

Designing secure software
systems

Combining goal-oriented modeling and risk
management

Author:

Nikolaos Argyropoulos

MSc Business Informatics

Student number: 3954420

n.argyropoulos@students.uu.nl

October, 2014

Utrecht University

Faculty of Science

Department of Information and Computing Sciences

Princetonplein 5, De Uithof,

3584 CC Utrecht

Supervisors:

Dr. Fabiano Dalpiaz

Dr. Marco Spruit

n.argyropoulos@students.uu.nl

i

ii

Abstract

Software systems are broadly used to support the provision of e-services and the facilitation

of business processes. Sensitive information is exchanged within such systems between

human actors and software agents. As a consequence, their design should encompass

security aspects in addition to functional ones, in order to provide an environment in which

the users can achieve their goals while keeping their information secure. By reviewing the

literature of the areas of security requirements engineering and risk management and

surveying practitioners of the field, we identified the need for a structured approach that

leads to security by design, taking into account the system’s extended socio-technical

environment and managing risk, from the early stages of the development lifecycle. In this

work we develop a structured method to integrate elements of risk management in the

security requirements engineering process. By combining method fragments from

established methods in the field of security requirements and risk management we

construct a new method that uses the results of the risk evaluation and prioritization as

input for the identification of user’s security needs, creating a complete socio-technical

model of the system to-be. We apply this method in practice via a retrospective case study,

in order to evaluate its completeness and performance. This application of our method in

practice shows promising results, as the method is able to accurately model the studied

system and uncover a number of previously unidentified security requirements.

Keywords: Security requirements engineering, risk management, socio-technical systems,

information security, risk analysis, threat prioritization.

iii

Acknowledgements

I would like to thank my supervisors, Fabiano and Marco, for their support and guidance

throughout this thesis project. I would also like to thank Michiel for the time he dedicated

and the help he provided for the implementation of the case study. The contribution of the

all the survey responders and the stakeholders of the studied system should also be

acknowledged as it was instrumental for the successful completion of this work. Finally, I

would like to thank my family and friends for their continuous and unconditional support.

iv

Table of Contents

Abstract ... ii

Acknowledgements .. iii

Table of Contents .. iv

List of Figures ... vi

List of Tables .. vii

Chapter 1. Introduction ... 1

1.1 Problem statement ... 1

1.2 Research questions ... 2

1.3 Research approach ... 4

1.4 Relevance .. 7

1.5 Outline .. 8

Chapter 2. Literature Review .. 9

2.1 Method ... 9

2.2 Security requirements engineering (SRE) .. 9

2.3 Risk management ... 19

2.4 Analysis of results and baseline selection .. 26

Chapter 3. State of the Practice.. 29

3.1 Method .. 29

3.2 Results ... 30

3.3 Findings .. 40

Chapter 4. Integrating elements of risk management in SRE ... 43

4.1 Method components and integration ... 43

4.2 Method description ... 53

4.3 Limitations .. 59

v

Chapter 5. Practical Evaluation ... 61

5.1 Method and evaluation criteria .. 61

5.2 Case study description ... 62

5.3 System modeling .. 64

5.4 Threat assessment ... 67

5.5 User security requirements modeling ... 70

5.6 Automated analysis and specification ... 73

5.7 Evaluation and conclusions.. 75

Chapter 6. Discussion .. 77

6.1 Conclusions ... 77

6.2 Limitations .. 82

6.3 Future research ... 83

References... 85

Appendix.. 90

vi

List of Figures

Figure 1.1: Research approach model 4

Figure 1.2: PDD describing the steps and deliverables of this research 6

Figure 1.3: Outline of the research project 8

Figure 2.1: Process diagram of abuse case modeling 11

Figure 2.2: Example of use and misuse cases 13

Figure 2.3: Example of "secure links" stereotype of UMLsec 14

Figure 2.4: Example of Secure i* notation 16

Figure 2.5: Example of Secure Tropos notation 17

Figure 2.6: Example of social view model created by the STS-tool 18

Figure 2.7: CORAS Framework PDD 20

Figure 2.8: CRAMM PDD 21

Figure 2.9: OCTAVE method PDD 22

Figure 2.10: ISRAM PDD 24

Figure 2.11: ISRA-BM method PDD 25

Figure 3.1: Age of survey responders 30

Figure 3.2: Location of survey responders 30

Figure 3.3: Background of responders 31

Figure 3.4: Experience in SW/IS engineering 31

Figure 3.5: Experience in SW/IS security 32

Figure 3.6: Involvement in SW/IS development projects 32

Figure 3.7: Consideration of social aspects of the system 32

Figure 3.8: Consideration of technical environment of the system 32

Figure 3.9: Frequency of sec. elaboration during phases of the SW dev. lifecycle 34

Figure 3.10: Frequency of sec. elaboration during phases of the SW dev. lifecycle 34

Figure 3.11: Perceived importance of roles during SW development 35

Figure 3.12: Perceived importance of influencing factors 36

Figure 3.13: Frequency of use of systematic approaches 37

Figure 3.14: Frequency of use of automated tools 37

Figure 3.15: Risk management during the development lifecycle 38

Figure 3.16: Perceived importance of asset groups 39

Figure 3.17: Risk analysis integration with security elaboration 40

Figure 3.18: Frequency of systematic approach usage during risk analysis 40

Figure 4.1: STS method PDD 45

Figure 4.2: The method assembly process 48

Figure 4.3: PDD of assembled method 50

Figure 4.4: Social view example 53

Figure 4.5: Information view example 54

Figure 4.6: Example of assigning relative importance values to goal decompositions 55

Figure 4.7: Social view with relative importance values assigned to goals 55

vii

Figure 4.8: Information view with values assigned on informational assets 56

Figure 4.9: Example of threat impact identification through social view model 57

Figure 5.1: The STRIP method 63

Figure 5.2: Social view modeling of the studied system 65

Figure 5.3: Information view modeling of the studied system 66

Figure 5.4: Social view of the system including relative importance values and threats 69

Figure 5.5: Information view of the system with relative importance values 69

Figure 5.6: Security needs of users expressed on the social view of the system 71

Figure 5.7: Authorization view of the studied system 72

Figure 5.8: Final version of the information view model 74

Figure A.1: Goal evaluation, user input template 96

Figure A.2: Information assets evaluation, user input template 97

Figure A.3: Average goal evaluation values 98

Figure A.4: Overall goal evaluation values 99

Figure A.5: Average information assets evaluation values 100

Figure A.6: Overall information assets evaluation values 100

viii

List of Tables

Table 1.1: The research questions of this thesis 3

Table 2.1: A comparison of SRE methods 27

Table 3.1: Frequency of security elaboration for each of the phases of the dev. lifecycle 33

Table 3.2: Perceived importance of roles during security elaboration 34

Table 3.3: Perceived importance of factors influencing the sec. elaboration process 35

Table 3.4: Frequency of risk analysis for each phase of the development lifecycle 37

Table 3.5: Perceived importance of different asset types during risk management 38

Table 4.1: Activities table of the new method 51

Table 4.2: Concepts table of the new method 52

Table 4.3: Example of ranking threats 58

Table 5.1: Identified threats and likelihood of occurrence 68

Table 5.2: Threats ranked according to their potential risk towards the system 70

Table 5.3: Security requirements identified for the STRIPA system 74

Table A.1: Origin and modifications of method fragments 95

Table A.2: Security requirements identified for the overall system 102

file:///C:/Users/Nick/Dropbox/Thesis%20Stuff/Thesis%20document/thesis_template.docx%23_Toc400540807

ix

1

Chapter 1. Introduction

1.1 Problem statement

Nowadays, information systems (IS) are essential for the provision of e-services and

the facilitation of business processes (O'Brien, 2002). Actors interacting with such

systems have important assets at stake (e.g., private information) so it is of utmost

importance that the security of these assets is guaranteed (Youseef &Liu, 2012).

The software that makes such information systems functional, often lacks the

appropriate security features (Verdon & McGraw, 2004), thus exposing the systems

to a number of threats with costly implications for individual participants and

organizations (Whitman, 2003). Therefore it becomes apparent that risks should be

assessed and security features should be carefully selected during the design of

software systems in a structured and systematic manner.

The elicitation and analysis of security requirements is an essential part in the

requirements engineering process for the design of secure software systems. Security

requirements engineering (Haley, Laney, Moffett & Nuseibeh, 2008), promotes the

adoption of a systematic process for identifying, analyzing, and specifying the

security requirements for a system to-be. This contrasts with ad-hoc approaches

where security mechanisms are chosen on the basis of personal experience or latest

technological trends, and without considering the reason why a given security

mechanism is adequate. It also encourages the timely consideration of security

during the early phases of software development. By considering security in the

early development stages, rather than implementing security measures as an

afterthought on an already designed system, can lead to more robust system designs

that will not require costly readjustments during their lifecycle (Mouratidis, 2011).

Another aspect to account for, during system design, is the interplay between the

multiple actors and software systems, which exist in the context where the to-be

secure system will be deployed. This social aspect of the analysis can help

identifying threats that could not be otherwise predicted, especially when designing

the system considering only its technical aspect. Such systems with complex

interaction between autonomous participants and software applications are known

as socio-technical systems (STS) (Paja, Dalpiaz & Giorgini, 2013a). As the

complexity of such systems grows with the addition of more actors and software

agents, ensuring their security becomes a complex task which cannot be handled by

traditional security requirements engineering methods. An answer to this challenge

could be the use of goal-oriented requirement engineering methods (Van

Lamsweerde, 2001), (Eric, Giorgini & Maiden, 2011) as suggested by literature.

2

A number of methods has been developed which use goal models to represent and

analyze the objectives of participating actors, taking into account both the technical

and the organizational aspects of the system. With the assistance of support tools

developed for such methods, the modelling and analysis of STSs should lead to a

more efficient and complete identification of their security requirements.

Unfortunately, these methods do not provide explicit primitives to represent how

security requirements are originated from the risks that threaten the stakeholders'

assets.

It is important to systematically identify and analyze those threats in order to better

understand the underlying risks involved for the actors and the assets of the system.

Various risk management methods have been developed to “identify, control, and

minimize the impact of uncertain events” (Peltier, 2005). However these approaches

to risk management require, at least, a structural description of the to-be system in

order to identify possible targets for an attack (Fabian, Gurses, Heisel, Santen &

Schmidt, 2010). A high level overview of the system’s design, which is an important

prerequisite for risk analysis (Verdon & McGraw, 2004), can be provided once the

requirements dictating the basic system’s functionalities have been identified during

the early stages of the development lifecycle. It is, therefore, important for effective

risk analysis, to be considered not as an isolated process, but as an integral part of

an organization’s system development lifecycle (Peltier, 2005).

The problem that this thesis addresses is how to facilitate this integration between

risk analysis - the first step in the risk management process - and goal-oriented

approaches for security requirements engineering. We expect that this integration

will enable (i) identifying threats in the very early stages of system design, and (ii)

justifying why security requirements are posed on the system to-be.

1.2 Research questions

This thesis aims to study security requirements engineering and risk management

in software systems, explore the gap between the state-of-the-art and the state-of-

the-practice in this field and attempt to bridge it with the creation of a new

approach. This means that we will focus our attention in two separate fields of study

(security requirements engineering and risk management), each with its unique

characteristics and research communities, and attempt to bring them together. In

order to accomplish those research goals, research questions must be defined which

will be decomposed further to sub-questions. An overview of the research questions

of this thesis is provided in Table 1.1.

3

Table 1.1: The research questions of this thesis

RQ1 will provide insights on the scientific literature involved in the field of security

requirements engineering and risk analysis of software systems. Various established

methodologies will be identified and analyzed in order to extract relevant concepts

and techniques, while also best practiced described by the same literature will be

collected.

In RQ2 the state-of-the-practice will be explored through a survey which will be used

to gather expert opinions by researchers and practitioners of the field of software

development. Software security and risk will be the main theme of the survey which

will provide insights about who is involved, when does it take place and what factors

influence the decision making during the software development lifecycle. The

conclusions drawn by these findings will be compared with the previous literature

findings to identify what gaps exist between the two sides.

Finally, for RQ3 a new method will be assembled which will integrate risk analysis

elements in an existing security requirements engineering approach. For the final

research sub-question (SQ 3.2) a case study will be designed which will involve the

application of the constructed method, in the real life settings of a software system.

The participants of this case study will provide validation of the completeness and

effectiveness of the method while also some criteria will be identified in order to

assess the contributions and limitations of the method in a practical environment.

RQ1 What does the literature suggest for identifying risks and security requirements in
software systems?

SQ 1.1 Which are the state-of-the-art methods for security requirement engineering?
SQ 1.2 Which are the state-of-the-art methods for risk analysis in software development?
SQ 1.3 What shared insights and empirical evidence can be found in the literature of those

fields?

RQ2 How are risks assessed and security requirements identified and specified in practice?
SQ 2.1 When, how and by whom is security and risk elaborated during software development

in practice?
SQ 2.2 Which factors influence the selection of a method for security requirements

engineering and risk management, to be used in practice?
SQ 2.3 What is the gap between the state-of-the-art and current practices used for identifying

risk and specifying security requirements?

RQ3 How can we devise an effective method that integrates risk management in the security

requirements engineering process?
SQ 3.1 How can the findings of RQ1 and RQ2 contribute to the development of the new

method?
SQ 3.2 Is this method effective and applicable enough to assist the security requirements

definition and risk analysis process in real life settings? What are the limitations?

4

1.3 Research approach

In order to tackle the research questions formulated in the previous section, a hybrid

approach will be adopted. A high level overview of that approach is presented in the

Figure 1.1 and described in the rest of this section. Further elaboration of the

method followed for each step of our research will be provided in a separate section

at the beginning of each chapter (cf. Sections 2.1, 3.1, 4.1 and 5.1).

Initially the state-of-the-art in the fields of security requirements engineering and

risk analysis methods for software systems, needs to be identified. Through an

exploratory literature review a number of established methods in both fields will be

identified. Literature reviews on security requirements engineering (e.g., Mellado et

al., 2010) and risk analysis methods (e.g., Vorster & Labuschagne, 2005) provide a

starting point from which a set of methods can be selected for further analysis. In

addition to that, shared insights and best practices regarding security definition and

risk analysis presented in the selected literature will be collected. Later during our

research, by comparing those findings with the state of practice, misalignments and

gaps between theory and practice will be identified.

In order to explore how security and risk are elaborated during software

development in practical settings, a survey will be distributed among researchers

and practitioners of the field. The survey will aim to identify the level of abstraction

at which professionals consider security when developing software systems, the roles

Figure 1.1: Research approach model

5

involved, the methods selected and the factors that guide the decisions made during

the process. It will also include questions regarding risk assessment and asset

identification. The structure of the survey will allow participants to both indicate

what happens in practice and also evaluate certain aspects of the process. This will

allow us to get an overview of the practices of the software industry and the

consensus among professionals working in this field. The results of the survey will

then be compared with the previous literature findings. This way the differences and

common points between what is described in theory and what happens in practice,

can be identified and studied.

During the next part of the study, method fragments and techniques identified in

the state of the art will be assembled to a comprehensive method that will

incorporate risk analysis elements in the security requirement elaboration process.

The methods assembly process will follow the framework established by

Brinkkemper et al. (1999) for the construction of situational methods from a

collection of relevant method fragments. The best practices and insights gained from

the survey will help refine the method so it can be adjusted according to the needs of

practitioners.

Once a coherent and satisfactory method is created it should be validated through a

retrospective case study in a real life software system. Case studies are widely used

for qualitative research in the field of IS as they allow researchers to closely examine

how their innovation interacts with organizations in practical contexts (Darke,

Shanks, & Broadbent, 1998). For this case study, the application of our method will

include the modeling of the system and the identification of the security

requirements resulting from its analysis. During the process an iterative feedback

loop will ensure that modifications and adjustments are made to the method in order

for it to optimally reflect the experiences observed in practice. Since the studied

system will be already designed and operational, the requirements produced by the

application of our method will be compared with the already implemented

functionalities of the system in order to assess our method’s added value. Finally a

selection of both quantitative (e.g., questionnaires) or qualitative (e.g., interviews)

methods can be used to capture the opinion of the involved stakeholders and their

experiences regarding the added value and limitations of the developed method in

the construction of secure software.

In Figure 1.2 a process-deliverable diagram (PDD) is introduced to summarize the

sequence of activities and deliverables of our research attempt. A PDD is a meta-

modeling technique which integrates two diagrams, a meta-process model of the

activities on the left side and a meta-deliverable model of the deliverables on the

right. The rules and notation used for the construction of PDDs, as introduced by

van de Weerd and Brinkkemper (2008), dictate that the concepts on the right side of

the diagram are connected with the activities at the left side, from which they

6

derive. Process-Deliverable diagrams can provide a comprehensible illustration of

structured methods and will be used throughout this research for this purpose.

Figure 1.2: PDD describing the steps and deliverables of this research

7

1.4 Relevance

From a societal point of view, the implications of secure software systems are

multifaceted. Today's software systems handle sensitive information (e.g.,

healthcare, financial data) and perform critical operations (e.g., banking

transactions, public services) with costly implications when they fail to perform as

designed. Due to the plethora of applications of software systems in everyday life,

the need for secure interactions with them is as prominent as ever. In this context,

user security can include a number of criteria that should be met by the software

system. Literature sources indicate that confidentiality, authentication, integrity,

access control, availability and non-repudiation are the main factors that define

security (Mouratidis & Giorgini, 2007). All those different aspects will be taken into

account when designing our method in order to ensure the security of the users and

the integrity of the business processes supported by such systems.

Modern organizations heavily depend on software systems in order to conduct their

main business processes. The optimization and stability of those processes can be a

crucial factor for organizations seeking a competitive advantage in their field. It is

therefore of great importance that unauthorized or malicious interactions that can

disrupt those critical processes are prevented by security measures designed into the

systems that support them. It is well reported in scientific literature that when

security is implemented as an afterthought in such systems, it often leads to

inconsistencies and conflicts that create vulnerabilities (Mouratidis, Giorgini &

Manson, 2003). As a result, the organizations developing and maintaining those

systems have to spend additional time and money, redesigning them (Kim, Kim &

Park, 2005). In our work the designed method will support security elaboration

during the early stages of the development lifecycle in order to prevent the costly

implications of phenomena like the previously discussed.

Finally, from an academic standpoint, this thesis will contribute to the state of the

art of security requirements engineering methods. By designing and testing such a

method useful evidence and best practices will surface which can contribute to the

literature of the field security in multi agent software systems. In addition to that,

the responses gathered from the survey of practitioners will also result in

quantitative data on the state of practice which can provide valuable insights for

future works on the field.

8

Figure 1.3: Outline of the research project

1.5 Outline

The rest of this work is structured as follows; first, in Chapter 2, we present the

literature findings and introduce established methods in order to provide an

overview of the state of the art in the fields of security requirements engineering and

risk management. Next in Chapter 3, the structure of the survey and the results

gathered from it will be discussed and analyzed in order to identify the state of

practice in the field of software security. Combining the findings of these two

sections, in Chapter 4 we will present a new approach that combines elements of

security requirements engineering and risk management. Next, the newly

introduced approach will be tested in practical settings through a case study. The

design of the case study and its results will be presented in Chapter 5. The last

sections (Chapters 6) will include our conclusions regarding the research questions

of this research and discussion of the limitations, as well as future directions of this

work. An overview of the structure of the remainder of this work is provided in

Figure 1.3.

9

Chapter 2. Literature Review

In this section we analyze the state of the art of the literature areas of security

requirements engineering and risk management. We begin with a brief overview of

the method followed for this literature review; focusing on literature sources and

filtering criteria applied. Next we will present and discuss the literature findings,

focusing on the identified state-of-the-art methods, for each of which a small

overview will be provided. In the final part of the section a discussion will take place,

overviewing conclusions drawn from the literature of this area. Critical factors,

techniques and methods which can further assist our research will be identified and

our selection criteria will be elaborated.

2.1 Method

This exploratory literature study will follow the snowball method (Streeton, Cooke &

Campbell, 2004) which allows the researchers to identify relevant literature for a

field of study by gathering and filtering the works referenced by recent important

literature on the research topic. This particular method, also known as reference

tracking, was selected for this literature study due to its documented capability to

efficiently identify literature sources that may be missed by often time-consuming

predefined protocol-driven studies (Greenhalgh & Peacock, 2005). Initially the topic

and research objectives should be defined. In our case the two topics are “security

requirements engineering” and “risk analysis” methods and our research objective is

to identify systematic reviews on those topics which will provide an inventory of

methods to be studied. The initial selection of literature will be screened by title,

abstract and year of publication so only recent and relevant studies are selected.

Eligible data sources for this selection are journal and conference papers published

within the last twenty years, available in full text by the electronic library

subscription of Utrecht University searched via Google Scholar.

2.2 Security requirements engineering (SRE)

The area of interest for this research is software Requirements Engineering (RE)

and especially the sub-area of Security Requirements Engineering (SRE). The field

of requirements engineering is described by literature as “the branch of software

10

engineering concerned with the real-world goals for, functions of and constraints on

software systems. It is also concerned with the relationship of these factors to

precise specifications of software behavior, and to their evolution over time and

across software families” (Zave, 1997). Security has been considered as a non-

functional requirement in traditional requirements engineering (Chung & Nixon,

1995). Non-functional requirements (NFRs) are often challenging to identify due to

their qualitative nature, and thus difficult to accurately measure the degree of their

satisfaction by a proposed system design. Therefore, by expressing security

exclusively through the abstract construct of NFRs can lead to suboptimal results.

The consensus amongst researchers - e.g., (Baskerville, 1992), (Liu, Yu &

Mylopoulos, 2003), (Youseef &Liu, 2012) - is that in order to effectively built secure

software, it is of major importance to incorporate security in the early stages of the

development process in a structured and iterative manner. The sub-discipline of

Security Requirements Engineering provides such techniques, methods and

standards for coping with security requirements, therefore tackling the issue of

security throughout the IS development cycle (Mellado, Fernandez-Medina &

Piattini, 2007).

Model-based security requirements engineering is a prominent approach to develop

security critical software (Best, Jurjens & Nuseibeh, 2007). The construction of

models during the early stages of the development lifecycle (e.g., requirements and

design phases) contributes towards the creation of high quality system designs

(Basin, Doser & Lodderstedt, 2006). Models allow for conflicts and design flaws to be

identified and handled early in the development process thus providing formal

specifications for the later development phases of the system. An advantage of using

model-based approaches for the elicitation and elaboration of security requirements

is the automated model checking capabilities of CASE tools. Such automated

support tools can analyze a created model and check its consistency and

completeness, with speed and precision that cannot be achieved by manual analyses

of the models by security experts. Models can also “be used to abstract away

irrelevant details, rigorously specify the interplay between security and functional

requirements, and provide a basis for analysis and transformation” making them the

“cornerstone” of software and system development (Basin, Clavel & Egea, 2011).

2.2.1 UML-based methods

As previously discussed, traditional modeling approaches to security requirements

engineering include a number of established methods often supported by automated

analysis tools that guide the process throughout the software development lifecycle.

A number of such methods have originated from the Unified Modeling Language

(UML) (Rumbaugh, Jacobson & Booch, 2004) either by using UML techniques in the

11

context of security elicitation (e.g., use cases) or by expanding UML concepts to cover

security related elements of the designed system.

A positive aspect of UML-based approaches for security is the fact that they are

based on proven object-oriented modeling techniques, making them easier to

understand by the project developers compared to complex mathematical security

models. Another advantage is the intuitive nature of the created models which

makes them comprehensible by non-technical personnel such as management or

end-users of the system, therefore enabling their participation in the process of

threat identification and security elaboration. While such methods present certain

advantages for modeling simple user-system interaction they become harder to use

when the size and complexity of the designed systems grow (Liu, Yu & Mylopoulos,

2003). Another general limitation of use-case based techniques, as observed by

Mouratidis (2011), is the lack of support for security analysis in the social level,

since their focus is on the system level. Therefore a broader system perspective must

be included as part of security requirements engineering methods which should be

able to support social analysis and modeling (van Lamsweerde, 2004).

Abuse case modeling (McDermott & Fox, 1999)

Abuse case modeling was introduced by McDermott and Fox as an adaptation of use

cases to capture and analyze security requirements. The definition which the

authors provide is the following:

 “We define an abuse case as a specification of a type of complete interaction between

a system and one or more actors, where the results of the interaction are harmful to

the system, one of the actors, or one of the stakeholders in the system.” (McDermott

& Fox, 1999)

The goal of an abuse case is to describe the abuse of privilege used to complete an

activity (or group of activities) harmful to the system. Use case diagrams and use

case descriptions are borrowed from use case modelling to also describe abuse cases.

No additional notation or extra symbols need to be introduced. The concepts of

actors, objectives and scenarios are used to model an abuse cases and provide their

description.

Figure 2.1: Process diagram of abuse case modeling

12

Based on the proven object-oriented modeling technique of use cases, abuse case

modelling is easier to understand by the project developers compared to complex

mathematical security models. Additionally stakeholders such as end users and

customers can also participate in the modelling process since the models can be

intuitively understood with limited experience in UML or case modeling. All the

above contribute to the reputation of abuse case modelling as a useful

complimentary tool to support different phases of the development process.

A limitation of abuse case modelling, as mentioned earlier, is that it is not a

substitute for any part of the security engineering process but rather a tool which

complements each of its steps. Another general limitation of use-case based

techniques, as observed by Mouratidis (2011), is the lack of support for security

analysis in the social level, since their focus is on the system level.

Misuse Cases (Sindre &Opdahl, 2005)

Similar to abuse case modelling, misuse cases were introduced as an extension of

use case modelling in order to specify unwanted behavior for the developed system

in order to elicit security requirements. The creators of this method, Sindre and

Opdahl define misuse cases as follows:

“A sequence of actions, including variants that a system or other entity can perform,

interacting with misusers of the entity and causing harm to some stakeholder if the

sequence is allowed to complete.” (Sindre & Opdahl, 2005)

A misuser, who represents the actor that initiates a misuse case, can be associated

with other misusers and their misuse cases using relationships borrowed from use

case modelling (e.g., include, extend and generalize). Use-case diagrams and

lightweight or extended textual descriptions are used to capture a misuse case. A

five step process is proposed by the creators of the method in order to elicit security

requirements. The process begins with the identification of the critical assets that

need to be protected. Next the security goals to be achieved are defined, followed by

the identification of potential threats. The identification and analysis of risks follows

and the method is concluded by defining the security requirements for the system to-

be.

One of the positive contributions of misuse cases is that they enable the

organization, prioritization and traceability of security requirements, while they can

also be reused at different implementations or projects. Another advantage of the

method is the informal nature of its models which promote the participation of

stakeholders without extended technical knowledge at the process of threat

identification.

13

Limitations of misuse cases include the lack of a precise set of guidelines for their

definition which renders them unsuitable for certain kinds of threats especially

when a large number of critical assets are involved. The method also fails to provide

guidance on when and how identified security issues can be tackled and how the

produced security requirements can be linked to the rest of the development process.

Finally, when comparing misuse and abuse cases, Sindre and Opdahl (2005) find

abuse cases as a complementary approach to misuse cases especially since both

methods focus on different phases of the development lifecycle. Misuse cases are

more effective during the elicitation process whereas abuse case modelling is more

focused on the design and testing phases of the development. They also notice that

contrary to abuse case modelling, misuse cases are modeled in the same diagram as

the use cases, which allows potential relationships between the two to be easier to

identify.

Anti-Models (van Lamsweerde, 2004)

Anti-Models were introduced by van Lamsweerde (2004) as a method for elaborating

security requirements. The purpose of the method, as explained by its creator, is the

following:

Figure 2.2: Example of use and misuse cases (Source: Sindre & Opdahl, 2005)

14

“Our approach is intended to provide constructive guidance in early elaboration of

security concerns; it supports incremental reasoning on partial models and formal

derivation when higher assurance is needed; alternative threats and

countermeasures may be modelled explicitly.” (van Lamsweerde, 2004)

The method is based on the idea of modelling the two different aspects of the system

under development in an iterative and concurrent process. One model is concerned

with the interrelations between goals, agents, objects, assumptions and

requirements of the system-to-be. The second is an anti-model of the same system

which is concerned with threats arising from certain elements of the proposed

design, as well as whom and why may use them for malicious purposes. An iterative

sequence of activities aiming at producing security requirements is proposed by the

creator of Anti-models. This approach is described by the following steps:

a) Instantiate specification patterns associated with property classes such as

confidentiality, privacy, integrity, availability, authentication or non-repudiation.

b) Derive anti-model specifications threatening such specifications.

c) Derive alternative countermeasures to such threats and define new requirements

by selection of alternatives that best meet other quality requirements from the

model.

UMLsec (Jurjens, 2002)

UMLsec is an extension of the Unified Modelling Language (UML) introduced by

Jujens (2002), which allows developers to embed security related information and

conduct security analysis for the system to be (Best, Jurjens & Nuseibeh, 2007) .

UMLsec uses already established UML diagrams to model different security aspect

of the system under development, such as integrity or confidentiality. An example of

this property of UMLsec is given by Melado et al. where it is noted that “state chart

diagrams model the dynamic behavior of objects, and sequence diagrams are used to

Figure 2.3: Example of "secure links" stereotype of UMLsec (Source: Jurjens, 2002)

15

model protocols […] deployment diagrams are also used to model links between

components across servers.” (Melado et al., 2010). Security requirements are

formulated using UML mechanisms such as stereotypes and tags. Constraints give

criteria that determine whether the requirements are met by the system design, by

referring to a precise semantics of the used fragment of UML (Best et al., 2007).

Since using UML techniques and diagrams is a common practice among developers,

it is easier for them to incorporate UMLsec in the development process even when

they lack expert knowledge on the security domain. Another valuable aspect of the

UMLsec approach is its ability to contribute in security specification from the early

steps all the way through the development cycle (Best et al., 2007).

2.2.2 Goal-oriented methods

Goal-oriented approaches to security requirement engineering seem to be better

equipped to deal with complex systems that support a combination of software and

social actors. As suggested by literature “goal-oriented approaches to security

requirements engineering seem to be appropriate for designing secure STSs, since

they build upon the concepts of intentional and social actors, who have objectives to

achieve and interact with others to achieve them. “(Paja, Dalpiaz, Poggianella,

Roberti & Giorgini, 2012). Goals are able to cover both functional (e.g., services to be

provided) and nonfunctional concerns (e.g., safety, security, performance) of the

design and can be used to model objectives that the system under design should

achieve (Van Lamsweerde, 2001). Those objectives, expressed through goals and

their decomposition to subgoals, often reflect high level business goals for the

system’s stakeholders. This way the system requirements can be influenced by the

business context while also non-technical stakeholders can be part of their

identification process, therefore enabling the alignment between business and IT for

the organization (Yu & Mylopoulos, 1998).

Secure i* (Elahi & Yu, 2007)

Secure i* was proposed by Elahi and Yu (2007) as an extension to the i* framework

introduced by Liu, Yu and Mylopoulos (2003). Secure i* makes use of the concepts

and notation introduced by i* but also adds the concepts necessary for security

trade-off analysis. According to the authors, “the proposed modeling notation is

accompanied with a qualitative trade-off analysis procedure based on goal model

evaluation methods, which provide the designers with assessment of security

mechanisms’ impact on actors’ goals and threats.” (Elahi & Yu, 2007).

16

The proposed method uses the already establish notation of the i* framework to

model actors, goals, resources and dependencies between them. It allows the

definition of actors within a system for whom security and privacy are goals to be

achieved. Those high-level goals can later be decomposed into more specific sub-

goals that can be achieved by certain implementable mechanisms (e.g., encryption,

firewalls) in the system-to-be. Adding to that notation, extra concepts are introduced

to model threats and vulnerabilities. For example the vulnerability point modeling

element was added to i*, accompanied with a graphical notation to connect a

vulnerability point to the corresponding attacks, and to attach it to a resource.

It has been reported that a possible limitation of Secure i* is the scalability of the

goal models it creates (Elahi & Yu, 2007). As more goals are added to the model the

complexity of the trade-off analysis grows and the model may become too complex

and inefficient to use. Another limitation inherent to this approach is the selection of

the security mechanisms to be implemented, which is left at discretion of the

stakeholders. Since system developers may not always be aware of every security

mechanism and its contributions, some risks for the system-to-be may arise.

Figure 2.4: Example of Secure i* notation (Source: Elahi & Yu, 2007)

17

Secure Tropos (Mouratidis, Giorgini & Manson, 2003)

The Secure Tropos method was introduced by Mouratidis, Giorgini and Manson as

an extension of the Tropos methodology (Giunchiglia, Mylopoulos, & Perini, 2003) in

order to focus on the elicitation of security requirements throughout the

development stages. Using the rules and notation established by Tropos as a basis,

the creators of Secure Tropos introduced new concepts focusing on security. As a

result Secure Tropos makes use of the Security Diagram which “represents the

connection between security features, threats, protection objectives, and security

mechanisms that help towards the satisfaction of the objectives” (Mouratidis,

Giorgini & Manson, 2003). This type of diagram makes use of other novel concepts

such as Security Constraints, Secure Entities, Dependencies and Capabilities in

order to illustrate goals, tasks and resources of the system, their interdependencies,

constraints imposed on them and their capabilities to contribute towards security.

The modelling process begins with the creation of the Security Diagram where the

security needs of the system to-be are displayed along with possible security

problems and their solutions. Next the Security Constraint modelling takes place,

where constraints imposed on the system are related to the environment in which

the system will function. These constraints may arise from the stakeholders of the

system or can be identified through the Security Diagram and can be countered by

assigning Secure Capabilities to the Entities of the system (e.g., actors, goals) during

the Secure Entities and Secure Capabilities modelling. All the different modelling

stages are spread throughout the various stages of the development lifecycle so the

whole process, from the early requirements to the design stage, can be supported by

the Secure Tropos method. A CASE tool, secTro tool (Pavlidis & Islam, 2011), has

been developed to support the modelling process, thus aiding the adoption and usage

of the Secure Tropos method in practical settings.

According to the creators of the method, its main advantage is “the iterative nature

of the methodology, [which] allows the re-definition of security requirements in

Figure 2.5: Example of Secure Tropos notation (Source: Mouratidis, Giorgini & Manson, 2003)

18

different levels therefore providing a better integration with system functionality”

(Mouratidis, Giorgini & Manson, 2003). Secure Tropos also offers developers the

capability to reason about security issues from both a technical and social point of

view, in different stages of the development process, while also providing validation

that the proposed design satisfies the initial requirements (Mouratidis, 2011).

STS-ml (Dalpiaz, Paja & Giorgini, 2011)

The Socio-technical Systems modelling language (STS-ml) is an actor- and goal-

oriented security requirements engineering framework (Paja, Dalpiaz & Giorgini,

2012) which makes use of similar concepts with the Tropos and Secure Tropos

methods to model actors, goals, security needs, delegations etc. In STS-ml the

system to-be is modelled through three different perspectives which create a

representation of the system that includes a social, an information and an

authorization view. Those three complementary views of the system make possible

for the system designer to analyze the various interactions between actors and

information from different perspectives and according to the security needs unique

to each actor or type of interaction.

The first step in the modelling process is the creation of the social view of the

system. In this view the main actors and their goals within the system are

identified. Each actor has a personal set of goals which can be decomposed to a sub-

goal tree, part of which can be delegated to other actors within the system in order

 Figure 2.6: Example of social view model created by the STS-tool (Source: Paja, Dalpiaz & Giorgini, 2013b)

19

to be accomplished. Delegated goals along with documents containing informational

assets are subject to security constraints which are included in this view of the

model. In the information view the documents exchanged between actors are

decomposed to pieces of information and ownership is assigned. Finally the

authorization view represents the authorization that the actors provide over the

information they own within the system. The STS-tool (Paja, Dalpiaz, Poggianella,

Roberti & Giorgini, 2012) was developed to support this iterative modelling process

while also providing automated security requirements derivation and consistency

checking to validate the created models.

STS-ml creates flexible system designs where each actor can independently define

his own security needs for his interactions with the rest of the system. It also able to

handle complex system designs, when used in practical settings, where it can

identify security conflicts which may would be hard to identify manually or by

traditional approaches (Paja, Dalpiaz & Giorgini, 2012). The automated support

provided by the STS-tool is another strong point of the method.

2.3 Risk management

Another point of interest in our research is how to integrate risk management

elements to the security elaboration process. Risk management encompasses three

processes: risk assessment, risk mitigation, and evaluation and assessment

(Stoneburner, Goguen & Feringa, 2002) as it aims to identify risks, represented by

vulnerabilities to an organization’s assets and to reduce them to an acceptable level.

A number of risk analysis methods for software systems can be identified by

literature, amongst the most popular are CORAS (Stolen et al., 2002), CRAMM

(Yazar, 2002), OCTAVE (Alberts, Dorofee, Stevens & Woody, 2003), IS Risk Analysis

based on a Business Model (Suh & Han, 2003) and ISRAM (Karabacak &

Sogukpinar, 2005). Some of those methods produce qualitative results which usually

represent the level of risk in a “Low-High” scale, while other produce quantitative

outcomes in the form of metrics, such as Annual Loss Expectancy (ALE). While

quantitative outcomes are usually preferred, as they are considered more solid, they

often require a number of mathematical calculations to be performed by analysts

dedicated to the process. Qualitative methods may be easier to implement in terms

of time and resources, nevertheless they produce more subjective results. Next a

number of state-of-the-art risk management methods will be overviewed

accompanied by Process Deliverable Diagrams (PDDs) which will outline the main

activities and concepts of each identified method.

20

CORAS

The CORAS framework (Stolen et al., 2002) was created in order to provide risk

assessment for security critical systems. CORAS combines elements of different risk

management methods, modelling languages and tools to provide model-based risk

assessment (Stolen et al., 2002). The Unified Modelling Language (UML) is an

important tool used in CORAS as the main means of modelling the system and

elaborating on security issues. The CORAS framework, according to its creators, is

“founded on four pillars”, namely: a risk documentation framework, a risk

management process, an integrated risk management and development process and

a platform of tool inclusion.

The risk management process, which is the subject of our interest in this framework,

requires the participation of stakeholders and experts in brainstorming sessions in

order to, initially, identify the context of the system’s extended environment, and

potential risks. Next the identified risk factors are analyzed in order to determine

their likelihood and their impact in the system. A risk evaluation follows, where

identified risks are grouped and prioritized, in order for the experts to provide treat

advice as the final step of the process.

Figure 2.7: CORAS Framework PDD

21

CRAMM

CRAMM (CCTA Risk Analysis and Management Method) is a qualitative risk

analysis and management tool developed by UK government’s Central Computer

and Telecommunications Agency in 1985 (Yazar, 2002). The first step in the

CRAMM risk management process (“Initiation”) is concerned with data collection

about the system through questionnaires, interviews and meetings with its

stakeholders and users. Next important informational assets (data, software,

physical assets) are identified and evaluated by the users of the system, “values are

derived from the impacts of breaches of confidentiality, integrity, availability and

non-repudiation” (Yazar, 2002).

Threats and vulnerabilities assessment follows, where security analysts with the

input of the users assess the level of threat to assets and the level of vulnerability to

threats in a “Low – High” scale. The next step is the Risk Calculation, where each

group of assets receives a risk value for each threat it is potentially vulnerable to.

Similarly to the previous step a seven point scale scoring system is used for the

Figure 2.8: CRAMM PDD

22

calculation of each assets group risk value. Finally the Risk Management phase

produces a risk management report which, based on the risk analysis findings,

describes what countermeasures are required to protect the system against the

identified threats. Overall, CRAMM is a structured approach which promotes user

involvement in the risk management process and provides quantifiable results,

comprehensible to non-technical users. On the other hand a number of experienced

security experts are necessary for the successful completion of the CRAMM process,

which is highly documentative and requires a large timeframe.

OCTAVE

OCTAVE (Alberts, Dorofee, Stevens & Woody, 2003) is a qualitative risk evaluation

method aiming to assist organizations in making strategic security decisions. The

process is asset-driven, iterative and can be self-directed by already existing

technical and managerial personnel within the organization. The first main phase

deals with the creation of “Asset-based Threat profiles” where the most important

informational assets of the organization are identified and potential threats for each

of them are listed. In the second phase the physical and technical infrastructure of

Figure 2.9: OCTAVE method PDD

23

the organization is evaluated for vulnerabilities that can threaten its critical assets.

In the final phase the impact value for the identified threats is given a qualitative

value from a “Low-High” scale, according to different evaluation criteria. As a result

the security strategy and risk mitigation plans of the organization are formulated

based on the input gathered from the previous analysis. According to the creators of

OCTAVE, it does not require external assistance for its completion except from the

documentation and form templates provided by the method. This makes the process

flexible and easier to implement while also raising the security awareness of the

participating organization members. On the other hand the qualitative nature of the

method’s output coupled with the subjective evaluations of the project’s team used as

input, may impact the overall quality of the result.

ISRAM

ISRAM (Karabacak & Sogukpinar, 2005) is a quantitative risk analysis method

focused on assessing the security risk of an organization through paper-based

surveys. The process of ISRAM is focused on creating surveys with weighted

questions that when completed, can give a clear overview of the as-is situation of the

organization. Initially, potential security problems are identified by the security

analysts in charge of the ISRAM process. Those security issues are the focus of the

survey questions which attempt to identify the probability and the consequences of

their occurrence. When the survey results are collected risk tables are used to

calculate a risk value for each threat factor, based on the survey answers provided

by the users. Finally all the individual risk values are inputted in the risk

calculation formula used by ISRAM which calculates a single qualitative risk value

in a scale of 1 to 25, which is the main outcome of the process. Overall, ISRAM

provides qualitative results sourcing from user input which promotes involvement

and security awareness. Nevertheless it only partially covers the risk management

process as it is mainly concerned with identifying potential risks but not elaborating

on their management with countermeasures. It also requires experienced security

analysts and a wide timeframe to create, distribute and analyze paper-based

surveys.

24

ISRA-BM

The IS Risk Analysis based on a Business Model (ISRA-BM, Suh & Han, 2003) is a

quantitative risk management method where “the importance level of various

business functions of the business model and the necessity level of various IS assets

are determined” (Suh & Han, 2003). The process is initiated in on a high level where

the mission and the objectives of the organization are identified and associated with

business functions which are then decomposed further to sub-functions. In the

lowest level of this functional decomposition lay assets (physical, informational etc.)

which are vulnerable to threats. Before the risk analysis begins the business

functions and assets within scope are evaluated according to their importance

towards achieving the organizational goals by a variety of stakeholders, in a

hierarchical prioritization process. Next relationships between assets and business

functions are mapped on an asset dependency diagram and a cross-table is created

in order to calculate the relative importance of each asset. The probability of various

threat occurrences is identified by security experts using available techniques (e.g.,

Delphi) and plugged in to the formulas available by the method to calculate the

annual loss expectancy (ALE) for the organization.

Figure 2.10: ISRAM PDD

25

 The advantage of ISRA-BM is that it provides a qualitative result by using a

concrete underlining mathematical framework. Additionally, since it focuses on

linking high level strategic goals to the risk management process, it requires the

active involvement of both experts and management in the process, thus promoting

security awareness in the highest organizational level. Some limitations of this

approach, as noted by its creators, lay in the level of detail of the asset dependency

diagram and in the precision of the formulas calculating monetary loss as there is a

plethora of contributing factors.

Figure 2.11: ISRA-BM method PDD

26

2.4 Analysis of results and baseline selection

The literature findings of this section brought forward some critical factors that

determine the success of a security requirements engineering process, thus highly

affecting the quality of the designed system. The most important factor is the

elaboration of security from the early steps and throughout the software

development lifecycle, which was a point highlighted by the majority of the

literature of the area. By introducing security at the early requirements phase and

elaborating on it through each phase of the development process, the resulting

system will incorporate security features by design. This way, system developers can

avoid costly redesigns due to security issues that were never discovered or

discovered too late in the development of the software system. Another important

factor is the context on which security is elaborating during the development

process. It is often noted in software projects that security is considered a technical

issue usually tackled at a low-level from a technical scope. Nevertheless, the

consideration of the social aspect of security is emphasized in literature, especially

when dealing with modern systems with numerous and complex interactions

between human actors and software agents (Paja et al., 2012). A high-level social

overview of the interactions between the participants of the system should provide

useful input for the security elaboration of the system. The creation of such an

overview can also facilitate the discussion of security at an organizational level,

linked to high-level strategic goals which the designed system aims to accomplish.

The participation of a multitude of system stakeholders, with varying backgrounds

(e.g., upper management, technical personnel, etc.), in the process also contributes

in that direction.

A number of security requirements engineering methods were also overviewed. As

already discussed, methods based on UML and use cases, while intuitive and user-

friendly, do not seem to be able to handle larger scale systems with more complex

interactions between humans, organizations and software systems. They can provide

convenient tools to describe some basic interactions between specific users and

software agents but they are not adequate for the purposes of modern software

system modelling. Goal-oriented methods, on the other hand, provide more fitting

approaches as they are able to create comprehensive system models, capable of

illustrating complex relationships while also providing automated support and

validation throughout the process. Additionally, goals are a concept which is easier

to associate with high level organizational needs and strategic decisions, thus

allowing the involvement a wider spectrum of stakeholders in the process, raising

security awareness throughout the organizational ranks.

27

Abuse
cases

Misuse
cases

Anti-
Models

UMLsec Secure i*
Secure
Tropos

STS-ml

Support from early
requirements phase - - - + + + +

Support of social analysis
from an organizational

point of view
- - - - + + +

Integration of high level
strategy and

organizational needs
- - - - ± ± +

Able to model complex
systems - - - - ± + +

User-friendly, intuitive + + + + ± ± +
Automated support tool

availability ± ± - ± + + +

 “+”: total compliance, “±”: partial compliance, “-“: no compliance

Table 2.1: A comparison of SRE methods

Table 2.1 provides a quick overview of how the identified factors correspond to each

of the previously discussed methods for security requirements engineering (cf.

Section 2.2). As already mentioned, a common shortcoming of UML-based methods,

in our case abuse, misuse case, anti-models and UMLsec, is their inability to support

social aspects of analysis and integrate high level organizational goals. The nature of

their analysis (mostly variants of UML use cases) leads to limitations on the

complexity of the interactions it can support, thus making them unfit for modeling

large systems. With the exception of UMLsec, the rest of the presented UML-based

methods are used as a complimentary tool to evaluate the security of an already

designed system, therefore they cannot support the development process during its

initial phases. Finally, since these methods are UML-based they can be partially

supported by a number of already existing CASE tools used for UML projects.

The three goal-oriented methods presented, namely Secure i*, Secure Tropos and

STS-ml, were developed in order to support the early requirements phase of the

software development lifecycle, as it is critical for security to be taken into account

early during the system’s development process. Another common attribute of these

methods is their ability to capture the social aspects necessary for the development

of modern complex systems. Through the usage of goal-oriented analysis, high-level

organizational strategy can be reflected in the design choices made by the system’s

designers. Goal-models offer the ability to decompose a high level goal to a series of

smaller, low-level activities thus making such methods able to handle complexity

and scalability while creating more or less clear and comprehensible models. Their

support from automated tools for the construction and validation of the models is

another positive point, since the analysis process can be more precise and brief than

manual attempts.

28

With all the above mentioned factors taken into account, STS-ml stands out as the

most fitting method for the context of our research. The rationale behind this

decision is based on the ability of the method to handle large scale systems, focusing

on the security of delegations of goals and informational assets between different

actors. The tool support available was also an important parameter since automated

reasoning support and model validation are critical the development of such

systems. Lastly, a number of published case studies and the personal experience of

the authors with STS-ml testify to its performance in practical settings, making it a

fitting choice for further research and possible expansions with new features.

Risk management was another topic of interest in this study, as it represents an

important part of security in software systems. A number of methods for risk

management were overviewed, both qualitative and quantitative in nature, most of

which required stakeholder participation and expert support during the process.

Techniques for risk assessment included in such methods can be a useful addition to

the SRE process and a prime candidate for expanding the STS-ml method. More

specifically, techniques like hierarchical prioritization of assets, risk prioritization

and asset-dependency diagrams, included in ISRA-BM method, can be adapted to fit

STS-ml process and add a new perspective of risk management in the process. The

assembly of such a new method, based on the findings of this section, will be

elaborated in Chapter 4 of this work.

29

Chapter 3. State of the Practice

This section focuses on the evaluation of the state of practice in the field of security

requirements engineering and risk management. The evaluation was performed

using the results of a survey created for practitioners and researchers of the field,

distributed and completed online. In the following sub-section the method followed

for the creation, distribution and analysis of the survey will be elaborated. Next, the

results for each of the survey’s questions will be presented, using relevant statistical

analysis. Finally, our findings will be discussed and conclusions will be drawn

concerning the state of the practice.

3.1 Method

The questionnaire included in the survey was created by the authors of this work.

The questions included revolved around the demographics of the subjects, their

practical experience with security and risk management during software

development projects and their opinion on several critical factors and best practices,

identified by our literature study (cf. Chapter 2). After a number of iterations a final

set of questions was decided and a test run of the survey was performed. During the

test run, five volunteers with a background in the fields of our study, completed the

survey and provided feedback about its quality. Final adjustments were made,

according to the feedback received before the final version of the survey (cf.

Appendix A.1) was solidified. An extensive overview of the questions included in the

survey will be provided in the following section (cf. Section 3.2).

The survey form was uploaded in an online cloud service (Google Drive) and a link

for its completion was distributed to online communities. Eligible subjects for our

survey included researchers, practitioners and students involved in software

development projects, with no limitation on location, age, or experience. The

platform hosting the survey ensured the anonymity and confidentiality of

participants. However, the subjects could select to provide an e-mail address if they

were interested in receiving the results of the survey. In order to attract a diverse

group of participants, the survey was linked in a variety of information security and

software security groups in social media (LinkedIn, Facebook) and a relevant

mailing list (AISworld listserv). Participants from the personal and academic

network of the authors were also recruited via direct e-mail communication. The

survey became available online from late July up to the end of September of 2014.

30

The responses of the participants were gathered by the online hosting platform and

exported for further statistical analysis. The analysis was performed using IBM’s

SPSS software and MS Excel for the creation of relevant graphs and charts.

Descriptive statistics (e.g., median, mean, standard deviation) are calculated for

each of the questions. These statistical findings will allow us to get an overview of

what practitioners consider as best practices and will be a valuable input for the

creation of our new method.

3.2 Results

The initial questions of the survey aimed to measure the demographics and some

background information of the responders. The first question asked participants to

select their age group for a number of available choices (18-24, 25-34, 35-54, 55-64

and over 65). Out of the twenty four (24) total responses collected, thirteen (13)

responders were in the age group of 35-54, eight (8) were in the group of 25-34 and

one at each of the rest age groups, as illustrated in Figure 3.1. In the second

question the geographic location of the responder was enquired, and a list of all the

continents was provided as the response. As seen in Figure 3.2, the majority of our

responders (17 out of 24) were located in Europe, while five (5) were from North

America and two (2) from Asia.

Next, participants had to indicate their background in the field of software /

information systems engineering. The available responses included “Researcher”,

Figure 3.2: Location of survey responders Figure 3.1: Age of survey responders

31

which was selected by seventeen (17), “Practitioner” which was selected by four (4)

and “Student” selected by three (3) responders (Figure 3.3). The years of experience

in the field of software engineering and information security of each participant

were measured by the next two questions. In both questions participants could select

an available response ranging from “No experience” to “10 years of more”. As

illustrated in Figure 3.4, twelve (12) responders indicated experience of “10 years or

more” in the field of software engineering, five (5) indicated "more than 5 but less

than 10” years of experience, six (6) indicated experience of “more than 1 but less

than 5” years, while one (1) indicated no experience at all in the field.

Regarding the responder’s experience in the field of information security, five (5)

participants had no previous experience, one (1) had less than a year, nine (9)

indicated “more than 1 but less but 5” years, four (4) selected “more than 5 but less

than 10” years and five (5) had “10 or more” years of experience (Figure 3.5). Finally,

the last question for the demographics section aimed at evaluating how recently the

responders were involved in a software development project. From a total of twenty

four (24) responders, twelve (12) indicated that they are currently involved in a

project, one was involved within the last 2 years, eight (8) were involved more than

two years ago while three (3) have never been involved in a software development

project (Figure 3.6).

Figure 3.3: Background of responders
Figure 3.4: Experience in SW/IS engineering

32

The next part of the survey was concerned with the security elaboration process

during the development lifecycle. The first question here, asked participants how

often they considered the social aspects of the system, when discussing and

analyzing its security. In this question the responders could select a value from a 5-

point scale ranging from “Never” to “Always”. Descriptive statistics reveal that the

median response is “Often”, which was the 4th point in the scale (mean= 3.61, sd=

1.53), with over 60% of responses being “Often” or “Always” (Figure 3.7). In a

similar tone, the next question inquired how often did other technical systems,

already in place, got considered during security elaboration. Once again the

responses ranged in a 5-point scale from “Never” to “Always”. The median response

to this question, according to the statistical analysis, is “Sometimes”, which is the

mid-point of the scale (mean= 3.52, sd= 1.08) selected by 37.5% of the responders

(Figure 3.8).

Figure 3.5: Experience in SW/IS security Figure 3.6: Involvement in SW/IS development projects

Figure 3.7: Consideration of social aspects of the system Figure 3.8: Consideration of technical environment of the system

Median: 4.00

Mean: 3.61

Std. Dev.: 1.53

Median: 3.00

Mean: 3.52

Std. Dev.: 1.08

33

 The next question asked the participants of the survey how beneficial they

considered analyzing system security from an organizational, instead of a purely

technical, perspective. The available answers were on a 5-point scale ranging from

“Very harmful” to “Very beneficial”. The median response was “Very beneficial”

which is the highest value of the scale (mean= 4.33, sd= 0.816), selected by 54.2% of

responders. Similarly, the subsequent question dealt with how beneficial

participants considered the adoption of security from the early stages (requirements

phase) of the software development lifecycle. The same 5-point scale, used in the

previous question, was available here and the statistical analysis revealed the

median response as “Very beneficial” (mean= 4.71, sd= 0.624), selected by nearly

80% of responders.

The last question of the first part of the survey aimed to determine how often is

security discussed and analyzed during each phase of the software development

lifecycle. The phases of the development lifecycle were listed from the earliest to the

latest and a 5-point scale ranging from “Never” to “Always” was provided. The option

“Don’t Know” was also available for participants with no experience at certain

phases of the lifecycle. The descriptive statistics were analyzed for each of the

development lifecycle phases and are presented at Table 3.1.

The descriptive statistics analysis shows that the median frequency value for the

first three phases (Early requirements, Design and Implementation phase) is

“Often” (4th point on the scale) while it drops towards “Sometimes” (mid-point of the

scale) for the remaining three phases of the lifecycle (Testing, Deployment and

Maintenance phase). A graphical overview of the distribution of the responses is

provided in Figures 3.9 and 3.10.

Table 3.1: Survey results, frequency of security elaboration for each phase of the development lifecycle

34

The second part of the survey explores the perceived importance of different roles

and factors contributing to the security elaboration of a software system. Initially

the responders have to evaluate the importance of a number of roles participating in

the development process. The scale used here is a 5-point scale with values ranging

from “Not important at all” to “Essential”, along with the additional option of “Don’t

know”. The descriptive statistics for each of the roles is presented at Table 3.2 while

a graphical representation of the responses is illustrated in Figure 3.11. A quick

overview of the results reveals that the role of the security expert scores the highest

in perceived importance with a median value of “Essential”, while the rest of the

roles are all rated with a median value of “Very important”.

Figures 3.9, 3.10: Frequency of security elaboration during each phase of the software development lifecycle

Table 3.2: Survey results, perceived importance of roles during security elaboration

35

The importance of various factors influencing the approach followed to elaborate on

security during the development lifecycle is evaluated by the responders. A 5-point

scale is also used here, similar to the previous question, to represent how important

each of the listed factors is perceived. Table 3.3 provides a quick overview of the

descriptive statistics for each factor, where we can conclude that all factors were

considered as “Very important” (median= 4) except the “reputation of the approach”

which was evaluated as “Neutral” (median= 3). A visual breakdown of the

evaluation results is provided in Figure 3.12.

Table 3.3: Survey results, perceived importance of factors influencing the security elaboration process

Figure 3.11: Perceived importance of roles during SW development

36

The third part of the survey contained questions regarding the adoption of

systematic approaches and automated tools during the security elaboration process.

In more detail, the responders had to answer how often they use systematic

approaches and automated support tools when elaborating on a software system’s

security, and how beneficial they consider these practices. Once again, all answers

were provided in a 5-point scale ranging from “Never” to “Always” when measuring

frequency and from “Very harmful” to “Very beneficial” when measuring usefulness.

The results of the statistical analysis on the gathered data indicated that the

median response for the frequency of usage of systematic approaches was

“Sometimes” (mean= 3.27, sd= 1.386) which corresponds to the middle of the 5-point

scale (Figure 3.13). Similarly, the frequency of usage of automated support tools had

a median response of “Rarely” (mean= 2.41, sd= 1.5) (Figure 3.14). Regarding the

perceived benefit of systematic approaches for security elaboration, the median

response was found to be “Very beneficial” (mean= 4.36, sd= 0.848). In a similar

question about the perceived benefit of automated support tool usage, the median

response was “Beneficial” (mean= 3.80, sd= 1.105). This indicates that the

responders had a very positive opinion about both factors despite their low frequency

of use.

 Figure 3.12: Perceived importance of influencing factors

37

The final part of the survey was centered on risk management during the

development lifecycle. The first question in this part, aimed to measure how often is

risk discussed and analyzed during each phase of the software development lifecycle.

The phases of the development lifecycle were listed from the earliest to the latest

and the answers were given in a 5-point scale ranging from “Never” to “Always”. The

option “Don’t Know” was also available for participants with no experience at certain

phases of the lifecycle. The descriptive statistics were analyzed for each of the

development lifecycle phases and are presented at Table 3.4.

From the statistical analysis results above it can be concluded that risk

management takes place more often during the design phase of the development

lifecycle, with a median value of “Often”. During the early requirements and

implementation phase risk management is “Sometimes” performed, according to the

median value given by responders. In the last three phase of the lifecycle (testing,

deployment and maintenance) risk management is a less common occurrence as

indicated by the lower median values selected by the survey responders. A better

Figure 3.13: Frequency of use of systematic approaches Figure 3.14: Frequency of use of automated tools

Median: 2.00

Mean: 2.41

Std. Dev.: 1.5

Table 3.4: Survey results, frequency of risk analysis for each phase of the development lifecycle

Median: 3.00

Mean: 3.27

Std. Dev.: 1.39

38

illustration of the responses given for the occurrence of risk management for each

phase of the development lifecycle is provided in Figure 3.15.

The next question regarded the importance of different types of assets during the

risk management process. Choosing from a 5-point scale ranging from “Not

important at all” to “Essential” the participants had to evaluate four different asset

groups (Information, Applications, Infrastructure and Organizational assets)

according to their importance for the overall system’s security. A “Don’t know”

option was also available. The descriptive statistics for the responses of this question

are provided in Table 3.5.

Figure 3.15: Risk management during the development lifecycle

Table 3.5: Survey results, perceived importance of different asset types during risk management

39

The statistical analysis reveals that all asset groups are considered at least “Very

important” with Information assets achieving a median value of “Essential”. A

graphical illustration of the asset groups’ evaluation is provided by Figure 3.16.

Next, the frequency of integration of risk management with the security elaboration

process is inquired. A 5-point scale ranging from “Never” to “Always” was provided

to the participants. The statistical analysis of the responders’ input revealed a

median response of “Often” (mean= 3.18, sd= 1.435), meaning that elements of risk

analysis are often integrated in the security requirements elaboration process in

practice (Figure 3.17). Similarly, the next question aimed to identify how often

systematic approaches are followed during risk analysis, using the same scale of

answers as the previous question. Here the median response, according to the

statistical analysis performed, is “Sometimes” (mean= 2.86, sd= 1.356) which

represents the mid-point of the 5-point scale used to measure frequency (Figure

3.18). Finally, the last question of the survey inquired about the usage of qualitative

and quantitative methods to perform risk analysis. In order to identify whether

qualitative or quantitative methods are preferred in practical settings a 5-point scale

was used, with values ranging from “Only qualitative” to “Only quantitative”. The

analysis of the results revealed a “Neutral” median response (mean= 2.60, sd=

0.995), representing the mid-value of the scale, implying no significant preference

for either type of risk analysis method.

Figure 3.16: Perceived importance of asset groups

40

3.3 Findings

From the results of the statistical analysis of the survey responses, conclusions can

be drawn regarding the state of practice. The majority of responders indicated that,

according to their previous experience with such projects, the social aspects of the

system are usually considered during security elaboration (see Figure 3.7).

Similarly, the technical infrastructure already in place was also a factor to consider,

albeit less frequently than the social aspects (see Figure 3.8). It would be

interesting, for future research, to investigate which type of projects take such

factors into account and what is the rationale behind that decision.

Responders also indicated a very positive opinion about the benefits of including an

organizational view during the security consideration, instead of approaching it from

solely a technical point of view. These findings agree with the literature suggestions

about the need of considering social aspects of the system under design, from a high-

level organizational point of view, when dealing with security. Social high-level

modeling will therefore be an important part of the analysis provided by our new

method.

Regarding the place of security elaboration in the software development lifecycle, a

very positive opinion was expressed regarding the benefits of the adoption of

security in the early stages of the lifecycle, during the requirements phase. The

actual adoption of security, according to the responders’ past experiences, usually

takes place during the initial three phases of the development lifecycle, namely

Figure 3.18: Frequency of systematic approach usage during risk analysis Figure 3.17: Risk analysis integration with security elaboration

Median: 4.00

Mean: 3.18

Std. Dev.: 1.435

Median: 3.00

Mean: 2.86

Std. Dev.: 1.356

41

requirements, design and implementation phase(see Figures 3.9 and 3.10). These

results indicate that the benefits of early security elaboration are known but, in

practice, security may be dealt with at a later stage of the development, after the

requirements phase. Our method will thus aim to encourage security elaboration

from the initial phase of the development lifecycle.

Next different factors and roles contributing to the security elaboration process were

evaluated by the responders. According to the results, the input of all different roles

(analysts, architects, developers, end users, etc.) is considered important, with the

role of the security expert standing out as essential for the security elaboration

process (see Figure 3.11). Factors that influence the selection of the method used for

security elaboration vary from situational project needs and past experiences of the

analysts to the standardisability and tool support of the method (see Figure 3.12).

Similarly, systematic approaches and automated analysis tool support were

perceived as very beneficial for the security elaboration process, but their use in

practical settings was indicated as limited.

The above results suggest that the input of a multitude of roles and stakeholders is

an important part of the process, as also suggested by the scientific literature of the

area. Additionally while systematic approaches and support tools are recognized as

beneficial, their adoption in practice has yet to become widespread. All the above

factors will be taken into account during the development of a new systematic

method, involving a variety of stakeholders and experts to the security elaboration

process.

Finally, regarding the risk management process, the responders indicated that,

according to their experience, it more often takes place during the design phase of

the development lifecycle (see Figure 3.15). It was also reported that risk analysis is

often integrated with the security elaboration process. Systematic approaches for

risk management were only occasionally used, while no preference was reported

towards quantitative or qualitative methods. Informational assets were regarded as

the most important asset group during the risk management process, with the rest

of the asset groups (software, physical and organizational assets) still having a

significant value (see Figure 3.16). This integration of risk management elements in

the security elaboration process will play a key role in our newly developed method,

which will focus on the informational assets of the system and provide risk

evaluation and prioritization from the early stages of the development.

Our approach to identify the state of practice presented some limitations which

should be addressed. The sample size of our survey included twenty-four responders,

which may hinder the generalizability of the survey’s findings. This can be

attributed to a multitude of factors, the most important of which was the limited

timeframe available for the distribution and analysis of this survey. A greater

number of responders would also be possible if the survey had been communicated

42

through other mediums, since in our case it personal invitations via e-mail that

attracted the majority of our responders. Another point worth elaborating is the

composition of the responder’s group. As previously presented (cf. Section 3.2), most

of the responders had a research background while practitioners were limited to a

small percentage of the overall subjects (4 out of 24). This fact may have affected our

findings, skewing them towards opinions more popular in the field of research than

in practice. The same factor also made comparative between-groups analysis

impossible, as the resulting groups would be highly unequal in size.

Nevertheless, as indicated by their demographics, most of the responders had

multiple years of experience in the field of software engineering, with involvement in

software development projects, regardless of their background as a practitioner or

researcher. Therefore, their level of expertise and their past experiences make their

contributions to this survey valuable.

43

Chapter 4. Integrating elements of risk

management in SRE

In this section we will introduce a new method that integrates elements of risk

management in the security requirements engineering process. First the method

assembly process will be presented where an overview of the building blocks of the

method will be provided and the rationale behind their selection will be elaborated.

Next the newly created approach will be presented by focusing on the activities,

deliverables and stakeholders required, followed by a short discussion on its

limitations.

4.1 Method components and integration

As already discussed in the Literature Review section of this work, STS-ml will be

the main building block upon which the new method will be developed. STS-ml uses

goal models to map the system and the interrelations between its actors. Actors in a

socio-technical system can be humans, organizations and software agents, all of

which with specific goals to accomplish. In order to do so, delegation of goals and

documents takes place and different security needs are mapped onto these

exchanges. Each stakeholder can have different security needs which are taken into

account, checked for consistency and finally translated into security requirements by

automated tools supporting the process.

The only elements of risk management present in this method are “events” which

represent threats towards documents, goals and actors of the system. These events

are mapped onto the model according to the analyst’s discretion but no further

elaboration on their impact or likelihood to occur takes place throughout the process.

Our review of risk management methods (cf. Section 2.3) revealed some useful

methods, fragments of which can be integrated in the STS-ml process in order to

lead to a more mature handling of risk elements. More specifically the prioritization

process followed by the IS Risk Analysis based on a Business Model (ISRA-BM) can

be easily adapted to fit the STS-ml process. During this process stakeholders

prioritize processes and assets which are then interrelated and ranked according to

their relevant importance to the system. Threats on these assets are then identified

by the analysts and the overall risk they impose to the system is calculated by using

mathematical formulas.

44

An elaboration of the steps of each of these two methods will follow accompanied by

process deliverable diagrams (PDDs) of their main activities and deliverables. Their

integration into a new approach will be the main focus of the remainder of this

section.

4.1.1 STS method overview

The process that the system designer has to follow in order to perform system

modeling and analysis using the STS method revolves around the creation of three

complementary system views. The iterative process followed for the construction of

the model can be supported by the STS-Tool. The first main phase is the creation of

the social view of the model. The initial step here is to identify the stakeholders of

the system which are modelled as actors who can either be agents, when referring to

“concrete participants”, or roles, when referring to abstract actors.

The next step requires the identification of the assets and interactions of the

stakeholders included in the model. The assets of an actor consist of the goal he

needs to achieve as part of the system and the documents necessary to do so. A goal

can be refined by “AND” and “OR” decompositions to a goal-tree which contains sub-

goals that divide the main goal into smaller, independent tasks. The interactions

between actors illustrate the delegation of such tasks (sub-goals) to other actors of

the system when they cannot be accomplished by the actor alone. The interactions

mapped on the model also include the exchange of documents necessary for the

completion of goals which need to be provided by other actors. The next step focuses

on the modeling of the security needs of the identified stakeholders. In this step

stakeholders express their expectations regarding the security of the interactions in

which they participate. The security needs supported by the STS method are: non-

repudiation, redundancy, non-delegation, trustworthiness, availability, integrity and

confidentiality. The final step of the first phase is the threat modeling. Here a

security analyst identifies events that can either threaten the completion of a (sub-)

goal or affect the availability of a document so it can lead to a disruption to the

system’s process.

During the second phase of the STS method the information view of the system’s

model is created. In this phase ownership is assigned at pieces of information which

are then matched to the documents containing them. The first step is concerned with

modeling the ownership of information which assigns pieces of information to the

stakeholders that own them. In the next step the information structure is

illustrated, where information is mapped to one or more documents which include it.

Through this mapping the interconnection between documents can be visualized

45

while also the informational content of each document is exhaustively listed. The

next phase is concerned with the creation of the authorization view of the model.

The stakeholders, during this step authorize the usage, modification, production and

distribution of their information from other actors of the system. All the interactions

involving information exchanges via documents are reviewed and authorized by the

information owner with the assistance of the security analyst.

Figure 4.1: STS method PDD

46

The automated analysis of the created model is performed during the last phase of

the method. With the support of the STS-tool three different analyses are performed

and feedback is provided when errors or inconsistencies are found. The first type of

analysis is the consistency analysis which verifies the validity of the created model

in terms of completeness. Next the security analysis takes place where the model is

checked for conflicting security requirements and security needs not covered by the

current version of the model. The last analysis performed is the risk analysis where

the threat posed by certain events is propagated through the model. Using the

feedback of all three analyses the designer of the system should make the

appropriate adjustments to the design and run the automated analysis process

again, with the improved version of the model as input. When the final version of the

design is solidified the security requirements can be automatically derived and listed

by the STS-tool. Finally a report can be created for the stakeholders that will be

used further in the development process of the system.

4.1.2 ISRA-BM method overview

The IS Risk Analysis based on a Business Model (ISRA-BM) method aims to

quantitatively calculate the risk imposed on an organization in terms of annual

monetary loss expected (ALE). In order to so, a sequence of actions must take place

with an analyst overviewing the whole process and various stakeholders providing

their input. The first stage of the process focuses on the organizational investigation

in order to understand and map the organizational environment that will be later

analyzed. The mission of the organization is first identified followed by the

organizational objectives derived by it. Then the business model of the organization

is created where the different business functions necessary for the achievement of

the organizational objectives are represented. By applying a functional

decomposition the business functions are broken down to sub-functions, which can

then be further decomposed to sub-sub-functions until the lowest level of activity is

represented and linked to the IS assets supporting it. Next the stakeholders in

charge of each business function identify its objectives and takes part in determining

its relative importance. The relative importance is an arithmetic value between 0

and 1 and it represents the degree of contribution of each business function towards

the organizational objectives. Due to the functional decomposition applied to each

business function a hierarchal tree model of (sub-) functions has been created. By

applying a “successive pairwise comparison” technique all the sub-functions of a

business function are compared in pairs, in order to assess their effect on the

objectives of the business function they are part of. This technique, part of on the

Analytical Hierarchy Process (AHP), when applied for all functional decompositions

47

present in the model, results in a relative importance value (FIi)for each (sub-)

function which represents its degree of contribution towards the objectives of the

function it supports. Different techniques can be used for the assessment of the

relative importance values from stakeholders. The analyst may choose to average

the individual values given by each stakeholder for each sub-function, let all

involved stakeholders decide together on a value, or combine both approaches.

The second stage of the process is concerned with the identification and evaluation

of the organizational assets. In the ISRA-BM approach the assets can be categorized

in the following seven groups: hardware, software, data/database, personnel,

documentation, and various facilities. Once all assets are identified and categorized

the analyst assigns them to the business function which they support, with the

assistance of stakeholders if necessary. The next step is the evaluation of the

relevant necessity of each asset (Nij), which is a numerical value between 0 and 1

that represent the degree of the asset’s contribution towards the goals of the

business function it supports. The asset evaluation process is similar to the process

described earlier for the assessment of the relative importance of business (sub-)

functions. Once the relative necessity of every asset is calculated a new calculation

takes place to identify its relative importance towards the achievement of the overall

organizational goals (AIi). To calculate the relative importance, the necessity value

of the asset (Nij) is multiplied by the relative importance of each function it supports

(FIi). The resulting value (AIi) represents the degree of the overall contribution of the

asset towards the organizational goals, but it can be influenced by interdependencies

between the asset and the rest of the organizational assets. In order to identify such

dependencies between assets the analyst creates an asset dependency diagram

which can be consulted when the relative importance of each asset is identified.

According to the rules of ISRA-BM if an asset is dependent on other assets, the

relative importance of the asset is equal to the highest relative importance of the

assets it is depending on.

The assessment of the threats and vulnerabilities of the organization is dealt with in

the next stage of the process. Threats and vulnerabilities that pose risks to the

assets of the system are identified by the analyst. The probability of threat

occurrence, which is integral for the calculation of the overall risk later on, is

identified by the use of external resources and techniques, chosen by the analyst

according to his experience and the project’s requirements. During the final stage of

the process the annual loss expectancy (ALE) is calculated by using mathematical

formulas provided by the ISRA-BM method. Initially the income loss for each asset

is calculated by taking into account different factors such as the assets relative

importance (AIi) and the estimated recovery time. The ALE calculation takes into

account the income loss, the replacement costs and the probability of the threat

occurrence of each asset and provides a monetary value which represents the loss

that the organization will have to endure.

48

4.1.3 Method assembly process

The framework of Brinkkemper (1996), illustrated in Figure 4.2, will be followed as

a guide for the assembly process. According to this framework method fragments

should be selected from the method base, in order to be assembled into a new

method. In our case, the method base consists of the methods already identified and

overviewed during the literature study. The main methods from which fragments

are selected have been analyzed in depth in the previous section, so all the

prerequisites for the assembly phase are covered.

For the first phase of the new method the activity of evaluating the importance of

the systems goals, present in the initial phase of the ISRA-BM method, is added to

the information view modeling phase of the STS method. In more detail, after the

identification of stakeholders, goals and assets, the evaluation of all the system’s

goals takes place from the involved stakeholders. This way each goal in the social

view of the model also has a relative importance value. Additionally, the

identification of threats and security needs, present during the initial phase of the

STS method, will be performed later on in our process. More specifically, the

identification of threats will be grouped with other activities related to risk

management. The output of the risk management process can then be taken into

consideration and guide the users when expressing their security needs concerning

the delegations and information exchanges taking place in the system.

Figure 4.2: The method assembly process (Source: Brinkkemper, 1996)

49

The next phase is concerned with the creation of the information model of the

system. Here the process followed by the STS method is enriched with a new

activity, inherited by the ISRA-BM method, during which the importance of the

informational assets is determined by the system’s stakeholders (e.g., using a scale

from “Not important” to “Essential”). As a result the identified information, besides

being structured and interrelated with other information and documents, also has a

necessity value, which will assist in assessing potential risks during the next phase

of the process.

During the threat assessment phase we introduce the activity of threat

identification, which was implied in the “Model threats” activity of the STS method.

This explicit division of the two activities is due to the fact that in our approach the

identification of threats is an important activity which can be performed following a

number of external methods and techniques by a number of security specialists. The

threat modeling activity that follows, inherited by the STS method, is now

repurposed to simply modeling the identified threats as events in the social view of

our model. After that, borrowing the activity from ISRA-BM, the probability of a

threat occurrence is determined by the security specialists, once again using

external resources. At the same time, the threat’s impact value is calculated by a

newly introduced activity. During the threat impact assessment the assets and goals

affected by the threat are traced through the system’s social model and their

importance values are multiplied to calculate the threat’s impact value. Next a risk

value is calculated for each threat and all the identified threats are ranked

according to their value.

The user requirements modeling phase follows, where, as in the STS method, the

authorizations given by each system actor are modelled in the authorisational view

of the system’s model. Parallel to the authorization modelling another activity takes

place during which the stakeholders express their security needs which will pose

restrains in the delegations modelled in the social view of the system. This activity is

also adopted by the STS method where it takes place during the social modeling

phase. In our method it is moved in the later stages of the process, after the risk

management has been completed and the different threats to the system have been

prioritized. This allows the analysts and the system users to have a move clear

overview of potential security issues when expressing their security needs. This way

the selection of constrains imposed on the system by each user, via his security

needs, is based on an informed decision and can be rationalized and traced back to

specific threats. Finally the last two phases, namely automated analysis and

specification, are borrowed from the STS method without any major modification.

The automated risk analysis activity, included in the STS method is omitted here, as

the threat impact tracing it performed is already covered during the threat impact

assessment activity, earlier in our method.

50

In order to provide a quick overview of the newly created method, a process

deliverable diagram (PDD) has been created (Figure 4.3) accompanied by the

activities and concepts tables (Tables 4.1 and 4.2) which provide descriptions of its

building blocks. An overview of the origin and modifications of each of the methods

fragments is provided in Appendix A.2.

Figure 4.3: PDD of assembled method

51

Activity Sub-Activity Description Role

Social modeling Identify Stakeholders The ACTORs participating in the system
are identified.

Req. Analyst

 Identify Assets and
Interactions

The ASSETs of ACTORs (GOALs and
DOCUMENTs are identified and the
interactions between them are modeled.

Req. Analyst

 Evaluate importance
of goals

Values are provided for the RELATIVE
GOAL IMPORTANCE of each of the
system’s GOALs

Stakeholders

Information
Modeling

Identify Information
/Ownership

The INFORMATIONAL ASSETs contained in
the system’s DOCUMENTs are identified
and have their ownership assigned to
ACTORs.

Req. Analyst

 Structure
Information

The relationships between
INFORMATIONAL ASSETs and
DOCUMENTs are modeled at the
INFORMATION MODEL.

Req. Analyst

 Determine
Informational Asset
Importance

Values are provided for the INFO ASSET
IMPORTANCE of each of the system’s
INFORMATIONAL ASSETs.

Stakeholders

Threat Assessment Identify Threats THREATs to the system’s security are
identified.

Security
Engineer

 Model Threats Identified THREATs are modeled by
EVENTs at the SOCIAL MODEL.

Security
Engineer

 Assess Threat Impact The IMPACT of each THREAT is identified
by the RELATIVE GOAL IMPORTANCE and
RELATIVE ASSET IMPORTANCE values of
the ASSETs it affects.

Security
Engineer

 Assess Threat
Probability

The LIKELIHOOD of each THREAT is
identified using external resources.

Security
Engineer

 Evaluate Risk The RISK that each THREAT poses to the
system is evaluated using its IMPACT and
LIKELIHOOD values.

Security
Engineer

User Security
Requirements
Modeling

Express Security
Needs

Each ACTOR expresses SECURITY NEEDs
for each delegation of his GOALs and each
transfer of his DOCUMENTs

Stakeholders

 Model Authorizations Authorizations for the INFORMATION
ASSETs of each ACTOR are modeled on the
AUTHORIZATION MODEL.

Security
Engineer

Automated
Analysis

Perform Consistency
Analysis

The consistency of the SYSTEM MODEL is
automatically assessed.

Req. Analyst

 Perform Security
Analysis

The satisfaction of SECURITY NEEDs
imposed on the system is automatically
assessed.

Req. Analyst

Specification Generate Security
Requirements

A SECURITY REQUIREMENTS DOCUMENT
is automatically generated.

Req. Analyst

Table 4.1: Activities table of the new method

52

Concept Description

ACTOR Represents each autonomous participant of the system (Paja et al., 2012). Two types
of actors are supported: agents, to refer to concrete participants, and roles, to refer
to abstract actors.

ASSET Anything that has value to the organization and is necessary for achieving its
objectives (Dubois, Heymans, Mayer & Matulevičius, 2010). An asset can represent a
goal or a document in the system’s model.

INTERACTION Represents the establishment and evolution of social relationships on the basis of the
messages exchanged between actors. (Dalpiaz, Giorgini, & Mylopoulos, 2013).
Interactions in the context of our method are limited to delegations or transmissions.

GOAL A goal represents the strategic interests of an actor (Giorgini, Massacci, Mylopoulos &
Zannone, 2005). It can be decomposed in sub-goals which represent individual
processes that can be followed for the achievement of the goal.

DOCUMENT A tangible resource that represents the concrete entities that actors exchange in
order to achieve their goals. (Dalpiaz, Paja & Giorgini, 2011)

RELATIVE GOAL
IMPORTANCE

The relative goal importance value refers to the degree to which each goal
contributes to the organization’s objectives. The relative importance may range from
0 to 1. (Suh & Han, 2003)

RELATIVE ASSET
IMPORTANCE

The relative asset importance value refers to the degree to which the asset
contributes to the objectives of the system (Suh & Han, 2003). The value may range
from 0 to 1 and is derived from the importance values of the related information
assets.

SOCIAL MODEL Represents actors as social entities with goals they want to achieve and documents
they may use or distribute to other actors while achieving these goals. (Paja et al.,
2012)

INFORMATIONAL
ASSET

Represents individual pieces of information which can be part of some document.
(Paja, Dalpiaz & Giorgini, 2012)

INFO ASSET
IMPORTANCE

The information asset importance refers to the criticality of each piece of information
towards the achievement of the overall system’s goals. The value may range from 0 to
1.

INFORMATION
MODEL

Represents the information in the considered organization/setting together with the
documents that represent such information, as well as the relationships among these
informational entities or documents respectively. (Paja et al., 2012)

THREAT A potential attack, carried out by an agent that targets one or more IS assets and that
may lead to harm to assets. (Dubois, Heymans, Mayer & Matulevičius, 2010)

EVENT Represents threats that negatively influence the capability of an actor to achieve one
or more goals.

IMPACT The potential negative consequence of a risk that may harm assets of a system or an
organization, when a threat (or an event) is accomplished. (Dubois, Heymans, Mayer
& Matulevičius, 2010)

LIKELIHOOD The chance that a loss or harm will occur over the lifetime of an asset or within a
specified period of time. (Suh & Han, 2003)

RISK Risk is defined as the potential that a given threat will exploit vulnerabilities of an
asset or group of assets and thereby cause harm to the organization. (ISO /IEC, 2004).

SECURITY NEED Security needs are imposed by actors over interactions to constrain the way they take
place within the system. (Paja et al., 2012)

AUTHORIZATION
MODEL

Represents the permission flow from actor to actor, that is, the authorizations actors
grant to others about information, specifying the operations actors can perform on
the given information. (Paja et al., 2012)

SYSTEM MODEL An aggregation of the social, information and authorization model. These different

53

views provide a comprehensive picture of the setting which includes both business
concerns and security aspects. (Dalpiaz, Paja & Giorgini, 2011)

ANALYSIS
RESULTS

The outcome of the consistency and security automated analysis of the systems
model. Used to identify inconsistencies and violations of the user’s security needs at
the system’s model.

SECURITY
REQUIREMENTS
DOCUMENT

Contains the specifications of security requirements for the system-to-be, derived
once the modelling is done and the security needs imposed by the actors are
expressed. (Paja et al., 2012)

Table 4.2: Concepts table of the new method

4.2 Method description

The initial step of the method requires the creation of a system model including

roles, goals and assets. The system model is created by the analyst, with the

contribution of stakeholders, following the STS method. In order to illustrate our

approach, a mock model was created in the STS-Tool and will be used throughout

this section as an example (Figures 4.4, 4.5).

Figure 4.4: Social view example

54

The social view of our model (Figure 4.4) contains two actor roles (Role01, Role02)

and a software agent (Agent01). The first actor (Role01) has a main goal which is

decomposed to three sub-goals that can be either accomplished by the actor alone

(e.g., Goal1.2) or delegated to others within the system (e.g., Goals 1.1, 1.3). A

number of documents are produced and exchanged during the process, each

containing different pieces of information necessary for the accomplishment of the

system’s goal. The matching of the informational assets to documents is illustrated

by the Information view of the STS-ml model in Figure 4.5.

A number of iterations may be required in order for the model to accurately

illustrate the relationships within the system, but once the analyst confirms its

maturity with the stakeholders the prioritization process can begin. During this

stage the system stakeholders need to provide their input regarding the importance

of each goal and informational asset of the system. First the system goals need to be

ranked according to their importance. In order to do so, a value needs to be assigned

to each sub-goal, which will represent its importance in the accomplishment of the

top-level goal. In more detail, each top-level goal is considered individually and

arithmetic values (FIi) between 0 and 1 are assigned to each of its sub-goals. The

aim here is to get a sense of ranking for the importance of each sub-goal so the

values should be assigned in such a way that the sum for the decomposition always

equals one (1) and a larger value represents a higher relative importance (Figure

4.6).By default, all sub-goals of a goal-decomposition are considered equally

Figure 4.5: Information view example

55

important and have the same value (1 divided by the number of sub-goals), until an

evaluation is performed resulting to new relative importance values. It may be

easier for the stakeholders if they are asked to divide one hundred points (100)

amongst the sub-goals of each top-level goal according how they perceive their

importance and then those values can be converted to the appropriate format (from

0 to 1 with decimal digits) by the analyst.

Figure 4.6: Example of assigning relative importance values to goal decompositions

For the purposes of our example we have assigned some mock relative importance

values at every goal-decomposition of our model, as illustrated in Figure 4.7.

Figure 4.7: Social view with relative importance values assigned to goals

 0.5 0.15 0.35

Top-Level Goal

Decomposition

0.5 0.15 0.35 0.4 0.4 0.2

0.6

 0.35

0.4

 0.35

56

Next we turn our attention to the Information view model where the system

stakeholders need, once again, to provide their input. Here the informational assets

need to be evaluated according to their necessity for the achievement of the system’s

goals. Values from 0 to 1 are assigned to each informational asset (Nj), with a higher

value representing information more critical for the achievement of the system’s

goals. What we aim to measure with this evaluation is how “useful” the

stakeholders consider certain pieces of information for the completion of the overall

process. Information receiving a higher necessity value will have a greater potential

impact towards the achievement of certain goals if, for example, the document

containing it was unavailable or missing.

When two informational assets are connected by a “Part of” relationship in our

model, the necessity value of the asset on which the “Part of” relationship is directed

should be at least equal to the highest necessity value of its components (e.g., at

Figure 4.8, Information03 inherits the value of Information05 since they are

connected with a “Part of” relationship). Once all informational assets are evaluated

the document containing them inherits the highest of their necessity values (Figure

4.8). The rationale behind this decision lays in the fact that any given document is

as important as the most critical piece of information it contains.

0.55

0.7

0.3

0.8

0.8

0.8

 0.7

5

0.7

0.65

0.8

 0.7

5

Figure 4.8: Information view with values assigned on informational assets

57

After all stakeholders have evaluated and ranked the goals and informational assets

of the system, the analyst will identify and rank potential risks. In order to do so,

threats to the informational assets of the system are first identified. The

identification of these threats is left to the analyst’s discretion, as there are a

number of resources providing threat definitions to consult (e.g., ISO standards,

threat repositories, etc.). In order to calculate the risk posed by each threat, its

likelihood and impact values must be identified and plugged to the established risk

formula, “Risk = Impact X Likelihood”.

The likelihood of each event to threaten certain parts of the system is again

calculated by the analyst after consulting various relevant resources available. The

impact value however, can be easily calculated by the created model as follows. By

following the goal-trees and delegations we multiply all the relative importance

values (FIi) of all the (sub-) goals between the main goal of the system and the

threatened document. In order to identify the impact, we multiply the necessity

value of the threatened document (Nj) with the product of the relative importance

values identified before. In case of an event threatening multiple documents the

same process is followed for each threatened document. The threat’s individual

impact values, for each threatened document, are identified and summed together to

find out the overall impact of the threat (It). An example of this process is provided

in Figure 4.9 where “Event01” threatens Document1 at Goal1.2 and Goal2.1. By

following each of these goals to the main system goal (Goal 1) we multiply the

relative importance values of all the goals in each path, which in our case are: FI2.1 x

0.7 0.7

0.4 0.15 0.35

Figure 4.9: Example of threat impact identification through social view model

58

FI1.3 (= 0.4 x 0.35) and FI1.2 (= 0.15), and we multiply the sum by the necessity value

of Document1 (N1 = 0.7) to identify the impact of Event01, I1 (= 0.7 x (0.4 x 0.35) +

0.7 x 0.15 = 0.203). For each event present in our model the same process is followed

which, in the end, results in a list of impact values. The total risk value for each

threat (Rt) is then calculated by multiplying the threat’s impact (It) with its

likelihood value (Lit). Finally the risk values calculated can be ranked by highest to

lowest to represent a ranking of threats from the most to the least severe for the

system, as illustrated by the template provided in Table 4.3. This way the system

stakeholders not only have a model of the system but also a clear overview of the

most important threats to its functionality and security.

Threat Description Impact (It) Likelihood (Lit) Risk (Rt)
“Event01” Brief description of threat 0.203 0.3 0.0609
“Event03” Brief description of threat 0.154 0.25 0.0385
“Event06” Brief description of threat 0.085 0.4 0.0340

Table 4.3: Example of ranking threats

This simple process for calculating the impact of various threats may require some

extra rules in order to better handle some unique situations that may arise in the

created model. More specifically it is possible that the same sub-goal may be part of

two or more separate goal decompositions (e.g., Goal1.1 in our example). When this

happens the same sub-goal may have different relative importance values in each

goal tree it is part of, thus complicating the impact calculation. To avoid this issue

only the relative importance value at the goal-decomposition closer to the system’s

top-goal should be taken into account.

With all the identified threats ranked, the next step of the process requires from the

stakeholders of the system to express their security needs and provide the necessary

authorizations for their informational assets and delegated goals. In more detail,

similarly to STS method, each stakeholder can define his security needs (non-

repudiation, redundancy, non-delegation, trustworthiness, availability, integrity and

confidentiality) for every document and goal it delegates to another actor in the

system. Additionally, authorization needs to be provided for the usage, modification,

production and distribution of informational assets exchanges through the system.

The analyst then updates the model according to the input received by the

stakeholders and adjustments can be made to the design to facilitate the expressed

needs and authorizations.

This process may require a number of iterations until it produces a system design

capable of satisfying all the requirements imposed by its stakeholders. The threat

ranking earlier provided by our method, can assist an analyst to prioritize his efforts

from the most to the least threatened system assets, during this demanding process.

It can also be a helpful tool to support the decision making process of the analyst

59

when requirements or security needs overlap or conflict. In that case the threat

ranking can be used by the analyst to assess which alternative is less risky for the

overall design. Once the system design is finalized, the automated analysis phase

follows, where, as in the STS method, the STS tool provides automated validation of

the system design by identifying inconsistencies and errors. The same tool can

finally produce a report with all the security requirements of the system which can

be later used during the development stage.

4.3 Limitations

Certain issues with the developed method, as presented in the previous sections,

need to be addressed. Firstly, as stated in the overview of the STS method, each goal

can have an “AND” or “OR” decomposition to sub-goals in a socio-technical model.

The goal evaluation process of our method can be successfully applied to “AND” goal-

decompositions, by following the rules and process described in the previous section.

However when an “OR” goal-decomposition occurs the established rules need to be

adjusted. Since in “OR” goal-decompositions the top level goal can be reached by

achieving only one of its sub-goals, there is no point to introduce relative importance

values for its sub-goals. Nevertheless, our method can still accommodate such

decompositions by giving a default value of one (1) as the relative importance of each

sub-goal of an “OR” goal-decomposition. This way the rest of steps of the process and

the underlying mathematical formulas can be applied without further modifications

without sacrificing the quality of the outcome.

Another limitation of this method is the fact that it can assess risk and thus

prioritize threats, only against the informational assets of a system. The STS

method, which was the basis for the development of our method, allows for events to

threaten goals and even actors in addition to informational assets. The process

followed by our method requires a document (informational asset) at the lowest level

of goal decompositions. This way a threat is tracked from a document at the lowest

level all the way to the main system goal and its overall impact is assessed. Events

directly threatening goals and actors require a new approach for risk assessment

which is currently not covered by the capabilities of this newly developed method.

An additional limitation of this approach revolves around the accuracy of the

stakeholders’ evaluation of goals and informational assets of the system. Since they

provide the values which are then used by the mathematical formulas of this method

to calculate the risk, their input can heavily affect the accuracy of the results. As it

is the case with any evaluation given by humans, errors and misjudgments can

occur due to a variety of factors. In order to minimize the effects potential human

errors it is important to include a large number of stakeholders in the evaluation

60

process, so over- or under-estimations affect less the average value assigned to each

of the system’s assets. It is also possible to follow pairwise comparisons or Delphi

techniques, which compare the evaluations given by each stakeholder to each other

and allow for modifications to be made until a consensus can be reached. However,

the final decision is to be made by the analyst, according to the unique

circumstances of each project.

It is also worth mentioning that since this is a newly created method, the support

that existing CASE tools can provide is limited. While the modeling of the system

can be covered by the STS Tool, which can also provide automated analysis, the

calculations of the risk have to be performed manually for the time being. Another

point that needs to be addressed is the dependency of this approach to external

sources for threat definitions and their possibility of occurrence. These external

sources are left to the discretion of the security analysts involved in the project and

can vary from established international standards (e.g., ISO, NIST) to subjective

personal experiences. Since the quality of the method’s outcome is dependent on the

quality of those external sources it is important that the analysts maintain high

standards when selecting the resources which they will consult during these steps of

the process. Nevertheless this limitation is not unique to our method, since the

majority of methods in the area of risk management focus on assessing risks but use

external approaches for the process of acquiring threat definitions and establishing

their likelihood.

61

Chapter 5. Practical Evaluation

In this section the newly introduced method will be evaluated in practical settings in

order to identify its level of performance and its shortcomings. Initially the process

that will be followed for this evaluation will be overviewed and the criteria upon

which the method will be judged will be introduced. Next some elaboration will be

provided about the system that we selected for this case study. Its objectives,

components and stakeholders will be presented and the rationale behind the

system’s selection will be elaborated. Since modeling the system is an essential

phase of our method, an initial model of the selected system will be presented upon

which our risk assessment process will be applied. Finally an overview of the output

provided by our method and its overall performance will be discussed.

5.1 Method and evaluation criteria

In order to evaluate our method, its performance in practical settings should be

assessed. In order to do so a software system has to be selected for the application of

the method in a retrospective case study. The selected system should include a

number of different agents (human or software) who interact with each other to

accomplish certain goals. By applying our method, a social and informational model

of the system will be created and goals and assets will be evaluated by the

stakeholders in order to provide input for the risk assessment process. Finally, as an

output of the application of our method, a complete list with the system’s security

requirements will be provided, accompanied by a prioritized threat list containing

potential risks and a system model, where all interactions and their security needs

are illustrated.

A number of different stakeholders need to be involved in the method’s practical

evaluation process. The role of the requirements analyst will be assumed by the

authors of this work and creators of this method. The analyst is responsible for the

creation of the system’s model assisted by the input of various system stakeholders,

who will provide documentation and their personal expertise, in order to achieve an

accurate representation of the system. The stakeholders, as participants of the

system, will also need to provide their input during the goal and asset evaluation,

and additionally to express their individual security needs and authorizations which

will be used in the later phases of the method to extract the security requirements of

62

the system. Finally, a security analyst will be required in order to identify threats

towards the informational assets of the system and assess the likelihood of their

occurrence. This role will be also assumed by the authors of this work, supported by

literature of the field of information security (e.g., case studies, threat repositories,

international standards, etc.) when necessary.

The evaluation criteria for the method’s performance need to be defined, before we

present the system selected for this case study. The usability of the developed

method will be an important factor to be considered in this evaluation effort.

Usability, in the context of our case study, represents the degree of difficulty faced

by the analysts during the application of the method. In order to achieve a high

usability rating, the method should be efficient in its application and provide clear

instructions to the analyst for every step of the process. The capability of the method

to sufficiently model, and therefore take into consideration, every security need of

the system stakeholders is another evaluation criterion which can provide a solid

indication of the method’s modeling completeness. Finally, the method’s capability to

uncover security requirements will be another criterion for its evaluation. The setup

of this retrospective case study allows us to compare the security requirements

identified by our analysis and compare them to the security features already

implemented in the system. If our developed method is able to provide a complete

requirements list, containing requirements not uncovered during the initial system

development, it will be an indication that our analysis produces a solid outcome,

which can reveal overlooked aspects of the systems design.

5.2 Case study description

The system that will be studied during this retrospective case study involves the

STRIPA software. STRIPA is described by its creators as “a stand-alone decision

support system that advices physicians during the pharmaco-therapeutic analysis”

(Meulendijk, Spruit, Jansen, Numans, & Brinkkemper, 2014). The Systematic Tool

to Reduce Inappropriate Prescribing (STRIP) is a structured method aiming to assist

physicians when dealing with patients receiving multiple medical drugs. The

STRIPA software system aims to facilitate the application of the STRIP method in

order to assist physicians optimize the patient’s treatment plan and avoid over-

prescription. The method follows a series of steps (Figure 5.1) in order to provide

suggestions regarding adjustments to the medication the patient receives (e.g.,

removing redundant medication etc.) and its dosages, based on the patient’s medical

history and current symptoms.

63

STRIPA functions as a standalone web-based application which communicates with

the various information systems used by medical practitioners. This communication

is bidirectional as the caregiver’s IS provides patient information through medical

records to STRIPA and STRIPA responds with treatment advice. Since the

exchanged data contains highly sensitive personal information (e.g., patient’s

medical records) security is a major concern, thus making the extended socio-

technical system around STRIPA a fitting candidate for the practical application of

our newly developed method.

Another contributing factor is the fact the majority of the sensitive data is owned by

the patient, who is also a stakeholder of the system, but is handled by the caregiver

and exchanged with the STRIPA agent. Therefore the patient has to provide certain

authorizations in order to make these information exchanges possible within the

system. Since authorization management is an integral part of our method it will be

interesting to be tested in real life settings.

Finally, since STRIPA is in the later stages of the development, with an existing

prototype already available, it is a fitting candidate for our retrospective case study.

The security features of the existing prototype can be used as a benchmark to

compare against the security requirements produced from the application of our

method. This allows us to get an immediate indication of the effectiveness of the

method, within the timeframe of this thesis project, which would not be possible if a

software system still in the early development stages was selected.

The first phase of our case study consists of the system modeling, where a

representation of the main goals and information assets of the system is created (cf.

Section 5.3). Throughout the modeling process the input of the architect and main

designer of the STRIPA system is used for the refinement of the system’s model.

Once the modeling is complete several participants of the socio-technical system

surrounding STRIPA provide their evaluation on the goals and information of the

system. The stakeholders here range from medical practitioners to regular patients

Figure 5.1: The STRIP method (Source: Meulendijk et al., 2014)

64

and the evaluation provided by each of them will be taken into account during risk

assessment. For our case study nine user evaluations are provided, six by healthcare

practitioners familiar with the STRIPA system, one by the lead designer and

developer of the STRIPA software agent, and two by non-technical subjects

representing potential patients using the system. The template evaluation form used

for this purpose can be found in Appendix A.3.

For the threat assessment process an independent security analysis will be

performed by the authors, in order to identify a number of potential threats to the

system and estimate their likelihood of occurrence, based on literature sources and

similar past research attempts. These findings will be then used for the risk

calculation and threat prioritization. Finally, some user security requirements need

to be expressed and modelled, over each user’s security needs and authorization

preferences for his goal delegations and information exchanges within the system.

Once the user preferences are inputted on the system model, the automated analysis

provided by the STS Tool will check its consistency and completeness and extract a

list with the security requirements expressed by the model. This requirements

report, along with the system model will be provided to the creators of STRIPA and

will also be used for the evaluation of the methods according to the criteria discussed

in the previous section.

5.3 System modeling

Before risk analysis can take place, a model of the studied system has to be created,

as indicated by the first two phases of the newly introduced method (Social Modeling

and Information modeling). As already discussed in previous sections, the social and

information view of the system need to be modeled by the analyst, according to the

information provided by the systems stakeholders. Once the initial model is

approved by them, the Threat assessment phase of the method can be initiated (cf.

Section 5.4). The system modeling is performed by following the process, rules and

notation established by the STS-ml, using the STS Tool. In this section the system

model will be presented (Figures 5.2, 5.3) and its participants, assets and

functionalities will be explained.

65

The first actor participating in the studied system represents the “Patient” who is

receiving multiple medications for a number of medical conditions. The main goal of

the patient is to receive healthcare and in order to do so he must consult a

“Caregiver” to receive a prescription which he can then use to obtain the appropriate

medication. During the consultation the patient must report the medication he is

already receiving, his adherence to it and its potential side-effects before new

medication can be prescribed by the caregiver.

The role of the “Caregiver” can be played by a range of medical practitioners,

ranging from general practitioners to pharmacists. The caregiver has an individual

information system which keeps and update the medical records of each of the

caregiver’s patients and communicates with the “STRIPA” agent in order to receive

support during the decision making process of medication prescription. The process

of prescribing medication requires a number of steps to be followed by the caregiver.

During the “Anamnesis” phase the caregiver consults the patient records to

Figure 5.2: Social view modeling of the studied system

66

determine the patient’s actual drug-use, reported side-effects and existing problems.

During “Analysis” phase the symptoms that need to be treated and the existing

medication of the patient are checked in order to identify the completeness of the

already existing treatment plan. Here the caregiver’s IS receives the input of the

STRIPA system, which checks for over-treatment or under-treatment of the patient’s

symptoms and then suggests medication adjustments to correct the treatment plan.

These suggestions are taken into consideration by the caregiver when determining

the patient’s new medication plan. As soon as the caregiver decides on the new

medication plan, the STRIPA system automatically checks for counter-interactions

between the selected drugs and their potential side-effects while also suggesting a

dosage based on the patients individual characteristics.

This treatment suggestion produced by the STRIPA system is the input for the next

phase of the process, “Treatment Plan”. During this phase the suggested treatment

plan produced with the support of the STRIPA system is evaluated by the caregivers

in order to make a final decision and produce the prescription which the patient will

use to obtain his medication. Once a final decision is made the final phase of the

process, “Patient Discussion” takes place. Here the caregiver discusses the

treatment plan with the patient and makes final adjustments according to the

patient’s needs. Finally the patient receives the prescription and obtains his

medication.

Figure 5.3: Information view modeling of the studied system

67

The documents exchanged during this process along with the information they

contain and its ownership are modeled in the information view (Figure 5.3). The

“Patient Records” document, stored in the caregivers IS, contains the following

informational assets: personal information of the patient (name, address, date of

birth), the patient’s medical history (e.g., past episodes), diagnostics (e.g., past lab

tests, x-rays, etc.) and current medication. The newly prescribed medication and its

dosages are also informational assets belonging to the patient which are contained

at the “Medication List” and “Prescription” documents created by the caregiver. The

“Medication List” is an intermediate document created for the communication

between the caregiver’s IS and the STRIPA agent, in order to receive decision

support. The “Prescription” is the final document issued by the caregiver to the

patient in order for the latter to obtain the appropriate medication.

The STRIPA system also produces a number of documents containing certain

information. The “Medication Advice” document contains informational assets

regarding the suggested medication for the patient’s symptoms, information about

this medication (e.g., commercial name, active ingredient etc.) and the rationale

behind those suggestions. The “Treatment suggestion” document is the final

document produced by the STRIPA which includes the medication selected by the

caregiver, the suggested dosages advised by the system, and possible causes of

unwanted interactions between them. This document is used by the caregiver when

making the final decision on the patient’s treatment plan.

5.4 Threat assessment

The first activity during the threat assessment phase is to identify potential threats

to the system. As earlier discussed, the threat identification is based on literature

sources and international information security standards. Based on documented

case studies of information security for medical information systems – namely

(Samy, Ahmad & Ismail, 2010), (Vaast, 2007), (Maglogiannis & Zafiropoulos, 2006)

and (Rindfleisch, 1997) – various threats to medical information systems were

reviewed and the ones applicable to our system were selected. The same sources

were used to obtain the likelihood values for each threat, which had to be

subjectively adjusted by the authors, to fit the requirements of our method, as in

some cases they were expressed in qualitative scales (e.g., high to low likelihood)

instead of a numerical value between zero and one. The selected threats to be

modeled, their definitions according to the ISO standards for information security

management in health (ISO/IEC, 2008) and their likelihood estimations, adapted by

literature but adjusted by the authors, are provided at Table 5.1

68

Threat Definition Likelihood

Communications
infiltration

“Communications infiltration of electronic communications occurs when
an individual (a hacker, for example) tampers with the normal flow of
data across a network.”

0.25

Technical failure
of the host

“These threats include hardware failures, network failures or failures in
data storage facilities, […], the loss of availability of such systems can
have life-threatening consequences for patients.”

0.87

User error “Error by users can, for example, result in confidential information being
sent to the wrong recipient or having input errors.”

0.81

Masquerade by
insiders

“Masquerade by insiders consists of system use by those who make use
of accounts that are not their own. […] As such, it constitutes a
breakdown in secure user authentication.”

0.41

Table 5.1: Identified threats and likelihood of occurrence

The threats of “Infiltration of Communications” and “Technical Failure of the host”

could affect all documents exchanged between the caregiver’s IS and the STRIPA

agent. Therefore, the events representing those threats are modeled on the social

view of our system’s model (Figure 5.4) connected with a “Threatens” relationship

with four documents; Patient Records, Medication List, Medication Advice and

Treatment Suggestion. The threat of “User Error” can threaten the documents

created by the caregiver, as they are created manually and are prone to human

errors. Therefore the document representing the Prescription, used during the

patient discussion stage and later by the patient to acquire his medication and the

Medication List document, submitted for validation at the STRIPA agent are

potential targets for this threat. Finally, the “Masquerade by insiders” threat

represents unauthorized access to sensitive documents through the caregiver’s IS (in

our case Patient Records and Prescriptions) by “insiders”. Usually the unauthorized

access does not have malicious motivations as the “insiders” can be colleagues,

supporting staff or maintenance personnel, who make use of the caregiver’s account

to assist him. Nevertheless, sensitive patient information can still be potentially

compromised.

In order to calculate the overall risk imposed on the system by each of the identified

threats, their individual impact has to be identified. As previously described, the

impact value of each threat is defined by multiplying the relative importance values

of the information assets and linked goals affected by the threat, starting from a

document and reaching until a top-level system goal. The importance values are

calculated by averaging the evaluations provided by various system stakeholders.

For our case study, nine stakeholders provided evaluations of the relative

importance of the goals and information assets included in our system, which were

averaged to the values included in the system model illustrated at Figures 5.4 and

5.5. Their individual evaluations as well as the average values are listed in

Appendices A.4 and A.5 of this work.

69

Figure 5.4: Social view of the system including relative importance values and threats

Figure 5.5: Information view of the system with relative importance values

70

By tracking all paths beginning from each event and reaching the top system goal

(“Receive Healthcare”) and adding their individual impact values calculated by the

relative importance values as earlier described in section 4.2, the total impact of

each threat can be identified. The total impact value for each threat of our system,

along with its likelihood and its subsequent total risk value, are included in Table

5.2. The table can be used to rank threats according to their overall risk, which can

be used as input during the next phase, when the users’ security requirements

(security needs and authorizations) are elaborated.

Threats Impact (It) Likelihood (Lit) Risk (Rt)

User error 0.377 0.81 0.3051

Technical failure of the host 0.109 0.87 0.0952

Masquerade by insiders 0.128 0.41 0.0526

Communications Infiltration 0.109 0.25 0.0274
Table 5.2: Threats ranked according to their potential risk towards the system

5.5 User security requirements modeling

Based on the identified threats and the security needs of the system’s stakeholders,

a set of constraints are modeled over the goal delegations and document provisions

within the system. As previously discussed the security needs supported by STS-ml

include non-repudiation, redundancy, no delegation, trustworthiness and

availability for goal delegations and integrity, availability and confidentiality for

document transmissions. In our case the security needs imposed on the system are

influenced by the risk inherent to the system and its extended environment as

illustrated at Figure 5.6. In more detail, the “Prescription” document exchange

between the caregiver and the patient should have the integrity and confidentiality

of its transmission guaranteed, since it can be threatened by events such as user

errors and unauthorized access of the caregivers IS by insiders, as earlier discussed.

Regarding the goal-delegation of “Medication prescription” between the same actors,

the needs of trustworthiness is imposed, since a level of trust of trust between the

two actors is a prerequisite for the completion of the healthcare process.

71

More importantly, regarding the document exchanges between the caregiver’s IS

and the STRIPA system, the need for availability is apparent since the

communication between the two agents is threatened by potential technical errors of

the host. Such event can disrupt the communications between the two agents

making the provision of documents necessary for the process impossible. Therefore

the implementation of the system should provide mechanisms that guarantee the

availability of the “Patient records”, “Medication List”, “Treatment Suggestion” and

”Medication advice” documents. The integrity of the transmission of the same

documents should also be guaranteed, as it can be threatened in the event of an

infiltration to the communication channels between the two systems. In the case of

the “Patient Records” document the need for confidentiality of its transmission, since

it can be compromised by unauthorized access from a third party at the caregivers

IS or the STRIPA system. For the delegation of the “Medication completeness check”

and “Side-effect and interactions check” goals from the caregiver to the STRIPA

Figure 5.6: Security needs of users expressed on the social view of the system

72

system the needs of non-repudiation and no delegation are imposed based on the

same threats. The need for non-repudiation requires the adoption of security

mechanisms that guarantee that the two sides cannot repudiate the occurrence of

the delegation. The no-delegation security need ensures that the delegated goals are

trusted to the STRIPA system to accomplish by itself, without allowing further

delegation to other actors or agents for their completion.

Apart from the identification and modeling of the user’s security needs, a

representation of the user’s authorizations is necessary to determine if information

is exchanged and used in compliance with the restrictions imposed to the system.

The modeling of such authorizations is included at the third view of the system’s

model according to the rules and notation introduced at STS-ml, as illustrated in

Figure 5.7.

In the above model of authorizations, each actor of the system provides the rights of

usage, modification, production and distribution (U,M,P,D) of the certain pieces of

information he owns, necessary for the completion of goals delegated to other actors

or agents of the system. In our case the patient gives full authorization to the

caregiver to use, modify, produce and distribute the patient’s information regarding

his newly Prescribed Medication and its Dosage in order to complete the “Medication

Figure 5.7: Authorization view of the studied system

73

prescription” goal. The same actor also provides “use”, “produce” and “distribute”

authorizations for the rest of the information included in his personal records

(Episodes, Diagnostics, Patient Info etc.) to the caregiver, though this time

withholding the authorization to “modify” that information, as this is not necessary

for the specific goal. The patient has to also provide authorizations towards the

STRIPA system as it also makes use of certain pieces of his information when

accomplishing its goal of supporting the decision making process of the physician. In

more detail, the patient authorizes STRIPA to “use”, “produce” and “distribute” his

information regarding his newly Prescribed Medication. For the rest of his

informational assets (Episodes, Diagnostics, Patient Info etc.) only the “use” and

“produce” authorizations are required from the patient for the achievement of

STRIPA’s goals. Finally, the information owned by the STRIPA system, namely

Suggested Medication, Suggested Dosage, Rationale, Causes and Medication Info, is

given full authorization to be used, modified, produced and distributed by the

caregiver in order to successfully complete the medication prescription process. After

all the security needs and authorizations are identified the final phase our method

takes place, automatically checking the consistency of the created model and

extracting the security requirements described in it.

5.6 Automated analysis and specification

Initially the consistency check of our final system model (its different views

presented at Figures 5.5, 5.6 and 5.7) reveal an authorization violation regarding the

modification of “Patient Info” included in the Prescription document during the

Patient Discussion activity. During this activity the caregiver can modify the

prescribed treatment plan included in the Prescription document, according to the

feedback received by the patient, but the violation occurs since the same document

also contains the patient’s personal information (name, address, date of birth) for

which the patient has not provided the “modify” authorization to the caregiver. In

order to resolve this issue a new iteration of information view of the system was

created were the Prescription document is comprised of two interim documents, one

containing the Patients Details, making the “Patient Info” informational asset

tangible, and a second one containing the Patient’s Treatment information, which

can be modified by the caregiver. When the two documents are put together they

create a Prescription document which the patient can then use to acquire his

medication. This change in the structure of the Prescription document, illustrated

at the information view of the model at Figure 5.8, does not cause any further

modifications in the rest of the system’s model so it is a relatively easy fix for this

potential authorization inconsistency.

74

The security requirements represented in our system’s model will finally be

extracted by the STS-Tool which can automatically generate a security requirements

document, representing the final deliverable of our case study. For the overall

system twenty five (25) security requirements were identified (cf. Appendix A.6 for

the complete list), thirteen (13) out of which are the responsibility of the STRIPA

system. They identified security requirements for the STRIPA system, are listed

below at Table 5.3.

Description

1 Caregiver requires no-delegation for goal Completeness Check, when delegating
Completeness Check to STRIPA.

2 Caregiver requires non repudiation-of-acceptance for goal Completeness Check, when
delegating Completeness Check to STRIPA.

3 Caregiver requires no-delegation for goal Side effects & dosage check, when delegating
Side-effects & dosage check to STRIPA.

4 Caregiver requires non repudiation-of-acceptance for goal Side-effects & dosage check,
when delegating Side effects & dosage check to STRIPA.

5 Caregiver requires STRIPA to assure the availability the document Medication List.

6 Caregiver requires STRIPA to assure the availability the document Patient Records.

7 Caregiver requires STRIPA to ensure integrity of transmission over the provision of
document Medication Advice, when STRIPA provides Medication Advice to the Caregiver.

8 Caregiver requires STRIPA to ensure integrity of transmission over the provision of
document Treatment Suggestion, when STRIPA provides Treatment Suggestion to the
Caregiver.

Figure 5.8: Final version of the information view model

75

Table 5.3: Security requirements identified for the STRIPA system

5.7 Evaluation and conclusions

After the method’s application at the socio-technical environment of the STRIPA

system, a multi-faceted model of the system has been created and a list of security

requirements has been produced. As discussed earlier (cf. Section 5.1), a series of

criteria have to be applied in order to evaluate the method’s performance.

The first evaluation criterion is the usability of the method, in terms of problems

faced during its practical application. In our attempt the method was applied with

minimal issues at the studied system. By following the method’s steps and rules we

were able to successfully construct a high-level model of the system, with the input

and approval of its stakeholders. The asset evaluation was also performed without

any issue by following the method’s instructions. The only minor issue, not explicitly

covered by the method, was the impact calculation when the same goal was part of

more than one goal decompositions and therefore had different relative importance

values at each goal-tree. This issue was resolved by taking into account the goal’s

relative importance value at the decomposition closest to our main system goal.

Another important point of our evaluation was the capability of the method to

express and model all the security needs of the system’s stakeholders. Our method

was able to successfully express and model a number of security needs and

authorizations, which were based on the newly-introduced threat prioritization

process. Those user security requirements, tailored to the specific security needs of

the system, were automatically checked against the created system model to

evaluate its compliance. As already discussed in the previous section (cf. Section

5.6), a minor redesign of the structure of the Prescription document resulted from an

authorization violation of the proposed design, as part of the automated model

checking. This indicated that the security needs of the users were not only able to be

expressed via our method, but also to result in modifications of the system’s

structure in order to be fully accommodated by the final design.

9 Patient requires STRIPA non-modification of Information: Diagnostics, Patient Info,
Episodes, Dosage and Current Medication.

10 Patient requires STRIPA non-disclosure of Information: Diagnostics, Patient Info, Episodes,
Dosage and Current Medication.

11 Patient requires STRIPA need-to-know of Information: Diagnostics, Patient Info, Episodes,
Dosage and Current Medication, in the scope of goal Support decisions.

12 Patient requires STRIPA non-modification of Information: Prescribed Meds.

13 Patient requires STRIPA need-to-know of Information: Prescribed Meds, in the scope of
goal Support decisions.

76

The third and final evaluation criterion was the security requirements uncovered by

our method and how they compare against the security features already

implemented in the studied system. Since our the STRIPA system, the focal point of

our retrospective case study, has been already developed in a prototypical stage we

were able to cross-reference our identified security requirements with the

functionalities already implemented at the system. With the contribution of

STRIPA’s lead designer and developer, seven (7) out the thirteen (13) identified

requirements – namely requirements number 2,4,5,6,7,8 and 12 from Table 5.3 -

have not been, fully or at all, considered and implemented in the current version of

STRIPA. Therefore the ability of our method to uncover previously unidentified

security-related aspects of the studied system, provides a solid indication of its

effectiveness in practice.

Finally, in addition to this case study’s contribution to the method’s evaluation,

some of its limitations are also worth discussing. To begin with, our case study

focused on one aspect of the STRIPA system’s functionalities, specifically the

provision of support in the decision making process of the caregiver during

prescription. Nevertheless, there are a number of additional functionalities offered

by the system, overviewed at Meulendijk et al. (2014), which were not elaborated in

our study as they were outside the scope of this thesis project.

It is also worth noticing that the functionalities which were included in our case

study could be analyzed in even greater granularity, adding to the precision of the

produced design but producing larger models, too detailed for the purposes of this

study. Nonetheless the current level of detail of our model proved to be more than

adequate for identifying a number of security requirements and it could provide a

solid starting point for later phases of the system’s development.

A final limitation of the present case study lays in the identification and assessment

of the threats of the studied system. The input of a security expert is required by our

method for these activities, in order for a thorough identification of potential threats

and their likelihood of occurrence. As this role was assumed by the authors of this

work using mainly literature resources, a limited number of threats were identified

to facilitate the application of this method and the likelihood of their impact was

subjectively evaluated. Therefore, it is possible that more threats could surface, if a

security expert with superior past experience and resources on the subject of

information security repeated this process. Nevertheless, even with a sub-set of the

overall threats identified, our method was able to rank them and provide some

guidance regarding the priorities of the user security requirements identification. In

future case studies, with a greater number of threats identified, the effects of their

prioritization could become more apparent, when selecting which requirements to be

implemented.

77

Chapter 6. Discussion

In this chapter, we present a discussion regarding the research findings and

conclusions of this thesis. Initially we will discuss the outcome of each of the

research questions introduced in the beginning of our research (cf. Section 1.3 –

Research Questions). Since every research attempt presents its limitations, an

evaluation of the weaknesses of our research will be provided next. Finally, we will

elaborate on some future directions of our work in order to provide a direction and

some objectives for similar research attempts in the future.

6.1 Conclusions

RQ1 What does the literature suggest for identifying risks and security requirements in
software systems?

SQ 1.1 Which are the state-of-the-art methods for security requirement engineering?
SQ 1.2 Which are the state-of-the-art methods for risk analysis in software development?
SQ 1.3 What shared insights and empirical evidence can be found in the literature of those

fields?

The first research question with its three sub-questions was answered via the

findings of the literature study (cf. Chapter 2). Regarding the state-of-the-art in

methods for security requirements engineering, initially, we discussed the

contribution of modeling languages in security requirements engineering process. As

security is a non-functional requirement, it cannot be quantified and measured as

other functional requirements of a designed system. The creation of system models

allows analysts to identify security issues via the system’s design and therefore have

a clear picture of what security requirements need to be imposed on the system,

early in the development process, preferably during the requirements phase of the

software development lifecycle. Since model-based approaches seem to be adequately

equipped to handle complex system designs, they were a good fit for the needs of our

project.

By filtering the literature of the area of model-based methods for security

requirements engineering a number of established methods were identified and

further grouped according to their origins. According to our findings, the earliest

model-based methods are based on the concepts of the UML and are mainly used as

a complementary tool to model basic user interactions with a software agent mainly

using different variations of UML’s use case diagrams. UML-based methods

78

identified through our literature review included abuse case modeling, misuse cases,

anti-models and UMLsec. A common limitation of this category of methods was their

inability to model complex interactions occurring in modern software systems were

the complexity is increased as the system scales upwards with the introduction of

more actors, agents and interactions between them. Another limitation of UML-

based methods is the fact that they lack the tools and concepts needed to approach

security from a social perspective.

Since the analysis of the social interactions taking place in software systems is a

major factor that has to be considered during the design of modern systems, we

turned our attention to goal-oriented modeling approaches to security requirements

engineering. According to the literature of the area, goal-oriented methods are more

adept at describing the complexity of interactions occurring in such systems, as they

include concepts such as goals and actors that allow the modeling of high-level,

social aspects of the system aligned with the strategic objectives of the organization,

often aided by automated support tools. A number of goal-oriented methods were

identified, Secure i*, Secure Tropos and STS-ml were overviewed in order to identify

whether they offered concepts and techniques fitting with the goals of our research.

Risk management was another point of interest during the literature study part of

our research, as reflected by the second sub-question. The literature of the area

suggests that risk management is a process consisting of multiple phases that is

applied to an existing system design to evaluate, control and minimize the

consequences of potential events threatening it. Risk analysis, the initial phase of

the risk management process, is mainly focused on the identification of potential

threats and the estimation of their impact and likelihood of occurrence. Certain

elements of these activities were already present, but less mature, in goal-oriented

methods earlier identified. By examining a number of risk management methods -

namely CORAS, CRAMM, Octave, ISRAM, ISRA-BM – we were able to identify

useful fragments that can be added to a method for security requirements

elaboration and will result in a more complete risk analysis process, thus facilitating

the integration of risk management elements in the security elaboration process

during the early stages of the development lifecycle.

Finally, the third sub-question for the literature part of our study aimed to identify

critical factors and shared insights in the field of security requirements engineering

and risk management. The early adoption of the process was a very important factor

highlighted in a number of literature sources. Elaborating on security and potential

threats of the system from the early stages of its development lifecycle leads to

“secure by design” systems, with less chances of requiring costly redevelopments as

result of poorly designed security features. Another critical point is the consideration

of social and organizational aspects during the security elaboration process, which

allows analysts to better understand and map the environment in which their

79

system to-be will function. The scalability of the selected approach for security was

also considered as an important factor, as any method used should be able to handle

the increasing complexity of interactions in modern socio-technical systems by

producing comprehensible and intuitive system models. The existence of automated

support tools for security requirements engineering model-based methods (e.g.,

CASE tools) is a contributing factor to the reduction of the complexity of the analysis

as well as the time and manpower required for the process, since such tools offer

automated consistency checks and requirement extraction from the created system

models. By taking all the above factors into account while also considering the

individual characteristics of each of the identified methods and their fit to our

project needs, we were able to make a selection of relevant method fragments that

were later used in the development of our method.

RQ2 How are risks assessed and security requirements identified and specified in
practice?

SQ 2.1 When, how and by whom is security and risk elaborated during software development
in practice?

SQ 2.2 Which factors influence the selection of a method for security requirements
engineering and risk management, to be used in practice?

SQ 2.3 What is the gap between the state-of-the-art and current practices used for identifying
risk and specifying security requirements?

The findings of our survey (cf. Chapter 3) provide substantial material to answer the

second research question and its sub-questions. Regarding the first sub-question, the

initiation of the security elaboration process, according to the experiences of our

responders, is equally distributed between the requirements, design and

implementation phases of the development lifecycle with a slight preference towards

the later stages (implementation phase). Similarly, the initiation of the risk

management process takes place more frequently at the second stage of the

development lifecycle, during the design phase. Concerning the way the security

requirements and risks are elaborated, practitioners indicated that systematic and

structured approaches are only “sometimes” used instead of ad-hoc approaches

according to the individual project’s needs. Automated support tools were also

indicated as “rarely” used in the process. Finally, when asked about the importance

of individual roles during security elaboration, responders selected security experts

as the most vital role to the process, but also recognized the importance of software

architects, analysts, developers, stakeholders and end users.

For the second sub-question, a number of factors influencing the selection of the

methods followed during security and risk elaboration was evaluated by the

80

responders. The situational needs of the implementation, similar past experiences

and the suggestions of the stakeholders were rated as important influencing factors.

The standardisability, scientific relevance and tool support of the selected method

were also considered as contributing factors to the decision making process.

Responders also indicated very positive opinions regarding the early elaboration of

security from an organizational standpoint following a structured approach, instead

of ad-hoc approaches focusing solely on the technical details of the implementation.

The use of automated support tools and the integration of risk management

elements in the security elaboration process were also perceived as beneficial.

These findings highlight significant gaps between the practical application of

security requirements engineering and risk management and the literature findings

of these areas. The first point of interest is the early adoption of the process in the

development lifecycle. As previously discussed, literature highlights the need for

security elaboration beginning from the requirements phase of the software

development lifecycle. Practitioners responding to our survey, while recognizing the

early adoption as highly beneficial, do not always practice it at the software projects

they participate. In practice, as indicated by the survey’s responses, security is often

elaborated later in the lifecycle, during the design or even implementation phase. A

similar phenomenon is observed for the adoption of systematic approaches, the

benefits of which are presented in literature and recognized by the practitioners

participating in our survey. Nevertheless, when it comes to the practical application

systematic methods are not always favored over ad-hoc approaches. The use of

automated support tools is also perceived as beneficial but the frequency of their

usage in practice was reported as limited. All the above findings were taken into

account during the development of our method and significantly influenced our

decisions during the process.

RQ3 How can we devise an effective method that integrates risk management in the
security requirements engineering process?

SQ 3.1 How can the findings of RQ1 and RQ2 contribute to the development of the new
method?

SQ 3.2 Is this method effective and applicable enough to assist the security requirements
definition and risk analysis process in real life settings? What are the limitations?

The development of our method was influenced by the literature findings (RQ1) and

the analysis of the state-of-the-practice via our online questionnaire (RQ2). From the

identified methods for security requirements engineering the STS method was

selected as the main source of method fragments for the development of our new

method. This selection was based on the adherence of the STS method to the critical

81

factors identified from the literature of the area, further elaborated at Section 2.4.

Since the focus of our research is on the security of socio-technical systems, the

selected method should also be able to model the complexity of the interactions

inherent to such systems, produce comprehensive models of the designed system and

be supported by automated tools. The goal-oriented approach followed by the STS

method, supported by the STS modeling language (STS-ml) and the STS tool for

modeling and automated analysis, made this method a perfect fit, since these

features are aligned both with the identified practical needs and the context of our

research.

The identified and overviewed risk management methods (cf. Section 2.3) were used

as a source for the identification of the risk management elements integrated in our

method. More specifically techniques and concepts used for risk analysis and in

particular for threat identification, impact calculation and risk evaluation, included

in the identified methods were examined. As already discussed in Section 2.4, the

ISRA-BM method was selected as a result of the contextual similarities between its

techniques and concepts and the needs of our new method. Examples of such

techniques and concepts included hierarchical prioritization of assets, risk

prioritization and asset-dependency diagrams, which were then adapted to improve

or add new aspects to the risk analysis process already in place in the STS method.

Additionally, factors such as the quantitative results provided by ISRA-BM, based

on a well-established framework of mathematical formulae applied by security

experts, added to the methods credibility and were in alignment with the needs of

practitioners.

As a result of the findings of RQ1 and RQ2 the development of our method was

based on solid principles, supported by both the scientific literature of the area and

the consensus of practitioners. Consequently, the developed method, presented and

overviewed at Chapter 4, approaches the issues of security and risk from the early

stages of the system’s development, providing the concepts and rules necessary for

the analysis of the social aspects of the system from an organizational perspective.

The design of the system is influenced by the outcome of the risk analysis process,

which is used as an input during the selection of the security needs and

authorizations that need to be imposed on the system to protect the informational

assets of its stakeholders. After the iterative process of system modeling, threat

assessment and user security requirement elaboration, the produced system model

can be automatically checked and the security requirements described in it can be

explicitly listed and used further into the system’s development process.

From the application of our method in practical settings (cf. Chapter 5), conclusions

were drawn regarding its effectiveness and shortcomings. As already discussed (cf.

Section 5.7), the newly developed method was able to be implemented with minimal

adjustments to its rules and processes, successfully expressed the security needs of

82

the system’s stakeholders and revealed previously unidentified security aspects of

the system via the produced security requirements. One important contribution of

our method was the threat assessment phase, resulting in a list of prioritized

threats which were then used as the basis from which the security needs of the users

originated. Therefore our method facilitates the early elaboration of risk during the

initial phases of the system’s development, along with the identification of security

requirements. Nevertheless, the lack of elaboration of countermeasures to defend

against the identified threats is a shortcoming of our method and could be the

subject of future works.

Another shortcoming of our case study was the limited number of threats that were

identified, making the effects of the threat prioritization process less apparent

overall. Nevertheless we believe that the contribution of threat prioritization to the

identification of security needs and the tracing of security requirements to specific

threats will become highly noticeable in future applications of the method (cf.

Section6.3), involving larger and more complex systems, with numerous potential

threats identified.

6.2 Limitations

Previously identified limitations for the different parts of this study (c.f. Sections

3.3, 4.3 and 5.7), need to be addressed. The first point of discussion focuses on the

limitations of the survey of practice undertaken as part of our research. As discussed

at Section 3.3, the population of our survey responders was limited to twenty four

(24) subjects. The composition of this group also limited the analysis options, as the

majority of responders had a research background compared to a few practitioners,

thus not allowing for meaningful groupings for cross-group analyses of the

responses. As a result, while the survey provided some useful insights about security

and risk in practice, the recorded responses might be skewed towards opinions more

favorable to researchers than practitioners of the field.

The developed method also presents some weaknesses, thoroughly discussed in

Section 4.3. To summarize, the most important shortcomings have to do with the

method’s focus on informational assets of the system, therefore disregarding

potential threats to other asset groups, as vulnerable and critical for the system’s

functionality as information. Another limitation lays on the reliability of integral

parts of the method on subjective human evaluations, which are prone to bias and

errors in their judgment. The input of stakeholders and system users plays an

integral part in the creation of the system’s model, the asset evaluation process and

83

the expression of user security needs. Therefore the quality of the method’s output

(e.g., system model and security requirements) can be affected by the subjectivity of

the input provided by human stakeholders and users. Nonetheless, by using large

and diverse groups of human stakeholders, discrepancies in their input would have a

smaller effect on average.

The shortcomings of the method’s practical application, addressed at Section 5.7,

mainly had to do with the granularity and completeness of the analysis of the

studied system. Our case study focused on specific functionalities offered by the

system; a sub-set of its overall capabilities. Therefore the security requirements

identified by our method concern only a part of the overall system’s security.

Similarly, a more experienced security engineer could provide a more complete list of

potential threats towards the studied system. Since in our case, a smaller number of

threats was identified, the potential benefits from their prioritization were less

apparent in the definition of the user security needs and their implementation

through the produced security requirements. Finally, another point worth

addressing is the validity of the evaluation of the method’s performance in practice,

which took place at the end of our case study. Since the authors and creators of this

method also played the role of the analyst, they were the ones that evaluated its

usability, amongst other evaluation criteria, therefore some validity issues may arise

regarding the objectiveness of this evaluation.

6.3 Future research

In this work we developed a structured method to integrate elements of risk

management in the security requirements engineering process. By combining

method fragments from established methods in the field of security requirements

and risk management we developed a new method that uses the result of the risk

evaluation and prioritization as input for the identification of user’s security needs,

creating a complete socio-technical model of the system to-be. We applied this

method in practice via a retrospective case study, in order to evaluate its

completeness and performance. Throughout our research, in our attempt to provide

answers to our research question, a number of directions for future research in the

topic were identified and will be shortly discussed here.

Since the evaluation of our newly created method was performed by its one

application in the practical settings of the STRIPA system’s extended environment,

a number of additional case studies should be performed in the future, ideally in the

settings of the software industry, in order to be able to extract more conclusions

84

about the performance of our method. By applying our method in more diverse and

complex socio-technical environments there is a better chance of identifying a

number of shortcomings, potential improvements and further expansions of the

method’s process and functionalities. Improvements in the threat impact

identification technique could, for example, be identified by applying the method in

complex systems with multi-level goal trees, including OR goal-decompositions; a

current limitation of our method as discussed in section 4.3.

Another point of interest could be the expansion of our methods concepts and

techniques in order to be able to accommodate a broader range of assets. Other than

information assets, currently supported from our method, more asset groups can be

introduced which could be interconnected, evaluated by the users and threatened by

harmful events, putting the overall system at risk. Such asset groups can include

infrastructure (e.g., hardware) or personnel (e.g., users of the system) with

appropriate threats modeled for each of them.

An additional direction that could be followed by future research attempts on this

topic could examine the expansion of our method’s functionalities. For instance, the

prioritization process could be expanded to prioritize, not only the potential threats

to the system, but also the produced security requirements, which could be ranked

according to the severity of the threat they are attempting to counter. Additional

elements of risk management could also be introduced in order to include the

provision of countermeasures for the threats identified. The integration of risk in the

security requirements engineering process could also be explored using different

methods as a baseline.

 Finally, it would greatly improve the applicability of our method, if the STS-Tool,

used for creating the system model and automatically checking it, was extended to

cover the additional techniques (e.g., importance values assignments, threat impact

value calculation), introduced by our method. This way the process of calculating

and inserting relative importance values to the model and through them calculating

the impact of threats could be automated and thus require less resources in order to

be completed.

85

References

Alberts, C., Dorofee, A., Stevens, J., & Woody, C. (2003). Introduction to the

OCTAVE Approach. Pittsburgh, PA: Carnegie Mellon University.

Basin, D., Clavel, M., & Egea, M. (2011). A decade of model-driven security. In

Proceedings of the 16th ACM symposium on Access control models and

technologies (pp. 1-10).

Basin, D., Doser, J., & Lodderstedt, T. (2006). Model driven security: From UML

models to access control infrastructures. ACM Transactions on Software

Engineering and Methodology (TOSEM), 15(1), 39-91.

Baskerville, R. (1992). The development duality of information systems security,

Journal of Management Systems 4 (1) 1–12.

Best, B., Jurjens, J., & Nuseibeh, B. (2007). Model-based security engineering of

distributed information systems using UMLsec. In Proceedings of 29th

International Conference on Software Engineering (pp. 581-590).

Brinkkemper, S. (1996). Method engineering : engineering of information methods

and tools. Information and Software Technology, 38 (4), 275-280.

Brinkkemper, S., Saeki, M., & Harmsen, F. (1999). Meta-modelling based assembly

techniques for situational method engineering. Information Systems, 24(3),

209-228.

Chung, L. & B.A. Nixon. (1995). Dealing with non-functional requirements: three

experimental studies of a process-oriented approach. In Proceedings of the

17th international conference on Software engineering (pp. 25-37).

Dalpiaz, F., Giorgini, P., & Mylopoulos, J. (2013). Adaptive socio-technical systems: a

requirements-based approach. Requirements engineering, 18(1), 1-24.

Dalpiaz, F., Paja, E., & Giorgini, P. (2011). Security requirements engineering via

commitments. In Proceedings of 1st Workshop on Socio-Technical Aspects in

Security and Trust (STAST), (pp. 1-8).

Darke, P., Shanks, G., & Broadbent, M. (1998). Successfully completing case study

research: combining rigour, relevance and pragmatism. Information Systems

Journal, 8 (4), 273-289.

86

Dubois, É., Heymans, P., Mayer, N., & Matulevičius, R. (2010). A systematic

approach to define the domain of information system security risk

management. In S. Nurcan, C. Salinesi, C. Souveyet & C. Ralyte (eds.)

Intentional Perspectives on Information Systems Engineering (pp. 289-306).

Berlin- Heidelberg: Springer.

Elahi, G., & Yu, E. (2007). A goal oriented approach for modeling and analyzing

security trade-offs. In C. Parent, K.D. Schewe, V.C. Storey & B. Thalheim

(eds.) Conceptual Modeling-ER 2007 (pp. 375-390). Berlin Heidelberg:

Springer.

Eric, S. K., Giorgini, P., & Maiden, N. (2011). Social modeling for requirements

engineering. Cambridge, MA: Mit Press.

Fabian, B., Gürses, S., Heisel, M., Santen, T., & Schmidt, H. (2010). A comparison of

security requirements engineering methods. Requirements engineering, 15(1),

7-40.

Giorgini, P., Massacci, F., Mylopoulos, J., & Zannone, N. (2005). Modeling security

requirements through ownership, permission and delegation. In Proceedings of

the 13th IEEE International Conference on Requirements Engineering, (pp.

167-176).

Giunchiglia, F., Mylopoulos, J., & Perini, A. (2003). The tropos software development

methodology: processes, models and diagrams. In F. Giunchiglia, J. Odell & G.

Weiss (eds.) Agent-Oriented Software Engineering III (pp. 162-173). Berlin

Heidelberg: Springer.

Greenhalgh, T., & Peacock, R. (2005). Effectiveness and efficiency of search methods

in systematic reviews of complex evidence: audit of primary sources. Bmj,

331(7524), 1064-1065.

Haley, C. B., Laney, R., Moffett, J. D., & Nuseibeh, B. (2008). Security requirements

engineering: A framework for representation and analysis. IEEE Transactions

on Software Engineering, 34(1), 133-153.

ISO/IEC. (2004). 13335-1 - Information technology – security techniques –

management of information and communications technology security.

International Organization for Standardization, Geneva

ISO/IEC. (2008). 27799: Health informatics. Information security management in

health using ISO/IEC, 27002. International Organization for Standardization,

Geneva

87

Jürjens, J. (2002). UMLsec: Extending UML for secure systems development. In

J.M. Jezequel, H. Hussmann & S. Cook (eds.) UML 2002— The Unified

Modeling Language (pp. 412-425). Berlin Heidelberg: Springer.

Karabacak, B., & Sogukpinar, I. (2005). ISRAM: information security risk analysis

method. Computers & Security, 24(2), 147-159.

Kim, J., Kim, M., Park, S. (2005). Goal and scenario based domain requirements

analysis environment, The Journal of Systems and Software, 79, 926–938.

Liu, L., Yu, E., & Mylopoulos, J. (2003). Security and privacy requirements analysis

within a social setting. In Proceedings of 11th IEEE

International Requirements Engineering Conference (pp. 151-161).

Maglogiannis, I., & Zafiropoulos, E. (2006, August). Modeling risk in distributed

healthcare information systems. In Proceedings of the IEEE Engineering in

Medicine and Biology Society, EMBS'06. (pp. 5447-5450).

McDermott, J., & Fox, C. (1999). Using abuse case models for security requirements

analysis. In Proceedings of the 15th Annual Computer Security Applications

Conference, (ACSAC'99), (pp. 55-64).

Mellado, D., Blanco, C., Sánchez, L. E., & Fernández-Medina, E. (2010). A

systematic review of security requirements engineering. Computer Standards

& Interfaces, 32(4), 153-165.

Mellado, D., Fernández-Medina, E., & Piattini, M. (2007). A common criteria based

security requirements engineering process for the development of secure

information systems. Computer standards & interfaces, 29(2), 244-253.

Meulendijk, M.C., Spruit, M.R., Jansen, P.A.F., Numans, M.E., & Brinkkemper, S.

(2014). STRIPA: A rule-based decision support system for medication reviews

in primary care. Manuscript submitted for publication.

Mouratidis, H., Giorgini, P., & Manson, G. (2003). Modelling secure multiagent

systems. In Proceedings of the second international joint conference on

Autonomous agents and multiagent systems (pp. 859-866).

Mouratidis, H., & Giorgini, P. (2007). Secure tropos: a security-oriented extension of

the tropos methodology. International Journal of Software Engineering and

Knowledge Engineering, 17(02), 285-309.

Mouratidis, H. (2011). Secure Software Systems Engineering: The Secure Tropos

Approach. Journal of Software (1796217X), 6(3).

88

O'Brien, J. A. (2002). Introduction to information systems: Essentials for the e-

business enterprise. New York, NY: McGraw-Hill, Inc.

Paja, E., Dalpiaz, F., Poggianella, M., Roberti, P., & Giorgini, P. (2012). Modelling

Security Requirements in Socio-Technical Systems with STS-Tool. In

Proceedings of CAiSE Forum, (pp. 155-162).

Paja, E., Dalpiaz, F., & Giorgini, P. (2012). Identifying conflicts in security

requirements with STS-ml. Trento : Università degli Studi di Trento.

Paja, E., Dalpiaz, F., & Giorgini, P. (2013a). Managing security requirements

conflicts in socio-technical systems. In W. Ng, V.C. Storey, & J. Trujillo (eds.),

Conceptual Modeling (pp. 270-283). Berlin, Heidelberg: Springer.

Paja, E., Dalpiaz, F., & Giorgini, P. (2013b). Designing Secure Socio-Technical

Systems with STS-ml. In Proceedings of the 6th International i* Workshop

(iStar 2013), CEUR Vol-978.

Pavlidis, M., & Islam, S. (2011). SecTro: A CASE Tool for Modelling Security in

Requirements Engineering using Secure Tropos. In Proceedings of CAiSE

Forum, (pp. 89-96).

Peltier, T. R. (2005). Information security risk analysis. Boca Raton, FL: CRC press.

Rindfleisch, T. C. (1997). Privacy, information technology, and health care.

Communications of the ACM, 40(8), 92-100.

Rumbaugh, J., Jacobson, I., & Booch, G. (2004). The Unified Modeling Language

Reference Manual, Upper Saddle River, NJ: Pearson Higher Education.

Samy, G. N., Ahmad, R., & Ismail, Z. (2010). Security threats categories in

healthcare information systems. Health Informatics Journal, 16(3), 201-209.

Sindre, G., & Opdahl, A. L. (2005). Eliciting security requirements with misuse

cases. Requirements Engineering, 10(1), 34-44.

Stølen, K., den Braber, F., Dimitrakos, T., Fredriksen, R., Gran, B. A., Houmb, S. H.

& Aagedal, J. Ø. (2002). Model-based risk assessment–the CORAS approach.

In Proceedings of 1st iTrust Workshop.

Stoneburner, G., Goguen, A., & Feringa, A. (2002). Risk management guide for

information technology systems. Nist special publication, 800(30), 800-30.

Streeton, R., Cooke, M., & Campbell, J. (2004). Researching the researchers: Using a

snowballing technique, Nurse Researcher, 12(1), 35-46.

89

Suh, B., & Han, I. (2003). The IS risk analysis based on a business model.

Information & Management, 41(2), 149-158.

Vaast, E. (2007). Danger is in the eye of the beholders: Social representations of

Information Systems security in healthcare. The Journal of Strategic

Information Systems, 16(2), 130-152.

van de Weerd, I., & Brinkkemper, S. (2008). Meta-modeling for situational analysis

and design methods. In I. van de weerd, & s. Brinkkemper (eds.), Handbook of

research on modern systems analysis and design technologies and applications

(pp. 35-54). Mankato, Minnesota State University.

van Lamsweerde, A. (2001). Goal-oriented requirements engineering: A guided

tour. In Proceedings of Fifth IEEE International Symposium on Requirements

Engineering (pp. 249-262).

van Lamsweerde, A. (2004). Elaborating security requirements by construction of

intentional anti-models. In Proceedings of the 26th International Conference on

Software Engineering (pp. 148-157).

Verdon, D., & McGraw, G. (2004). Risk analysis in software design. Security &

Privacy, IEEE, 2(4), 79-84.

Vorster, A., & Labuschagne, L. (2005). A framework for comparing different

information security risk analysis methodologies. In Proceedings of the 2005

annual research conference of the South African institute of computer scientists

and information technologists on IT research in developing countries (pp. 95-

103).

Whitman, M. E. (2003). Enemy at the gate: threats to information security.

Communications of the ACM, 46(8), 91-95.

Yazar, Z. (2002). A qualitative risk analysis and management tool–CRAMM.SANS

InfoSec Reading Room White Paper.

Youseef, A., & Liu, F. (2012). A New Framework to Model a Secure E-Commerce

System. World Academy of Science, Engineering and Technology 6(2), 6-12.

Yu, E., & Mylopoulos, J. (1998). Why goal-oriented requirements engineering.

In Proceedings of the 4th International Workshop on Requirements

Engineering: Foundations of Software Quality (pp. 15-22).

Zave, P. (1997). Classification of research efforts in requirements engineering. ACM

Computing Surveys (CSUR), 29(4), 315-321.

90

Appendix

A1: Survey form

91

92

93

94

95

A2: Overview of method activities origin and modifications

Activity Origin Modifications / Comments
Identify Stakeholders STS-ml None
Identify Assets and Interactions STS-ml None
Evaluate importance of goals ISRA-BM Changed to accommodate goals instead

of business functions.
Identify Information /Ownership STS-ml None
Structure Information STS-ml None
Determine Informational Asset
Importance

ISRA-BM Limited to informational assets only

Identify Threats new Can be performed in different ways (e.g.,
ISO standards, past experience, etc.)

Model Threats STS-ml None
Assess Threat Impact new Through the process introduced by our

method (cf. Section 4.2).
Assess Threat Probability new Can be evaluated in different ways (e.g.,

ISO standards, system environment, etc.)
Evaluate Risk ISRA-BM Only part of formulas for risk calculation

used.
Express Security Needs STS-ml Moved after the identification and

prioritization of threats.
Model Authorizations STS-ml Moved after the identification and

prioritization of threats.
Perform Consistency Analysis STS-ml None
Perform Security Analysis STS-ml None
Generate Security Requirements STS-ml None

Table A.1: Origin and modifications of method fragments

96

A.3: Template of user evaluation input form

Part 1: Goal evaluation

Instructions: Rank the activities of each of group below, according to their relative importance to each other,

by dividing 100 point amongst them. (More points = higher importance)

Hint : If you consider all activities of a group equally important, divide the 100 points equally amongst them.

Groups / Activities Activity Description Importance

Group 1: Receive Heathcare Service Points left: 100

GP consultation Visiting a caregiver for medical consultation

Receive medication Buy/obtain the prescribed medication

Total: 0

Group 2: Visiting a caregiver for medical consultation Points left: 100

Report side effects Report observed side effects to physician

Report drug adherence Report adherence to prescribed drugs to physician

Receive prescription for meds Receive adequate prescription from physician

Total: 0

Group 3: Medication prescription process Points left: 100

Anamnesis Patient records consultation to determine medical history

Analysis Analysis of current condition & possible treatment options

Treatment Plan Selection of treatment from available options

Patient Discussion Discussion of the treatment plan with the patient

Total: 0

Group 4: Analysis of current condition & possible treatment options Points left: 100

Report symptoms Input of patient's symptoms

Input existing medication Input of patient's current medication

Completeness check Check for untreated or overtreated conditions

Determine medication Selection of new medication

Determine interactions & dosage Check for unwanted interactions and correct dosage

Total: 0

Group 5: Decision support through a software Points left: 100

Completeness check Check for untreated or overtreated conditions

Interactions & dosage check Check for unwanted interactions and correct dosage

Total: 0

Group 6: Check for under- or over-treatment and suggest appropriate medication Points left: 100

Check for overtreatment Determine if too much medication prescribed

Check for undertreatment Determine if too little medication prescribed

Advise medication Suggest medication adjustments or new medication

Total: 0

Group 7: Check for unwanted interactions and correct dosage Points left: 100

Check for interactions Check for unwanted interactions between meds

Suggest dosage Suggest appropriate dosage for each medication

Total: 0

Figure A.1: Goal evaluation, user input template

97

Figure A.2: Information assets evaluation, user input template

Part 2: Asset evaluation

Instructions: Evaluate how important you consider each of the following pieces of information for the overall

 success of the process of the diagnosis and treatment selection.

Select the appropriate rating from 1 to 5, for each information asset presented below.

Informational Asset Information Description Importance

Patient Name The name of the patient

Patient Address Patient's geographical location

Date of Birth Date of birth of the patient

Episodes Medical history of patient

Current medication Medication the patient is currently receiving

Diagnostics Lab results, X-rays, etc.

Prescribed Medication Medication prescribed to the patient for current condition

Dosage Dosage of prescribed medication

Medication Info Commercial name, active ingredients, etc.

Suggested medication Medication suggested for a specific condition

Rationale Rationale behind medication selection

Suggested dosage Dosage suggestion for medication

Causes Causes of unwanted interactions between suggested medication

98

A.4: User evaluations of relative goal importance

Average values

Groups / Activities Activity Description Importance

Group 1: Receive Heathcare Service Points left: 0

GP consultation Visiting a caregiver for medical consultation 67,14

Receive medication Buy/obtain the prescribed medication 32,86

Total: 100

Group 2: Visiting a caregiver for medical consultation Points left: 0

Report side effects Report observed side effects to physician 25,00

Report drug adherence Report adherence to prescribed drugs to physician 28,89

Receive prescription for meds Receive adequate prescription from physician 46,11

Total: 100

Group 3: Medication prescription process Points left: 0

Anamnesis Patient records consultation to determine medical history 22,78

Analysis Analysis of current condition & possible treatment options 30,56

Treatment Plan Selection of treatment from available options 26,11

Patient Discussion Discussion of the treatment plan with the patient 20,56

Total: 100

Group 4: Analysis of current condition & possible treatment options Points left: 0

Report symptoms Input of patient's symptoms 22,11

Input existing medication Input of patient's current medication 19,89

Completeness check Check for untreated or overtreated conditions 20,44

Determine medication Selection of new medication 19,33

Determine interactions & dosage Check for unwanted interactions and correct dosage 18,22

Total: 100

Group 5: Decision support through a software Points left: 0

Completeness check Check for untreated or overtreated conditions 53,33

Interactions & dosage check Check for unwanted interactions and correct dosage 46,67

Total: 100

Group 6: Check for under- or over-treatment and suggest appropriate medication Points left: 0

Check for overtreatment Determine if too much medication prescribed 34,89

Check for undertreatment Determine if too little medication prescribed 32,56

Advise medication Suggest medication adjustments or new medication 32,56

Total: 100

Group 7: Check for unwanted interactions and correct dosage Points left: 0

Check for interactions Check for unwanted interactions between meds 58,89

Suggest dosage Suggest appropriate dosage for each medication 41,11

Total: 100

Figure A.3: Average goal evaluation values

99

User Input

Importance Importance Importance Importance Importance Importance Importance Importance Importance

0 0 0 0 0 0 0 0 0

60 60 60 60 60 60 60 80 90

40 40 40 40 40 40 40 20 10

100 100 100 100 100 100 100 100 100

0 0 0 0 0 0 0 0 0

20 30 10 30 30 25 25 40 15

30 30 40 30 35 25 25 20 25

50 40 50 40 35 50 50 40 60

100 100 100 100 100 100 100 100 100

0 0 0 0 0 0 0 0 0

30 25 30 15 30 15 20 20 20

30 25 30 25 40 35 20 30 40

20 25 30 25 15 30 40 30 20

20 25 10 35 15 20 20 20 20

100 100 100 100 100 100 100 100 100

0 0 0 0 0 0 0 0 0

20 40 20 24 20 20 20 15 20

20 15 20 24 20 20 20 20 20

20 15 20 19 20 25 20 25 20

20 15 20 19 25 20 20 15 20

20 15 20 14 15 15 20 25 20

100 100 100 100 100 100 100 100 100

0 0 0 0 0 0 0 0 0

50 50 50 60 60 60 50 50 50

50 50 50 40 40 40 50 50 50

100 100 100 100 100 100 100 100 100

0 0 0 0 0 0 0 0 0

34 40 35 30 40 30 30 40 35

33 40 25 30 30 30 30 40 35

33 20 40 40 30 40 40 20 30

100 100 100 100 100 100 100 100 100

0 0 0 0 0 0 0 0 0

60 50 50 50 60 50 60 70 80

40 50 50 50 40 50 40 30 20

100 100 100 100 100 100 100 100 100

Figure A.4: Overall goal evaluation values

100

A.5: User evaluations of relative information importance

Average values

User Input

Informational Asset Information Description Importance

Patient Name The name of the patient 2,33

Patient Address Patient's geographical location 2,22

Date of Birth Date of birth of the patient 4,11

Episodes Medical history of patient 4,78

Current medication Medication the patient is currently receiving 4,56

Diagnostics Lab results, X-rays, etc. 4,33

Prescribed Medication Medication prescribed to the patient for current condition 4,67

Dosage Dosage of prescribed medication 4,33

Medication Info Commercial name, active ingredients, etc. 3,22

Suggested medication Medication suggested for a specific condition 3,78

Rationale Rationale behind medication selection 3,67

Suggested dosage Dosage suggestion for medication 3,56

Causes Causes of unwanted interactions between suggested medication 3,11

Importance Importance Necessity Importance Importance Importance Importance Importance Importance

1 5 2 3 1 2 1 4 2

2 2 3 2 2 2 2 2 3

4 5 4 4 5 4 3 4 4

5 5 4 5 5 5 4 5 5

4 5 5 5 5 4 4 5 4

5 4 3 5 4 5 4 5 4

4 5 5 5 5 4 5 5 4

3 4 5 4 5 4 5 5 4

4 3 3 3 3 3 3 3 4

4 3 5 3 4 3 4 4 4

5 3 4 3 4 2 3 4 5

3 3 4 3 4 3 4 4 4

2 3 2 3 4 2 2 5 5

Figure A.5: Average information assets evaluation values

Figure A.6: Overall information assets evaluation values

101

A.6: Security Requirements List

Responsible Description

Caregiver STRIPA requires Caregiver to assure the availability of document
Medication Advice.

 STRIPA requires Caregiver to assure the availability of document Treatment
Suggestion.

 Patient requires Caregiver to ensure integrity of transmission over the
provision of document Prescription, when Caregiver provides Prescription
to Patient.

 Patient requires Caregiver to ensure confidentiality of transmission over
the provision of document Prescription, when Caregiver provides
Prescription to Patient.

 STRIPA requires Caregiver to ensure integrity of transmission over the
provision of document Medication List, when Caregiver provides
Medication List to STRIPA.

 STRIPA requires Caregiver to ensure integrity of transmission over the
provision of document Patient Records, when Caregiver provides Patient
Records to STRIPA.

 STRIPA requires Caregiver to ensure confidentiality of transmission over
the provision of document Patient Records, when Caregiver provides
Patient Records to STRIPA.

 STRIPA requires Caregiver need-to-know of Information Causes ,
Medication Info , Rationale, Suggested Dosage and Suggested Medication,
in the scope of goal Medication Prescription.

 Patient requires Caregiver non-modification of Information Current
Medication , Episodes,
Diagnostics and Patient Info.

 Patient requires Caregiver need-to-know of Information Current
Medication, Episodes, Diagnostics and Patient Info, in the scope of goal
Medication Prescription.

 Patient requires Caregiver need-to-know of Information Prescribed Meds
and Dosage, in the scope of goal Medication Prescription.

Patient Patient will delegate to Caregiver that has a high trustworthiness level.

STRIPA Caregiver requires no-delegation for goal Completeness Check, when
delegating Completeness Check to STRIPA.

 Caregiver requires non repudiation-of-acceptance for goal Completeness
Check, when delegating Completeness Check to STRIPA.

 Caregiver requires no-delegation for goal Side effects & dosage check,
when delegating Side-effects & dosage check to STRIPA.

 Caregiver requires non repudiation-of-acceptance for goal Side-effects &
dosage check, when delegating Side effects & dosage check to STRIPA.

 Caregiver requires STRIPA to assure the availability the document
Medication List.

102

 Caregiver requires STRIPA to assure the availability the document Patient
Records.

 Caregiver requires STRIPA to ensure integrity of transmission over the
provision of document Medication Advice, when STRIPA provides
Medication Advice to the Caregiver.

 Caregiver requires STRIPA to ensure integrity of transmission over the
provision of document Treatment Suggestion, when STRIPA provides
Treatment Suggestion to the Caregiver.

 Patient requires STRIPA non-modification of Information: Diagnostics,
Patient Info, Episodes, Dosage and Current Medication.

 Patient requires STRIPA non-disclosure of Information: Diagnostics, Patient
Info, Episodes, Dosage and Current Medication.

 Patient requires STRIPA need-to-know of Information: Diagnostics, Patient
Info, Episodes, Dosage and Current Medication, in the scope of goal
Support decisions.

 Patient requires STRIPA non-modification of Information: Prescribed Meds.

 Patient requires STRIPA need-to-know of Information: Prescribed Meds, in
the scope of goal Support decisions.

Table A.2: Security requirements identified for the overall system

