximal, mid and distal probe locations because the results appear to 

differ somewhat over the distance of the model. It is interesting to investigate what causes these 

differences in flow-properties and bed-properties at different locations in the model. The proximal 

measurements are closest to the inlet (x=2m), the mid-measurements are at x=8m and the distal 

measurements at x=10m.  

The bedforms developed in the proximal, relatively high-slope (2 degrees) part of the model setup 

appear to be cyclic steps.  Cyclic steps have been identified by their characteristic of having a 

constant hydraulic jump present. A saw-tooth Froude-number pattern with very regular bedform 

migration can be observed in the time-series (figure 9). The Fr50 and Fr90 are far apart as is seen in the 

experiments that yielded cyclic step morphologies (1.31 and 2.04), in the numerical simulation this is 

slightly more (1.05 and 2.38). Appendix 1 shows all parameters of known of experiments of 
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Alexander et al. (2001) and Cartigny et al. (2013), a comparison also show the proximal bedforms in 

simulation 1 closest resemble cyclic steps.  

Figure 9: time-series data on Froude number (subfigure A), bed and free-surface elevation in m (subfigure B) and depth-
averaged velocity in m/s (subfigure C), sample location at x=2m in simulation 1.  

Distal 
In the distal parts of the experiment the time-averaged mean local slope of the bed becomes slightly 

lower ~1.5 degrees. The time-series of Froude-number, bed-height, free-surface elevation and depth-

averaged velocity are much more irregular and do not display a pattern as clear as in the proximal 

area. The flow first creates wavy bedforms in a continuously supercritical regime. The bedforms 

however appear to increase in amplitude and become oversteepened, after tens of seconds and the 

smooth free-surface waves break as a consequence. The bedforms go through phases of hydraulic 

jump development and upstream migrating surges that get washed out downstream after a several 

seconds before a new hydraulic jump develops, the cycle has a period of about 120 seconds. 

Wavelengths of the bedforms in the distal area are more variable, and on average slightly shorter 

than more proximal, although they are in same order of magnitude (1.5-2.5m).  

The properties and dynamic behaviour as observed and described in the distal parts of the simulation 

appears to correspond with antidune dynamics as described by Kennedy (1961). To confirm whether 

the bedforms in the distal area of the model are actual (unstable) antidunes, their geometries and 

flow-parameters are compared with the existing literature: Kennedy (1960), Kennedy (1961), 

Alexander et al. (2001) and Cartigny et al. (2013). The properties of the flow, geometries of the 

bedforms and rates of migration are compared to investigate which bedforms are observed.  
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Comparison geometries of Kennedy (1960 & 1961) and Alexander et al. (2001) 
Kennedy (1961) provides an empirical relation between flow parameters and antidune wavelength 

Ὂὶ
ό

       Equation 4.1 

In which d is the flow depth and k the wave number, a ƳŜŀǎǳǊŜ ƻŦ ǿŀǾŜƭŜƴƎǘƘ ƛƴ ǿƘƛŎƘ ƪҐнˉκ[ 

(where L is the wavelength), Fr is the Froude number. Kennedy (1960) provides an empirical 

relationship between antidunes wavelength and depth-averaged velocity (4.2). 

ὺ ὫὒȾς“         Equation 4.2 

Alexander et al. (2001) has produced upstream migrating antidunes with wavelengths of 0.76-1.14m. 

Flow conditions are: a mean flow depth of 0.069m and Froude number of 1.7, L=1m will be used as 

an average wavelength. Entering the wavelengths in equation 4.1 yields a Froude number of 1.11 

minimum and 1.60 maximum (see table 1). This is too low to correspond with the actual values as 

described Alexander et al. (2001), 65-95% of measured values (5-35% too low), but in the right order 

of magnitude. A similar result is seen for the velocities as expected via equation 4.2, 75-95% of 

measured values (5-25% too low). If the wavelengths were slightly higher (L=1.3m) or the flow depth 

slightly less ~0.06m, values would correspond closer.    

In the proximal simulations, the Froude numbers predicted by equation 4.1 are much higher than the 

actual measured data 1, 25% to 110%. The flow velocities display similar values between measured 

velocities and expected velocities from equation 4.2 if there were to be an antidune morphology.  

To verify an antidune interpretation for the bedforms observed in the middle and distal part of the 

simulation, the theoretical flow properties are compared to the observed flow properties. 

For the middle part of the simulation, values of Froude numbers from the equation get closer to the 

actually measured mean Froude number, almost no difference in the absolute lowest case, up to 95% 

too high at maximum wavelengths. The predicted velocities also show no difference in the low case 

but a difference up to 65% in case maximum wavelengths are used.  

Distally, the overestimation of predicted values by equation 4.1 and 4.2 is still present, but not as 

high as before Froude number values predicted by the equation range from 7% too low, to about 

55% too high, but a mean difference of 17%. Estimated velocities by equation 4.2 are closer in range 

too but still 11 to 45% too high.  

The bedforms found in the distal area are likely not stable antidunes, the flow-parameters (especially 

the lack of a constant hydraulic jump) also suggest they are not stable cyclic steps. They are more 

likely an intermediate form breaking (unstable) antidunes or chutes-and-pools rather than cyclic 

steps or antidunes by interpretation of the relationships proposed by Kennedy (1960, 1961). 
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 wavelength 
(Min-mean-
Max) 

mean 
flow 
depth 

Actual 
depth-
averaged 
flow 
velocity 
(m/s) 

mean 
Froude 
number 
(measured) 

Froude 
number 
(eq4.1) 
Minτ
mean-max  

Velocity 
(eq4.2) 
Min-
mean-max 

Alexander 
et al. (2001) 
run 1 and 2 

0.76-1-1.14 0.069 1.40 1.7 1.11-1.41-
1.6  

1.08-1.24-
1.33 

Simulation 
1 proximal 

1.5-2.2-2.6 
 

0.1 1.07 1.15 
 

1.44-1.97-
2.42 

1.53-1.85-
2.01 

Simulation 
1 
Mid 

1.4-2.1-2.8 0.09 1.26 1.48 1.49-2.20-
2.90 

1.47-1.81-
2.09 

Simulation 
1 
distal 

1.3-1.7-2.3 0.09 1.30 1.50 1.40-1.78-
2.38 

1.42-1.62-
1.90 

Comparison flow data of Alexander et al. (2001) and Cartigny et al (2013) 
Not only the empirical theoretical relations of bedforms and flow properties of Kennedy (1960,1961) 

can be used to gain further insights into which bedforms have been simulated, the more recent 

flume experiments of Alexander et al. (2001) and Cartigny et al. (2013) will be used as well, as a lot of 

data is available. 

Taking into account the flow parameters as Froude numbers and flow velocities (appendix 1) it is 

clear that the Fr50 and Fr90 distally are closer together than in proximal cyclic step cases, this can be 

represented by an Fr90/Fr50-ratio. For antidunes the Froude numbers should be close together: a ratio 

between 1.07 and 1.33 has been observed in Cartigny et al. (2013), the ratio observed in the distal 

part of the simulation however is in the order of 1.4. An explanation would be that the bedforms in 

the distal area are neither cyclic steps, nor stable antidunes (which do not display hydraulic jumps at 

all), but unstable, breaking antidunes or chutes-and-pools. Bedforms described as unstable antidunes 

in literature Cartigny et al. (2013), have an Fr50/Fr90-ratio of about 1.2. The bedforms appear to be 

breaking (unstable) antidunes to the eye, but the Froude number suggest they are in between cyclic 

steps and unstable antidunes.  

Chute-and-pool morphologies are thought to be a type of bedform where unstable antidunes are 

superposed on larger wavelength cyclic steps. The Froude number distribution resembles the 

simulations in the distal case much closer; a ratio between 1.3 and 1.6. Chutes-and-pools also display 

an alteration between hydraulic jumps that behave as upstream migrating surges, alternating with 

Froude-supercritical flow lacking a hydraulic jump (Cartigny et al., 2013). Taking into account the 

differences in Fr50 and Fr90 the observed bedforms more distally closest resemble chutes-and-pools. 
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Figure 10: Froude number (A), bed elevation (B in black) free-surface elevation (B in blue) and depth-averaged velocity (C) at 
a stationary distal point in the model setup (x=11m). 

Frequency analysis 
The period of bedform migration is different for each type of bedform (Cartigny et al., 2013). To 

further support the hypothesis that the bedforms located proximally can be interpreted as cyclic 

steps, and more distally can be interpreted as being chutes-and-pools, a Fourier transform is done on 

the bed and free-surface data in order obtain periods of bedform migration, even if different 

waveforms are superimposed on one another.  

The proximal bedforms display an average bedform migration period of 118 seconds; within realistic 

values for cyclic steps, as observed in flume experiments (Cartigny et al., 2013). In the mid case, a 

bed-migration period of about 130 seconds is dominant. The free-surface however also displays a 

secondary period, an irregular one of 30-60 seconds (see figure 11). In the distal area the bedform 

migration period of 118 seconds is the only frequency observed again. Overall it can thus be said that 

the rate of bedform migration does not change from distal to proximal in the simulation. The rates of 

bedform migration at all locations correspond closest to those of cyclic steps. If the bedforms more 

distally were to be chutes-and-pools or unstable antidunes, as suggested by comparing the data with 

that of Kennedy (1960), Kennedy (1961), Alexander et al. (2001) and Cartigny et al. (2013), their 

period of migration is expected to be 200-250 seconds (Cartigny et al., 2013), about double that of 

what is observed in the simulation, whilst similar conditions as specific discharge and grain size have 

been used. 
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Figure 11: a frequency analysis of the frequency distribution of bedforms (black line) and free-surface elevation (blue line) in 
simulation 1, the mid-case (x=8m). The high peak at ~3*10-2 Hz frequency is the 130 sec. period, the other, more scattered 
peak around 8*10-1 Hz frequency is the 30-60 period of the free-surface.  

Unidentified supercritical bedforms 
In summary, the proximally observed bedforms are here interpreted as cyclic steps, due to their good 

fit with both flow-properties and bed-parameters. The more distal bedforms cannot unambiguously 

be interpreted as a type of bedform, their morphology closest resembles that of cyclic steps, whilst 

flow-properties suggest the bedforms are either chutes-and-pools or unstable antidunes, rates of 

bedform migration however suggest it is unlikely the bedforms are chutes-and-pools or unstable 

antidunes. The bedforms observed more distally will herein thus be referred to as unidentified 

supercritical bedforms (USBs).   

Equilibrium conditions for bedform formation 
The second aim of this study is investigating at which equilibrium conditions certain bedforms are 

formed and maintained in a supercritical-flow regime. In order to prevent confusion on the use of the 

term equilibrium condition, the following assumption has been made: the equilibrium conditions at 

which different bedforms are stable, stable does not mean stationary as the bedforms migrate, a 

maintenance of the bedform type (and morphology) is meant; equilibrium on a macroscopic scale.  

Bedforms 
Three types of bedforms were observed in the simulations: cyclic steps (defined by have a constant 

and stable hydraulic jump), undefined supercritical bedforms that do not clearly match with any of 

the categories of the from a supercritical stability diagram, but resemble chutes-and-pools closest, 

and a (upper stage) plane bed. The formation of the different bedforms are here controlled by three 

independent variables: grain size, specific discharge and sediment inlet concentration.  

There are two dependent variables that seem to give a good indication of whether or not the 

development of cyclic steps is likely. First: the ratio between the Fr90 and Fr50, both in the simulations 

as in the experimental data, this is a good indicator of the development of cyclic steps, if the ratio 
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exceeds values of about 1.6, then cyclic steps can be expected. This can be observed in figure 15. The 

Fr90/Fr50 ratio gives a good indication because of the hydraulic jumps associated with cyclic steps, the 

supercritical (thin) flow over the lee-side of a step creates relatively high Froude numbers while the 

subcritical stoss-side of the jump results in relatively low Froude numbers. If the Fr90/Fr50 is high; 

stable hydraulic jumps are present, an excellent indication of cyclic steps as bedforms. Secondly, the 

slope appears to correlate with the type bedforms; mean slopes that exceed about 2 degrees in the 

developed cyclic steps, whereas lower slopes only develop the undefined supercritical bedforms. 

There also seems to be a correlation between high slopes and high Fr90/Fr50-ratios, figure 12 

visualizes the correlations between the different bedforms, the slope and the Fr90/Fr50-ratio.  

The mobility parameter (90) of Van den Berg & Van Gelder (1993) may show some correlation with 

observed bedform for the physical experiments of Cartigny et al. (2013) (see figure 13), but fails to 

provide a clear pattern in the simulations. 90-values in the simulations are consequently much lower 

than those in the experiments, they never exceed 2.3 whereas values up to 9 may be reached in 

similar experimental settings. 

—
ό

       Equation 5.1 

Where D50 is the mean grain size, u90 the 90th ǇŜǊŎŜƴǘƛƭŜ Ŧƭƻǿ ǾŜƭƻŎƛǘȅΣ ˊ ŀƴŘ ˊs the fluid and grain 

density and C90Ω ό/ƘŞȊȅ ŎƻŜŦŦƛŎƛŜƴǘ ŀǎ Ƙ ǊŜǇǊŜǎŜƴǘǎ Ŧƭƻǿ ŘŜǇǘƘύ ƛǎ ŘŜŦƛƴŜŘ ŀǎΥ 

ὅ ρψÌÏÇ        Equation 5.2  

Figure 13 is a display of the Fr90/Fr50-ratio versus the mobility parameter. In the experiments of 

Cartigny et al. (2013) (in blue) both parameters show some correlation with bedforms, high Fr90/Fr50-

ratios and high mobility parameters both result in bedforms higher up in the supercritical bedform 

stability diagram. The simulations (in red) show this trend in the Fr90/Fr50-ratio, but not in the 

mobility parameter (equations in Van den Berg & Van Gelder, 1993, 5.1 and 5.2 herein), similar 

bedforms are created at a narrow range of mobility parameters between 1 and 2.5, in contrast to the 

mobility parameters in the physical experiments that reach values up to 9. 

 

Figure 12: Fr90/Fr50-ratio plotted against slope. The marker symbols indicate different types of bedforms. The circles are 
cyclic steps, the stars are the ambiguous undefined supercritical bedforms and the triangles indicate a flat (upper stage 
plane) bed.  
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Figure 13: All bedforms as markers plotted in an Fr90/Fr50 versus mobility parameter (Van den Berg & Van Gelder, 1993) 
diagraƳΦ ¢ƘŜ ǊŜŘ ƳŀǊƪŜǊǎ ŀǊŜ ŦǊƻƳ ǘƘŜ ǎƛƳǳƭŀǘƛƻƴǎΣ ōƭǳŜ ƳŀǊƪŜǊǎ ŀǊŜ ŦǊƻƳ /ŀǊǘƛƎƴȅ όнлмоύΩǎ ŜȄǇŜǊƛƳŜƴǘǎΦ /ƛǊŎƭŜǎ ŀǊŜ ŎȅŎƭƛŎ 
steps, squares chutes and pools, stars unidentified supercritical bedforms, diamonds are antidunes and the plus-sign 
represents a breaking antidune morphology.  

Discharge effects 
The first independent variable that is investigated is the specific discharge (discharge per unit width) 

which may have significant effects on the developed bedforms and their stability. The effect of 

specific discharge is tested over a series of simulations. Simulations 2, 4 and 6 have different specific 

discharges from simulation 1, other than that all parameters are the same, details can be found in 

appendix 1  

The effect of an increased (specific) discharge appears to be that of an increase in mean equilibrium 

slope in general. Up to discharges of about 0.1m²/s slopes gradually increase with discharge. 

Simulation 4 which has a discharge of 0.12m²/s breaks the trend and has a slightly lower slope on 

average than the previous measurement (figure 14). 
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Figure 14: The simulations 1, 2, 4 and 6 all have different specific discharges and other parameters remain the same.  

The observed correlation between Froude number ratio and bedform appears to be independent 

form the discharge. Specific discharges range from 0.05-0.12 m²/s, both end-members display clear, 

unambiguous cyclic steps, but only as the Fr90/Fr50-ratio becomes lower than a value of roughly 1.6, 

other bedforms are also stable at a range of varying specific discharges. This pattern is not only 

observed in the simulations, but also in the physical experiments of Cartigny et al. (2013). Figure 15, 

clearly illustrates this observation.  

 

Figure 15: Fr90/Fr50-ratio plotted against specific discharge. The red markers indicate the simulations, the blue ones the 
ŜȄǇŜǊƛƳŜƴǘǎ ƻŦ /ŀǊǘƛƎƴȅ Ŝǘ ŀƭΦ όнлмоύΦ ¢ƘŜ ŎƛǊŎƭŜǎ ǊŜǇǊŜǎŜƴǘ ŎȅŎƭƛŎ ǎǘŜǇǎΣ ǘƘŜ ǎǘŀǊǎ ǘƘŜ άǳƴŘŜŦƛƴŜŘέ ǎǳǇŜǊŎǊƛǘƛŎŀƭ ōŜŘŦƻǊƳǎ 
observed in the simulations, the squares are a chute-and-pool morphology, the plus-sign represents unstable antidunes, the 
diamonds regular antidunes and the triangles indicate a flat-bed without bedforms.  
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Sediment concentration effects 
The second independent variable which has been investigated is the sediment concentration of 

inflowing water-sediment-mixture.   

The inlet-sediment concentration is poorly constrained in the physical experiment, because 

recirculating flume tanks were used in the experiments of Alexander et al. (2001) and Cartigny et al. 

(2013). Such a recirculating aspect of the physical model was not simulated, a sediment 

concentration of 150kg/m³ (~5.7 vol %) is used because it appears to be a realistic sediment 

concentration and, does appear to lead to a stable, roughly transportational system. The effect of the 

sediment concentration has been studied by changing the sediment inflow concentration to 

75kg/m³, 175kg/m³ and 250kg/m³ as simulations 1, 3, 5a and 5b are compared (figure 16).   

In case of 5a, the sediment concentration at the Xmin boundary is set to 250kg/m³, the amount of 

ǎŜŘƛƳŜƴǘ ŘŜǇƻǎƛǘŜŘ ŀǘ ǘƘŜ ƳƻŘŜƭ ŜƴǘǊŀƴŎŜ ƛǎ ǎƻ ƭŀǊƎŜΣ ǘƘŜ ƛƴƭŜǘ ƛǎ άǇƭǳƎƎŜŘέΦ There seems to be a 

correlation between the slope and the availability of sediment on the Xmin boundary. Higher 

concentrations of sediment lead to a higher slope, proximal as well as more distal.  

The investigated concentration of sediment in the inflow concentrations investigated appears to 

have little effect on the developed bedforms. In all instances, undefined supercritical bedforms are 

formed at Fr90/Fr50<1.6 and cyclic steps at Fr90/Fr50>1.6.  

 

Figure 16: Sediment concentration at the inlet plotted against the developed mean slope. Three identical simulations with 
only sediment concentration changed in the inlet are displayed (75,150 and 175 kg/m³).  

Grain size effects 
The third tested independent variable is the size of the spherical quartz-grains used in the simulation. 

Four different mono-disperse grain-sizes have been tested in the model. (160, 265, 350 and 450 µm 

in diameter); in simulations 1, 7, 8 and 9. The inlet conditions of simulation 1 are maintained 

(0.093m²/s with 150kg/m³ of sediment).  

In case of the 160µm fine sand run, there is a lot of scour at the model inflow. No slope is developed 

and the bed remains smooth. Median and 90th percentile Froude numbers and flow velocities are not 

far apart. There are some oscillations in the flow-depth, the flow regime generally remained 

subcritical but near critical conditions.  The first 300 seconds of the simulation major erosion of the 
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pre-existing 160µm occurs, an equilibrium is then reached at which a net-transportational, smooth 

bed is present.  

The 265µm medium sand run resulted in stronger scour at the flume entrance than in the 350µm 

case. In contrast to the fine sand however, a slope is able to develop. The slope proximally is smaller 

than in simulation 1 (1.7o) but similar more distally. The bedforms that populate on the slope are 

similar to the ones found in the 350µm base-case, Froude numbers, velocity medians and 90th 

percentile are also similar. No clear distinction in bedform shape between the 265µm and 350µm can 

be observed.  

A coarsening of the grain size to 450µm, leads to proximal steepening of the slope. Bedforms, Froude 

number ratios and velocities are similar to those in simulations 1 and 8 (350µm and 265µm). 

Bedform morphology and migration speeds appear not to differ significantly from the base. 

Overall it can be said that an increase in grain size, leads to an increase in mean slope, in particular in 

the proximal parts of the simulation, this can be observed clearly in figure 17. In simulations the 

effect of grain size appears to be absent for larger grain sizes, but the smaller 160µm sand does yield 

a different morphology, a flatbed (figure 17b). In the physical experiments however this is not 

observed.  

 

Figure 17:  slope plotted against grain size of the simulations in which all other parameters but grain size remained constant.  
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Figure 17b: Fr90/Fr50-ratio plotted against grain size. The red markers indicate the simulations, the blue ones the experiments 
ƻŦ /ŀǊǘƛƎƴȅ Ŝǘ ŀƭΦ όнлмоύΦ ¢ƘŜ ŎƛǊŎƭŜǎ ǊŜǇǊŜǎŜƴǘ ŎȅŎƭƛŎ ǎǘŜǇǎΣ ǘƘŜ ǎǘŀǊǎ ǘƘŜ άǳƴŘŜŦƛƴŜŘέ ǎǳǇŜǊŎǊƛǘƛŎŀƭ ōŜŘŦƻǊƳǎ ƻōǎŜǊǾŜŘ ƛƴ ǘhe 
simulations, the squares are a chute-and-pool morphology, the plus-sign represents breaking antidunes, the diamonds 
regular antidunes and the triangles indicate a flat-bed without bedforms.  
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Flow-dynamics and bed-interaction over cyclic steps 
To gain further insights in the mechanics of the supercritical-flow bedforms and the associated flow, 

depth resolved properties as the velocity field, sediment concentrations and shear stresses in 

relation to the bed-morphology are discussed in this section.   

Velocity structure and flow-regime 
The velocity profiles are based on a time-series at a stationary location whilst an upstream-migrating 

cyclic step passes by. The velocity structure is analysed at five profile locations constructed from the 

time series, figure 18. A snap-shot of the flow over a cyclic step is also shown in figure 19. 

 

Figure 18: a time-series sequence of 150 seconds taken at the same location x=2m, five velocity profiles have been 
constructed.  

On the stoss-side of the cyclic-step a thick, subcritical flow is present, the 2nd velocity profile in figure 

18 represents this. Flow-velocities reach up to about 1m/s near the bottom of the flow and decrease 

gradually towards the top; not a velocity structure from what would be expected of open-channel 

flows. As the flow approaches the crest of the cyclic step, the flow thins and accelerates towards 

near-critical Froude numbers and, starts to normalize its velocity structure as seen clearly in profile 3 

of figure 18. At the lee-side of the bedform, further acceleration and thinning of the flow is observed, 

causing it to become supercritical. Flow velocities reach speeds up to about 2m/s, in figure 19 and 

profile 4 of figure 18 it can clearly be seen that the flow-structure has normalized to one in which 

highest velocities are reached near the free-surface, for some reason this cannot be seen clearly in 

profile 5, possibly due to a numerical artefact in the top-cell. When the flow reaches the lee-side of 

the cyclic step again, it decelerates rapidly and creates a hydraulic jump. At the hydraulic jump, the 

velocity structure displays the largest anomaly from what would be expected of open channel flows. 

The top part of the flow is strongly affected by rollers created by the hydraulic jump, making negative 

x-velocities possible, negative x-velocities imply a flow upstream, these negative velocities are 

observed clearly in profile 1 of figure 18, but can also be observed in figure 19, rollers and vortices 

usually develop on top of the flow but there are periods in which they form below the main flow. The 

lower half of the flow keeps a downstream-directed flow vector of about 1 to 1.5 m/s. The effect of 

the roller with negative velocities is observed over almost the entire stoss-side of the cyclic step, in 
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which velocity profiles are not what would be expected of regular open-channel flows, it is only at 

the lee-side that the velocity-structure is completely normal again.  

 

 

 

Figure 19: A snapshot of a cyclic step in simulation one, around x=2-4.5m at t=1026 seconds. The y-axis is exaggerated by 
200% with respect to the x-axis. The x-vector of the flow-velocity is displayed in colour gradients.  

The Froude numbers in the flow change from subcritical at the stoss-side following a hydraulic jump, 

to supercritical at the lee side (figure 20). Hydraulic theory dictates that flows are critical over a weir, 

and one might think the same applies to the crest of a cyclic step. The Froude number at the crest of 

a cyclic step in the simulation is however 1.22 on average (sample size of 29 cyclic steps; standard 

deviation of 0.15).  

 

 

Figure 20: A snapshot of a cyclic step in simulation one, around x=2-4.5m at t=1026 seconds. The y-axis is exaggerated by 
200% with respect to the x-axis. The Froude number is displayed in colour gradients.   

Shear stresses 
¢ƘŜ άŜȄŎŜǎǎ ǎƘŜŀǊ ǎǘǊŜǎǎέ ƛǎ ŀ ŘƛƳŜƴǎƛƻƴƭŜǎǎ ƴǳƳōŜǊ ǊŜǇǊŜǎŜƴǘƛƴƎ ǘƘŜ ŜȄŎŜǎǎ ǎƘŜŀr stress exerted by 

the flow on the bed, it actually is (i - cr); the local Shields number minus the critical Shields 

ƴǳƳōŜǊΣ ǎƻ άŜȄŎŜǎǎ {ƘƛŜƭŘǎ ƴǳƳōŜǊέ ƳƛƎƘǘ ƘŀǾŜ ōŜŜƴ ŀ ƳƻǊŜ ŎƭŜŀǊ ǘŜǊƳΣ ŦƻǊ ǘƘŜ ǎŀƪŜ ƻŦ ǳƴƛŦƻǊƳƛǘȅ 

however the term excess shear stress will be used. Both the shear velocity and the dynamic viscosity, 
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which is turbulence dependent, affect the shear stress. As seen in figure 21 the dynamic viscosity is 

largely increased by the vortices in the hydraulic jump, the effect near the bed boundary layer is 

quite small.  In figure 22 the median excess shear stress on the bed is visualized, the irregular 

character of the graph is a result of the sometimes strong peaks and irregular character of shear 

stress, even after averaging over 12 cyclic steps, high-shear-stress periods of some cyclic steps 

remain visible. The overall shear-stress-pattern over the crest of a cyclic step shows a gradual 

increase of the excess shear stress from around 5 to about 10-15. The excess shear stress gradually 

drops to less than 5 over the hydraulic jump. It is important to note that excess shear stresses can 

exceed the mean, ~12 in the supercritical flow, 2 to 4 times at short time steps (as seen in figure 23), 

it is yet unclear whether this is a numerical artefact or these stresses are realistic, for that reason the 

median excess shear stress has been used instead of the mean excess shear stress; to filter out these 

high peaks of individual cyclic steps.   

 

Figure 21: the dynamic viscosity of a flow over a cyclic step. Highest viscosities are observed in high-turbulence roller and 
vortex structures.  
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Figure 22: Averaged values of sediment height (A in black), free-surface elevation (A in blue), excess shear stress (B), 
cumulative sediment concentration (C) and mean Froude number (D) of 29 cyclic steps (simulation 1) obtained via a time-
series (fixed location).  


