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Abstract

In this thesis we study, by using the AdS/CFT correspondence, the
formation of a chiral condensate and the subsequent dependence on an
external magnetic field in large Nc QCD-like theories at finite tempera-
ture. This was done via two gravity duals, the AdS-soliton model and the
Improved Holographic QCD model to which a flavour sector was added by
introducing probe branes. In the case of the AdS-Soliton, a 6 dimensional
model with one spatial dimension compactified on a circle, a constructive
effect on the condensate was observed, a phenomenon coined ”Magnetic
Catalysis”. The second model proved to be substantially more difficult,
failing to give the desired chiral symmetry breaking solutions due to nu-
merical errors. Therefore an extensive discussion and outlook will be given
in order for future work to be able to overcome this problems.
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1 Introduction

Since its formulation Quantum Chromodynamics (QCD) has been the focus
of both theory and experiment due to a significant number of peculiarities.
As a strongly coupled theory exhibiting confinement and asymptotic freedom
it proved increasingly challenging to describe it using our conventional meth-
ods, such as perturbation theory. Alternative methods like Lattice QCD were
tried with varying success. Then Maldacena in 1997 conjectured the AdS/CFT
correspondence[2] opening an entire new field with the potential to accurately
describe strongly coupled theories.

One of the unique aspects of QCD, belonging to the non-perturbative regime,
is the deconfinement crossover which becomes a first order phase transition in
the limit of vanishing quark masses and the formation of the Quark Gluon
Plasma(QGP) at extreme conditions. This phase transition is intrinscally cou-
pled to a second phase transition, the chiral symmetry breaking phase transition
and the subsequent forming of a quark antiquark condensate. When an external
magnetic field is applied this condensate has been shown to exhibit non trivial
dependence on the magnetic field. Based on perturbative techniques one would
expect the condensate to be enhanced by the magnetic field but recent Lattice
QCD studies suggest that, for temperatures close to the deconfinement temper-
ature, the magnetic field can act destructively. The subject of this thesis is to
study this dependence of the condensate on the magnetic field in two distinct
holographic duals of QCD.

In Chapter 1 we give the reader an elementary introduction into our cur-
rent understanding of QCD. This includes a field theoretical introduction to
QCD with special focus on the chiral symmetry and a review of recent devel-
opments in the field of Lattice QCD. In Chapter 2 we present the AdS/CFT
gauge/gravity duality and its extension to QCD-like theories. In Chapter 3 we
review the holographic models which were used with the corresponding results
being presented in Chapter 4. Finally a complete Discussion is given followed
by an extensive Outlook summarising potential extensions and improvements
of the project.
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2 Quantum Chromodynamics and the Quark Gluon
Plasma

2.1 An Elementary Introduction to QCD

Within the well established Standard Model the interactions between quarks and
gluons, the basic constituents of matter, are mediated by the strong force. From
a theoretical point of view it is described by an SU(3) non-abelian gauge theory
with gluons as the gauge fields and the quarks carrying a ”colour” charge under
the gauge group. With these properties the Lagrangian of the gauge theory is
of the Yang-Mills form with an additional matter component dictated by the
Dirac equation[1]:

LQCD = ψ̄(iγµDµ −m)ψ −
(F aµν)2

4
, (2.1)

where the gauge fields Aaµ are in the adjoint representation with a as the gen-
erator index of the SU(3) group and the fermions ψ are in the fundamental
representation of the gauge group. The field strength is defined as:

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν , (2.2)

with fabc being the structure constants of the gauge group. Finally the covariant
derivative is given, using the generating matrices of the group, as:

Dµ = ∂µ − igAaµta. (2.3)

Quantum Chromodynamics possesses two additional properties which make
it stand out against the other physical theories.

Asymptotic Freedom Firstly as a non-abelian gauge theory with matter in
the fundamental representation it exhibits Asymptotic Freedom. This implies
that at increasingly high energies the coupling constant becomes weaker. In the
case of an SU(Nc) gauge theory with Nf species, or flavours, of quarks the beta
function is given by

β(g) = − g3

16π2
(
11Nc

3
− 2Nf

3
). (2.4)

Due to the minus sign increasing the energy scale implies reducing the cou-
pling constant yielding asymptotic freedom. Associated with the running of the
β-function comes the typical energy scale, ΛQCD, below which the next, low
energy, characteristic property of QCD sets in.

Confinement At strong coupling constant values the theory has been shown,
by putting it onto a Euclidean lattice, to only allow asymptotic states which are
singlets under the color group SU(3) [6]. This property is called confinement
and explains the spectrum of hadrons. Intuitively it can be imagined as follows.
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When one separates a quark and an antiquark a flux tube of gauge field forms.
This tube, depicted in Figure 1, has a fixed energy density and radius at strong
coupling implying that by pulling them apart the energy of the pair will increase
linearly with the seperation.

This property of QCD does not have an analytic proof but is generally con-
sidered true due to the absence of free quarks in nature[1]. As it is a consequence
of strong coupling at low energies it is a non-perturbative result and hence one
needs to consider alternative solving techniques. Below we will go deeper into
those.

Figure 1: Gauge flux tube between a quark-antiquark pair.

2.2 The Chiral Symmetry

The gauge theory enhanced with matter possesses an additional symmetry be-
sides the SU(3) gauge symmetry, when one takes the quarks to be massless. This
symmetry is called Chiral Symmetry and can be seen when one decomposes the
quarks into left- and right-handed components[1].

To demonstrate the symmetry we consider QCD with two flavours. The
matter lagrangian then becomes, in terms of left- and right-handed components:

Lmatter = ūLi /DuL + ūRi /DuR + d̄Li /DdL + d̄Ri /DdR. (2.5)

Writing the quark as a 2-dimensional vector

q = (u, d) (2.6)

we obtain:
Lmatter = q̄Li /DqL + q̄Ri /DqR, (2.7)

which is invariant under transformations of the type U(2)R × U(2)L. Decom-
posing into vector and axial parts we arrive at:

SU(2)L−R × SU(2)L+R × U(1)L−R × U(1)L+R. (2.8)

Here the vector symmetry U(1)L+R corresponds to the baryon number conser-
vation. The other U(1) symmetry does not correspond to a conserved quantity
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as the corresponding current is not conserved due to a quantum anomaly. The
remaining SU(2)L−R×SU(2)L+R gets broken to SU(2)L+R, the isospin,when a
chiral condensate 〈q̄RqL+ q̄LqR〉 forms. We expect the chiral condensate to form
as the attraction between quark and antiquarks is strong and hence creating a
pair has a low energy cost.

The non zero expectation value for the chiral condensate indicates that the
vacuum mixes the helicities of the quarks and, as dictated by Goldstone’s the-
orem, one would expect three massless spin zero Goldstone bosons to be gener-
ated. In real life QCD massless particles do not exist but there is a triplet of
light spin zero mesons, the pions. The pions have odd parity, consistent with a
quark-antiquark pair, and satisfy the Gell-Mann-Oakes-Renner formula:

m2
π = (mu +md)

σ

f2
π

, (2.9)

with σ the expectation value of the condensate for mu,md → 0 and fπ is the
pio decay constant which can be fixed by the π → γγ decay in QCD due to the
electromagnetic anomaly.

To get the observed pion mass of 140 MeV the quark masses must be small,
(mu + md) ≈ 14MeV . This indicates that one can interpret the pion triplet
as the pseudo-Goldstone bosons generated by the spontaneous breaking of an
”approximate” chiral symmetry.

2.3 Magnetic Catalysis of Chiral Symmetry Breaking

We will now review the mechanism of chiral symmetry breaking under the influ-
ence of an external magnetic field. As we shall show the magnetic field enhances
the symmetry hence the term ”Magnetic Catalysis”[4].

We start from the action of a relativistic fermion in a four dimensional
spacetime,

L =

∫
d4x

1

2
[ψ̄(iγµDµ −m)ψ], (2.10)

with the gauge field being
Aextµ = −Bx2δµ,1. (2.11)

This system exhibits a very fundamental property due to the presence of
the magnetic field. When one analyzes the spectrum it can be shown that it
exhibits so called Landau levels

En(k3) = ±
√
m2 + 2|eB|n+ k2

3, n = 0, 1, 2.... (2.12)

It is very clear that the levels are highly degenerate and parametrized by the
momentum parallel to the magnetic field and a parameter n which, for large
magnetic fields, encaptures the dynamics of the plane orthogonal to the magnetic
field. Thus we see that effectively the system has been reduced to a 1 + 1D
system, a phenomenon called Dimensional Reduction. The degeneracy factors
are |eB|/2π for the lowest level(n = 0) and |eB|/π for the remaining levels.

7



We now turn to the chiral symmetry breaking. The chiral condensate is
defined through the Fermion propagator as

〈0|Ψ̄Ψ|0〉 = lim
x→y

TrS(x, y). (2.13)

Now the fermion propagator has the usual form

S(x, y) = (iγµDx
µ +m)〈x| −i

(γµDµ)2 +m2
|y〉

= (iγµDx
µ +m)

∫ ∞
0

ds〈x|e−is[(γ
µDµ)2+m2]|y〉. (2.14)

The matrix elements can be computed by using Schwinger’s proper time ap-
proach. The final result of this approach is given by

S(x, y) = eie
∫ x
y
Aextν dxν S̃(x− y) (2.15)

with

S̃(x) = −i
∫ ∞

0

ds

16(πs)2

(
e−ism

2

e−(i/4s)[(x0)2−x2
A(eBs) cot (eBs)−(x3)2]

(m+
1

2s
(γ0x0 − γAxA(eBs) cot (eBs)− γ3x3)− eB

2
εABγ

AxB)

((eBs) cot (eBs)− γ2γ2(eBs))
)
, A = 1, 2, ε12 = 1 (2.16)

We now transform to Euclidean momentum space (k0 → ik4, s → is) and we
get our bilinear in the following form:

〈0|Ψ̄Ψ|0〉 =
−i

(2π)2
Tr

∫
d4kS̃E(k)

=
4m

(2π)2

∫
d4k

∫ ∞
1/Λ

dse−s(m
2+k24+k23+k2A(tanh (eBs)/eBs)

=
eBm

(2π)2

∫ ∞
1/Λ

ds

s
e−sm

2

coth (eBs) (2.17)

with Λ the UV cutoff. Now lets expand the expression around an infinitesimal
mass. This in order to understand the behaviour of the condensate for vanishing
mass. Thus we acquire:

〈0|Ψ̄Ψ|0〉 = −|eB| m
4π2

(Λ2 + |eB| ln |eB|
πm2

−m2 ln
Λ2

2|eB|
+O(m4/|eB|)). (2.18)

In the limit of zero mass we see that the condensate vanishes. Now, in the mean
field approximation the gap equation for the dynamically generated mass has
the form:

m = GTrS(x, x). (2.19)
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Combining the gap equation with the previously derived resut we arrive at the
following mass gap formula:

m ' G m

4π2

(
Λ2 + |eB| ln |eB|

πm2

)
. (2.20)

This gap equation has a non trivial solution of the following form [4]:

m '
√
|eB|
π

exp
( Λ2

2|eB|
)

exp
(
− 2π2

G|eB|
)

(2.21)

So we see that perturbatively the magnetic field enhances the dynamically gen-
erated mass, validating the term ”Magnetic Catalysis”.

2.4 The Quark Gluon Plasma

The theory of the strong force possesses an additional peculiarity. At extremely
high temperatures and densities a new state of matter forms, the Quark Gluon
Plasma. In this state the quarks and gluons are free and they are not constrained
anymore to hadronic colour singlets. It is strongly believed that our universe
was in the QGP state before hadronization. This makes the study of the QGP
extremely important in the quest for understanding nucleosynthesis, the matter-
antimatter asymmetry and so on.

After its postulation a long list of experiments were conducted in order to
create this new state of matter. This lead to CERN announcing its discovery
at the Super Proton Synchrotron(SPS) in 2000. Since then many experiments
have been conducted in order to determine its properties at the Large Hadron
Collider(LHC) in CERN and at the Relativistic Heavy Ion Collider (RHIC) in
Brookhaven.

The most surprising property of the Quark Gluon Plasma was its strongly
coupled nature which went against the paradigm of a weakly coupled QGP. This
property became evident during non-central collisions of lead and gold nuclei ,at
LHC and RHIC respectively. These collisions were done at large center of mass
energies (

√
s ≈ 200GeV/nucleon) in order to form a QGP for short timespans.

Once it formes the QGP quickly hadronizes but as it turns out the pressure
outwards is higher on the thin side. Consequently the detectors measured a
higher flux of particles in the plane (elliptic flow) as can be seen in Figure 2a.
This anisotropy then provides insight into the nature of the plasma. Now the
property revealing the strongly coupled nature was the shear viscosity η of the
plasma which was the lowest to be found in nature, Figure 2b!
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(a) The elliptic flow as a result of off-shell
collisions. Here H is the induced magnetic field. (b) The dimensionless shear viscosity of the QGP,

H2O, N2 and He.

Figure 2

2.5 Lattice QCD

Due to the strongly coupled nature of QCD at low energies our most successful
technique, perturbation theory, collapses and one needs to consider alternative
techniques. The first alternative approach was constructed by K. Wilson who
put QCD on a Euclidean lattice which he used to demonstrate confinement of
quarks in his groundbreaking paper, published in 1974 [6]. Continuing along
this line of thought it was shown that numerical results based on this approach
could give quantitative results [7]. The significance of this gets enhanced by
the fact it became possible to obtain quantitative results in strongly coupled
domains thus enabling the studies of phenomena such as confinement, QGP
and the deconfining phase transition.

The Setup

We start by introducing a four dimensional Euclidean lattice with size N3
σ ×Nτ

and lattice spacing a. Therefore the volume and the temperature of the gauge
theory can be linked to the number of points in the spatial and euclideanised
time directions respectively by

V = (Nσa)3 ,
1

T
= Nτa. (2.22)

Having introduced the lattice one turns to the central entity of equilibrium
field theory, the partition function, represented by a Euclidean path integral
over the gluon and quark fields,

Z(V, T, µ) =

∫
DAνDψ̄Dψe−SE(V,T,µ), (2.23)
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where Aν and ψ, ψ̄ obey periodic and antiperiodic boundary conditions respec-
tively and the total Euclidean action consists of a fermionic and a gluonic part
defined as follows

SG(V, T ) =

∫ 1/T

0

dx0

∫
V

d3x
1

2
TrF 2

SF (V, T, µ) =

∫ 1/T

0

dx0

∫
V

d3x

nf∑
f=1

ψ̄f /Dψ, (2.24)

with nf the number of quark flavours. The lattice spacing implies a natural mo-
mentum cut-off inversely proportional to a and therefore the theory is properly
reguralized in the lattice formulation.

The discretization process now implies putting the fermions on the lattice
sides and substituting the derivatives with finite differences,

∂µψf (x) =
ψn̂+µ̂ − ψn̂−µ̂

2a
. (2.25)

Based on this it is natural to consider the gluonic fields to be placed on the links
between neighbouring sites as they are the mediating particles of the theory.
This requires the introduction of, so called, link variables

Ux,µ = P exp
(
ig

∫ x+µ̂a

x

dxµAµ(x)
)
, (2.26)

which describe the path ordered parallel transport of the gauge field from site
x to site x+ µ̂a. A product of the link variables around a closed lattice contour
is called a Wilson loop which plays an integral part in Lattice QCD.

Firstly a Wilson loop around an elementary plaquette of the lattice can
be used to reformulate the gauge invariant gluonic action up to errors of order
O(a2) giving the Wilson action. Secondly a Wilson loop around a closed contour
is the appropriate quantity to show that theory exhibits confinement as Wilson
showed in his paper. This characteristic of the Wilson loop will reappear in
more detail at a later stage.

As a discretized version of a continuous theory it is essential for Lattice QCD
to incorporate a smooth limit to the continuous case up to discretization errors
of O(a2). This is achieved by taking the lattice spacing to zero a→ 0. In order
to keep the temperature T = 1/Nτa consistently fixed it is necessary to take
Nτ → ∞ . Numerically this amounts to obtaining results for different lattice
spacings and extrapolate those results to Nτ →∞ at constant temperature.

Associated with the continuum limit comes a serious defect in the lattice
approach. Due to the discretized derivative one obtains in the continuum limit
a massless fermion propagator with more poles than just the zero momentum
one. This leads to the ”species doubling” problem. The mostly used approach
to solving it is by considering staggered fermions, Dirac fermion components
distributed over multiple sites. This reduces the degeneracy to four fermions
and in the massless limit the chiral condensate is still the order parameter for
the chiral phase transitions .
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Numerical Approach and Technical Limitations

The formulation of QCD on a lattice acquired its full potential when one started
to apply numerical methods in order to get quantitative results. This first one
to do this was Creutz [7] , creating a new computational physics field dedicated
to lattice QCD.

The numerical methods are dependent on the probability treatment of (2.23).
To do this, one integrates out the fermionic degrees of freedom acquiring a path
integral over the bosonic degrees of freedom with the determinant of the Dirac
operator in some power playing the role of the statistical weight analogous to the
Boltzmann weight 1. One then can use Monte-Carlo methods to do quantitative
calculations.

Powerful as these methods are they come with some subtleties which limit
the regimes of QCD in which calculations are feasible.

• As the theory can be formulated purely on a Euclidean lattice one has
to analytically continue to be able to calculate time dependent quantities.
Till now no consistent analytic continuation has been constructed in order
to be able to do non-equilibrium calculations.

• It is very natural to add a chemical potential term ψ̄µγ0ψ to the Dirac
operator. When one does this the determinant acquires a phase factor
as the operator acquires complex eigenvalues and hence is not strictly
positive. This implies failure of the statistical interpretation creating the
so-called sign problem.

Results of Lattice QCD

Before moving on to an alternative methods of tackling QCD it is appropriate
to document the progress made in this field due to the efforts of the Lattice
QCD community with and without an external magnetic field[9],[8]. First we
turn to the thermodynamics of QCD as it is the basis of our understanding of
QCD. The most prominent entity when discussing thermodynamics is of course
the free energy which is given by

F = −T
V

lnZ. (2.27)

Having found this quantity one can now calculate additional thermodynamic
quantities. First of all the pressure p is simply minus the free energy. Now we
can define:

• the energy density ε: ε−3p
T 4 = T d

dT ( p
T 4 ),

• the entropy density s: s = ε+p
T

• the sound velocity cs: c
2
s = dp

dε .

1I refrain from giving an explicit result as it is dependent on the way of solving the doubling
problem.
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In Figure 2.5 we show the behaviour of the dimensionless energy density, entropy
density and pressure for a pure SU(3) theory. We see that the curves approach
the ideal gas limit as temperature increases. At T/Tc = 1 the appearance of a
first order phase transition, the deconfinement phase transition, is evident.

Figure 3: SU(3) Thermodynamics. [8]

The deconfinement phase transition is the most significant physical phe-
nomenon one can observe and is intrinsically connected to the symmetry break-
ing transition which is the main topic of this work, the chiral symmetry breaking.
The connection arises when one considers confinement and the role it plays in
the formation of a chiral condensate.

To study their connection one has to define the appropriate order parameters
for the phase transitions. The parameters turn out to be the Polyakov Loop
for the deconfinement phase transition and, as mentioned before, the chiral
condensate for the chiral symmetry breaking,

〈ψ̄ψ〉 =
1

N3
σNτ

∂

∂m
lnZ. (2.28)

One can also look at the susceptibilities in order to determine the order of the
phase transitions.

χL = N3
σ(〈L2〉 − 〈L〉2), χm =

∂

∂m
〈ψ̄ψ〉. (2.29)

In Figure 2.5 the Lattice results for the suceptibilities have been plotted. From
there one can determine that both transitions are continuous and lie very close
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to each other with the critical temperature Tc around 160 MeV. It has to be
mentioned that these results are not independent of the amount of flavours and
the value of the quark masses taken into account. Especially the deconfinement
phase transition is heavily influenced as it is intrinsically connected with the
flavour degrees of freedom.

Figure 4: The Polyakov loop and the chiral condensate as a function of the
coupling β = 6

g2 . The corresponding susceptibilities show the transition points

which are located at the peaks.[11]

The aforementioned influence of the flavours is being demonstrated in Figure
2.5 for multiple flavour combinations. Now one last comment can be made about
the dependence of the pure glue part of the theory on the number of colours Nc.
In Figure 3 we see that the energy and conformality measure points are almost
indistinguishable when one increases the number of colours and also a very good
fit with the Improved Holographic QCD model which will be discussed at a later
stage. Thus it is clear that the role of Nc is small and thus can be chosen to
be a convenient value. In the case of AdS/CFT, to be discussed in the next
chapter, the number of colours is taken to infinity.

14



Figure 5: The dimensionless pressure for pure gauge and flavoured QCD.[11]

Figure 6: The dimensionless energy and conformal measure for lattice QCD
models with different number of coulours Nc. The curve is the fitted Improved
Holographic QCD model.[10]

Lattice QCD in an External Magnetic Field

Once the basic properties of QCD had been established through Lattice QCD
it became increasingly important to consider additional effects. One of the
most elementary additions would be to consider QCD under the influence of an
external magnetic field [9]. A simple motivation would be the strong magnetic
fields created during heavy ion collisions when one studies the QGP.

Here we will quickly present two phenomena stemming from the external
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magnetic field. Firstly, related to the thermodynamics and the deconfinement
phase transition of QCD, the dependence of Tc on the magnetic field was studied
up to order eB ∼ 1GeV 2, Figure 2.5. Two features show up during this study.
Firstly the critical temperature decreases with increasingly strong magnetic field
and secondly the order of the phase transition does not change under the influ-
ence of the magnetic field. The latter feature went against the established idea
at that time.

Figure 7: The critical temperature as a function of the magnetic field for 1+1+1
flavoured QCD.[9]

Furthermore the behaviour of the chiral condensate was studied in order to
distinguish the influence of the magnetic field on the chiral symmetry breaking.
The expectation, as discussed before, was that the magnetic field would act
constructively to the condensate, a phenomenon coined ”Magnetic Catalysis”.
This was indeed a result of the lattice study for T = 0 but at finite temperatures
relatively close to the critical temperature an additional behaviour revealed
itself. As can be seen in Figure 2.5 after a certain temperature there always
is a value of the magnetic field beyond which it would act destructively to
the condensate. This phenomenon is appropriatelly called Inverse Magnetic
Catalysis.

16



Figure 8: Left the behaviour of the normalized up and down chiral condensates
for different temperatures. The Inverse magnetic catalysis happens at approx-
imately 148MeV . In the right Figure the T = 0 lattice result is compared to
the results from chiral perturbation and the Nambu-Jona-Lasinio model.[9]

3 The AdS/CFT Gauge-Gravity Duality

Since the discovery of black holes the concept of holography has become an in-
creasingly relevant subject within modern day high energy physics. The entropy
of black holes was shown to scale as the area of its horizon instead of the volume
as was expected, leading Prof. ’t Hooft to conjecture the principle of hologra-
phy [12] which afterwards was put into a string perspective by Susskind[13]. A
precise description had to wait until 1997 when Juan Maldacena introduced,
in his groundbraking paper[2], the AdS/CFT correspondence which, within the
context of Type IIB string theory, links a gravitational theory in 5 dimensional
AdS-space to a 3+1 dimensional N = 4SYM gauge theory living on the bound-
ary of this space. The remaining five dimensions have been compactified on a
sphere S5. Formally this correspondence is captured in the following relation:

〈e
∫
ddxφ0(x)O(x)〉QFT = Zstring

(
φ(x, r)|∂AdS = φ0(x)

)
(3.1)

where O(x) is an gauge invariant operator which has as a source, φ0(x), the
boundary value of a bulk field φ(x, r). Therefore this relation guarantees that
one can obtain complete knowledge of the field theory, captured in the partition
function, when the gravitational theory is completely understood and vice versa.
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3.1 The Correspondence

The discovery the AdS/CFT correspondence was heavily influenced by the study
of so-called p-branes. These objects are charged solitonic solutions to the clas-
sical equations of supergravity and can be seen as black holes extending in
p spatial dimensions. In 1995 Polchinski [5] proved that another type of ob-
ject, called a Dp-brane, gives the full string theoretical description of extremal
p-branes (Q = M). This observation led to the final formulation of the corre-
spondence.

Open strings can have two type of boundary conditions, Neumann and
Dirichlet, with the latter one implying that the endpoints are confined to a hy-
persurface. These p+ 1 dimensional hypersurfaces are called Dp-branes. When
one stacks N Dp-branes on top of each other the endpoints of the open strings
are characterised by a Chern-Patton factor |i〉 that determines the Dp-brane on
which the endpoint lies. Then open strings states will have labels of the type
λαij |i〉|j〉 and thus live in the adjoint of U(N) as one can show that these are
U(N) matrices.

As the correspondence is valid in the supergravity limit of string theory we
need to elaborate on this before continuing. The supergravity limit means that

• quantum string corrections which are governed by the string coupling gs =
g2
YM are supressed, gs → 0

• and the curvature of the background dominates over the string length
hence l =

√
α′(gsN)1/4 >>

√
α′ = ls. This implies that gsN >> 1.

Thus the supergravity limit amounts to taking gs → 0, N →∞ while λ = gsN
remains finite and large.

Figure 9: Stack of D3-branes[15].
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Now consider a stack of Nc overlapping D3 branes at infinity as in Figure 4.
In the open string description the D3-branes are viewed as the surfaces where
the endpoints of open strings lie and the total string theory picture consists of:

• an open string sector living on the branes. One can show that the corre-
sponding U(N) theory reduces to N = 4 Super Yang-Mills SU(N) theory
in the low energy limit.

• A closed string sector living in the bulk which reduces to supergravity in
the low energy limit.

• The interaction between the two regimes. This interaction can be de-
scribed as follows: two open strings can interact on the D3-branes and
merge to form a closed string. This will not be bounded to the branes and
can propagate into the bulk.

The interaction action is proportional to gsα
′2 and hence the open and closed

regimes become decoupled when one takes the limit α′ → 0. This limit corre-
sponds to the low energy limit of string theory which we already used in the
other two regimes.

As the D3 branes extend infinitely into the transversal directions their mass
is infinite and hence they backreact on the system2. This mean that we can
substitute them for their backreaction, the 3 − brane. Now the two decoupled
regimes are

• At large distances, hence low energies as we have energy∼ 1/length, grav-
ity becomes free. For the observer at infinity it amounts to massless parti-
cles propagating in the bulk with wavelengths that become very big. This
is equivalent to closed strings propagating in 10 dimensional flat spacetime

• At small distances, from the point of view of the observer at infinity, all
type of excitations that go close to r → 0. The energy Ep measured at a
point r is related to the energy measured at infinity through Ep ∝ rE. so
this implies that r → 0 belongs to the low energy regime. Subsequently it
can be shown that the geometry reduces to AdS5×S5 in this regime. The
total spacetime then displays a ”throat” structure, as shown in Figure 5,
with the form of the throat being AdS5 × S5.

As a final comment the decoupling of those two regimes can be seen as follows.
The particles at large distances have a wavelengths much larger than the typical
gravitational size of the brane and the particles close to the origin can not escape
the gravitational potential, hence remaining in the asymptotic region.

2As a side note, the mass per unit p-volume, the tension, is finite and can be expressed as
TDp = 1

(2π)pgsl
p+1
s

.
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Figure 10: The spacetime formed by the backreaction of the D3 branes which
exhibits a ”throat”[15].

Now one sees that both descriptions reduce to two decoupled theories in the
low energy limit. In both cases one of the two systems is supergravity on flat
space so we can conjecture that the other two theories are equivalent. This gives
that ”N = 4 SU(N) SYM in 3+1 dimensions is dual to type IIB supergravity
on AdS5 × S5.

Furthermore the AdS/CFT correspondence can also be shown to be a du-
ality between a strong and weakly coupled theory. In an SU(N) gauge theory
’t Hooft showed that when one expands the partition function the ’t Hooft cou-
pling λ = g2

YMN , for N → ∞, suppresses all non planar diagrams[14]. As we
saw before this approach is valid as the number of colours play a minimum role.
Thus for the D-brane picture to be tractable one needs to take λ << 1 which
is incompatible with the supergravity limit taken in the closed string picture.
Therefore no contradiction arises and we see that the correspondence and per-
turbation theory apply in different regimes validating the term ”duality”. This
makes the correspondence extremely useful as one can make calculations in the
strongly coupled regime of gauge theories in which perturbation theory fails.

3.2 The Field Operator Correspondence

As already mentioned every field in the bulk is dual to an operator on the CFT
side. This can be seen in the fundamental relation of AdS/CFT (3.1). This
relation can be used to calculate correlation functions of the operator by the
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usual method

〈O(x1)...O(xn)〉 =
δn

δφ0(x1)..δφ0(xn)
Zstring

(
φ(x, r)|∂AdS = φ0(x)/big)|φ0=0.

(3.2)
The fundamental relation of AdS/CFT is valid in general, for any field.

Additionaly it turns out that there is a relation between the mass of each field
and the scaling dimension of the gauge invariant conformal operator. In AdSd+1

space the wave equation of a field with mass m will yield two independent
solutions, rd−∆ and r∆ when expanded near the boundary r = 0. Here the
constant ∆ is related to the mass by the equation

∆ =
d

2
+

√
d2

4
+R2m2. (3.3)

Now the leading term of

φ(r, xµ) = φ0(xµ)rd−∆ + φ1(xµ)r∆ (3.4)

is singular for ∆ > d, vanishes for ∆ < d and approaches a constant for ∆ = d.
For a consistent description one needs to take the boundary condition

φ(r, xµ)→ rd−∆φ(xµ). (3.5)

φ itself is dimensionless hence φ0 has dimension d − ∆. Now the action S =∫
ddxφ0O has to remain invariant under scaling transformations so the dimen-

sion of the operator O turns out to be ∆. One can also confirm that this is
the correct conformal dimension of O by deriving the corresponding correlation
function from (3.1) by plugging in the solution for the field (3.5).

3.3 Deforming the AdS/CFT Correspondence

Up till now the AdS/CFT correspondence has been presented within the con-
text of a conformal boundary theory without temperature. For the correspon-
dence to potentially describe realistic theories one needs to move away from
conformality and deform the AdS gravity bulk. This must be done in order to
incorporate certain elements which introduce scales into the boundary theory
such as temperature and an energy scale related to the RG flow of the boundary
theory.

The inclusion of temperature into pure AdS space can be done in two differ-
ent ways. One can Euclideanize the pure AdS metric giving a so called ”Thermal
AdS” metric which has arbitrary temperature. The second way is by introduc-
ing a black hole in the AdS background. This black hole then has a Hawking
temperature dependent on the radius of the horizon which one can derive by
the familiar Euclideanization procedure. These two phases are separated by a
so called ”Hawking-Page” phase transition. Up to a certain temperature Tc the
thermal AdS dominates as it has the lowest free energy. At that point a PT
occurs and the black hole becomes the dominant solution. As the temperature
in the bulk corresponds to the temperature measured at infinity, it corresponds
to the temperature of the boundary theory.
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Bulk/Gravity Boundary/Field Theory
Metric tensor gµν Energy momentum tensor Tµν
Scalar field φ Scalar operator O
Dirac field ψ fermionic operator Of
Gauge field Aµ Global symmetry current Jµ
Mass of the field Conformal dimension of the operator
Hawking temperature Temperature
Local isometry Global spacetime symmetry

Table 1: The Holographic Dictionary.

From the original setup up till now the role of the extra dimension has
remained elusive. As it is a quantity of the bulk it should correspond to a
quantity in the boundary theory and a study of the conformal group reveals
that it is dual to the energy scale of the field theory. This implies that the limit
r → 0 corresponds to the UV completed theory and, more generally, moving
along the radial dimension implies moving along the RG-flow of the boundary
theory. If one introduces a cut-off or, as we will see later, a scalar dilaton
field the RG-flow obtains a characteristic energy scale and hence conformality
is broken. This is useful as QCD, for example, is a theory with a mass gap and
a characteristic energy scale ΛQCD.

Once the radial dimension has been related to the RG flow in the boundary
theory one can list the most important bulk-boundary identifications. This is
called the ”Holographic Dictionary” and a part of it is shown in Table 1.

3.4 Wilson Loops

When discussing Lattice QCD a fundamental quantity appeared, the Wilson
loop. It was defined in the context of discretized spacetime but it can be gener-
alized to any field theory as follows. For every closed contour C and represen-
tation R of the gauge group the Wilson loop is given by[3]:

WR(C) = TrR Pe
i
∫
C A

α
µT

αdxµ . (3.6)

It is the path integral of the holonomy of the gauge field along the contour with
Tα the generators in R. One can see this as the introduction of a particle-
antiparticle pair in the representation R with the contour being their path from
their creation to their annihilation with the Wilson loop measuring the free
energy of the state.

As mentioned at an earlier stage, the Wilson loop played an integral role
in the discovery of confinement by Wilson. We shall now exhibit its role and
demonstrate how the Wilson loop can be modeled through AdS/CFT.

In a confining theory, say QCD, external quarks have an energy which grows
linearly with distance

E = mq +mq̄ + τL (3.7)
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hence there is a constant force pulling the quark to each other. Here τ is the
QCD string tension. The QCD string is a confining colour flux tube which is an
effective description in order to model confinement as seen before in Figure 1.
The linear dependence on the distance implies that for two static quarks, which
are modeled by a rectangular loop, the Wilson loop should go as follows:

W (C) = e−TτL ∝ e−τA(C) (3.8)

where A(C) is the area of the loop and T the elapsed time. Confinement is
a part of the glue vacuum as the the quarks were considered as external non
dynamical sources.

Figure 11: String configuration of the Wilson loop in the presence of a thermal
gas[15].

On the AdS side of the story it is necessary to define an analogous quantity.
A natural entity would be a string whose endpoints lie on the contour C. This
string is governed by the Nambu-Goto action

∫
dx2
√
h and hence wants to min-

imize its action by extending into the bulk. If the boundary theory is confining
one would expect the following:

TE(L) = SNG
(
Xµ
min(σ, τ)

)
. (3.9)

It can be shown that in conformal coordinates ds2 = e2As(r)ηµν with As(r) =
A(r) + 2

3φ(r) the Wilson loop has the exact form as in equation (3.8) when As
has a minimum at a point r?. The location of this minimum is the turning point
of the string and we have that if L→∞ then r → r? (Figure 6). It follows that
this configuration yields the required behaviour for confinement

W (C) = eTLe
2As(r?)

. (3.10)

The above assumes that As is analytic and holds for zero temperature but
can be easily generalized to arbitrary temperature. Using this description of
confinement one can now easily see that the black hole phase in the AdS bulk
corresponds to a deconfined phase as the string will sit on the horizon as can be
seen in Figure 3.4. In the previous discussion this amounts to As not possessing
a minimum in the presence of a black hole.
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Figure 12: The string configuration for the Wilson loop in the presence of a
black hole[15].

3.5 Matter in the Fundamental Representation

Adding matter in the fundamental representation, the flavour sector of QCD,
to the boundary theory implies adding single lines to the ’t Hooft expansion.
Topologically this corresponds to adding boundaries to the Riemann surfaces in
terms of which the ’t Hooft expansion can be expressed[14] and within the con-
text of AdS/CFT this is dual to adding boundaries to the worldsheet expansion
in the bulk [17]. As boundaries are induced by an open string sector in the bulk
one needs to add Nf overlapping Dp-D̄p-branes in the bulk, Figure 3.5. This
can be achieved quite easily in the limit Nf << Nc where the backreaction of
the flavour branes can be neglected.

Figure 13: The flavour brane implementation in the bulk[15].
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With the additional branes the open strings can have three different config-
urations regarding the location of their end points, namely 3− 3,p− p or 3− p.
The coupling constant of an open string with both end points on a D-brane is
given by gD ∝ E(p−3) and thus at low energies the p − p open strings in the
bulk decouple for p > 3 which is the case generally taken. The 3 − p strings
will interact with the p − p and 3 − 3 strings living on the Dp and D3 branes
respectively, with the corresponding coupling constants. Thus it follows that at
low energies only the interactions with the 3− 3 strings survive. The vanishing
of the effective coupling on the Dp branes additionally implies that the gauge
group SU(Nf ) becomes a global symmetry group, the flavour symmetry group.

Now we proceed in a similar way as before by looking at two equivalent
descriptions of the D3/Dp system. In the gsNc << 1 case we have the system
of D3/Dp branes which reduces to two decoupled systems in the low energy
limit. The first sector is free and consists of closed strings and p−p open strings
propagating in ten dimensional flat space-time and on the worldvolume of the
flavour branes while the second is a N = 4 SYM coupled to the flavour degrees
of freedom. These additional degrees of freedom transform in the fundamental
representation of both the SU(Nc) gauge group and the SU(Nf ) global, flavour,
symmetry group.

Now in the gsNc >> 1 case we study the same system from the closed string
point of view so we can study the D3 branes by looking at their backreaction.
This will give again two decoupled systems in the low energy limit, closed strings
and p − p open strings propagating in ten dimensional flat spacetime and an
AdS5 × S5 ”throat” containing the flavour branes, Figure 7.

As done before we compare the two descriptions in the two different sectors in
the low energy limit. Again the two regimes possess a free sector of propagating
closed strings and p−p open strings in flat spacetime hence leaving us to identify
the other two sectors. So we conjecture that ”N = 4 SYM coupled to Nf flavours
of fundamental degrees of freedom is dual to type IIB closed strings in AdS5×S5,
coupled to open strings propagating on the worldvolume of Nf Dp-branes and
D̄p-antibranes.”
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Figure 14: The modified ”throat” containting the probe branes[15].

We conclude this chapter by giving and discussing the action for the Nf
overlapping flavour branes and antibranes proposed by Sen [18]. This semi-
classical action is a generalization of the usual DBI-action and includes the
dynamics of the lowest open string mode, the tachyon. The action reads:

S = −
∫
dp+1xSTr[e−φV (TT †, Y IL−Y IR, x)(

√
−det AL+(

√
−det AR)] (3.11)

where STr is the symmetric trace as defined in [31] and the fields are:

A(i)MN = gMN +BMN + F
(i)
MN + ∂MY

I
(i)∂NY

I
(i) +

1

π
(DMT )∗(DNT ) +

1

π
(DNT )∗(DMT )

F
(i)
MN = dA(i) − iA(i) ∧A(i), DMT = (∂M + iALM − iARM )T. (3.12)

We have set 2πα′ = 1 and V (τ2, Y IL − Y IR, x) is the tachyon potential. In the
rest of this thesis the transverse scalars Y IL/R and the B-field will be set to zero
as they have no analogue in QCD. Additionally there is an extra contribution
coming from the WZ coupling of the flavour branes with the RR potentials
which is given by the following action

SWZ = Tp

∫
Σp+1

C ∧ Strei2πα
′F (3.13)

where Σp+1 is the world volume of the branes, C is a formal sum of the RR
potentials and F is the curvature of a superconnection A which can be expressed
as follows

iA =

(
iAL T †

T iAR

)
iF =

(
iFL − TT † DT †

DT iFR − TT †
)

(3.14)
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The superconnection is defined as

F = dA− iA ∧A (3.15)

and satisfies the Bianchi identity:

dF − iA ∧ F + iF ∧A (3.16)

Now lets briefly review the appearance of the lowest string mode, the tachyon.
The tachyon transforms in the bifundamental of U(Nf )L×U(Nf )R and therefore
is the natural candidate for the chiral condensate which describes chiral symme-
try breaking. As shown in [30] in a confining background whith no blackholes
the tachyon must diverge in the deep IR region of the bulk. Intuitively this
can be seen as a recombination of the branes and antibranes as they are not
allowed to extend freely till the end of space. Mathematically it was shown that
the tachyon must diverge in order for the WZ-sector to reproduce the correct
field theory global anomaly. In agreement with the AdS/CFT dictionary the
renormalizable component of the tachyon close to the boundary is dual to the
bare quark mass while the non-renormalizable component is the quark bilinear
of dimension three.

A last comment must be made concerning the limit we took. Up till now
the flavour symmetry group was introduced by considering probe branes which
do not backreact. An increasingly more relevant limit is the Veneziano limit
where Nf/Nc is kept small but finite. The importance sits in the backreaction
of the branes which can shed light on behaviours which do not appear when
one neglects the backreaction. Of course the backreaction will make the system
significantly more complex as one needs to solve the inhomogeneous Einstein
Equations combined with the equation for the tachyon simultaneously. For this
numerics are vital as analytically it seems improbable one can solve the system.

4 The Confining Holographic models

4.1 AdS-Soliton

4.1.1 The Model

The first methods of introducing confinement in the AdS/CFT correspondence
were done consisted of introducing a hard wall in the IR region of the bulk with
reflecting boundary conditions. A slightly more elegant way was introduced
when solving the folowing action[32]:

S =

∫
d6x
√
g(6)

(
e−2φ(R+ (4∂φ)2 +

c

α′
)− 1

26!
F 2

(6)

)
(4.1)

with constant c. This admits a special solution which is a double Wick rotation
or an AdS6 Swartszchild black hole. This solution is called the AdS soliton with
the following metric:

ds2
6 = −gttdt2 + gzzdz

2 + gxxdx
2
3 + gηηd

2
η =

R2

z2

(
dx2

1,3 + f−1
Λ dz2 + fΛd

2
η

)
(4.2)
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with

fΛ = 1− z5

z5
Λ

(4.3)

The active RR-form we consider is:

F(6) =
Qc√
α′

√
−g(6)d

6x (4.4)

where Qc is a constant proportional to the number of colours. Finally the dilaton
is constant and given by:

eφ =
1

Qc

√
2c

3
. (4.5)

As we have done a double Wick rotation the coordinate η is compactified and
due to regularity at zλ we have

η ∼ η + δη, δη =
4π

5
zΛ =

2π

MKK
. (4.6)

This geometry has a ”cigar” form and ends smoothly in the IR at zΛ. Initially
it is dual to an 1+4 dimensional gauge theory compactified on a circle with
antiperiodic boundary condition which break supersymmetry. Hence it reduces
to a 1+3 dimensional confining theory coupled to Kaluza-Klein fields.

To obtain a theory with temperature we do the natural thing, compactify
the time direction. Then it turns out there is a second solution competing with
the soliton, the normal Swartszchild black hole with the following metric:

ds2
6 =

R2

z2

(
dx2

3 + f−1
T dz2 − fT d2

t + dη2
)

(4.7)

where

fT = 1− z5

z5
T

. (4.8)

After Euclideanizing we obtain the temperature of the black hole

T =
5

4πzT
. (4.9)

It is evident that when both solutions are Euclideanized they are related by
the transformation tE ↔ η, zT ↔ zΛ and thus it is clear that a first order
deconfining phase transition happens at

Tc =
MKK

2π
=

5

4πzΛ
. (4.10)

Above Tc the black hole dual to the deconfining phase dominates while below
the AdS-Soliton does.
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4.1.2 The Tachyon

With the predetermined backgrounds in mind we turn to the topic of adding
flavour in the quenched approximation. Here we consider a single pair of D4

brane-antibrane which again will be given by the Sen action advocated earlier.
In the string frame the expressions is the following:

SDBI = −
∫
d4xdzV (|T |)(

√
−det AL +

√
− det AR) (4.11)

with

A(i)MN = gMN +
2πα′

g2
V

F
(i)
MN + πα′λ((DMT )∗(DNT ) + (DNT )∗(DMT )).

DMT = (∂M + iALM − iARM )T (4.12)

The indices M,N run over the worldvolume dimensions while µ, ν stand for the
usual Minkowski directions. The complex tachyon is defined as T = τeiθ and
two constants, gv and λ have been included which define the normalisation of
the fields. Finally we need for our construction the tachyon potential which we
take to be

V = Ke− 1
2µ

2τ2

(4.13)

where K a constant which is related to the tension of the branes but drops out in
all the calculations. For our purposes it suffices to look at the Sen action which
includes the tachyon and a U(1) gauge-field which will include the magnetic
field necessary for magnetic catalysis. The resulting expressions reads:

SDBI = −2K
∫
d4xdze−µ

2 τ2

2

√
− det[gµν +

2πα′

g2
V

Fµν + (2πα′)λ∂µτ∂ντ ]

= −2K
∫
d4xdze−µ

2 τ2

2
(gttgxx)1/2

g2
V

√
(4B2π2α′2 + g4

V g
2
xx)(gzz + 2πα′(∂zτ)2λ)

(4.14)

Here the gauge field is taken to be Aµ = (0, 0, yB, 0, 0, 0). As we take the branes
in the probe limit no backreaction is generated hence the previously discussed
background solutions still remain valid. They simply need to be substituted in
the tachyon equation of motion in order to find the corresponding behaviour for
the tachyon. Proceeding along this train of thought we vary with respect to the
tachyon and obtain:

τ ′′(z) +
µ2gzzτ(z)

2πα′λ
+
τ ′(z)

2
(−g

′
zz(z)

gzz(z)
+
g′tt(z)

gtt(z)
+
g′xx(z)

gxx(z)

4B2π2α′2 + 3g4
V gxx(z)

4B2π2α′2 + g4
V gxx(z)

) + µ2τ(z)τ ′(z)2

+ πα′λ
τ ′(z)3

gzz(z)
(
g′tt(z)

gtt(z)
+
g′xx(z)

gxx(z)

4B2π2α′2 + 3g4
V gxx(z)

4B2π2α′2 + g4
V gxx(z)

) = 0 (4.15)

From now on we take µ2 = π and we use the combinations R =
√

6α′ and
λ2g4

V = 2
3 [32] in order to get rid of the constants and after using the metric
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components we arrive at the final form which only depends on B:

τ ′′ = − 1

6r

(
3τ ′
−6(−6 + r5) +B2π2r4(2 + 3τ5))

(6 +B2π2r4)(−1 + r5)

+ (τ ′)3 4πr2(12 +B2π2r4)(−1 + r5)

6 +B2π2r4
+ 6τ

−3 + πr2(−1 + r5)(τ ′)2

r(−1 + r5)

)
(4.16)

The UV-structure of the tachyon equation turns out to be independent of the
magnetic field at leading order. This implies one can use the same near boundary
expansion (r → 0) for the tachyon as advocated in [30]:

τ = c1r +
µ2

6
c31r

3 ln r + c3r
3 +O(r5). (4.17)

To arrive at this result R2µ2

2πα′λ = 3 was imposed. This was necesary in order
to enforce that the bifundamental operator dual to the tachyon, with mass

mτ = −µ2

2πα′λ , has UV dimension 3 as we would expect from the quark bilinear
q̄q in QCD. The correct dimension was obtained by using the mass-operator
dimension correspondence conjectured at an earlier stage

∆(∆− 4) = m2
τR

2. (4.18)

According to the holographic dictionary the source c1 corresponds to the mass
and the vev c3 to the chiral condensate. The deep IR behaviour in the case of
the soliton, which requires the tachyon to diverge in a very specific manner[32],
and the regularity conditions at the horizon of the black hole relate those two
quantities giving a dynamical dependence of the condensate on the mass. Now,
in the case of the soliton without magnetic field, Kiritsis et. al. proceeded
to determine the condensate as a function of the mass by shooting from the
UV using (4.17) and matching to the appropriate IR-asymptotics which can be
found in [32]. This gave the behaviour portrayed in Figure 8.

Figure 15: c3 as a function of c1 for B = 0 [32].
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4.2 Improved Holographic QCD

4.2.1 Introduction

The AdS/CFT correspondence presented has its most precise form when one
considers super symmetric conformal Yang-Mills theories. Now the essence of
the practical use of the correspondence lies in deforming it so that it can be
applied to realistic systems. As shown before (Ch. 2.2), this includes aspects
like confinement and mass gap. In the case of modeling QCD one wants to apply
holography while including phenomena where strong IR physics play a vital role.
Besides confinement this includes chiral symmetry breaking and matching the
spectra of baryons, mesons and their interactions.

A phenomenological approach called AdS/QCD was developed and has been
applied with mixed success in mainly describing the meson sector. This ap-
proach is based on introducing an IR and UV cutoff with a constant dilaton.
Confinement is imposed by specific IR boundary conditions at the IR cutoff.[20]

Continuing on the mostly phenomenological path, Kiritsis and collaborators
[23] developed a more sophisticated approach which uses aspects of non-critical
string theory as well. Specifically, an effective action is constructed based on
understanding of string theory which then is matched to the phenomenological
results we have of QCD. This approach is called ”Improved Holographic QCD”
and describes the glue sector of QCD.

In [21],[22],[25] it was shown that a Einstein-dilaton gravity system with a
monotonic dilaton potential that grows fast enough is dual to a theory with
the phase structure of a pure Yang-Mills field theory at large Nc. The theory
possesses two phases, a thermal gas and a black hole, which correspond to
the confining and deconfining phase transition respectively. At at a certain
temperature a first order ”Hawking-Page phase transition” occurs, dual to the
confinement-deconfinement phase transition. Finally to include flavour degrees
of freedom one considers the addition of branes as presented in the previous
section based on the DBI-action proposed by Sen [18].

4.2.2 The Ingredients

The theory is determined by a set of parameters. They consist of the 5D Planck
mass Mp and the parameters that define the dilaton potential Vg(λ). The value
of the potential for λ = 0 defines the AdS5 length L0. These parameters will be
fixed by matching to phenomenological and perturbative results.

The action ansatz for the Improved Holographic theory reads as follows:

S5 = −M3
pN

2
c

∫
d5x
√
g
(
R− 4

3
(∂Φ)2 + Vg(Φ)

)
+ 2M3

pN
2
c

∫
∂M

d4x
√
hK, (4.19)

with Nc the number of colours. The second term is the Gibbons-Hawking term
which is necessary for a correct variation procedure[19], with K the extrinsic
curvature of the boundary. The metric ansatz will be in the conformal coordi-
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nates and has the form

ds2 = e2A(r)
(
− f(r)dt2 +

dr2

f(r)
+ ηijdxdx

j
)
. (4.20)

The dilaton λ = eΦ is related to the ’t Hooft coupling λt = Ncg
2
YM up

to a multiplicative factor which does not influence observables. The radial
coordinate r corresponds to the RG scale of the boundary theory. Specifically
we can identify the energy scale E with A(r), the scale factor. This is done in
the following way: E = E0e

A(r).
With these matchings we can define the β-function within the holographic

setup as follows:

β(λ) =
dλ

d logE
= λ

Φ̇

Ȧ
. (4.21)

Having introduced the building blocks of Improved Holographic QCD one
can start matching to phenomenology in order to model QCD. For complete
analysis of this matching we refer the reader to [25],[24].

4.2.3 The Dilaton Potential

All the physics of the glue sector of QCD are encoded in the dilaton potential
Vg(λ) which up till now has not been specified. Its general form will be dictated
by the IR- and UV-asymptotic form which will be matched in such a way to
include confinement and asymptotic freedom. The matching will be done for
the vacuum solution which contains a singularity in the deep IR(r → ∞). In
conformally flat coordinates this gives:

ds2 = e2A0(r)(dr2 + ηijdx
idxj), Φ = Φ0(r). (4.22)

IR Asymptotics and Confinement In the IR the relevant physical phe-
nomenon is confinement which implies that the Wilson loop yields an area law
when the metric has the IR-asymptotic form. As shown in [23] this requires the
potential to grow as λ4/3 or faster. A second requirement is for the singularity
in the deep IR to be a ”good” singularity implying that it is repulsive to phys-
ical modes. ”Bad” singularities allow physical mode to penetrate arbitrarily
deep into the IR hence boundary conditions at the singularity are needed. This
requirement, combined with confinement, yields the necessary IR asymptotic
form for the potential:

Vg(λ) = V∞(log λ)4/3λ
α−1
α (4.23)

with α ≥ 1 for confinement. The value of α can be fixed by demanding a linear
glueball spectrum:

mn ∝ n(α−1)/a (4.24)

Obviously this will give α = 2.
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UV Asymptotics and the β-function For the AdS/CFT correspondence
to be valid the geometry must be asymptotically Anti-de Sitter. The addition
of asymptotic freedom requires an logarithmically running coupling. To add
this the dilaton potential will be matched to perturbative, pure glue, QCD
β-function,

β ∝ −b0λ2 − b1λ3 + .. (4.25)

The matching is achieved by requiring the following asymptotic form of the
potential

Vg(λ) =
12

L2
0

(1 + u0λ+ u1λ
2 + ...), (4.26)

where L0 is the AdS length and the dimensionless parameters ui must be
matched to the β-function coefficients. The correct matching requires

u0 =
8b0
9
, u1 =

4b1
9

+ u2
0

828

2304
. (4.27)

With this UV asymptotic form of the potential the UV region in the confor-
mal coordinates is given by:

eA(r) =
l

r
[ 1 +

4

9

1

log rΛ
− 4

9

log(− log rΛ)

log2 rΛ
+ ..] ,

b0λ(r) = − 1

log rΛ
+
b1
b20

log(log rΛ)

log2 rΛ
+ .. (4.28)

Here the scale Λ is the only physical integration constant and can be holo-
graphically related to the strong coupling scale of QCD, ΛQCD. One can de-
termine the scale by a combination of initial conditions for the dilaton and the
scale factor at a point r0 close to the boundary,

Λl = expA(λ0)− 1

b0λ0
(b0λ0)−b1/b

2
0 + .. (4.29)

The extra contributions are subleading and vanish as one sends λ0 → 0.

The Final Ansatz for the Dilaton Potential In the literature, concerning
Improved Holographic QCD and exponents of it, there are two ansatz which
contain the necessary asymptotic behaviour but differ in the bulk and in the
proportionality factor in the deep IR, V∞. These are the following

• Potential I [23]

Vg(λ) =
12

L2
0

(
1 + V0λ+ V1λ

4/3
(

log(1 + V2λ
4/3 + V3λ

2)
)1/2)

, (4.30)

with V0 = u0, V1 = 14, V 2 =
u2
1

V 2
1

and V3 = 170. V 1 and V 3 were fixed by

considering the thermodynamics of large Nc YM [24].
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• Potential II [26]

Vg(λ) =
12

L2
0

(
1 +

88λ

27
+

4619λ2

729

√
1 + log (1 + λ)

(1 + λ)2/3

)
. (4.31)

Here the λ2 term of the UV-asymptotic form is multiplied with a confine-
ment factor. From here on, unless stated otherwise, the second potential
will be considered as the dilaton potential.

4.2.4 Finite Temperature

The relevant solutions to this work are the ones including temperature. This
implies taking a potential ansatz with the correct asymptotics and solve for
finite temperature. Once again this is done by going to Euclidean signature and
compactifying the Euclideanised time direction on a circle with period β = 1

T .
This construction admits two type of solutions analogous to the case studied by
Maldacena [2]:

Thermal Gas The thermal gas can be achieved by Euclideanizing the vac-
uum solution (4.22). This corresponds to a gas of thermal excitations above
the same vacuum and possesses all the properties of the vacuum solution such
as confinement, linear glueball spectrum etc. The Thermal Gas can have ar-
bitary temperature as there are no restrictions on the period of the compactified
dimension.

Black holes These solutions have the familiar form in conformal coordinates:

ds2 = e2A(r)[
dr2

f(r)
− f(r)dt2 + dxmdx

m], Φ = Φ(r) (4.32)

where f(r) possesses a root which signifies the location of the horizon. In
contrast to the thermal gas solution this corresponds to a deconfined phase as
Astring does not posses a minimum which the Wilson loop test requires [23].
The black hole solutions posses two branches characterised by their stability.

The big black hole branch is thermodynamically stable as the specific heat is
positive:

cv = T
dS

dT
> 0 (4.33)

while the small black hole branch has a negative specific heat, hence is unstable
(see Figure 9 ). This implies that the black hole solutions posses a minimum
temperature Tmin below which only the thermal gas exists. This is a necessary
property of confining theories as will be seen below.

As we have seen, up till a temperature Tmin the only existing solution is the
thermal gas. It now remains to see what happens above this temperature. This

3This can be achieved due to the monotonic behaviour of λ and the fact it goes to zero in
the UV and to infinity in the IR
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Figure 16: Temperature as a function of the horizon location[25]. The radial
coordinate r has been replaced by the dilaton value at the horizon3.

can be done by comparing the free energies(see Figure 4.2.4). Here we see that
the black hole phase starts dominating above a temperature Tc > Tmin as the
black hole free energy becomes smaller. At the transition temperature a first
order phase transition occurs which is dual to the confinement/deconfinement
phase transition of the boundary theory.

4.2.5 Adding Flavour

Having prepared the ”glue” sector of the theory it is vital to add flavour in
order to get closer to the physics of QCD and specifically the chiral symmetry
breaking phenomenon. The addition proceeds along the lines of Ch. 3.5 as once
again Nf branes and anti branes are taken[30]. In this model the branes will be
overlapping D4 branes with the Sen action reducing to[26]:

S = −χfM3
pN

2
c

∫
d5xVf (λ, τ)

√
det(gµν + κ(λ)∂µτ∂ντ + w(λ)Fµν) (4.34)

with x = Nf
Nc determining the regime we sit in. For χf → 0 the quenched

approximation is realized while χf finite signifies the Veneziano limit.
The potentials are chosen based on [29]. In their paper Kiritsis et. al. chose

the potentials while considering the Veneziano limit, χf finite. The matchings
proceed in a similar way as in the IHQCD case with a modified beta-function
due to the added flavour which, up to two loops, is given by:

βf (g) = − g3

(4π)2

(11

3
Nc −

2

3
Nf
)
− g5

(4π)4

(34

3
N2
c −

Nf
Nc

(
13

3
N2
c − 1)

)
(4.35)
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(a) Free energies of the two
black hole branches [25].

(b) Free energy comparison between the
thermal gas and the big black hole
branch[25].

Figure 17: The free energies of the Thermal gas and the different black hole
branches.

and in terms of the dilaton λ:

β(λ) = −b0λ2 + b1λ
3 +O(λ4) (4.36)

with

b0 =
2

3

11− 2χf
(4π)2

,
b1
b20

= −3

2

34− 13χf
(11− 2χf )2

. (4.37)

Additional constraints come from the behaviour of the tachyon. Firstly it has to
decouple in the IR enforcing a specific form of the fermionic potential Vf (λ, τ) =

Vf0(λ)e−α(λ)τ2

and secondly the condensate ψ̄LψR has a perturbative anomalous
dimension:

γ ≡ −d lnm

d lnµ
=
a0

4π
g2 +

a1

(4π2)2
g4 (4.38)

≈ 3

(4π)2
λ+

203− 10χf
12(4π)4

λ2 +O(λ3, N−2
c ). (4.39)

In the second line the anomalous dimension is taken in the large Nc limit. These
additional constraints combined with the IR constraint discussed at an earlier
stage put additional constraints on the various potentials yielding the following
selection:

Vf (τ, λ) = W0(1 +
8(24 + 11W0)

27W0
λ+

20568 + 4619W0

729W0
λ2), α(λ) =

3

2
, (4.40)

κ(λ) =
(1 + ln(1 + λ))µ

(1 + 3
4 ( 115

27 + µ)λ)
4
3

, w(λ) = κ(λ) (4.41)
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with µ taken to be µ = − 1
2

In the probe approximation the equations of motion reduce to a set of sep-
arate background equations of an Einstein-Dilaton background and a coupled
system of equations for the Maxwell-Tachyon system. One then needs to find
the background solution for the Einstein-Dilaton equation and subsequently in-
troduce them into the Maxwell-Tachyon system which can then be solved. In
the conformal coordinate system the background equations take the following
form:

3A′′ − 3A′2 = −4

3

λ′2

λ2
(4.42)

f ′′ + 3A′f ′ = 0 (4.43)

3A′(f ′ + 4A′f) + Vg(λ)e2A − f 4

3

λ′2

λ2
= 0. (4.44)

with the prime standing for the derivative w.r.t. the radial coordinate. By
varying the action towards the dilaton one obtains its equation of motion. This
equation does not provide new information as one can derive it from the previous
three Einstein equations. Its form is:

f(
λ′′

λ
− λ′2

λ2
) +

λ′

λ
(f ′ + 3fA′) = −3

8
e2A∂λVg. (4.45)

Considering a gauge field sourcing a constant magnetic field

Aµ = (0, By, 0, 0, 0) (4.46)

the tachyon equation of motion becomes:

τ ′′ − ∂τ lnVf
κ

(e2A/f + (τ ′)2κ) + (τ ′)3κfe−2A
( f ′

2f
+
λ′

2
∂λ ln(κV f2)

+
1

2

8A′e8A +B2we4A(4A′w + 2λ′∂λw)

e8A +B2w2e4A

)
+ τ ′

(
A′ +

f ′

2f
+

2A′e8A

e8A+B2w2e4A
+ λ′∂λ ln(Vfκ) +

λ′B2e4Aw2∂λ lnw

38A +B2w2e4A

)
= 0.

(4.47)
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5 Our Work

5.1 AdS-Soliton

The model containing an AdS-Soliton phase and a black hole phase, separated
by a phase transition, provides an interesting playground in order to study
magnetic catalysis as it is an improvement over the old soft- and hard-wall
models. It is especially interesting to see if the inverse magnetic catalysis effect
sets in at a high enough magnetic field. As we sit in the quenched approximation
no backreaction of either the magnetic field or tachyon is considered. Thus the
same background (4.2),(4.7) metrics can be used in the tachyon equation (4.16).
The tachyon eom contains an explicit dependence on the magnetic field which
will encode the magnetic catalysis effect. In the following we shall focus on the
confining solution in the chirally broken phase. Reason for this is that it was
shown in [32] that the deconfined phase, dual to the black hole, only admits a
trivial solution for the tachyon when the quark mass is taken to be zero. Thus
the black hole does not exhibit a chirally broken phase.

The goal is to solve the tachyon eom numerically by a shooting method.
Firstly it is necessary to determine if the UV-asymptotics change on a leading
level in order to get the correct condensate values. As this turns out to not be
the case we can use the same UV-expansion as in the simple case (4.17). One
then takes at a cutoff rUVc close to the UV the following boundary conditions
for the tachyon and integrates up to the IR:

τ(rUVc ) = c3(rUVc )3, (5.1)

τ ′(rUVc ) = 3c3(rUVc )2 (5.2)

where c1 has been set to zero as the focus will be chiral symmetry breaking.
Now in the IR it is necessary to match the solution to the correct asymptotic
expansion. Following the methodology of [32] the tachyon is expressed as:

τ(r) =

∞∑
n=0

(rΛ − r)(
3(2n−1)

20 )Cngn(r) (5.3)

with the functions gn(r) having the following form:

gn(r) = 1 +

∞∑
m=1

Dn,m

(
1− r

rΛ

)m
. (5.4)

The constants are determined by plugging the ansatzë above in the tachyon
equation (4.16) and solving order by order. We shall now give the first constants
which still have a reasonabe size. Constants corresponding to higer orders have
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been calculated as well but due to their size will not be given:

C0 = C, C1 = − 26(9g4
V λ

2 +B2µ4)

3Cµ2(36g4
V λ

2 +B2µ4)
(5.5)

C2 = −104(9g4
V λ

2 +B2µ4)2(342g4
V λ

2 + 29B2µ4)

9C3µ4(72g4
V λ

2 +B2µ4)(36g4
V λ

2 +B2µ4)
(5.6)

C3 = −104(9g4
V λ

2 +B2µ4)3(2689200g8
V λ

4 + 428328B2g4
V λ

2µ4 + 16921B4µ8)

81c5µ6(36g4
V λ

2 +B2µ4)3(2592g8
V λ

4 − 108B2g4
V λ

2µ4 +B4µ8)
.

(5.7)

Finally the first functions gn are, again up till a manageable size, the following:

g0(r) =1 +
3(54g4

V λ
2 − 5B2µ4)

−360g4
V λ

2 + 11B2µ4
+O(1− r

rΛ
) (5.8)

g1(r) =1 +
18(−479196g1

V 2λ6 + 67176B2b8V λ
4µ4 + 24891B4g4

V λ
2µ8 + 973B6µ12)

13(468g4
V λ

2 − 17B2µ4)(360g4
V λ

2 − 11B2µ4)(9g4
V λ

2 +B2µ4)

+O(1− r

rΛ
). (5.9)

This form of the tachyon close to the IR singularity can be seen as a ”regularity
condition” which relates the condensate to the mass in a non-trivial way. Also
the constant C gets fixed by the mass.

Practically, the matching to the correct asymptotics can be done by eye. To
be precise, a value of c3 larger than the correct one will yield a solution which
will diverge before the tip of the ”cigar” and a value smaller will yield a finite
solution. Therefore it was possible to find the condensate up to a high precision
for increasing magnetic field. This result has been plotted in Figure 4.2.4 for
µ2 = π and rΛ = 1 4. As one can see the condensate value monotonically
increases, showing no sign of inverse magnetic catalysis.

4These choices are possible as we can always redefine the fields, r → r̃ = r/rΛ and τ →
τ̃ = µτ leaving the tachyon equatio invariant.
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Magnetic catalysis in the AdS Soliton

Figure 18: The dimensionless condensate plotted as a function of the dimen-
sionless magnetic field

Now it is also possible to give the condensate in terms of the appropriate
energy dimensions. This can be done by setting the appropriate length rΛ which
is equal to the inverse of ΛQCD[32]. The result is show in Figure ?? where we
chose the, approximately, correct physical value of ΛQCD = 300MeV .
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Figure 19: The dimensionful condensate plotted as a function of the magnetic
field for ΛQCD = 300MeV .
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5.2 Improved Holographic QCD

After solving the tachyon eom in the presence of the AdS-Soliton background
we turn to the more powerful QCD-dual, IHQCD. The ultimate goal remains
the same, find a background solution while neglecting the flavour backreaction
(quenched approximation) and consequently solve the tachyon eom coupled to
a magnetic field in presence of the previously constructed background. The
background solution constructed will be the confining one (f = 1) as we expect
beforehand to witness chiral symmetry breaking. In the case of a deconfining,
black hole, background a chirally broken phase was discovered only recently
when considering the Veneziano limit[27],[28]. As the appearance of this phase

was intrinsically connected to a non zero flavour to colour ratio χf =
Nf
Nc

it is
improbable it would appear when this ratio is taken to be zero.

5.2.1 Solving the Background

As one proceeds to solve the set of Einstein equations (4.41) it is convenient to
switch to a new coordinate system where the scale factor A plays the role of
the radial component. This gives us the capability to penetrate arbitrarily deep
into the UV and, as will become clear soon, it is necessary to penetrate up to
A ∼ hundreds.

The transformation which will achieve the change of coordinates is given by:

q(A) = eA
dr

dA
. (5.10)

where q(A) is a new function which goes asymptotically to −L0 in UV. The
resulting Einstein equations are displayed in (A.2).

The construction of the background will be done numerically using an ND-
Solve function in Mathematica. Now the main idea is to give boundary condi-
tions deep in the IR and integrate up to the UV where we want our solutions
to exhibit the appropriate behaviour. To accomplish this one needs the IR-
and UV-asymptotics of the metric functions and the dilaton. They have been
derived in [23],[29] and we present the results in Appendix B.

So our numerical integration proceed as follows. Using the IR-asymptotics in
theA-coordinate system we give boundary conditions deep in the IR(B.15),(B.18).
Then we integrate up to the UV where we want to check their behaviour with
the UV asymptotics in the A-coordinate. As the UV-asymptotics come with
the integration constant Λ it is vital to set its value. This can be achieved by
using the UV-expansions through which one can show that

Â = ln(L0Λ) = lim
A→∞

(A− 1

b0λ(A)
+
b1
b20

ln(b0λ2(A)). (5.11)

We will now set Λ = 1 in the rest of the calculation so this amounts to the
rescaling A1(A) = A − Â. All the solutions with this shifted coordinate A1

have the required asymptotics and as the Einstein equations are invariant under
coordinate shifts of A we acquire new solutions to them, albeit with different
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boundary conditions. As it turns out the convergence of (5.11) is rather slow
due to the O(λ) = O(A−1) corrections so we have to speed it up by considering
a form which eliminates those corrections:

ÂImp(Amax) = Â(Amax)− Â(Amax)
λ(Amax)

λ′(Amax)
. (5.12)

Now the shift will be done using this improved shift value instead of (5.11). This
way we arrive at the final form of our solutions satisfying both the required UV
and IR asymptotics.

2000 4000 6000 8000 10 000 12 000 14 000
A

0.01495

0.01500

0.01505

0.01510

0.01515

Ashift

Figure 20: The required shift of the scale factor in order to set Λ to one as
a function of Amax. The red curve is the ”improved version” which converges
substantially quicker to the correct value.

The Result

The construction of the background solution proceeded under the following con-
siderations. Firstly, as stated before, the dilaton potential used will be ”Poten-
tial II” of the form:

Vg(λ) = 12
(

1 +
88

27
λ(A) +

4619λ(A)2
√

1 + ln
(
1 + λ(A)

)
729
(
1 + λ(A)

)(2/3)

)
. (5.13)

Additionally the integration constant R in the IR expansion and the AdS radius
L0 are taken equal to one in our code. The IR integation constant will be
set appropriately once the shift ÂImp has been done and all the dimensionful
parameters are in units of the AdS-radius.

The resulting solutions are presented in Figure (11) where we see the required
behaviour:

q(Amax) ≈ −L0 and (5.14)

λ(Amax) ≈ 0. (5.15)

Finally the two shifts are displayed in the same figure in order to demonstrate
the quicker convergence of (5.12).
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(a) The dilaton λ as a function of the scale
factor A.
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(b) The transformation function q as a function of
the scale factor A.

Figure 21

5.2.2 Solving the Tachyon

Solving the Tachyon eom proceeds initially in a similar fashion as in the con-
struction of the background. One sets boundary conditions at an IR-cutoff by
using the IR-expansion of the tachyon (7.21) and integrates, in the presence of
the previously constructed background, towards the deep UV where the appro-
priate behaviour should be demanded.

As shown in Appendix B the UV-behaviour of the tachyon is given by

1

L0
τ(r) = mqr(− ln(rΛ))−γ0/b0

[
1 +O

( 1

ln(rΛ)

)]
(5.16)

+ σr3(− ln(rΛ))γ0/b0
[
1 +O

( 1

ln(rΛ)

)]
, (5.17)

with Λ = 1 as demanded during the construction of the background. Once a
solution of the tachyon is constructed it is possible to get the corresponding bare
quark mass by the following relation, constructed from the UV-expansions:

mq = lim
A→∞

L0τ(A) exp
[ 1

b0λ(A)
+
(b1
b20
− 9

22

)
ln(b0λ(A))

]
. (5.18)

In practice we will introduce two cutoff values of A and extrapolate to λ = 0 in
order to achieve the extrapolation to A =∞. The corresponding expression for
the mass then becomes

mq =
m̃q(A1)λ(A2)− m̃q(A2)λ(A1)

λ(A2)− λ(A1)
. (5.19)

Now for a mq = 0 tachyon solution the condensate can be calculated in a
similar fashion as above. One takes the UV-expansion of the tachyon without
mass

τ(r)

L0
= σr3(− ln(Λr))3/2b0 (5.20)
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and

A− ln(ΛL0) =
1

b0λ(A)
+
b1
b20

ln(b0λ(A)) = ln(Λr), A→∞ (5.21)

and combine them in an appropriate way to obtain

ln σ̃(A) = ln τ(A)− lnL0 +
3

b0λ(A)
+

3b1
b20

ln
(
b0λ(A)

)
+

3

2b0
ln
(
b0λ(A)

)
(5.22)

which approaches lnσ forA→∞. Thus one can determine the chiral condensate
value at a large enough cutoff.

Up till now we have not considered any limitations of the code. These
limitations come into play when fixing the bare quark mass term. As we shoot
from the IR the final solution cannot have vanishing mass but will always retain
a tiny value. This is a result coming from fixing the IR boundary conditions
which cannot be fine tuned beyond the numerical accuracy of the code. Now
the linear term will dominate over the cubic term in the deep UV where one
needs to separate the two contributions. As a correct value for the condensate
requires a large UV cutoff of the order ofA ≈hundreds, direct separation requires
a numerical accuracy of e−hundreds which is impossible to achieve. Hence a
workaround must be constructed.

Now a method in order to construct the desired tachyon solution with zero
bare quark mass was proposed by Kiritsis et. al in [27]. The idea is to integrate
from the IR and acquire a solution with the minimal possible mass. This will
fix, up to a certain accuracy, the IR constant T0. Once this value is determined
we impose zero mass by shooting from the boundary with the initial conditions

τ(r) = e−3A, τ ′(r) = −3e−3A. (5.23)

In the IR the tachyon will behave as τ(IR) times a constant and thus we can
obtain this constant. One then normalises the solution gotten by shooting from
the UV with this constant and obtains the true solution which, in the IR,
coincides with the solution constructed by shooting from the IR and in the
UV shows a zero bare quark mass behaviour.

44



40 60 80 100 120 140
A

-2.´10-10

-1.5´10-10

-1.´10-10

-5.´10-11

5.´10-11

1.´10-10

ΤHAL

Figure 22: A typical tachyon behaviour generated by our code. The Efimov
vacua are very clear.

The Result

Using the above presciription the tachyon eom in the A-coordinates (A.6) was
solved with the potentials Vf (τ, λ), κ(λ) and w(λ) as defined in (4.39) for W0 =
3
11 . This choice for W0 comes from the Veneziano QCD results as in this
limit this choice yields a quantitatively correct finite T phase diagram of QCD
[26],[27],[28].

Unfortunately the tachyon solutions acquired, within the range accesable by
our processor, never managed to give the desired results. A typical behaviour is
presented in Figure 12. As it is clear the tachyon has multiple roots before going
to zero in the UV. These nodes are typically associated with Efimov vacua and
according to [26],[27], correspond to solutions which have a higher free energy
than the solutions with the same bare quark mass and no nodes. Additionally
when considering the zero mass case the trivial solution would be dominant over
the solutions with nodes. Hence we do not observe any chiral symmetry breaking
with these solutions. Now increasing the value of the constant T0 in the IR gives
solutions with decreasing amounts of nodes but, as there is a maximum beyond
which numerical errors appear, we are not able to reach a high enough value.
Thus, in order to study this system further, an improvement in our processing
power is required.

45



6 Discussion

During this project we studied the influence of an external magnetic field on
the formation of a chiral condensate, signifying spontaneous chiral symmetry
breaking. In the case of the AdS-Soliton a high-precision dependence of the
condensate on the magnetic field was constructed and presented. The magnetic
field enhanced the condensate hence we observed magnetic catalysis. As Lattice
QCD predicts the appearance of inverse magnetic catalysis it should be part of
a consistent holographic model of QCD. The fact it is not present in the AdS-
Soliton model can be attributed to two aspects. Firstly the AdS-Soliton is still
a rather crude approximation of QCD, a problem potentially solved by IHQCD.
Secondly the addition of flavour was done in the quenched approximation. It
might be the fact that only a fully backreacting tachyon in the Veneziano limit
can encorporate the inverse magnetic catalysis phenomenon. This would require
abandoning the background solutions and resolving the gravity system with a
backreacting tachyon and magnetic field.

Now in the case of IHQCD enhanced with flavour degrees of freedom in
the quenched approximation it was not possible to construct chiral symmetry
breaking solutions in order to study (inverse) magnetic catalysis. It was only
possible to construct tachyon solutions containing multiple Efimov vacua as
above a certain value of the tachyon boundary constant T0 the mathematica
code refused to work. The reasons for this behaviour is expected to be purely
numeric. Up till this moment no mistakes in the set-up have been found so
additional subtle numeric techniques combined with substantially increase in
processing power seems to be the solution to this.
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7 Outlook

This subject, broad as it is, welcomes many extensions and improvements.
Firstly, when considering the case of IHQCD, one needs to improve the numeri-
cal aspect of the work. This would definitely require additional processing power
as the AMD Phenom II X2 processor these calculations were done on shows se-
vere limitations. As it seems, at least a multicore Intel Core i7 is needed in order
to overcome the Efimov vacua regime and to be able to accurately measure the
condensate.

When one manages to successfully resolve the IHQCD+flavour in the quenched
approximation system it is natural to consider different regimes. This will imply
taking the Veneziano limit, hence χf finite. This has already been studied for
finite temperature and/or finite density by Kiritsis, Järvinen et al [28],[27], [29].
Besides the chirally broken phase in the confining background they discovered
that, for finite density, a chiral symmetry breaking phase exists in the decon-
fined phase as well. This would be an extremely interesting regime to study the
effect of the magnetic field on the chiral condensate . In order to probe the chi-
rally broken phase in the deconfining background a baryon density is required.
To achieve its addition a nonzero time-component of the gauge-field in the bulk
must be introduced as its dual. Once this is successfully done a very powerful
dual theory to QCD will have been constructed. Therefore non-perturbative
observables of QCD must be calculated in order to put the theory to the test.

Turning to the AdS-Soliton model, a similar generalization as above is nat-
ural. First one would need to abandon the quenched approximation in favour
of the Veneziano limit. This might bring an additional number of subtleties
with it which, up to this point, have not been studied but could potentially
resolve the issue of the missing inverse magnetic catalysis regime. Once a suc-
cessful Veneziano limit has been constructed a density can be added. Interesting
as this might be, the original limitations of the model will remain and thus a
complete dual description of QCD is improbable.
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Appendices

A A-Coordinate System

The equations (4.41), (4.46) encapture the dynamics of the Einstein Dilaton
system cobined with a non-backreacting tachyon and magnetic field. As advo-
cated before, to explore spontaneous chiral symmetry breaking it is necessary
to restrict ourselves to mq = 0. This is a technically demanding task forcing
the solution to extend deep into the UV to extremely small r ≈ e−A, up to
A ∼ hundreds. Hence, numerically it is a drastic improvement to consider our
system by using the scale factor A as a coordinate.

The change of basis is achieved through the relation:

q(A) = eA
dr

dA
. (A.1)

After applying the above relation the system of Einstein equations becomes:

−3
q′

q
= −4

3

λ′2

λ2
(A.2)

f ′′ + f ′(4− q′

q
) = 0 (A.3)

12f + 3f ′ − f 4

3

λ′2

λ2
= Vgq

2. (A.4)

The corresponding scalar equation becomes:

8

3
f
(λ′
λ

+
λ′′

λ
− λ′q′

λq

)
+
f ′λ′

λ
+

3fλ′

λ
= −q2∂λVg (A.5)

and finally the tachyon EOM is:

τ ′′(A) = +
∂τ lnVf

κ

(
q2/f + (τ ′)2κ

)
− (τ ′)3κ

q
f
( f ′

2f
+
λ′

2
∂λ ln(V 2

f κ) +
1

2

8e8A +B2we4A(4w + 2λ′∂λw)

e8A +B2w2e4A

)
+ τ ′

(
2 +

f ′

2f
− q′ + 2e8A

e8A +B2w2e4A
+ λ′∂λ ln(Vfκ) +

λ′B2e4Aw2∂λ lnw

e8A +B2w2e4A

)
(A.6)
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B UV and IR Asymptotics of IHQCD With Flavour
Degrees of Freedom

B.1 The UV-Structure

B.1.1 The Background

The equations of motion will be the system (4.41) with f = 1 and the dilaton
potential taken in its UV-asymptotic form:

Vg(λ) =
12

L0
(1 + V1λ+ V2λ

2 + ...), (B.1)

where

V1 =
8

9
b0 =

88

216π2
(B.2)

V2

V 2
1

=
23

64
+

9b1
16b20

=
1

64

(
23 +

54× 34

11

)
. (B.3)

Then, by plugging in suitable ansatzë, we obtain the leading order behaviour of
the scale factor and the dilaton:

A(r) = − ln
r

L0
+

4

9 ln(rΛ)
(B.4)

+
1/162

[
95− 64V2

V 2
1

]
+ 1/81 ln(rΛ)

[
− 23 + 64V2

V 2
1

]
ln(rΛ)2

+O
( 1

ln(rΛ)3

)
V1λ(r) = − 8

9 ln(rΛ)
+

ln[− ln(rΛ)]
[

46
81 −

128V2

81V 2
1

]
ln(rΛ)2

+O
( 1

ln(rΛ)3

)
(B.5)

B.1.2 The Tachyon

Once we have obtained the leading order UV-asymptotic form of the background
funtions we can plug them into the tachyon eom together with the asymptotic
form of the fermionic potential:

κ = 1 + κ1λ+ κ2λ
2. (B.6)

As it turns out the magnetic field only affects the tachyon subleadingly and
hence we obtain the zero magnetic field case[29]:

1

L0
τ(r) = mqr(− ln(rΛ))−γ0/b0

[
1 +O

( 1

ln(rΛ)

)]
(B.7)

+ σr3(− ln(rΛ))γ0/b0
[
1 +O

( 1

ln(rΛ)

)]
(B.8)

with the perturbative anomalous dimension of the quark mass in QCD giving

γ0

b0
=

9

22
. (B.9)
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B.2 The IR Structure

In the case of the IR-asymptotics the magnetic field affects once again only the
subleading part hence we can proceed by neglecting its influence.

B.2.1 The Background

The asymptotic for of our dilaton potential now takes the form

Vg(λ) = u0λ
4/3
√

lnλ
[
1 +

u1

lnλ
+

u2

ln2 λ

]
. (B.10)

Following the usual methodology one arrives at the following asymptotic forms:

A =− r2

R2
+

1

2
ln
r

R
− lnR− 1

2
lnu0 +

5

4
ln 2 +

3

4
ln 3 +

23

24
+

4u1

3

+
R2(−173 + 512u2

1 + 1024u2)

3456r2
+O(r−4) (B.11)

lnλ =
3

2

r2

R2
− 23

16
− 2u1 −

R2(151 + 512u2
1 + 1024u2)

2304r2
+O(r−4) (B.12)

with R an integration constant and the remaining constants being :

u0 =
12× 4619

729L2
0

=
18476

243
(B.13)

u1 =
1

2
, u2 = −1

8
. (B.14)

As the integration proceeds in the A-Coordinate system it is appropriate to give
the IR asymptotics in these coordinates as well. The expansion of the radial
coordinate and the dilaton in terms of the scale factor now becomes:

r2

R2
=−A+

1

4
ln(−3

2
A) +A0 +

23

24
+

4u1

3

− 655 + 1152u1 + 512u2
1 + 1024u2

3456A
−

ln(− 3
2A) + 12A0

16A
+O(A−2)

(B.15)

lnλ =− 3

2
A+

3

8
ln(−3

2
A) +

3

2
A0 −

7 + 16u1 + 3 ln(− 3
2A) + 12A0

32A
+O(A−2).

(B.16)

The new function,q(A), which encodes the transformation from the one coordi-
nate system to the other can be expressed as:

q(A) = eAr′(A) (B.17)

and thus becomes:

q(A) = −R
2
eA(−A)−1/2

[
1 +

1

8A

(
ln(−3

2
A) + 4A0 +

9

2
+O(A−2)

)]
(B.18)

λ(A) = e−
3
2 (A−A0)(−3

2
A)3/8

[
1− 3

32A

(
ln(−3

2
A) + 4A0 + 5

)
+O(A−2)

]
.

(B.19)
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Above we also gave the asymptotic expansion of λ(A) as it is relevant for our
numerics.

7.2.2 The Tachyon

Proceeding as usual one needs to plug the background expansions and the
asymptotic form of the potentials into the tachyon eom and obtain the asymp-
totic form. As the magnetic field does not alter the leading form we will state
the B = 0 result[29] which, for our potentials with the form

α(λ) ≈ λ0; κ(λ) ≈ λ(4/3); Vf0(λ) ≈ λ2 (7.20)

becomes
τ ≈ eCIr/R ≈ eCI

√
−A (7.21)

whith the coefficient being a combination of known constants and the powers of
lambda in the potentials

CI =
8135/61154/311

81294421/6
. (7.22)

The tachyon diverges for r →∞, A→ −∞ as it should.
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