UNIVERSITEIT UTRECHT
DEPARTMENT OF INFORMATION AND COMPUTING SCIENCES

MASTER THESIS

Generic Scheduling of Sports
Tournaments

Supervisor:

Author:
Paul STAATS
ICA-3404447

Dr. J.A. HOOGEVEEN
Second supervisor:

Dr.ir. J.M. VAN DEN AKKER

October 2014

http://www.uu.nl

Abstract

Tournament scheduling is well-researched. Recent literature focuses on specific tourna-
ments, for instance the Brazilian football league or the Finnish major ice hockey league.
All of these major competitions have specific settings, ranging from travel distances to
television broadcasts. These settings increase the difficulty of the problem, but they also
only focus on the specific tournament. We will do exactly the opposite, focusing on the
basic problem and extending it with many smaller extensions, which will lead to a more
general problem of trying to schedule a common tournament. The settings mostly focus
on normal home-users, instead of the highest classes of sports, who will be able to create

a tournament for for instance the local sports club or a tournament between streets.

To schedule these tournaments, we created a web-based tool. Using the tool it is possible
to set the value of a lot of settings; the number of teams, the number of rounds, different
types of tournaments etcetera. Five different types of tournaments are acknowledged:
the competition with (weekly basketball league) and without (weekly chess league) time
constraints, the common tournament (football tournament on one location), the single
round tournament (checkers) and the multiple disciplinary tournament (”straattoer-
nooi”). It can solve the given problems using two different techniques; ILP and CP.
We will show how we implemented several of the settings and how they influence the

problem. We will of course also show some of the results of the tool.

Contents

Abstract

Contents

1 Introduction

1.1
1.2
1.3
14

Previous work
Goal . .
Complexity e
Outline

2 Problem definition

2.1
2.2
2.3
24
2.5
2.6

Problem formulation oL
Settings
Number of games
Different types of tournaments
Soft constraints
Finishing with a knock-out 0.

3 Integer Linear Programming

3.1

3.2

3.3

3.4

ILP formulation L Lo
3.1.1 Findingaround
3.1.2 Finding an opponento
Finding the round for amatch
3.2.1 Fixed number of games
3.22 Breaks
3.2.3 Minimum or maximum number of games
3.2.4 Unavailabilities oo
3.2.5 Soft constraints
Finding an opponent for a given round
3.3.1 Additional rules L
3.3.2 ILP-formulation,
3.3.3 Removing half of the variables
3.34 Played games e
3.3.5 Home/away patterns
336 Byes
Finishing loose endso Lo
3.4.1 Time-constrained tournament
3.4.2 Multiple disciplinary tournament

4 Constraint programming

4.1

Introductiono

ii

10
10
11
12
16
20
21

23
23
23
24
25
25
28
28
29
29
31
31
32
32
33
33
34
35
35
35

37

iii

4.1.1 Propagators 38

4.1.2 Solvinga CSP using CP 39

4.1.3 Soft constraints 40

4.1.4 Backtrackrules 41

4.2 Two typesof problems 42
4.3 Finding the round for amatch 42
4.3.1 Propagators Lo 43

4.3.2 Backtrackrules 45

4.3.3 Removing symmetry L0000 oo 46

4.3.4 Different kinds of tournaments 48

4.4 Finding an opponent for a givenround 49
4.4.1 Selecting theteams Lo 49

4.4.2 Propagators 50

4.4.3 Backtrackrules 51

4.4.4 Symmetry 52

4.4.5 Home-away patterns oL 53

4.5 Looseends 53

5 Polynomial solutions 54
5.1 Bracelet method 54
5.2 Minimum cost maximum matchingo 55

6 Max flow 57
6.1 Basic max flow implementation oo 57
6.2 An alternative to the max flow 58
6.3 Analysis 59
6.4 Comparing the running times oL 60
6.5 Leaving out the max flow 60

7 Implementation 62
7.1 Basicbuild e 62
7.2 Settings e 63
7.3 ILP implementation 63
7.4 CPimplementation L 65

8 Experiments 67
8.1 No-time competitions, time-competitions and common tournaments . . . 67
8.2 Single round tournaments Lo 68
8.3 Multi-disciplinary tournaments 68
8.4 Soft constraints e e 69
8.5 Breaks and unavailabilities. o oL 71

9 Conclusion 72
10 Future work 73

Bibliography 75

Chapter 1

Introduction

Sports are an important part of peoples lives. They tend to spend a part of their leisure
time competing in sports. Some of these sports are done without any opponent (fitness,
jogging, swimming), though even some of those can be played in a tournament. Some
people actually say that competitive sports can only exist when it has some kind of
competition [1]. Therefore, to make sports possible, tournaments and competitions are
also really important. People want to compare how good they are in a sport. This started
already with the first kind of tournaments in Greece [2] (and probably before that in
Sumer [3]). These tournaments can be played on a single day (for instance checkers) or
can last multiple weeks (for instance football). All these types of tournaments lead to
more people competing in sports, because most people enjoy some form of competition,

because trying to be the best motivates people.

The problem is always that it is hard to create such a tournament. A lot of people are
involved, all having their own specific requests and they all want their request to be
honored. So creating a tournament for a large number of teams and a lot of requests

becomes a dire task, which will result in quite a suboptimal solution when done by hand.

There are a lot of constraints concerning a tournament, for instance the following: ”We
are limited in the number of rounds our tournament consists of and in the number of
teams that can play at the same time. Which rounds can a team play in? Do we need

breaks between games? Do we need a minimum number of games per round?”

These constraints can be divided in two different types: hard and soft constraints. Hard
constraints are constraints we are not allowed to break; if we break any of them we will
always have a schedule which will not be acceptable. Soft constraints are constraints we

are allowed to break, but the fewer constraints we break, the better a schedule is.

Chapter 1. Introduction 2

In this thesis we will automatically create a schedule for a sports tournament, where we
will use the computational power of the computer to create a schedule which will fit the
constraints given. The constraints can be set by a user using the program created. The
resulting program is web-based, which makes it accessible for everyone without having
to install anything. There is no computing science knowledge expected, the program
works on the input by the user alone and will return a schedule which will fit the input

by the user as good as possible.

To accommodate all the possibilities different sports and their peculiarities, multiple
types of tournaments are recognized. Depending on the type of tournament, the user
can set different constraints. Not all of the constraints are useful in every type of
tournament. The resulting schedule can then be used by the user to accommodate their

own sports tournament!

1.1 Previous work

Scheduling itself is a really important research subject in the field of computer science

and within scheduling, sports scheduling is an important subject.

We start with a short introduction about the basic problem we are trying to solve. We

will use the explanation from Drexl and Knust [4]:

The league consists of 2n teams, each team has to play against each other
team exactly | > 1 times. In order to schedule these (22”)1 = n(2n — 1)l
games, (2n — 1)l rounds are available, where each team has to play one game
in each round. Thus, for each round ¢t =1, ..., (2n — 1)l one has to determine
which teams 7,5 € {1,...,2n} play against each other in this round and for
each of these pairings ¢ — j, whether it is played in the home stadium of team

i (home game for i) or in the home stadium of team j (away game for 7).

It has to be noted though that the (2n— 1)l rounds limitation is not always the case. We
can have some additional room in our tournament to schedule the games in. The same
paper points that out and calls the tournaments time-constrained (with the limitation)
or time-relaxed (without the limitation). We also use both in this thesis, since it is quite

common to have a time-relaxed tournament.

The number of games teams play can differ, most competitions use { = 1 (Single round
robin, everyone plays each other once) or [= 2 (Double round robin, everyone plays
each other twice), but there are also competitions which have a triple round robin [5] or

even more [6].

Chapter 1. Introduction 3

The number of teams can of course be even and odd and in the case when we have
an odd number of teams, we normally solve that by introducing a bye team (a dummy
team, the team playing this team will normally automatically win), which will make
sure we always have got an even number of teams. This means we do not have to take
care about making specific changes for the odd case, since the extra team will just solve

it for us automatically.

An extension of the tournament problem is the traveling tournament problem. We will
not implement this in our thesis, but quite some research has been done concerning
that problem as well. The traveling tournament problem is a combination between
the tournament problem and the traveling salesman problem. Some competitions have
got large distances between stadiums. A team which has to move little, will have an
advantage to teams who have to move large distances between games. Therefore the

distance is taken into account when solving the tournament problem.

We will shortly explain which methods have been used in the past to solve the tour-
nament scheduling problem and how they work. We start with graph-coloring, which
was one of the first methods to solve the tournament scheduling problem. After graph-
coloring a lot of solution approaches have been tried. This includes decomposition of the
problem, Integer Linear Programming, tabu search, constraint programming, heuristic
searches and others. I will give a short introduction in the aforementioned approaches

to solve the problem.

1.1.1 Graph-coloring

Graph coloring is a technique where we create a graph and color the edges with a set
of colors. Every node can only be attached to each color once and the colors represent
the solution. In our case, the nodes are the teams, the edges are the matches and every
color represents a round. If we are able to color all the edges using the colors (rounds)

provided, we are able to find a solution to our scheduling problem.

Graph coloring was one of the first techniques to solve the problem of tournament
scheduling, for instance used by de Werra [7, 8]. It is an obvious choice, since we want
to know which game is played in which round. When we are able to color our graph
(which is made up from all the teams, where lines are games between them) with the

number of colors (rounds) provided, we have found a viable solution.

Chapter 1. Introduction 4

1.1.2 Decomposition

Another basic algorithmic approach to problems like the tournament scheduling problem
is decomposition. We take the problem, try to divide it into smaller subproblems and
solve these. Using the solutions to the smaller subproblems, we merge these sub solutions

to find the solution to the total problem.

For a tournament scheduling problem, this could be done by dividing the problem in
two parts. The next example is from Trick [9]. The first part is to schedule the teams,
ignoring any home-away requirements. The schedule just consists of teams playing each
other in a given round, but we do not include who plays at home or away. Since that
is also important to include in any tournament (we do not want a team to play every
game at home), the second step will only consist of finding out who plays at home and

who plays away.

Nemhauser and Trick [10] use a tree-step decomposition approach. They start with
generating patterns, which are orders in which teams play their games. For instance
HAHBAAH stands for home, away, home, bye, away, away and home. The second step
consists of assigning matches to the pattern sets, while still ignoring the teams. Then
they will assign teams to the patterns, while using their specific preferences for having

a certain round at home for instance.

Decomposition itself is a helpful technique, but we will still have to solve the sub parts
of the problem. That is why decomposition is always used with another technique, so

we will see it quite often with the techniques we will address later.

1.1.3 Integer Linear Programming

Another technique which is widely used for (sport) scheduling problems is Integer Linear
Programming (ILP). ILP uses variables, which are defined when describing the problem.
We generally want to decide for these variables whether they are true (1) or false (0).

For instance whether team A plays team B in round C' (A-B_C ={0,1}).

To solve problems, nearly always an ILP-solver is used, which is optimized to solve the
variables and constraints posed on them. When we select A_B_C' = 1, we know that we
will never be able to play any other game with A or B in round C'. So these are blocked,
because of the choice made. We will have to formulate the constraints on the problem
(a team can only play once in a round). We give these constraints to a solver and then

we will, in return, get which of the variables are true.

Chapter 1. Introduction 5

Briskhorn and Drexl [11] start with a basic approach which tackles the single round
robin (every team plays each other exactly once) version of the tournament scheduling
problem and then they pose more constraints on the problem. This ranges from team
constraints to third party constraints and fairness constraints. They use a set of real-life

examples to show how to formulate constraints you can pose on an ILP-formulation.

Already in the early 90’s Chaudhuri, Walker and Mitchell [12] did work on how to
formulate constraints for ILP-problems. They give a very in-depth and theoretical base
about formulation ILP-constraints for scheduling. Della Croce and Oliveri [13] used ILP
to find a schedule for the Italian Football League. It is a double round robin tournament
created using a combination of the decomposition approach and ILP. Duran et al [14]
created a nice paper about the Chilean competition, where a lot of constraints will be
implemented for all of the parties involved in the Chilean competition. They use ILP to
solve the problem, adding formulations for all of the constraints which will have to be

taken care of.

1.1.4 Constraint programming

Constraint programming (CP) is based on constraints, stating how variables influence
each other. All of the variables in our problem have finite domains and we want to select
a value from their finite domain for every of our variables, in such a way that we do not
violate any constraints. We use propagators, which are functions, to make the domains
smaller and to make the constraints stronger. A propagator will always make us get

closer to a solution, since we will never make the domains bigger again.

We will not directly find a solution all the time, so we will have to branch in our search
in order to find a solution. We will use backtracking to make sure we search all the
branches if necessary. It is a technique which is used a lot on scheduling problems and

it is also used on tournament scheduling problems.

Henz [15] uses CP to solve part of the problem, since he first uses decomposition to
create smaller subproblems. It uses the same decomposition we saw with Nemhauser

and Trick [10] in the decomposition section in combination with CP.

Regin [16] uses CP on another problem, closely attached to the tournament scheduling
problem. He wants to minimize the breaks (rounds in which a team does not play) in
his resulting schedule and uses CP to find schedules with a minimum number of breaks.
Larson [17] uses CP to find a schedule to the Swedish top handball league, the eliteserien.

The eliteserien consist of single round robins (everyone plays each other once) and double

Chapter 1. Introduction 6

round robins (everyone plays each other twice: once at home, once away). Then there

are additional constraints concerning the teams and the tournament in total.

1.1.5 Local search

Heuristic searches is the last type we will discuss. It is used widely in all sorts of problems
and it is also used in tournament scheduling problems. There are a lot of techniques
and we will only discuss one of them. Some techniques work better on certain types
of problems, so it is also important to review the technique used. We will discuss tabu

search.

The idea behind these local-search-based heuristics is that they will generally be able to
find an acceptable solution in a lower amount of time. They normally start by trying
to find a viable solution and then try to increase the quality of this solution by making

smart decisions. More information can be found in many books, including [18] and [19].

1.1.5.1 Tabu search

The tabu search technique ([20, 21]) has been used as one of the primary techniques to
solve the scheduling of sports tournaments. Hamiez and Hao [22] formulate the basic
sports league scheduling problem as a CSP (constraint satisfaction problem). They start
with an accepted solution and then try to find the best solution possible using tabu
search.They then use a neighborhood based algorithm, evaluating how good solutions

found are and try to find the best solution to continue the search from.

Gaspero and Schaerf [23] use tabu search to solve the traveling tournament problem.
They use extensive calculations to make sure good neighbors are found compared to the

original problem.

Ribeiro and Urrutia [24] used tabu search to compute a solution to the mirrored traveling
tournament problem: this is the traveling tournament problem where the schedule will
be mirrored when we scheduled half of the games. They make a solution, which is done
using decomposition and then try to find a better solution using tabu search. They have
got a couple of different ways to compute neighborhoods and use all of them to find the

best neighbor.

1.1.6 Real-life examples

A lot of real-life examples can be found about the tournament scheduling problem.

Because nearly every tournament has its own specific characteristics, there have been

Chapter 1. Introduction 7

multiple papers about soccer [13], cricket [25], basketball [26], baseball [27], tennis [28],
ice hockey [29] etcetera. Many of these papers have got characteristics concerning that
sport, the amount of time there is to show the sport on TV or specific tournament

constraints.

Most of the research done so far about tournament scheduling, especially the last decade,
has been upon the scheduling of tournaments for the highest competitions. Since there
is a lot of money involved in those parts of sports, there are a lot of things which will
have to be taken into account. Some teams may have a preference to play on a certain
day (for instance Friday) or we may have constraints concerning which teams play at
home since a sponsor does not want two teams to play at home at the same day. There
are a lot of examples, like the baseball league [27], the national soccer league in Austria

and Germany [30] or the national soccer league in Italy [13] and many more.

This thesis will be focused on the practical aspects of scheduling, focusing more on
a typical tournament for the lower divisions, because of this some of the information
written before does not apply. For instance we do not have to worry about traveling
times [31] or take into account whether we do not break any TV games [26] or sponsor
agreements [32]. We will, however, apply some of the techniques mentioned before.

There are just different things considering problem definitions and constraints.

1.2 Goal

This thesis is about scheduling a tournament aimed at regular users, considering con-
straints which are found in scheduling a basic tournament. We consider different types
of tournaments, since we want to be as generic as possible, but we will leave out a lot
of the more specific constraints. Those constraints could for instance be the constraints
about considering the traveling distance or the order in which teams play against each
other. They will not be taken into account, since they are much too specific for the
generic problem concerning sports tournament. The result is a program which can be

used by anyone, through the web, to create a tournament.

The last part is actually where this thesis differs from the previous work. The previous
work all attacked a specified problem and tried to solve that. This thesis focuses more
on the general cases and we depend on the user to give us the information about a
tournament. The settings are maximum number of games per round, minimum number
of games per round, unavailabilities etcetera. This can probably be used to solve some
of the problems from the previous work, but also to problems which are quite different

from those solved in the previous work.

Chapter 1. Introduction 3

1.3 Complexity

Our problem of course consists of a lot of settings and they all influence the complexity
of the problem. There are actually quite some subparts of the problem which are not
NP-complete, but there are also a lot of cases where the problem becomes NP-complete.
It is easy to see that the problem is in NP, because we are able to check in polynomial
time that a given solution does not violate any of our constraints. We will need all of
the teams to play the desired number of games and not violate any of the settings on

our tournament.

Because there are a lot of subproblems, some NP-complete and some are not, we will
not look into all of the NP-complete problems and prove they are. We will show some
results from the literature concerning the NP-completeness of the problem. Schaerf [33]
shows that the problem becomes NP-complete when we have some settings concerning
how the matches against the top teams (”top matches”) should be divided over the
total schedule. Itai et al [34] proved that "restricted” bipartite graph matching is NP-
complete. When we have restrictions on our arcs in our bipartite matching, the problem

becomes NP-complete.

De Werra [35] has written about scheduling classes, teachers and periods. We want to
create a schedule where these are assigned to each other in such a way we decide which
teacher gives which class in which period. When we have unavailabilities (a certain
teacher or class is unavailable in a certain period) the problem becomes NP-complete.

He points to Even et al [36] for the proof of the NP-completeness.

We can also have breaks between our games, which means teams can’t play multiple
rounds in a row. When we have breaks, the problem also becomes NP-complete, because
the rounds influence each other. Even deciding for a certain team whether we will be
able to schedule the remaining games can still be scheduled is already NP-complete (dr.

H.L. Bodlaender, personal communication).

1.4 Outline

Chapter 2 provides a problem description, which of the elements we will implement in the
thesis and how we formalize them to make sure that they are indeed implementable. This
starts with the general problem description and leads through soft-constraints, tourna-
ment types and a short summary of how to work with knock-out parts of the tournament.
Chapter 3 is about the ILP-approach to this problem, how we implemented the subprob-
lems in an ILP setting and how everything works with the PHP-based website. Chapter

Chapter 1. Introduction 9

4 is about the implementation using CP, where we will describe the specific adaptations
to solve this problem using CP. The implementation is fully in PHP and does not use
any separate tools. Chapter 5 is about solving parts of the problem using polynomial
algorithms. Chapter 6 is about a max flow implementation of checking whether we can
still find a solution and the way it works, including an alternative way to implement
checking whether we can find a solution. Chapter 7 contains some information about
the implementation, Chapter 8 has some experiments, Chapter 9 is the conclusion and

Chapter 10 yields some possible future work.

Chapter 2

Problem definition

2.1 Problem formulation

Our goal in the end is to find a schedule. In our problem we have a limited set of teams
(Th...T}) and a limited set of rounds (R;...R,). To formalize what a schedule is, we will

first have to formalize what a match is and what a game is.

2.1.1 Match

A Match M is played by 2 teams. These teams will play against each other, where the
team first in the line will always be the team that plays at home (if applicable). No

round has been set yet, just the teams who will play a certain match.

Match M = (T'1,72)

2.1.2 Game

A game is a match combined with a round. In some tournaments, we will also need a
time in a certain round, but we capture this in the round (for instance round 1.1). So
a game still just consists of a match and a round, so we do not have to depend on the

fact whether we have a time or not.

Game G = (M, R)

10

Chapter 2. Problem definition 11

2.1.3 Schedule

A schedule is viable, when we don’t violate the hard constraints imposed on the problem.
These hard constraints can be for instance that we do not want a team to play twice
in a certain round. The resulting schedule consists of a combination of a match and a

round (eg; a game). So we can define (iff no violations on hard constraints):
Schedule S = [G]

The best schedule is the one where we violate the least number of soft constraints. These
soft constraints are constraints posed on our problem, but we are allowed to break them.
If we do so, we will decrease the quality of our solution and therefore we will have different
scores for different solutions. Nearly every problem has multiple solutions, so we would
like to find the best solution. The soft constraints therefore do not influence whether

our found solution is viable. They can only be used to score the found solution thus far.

2.2 Settings

There are several settings that can be set on the tournaments. We will explain in short

what every setting means and how it influences the scheduled tournament.

2.2.1 Limited number of games per round

We can have a maximum or minimum number of games per round. They are both
integers, ranging from 1 to oo. These limits reflect for instance the maximum number
of fields available to play the games on (soccer) or the fact that we want to have at least

some games per round to keep it interesting for people who come to watch the games.

2.2.2 Teams

We have at least a set of teams in our tournament. There might even be multiple sets
of teams, where we will create the tournament in such a way that teams will only play

their own sub-tournament.

2.2.3 Breaks

We can have breaks in our tournament, which means that a team can not play without a

B rounds break. This means a team can play no more than one game in B+1 subsequent

Chapter 2. Problem definition 12

rounds. The setting ’breaks’ is an integer; how long the minimum break is. This setting

is useful for tournaments where rounds follow each other up in a rapid succession.

This makes the tournament harder to schedule, since we will need to take into account
what happens in other rounds, besides the fact which teams are already scheduled against
which teams. This is often combined with a minimum constraint on the number of games
in a round, because otherwise it could happen that a schedule only has games in rounds
1,3,5..... That would mean there would always be an empty round and generally that is
not a solution which is liked. Teams tend to like to watch games played by other teams,
so the combination of a break with a minimum games per round constrain is used to

solve the problem of a broken schedule.

2.3 Number of games

This section is about deciding how many games we should schedule in our tournament.
Depending on the type of tournament we are scheduling, we will only have a certain
subset of the following types. This all depends on the specific tournament, the number
of teams available and the number of rounds we have to schedule. There are many types
out there, but we will only give a subset. The remaining types are not interesting to our

thesis and are therefore left out.

2.3.1 Single Round Robin (SRR)

Single round robin is the tournament where you play everyone once. This is normally
done when you want to play a normal competition with only a limited number of weeks.
You can’t play everyone twice, but you do want people to play against everyone an equal

number of times. This is then of course only fair if everyone plays each team once.

We will have to take into account that there might be home/away matches, because they
probably will influence how well teams do. If a certain team plays nearly all of its games
at home, it has a huge advantage. Normally it is said that the maximum difference is

one. Either one more at home or one more away.

The number of games we play in SRR with n teams is n — 1 for every team. The total
number of games is therefore @, since every game will have two opponents playing
against each other. There is no limit on the maximum number of rounds generally. The
minimum number of rounds is n — 1, though it can be larger when we have a maximum
number of games per round. If we have n — 1 rounds, we will have a Dense Single Round

Robin.

Chapter 2. Problem definition 13

2.3.2 Dense Single Round Robin (DSRR)

If the SRR is dense, that means that we actually just play n — 1 rounds to play the n —1
matches per team. So the schedule is totally filled, every team plays every round. The
only exception is if there is an odd number of teams, where we just add a ‘bye’ team.
If we then fill all the games in n rounds we still call the tournament schedule dense,

because there is no way we could have made it more dense.

The denser a schedule is, the harder it is to schedule. If a tournament is dense, we know
that there is no room for any breaks or unavailabilities (unless there is a bye team).

This makes it harder to schedule compared to the SRR.

2.3.3 Bipartite Single Round Robin (BSRR)

This tournament form is related to SRR. The difference is that we split the teams in two
groups and every group only plays against the other group. So lets say we have group
X and Y, then every team in X plays against every team in Y. But teams within X
can not play against any team in X and neither do teams in Y play against any team
inY.

The number of games we play in BSRR isn’t known in advance, since the size of X and
Y will not have to be equal. But if we assume they are, the number of games each team
plays is n/2. That also leads to the maximum number of games we can play with this
type of tournament, namely (n/2)2. When we shift the teams between the groups, we
also end up with the smallest number, being n — 1, when we only have one team in group

X and the rest of the teams in group Y.

2.3.4 Double Round Robin (DRR)

When we schedule a SRR, you could argue we only play half a tournament. A DRR
is a full tournament, a tournament where every team plays each other team twice,
once at home and once away. We see this type of tournament in every major sporting
competition and it is also used in a lot of tournaments where you have some kind of
sub competition. Because this will lead to 2(n — 1) games per team, this will lead to
additional games to schedule. For 10 teams, this already leads to 18 games per team,
180 games in total. The total number of games for this kind of tournament is always
double the number of a SRR, so it is n(n — 1). Therefore the sets of teams which play

in such kind of competition is generally small or the number of rounds is large.

Chapter 2. Problem definition 14

We will not have to take care about home and/or away games, since each team plays
each kind once against each opponent. So every teams plays an equal number of home
and away games and (different to SRR) we will not have to take it into account when
scheduling a tournament. This tournament therefore also always leads to one of the
fairest schedules, since every team plays every opponent at home and away. Teams do
not have advantages concerning weaker or stronger teams at home or away. But we
can have an advantage by the order teams play against their opponents, the home-away

patterns.

2.3.5 Dense Double Round Robin (DDRR)

The same as what the dense property says for the single round robin, the dense property
holds if we play the 2(n — 1) matches in 2(n — 1) rounds. This is actually the case with
the Dutch Eredivisie, but it is also used in a lot more large sports competitions. Since
this kind of tournament always leads to a full schedule, it is used when we want to make
sure that every team plays every week. It leads to the fairest schedule, since there are
also no advantages concerning breaks before important matches etcetera, which could

give an advantage when a DRR is not dense.

2.3.6 Mirrored double Round Robin

The idea behind the mirrored schedule is that there are combinations of 2 days, where
the teams playing each other are the same. The only difference is the fact that the
home teams play away and vice versa. They are generally mirrored in the middle round,
so round R/2. That way you play the same teams in the opposite order (or the same
order). It can be easier to model it this way, since we just have to find half the schedule
(which is a SRR) and then switch around all the games. This is in fact always also
possible with the other DRR tournaments, but when we do have a mirrored schedule,
we end up with a mirrored DRR. It is used in papers, because of the fact that it can

make the computation easier and sometimes is a condition for a certain tournament.

2.3.7 Triple round robin (TRR)

This type is quite clear without explanation. A team will play each opponent three
times, once at home and twice away or twice at home and once away. We can continue
this way and even quadruple round robin tournaments exists [6], but the idea is always

the same.

Chapter 2. Problem definition 15

2.3.8 Fixed number of matches per team

This is a version I have not been able to find a name for. It is the general case where
we do not want the number of teams to influence the number of games a team will play.
We set it in advance, every team will play x games. Depending on this setting, we know
whether it is smaller than a single round robin, between a single and a double robin or
bigger than a double round robin. We could of course continue that way, since a triple

round robin exists as well.

For instance when we have n teams and we want to schedule 1.4n games, we will have to
schedule a game against every opponent once, but also have to schedule some additional
games to reach that number. If we only have to schedule 0.7n games, we can skip 0.3n
games, so the team will only meet a subset of its opponents. None of the teams will

every play more than the fixed number of matches per team.

2.3.9 Tournament types

In this thesis we give the user the possibility to fill in which type of tournament he wants
to schedule. By choosing one of the options, we know how many games to schedule to
make sure the tournament is acceptable. For the user this means he can select either
’Single Round Robin’, 'Double Round Robin’ or ’Amount x’.

When the latter is selected, he can then enter how many games he wants to schedule.
This way we give the user full power to create the tournament expected. Both the SRR

and DRR can be created using the right number of games

We did, however, implement SRR and DRR in the end, since for most users it is much
more logical to select either a SRR or a DDR. There are normally sets of teams who all
have to play each other once or twice and not a fixed number of games. So those are

selectable and the code then makes sure the right number of games is scheduled.

Dependent on the number of games we have to create the schedule for, we can get a
dense schedule. This is only the case if the user selects the right number of rounds and
games per round. It is not in the thesis literally, but it is possible to create such a dense

tournament by using the right input.

The mirrored double round robin and the bipartite single round robin have not been
implemented. It was decided to take a subset of the tournament and since these are
quite specific tournament types, these were not implemented. It would not pose any
difference to the other types of tournaments though, we would just have to generate

a little different schedule. There are some situations where you want these types of

Chapter 2. Problem definition 16

tournaments on a professional level, but because this tool is for amateur tournaments

we did not include these tournaments.

2.4 Different types of tournaments

In the previous section, we ended up with a rough problem description, but the problem

is larger because we acknowledged multiple types of tournaments.

For this thesis project, we worked with 4 different types of tournaments. Since the
differences within the tournaments also change the constraints we can set on teams, the
thesis almost splits in 4 different parts, with each tournament being one of the parts.
There will be some overlap of course, since they are all sports tournaments. We will
discuss the differences and equalities and explain how the different types change the way

we solve the problems.

In the literature we found that most information concerns the general tournament: which
team do we schedule in which round. Here we do something different, because that ap-
plies only to the competitions and common tournaments. The single-round tournaments
and multiple disciplinary tournaments will nearly always not make a full round, meaning
everyone will play each other less than once. This means the bulk of the work is not on
finding out who plays who in which round, but also which opponents we want to play.
The single-round is even more separate from the rest, since it will focus on scheduling

the rounds separately depending on scores.

We will follow up with a short introduction about the different types of tournaments
and their specialties and then we will explain in Chapter 3 and Chapter 4 how we solve

these specialties.

2.4.1 Competition

This is just the general case of a competition, where we have the most constraints.
These constraints reach from ‘team x can not play in round ¥’ to ‘team z can not play
before 12:00’ and everything like those. The competition consists of multiple weeks and
is the only one which does so. The dates are specific and set in advance, so they do
not influence our problem, we just acknowledge rounds. This type of tournament has

unavailabilities, we can use that to set when a team can not play.

Our end result is a schedule where we play a specific number of games against the other
teams, for instance a single round robin. We want to know who plays who in which

round and who plays at home.

Chapter 2. Problem definition 17

In fact we acknowledge two types of tournaments which are subparts of this type. We
have one type which has time constraints, because matches are played during different
times within a round, and one type which has no time constraints. The first one is used
generally for teams playing football etcetera, where we have a limitation on the number

of games at the same time and where teams play their games during a full day.

The second one is for games like checkers when players play a competition. They meet
at a club house at a set night and play a team-game (teams with for instance 4 players,
most points win). There are fixed times per week at which the matches are played and
they can not play multiple times per week. Their games take place on different days

and times, but one week represents a round.

2.4.1.1 The competition with time-constraints

In this case we have to schedule a normal competition, where we have constraints con-
cerning time and place. For instance certain teams can not play before (or after) a
certain time and no more than x teams can play at the same time. This means we
should not only generate the matches in a certain round, but also at which time they

will be played.

The rounds will be extended to hold this time as part of their round. An unavailability
means that we will not be able to play at all in a certain round, while a 'team ¥y can not

play before 12:00’ means team y can not play in a part of that round.

This type of tournament is for instance used for soccer and baseball.

2.4.1.2 The competition without time-constraints

This type of competition is one where all the games will be played at the same time. So
there are no time-constraints concerning the teams or the games. A round is generally
just a certain week (this is our assumed standard period), where a team can only play
once a week. Depending on whether it is a home or away-game, they might play on
different days, but since there are 'week-rounds’, that does not influence the resulting

schedule.

This tournament has no time-constraints, but there do exist limitations on the number of
teams that can play in a certain round. We may not want all the teams to play in every
round, since we can only accommodate a certain number of games at the same time.

The same with a minimum number of games, since we might need a certain number of

Chapter 2. Problem definition 18

games per week to make sure that we have a nice schedule for people who want to come

watch the games.

This type of tournament is for instance used for checkers and chess.

2.4.2 A common tournament

This type most of the time consists of a single round robin (every team plays every
other team once) with lots of small subcompetitions which only have to play each other.
Because these tournaments most of the time last only one day, it is not common that
they play more than a single round robin. Otherwise you would meet the same teams
twice in a really short time period, so it generally is just a SRR. This type of tournament
with a single round robin could end with a knockout part, but we will discuss that more

extensively later in section 2.6.

It could also be a partial single round robin, when we have a large set of teams who
can all play each other. We then just want to schedule a certain number of games,

independent of the number of teams who join our tournament.

In such a tournament we already know the time each round will be played, how long
the games will take and what the different subgroups are (if that applies). These pre-
conditions make it close to the original scheduling problem which was discussed in the
literature section in chapter 1, where we cited the problem description by Drexl1[4]. When

the settings are right, we end up with that original problem.

This type of tournament is for instance used for soccer and volleyball. It also applies
when a lot of teams come together to play a tournament at one location to compete
against each other on a set date. Everyone is at that location and everyone is available
at every round. Thus no unavailabilities exist, though we could have some settings
concerning the minimum and maximum number of games at the same time, since there
might be a limit on the number of fields available (or referees available) to play all the

games.

2.4.3 Single round tournament

This type is used a lot in chess (or similar kinds of sports) tournaments. You come
together with a lot of players and play a certain number of games. These games normally
all happen on the same day, though there are also tournaments which last a weekend.
The idea is that you always play a person who scored close to your own score. That way

people who play well will play other people who played well and in the end everyone

Chapter 2. Problem definition 19

played against opponents close to the strength of the player. The highest scoring player
after the set number of rounds is the player who wins the tournament. Every player will

always play in each round, so the tournament is always densely scheduled.

Since everybody plays each round, there is a problem when we have an odd number
of teams. We fix this by adding a bye, which means someone walks away winning the
match without playing anyone. The objective function of this type of tournament exists
of minimizing the difference in score. So we want to let the teams with the scores closest

to each other play against each other.

This type of tournament normally exists of a partial single round robin, nobody will
play each other twice. We also have a home-away game advantage, for instance having
white at chess. We will have to take that into account, since having the home game will

lead to an advantage and we do not want someone to get this advantage all the time.

In this type of tournament we will have to use a really different type of scheduling, since
the rounds will have to be scheduled ’live’. We schedule them when we know all the
scores for the previous round(s) and use them to again minimize the difference. This is
the biggest difference with the other tournaments, which will all be scheduled fully in

advance.

This type of tournament is used for chess, checkers and certain types of card games, for
instance bridge. These are mostly games where it is important to play against people
who are equally strong and where a lot of players of near equal strength play. We also
do not know for every team how strong they are, so we can not make sub competitions
easily. Thereby these are all games where there is a lot of difference between players
having a weak or strong day, accordingly that will influence who you play in such a

tournament.

2.4.4 Multiple disciplinary tournament

This is a type of tournament you will generally see in a more recreational setting. This
could for instance be an activity for a group of people. In The Netherlands the ’straat-
feesten’ or ’straattoernooien’ are quite well known (there is actually even a government
fund to organize them). In these ’straatfeesten” we have a group of people living in the
same street who want to compete in multiple sports against each other (or other streets),
but everything is in a recreational setting. The teams will have to compete against each

other, playing each sport exactly once, but never twice against the same opponent.

We have therefore an extra set of sports, S, where we will have to make sure that we play

them all. The sports all take the same time (or there is an additional waiting time for

Chapter 2. Problem definition 20

some games), so all sports have the same amount of time for a certain round. There are
no unavailabilities in this type, since all players are (once again) at the same location.
So we will just have to take into account that we deliver a viable schedule concerning
the sports. The number of sports available is the factor which decides the maximum of

games per round.

There are no time constraints etc, but we will have to assign the sports as an extra.
We could also need breaks, since we probably do not want everyone to play each round.
Especially since it is a recreational tournament, the players probably want a break to
go to the other field and to fill in the scores at a central desk (and to have a lot of fun,

it still is recreational!).

2.5 Soft constraints

We might have soft constraints in our problem. Soft constraints are constraints we want
to fulfill, but if it is not possible to do so, we will violate them. Violating them will mean
we will have to pay an extra penalty, since we did break one of the constraints. If there
is a solution where we do not break this constraint, that solution should be preferred

over the solution found which violates the constraint.

Depending on the tournament, there can be multiple soft constraints. All of these will
have a certain penalty, which in total makes it possible to find a score for a certain
tournament. With this score we can decide which of the tournaments breaks fewer

constraints and accordingly decide which tournament is better.

For instance it is possible to make the number of rounds a soft constraint. We have 10
rounds and the user says that that is actually a soft constraint. We search for a solution
and find that we are not able to place all the games within the 10 round constraint. So
the games will have to go into a separate round, round 11. It is always better to find a
solution where we break the constraint as little as possible, so placing a game in round
12 would lead to a higher penalty compared to placing a game in round 11. This way
we make sure that we do not introduce a gap at the end of the tournament, where we
will play half of the games in round 11 and half in 12, while we could have played all of

the games in round 11.

There are more options a user can make soft, dependent on the type of tournament
selected. We will list them in the following chapters, where we will also explain how we

handle them. You could for instance think about the number of games a team should

play.

Chapter 2. Problem definition 21

2.6 Finishing with a knock-out

After a group part of the tournament, many tournaments will end with a knock-out
part. This is for instance happening at every world cup of football, but also at a lot
of other different tournaments. This means that scheduling a common tournament will
not be enough, because the tournament is not finished yet. We have winners in several

sub competitions, but we do not have the general winner for the total tournament yet.

A knock-out is a type of tournament where the winner continues his way on to the next
round, while the losing team is removed from the competition. It is impossible to set
any information about the knock-out part, whether teams are unavailable etcetera, since
we do not know which team will be involved in the knock-out part just yet. The option
whether or not to end with a knock-out is available for both the common tournament

and the single-round tournament.

For the common tournaments, we will need to know how many teams will have to join
the knock-out. This could be just a certain number of spots, but it is also quite normal

to have the best ’second places’ in all of the sub tournaments to fill up the knock-out.

For the single-round tournament, there are no sub tournaments, thus you can only set
how many players/teams should join the knockout. That number of highest ranked

players will then join the knockout part.

Special about the knockout part is the fact that we will always need 2% players. Otherwise
we can not play the knockout part. For the single round tournament, this means you can
select whether you want to add 2, 4, 8 or 16 teams to the knockout part. The knock-out
schemes are predefined, thus they give you no further options. Team 1 will play team
x, team 2 will play team = — 1 etc. In Figure 2.1 you can see an example of a knock-out
tournament when we have 8 teams, ranked on their score so far (1 the highest, 8 the

lowest).

For the common tournaments, we will also need 2% players. This is of course a harder
constraint to fulfill there, since we have to take out x players from each sub tournament
etcetera. If we have (for instance) 5 sub tournaments, we will never be able to play
a knockout part (since neither 5, nor 10, nor 15 is a valid entrance to a knock-out
tournament). To make sure that that is possible, it is possible to fill up with the knock-

out with the best of the teams not selected yet.

For instance, assume we want to have an 8-team knockout part with 5 sub tournaments.
The teams with the highest score from every sub tournament will be added. We will
then still need 3 more teams, which will be filled up by the three best scoring teams

who came in second in their specific sub tournament. We will then take all the scores

Chapter 2. Problem definition 22

FIGURE 2.1: An 8-team knock-out tournament

by every team and let the best play the worst etcetera. When we have a schedule where
we do meet the requirements (for instance 4 sub tournaments) we will just have fixed
schedules, independent of the scores. The winner from sub tournament 1 will play the

runner up from sub tournament 2 and vice versa.

As said, it is impossible to add team dependant constraints to the knockout part. This
is because the order and which teams they play are important in the knockout. So the
games will have to be played in that fashion and the user should set the time and date

manually.

The user can also choose whether he wants to add a third place playoff. If he chooses
to have such a playoff, he can choose from which round on he wants the contestants to
join the playoff. Most of the times this is from the semi-final (the two losers will play
the 'bronze game’), but sometimes this can be played from earlier on. Judo is a nice

example which has tournaments with a third place play-off.

Chapter 3

Integer Linear Programming

This chapter consists of an Integer Linear Programming (ILP) approach to solve this
problem. For solving this problem, we use CPLEX [37], though any ILP solver will be
able to solve the problem. The given formulations are all formal, though we will also
supply some small examples for clarification. We will go through all the settings and

how we will solve the sport scheduling problem using ILP.

3.1 ILP formulation

We will split the ILP formulation in two parts. This is done, because these two parts
require a different type of formulation and therefore we need to acknowledge both. In
the first type we have to find out in which round a match will be played. In the second

type we will have to find out which opponent a team gets in a certain round.

We will continue with a small introduction of both and then show the ILP-formulations
for both types of tournaments and how the additional settings influence the formulation.
We then need to tie some loose ends to finish up the tournaments (address problems
concerning the multi disciplinary tournament and the time-constraint competition) and

then we end up with a viable schedule.

3.1.1 Finding a round

The first formulation is used in the common tournament, the competitions and the multi
disciplinary tournament. We have got a fixed set of matches, which is the total set of
matches teams will have to play. We want to assign a round to every match. The result

is then a schedule where we assigned a round to every game in the set.

23

Chapter 3. ILP 24

We want to have a full schedule before the tournament starts and only a knock-out part

(optional, Chapter 2.6) is not filled in entirely in advance.

3.1.2 Finding an opponent

The second type of tournament is for the single round tournament. The round is given,
since we will schedule every round separately and after the previous round, so we just
have to decide which teams play against each other in the given round. We do not want
to find a full schedule here, which will also most of the time be impossible, because
decisions we have made in the previous rounds might block possibilities to find a full
schedule. We schedule the rounds one after another, where we will have to await the

ending of the previous round before we can schedule the next round.

This type of problem is seen with chess, checkers etc. We have a large set of players and

we want them to play against players with equal strength.

Chapter 3. ILP 25

3.2 Finding the round for a match

This is the basic formulation for this type of ILP-problem. There are a couple of settings
which can be set by the users, so these settings will be explained in separate sections
below. These settings are all also formulated as a constraint to the ILP-problem we
have. It depends on the user which of the settings are used, because the user selects
them, though some of them will not be available for some types of tournaments (for
instance the breaks in competitions).

>, (Grire,r+ Groriy) <=1 VI'1eT,VreR
T2ET\T1

We never want a team to play more than once a round. Therefore we sum all of the
variables for a certain team and a certain round and make sure that the sum of all the
variables together is lower or equal to one. If it would exceed the one, we know that the

schedule will fail, since no team can play two games at the same time.

G112, €1{0,1} VI1e T NT2eT,T1+#T2,NVr e R

We of course also want the variables to be binary, since they are the decision variables

whether or not a game is played in a certain round.

Depending on the type of tournament and the setting, we will extend the ILP-formulation.
We will continue with the specific settings and formulate the constraints they pose on
the problem to complete the ILP-formulation. We do not even need an objective yet,
since the schedule we find is already viable and the best there is. Later on in this chapter

we will also explain which of the settings can influence the objective.

3.2.1 Fixed number of games

We will need to know which number of games a user wants the team to play. We do
this by giving him certain options and then formulate separate constraints concerning

the number of games he decided to play.

The maximum number of games possible is the number of games in a double round
robin. Even with the specific number of games, we will not go over the number of games
we can schedule using a DRR. When we would go over this number, we will introduce
problems concerning the formulation as is (since we will have to decide for a certain

match in which two rounds it will be played). This was therefore left out. It can still be

Chapter 3. ILP 26

done by first creating a double round robin tournament and then the remaining games

you want to schedule as user.

We will continue with the different options the user has considering the number of games
in the tournament he wants to schedule and which ILP-formulation makes sure we get
that kind of tournament. Remember these are all extensions to the ILP-formulation

above.

3.2.1.1 Single round robin

To implement a single round robin, we will have to change the constraints a little bit
to make sure that we only play every match once. So what we do is make sure that
for every game, only the home or away game is selected. The result is the following

formulation:

R

> (Griror +Groriy) =1 VI1eTNT2eT,T1+# T2
r=1

There is however the problem of the home and away games. If we only implemented the
above constraint, we could end up with a schedule where one team could play all of the
games at home or away. We do not want that as a viable result, and we have to make
sure that the teams get an equal number of games at home and away. When we have an
odd number of teams, we have an even number of opponents and should end up with an
even number of home and away games. When we have an even number of teams, thus
an odd number of opponents, we can only have a difference of one between the home
and away games. The formulation to make sure that we do not exceed this amount is

the following:

R

>, > Grori, <[(T-1)/2] VI1eT
r=1 T2ET\T1

R

> > Grime, <[(T'—1)/2] VI1eT

r=1 T2eT\T1
3.2.1.2 Double round robin

We will have to play every game once. So we will generate all the matches as variables
and we will just have to schedule all of them. We do not have any form of home/away
games which we will have to take into account, since we always play an equal amount of
them. So the only thing we will have to do is make sure every game is scheduled. The

resulting formulation fulfills that:

R
>, Grire,y =1 VT1eT,VT2eT,T1# T2

r=1

Chapter 3. ILP 27

We do not take the home/away pattern into account in this formulation. This is ad-
dressed in multiple other papers and could be an extension to the way we find a solution

at this moment.

3.2.1.3 Specific number of matches

This setting is the hardest when the number of games is unknown when we are going to
schedule. Recall that the user inputs a number z, which is the number of games we will
have to schedule. Since we do know the number of teams and the number of games we
need to schedule, we will have to do some calculations to make sure that we schedule
the right amount. We feed these numbers to CPLEX and the calculations are done in
PHP.

e Less games than a SRR
We schedule every game at most once, making sure every team has the right

number of games.

e Equal to the number of games in a SRR
We just schedule it like it is a SRR.

e More games than a SRR, but less than a DRR
We schedule every game at least once, at most twice, making sure every team has

the right number of games.

e Equal to the number of games in a DRR
We just schedule it like it is a DRR.

When we end up with the first or third case, this means we will have to make sure
that we limit the search on the given number X. This is done by summing over all the
opponents and rounds and see whether we then end up with enough games to fulfill that
limit:

R
> > (Grirer+Grariy) =X VT1eT
T2ET\T1 =1

We then still have to make sure that we do not exceed the maximum number of games
which are given implicitly by the number of games the user selected to be scheduled:

R

rz::I(GTLTz,r +Gramy) <=1 VI1eT\NT2e€T,T1#1T2
The same check will have to happen for the third case, when we fall between the SRR
and the DRR:

Chapter 3. ILP 28

R
1 <= Z (GT17T27T + GT2,T177‘) <=2 VI1eT NT2eT,T1#T2
r=1

For all of the games we will still have to address whether we have a home/away game
pattern which is fair to the teams. We use the same formulation we used with the SRR,

where the only difference is that we replace the T'— 1 by X:

R

> > Gromy < [X/2] VT1eT
r=1 T2¢T\T1

R

> Y Grimy < 1X/2] YTl1eT

r=1 T2eT\T1

3.2.2 Breaks

In the common tournament it is possible to select whether you want to have a break
between games. This means two games played by one team will be separated by a break,
with a length of B. This is a setting for all the teams, a general setting. To make sure
that the ILP solves this accordingly, we use the next formulation: For every team sum
all the games in B + 1 subsequent rounds (depending on the length of the breaks) and
for every combination we can find of B + 1 subsequent rounds, this can not exceed 1.

Hence, a certain team can only play one game in B + 1 subsequent rounds.

B
> 2 (Grizerier) T Gromi (ribr) <=1 VIl e T,Vre|R]
T2ET\T1 br=0

This constraint replaces the original constraint concerning the fact that we should play

at most once per round, because this already limits it to once per B + 1 rounds.

3.2.3 Minimum or maximum number of games

In the common tournament, the competition and the multi disciplinary tournament
(though it is hidden by the number of sports entered) we can set a minimum and/or a
maximum number of games per round. This is modeled by summing all the games for a
certain round and then check whether it is bigger than the minimum and smaller than
the maximum.

> > Griro, >= minimum Vr € [R]
T1ET T2eT\T1

> > Grir2,y <= mazimum Vr € [R]
T1ET T2ET\T1

Chapter 3. ILP 29

3.2.4 Unavailabilities

An unavailability is a team which can not play in a certain round. It is a setting which is
always team-specific, so we will have to implement a constraint for every unavailability

in U, the set of unavailabilities.

The set of unavailabilities consists of two values; a team and a round. We will have
to make sure that the given team can never be scheduled in the round given by the
unavailability. We do this by making it unavailable for a certain team to play a game

at home and make it unavailable to play a game away:
Grir2,r =0 V(T1,r) e UNT2 € T,T1 # T2

Grar1r =0 Y(T1,7) €c UNT2 €T, T1 # T2

3.2.5 Soft constraints

To implement soft constraints, we add variables to the right side of the objective, to
make the found solution worse. We also need some additional information implemented
in our constraints, since they now can be violated. So we will give new formulations
when the user selected a soft constraint on a certain part of the problem. The user has

the following two types of soft constraints to select

e Number of rounds
e Number of games a team should play (only for ’Amount x’, a SRR or DRR can

never have less games)

3.2.5.1 Number of rounds

This soft constraints gives us the opportunity to use more rounds than the user selected.
We will add two additional rounds and give additional punishment when we violate the
rounds set by the user. In practice this means that we will add two variables for every
match, one for each round. We will also make the set of rounds two rounds larger, since
scheduling in those rounds can now lead to a viable solution. The soft constraints will

not be violated unless necessary.

In this case we will therefore have to give a punishment when we schedule a game in one
of the extra rounds (R1, R2). We add the following as an extra cost to the objective

function:

Chapter 3. ILP 30

> > Hy-Griry r € (R1, R2)
TIET T2ET\T1

The higher the round, the higher the punishment is when we use that round. The two
rounds are set as a standard in this case, just because it seemed like a fair amount, but
this could have been any amount (even an amount given by the user). We already added
the extra variables to our problem, by extending the rounds by two. We end up with a
general scheduling problem, with just two extra rounds, when we schedule anything in

those rounds it will reduce the quality of our solution.

3.2.5.2 Number of games

We can also let the user select a lower number of games for the teams as a soft constraint.
We will only lower them all equally, thus everyone will play one game less than the user
put in. If this is the case, we should punish the problem for selecting less games. We
will have to change the games which can be removed from the schedule, by making sure
that a viable solution can be found when there are less games than scheduled by the

user.

So we change the constraint which limited on the X, to become:

R
> Y (Grigrer+Gromiy) = (X —-1)+Y) VI1eT
T2ET\T1 =1

The Y is now changeable, but when we set Y = 0, we will have to pay a big penalty.
The Y can not become bigger than 1 (otherwise we will have to play more games than
the user put in probably). It is the same for every constraint, that way we make sure
that every team still plays the same number of games. So we get an extra constraint

concerning the Y:
Y €{0,1}

We also need to pay a huge penalty when we select less games, since it is a huge change
to the tournament. So we just want it to be acceptable when we can not find a solution
for the tournament with the given X rounds. We add the following part to the objective
function, where GG could be any huge number. By selecting a huge G we make sure that
we will only select if we have no other choice. Since we will not fulfill the input by the

user the best way we can, we want to be certain not to do this if it is not necessary.

—(G- (Y -1))

Chapter 3. ILP 31

The above function is the addition we will have to do to the objective function to
include the punishment when we select less rounds. When we select Y = 1, no penalty

is involved, when we select Y = 0 we will have an additional punishment of G.

3.3 Finding an opponent for a given round

This is the other part of the problem we are trying to solve. This leads to a one-round
schedule, where everyone should play once (except when there is an odd number, where
one team will have a 'bye’). So instead of searching whether we are able to schedule
a certain combination of (team, team, round) we will have to decide which teams play

each other.

3.3.1 Additional rules

This calls for a different kind of solving. Of course we still solve it using ILP, but
instead of selecting a round for every match, we select a team. We do not schedule a

full tournament, but will have to take into account the scores teams got previously.
It actually matters which team we select as our opponent:

e Make sure teams get a fair home-away pattern

e Let the team play other teams who scored alike
Of course there are also a couple of rules we will have to make sure we follow:

e Never play someone twice

e Make sure every team is scheduled only once per round

e We need to schedule exactly one match per team. It is not acceptable to have
teams idle who could have played a match

e Minimize the total cost

The home/away pattern must be fair, we can not let someone play all of its games

at home or away

So in fact we end up with an assignment problem, where the focus is different compared
to the round-solving type of tournament. It is much easier to find an acceptable solution,
because there is a smaller number of constraints involved, but there is a bigger difference
between the solutions in quality. Quality is the most important here, because we do not

want to give someone an advantage by playing players who scored less points.

Chapter 3. ILP 32

3.3.2 ILP-formulation

This asks for a different kind of ILP-formulation, where we do not have any constraints
considering rounds anymore. Unavailabilities, breaks, maximum and minimum games,
number of games all do not exist. On the other hand we have an addition to the soft
constraints, where we will have to take into account how many points teams scored.
Matches between teams who scored a similar number of points will get a small (or no)
penalty, while teams with a high difference will get a high penalty. This way we force it
to a solution where teams with nearly the same number of points scored so far will play

each other.

We do this by introducing a new set of parameters: S_T1_T2. This set of parameters
holds the specific score for every game, where S_T'1_.T2 will not have to be equal to
S_T2_T1, since there might be a difference because of the number of games they played
at home or away. The scores are computed by taking the difference between the scores of
the combination of teams. The teams who already played each other will not be selected
(we will emphasize on this later, in section 3.3.4) and therefore we will not compute
those scores. The difference between the scores should be as low as possible for the total
tournament, that is the best solution we can achieve. We assume we have a specific

round R here.

minimize Y > Stir2-GriTer
T1eT T2eT\T1
subject to
> (Grire,r+ Grarigr) =1 VI1eT
T2€T\T1
Gri,r2,r € {0,1} VI1eTNT2e€T,T1# T2

Our solution is only viable if we play as many games as possible. This is because playing
as many games as possible is a precondition for this type of tournament. So that is why
we now use a 1 in the constraint to check whether we play exactly once. Every team

will play every game, where we will add a bye team when we have too little teams.

3.3.3 Removing half of the variables

When we have the above formulation, we can remove half of the parameters. We can
do this because we will only play each opponent once (e.g. there will never be a return-

game) and we will minimize depending on the score. We will only have to take into

Chapter 3. ILP 33

account one of the variables per game. This is the variable with the lowest score, which
will depend on the number of times someone played at home or away. The variable with

the higher score can therefore be left out (or set to zero).

3.3.4 Played games

You can consider these played games as unavailabilities. We will never play another
team twice. So we can block the teams who already played each other (both the home
and away games between those teams, since this type of tournament means that we can

only play each team once in the total tournament).

We have a set of games which have already been played: PG (played games). This is a
set containing all two teams who played each other. PG = [(T'1,72)], the round we are
scheduling is called R.

G(T1,T2,R) =0 Y(T1,T2) € PG
G(T2,T1,R) =0 Y(T1,T2) € PG

The difference between these previously played game versus the unavailabilities in the
other type are two sided: this setting exists because of the rules set by the tournament,
while the unavailabilities are added by the user and this setting is for a specific game,

while the unavailabilities block an entire round for a certain team.

3.3.5 Home/away patterns

When we schedule the tournament one round after another it is really important to
handle home-away patterns. Since such kind of tournament is mainly used for chess or

checkers, this can give a huge advantage [38] !.

So we will have to make sure that people who already played many home games will
get an away game and the other way around. We never want any player to have an
advantage which will exceed two to the average. This could still lead to a difference,
but when we set the difference to one, we will end up with a schedule which will stay
too fixed. So instead we give a penalty when someone who already had one more home
game than away a penalty. When a player has had two more home or away games, we
will have to block the other home or away games, since the schedule will then become
too much of an advantage to them. The teams with such an advantage will be put into
a separate set: CA (constrained away) and CH (constrained home). The round is left

out, since it is a fixed value:

! Accessed 3-6-2014: white has got a 37.44% lead compared to 27.48% for black

Chapter 3. ILP 34

G(T1,T2) =0 VTl € CHNT2 € T,T1 +# T2
G(T2,T1) =0 VTl € CANT2 € T, T1 +# T2

We will also have to change the scores (which were in the parameter S_T7'1_.72) to add
a penalty for playing an additional home or away game. So we will decrease the score
for a certain game S_T1.T2 if T1 played an extra home game. This will then be used
in the removal of the variables and only the best scoring variable will be kept in the

calculation.

This also means that we will never have schedules where people play many games at
home or away after each other. The maximum number of games one team can play at
home/away after each other is three, namely when he first equalizes the number of home

and away games and then gets two home games.

The maximum number of home or away matches in a row is four. This is the case when
we have (for instance) the following pattern (H is home, A is away): HHAAAA. The
seventh match will always be a home game and there will be a penalty for the sixth

game, which we also had to play away, while he already had an extra away game.

3.3.6 Byes

In our problem we can have byes, when we have an odd number of teams. If the number
of teams is even we always want to schedule 7'/2 games per round. But if it is odd,
we add one bye. The rule is that a team can never have more than one bye in a whole
tournament. Therefore there is an additional variable (you could call it an extra team),

which will make sure that that never happens.

We can use the fact that we can only schedule one game against every opponent once
very well. Because we can just include the bye as an extra team and the ILP will take
care of the rest. It will make sure that a team only has one bye and prevent it from

having multiple ones.

A bye is always a win, the team gets the points you would get when you win a game.
We have a small incentive to make sure that a bye is scheduled in the lower teams in
a certain tournament. Otherwise we might end up with a bye for the highest scoring
team so far in the last round, which will therefore always win the tournament without a
doubt. That is of course a situation we do not want to have, so we will give the bye an
incentive to play against the lower-scoring teams, by lowering the scores when playing
a game against a bye when we schedule the tournament. We also block the bye for the

top twenty-five percent of the tournament, to make sure that never happens.

Chapter 3. ILP 35

If there is a bye in a certain tournament, the user will be asked to give in the points
the team who plays the bye gets. For football (which is generally not the case with this
type of tournament) it would be three points, for checkers it is one point. It counts as
a home-game, since winning the game without playing already has an advantage. You

could also say that the bye team’ always plays away.

3.4 Finishing loose ends

We still have some loose ends we will have to visit before we can finish the ILP chapter.
These loose ends concern the time-constrained tournament and the multiple disciplinary
tournament. These two tournaments have a unique thing, which should be fixed after
we get the scheduled tournament back. For the time-constrained tournament that is the

time, for the multiple disciplinary tournament it is the different kinds of sports.

3.4.1 Time-constrained tournament

For the time-constrained tournament, we will have to split the rounds in sub rounds.
This means a round is not (for instance) round 7, but instead round 7.1. These sub
rounds correspond to times on the day. The day is the parent round, so in this case
round 7 would be a specific date. With these sub rounds, we can block certain specific
times for a team. So if you say a team can not play before 12:00, he might miss sub rounds
1, 2 and 3. This of course means we will need a schedule for the day, representing at
what time the sub rounds start and at which they end. This schedule could be generated
by information given by the user, but it was decided not to do so. It does not change

the problem a whole lot and therefore it was decided to use a fixed day schedule.

We will then have to change some settings concerning these sub rounds, where we block
rounds 7.1, 7.2 and 7.3 for example. The resulting schedule will then also be returned
with specific times, so the resulting tournament will also have times when games should

be played.

3.4.2 Multiple disciplinary tournament

For the multiple disciplinary tournament we still need to fix some information concerning
the different kinds of sports. We end up with a schedule where every team plays a SRR.
This is just an assumption we made when we created this type, because in our opinion
this is the case with these multiple disciplinary tournaments. The type of tournament

demands that everyone should play each other once and every team should play each

Chapter 3. ILP 36

sport once. So we will need to do some extra work to make sure we let every team play

every sports once.

We do this by adding an extra part to our variables. This means our decision variables
become G(T'1,T2, R, S), where S is the sport. We then have additional constraints to
make sure we only play each sport once.

Z Z (GTl,T2,r,s + GTQ,Tl,r,s) =1 VI'1eT,VseS
T2ET\T1 T€R

When we sum all of the games played by a certain team, he can only play every sport

once.

We will of course also have to change all of the constraints we had before, since we
will now also have to take into account the sports. So all of our variables will become
G(T1,T2,R,S) and we will have to add a sum at the beginning in order to check them
for all the sports.

Chapter 4

Constraint programming

In this chapter we will implement a constraint programming (CP) approach to solve
this problem. What follows in the first subsection is a small introduction to constraint
programming, then our approaches and some information about the propagators we

used.

4.1 Introduction

In this section we will give a short introduction into constraint programming and how
solving using CP works. We will also shortly explain why we decided to use CP, besides
ILP, for solving the tournament scheduling problem. We will have to solve a so-called
Constraint Satisfaction Problem (CSP). We use the definition about what a CSP is from

the "Handbook of constraint programming” [39].
A CSP is defined by a triplet of variables:

e X: A finite set of variables

e D: A finite domain; one for each variable

e C: A finite set of constraints between the variables
For a standard sport scheduling problem:

e X: The matches we will have to schedule

e D: The rounds a match can be scheduled in

e C: Constraints on the matches (teams only play once per round etc.)

37

Chapter 4. Constraint programming 38

In order to find a solution to a CSP, we will have to make sure that we satisfy the

following constraints:

e Assign for each variable one value out of the domain for the variable

e None of the constraints is violated

We decided to use CP to solve the sport scheduling problem, since in our instance of the
problem we have a lot of additional settings which are constraints on our problem. For
example, when we have a minimum number of games, we have an additional constraint
on our original problem, namely that we should not have less than the minimum number
of games in a round. We can do this for every setting and therefore it is convenient to

use CP, where the constraints are used as a guideline to solve the problem.

4.1.1 Propagators

Propagators are the backbone of solving the CSP using CP. They are functions which
change the domains and the constraints in order to find a solution, without removing
any possible solution in the process. In our sport scheduling problem, for example when
we schedule a certain match, we will have to make sure both teams in that match should
not play any other game in the same round. So we have a propagator which will remove

that round from every variable containing one of the teams.

Propagators are functions which can influence the CSP in two different ways:

e By removing a subset of the domain for a certain variable
This can be applied when we know for sure that a certain value in the domain can
never lead to a viable solution.

e By enforcing the constraints
The stronger the constraints are, the more information we can draw from them.

So the more we are able to enforce them, the better it is for finding a solution.

The idea of solving a CSP using CP is that we assign a value to every variable. The
value must be in the domain of the variable and when we have assigned a value to each
variable, we should not violate any of the constraints. So it is clear why taking a subset
of the domain will bring us closer to a solution. We will never increase the size of the
domains, so the domains will always be smaller or equal after the propagator. When
the domains become smaller, the possible values for a variable decrease and therefore

the problem becomes easier to solve.

Chapter 4. Constraint programming 39

Enforcing the constraints is something which is really important to keep in mind. We
start with no assignment for any variable and the more values we assign, the more
information we get about our solution. When we know certain values for sure, we can
change our constraints by filling in the values. For instance; there is a problem where
we want to assign a certain value z (in our case round z) at most y times (when we
have at most y games in a certain round). After we assigned value x once, we can
only assign it 4y — 1 times to the remainder of the variables. So using a propagator, we
actually enforce the constraint SUM (variables[z]) < Y. These changes will affect our
probability to decrease the size of the domains in the end. After we assigned the value
x y times, we know that none of the remaining variables can have value x. Thus we can
remove x from the domain of the remaining (still not assigned) variables and remove

this constraint from our problem.

4.1.2 Solving a CSP using CP

The result after solving a CSP using CP is thus an assignment for each variable, but
the question is how we reach such an assignment. With CP we solve the problem by
using the constraints we have. The constraints give us information about variables which
influence each other and how they do that. Some problems which are generally solved

quite well by CP can be solved without (or with very little) ’guessing’.

With guessing we mean that we sometimes get stuck trying to find an assignment for
every variable. None of the variables will have either an empty domain (when we can
stop the search, because we will never find a viable solution) or a domain with one value
(when we know that we will have to assign that value) and it is impossible to eliminate
any more values from the domains. We will then have to branch on the values in the
domain of one variable. We will do this by making branches for every value in the
domain of a certain variable. We will then pick a branch and continue the search in that
branch, as if we were able to select the value for the variable. If we have checked the
whole branch and are sure we will not be able to find a solution anymore, we will go back
to this point and continue the search in another branch. This is called backtracking and
in this way we are able to continue the search and know that we will find the solution if

it exists, when we give the algorithm enough time.

Of course there might be multiple solutions to the problem, depending on the problem.
For instance for a sudoku there might just be one, while for a scheduling problem there
might be thousands (or even more). The search space could grow enormous (again;
that depends on the problem). What we do when we reach a solution depends on the

problem description. If we let the algorithm search on, we will eventually find all the

Chapter 4. Constraint programming 40

solutions. Generally for this kind of problem we have to find a single solution, since we
want a solution to our problem and we do not care about all the solutions. There are
some examples where we do, when problems always have a lot of solutions. It is not
hard to find a single solution, but it is much harder to find all the solutions (or count

how many there are).

We will use forward checking to solve the CSP. Forward checking is a technique where
we will assign a value and directly evaluate whether we can still find a viable solution
given the already known values and the new known value. The earlier we are able to
establish that a branch will never lead to a viable solution, the earlier we can start the
backtracking. This can be done in different ways, though the general way is when any
of our variables ends up with an empty domain. If that is the case, it means that there
will never be an assignment for every variable in that branch and we can cut it. A nice

example is the n-queens problem [40].

The problem becomes a kind of search-tree, since we will have several branches and we
will have to save which branches we will still have to search etcetera. This means we
will have to decide which kind of tree-walking algorithm we will use. Depending on the
problem we might use a breadth-first search or a depth-first search. If we want to find
any solution, a depth-first search will generally be faster. If we want to find all the
solutions, we could also use a breadth-first-search, since we will need to search every

branch anyway.

Given the fact that this is a tree and we will have to search the branches, we also need
some sort, of backtracking. Which branches are still open and which branch should we
work on next? There are a lot of techniques that can be implemented here. Do we
want to backtrack to the previous branch or do we want to backtrack to a branch with
a higher possibility to find a solution? The problem with this kind of solving is that
it is hard to score how likely we are to find a solution. This of course depends on the
problem, but for our problem it is hard to do so. We do not implement such kind of
scoring the branches, the general way to do this is by just backtracking to the previous

branch and try to find a solution for that branch.

4.1.3 Soft constraints

When making this constraint programming solution, we know that we will eventually
find an acceptable solution if it exists, but we do not know whether it is the best solution.
When we have soft constraints or try to implement the tournament with a single round,
there might be better solutions, where we violate less constraints and thus find a better

solution (one which fits the input from the user better).

Chapter 4. Constraint programming 41

In the end we decided in our implementation to use the CP itself to find a better solution,
by implementing the score. The idea behind the score is that we will keep on searching,
but can now limit branches which will never give us a better solution than the solution

found previously.

To make this even stronger, we add the score we get minimally from the remainder of
the rounds. We don’t search the tree and find the lowest value, but just go through
every game and add up the lowest value. This way we will be able to backtrack as early

as possible.

It can then be used as a backtracking rule and therefore the search will speed up and
we will (hopefully) be able to find the optimal solution (given the constraints). In the
end we will have to stop the search at a certain point. We give it a certain amount of

time (which can be set in the code) and we will return the best solution found so far.

Of course we could have used other techniques as well. After we found a viable solution,
we know that we can most of the time switch around games in that schedule. For
instance we can switch full rounds if none of the teams is blocked from playing in the
other round. This means we actually get a whole different kind of search, namely a
search to find a local optimum after we found a viable solution. There are a lot of
techniques we could use here (for instance simulated annealing) to find a local optimum

from our viable solution.

In the end we decided to go with the constraint programming approach, since it seemed
more logical. We are already solving the problem using CP and we will just have to
let the search continue, trying to find a better solution. We will backtrack the games
we used to find a solution and then use it to find the best solution in our time-window.
When we exceed the time-limit, we will stop the calculation and return the best result

found so far.

4.1.4 Backtrack rules

In a CP-solver it is important to stop searching branches when we reach some point
where we know that no more solution exists. The basic backtrack rule is to quit when
the domain of any of the variables becomes empty. When the domain is empty, we can
keep on trying to find a solution in that branch, but we already know we will never be

able to find one where we can assign a value to that variable.

In CP we will never add values to our domains after we started the search, unless we

backtrack. If we would add values to the domains, we would not know whether a choice

Chapter 4. Constraint programming 42

we made previously would still be the only choice we have for the assignment of the

values in the end.

Problems can have additional backtrack rules, when we already know that we will never
be able to fulfill all the constraints in our problem, no matter what we use as values.
This needs some problem and solution analysis, where it depends a lot on the problem
whether or not we will be able to introduce additional rules. Putting time in finding
these inconsistencies is most of the time worth it, since we will be able to quit the search

earlier.

We will, however, have to take into account that analyzing the problem will also cost
extra time. We will need to weigh off whether the extra checks are worth the time
invested, since the best check is of course to see whether we can find a schedule, but
that would take the same time as just finding the schedule. So it is important to check

whether some validations are worth their time when we execute them.

4.2 Two types of problems

Once again we split the problem into two subproblems: one where we assign rounds to
matches and one where we assign teams to other teams to play in a in advance specified
round. When we assign rounds to matches, we will schedule the whole tournament in
advance, while we will only schedule a certain round when we need to assign teams to
each other. This is necessary because we are simply trying to solve another problem and
therefore we will have to split them. For instance in the first our variables are matches,
in the second the variables are teams. More information about why we need the split

and what the different subproblems are has been explained in Chapter 3.2.

4.3 Finding the round for a match

Recall that we will have to assign rounds to matches in this problem. The resulting

schedule will consist of all the matches that will be played and a round for each match.

We will start by formalizing the problem as a problem instance and then explain the
propagators used. Recall that the problem instance consists of three variables. We will

have to give these variables meaning in order to be able to solve the problem using CP.

The variables consist of all the matches we will have to schedule. The domain for these

variables consists of the rounds. Depending on unavailabilities (and other influences), the

Chapter 4. Constraint programming 43

domain can be different for each match. If there are no influences (like unavailabilities),

the domain is the same for every match.

We then of course still have the constraints, which go from the basic constraint 'a team
can only play once per round’ to minimum and maximum number of games. We will
explain later how they influence the solving. There are roughly two groups which help
us to get to the right solution: propagators and backtrack rules. Both will help us to
enforce the rest of the constraints and to make sure we find the right solution we are

looking for.

4.3.1 Propagators

Below we will define the propagators. The propagators will most of the time change the
domains, though some of them will also change the constraints on the problem. These

updated constraints may then again be used in the backtracking rules.

4.3.1.1 Match scheduled

When we schedule a certain match, the domains of the other matches will have to be
changed. Of course for the scheduled match, the domain will be emptied, with exception
of the round we scheduled it in. We change the following domains accordingly (M, is

a match, with x and y as the teams and we schedule it in round z):

VieT,f#y: Dy Dyy/z
We remove the round z from the domain of every match where x plays at home,

unless it is the match we just scheduled.

Vel f#x: Df,y — Df7y/2:
We remove the round z from the domain of every game where y plays away, unless

it is the game we just scheduled.

VfeT: Df@ — DfJ/Z

We remove the round z from the domain of every match where x plays away.

VfeT: Dy7f — ch/z

We remove the round z from the domain of every match where y plays at home.

The domains are sets of course, so we might try to remove round z while it is already

not in there anymore, but that does not matter.

Chapter 4. Constraint programming 44

4.3.1.2 Match scheduled with breaks

When we have a one-round break in our tournament, the above result is a little different.
Instead of removing only round z, rounds z — 1 and z + 1 are both removed as well. So,

when we schedule match M, , in round z again, we end up with:
VfET.f#y: Doy Dog/{z—1,2,2+1}

VfeT :Dsy Dyy/{z—1,2,2+1}

VfeT:Dys Dys/{z—122+1}
VfeT,f#x:Dysy< Dy, /{z—1,22+1}

When we have a longer break, we will just have to remove more values from our domains
the same way. So when we have a 2 round break, it becomes removing rounds z — 2,

z—1,z, 241, z4+ 2.

4.3.1.3 Symmetry removal

When we schedule a certain game, we remove all the rounds which are symmetric and
then save the state after the removal of the rounds. This way we will be able to skip

some rounds which will never lead to a better solution than the solution we already had.
Dy y < Dy, /{symmetric z}

This is a propagator which actually influences our current state instead of our future
state. It will make sure that we will not try to find a better solution in a branch, while
we already know that no better solution will exist in that branch. We will emphasize

more about the symmetry later in a separate section, 4.3.3.

4.3.1.4 Constraint changes - maximum

When we schedule a match in round R, we know that there is an extra match in that
round. With this information the constraints can be strengthened. We will need an ad-
ditional variable SM. SM just represents the scheduled matches so far. The constraint
is normally:

> Gz y.r <= mazimum
reTyeT a7y, Mz, ESM

After we scheduled three games in a certain round, the following constraint holds.:

Chapter 4. Constraint programming 45

> Gry,r <= maximum — 3
z€TYeT, vy, My y¢ESM

The same update on the constraints can be done to the minimum number of games
we need to schedule, but how that works is obvious. When the right hand side of the
constraints becomes 0, this means we ended up with a round where no more games can

be scheduled. That brings us to the last propagator.

4.3.1.5 Maximum number of games reached

When we reach the maximum number of games in a certain round R, we know that
none of the games may ever be scheduled in that specific round. So we can remove that
round from every domain in our search algorithm. SM is once more the set with the

already scheduled matches.
VeeT VyeT,o#y Myy ¢ SM:Dyy < Dyyy/R

It is interesting to note that even though we implement the maximum number of games
as a propagator, the minimum number of games is a backtrack rule. This is because
we will use the information from the maximum number of games to make the domains
smaller and use the information from the minimum amount to block certain partial
solutions which will never lead to a viable solution. So this is a nice example of how the

propagators and backtrack rules work with each other.

4.3.2 Backtrack rules

In this section we will explain which backtrack rules we apply to solve this CSP instance.
There are a lot more backtrack rules compared to basic problems. As we already ex-
plained, it is important to find a rule to backtrack as fast as possible when we have a

CSP instance requiring a lot of branching.

4.3.2.1 Empty domain

The search on this specific problem can be stopped when we reach an empty domain.
Just as with any form of CSP problem. When we reach an empty domain, we know that

we will never be able to schedule a tournament within that branch.

Chapter 4. Constraint programming 46

4.3.2.2 Score/soft constraints

The score is also a backtrack rule, as we can stop the search in a specific branch when
the score exceeds a score found previously in another branch of the problem. The score

was handled more extensively in section 4.1.3.

4.3.2.3 Tournament impossible to fill

The third way we can backtrack in this problem is by checking whether we can still
schedule the remainder of the games for a certain team in the tournament we are trying
to schedule. This can be done in two different ways; using a max flow and using a simple

count. The max flow will be discussed in chapter 6.

The count is an easier way to find out whether it is impossible for us to schedule the
remainder of the rounds. If a team can play his remaining games in = different rounds
and only y (y < z) rounds are still open to him, we can stop the search. We can only
schedule one game per round and thus we will never be able to find a solution, since he
stall has to play more games than rounds are free to him. Therefore we can stop the

search and backtrack to the previous branch.

4.3.2.4 Minimum round constraints

The last rule is when we have a minimum rounds constraint. We might schedule in such
a way that we can never fulfill that constraint. Therefore we will have to stop searching
for a solution when we end up with too little games to fill up all the rest of the schedule.

If this happens, we will stop the search and start backtracking.

So there are quite a lot of backtracking rules which are specific for this problem. The
earlier we are able to use the backtracking, the faster (and thus better) the algorithm

works.

4.3.3 Removing symmetry

With scheduling and timetabling problems we can expect problems to arise concerning
the symmetry in the solutions. The problem is that we may already know in advance that
setting a certain round for a certain game, will indefinitely lead to the same solutions.
Because we are here just scheduling rounds for sports, we can sometimes find another

viable solution by switching total rounds.

Chapter 4. Constraint programming 47

When we have decided which rounds are symmetric for a certain match, it does not
matter which of the selected rounds we assign to the match. Since they are all symmetric,
we should only try one of them and if we are not able to find a solution with that
assignment, we will not find it with any of the symmetric rounds. That is because all
the solutions will be symmetric and can be reached by switching rounds and/or multiple

games.

This leads to a huge improvement in solutions we will not have to search, because
we already know that they will never lead us to a solution which will differ from the
previously found solutions. Especially without periods of unavailability, all the rounds
in the first game we schedule are symmetric. If we are unable to find a solution when
we schedule it in round 1, we will never find a solution for the problem and thus can

stop the search.

So we remove the symmetry by making lists of equivalent rounds and by just searching
one of them. In this way we can in the end crop a large part of the search-tree. We could
miss out on solutions, but we do not want to find the maximum number of solutions, but
just the best. We will always find the optimal solution this way (if we keep on searching

long enough).

There are a couple of things which can break the symmetry removal we implemented.
This means the rounds which were previously symmetric are not symmetric anymore
and therefore we will have to search all of them anyway. We continue with the things

that block the removal of symmetry.

4.3.3.1 Unavailabilities

Because of unavailabilities, selecting a certain game can lead to the fact that no other
game can be scheduled in that round anymore. We can not just simply switch two
rounds, since the unavailability will block certain matches for that round. Two rounds
are not symmetric if they don’t have the same unavailabilities. If they do have the
same unavailabilities, the same games can be played in the rounds and therefore they
are completely equivalent and symmetric. We can then remove the other round for the

domain we will still have to search in.

We can decide whether we still have symmetry in two rounds in the following way:
If in two rounds, the exact same games can still be scheduled, these two rounds are

symmetric.

Chapter 4. Constraint programming 48

4.3.3.2 Other scheduled games

When we have other games scheduled, the rounds are of course no longer symmetric.
The number of games that we can schedule could differ and the games we can schedule
in that round differ. But two rounds could still be symmetric, even though games where
scheduled. For instance when one round has a game where team 1 plays team 2 and the
other round where team 2 plays team 1. Both can still schedule the same games and

they are therefore symmetric.

4.3.3.3 Breaks

By introducing breaks, removing symmetry becomes considerably more complex. When
we have breaks, two rounds influence each other. So the easy to grasp idea of 'when we
can schedule the same games in a round’ is lost. This occurs especially when combined
with the unavailabilities or the other scheduled games. They influence each other greatly
and it is hard to find a symmetric solution. Removing the symmetry is therefore also

removed when the user decided to use breaks in the problem.

4.3.3.4 Soft constraints

The soft constraints also make it much harder to find symmetry in our solution. Because
we might say that two rounds are exactly equivalent, though in one round there is a
certain cost for scheduling the game there. This directly means they are not equivalent,
because we do not know whether we will have to pay that penalty for any of our games.
The rounds can not be switched around with no costs in the end. In fact this also arises
the problem where games can influence each other, because of the penalties when we
set certain games. So it is much harder to encounter which of the rounds are actually
symmetric for a certain game, because none of the other games should have to pay a
certain penalty for any of the two rounds. If they do have to pay a penalty (and the
penalty is not equal), the rounds are not symmetric and thus we can not remove the

symmetry for free.

So when any form of soft constraints is selected, the normal removal of symmetry is not

used.

4.3.4 Different kinds of tournaments

The above explanation works well for the DRR, but when we have an unknown number

of games or we do not know who plays at home and who plays away, we end up with

Chapter 4. Constraint programming 49

problems. For a SRR we do know which games we have to play, we just do not know

who we will play at home or away, this will be decided afterwards.

When we have a fixed number of matches it is even harder. We will just have to make
sure that we schedule the subset of games. Normally we will have to find a value for each
variable, so we will have problems because we will now just schedule a certain number
of games. The basic backtrack rule of CP was: when a domain is empty; no solution
can exist. If we can not use that basic rule (hence we have a fixed number of matches,
some of the variables will not get a value), we will only be able to backtrack much later
and therefore end up with a slow algorithm. If this is the case, we decided to let the

ILP solve the problem.

4.4 Finding an opponent for a given round

In this section we will discuss the problem where we have to find an opponent for a
given round. This is a matching problem, though when we get additional settings we
might end up with a problem we can not fix as a matching problem. When we do have
a simple matching problem, this means we can solve it exact. This section is about the

CP implementation, the exact solution is discussed in chapter 5.

The CP implementation for this problem is quite different compared to the problem
where we want to assign rounds to matches, since we have got a different kind of assign-
ment problem. We will have to assign which team plays which, instead of assigning a
round to a match. This means that instead of the variables and domains we just had,

we also have different values for those.

The teams become the variables and the other teams become their domains. Recall that
we will only play each opponent once in this type of tournament. So after we scheduled
the first round, the domains will already be different between the teams, since we will

not be able to play against teams we have played before.

We also of course have the other rules concerning this type of tournament, which can

be found in chapter 3.3.1.

4.4.1 Selecting the teams

We will of course use CP to find the solution, but to get close to a good solution we will
have to make sure that we use some kind of heuristic. If we do not, we will search a lot

of branches who will never lead to a good solution. What we want to do is to try and

Chapter 4. Constraint programming 50

make combinations of teams who have a low score and again backtrack if no solution is

possible anymore (when the last two teams already played against each other).

Besides that we can get a score for the tournament found after we schedule all the games.
We will use that score to stop searching in the branches which will never lead to a better
solution. So that is also why it is important to use a heuristic to find the best score,
because the closer we get, the more branches we will be able to cut. We implemented
this as a separate function, so we can actually change this easily. We implemented the

following heuristic:

We select the highest scoring team we did not match yet and will have to
find the best opponent to play against it. To get the opponent with the
lowest score difference with this team, we search its domain and try out
every combination of matches, away and home. The opponent with the

closest score will then be returned as the opponent.

This is an easy heuristic, we could just as well have chosen the lowest team and work
our way up from there. We choose one of the sides to start with, because we do not
want to end up with the best scoring and worst scoring team in the end. If they are left
we know that that score will be really bad (and it is probably an unacceptable solution,
which will require a lot of backtracking). Therefore the decision was made to start at

one of the sides and work our way to the other end.

4.4.2 Propagators

As the propagators for this type of tournament, we only have two propagators. We do
not have a maximum number of games, though we do have a minimum. But just as
with the other types of tournaments, we will handle the minimum number of games in

the backtracking rules and not in the propagators.

4.4.2.1 Scheduling a match

After we schedule a match, we will have to make sure that the teams involved in that
match will not play another match in that certain round. Since we only schedule one
round, we will just have to make sure that they are removed from the domain of every

team. For instance if we schedule the match M7 72, the following happens:

VT € T,T #T1,T #T2: Dy + Dp/{T1,T2}
DTl < {TQ}
DT2 <— {Tl}

Chapter 4. Constraint programming 51

4.4.2.2 Removing team from history

After we schedule a match, we will also have to make sure we save the state previously
found. We remove the teams from each others domains and then save that as the state.
When we return to the position we backtracked to before, we will make sure that we
will select a team which is as close as possible, but we will never select a team we tried
before to find a solution with. This way we make sure that we will only search every

combination of teams maximum once.

This is actually just the generic way of removing information from the domain after
we selected a certain branch. We have to keep in mind that we do remove the teams
in an order which is specific to the domains given. This differs from the other type of
tournament, where we just select the lowest round available and put it in that round.

Here we use the heuristic to select the closest team and choose that branch.

4.4.3 Backtrack rules

In this section we will explain which backtrack rules we have in this CSP instance.

4.4.3.1 Empty domain

We again have the empty domain as a backtrack rule. For this type of tournament
something like that can only happen after we scheduled a lot of games. These games

will be blocked from our domains and therefore we might get empty domains.

It happens much less often compared to the other type of CP-solving, because there are
a lot of options normally and there is only a small chance we will actually empty the
whole domain, because of the fact that we have few propagators and few constraints.
Though especially in later rounds, we get more information about matches which are

already scheduled.

4.4.3.2 Score

The score is clearly the most important backtrack rule after we found an assignment of
the variables. We will have a score for the total schedule and we can use that score to
improve the search for a better schedule. When we have a certain score, we will check

whether we can still get a lower score at a certain point in the tree.

We will save which team has got a minimum score as opponent for every team, that

is the minimum we should add to get a full schedule. We will of course have to halve

Chapter 4. Constraint programming 52

this result, since two teams will play against each other and therefore only one score for
every two teams should be added. If this value is already over the minimum amount we

found before, we know that we can stop searching.

4.4.3.3 Viability

Our solution can only be viable when we schedule as many games as possible. When
we have an even number of T teams, we will need T'/2 games in our scheduled round.
When we have an odd number, we may have (T' — 1)/2 games, where the last team will

have a bye (he will win, without playing anyone).

If we combine the formulas, we know that we need |7'/2| games for a round to be viable.
If we find a round with less matches as a solution, it is not viable. So we can use this in

our advantage to calculate whether we need to backtrack or not.

We can check whether it is still possible to match every opponent against an opponent
using a max flow. We can do this by matching all of our teams against another team.
We create the max flow by setting a path from the source to every team, from every
team to every team (he can still play, hence which teams are in its domain) and from

every team to the sink.

We run the max flow and we must find twice the specific number of games we still
have to schedule. We might find T'1vsT2 and T2vsT1, so that is why we find twice the
number. If we find less games, this means that we actually will never be able to schedule

the round and we can stop the search.

4.4.4 Symmetry

In this problem there is actually little symmetry. We could possibly switch some of
the games in the first rounds, but towards the end the amount of symmetry is reduced

automatically, because scores will become different between players.

We did not implement removing the symmetry at all, because it does not matter when
we try to find a best solution. We will find it, it could only be that we will search
branches which will never lead to a better solution. But since the matches influence
each other a lot (when a plays b, a can not play c), it means that we would need to do

a lot of work to calculate whether we could remove symmetry in our problem.

Therefore symmetry is not removed in this subpart of the problem. The problem itself is

also smaller, we only have to fill in every team once, against every opponent once. Our

Chapter 4. Constraint programming 53

score-function will hopefully be able to make sure that it will stop searching as quickly
as possible. We can not make any guarantees about that, because there are definitely

partial problems where the score will not help us to cut a branch as soon as possible.

4.4.5 Home-away patterns

We will use the same ruling as with the ILP-formulation concerning the home-away
patterns. We use their information to block certain teams from playing another game
at home or away and we use the information before that already in the score. More

information can be found in chapter 3.3.5.

4.5 Loose ends

We have two loose ends, but one of them has already been explained in Chapter 3. This
is the time-constrained tournament, where we decided to have a fixed day schedule.

More information can be found in Section 3.4.1.

The other loose end concerns the multiple disciplinary tournament: we still have to
assign sports to the scheduled matches. We do this by changing our variables and not
only by deciding in which round two teams play, but also which sport they play. We do
this by adding a constraint we will have to check: every team can only play every sport

once. This means we can also try to find inconsistencies concerning these sports.

So we keep an extra set of variables, which holds for every match which sports could
still be assigned to it. If ever a set becomes empty before we scheduled all the matches,
we can stop the search. After we assigned a certain sport, for both contenders we can

remove that sport from all of the matches that team will still attend.

Chapter 5

Polynomial solutions

Some instances of the problem can be solved using polynomial solutions. We did not
implement these, since CPLEX solves these instances really fast as well and they only

work for specialized instances of the problem, where we no (or little) settings.

5.1 Bracelet method

When we need to schedule a SRR tournament without settings (unavailabilities, max-
imum number of games around, breaks), we can use the bracelet method. We put the

teams in the order shown in Figure 5.1.

Team 1
Team 2 e Team k
Team 3 === Toam k-1
Tear:ni Tea:m I+1

FIGURE 5.1: A bracelet tournament

54

Chapter 5. Polynomial solutions 55

We will then shift the teams to the next spot, where team 2 will go to the spot of team 3
and team k-1 will go to the spot of team k. We continue this way, until we have enough
matches and have found a working schedule. This image is when we have an odd amount
of teams (otherwise team 1 would not be at the top), when we have an even amount of
teams, we will have to take one of the teams out of the bracelet. This extra team will

play against the team on top of the bracelet.

5.2 Minimum cost maximum matching

The chess-type tournament is in fact just a matching problem. We need to match which
teams play each other in a specific, already known, round. This means we should just
match which teams play against each other. For every set of teams, we have a score
(calculated from the scoring by both teams so far and how their home-away pattern
is). We still need to schedule as many games as possible (which is always |#teams/2]).
This score is used to calculate the lowest score for the total matching, which leads to a

minimum cost maximum matching.

5.2.1 Graph building

To build the graph to calculate this matching, we start by creating a node for every
team. We will have edges between the nodes which will represent the matches. Every
match will have a certain cost which depends on the score both teams got playing the
previous games in the tournament. Two teams will not play each other more than once,
this means we will only have either the home or the away game. We will only add the
arc with the lowest cost, we can afterwards check which team plays at home if the arc
was selected to be played. When they both have the same cost, there is no difference
and we will just select one of them. We will do this for every pair of teams, and add all
the arcs between every two teams which have never played against each other. After we
have added all of these, we will have a graph which represents the teams which can still

play each other.

5.2.2 Solving the problem

The maximum matching problem has been solved by Edmonds [41]. It will find a
maximal matching using the idea of augmenting paths. Augmenting paths are paths
which start at an unmatched node, only visits matched nodes and end at an unmatched

node. If that is the case, it means we could make the matching larger by taking all

Chapter 5. Polynomial solutions 56

non-matched edges, remove all unmatched edges, and thereby improve the size of the
matching. When no more augmenting path exists, this also means we found the maximal

matching.

This is not the total algorithm, since we might have cycles in our problem. Normally
they don’t influence it, unless there are blossoms. Blossoms are cycles with 2k + 1 nodes
where k edges belong to the maximal matching and the remaining node is part of an
augmenting path. These blossoms can be contracted, all nodes will be contracted into
one node. We will then continue the search for an augmenting path. If we find any
augmenting path, one of two sides of the blossoms can be taken to add extra nodes to

the matching.

Using the above algorithm we can solve the maximum matching problem, but we still
have to make sure we find the minimum cost maximum matching. Lovasz [42] explains
how this works in Chapter 9 of his book. He uses the above function, created by
Edmonds, as a subroutine in a two-phased algorithm. The first phase is used to prepare
the graphs so that they have a perfect matching. The second phase is used on the results
from the first phase to find the minimum cost perfect matching using calls to the above

function by Edmonds.

Chapter 6

Max flow

When we have a constraint programming approach, it is important to make sure we
block branches from the search tree with no viable solutions as soon as possible. We
can use max flows to check whether there still is such a viable solution. The idea was
taken from a paper written by de Werra [35]. In his paper he uses a maximum weight
matching to find whether for every element in his problem (in his example teachers, in
our case teams) we can still find a solution. We use it in a slightly different matter, but

the idea is the same.

The problem we are trying to solve using CP will be solved easier when we have to
backtracking as little as possible. What we want to do is to signal as soon as possible
that no solution exists. We can cut off the branch there totally and therefore stop the
search. The earlier we can do this, the better it is for the runtime of the algorithm. For
this detection, we use a max flow. This max flow will detect whether we are still able
to schedule the remaining games for a certain team 7. If we are unable to schedule all
the matches for any of the teams in our problem, this means we are unable to find a

solutions for the problem in total.

The rest of this chapter is about how the implementation works, the results and why we

decided to leave it out in the end.

6.1 Basic max flow implementation

The max flow implementation is done for every team separately. We do this by creating
the source and the sink; we have two sets of variables between them: matches and
rounds. We select all the matches the team (7'1) still has to play and add them to the
graph.

o7

Chapter 6. Mazx flow 58

We then take the second set of variables, the rounds, and create a node for every round
during which T'1 is available. We then take the domains of the matches and create arcs
between the match and the rounds in the domain of the match. We end with arcs from
the source to each of the matches and from each of the rounds to the sink. All of the
arcs have a capacity of 1. That is because we will never schedule more than one match
per round, a team can play every game once and a team can only play once in a certain

round.

Given the max flow instance, we just run a normal max flow algorithm over it. If we
are not able to find a round for every match, this means that we will never be able to
solve the schedule for that team. If that happens, we can stop the computation and
backtrack. We do this for every team and if all of the teams succeed, we know that we
can at least find a viable solution for every team separately and therefore possibly for

the total tournament.

The max flow was implemented by checking it after each assignment of a variable. After
we assign the value, we will check for every team whether we can still find a solution. If
not, we can backtrack. After we checked the max flow implementation, we do not know
whether this branch will yield an acceptable schedule. All we know is that we can not

prove yet that all of the schedules in this branch will be unacceptable.

The max flow is quite slow. We will have to run a lot of max flows and every max flow
takes quite a lot of time. So instead an alternative was implemented, we also need this
alternative because we have a problem when we have to schedule it with a break. Teams
can then not play multiple games in a row (depending on the length of the break). When
we have breaks, the problem of deciding whether we will be able the remainder of the
matches for a certain team can not be solved using a max flow. The problem to decide
this is already NP-complete (dr. H.L. Bodlaender, personal communication), so we will

need an alternative to make sure we can backtrack as early as possible.

6.2 An alternative to the max flow

Instead of using a max flow, an alternative was also implemented. This alternative is a
check which roughly does the same as the max flow, it checks whether it is possible to
schedule the remainder of the schedule for a certain team. The idea is that we check it
heuristically, which will be faster, but also a little less strong. The strength we lose is
so small compared to the win in time we make, that this alternative works better than

a max flow solution.

Chapter 6. Mazx flow 59

The idea is that we make a distinct list of rounds a team can still be scheduled in. This
distinct list is created by taking all the domains for the matches we still have to schedule
for a certain team. When we combine the domains, we end up with a set of rounds a
team can still be scheduled in. We then also count the number of matches we still have

to schedule. When the number of matches exceeds the rounds, we can stop the search.

This can be done much faster, since we will only have to generate the information and
perform the check. Combining the information is done really fast, because we already
have to do some combinations when we do other checks. So the extra time it takes is

really little.

We lose some expressive power when we have two matches that can only be scheduled
in a certain round (or three in two rounds) and another match can still be scheduled
in multiple other rounds. If this is the case, the max flow will detect it, while our
alternative will not. On the bright side, this is not likely to happen when we look at our
data. The domains are changed normally by assignments, which will either block a full
round for every match of team, but it is unlikely that the domains will differ so much

that we will miss it with our alternative.

6.3 Analysis

It is important to note how many times the max flow will be called. We will do these
checks a lot, so a small improvement in speed for every run will already mean a large

improvement in runtime for the total algorithm.

We solve the max flow using the general algorithm by Ford-Fulkerson [43]. This runs in
O(E - f) time, where E is the number of edges and f is the maximum flow. The latter
will generally be small, that is the total number of games we will have to schedule for a
team. FE can be larger, but still only exists of the cardinality of the domains we still have
left (and some extra for going to the source/sink). We could implement our problem
using Edmonds-Karp [44], but since f is small, we do not win a lot in that way. To
quote the reference [44]: ”When the capacities are integral and the optimal flow value

f is small, the running time of the Ford-Fulkerson method is good.” 1.

The problem is therefore not in solving the max flow, but in the number of times we try
to solve the max flow. If for instance we have a DRR with T teams (no backtracking),
we already need T - T - T — 1 max flows. So we will already need T2 — T? max flows
without any backtracking. For an instance of T = 8, this means we already need 448

times the max flow algorithm, even though we do not backtrack at all!

They use a little different format for the f, but it does not affect the idea behind the quote.

Chapter 6. Mazx flow 60

So when we have backtracking in problems, we will have to check even more max flows.
As shown, the problems is therefore the number of max flows we will have to build and

execute and not the running time of each max flow.

6.4 Comparing the running times

We will now show some results from our program, where we compare the running time
in seconds with and without max flow and the number of max flow runs it actually tries.
We also show the number of times the max flow check actually works better than the

alternative.

While running the tests we first run the alternative check, so we can see how many times
we would have been stopped by the max flow, which the alternative did not capture.
This is shown in the table 6.1 in the column times. Column item count is the number

of max flows we tried before we found the solution.

The last two have some unavailabilities set. You can see that these influence the times

the max flow works better than the alternative.

Teams Rounds | Max/round | No max flow | Max flow | Count | Times
3 groups with 6 | 23 4 0.37s 6.02s 1620 | 0
7 14 3 0.11s 1.00s 385 0
9 19 4 0.38s 3.11s 675 2
7 14 3 0.15s 1.19s 537 6

TABLE 6.1: Results

6.5 Leaving out the max flow

Given the results we can easily see that the max flow takes a large portion of the
computation time. The longer it takes, the fewer assignments we can try. Of course it is
a valid point that we have a faster algorithm when we find the blocked branch as soon
as possible, but there is also a huge time difference. Even with the unavailabilities in
there, which make the max flow work better, we still only use them a couple of times
in favor of our heuristic solution. The score is quite bad, considering the scheduling is

10-20 times slower compared to the scheduling without max flow.

Most of the time we are able to schedule matches in multiple rounds and rounds are
removed from all matches when a certain match is scheduled in that round. Therefore

the list of rounds are quite alike. They will differ (especially with unavailabilities at the

Chapter 6. Mazx flow 61

start), but they will stay quite close. With our alternative, we only check whether we
have enough space to schedule the remaining games. Chances that a certain game can
still be scheduled in many rounds and two others can only be scheduled in one round
(when we would say with this check it can possibly still find a solution) are slim. So the
alternative works very well on this type of data and is much faster than the max flow

implementation.

So in the end we can search many more branches, while we will also look at some branches
which might never yield a solution. With this technique, there is a large chance that we
will find that out quickly and we will only have to search for some extra assignments,
which will of course cost us. But in the long run we will benefit so much from the speed

advantages, that it is worth removing the max flow and only using this check.

Chapter 7

Implementation

In this chapter we will give a short summary of implementation details. This will give

the reader some insight in how things work together and why some choices were made.

7.1 Basic build

The tool itself was implemented using PHP. This is definitely not the most commonly
used language in a thesis in general, but the idea behind the tool was to create a tool
which worked on the web and was easy to use by people on-line. The front-end is
created using HTML/CSS/Javascript/Jquery and the back-end uses Codeigniter (www.
codeigniter.com) as a basis. This is just merely used to help us keep focus on the
important things and we let the framework handle the basic things (routing to the right
files etc.).

The database is simply a SQlite database, since it was the easiest to implement. The
database itself is not really important in this thesis, since the focus lies on the calculation
and the amount of data in the database is really small. It is just used to save the settings

and to save the scores.

7.1.1 Tournaments

In this thesis we have seen different types of tournaments, which all have their specific
settings. These tournaments are implemented using inheritance, a concept from object
oriented programming (OOP). Depending on their settings and their specifics, functions

are overloaded to help execute the correct tournament-specific code.

62

www.codeigniter.com
www.codeigniter.com

Chapter 7. Implementation 63

All tournaments have an array which indicates which modules should be shown to the
user. Depending on the type of tournament, we can that way easily add a module,
which is already finished, to a tournament when we deem it useful for that type of
tournament. This leads to a nice extensible environment, where we can easily add
settings to tournaments and the handling is all done by the (abstract) tournament

superclass.

7.2 Settings

Right now the following modules are implemented:

e Basic settings: team-names, competition type and solver type

e Extended settings: maximum games per round, minimum games per round, type

of tournament, breaks, number of games
e Unavailabilities: setting which teams can not play in which rounds

e Soft constraints: setting which constraint we are allowed to break, for a certain

penalty

7.3 ILP implementation

In this section we will shortly emphasize some of the design choices in the program

concerning the ILP implementation.

Since we have two different types of scheduling problems when we try to solve the

problems using ILP, the variables we have to decide upon also differ.

7.3.1 Finding a round for a match

When we have to assign a round to a match, we have to decide whether the combination
of a round and a match will be played. The variables we decide upon are in the following
pattern: X _25.53_1. The X is just to make the variables more readable, 25 and 53 would
be the ids of two teams, while 1 is the round. If this variable would have a value of 1,
it means 25 and 53 will play a game in round 1 and team 25 will play at home. So the

formulation of each variable is of the form X_T1.T2_R.

Chapter 7. Implementation 64

7.3.2 Finding an opponent for a given round

When we have to find an opponent for a given round, we will have to decide whether a
certain match is played or not. The variable for this kind of ILP formulation would be

X 2553, thus X _T1_T2, since the round is already known in advance.

7.3.3 Calling CPLEX from PHP

To solve the ILP implementation, we use the tool CPLEX by IBM (http://www-01.
ibm.com/software/commerce/optimization/cplex-optimizer/). Since we want to
incorporate the ILP solver in our existing program, which is written in PHP, we will
need to make a call to CPLEX. CPLEX has the possibility to read from a file, then solve
the given ILP and then return the result through XML.

We use the inheritance of the tournaments to generate the objective and the constraints.
We will call specific functions which will generate the specific constraints we need in
our tournament in order to find the right solution. We have two functions which are
implemented in every type of tournament and using overloading we make sure that they
return the right constraints. We then take the objective and the constraints and generate
a file which holds the right format to call CPLEX to execute the code for us. The basic

format can be found in Listing 7.1.

MINIMIZE

<objective function>

SUBJECT TO

<all constraints>

INTEGER

<all variables>

END

LisTING 7.1: Standard format CPLEX

We then call a batch file from PHP, which we give the name of the file we need; for
instance tournament18.lp. We copy that file to a file called temp.lp and then call a
second batch file. That second batch file then runs CPLEX which reads the file from

temp.lp and tries to solve the instance given in that file.

We let CPLEX then write the result to the file temp.sol, which we then read by the
same batch which we used to call CPLEX to solve the problem. The batch file waits for
CPLEX to finish and then it reads temp.sol. We then move temp.sol to tournament18.sol
and read that file from PHP. PHP also waits for the batch file to finish computing the

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

Chapter 7. Implementation 65

solution, so once PHP continues execution, we know that our solution is in the file
tournament18.sol. We can then just continue with reading the XML and finding the

integer values to our variables.

We then search for the variables in that file and read all of their values. The rest of the
information is not interesting to us and is thus not processed. All of the values are then

stored in an array and we end up with a list of games. Thus a schedule.

When CPLEX finds a solution, we know that the solution is viable. Otherwise CPLEX
will throw an error and not write to a file. PHP then can not find the file and will
therefore give an error message to the user (Given the input, no solution exists.”). If
we got a solution, we can continue to save the resulting array to the database, but that
depends on the type of tournament. We gave CPLEX a time frame of 200 seconds, but
this can just be adjusted when we call CPLEX.

7.4 CP implementation

In this section we will show some of the explicit details concerning the implementation
of our CP-solver. The CP-solver differs a little from a normal CP-solver, since we im-
plemented it specifically for this type of problem. We keep on searching until we are
able to assign a value to every variable. In listing 7.2 there is (very short) pseudo-code

which will show how it in basic works.

while (!all variables assigned) {
pick variable;

assign value;

save state;

execute propagators;

if (broken constraints) {

backtrack;

return result;

LisTING 7.2: short CP pseudo-code

Chapter 7. Implementation 66

7.4.1 Constraint formulation

We have two types of constraints: inequality constraints and set constraints. Set con-
straints are constraints set when usign the tool, like minimum/maximum number of

games.

The inequality constraints are called that way, since one team can not play two games in
the same round, otherwise we would end up with a schedule which is not viable. Because
we generate the constraints ourselves, we end up with easy to manage constraints which
we do not have to parse. The variables are written just as in the ILP, though the round
is missing (as this is in the domain). The variable for a match between Team 1 and
Team 2 for instance: X_1.2. So a constraint may be of the form X 1.2 # X_1.3. These

constraints are all just stored in objects, so we can easily work with these constraints.

We have these constraints between every set of matches, if one of the teams is equal

between two matches. This way we make sure that we do not violate these constraints.

Set constraints are all handled in the CP-solver itself. It checks after assigning a value
if we did not violate any of the constraints set previously. So we do not officially create
constraints regarding them (like we formulate them in the ILP formulation), but instead

we use the values given to calculate whether we did not violate any of the set constraints.

7.4.2 XDebug

The faster a CP implementation is able to calculate whether a certain branching is
effective, the faster the algorithm will find a solution. In order to speed up the imple-
mentation, XDebug was used to make a map of how many times certain functions were
called. Using this and a close code inspection, we were able to increase the number of

assignments per second by 250%.

Chapter 8

Experiments

In this chapter we will show some of the results our tool delivers. We will start off with

different types of tournaments and then we will experiment with the soft constraints.

8.1 No-time competitions, time-competitions and common

tournaments

We took these three tournaments together, because the result we are trying to reach
are quite the same. They just have a different set of settings, but we could rewrite each
type of tournament in the other type. We start off with some simple tournaments, only

specifying teams and rounds:

Teams | Rounds | Number of games | CP time (s) | ILP time (s)
4 6 12 0.02 0.69
8 14 56 0.16 0.74
12 35 132 1.02 0.88
16 61 240 14.56 1.53
16 65 240 3.34 1.58

TaBLE 8.1: DRR, Maximum per round: 4

We see that the denser we try to find a schedule, the more time solving the problem
using CP takes. This is of course logical, since it will have to backtrack a lot more in
order to find a solution. The ILP solver on the other hand stays fast, which is nice to

notice. There are a lot of (general ILP solving) speed improvements made in the ILP

67

Chapter 8. FExperiments 68

solver, which clearly shows in the results found. We do have a larger overhead, so CP is

faster when we try to solve smaller instances.

8.2 Single round tournaments

The next type of tournament we experiment upon is the single round tournament. In
this type of tournament we try to connect opponents until no opponents are left (unless

the number of teams is odd).

Teams | CP time (s) | ILP time (s)
20 1.22 0.69
40 3.69 0.91
60 8.07 1.28
80 13.70 1.98
100 21.92 3.28

TABLE 8.2: Single round tournament

It is clearly shown that the ILP solver is much faster than the CP solver. Again this is
probably because it is much better optimized. The results are quite good overall though,
we can still find a solution for 40 teams (which in general would be a nice size for a chess

tournament with 9 rounds).

As shown in the results, the ILP solver is in general quite a bit faster, but the CP solver

is able to find solutions to the instances.

8.3 Multi-disciplinary tournaments

This is the last section where we test a different type of tournament. We enter a set of
sports, which directly is the number of games a certain team will play. We will just use
the ILP format here, since it is not that convenient to use CP for this type of decision
problems; where we still have to decide which of the matches will be played. That means
we will influence our result by selecting matches and that does not work well with the
way we solve the problem using CP. Instead of showing the speed results (which compare
to the results above) we will show the result by our tool. We have 10 teams, 5 sports

and all teams will play each sport once, the result is in Figure 8.1.

Chapter 8. Experiments 69

Ficure 8.1: 10 teams, 5 sports, 5 rounds, multiple disciplinary tournament

To remark in the image: every team plays each sport once, every team plays each
opponent maximum once and every sport is played maximum once per round. This
is exactly what we expect from the multiple disciplinary tournament and therefor the

resulting tournament is working perfectly as expected.

8.4 Soft constraints

In this chapter we will test whether the soft constraints work. We do this by selecting
several cases which are on the boundary whether the soft constraint should be violated.

We will then verify that the results are indeed correct.

We start with Table 8.3, where we will test whether the soft constraint concerning the
rounds works. The idea behind this soft constraint is that it will give us two additional
rounds if it is not able to schedule the games in the given number of rounds. When we
have 8 teams, we will need the minimum of 14 rounds to create a DRR schedule. The
results when we try to create a schedule with 11 to 14 rounds are shown in Table 8.3.
As shown, the results are indeed correct. When we have 11 rounds, we can not find a
schedule (because even with the extra 2, we will still not have enough rounds). When
we have 12 or 13 rounds, we will use the soft constraint and punish our solution and

when we have 14 rounds, it will just use the 14 rounds given.

Chapter 8. FExperiments 70

Teams | Rounds | Violation Time (s)
8 11 - -

8 12 4 games in 13, 4 games in 14 | 0.63

8 13 4 games in 14 0.70

8 14 None 0.70

TABLE 8.3: ILP, Normal games, soft constraint: rounds, DRR, Maximum per round:
4

We continue with another test on the soft constraint concerning the rounds, in Table
8.4. We do this so we can compare the results to the results when we use the other soft
constraint (the number of games, where we schedule less games). So in this case we have

a set number of games, being 5, and we will check what the results are using that soft

constraint.
Teams | Rounds | Violation Time (s)
8 4 4 games in round 5 | 0.60
8 5 None 0.60
8 6 None 0.62

TABLE 8.4: ILP, Normal games, Soft constraint: rounds, number of games: 5, Maxi-
mum per round: 4

The result is that we have an extra set of games in round 5, when the number of games is
too large for the given number of rounds. Since the constraint allows us to add additional
rounds, this is expected behavior. When we use the other type of soft constraint, which
allows us to use less games. The results of the exact same test, with only a changed soft

constraint, can be found in Table 8.5.

Teams | Rounds | Violation Time (s)
8 4 Just 4 games per team | 0.57
8 5 None 0.57
8 6 None 0.60

TABLE 8.5: ILP, Normal games, Soft constraint: number of games, number of games:
5, Maximum per round: 4

We find that the other soft constraint, where we can make the number of games lower,
reacts exactly the other way. We schedule less games, instead of using an extra round.
This is the expected behavior and it works perfectly fine. It is able to find the results
fast and reliable, while we do pay the penalty in the case with only 4 rounds, because

we are not allowed to go past this number of rounds.

Chapter 8. Experiments 71

8.5 Breaks and unavailabilities

We still have breaks and unavailabilities, so we will continue with some results concerning
these.

Teams | Rounds | Breaks | Time (s)
8 20 0 0.81

8 30 1 1.06

8 43 2 1.52

10 23 0 0.95

10 40 1 8.39

10 59 2 17.54

TABLE 8.6: ILP, Common tournament, Maximum per round: 4, Unavailabilities: Ran-
dom

It can be seen from the Table 8.6 that breaks increase the difficulty of the problem. The
rounds now influence each other and that directly means that solving the problem takes

a lot more time.

Chapter 9

Conclusion

In this thesis we discussed the different things a normal (not professional) user would
probably want in his tournament. How do these influence the normal tournament

scheduling problem? We have different constraints, which can all be set by a user:

e Unavailabilities

e Minimum number of games

e Maximum number of games

e Different types of tournament

Different kinds of tournaments (SRR, DRR, Amount x)

We recognize these types of tournaments, which all have their specialties:

Competitions
— No time-constraints
— Time-constraints

e Common tournament

Single-round tournament

Multiple-disciplinary tournament

In the end we created a web-based tool, which makes it possible for users to put in their
information and create a tournament they can use to schedule their games. All of their
information is used in this scheduling and we return a schedule they can start to use. To
solve this problem, we use two different types of solvers: CPLEX, with an ILP-approach,
and PHP, with a constraint programming approach. The first one has huge expressive
power and provides us the possibility to implement all the constraints we want easily
and quickly. The latter one takes a lot more time, because of multiple reasons: PHP is
interpreted instead of compiled, which of course means it is always slower to start with,

and the solution is less optimized.

72

Chapter 10

Future work

There are still some things which could have been implemented, but were left out because
they would take quite a lot of time to implement for only a little change in the thesis.
The following is a list of these items, together with their chapters (when necessary)

where more information can be found about them.

Knock-out (2.6)
We did explain how a knock-out part would and could end a scheduled tournament.
This was not implemented in the end, since it is not a scheduling problem. No
constraints can be set, since we do not know in advance who will be scheduled in
which round of the knock-out part. Therefore the knock-out part would just be
a fixed extension to the tournament and therefore no addition to the scheduling

problem.

Day parts (3.4.1)
We did implement the time-constrained tournament. However, the time-constrained
tournament still uses a fixed day-pattern (which will not change depending on
user-input), where we would like it to be a pattern which is also created by the
timestamps the user put in (if round X starts five minutes later, we can sched-
ule more games). The pattern does not suffice when the time a match takes falls
outside of the pattern. So we would like the pattern to be generated by the code

instead of having it fixed.

Home-away patterns
We have created rules for the home-away patterns for the single-round tournament,
but the schedules we found lack some common sense of home-away patterns with
a DRR. We could start with all the home-games and then end with all the away-

games. This is not a result we would like to see, so we should either fix these

73

Chapter 10. Future work 74

patterns or make sure that we do not use patterns which do not have a proper

distribution over the rounds.

Clubs
We did not implement anything concerning clubs, groups of teams playing under
the same name and using the same fields etcetera. It is probably a nice addition
if we would have been able to set constraints for certain clubs, as well as divide
our teams into clubs, so we can set for a specific club that only three games
can be played at the same time at that club (at home). Right now this is not
added, it would require extra input screens concerning the clubs and club-specific

constraints.

More extensive tournament types (2.3.9)
We left out some tournament types, while we might want them for some more
exotic tournaments. At this moment we did not implement the possibility to
schedule a bipartite DRR, while we might want that for some types of tournaments

by a user. So as an extension we could also implement these types of tournaments.

Bibliography

1]

[11]

[12]

Why we need competition in competitive sports. URL http://wuw.
essentialkids.com.au/younger-kids/kids-nutrition-and-fitness/

why-we-need-competition-in-competitive-sports-20140401-35vee.html.

K. Toohey and A.J. Veal. The Olympic Games: A social science perspective. CABI,
2007.

K. Blanchard. The anthropology of sport: An introduction. ABC-CLIO, 1995.

A. Drexl and S. Knust. Sports league scheduling: Graph- and resource-based mod-
els. Omega, 35(5):465 — 471, 2007. ISSN 0305-0483.

R.V. Rasmussen. Scheduling a triple round robin tournament for the best danish

soccer league. European Journal of Operational Research, 185(2):795-810, 2008.

J. Kyngas and K. Nurmi. Scheduling the finnish major ice hockey league. In
Computational Intelligence in Scheduling, 2009. CI-Sched’09. IEEE Symposium on,
pages 84-89. IEEE, 2009.

D. de Werra. Geography, games and graphs. Discrete Applied Mathematics, 2(4):
327 — 337, 1980. ISSN 0166-218X.

D. de Werra. Scheduling in sports. 59:381 — 395, 1981. ISSN 0304-0208.

M.A. Trick. A schedule-then-break approach to sports timetabling. 2079:242-253,
2001. doi: 10.1007/3-540-44629-X_15.

G. Nemhauser and M. Trick. Scheduling a major college basketball conference.
Oper. Res., 46(1):1-8, January 1998. ISSN 0030-364X. doi: 10.1287/opre.46.1.1.

D. Briskorn and A. Drexl. {IP} models for round robin tournaments. Computers
& Operations Research, 36(3):837 — 852, 2009. ISSN 0305-0548.

S. Chaudhuri, R.A. Walker, and J.E. Mitchell. Analyzing and exploiting the struc-
ture of the constraints in the ilp approach to the scheduling problem. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, 2(4):456-471, 1994.

75

http://www.essentialkids.com.au/younger-kids/kids-nutrition-and-fitness/why-we-need-competition-in-competitive-sports-20140401-35vee.html
http://www.essentialkids.com.au/younger-kids/kids-nutrition-and-fitness/why-we-need-competition-in-competitive-sports-20140401-35vee.html
http://www.essentialkids.com.au/younger-kids/kids-nutrition-and-fitness/why-we-need-competition-in-competitive-sports-20140401-35vee.html

Bibliography 76

[13]

[14]

[20]
[21]

[22]

23]

F. Della Croce and D. Oliveri. Scheduling the italian football league: an ilp-based
approach. Computers & Operations Research, 33(7):1963 — 1974, 2006. Special

Issue: Operations Research in Sport.

G. Duran, M.o Guajardo, J. Miranda, D. Sauré, S. Souyris, A. Weintraub, and
R. Wolf. Scheduling the chilean soccer league by integer programming. Interfaces,
37(6):539-552, 2007.

M. Henz. Constraint-based round robin tournament planning. In ICLP, pages
545-557. Citeseer, 1999.

J. Régin. Minimization of the number of breaks in sports scheduling problems using
constraint programming. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 57:115-130, 2001.

Jeffrey Larson, Mikael Johansson, and Mats Carlsson. An integrated constraint
programming approach to scheduling sports leagues with divisional and round-robin
tournaments. 8451:144-158, 2014. doi: 10.1007/978-3-319-07046-9_11.

LLH. Osman and J.P. Kelly. Meta-heuristics: theory and applications. Springer,
1996.

S.J. Russell, P. Norvig, J.F. Canny, J.M. Malik, and D.D. Edwards. Artificial

intelligence: a modern approach, volume 2. Prentice hall Englewood Cliffs, 1995.
F. Glover. Tabu search-part i. ORSA Journal on computing, 1(3):190-206, 1989.
F. Glover. Tabu search—part ii. ORSA Journal on computing, 2(1):4-32, 1990.

J. Hamiez and J. Hao. Solving the sports league scheduling problem with tabu
search. In Local Search for Planning and Scheduling, pages 24-36. Springer, 2001.

L. Di Gaspero and A. Schaerf. A composite-neighborhood tabu search approach to
the traveling tournament problem. Journal of Heuristics, 13(2):189-207, 2007.

C.C. Ribeiro and S. Urrutia. Heuristics for the mirrored traveling tournament
problem. European Journal of Operational Research, 179(3):775 — 787, 2007. ISSN
0377-2217.

M. Wright. Timetabling county cricket fixtures using a form of tabu search. Journal

of the Operational Research Society, pages 758770, 1994.

T. van Voorhis. Highly constrained college basketball scheduling. The Journal of
the Operational Research Society, 53(6):pp. 603-609, 2002. ISSN 01605682.

Bibliography 77

[27]

[30]

Pascal Hentenryck and Yannis Vergados. Traveling tournament scheduling: A sys-
tematic evaluation of simulated annealling. Lecture Notes in Computer Science,
3990:228-243, 2006.

F. Della Croce, R. Tadei, and P.S. Asioli. Scheduling a round robin tennis tour-
namentunder courts and players availability constraints. Annals of Operations Re-
search, 92(0):349-361, 1999. ISSN 0254-5330.

F. Bonomo, A. Cardemil, G. Durén, J. Marenco, and D. Sabdan. An application of
the traveling tournament problem: The argentine volleyball league. Interfaces, 42
(3):245-259, 2012.

T. Bartsch, A. Drexl, and S. Kroger. Scheduling the professional soccer leagues
of austria and germany. Computers & Operations Research, 33(7):1907 — 1937,
2006. ISSN 0305-0548. Special Issue: Operations Research in Sport Special Issue:

Operations Research in Sport.

C.C. Ribeiro and S. Urrutia. Heuristics for the mirrored traveling tournament
problem. European Journal of Operational Research, 179(3):775 — 787, 2007. ISSN
0377-2217.

C.C. Ribeiro and S. Urrutia. Scheduling the brazilian soccer tournament with
fairness and broadcast objectives. In Practice and Theory of Automated Timetabling
VI, pages 147-157. Springer, 2007.

A. Schaerf. Scheduling sport tournaments using constraint logic programming.
Constraints, 4(1):43-65, 1999.

S.L. Tanimoto, A. Itai, and M. Rodeh. Some matching problems for bipartite
graphs. Journal of the ACM (JACM), 25(4):517-525, 1978.

D. de Werra. An introduction to timetabling. FEuropean Journal of Operational
Research, 19(2):151 — 162, 1985. ISSN 0377-2217.

S. Even, A. Itai, and A. Shamir. On the complexity of time table and multi-
commodity flow problems. In Foundations of Computer Science, 1975., 16th Annual
Symposium on, pages 184-193, Oct 1975. doi: 10.1109/SFCS.1975.21.

Cplex. URL http://www-01.ibm.com/software/commerce/optimization/

cplex-optimizer/.
Chess stats. URL http://www.chessgames.com/chessstats.html.

F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint programming. Elsevier,
2006.

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.chessgames.com/chessstats.html

Bibliography 78

[40] S.C. Brailsford, Chris N. Potts, and Barbara M. Smith. Constraint satisfaction
problems: Algorithms and applications. Furopean Journal of Operational Research,
119(3):557 — 581, 1999. ISSN 0377-2217.

[41] J. Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17(3):
449-467, 1965.

[42] L. Lovasz and M.D. Plummer. Matching theory. New York, 1986.

[43] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, et al. Introduction to algo-
rithms, volume 2, page 651-659. MIT press Cambridge, 2001.

[44] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, et al. Introduction to algo-
rithms, volume 2, pages 660-663. MIT press Cambridge, 2001.

	Abstract
	Contents
	1 Introduction
	1.1 Previous work
	1.1.1 Graph-coloring
	1.1.2 Decomposition
	1.1.3 Integer Linear Programming
	1.1.4 Constraint programming
	1.1.5 Local search
	1.1.6 Real-life examples

	1.2 Goal
	1.3 Complexity
	1.4 Outline

	2 Problem definition
	2.1 Problem formulation
	2.1.1 Match
	2.1.2 Game
	2.1.3 Schedule

	2.2 Settings
	2.2.1 Limited number of games per round
	2.2.2 Teams
	2.2.3 Breaks

	2.3 Number of games
	2.3.1 Single Round Robin (SRR)
	2.3.2 Dense Single Round Robin (DSRR)
	2.3.3 Bipartite Single Round Robin (BSRR)
	2.3.4 Double Round Robin (DRR)
	2.3.5 Dense Double Round Robin (DDRR)
	2.3.6 Mirrored double Round Robin
	2.3.7 Triple round robin (TRR)
	2.3.8 Fixed number of matches per team
	2.3.9 Tournament types

	2.4 Different types of tournaments
	2.4.1 Competition
	2.4.2 A common tournament
	2.4.3 Single round tournament
	2.4.4 Multiple disciplinary tournament

	2.5 Soft constraints
	2.6 Finishing with a knock-out

	3 Integer Linear Programming
	3.1 ILP formulation
	3.1.1 Finding a round
	3.1.2 Finding an opponent

	3.2 Finding the round for a match
	3.2.1 Fixed number of games
	3.2.2 Breaks
	3.2.3 Minimum or maximum number of games
	3.2.4 Unavailabilities
	3.2.5 Soft constraints

	3.3 Finding an opponent for a given round
	3.3.1 Additional rules
	3.3.2 ILP-formulation
	3.3.3 Removing half of the variables
	3.3.4 Played games
	3.3.5 Home/away patterns
	3.3.6 Byes

	3.4 Finishing loose ends
	3.4.1 Time-constrained tournament
	3.4.2 Multiple disciplinary tournament

	4 Constraint programming
	4.1 Introduction
	4.1.1 Propagators
	4.1.2 Solving a CSP using CP
	4.1.3 Soft constraints
	4.1.4 Backtrack rules

	4.2 Two types of problems
	4.3 Finding the round for a match
	4.3.1 Propagators
	4.3.2 Backtrack rules
	4.3.3 Removing symmetry
	4.3.4 Different kinds of tournaments

	4.4 Finding an opponent for a given round
	4.4.1 Selecting the teams
	4.4.2 Propagators
	4.4.3 Backtrack rules
	4.4.4 Symmetry
	4.4.5 Home-away patterns

	4.5 Loose ends

	5 Polynomial solutions
	5.1 Bracelet method
	5.2 Minimum cost maximum matching
	5.2.1 Graph building
	5.2.2 Solving the problem

	6 Max flow
	6.1 Basic max flow implementation
	6.2 An alternative to the max flow
	6.3 Analysis
	6.4 Comparing the running times
	6.5 Leaving out the max flow

	7 Implementation
	7.1 Basic build
	7.1.1 Tournaments

	7.2 Settings
	7.3 ILP implementation
	7.3.1 Finding a round for a match
	7.3.2 Finding an opponent for a given round
	7.3.3 Calling CPLEX from PHP

	7.4 CP implementation
	7.4.1 Constraint formulation
	7.4.2 XDebug

	8 Experiments
	8.1 No-time competitions, time-competitions and common tournaments
	8.2 Single round tournaments
	8.3 Multi-disciplinary tournaments
	8.4 Soft constraints
	8.5 Breaks and unavailabilities

	9 Conclusion
	10 Future work
	Bibliography

