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Abstract 

Indirect illumination algorithms exist in many forms, but the state-of-the-art real-time 

algorithms often limit the rendering equation in terms of visibility determination or leave it out 

completely. The main focus of this thesis is to adapt the existing high quality photon mapping 

method in order to make the visibility determination closer to the real-time field. Similar to the 

splatting indirect illumination technique, our technique works by placing many indirect light 

sources in the scene. However, we consider these light sources as small orthographic area light 

sources instead of point light sources. This allows us to introduce a novel technique for visibility 

determination. This technique bundles light rays into a single ray for a more efficient, but still 

plausible, indirect illumination if many samples are averaged. The final illumination is then 

applied by splatting this single ray using an orthographic shadow map that serves as a local 

visibility determination for the entire bundle. Furthermore, we introduce a new technique for 

stratifying these light sources in 3D space. 

A highly parameterized version of this algorithm was implemented, as well as a photon 

mapping implementation to serve as a ground truth. Both algorithms are assessed in terms of 

quality, resources and speed. Our result show an improvement in rendering time with minor loss 

of quality, although the time required for our algorithm to converge is still far out of the real-

time range. However, our techniques have been concocted keeping hardware acceleration in 

mind. Such implementation might show promising results.  
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1 Introduction 

Indirect illumination is a key aspect for rendering a realistic scene: almost every videogame or 

movie that aims to achieve realism includes a form of indirect illumination. It is responsible for 

shading an entire scene based on the light that reflects off already lit surfaces. A part of this 

reflected light might get reflected again. Calculating the indirect illumination of a scene requires 

solving a complex and continuous function. Every additional light bounce loses some energy, 

depending on the material properties. This property can be exploited to limit the indirect 

illumination techniques to a few bounces, as in many cases even a single bounce is enough to 

create a plausible result [1].   

However, the function remains complex. In contrast to direct illumination, the number of light 

sources is a lot higher if we know that every surface that receives light becomes a secondary 

light source. Furthermore, popular direct illumination techniques (such as deferred rendering 

[2]) omit all geometry that is not directly visible from the camera. Indirect illumination might 

come from geometry outside of the viewing frustum, making it impossible to neglect any 

geometry. The continuous function combined with a high light source count and a high 

geometric complexity make up the main challenges.  

Due to its importance, a lot of techniques exist to calculate indirect illumination, ranging from 

real-time approximations to high-quality implementations that might take hours to render one 

frame. Most of these real-time techniques pose very strict time limits and often contain 

noticeable inaccuracies. High-quality approaches do not contain these inaccuracies but go well 

over the real-time budget.  For those reasons, real-time applications often revert to 

precomputed solutions: a high quality technique is used to compute an intermediate result that 

can be applied in real time.  Unfortunately, all of these methods include downsides such as 

artifacts, limited dynamic geometry, long rendering times, etc.  
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The goal of this thesis is to lessen the gap between the set of real-time and high quality 

techniques. Many real-time techniques neglect the visibility determination. Can the visibility 

determination from a high quality technique such as photon mapping technique [3] be adapted 

in order to calculate visibility more efficiently? 

 Our adaptations involve using a stratification pass, orthographic shadow maps for indirect 

light source visibility determination and splatting the indirect illumination directly into an 

accumulation buffer. Our proposed pipeline is highly compatible with state-of-the-art 

techniques, such as the reflective shadow map [4] and imperfect shadow map [5] techniques, 

allowing a possible hardware accelerated implementation.   
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2 Related work 

As mentioned before, a large set of indirect illumination algorithms exist. This section briefly 

lists the major techniques in the field of global illumination. It goes in a bit more detail regarding 

the photon mapping and splatting indirect illumination techniques, as they lay the basic 

foundations for our adaptations.  

2.1 Real-Time solutions 

The most basic real-time approximation of indirect illumination is ambient lighting. The albedo 

of every pixel is multiplied with a constant value so that shadowed pixels do not appear 

completely black. A popular adaptation is screen space ambient occlusion (SSAO [6]) or the 

improved image-space horizon-based ambient occlusion (HBAO [7]). These techniques include 

the depth buffer to approximate local visibility: surfaces that are partly enclosed by other 

geometry are assumed to receive less indirect illumination. Albeit being extremely fast and 

simple, these techniques come with the downside that the near-uniform shading is perceivably 

wrong. Furthermore, the assumption that enclosed geometry always receives less illumination 

is theoretically not correct and lacks color bleeding1, but it does make for an impressive 

approximation. The main assumption in these techniques is used in our work as a quality 

assessment parameter: enclosed geometry such as grooves are generally shaded slightly darker, 

and there are generally no completely dark areas within a scene. As our implementation (see 

section 4) is limited to single bounce indirect illumination, a basic ambient color can be used to 

fill in for unshaded areas.  

Another common set of techniques used in real-time environments are precomputed 

solutions. An intermediate result is generated using a high quality technique and is then applied 

in real time. A widely used set of precomputed techniques are based on radiosity [8]. In a first 

step, the geometry is divided into patches and the visibility between the patches is calculated. 

In a second pass, the patches receive and bounce light to other patches. As soon as a dynamic 

                                                             
1 A surface that receives colored light from a photon that bounced from a colored surface. 
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object comes into play, the illumination for objects affected by this movement must be 

recalculated. This poses a strict limit on the number of possible dynamic objects.  Pre-computed 

techniques have the major advantage that the indirect illumination applied at real-time is of high 

quality but without the high cost. The major disadvantage is that the speed-up is limited to the 

pre-calculated data. Depending on the used technique, the geometry and lighting settings used 

in the real-time scenario must be largely equal to the precomputed settings. However, there is 

a trend towards WYSIWYG2: developers wish to see how the final result will look like without 

any pre-computation steps [9]. Therefore, our algorithm is developed without any use of pre-

computed elements.  

A more recent trend seeks to simplify the scene and to calculate the indirect illumination using 

this simplified model. The imperfect shadow map technique [5] starts by placing many virtual 

point lights (VPL’s) within the scene. Because calculating the visibility for all of these light 

sources would be too expensive, the scene geometry is simplified into single points and 

extremely low resolution shadow maps are used. It is capable of generating plausible results at 

interactive frame rates, but this low resolution geometry and visibility determination causes 

small light leaking3 artifacts. However, even with such low indirect shadow quality, the results 

are still plausible, showing that the visibility term of the rendering equation [10] should not be 

neglected, but can be approximated.  

The light propagation volume technique [6] starts by creating a voxelized version of the scene 

geometry. Direct light is then injected into this voxel grid and propagated towards its neighbors. 

This extreme bundling of light has the major advantage of processing large light transports at 

an affordable cost: the technique is capable of approximating indirect illumination in a dynamic 

scene with dynamic lights in real-time. But again, as a result from the geometry simplification, 

small light leaks appear. Furthermore, every propagation step is expensive and suffers from 

numerical dissipation, causing the light to diffuse per step. Every iteration leads to an 

                                                             
2 What You See Is What You Get.  
3 Light that appears to shine through a solid object.  
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exponential loss of precision. The concept of bundling rays is the foundation for our visibility 

determination and splatting technique.   

Voxel cone tracing [9] uses a less coarse approximation by creating a voxel octree from the 

scene.  Direct illumination is injected and filtered into this data structure. In a final step, cones 

are traced through this octree, gathering the indirect illumination. Due to this directional 

sampling, directional information can be used to compute specular indirect illumination where 

other methods often limit themselves to diffuse only illumination. Due to the usage of the 

octree, the scene geometry is simplified less when comparing to the voxel grid in Light 

Propagation Volumes. A grid tightly enclosing geometry causes less light leaks to occur. 

Unfortunately, the build-up of this data structure and the cone tracing are expensive. Data from 

the previous frames can be re-used, but this limits the number of dynamic objects. Furthermore, 

larger scenes require a memory intensive data structure.   

2.2 High quality solutions 

All of the real-time techniques include some form of limitation, ranging from limits on 

dynamic objects to visible artifacts such as light leaking.  High quality techniques do not have 

these downsides but often require a multiple of the rendering time. One common approach is 

path tracing [10]: for every screen pixel, rays are shot into the scene. A ray bounces in a random 

direction from every hit surface until it hits a light source or a termination criterion is reached. A 

photon is then traced back to the camera pixel, while the material properties of every hit surface 

alter the color and intensity of the photon. By averaging the results of a large amount of rays per 

pixel, convergence is achieved, resulting in photorealistic images. By using stochastic sampling, 

the integration domain is much smaller as compared to distributed ray tracing [11]. Path tracing 

has interactive implementations [12], albeit not without artifacts such as noise.  

Instead of shooting rays and direct them towards a light source, the photon mapping [3] 

technique starts from shooting photons from the light source. Similar to path tracing, the 

photon is bounced on based on termination criteria. A common criterion is called Russian 

roulette: samples are rejected based on a one in n chance (where n can be influenced by the 
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material properties, the current bounce count, etc.). The photon’s properties such as the 

remaining intensity and color are then stored in the photon map, a data structure optimized for 

fast nearest neighbor queries required in a next step. After a suitable structure, such as a 

balanced KD-tree, is built, a regular ray tracing pass is conducted. In this secondary pass, the 

location of the first intersection is used as input for a k-nearest-neighbors search. The average 

distance and properties of the k nearest photons are used as a density estimation. Selecting only 

the nearest neighbors might cause corners to become overly bright compared to flat surfaces 

since the distance between photons is smaller. This can easily be overcome by limiting the 

nearest-neighbors search to a disc-based search. The normalized color of all the nearest photons 

is used to simulate the color bleeding effect.  To achieve plausible results, a high number of 

photons and nearest neighbors have to be used. The injection of these photons into the photon 

map and especially the querying of this data structure are very time consuming events. Because 

the photons are shot from the camera, this technique allows for easy prioritizing of certain 

surfaces, and is therefore a beloved technique for rendering caustics. A high number of photons 

is aimed towards surfaces such as glass or shiny metal, allowing for very high detail in these 

areas.  

2.3 Splatting indirect illumination 

Photon mapping works well, but has the bottleneck of an expensive injection and querying of 

the photon map. Furthermore, it is primarily based on ray casting [13], which generally does not 

map to the GPU hardware as well as the Z-Buffer approach [14]. The splatting indirect 

illumination technique [15] uses the same concept as photon mapping but uses a reflective 

shadow map [4] to determine the surfaces that cause first-order indirect illumination, allowing 

for the utilization of a rasterization pipeline. Every pixel within the shadow map is a surface that 

reflects lights and is considered to be a pixel light, similar to the basic idea of instant radiosity 

[16]. The most important pixel lights are selected using importance sampling, and their 

contribution is then splatted directly into an accumulation texture. Due to the vast number of 

pixel lights, even when using importance sampling, the visibility term of the rendering equation 

is ignored.   
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3 Photon splatting 

The main contribution of this thesis is the introduction of the photon splatting pipeline that 

requires less resources than the original photon mapping implementation by splatting the 

indirect illumination directly into an accumulation buffer. In contrast to the splatting indirect 

illumination technique, our technique calculates indirect visibility efficiently using orthographic 

shadow maps and 

introduces a stratified 

photon sampling 

technique. The algorithm is 

built as a pipeline: the 

output of every step is the 

input for the next step. This 

means that any step can be 

implemented in any 

possible way, as long as the 

results are the same. Figure 

1 gives an overview of the 

entire algorithm, which will 

be described in detail 

throughout this chapter.  

  

Figure 1: Algorithm overview 
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3.1 Direct illumination 

A first step is to calculate the direct illumination, separated from the indirect illumination. Our 

approach is capable to converge to a correct direct illumination solution as well, but as direct 

illumination requires higher detail, a specialized algorithm is preferable. A deferred rendering 

based algorithm [2] is recommended since the splatting stage can benefit from reusing the 

geometry buffer (G-Buffer) instead of a full-geometry pass.  

3.2 Photon injection 

The first step regarding 

the indirect illumination is 

finding suitable locations for 

virtual point lights. Any 

surface that receives direct 

light is a valid indirect light 

source. There are many 

different approaches that 

can be utilized, as long as 

the output is a list of indirect light sources. A first possible method is using the first step of the 

photon mapping algorithm: photons are shot from the light source and the first point of 

intersection with the scene geometry is calculated. These points are visualized in Figure 2. For 

single bounce indirect illumination, the location combined with the photon’s color (based on the 

light color, the surface albedo and material properties) and a pseudorandom direction are stored 

within a suited data structure. This direction is limited to point away from the surface (within 90 

degrees of the surface normal vector). If more than a single bounce is required, the photons can 

be bounced on multiple times before being stored.  

A second, faster but more limited method, is generating a rasterized shadow map for the light 

source: every pixel in this map can then be considered as a pixel light source.  Due to the 

Figure 2: Direct hit photon locations 
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rasterization nature of this pass, it is generally faster, but generating second order indirect 

illumination becomes a non-trivial assignment.  

3.2.1 Stratified photons 

As both suggested strategies might introduce a very large number of light sources, an optional 

stratified sampling pass is introduced. Similar to photon mapping, our algorithm requires a high 

overlap to converge to the correct solution. Furthermore, the splatting step is computationally 

more expensive than the injection step. These factors make it beneficial to combine neighboring 

light sources.  

In a first step, a voxel grid is placed encapsulating the scene geometry. Instead of storing the 

photons regularly, they are injected into the corresponding cell.  The resolution of this grid can 

be chosen freely: a higher count will result in a better, but computationally more expensive 

image. 

In a second step, all the information from the photons within a cell is then combined. The color 

can simply be atomically added, while the position and direction need a better heuristic. Atomic 

operations are considered to be expensive and tend to limit the multithreading capabilities. 

Nevertheless, research by Kaplanyan et al. [17] has shown that hardware accelerated atomic 

operations on voxel grids with a 32³ resolution can easily be calculated in real-time. Positions 

cannot be averaged as the average position might end up within geometry and averaging 

directions would result in a biased direction. The simplest solution to both problems is selecting 

a random photon’s position and direction. This random direction causes the expected value to 

be equal to the ground truth, yielding an unbiased heuristic. An issue that might arise is the 

selection of a less relevant photon: in case 99% of the photons within a voxel point in a certain 

direction, there is still a 1% chance that the chosen direction is a deviating one. As all color 

information is combined, this might appear as an artifact such as wrongful color bleeding.   

A more complex heuristic that solves this issue can be achieved by selecting the photon the 

closest to the average position or finding the direction closest to the dominant direction.  
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However, every possible 

heuristic can still introduce 

artifacts, a common and well-

known disadvantage of any 

technique that utilizes scene 

discretization. 

Some voxel cells might 

contain a very low number of 

photons, contesting the 

integrity of the stratified 

sampling. To prevent this, the 

nearest neighbors of this voxel grid can be used to combine cells that contain less than a certain 

threshold.  Figure 3 explains this process in detail. First, all photons and their properties (color, 

location and direction) are injected into the voxel grid. Secondly, all cells that contain less than 

the threshold (a minimum of two photons per cell in this example) are joined with their 

neighboring cell. If the threshold is still not reached after the first combination, this second step 

can be repeated on a next level.  Finally, the photons colors are averaged and the photons are 

combined. In this example, the random photon heuristic is chosen. The combined photons, with 

an additional weight, are then stored for use in the next pipeline phase. Due to randomness of 

this discretization, the expected result remains correct and unbiased, but diverges from the 

ground truth. Convergence can be achieved by combining many different iterations.  An 

infinitely small voxel size would converge to the ground truth, but would combat the goal of the 

stratification.  

Depending on the scene and voxel grid size, some photons might fall outside of this grid. This 

might be the case in large outdoor environments. A possible solution is to implement a 

cascading system to greatly increase the coverage, similar to [17]. Another solution would be to 

simply ignore light sources that are too far away from the camera.   

Figure 3: example of the photon stratification process 

1 

 

2 

 

3 
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3.3 Splatting 

After the list of virtual 

light sources has been 

assembled and optionally 

stratified, the illumination 

has to be applied to the 

scene. In contrast to the 

splatting indirect 

illumination technique [15], 

we do not consider these 

light sources as point lights. 

Point lights have the disadvantage that they have a large radius of influence, causing a high 

number of pixels involved per light source and prohibitively expensive visibility queries. As this 

technique is based on the Monte Carlo4 principle, it requires as much overdraw as possible in 

order to converge.  Even with a light volume optimization5, the number of affected pixels 

remains fairly large. Instead we propose a splat close to the affected geometry, allowing for far 

less pixels to be affected per splat while keeping the visibility calculations relatively cheap.   

Finding the splat location starts based on the data from the injection step. Recap that in the 

injection step, a photon is shot from the light source and its properties (position, color and 

direction) are generated based on the surface of the first intersection (see image 1 in Figure 4). 

From this photon’s position, a ray is shot in the previously defined direction and the distance d 

to the first intersection is found (see image 2). From this distance, a small step b is taken back 

along the ray (see image 3) and this position is used to create an orthographic shadow mapping 

frustum (see image 4). This orthographic shadow mapping frustum represents the bundled rays.  

                                                             
4 Monte Carlo methods rely on many random samples to solve a numerical problem.  
5 Rasterizing geometry that resembles the light type and range, such that only those pixels require calculations.  

Figure 4: splatting location determination 
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Figure 5 displays the 

difference between our 

approach and a typical 

splat. Splatting such point 

light that is located against 

a wall requires a 

hemisphere as a light 

volume. If it is a powerful 

light source with a large radius and a low geometry count in the vicinity, this might result in a 

large number of wasted calculations. By doing a small extra step and finding the geometry 

location, much more efficient splats can be conducted. Furthermore, due to the small size of the 

individual splats, many small shadow maps can be used which require less precision as the light 

volumes are closer to the actual geometry. The major disadvantage is that many samples must 

be taken in order to emulate one single light source and that the closest geometry for every 

sample must be found. In addition, it is hard to find how many rays have to be shot to emulate a 

hemispherical light source. Therefore, only a single direction is chosen per light source, and the 

average of many light sources is taken. This process cannot be easily rasterized, but modern ray 

casting implementations [12] are capable of tracing millions of rays per frame, well over the 

thousands required for our pipeline.  

After a suitable location is found, the depth of the scene is rendered into an orthographic 

shadow map to determine indirect illumination visibility. This frustum represents a bundle of 

parallel rays originating in the vicinity of the light source, mimicking an area light source. If the 

ray originates close to other geometry, the bundle represents non-existing information and 

might introduce artifacts. However, due to the overlap of the many samples, these errors are 

smoothed out. The actual width and height of this shadow frustum depends on the parameters 

set by the artist: a larger shadow map will cause more overlap, resulting in a faster convergence 

and requires less photons. However, less photons and larger regions might smooth out high-

frequency details. The depth of the frustum is dependent on the light source range and the 

Figure 5: Point light hemisphere splatting (1) vs close range splatting (2) 
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number of samples. A larger depth will cause more overlap, but requires more computational 

power.  

An issue with an orthographic shadow map is that it might intersect with the scene geometry. 

This means that back-facing triangles have to be considered to prevent light leaks. Furthermore, 

wrong depth values might be caused by the shadow map frustum sticking trough geometry, 

such as in corners. In some scenarios this might cause the depth test to fail and therefore create 

falsely shadowed areas. This latter issue is easily solvable by adapting the shadow depth test to 

include these borderline cases.  

 After or interleaved with 

the generation of the 

shadow maps, the pixels 

affected on screen by the 

respective shadow map 

have to be updated. The G-

Buffers from the direct 

illumination step can be 

reused as we are only 

interested in the indirect illumination within the camera frustum. The illuminated pixels are then 

found similar to regular shadow mapping approaches: the positions within the shadow map are 

compared with respective positions from the depth buffer in order to determine visibility.  

The shading of every splat causes an area to become darker or brighter. The shading itself is 

done using the Lambertian reflection model, where the splat color (S) is defined by the angle 

between the incoming light (L) and the surface normal (N), as well as the photon’s color (C) and 

surface albedo (A). 

𝑆 = (𝐿 ∙ 𝑁) ∗ 𝐶 ∗ 𝐴 

Figure 6: Example filters of two neighboring splats, with equal kernel sizes. 
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The final color that gets written into the buffer is the splat color multiplied by a weight. This 

weight comes from a filter function. Possible functions are a box, a tent or a Gaussian filter (see 

Figure 6). In the illustration, the kernel sizes have been kept equal. But in order to work 

efficiently, a Gaussian or a tent filter requires a larger size in order to produce the same level of 

overlap. 

The center of the filter is applied around the middle of the shadow map, and the resulting 

color of the filtering operation combined with the weight are atomically added. These weights 

are required to account for a smooth overlap between different splats. Combining splats with a 

box filter causes sharp edges between different splats, whereas a tent and Gaussian filter 

produce increasingly smooth overlaps respectively. A main advantage of using shadow mapping 

as a visibility test is that they have less issues with light leaking, as is the case with voxel-based 

solutions or range queries such as in regular photon mapping. On the other hand, depending on 

the used shadow map technique, common artifacts of these techniques (such as shadow acne6, 

aliasing7 or Peter Panning8) might appear. Due to low frequency details and the high overlap, 

these artifacts should remain within reason.  

                                                             
6 Moiré patterns within a shadowed area due to precision issues causing depth tests to fail.  
7 A low shadow map resolution might cause jagged shadow edges.   
8 Shadow detached from the caster, creating a wrongful floating impression.    
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3.4 Normalization 

After all photons have been 

splatted into the 

accumulation buffer, they 

have to be normalized. Due to 

the Monte Carlo nature of our 

algorithm, certain areas might 

receive more splats than 

others. However, the number 

of splats onto a pixel does not 

make for a correct solution, yet the shading of every splat does. A larger number of splats 

approximates the ground truth better, but also requires more processing power. Because the 

colors and weights are all properly stored within the accumulation buffer, the normalization step 

is nothing more than iterating over the color value of every pixel within the buffer and dividing 

it by the total accumulated weight.   

An example of color values and their respective weights in the accumulation buffer can be 

seen in Figure 7. This weight can also be adapted in order to approximate the result better with 

a lower sample count.  

 Our Monte Carlo algorithm requires a lot of overlap to converge. Increasing the number of 

splats works, but has a large impact on the final rendering time. A possible solution to this 

problem would be to use the weights as an estimator of intensity. However, due to the Monte 

Carlo nature of our algorithm, this might introduce noise. Furthermore, the ratio of the weight 

with respect to the maximum weight has to be used as an estimator, requiring an expensive 

atomic operation to determine.  

Figure 7: Accumulation buffer before and after normalization 
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3.5 Blur 

Our splatting strategy might introduce noise if the solution was undersampled. A common 

solution would be to take more samples. However, more samples also requires more 

computational power. Therefore, an optional blur pass is introduced. Indirect illumination has 

very few sharp details, so blurring might be a cheaper solution than taking more samples in 

certain scenes.  

3.6 Combine 

In the final pipeline step, the direct and indirect illumination are combined by simply adding 

them together. An exposure parameter allows artists to define the contribution of the indirect 

illumination to the scene. Additional post processing effects such as bloom can easily be added 

to improve visual quality. The final image can then be presented and the pipeline can start all 

over again.   

3.7 Overview 

Our proposed novelties fit into a common indirect illumination pipeline perfectly, as long as 

the proper output for every step is respected. The major advantages of our strategy with respect 

to photon mapping is the computational cost. Photon mapping requires storage of a large 

amount of photons within a computationally expensive balanced KD-tree. Our approach bins 

the photons within the respective voxel.   

Our splatting approach iterates over every virtual light source and the pixels it affects. Photon 

mapping iterates only once over every pixel, but has to do an expensive nearest-neighbor search 

per pixel. Due to the bundling of the rays, the visibility determination should remain reasonably 

cheap and the number of wasted fragment calculations low.  
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4 Implementation 

The basic pipeline can be implemented in many ways. We have created an implementation 

that is built to validate the integrity and flexibility of the algorithm. The main focus was to test 

the versatility of the algorithm and was therefore highly parameterized. As speed was not the 

main concern, most of the implementation allows for a faster approach. During this chapter, our 

implementation is described combined with hints towards faster methods where applicable.  

4.1 Direct illumination 

The first step of the pipeline has been implemented using the game industry’s standard 

approach: using deferred shading [2].  In a first pass, all the geometry closest to the camera is 

found using a naïve CPU ray tracer. This means neither hardware acceleration nor acceleration 

structures were used. A hardware accelerated rasterized implementation would greatly 

outperform a brute force CPU ray tracer, but falls outside the scope of this thesis. After the first 

intersections have been found, their data (surface albedo, position & normals, see Figure 8) is 

stored in the respective buffers. An additional pass is conducted for every light source to 

additionally blend the direct lighting onto the scene. Direct shadows are generated using 

shadow feelers9, allowing for pixel perfect shadows. Other shadowing techniques, such as 

shadow mapping or shadow volumes, could be used as well when using a rasterized pipeline.  

                                                             
9 Shadow feelers are rays cast from a surface towards a light source. If the light source is not the first intersection, 

the surface is shadowed.  

Figure 8: From left to right: albedo, absolute normals, depth and direct illumination 
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4.2 Photon injection & stratification 

Similar to photon mapping [3], rays are cast in random directions (limited to the light sources 

angles). The first surface hit’s position, color and a pseudorandom direction (limited to the 

hemisphere defined by the surface normal) are stored into an array. In case the optional 

stratification step is selected, the photons are stored into this array as well, but instead of 

indexing them sequentially, they are indexed using their grid position. The grid is created around 

the center of the camera. The size of the grid is determined using the scene geometry by finding 

the boundaries and dividing the remaining space. Figure 9 displays the Cornell box scene with 

the voxel grid’s index position as a color. Photons that hit the surface are injected into the 

respective voxel cell. After all photons have been injected into the grid, the grid is iterated in 

blocks. Every block contains eight 

neighboring cells. If one of those cells 

contains less photons than the 

threshold parameter, the colors of all 8 

cells are combined and a random 

photon is selected to represent this 

cells direction and position. If every cell 

does contain enough photons, the list 

of photons within a cell’s color is 

averaged as well and again a random photon is selected. This makes the maximum number of 

photons with a voxel grid equal to the number of cells. This latest fact is interesting for possible 

hardware accelerated implementations where certain sizes for resources have to be known 

beforehand.  

Another possible, faster, approach is used in the splatting indirect illumination technique [15]. 

The scene is rasterized from the light source and the texture’s pixels are used as indirect light 

sources. This technique is a lot faster than ray casting, but also limits the indirect illumination to 

a single bounce. If a high resolution texture is used, a stratification pass is beneficial. For such 

Figure 9: Voxel grid indexes (16³ voxel grid applied on the 
Cornell box scene) 
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purpose, a 3d texture can be used, possibly with hardware-accelerated stratification in the form 

of mip-mapping10. 

A third possible method is to use a scene simplification model, similar to light propagation 

volumes (LPV) [17]. The scene geometry is simplified into voxels first. In contrast to the original 

LPV technique, a valid position and direction within the voxel has to be defined as well. The 

scene is then rasterized from the light source to generate a shadow map. Finally, all voxels are 

traversed and their visibility is determined using the stored position and the shadow map. The 

content of every voxel is then similar to our results after stratification. 

4.3 Splatting & normalization 

Finding the splat location is as simple as doing an intersection test between the scene 

geometry and the ray defined using the photon’s location and direction as calculated in the 

previous step. A small parameterized value is then subtracted from this position to serve as the 

center of an orthographic viewing volume. The size of this volume is dependent on both the 

artist’s parameter and the optional stratification pass:  if the photons were not stratified, it would 

have resulted in multiple splats whereas now there is only a single splat. This is counterbalanced 

with a larger shadow map size. The number of pixels within this shadow map is kept low as the 

shadows of indirect illumination generally do not have high frequency details. Even with such 

small shadow maps, performance of rendering thousands of shadow maps is not possible in real-

time, but a real-time approximation such as imperfect shadow maps [5] could be a proper 

substitute for indirect illumination visibility determination.  

After the visibility is determined, a full screen pass is conducted where the pixel values from 

the depth buffer (as used in the direct illumination rendering passes) are compared with the 

depths in the shadow maps. Indirect light sources might illuminate off-screen objects as well, 

but as we are only interested in single bounce indirect illumination we only consider visible 

geometry. Higher order indirect illumination is easily achievable by allowing photons to bounce 

                                                             
10 Decreasing lower resolution versions of the original image. 
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multiple times in the injection phase, before storing them. As an optimization, a light volume 

can be rasterized to limit the number of fragment shaders.  

The final color that gets added into the accumulation buffer is the color from the photon, 

multiplied with the surface’s albedo, multiplied with a filter weight. The distance with respect to 

the center of the shadow map is used as input for the respective filter (box, tent or Gaussian). 

This weight is stored within the alpha channel of the same texture. As multiple threads are 

splatting at the same time, locks are required to prevent race conditions11. The normalization 

pass is then just a matter of iterating over every pixel and dividing the color by its weight.    

Due to our implementation being limited to single bounce indirect illumination, certain areas 

might appear completely black. These areas have a zero-weight value. As we need to check for 

zero-values in order to prevent artifacts caused by a division by zero, we can fall back on the 

ambient illumination technique easily. In these cases, we just add a small amount of light to 

these pixels.   

4.4 Blurring & combination 

To deal with any possible noise, which is highly possible when the solution is undersampled, a 

simple Gaussian blur has been implemented. As the noise depends on the number of samples 

and the scene, multiple kernel sizes can be chosen (3x3, 5x5, 7x7 or 9x9 pixels). As a Gaussian 

filter is separable, two passes are conducted: a horizontal and a vertical blur. After the optional 

blurring, the indirect illumination is ready to be combined with the direct illumination. This is 

done by simply iterating over all the pixels and adding the values, where the indirect illumination 

is first multiplied by an exposure value to allow brighter or darker scenes.   

 

                                                             
11 If multiple threads access the same resource, they might overwrite each other’s results.  
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4.5 Photon mapping 

Next to our own algorithm pipeline, the standard photon mapping algorithm [3] has been 

implemented to serve as a ground truth. Photon mapping is a high quality approach and has 

many similarities with regard to our approach. This allows for the implementation to be built 

onto the same framework. The exact same deferred rendering algorithm is utilized to calculate 

the direct illumination separately, as the positions from the depth buffer can be reused to find 

the position for the nearest-neighbor query. The first step towards calculating indirect 

illumination is shooting photons from the light source, bouncing them until the Russian roulette 

fails and storing them in a Knn tree. In a second step, every position in the depth buffer is 

traversed and the n nearest-neighbors are found. The build-up, balancing and querying of the 

KD-tree is done using the nanoflann [18] library. Faster, GPU based implementations can be 

found in [19], but were not required (see the timings in section 5.1). The resulting colors and 

positions from the query serve as parameters for the final color calculations. To deal with the 

light bleeding problem of regular Knn sampling, the nearest-neighbor query weights sample 

further away from the tangent vector12 less heavily or ignore them completely if they point away 

more than 90 degrees from the normal vector.  

4.6 Overview 

This implementation can be seen as a proof-of-concept. The main focus is on the versatility 

and possibilities of the proposed algorithms from section 3. The same goes for the photon 

mapping implementation: faster techniques exist, but a highly parameterized implementation 

is preferred in order to compare both.  

 

                                                             
12 A vector perpendicular to the normal vector 
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5 Results 

In the two previous sections, the algorithm and a specific implementation were described. 

This chapter focusses on the result achievable using these descriptions. Our tests are conducted 

on two scenes that have been used in many global illumination solutions: the Cornell box scene 

and the Conference scene13. These scenes have been selected as the Cornell box is ideal for 

testing color bleeding while the Conference scene poses a challenge for visibility determination 

due to its detailed geometry. For the Cornell scene, a spotlight emitting a dim white light is 

placed on the center of the roof facing down. For the conference room scene the light source is 

placed outside of the room, mimicking an evening sun.   

All of the results as presented in this section were gathered on a single machine, powered by 

an AMD Phenom II x4 955 processor, 12 GB’s of RAM and the Windows 8.1 operating system. As 

described in section 4, the implementation is highly parameterized. Images were rendered using 

a 1600 x 900 resolution without AA.  

5.1 Performance analysis & quality assessment 

Although performance was not the main design criterion, the photon mapped ground truth is 

built upon the same architecture and therefore shares the same performance limitations. 

Although faster implementations of photon mapping exist (such as hardware accelerated 

versions [20] [21]), our method is built upon the framework as presented in chapter 4. Therefore, 

a direct comparison in terms of calculation time allows to roughly situate our algorithm. 

A very important property of any indirect illumination algorithm is that it converges to a 

correct result when given a vast amount computation time. To verify our implementation, we 

use the photon mapping implementation with high quality settings to serve as a ground truth 

reference.  The images are compared using a root-mean-square metric as defined in the 

                                                             
13 Slightly adapted version (decimated models to lower the triangle count) from the conference scene as found 

on http://graphics.williams.edu/data/meshes.xml 
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following formula, where i1 equals the ground truth image, i2 equals the compared image, w and 

h equal the images dimensions:  

𝑒𝑟𝑟𝑜𝑟 = √
1

(𝑤 ∗ ℎ)
  ∑(𝑖1𝑛 − 𝑖2𝑛)²

𝑤∗ℎ

𝑛=0

 

The error is calculated for every color channel (red, green and blue, ranging from 0 to 255) and 

is added together to find the final error value.  

As both algorithms calculate the direct illumination separately, the time required to generate 

the G-buffers is discarded as the timings would be equal. The parameters for each algorithm 

(photon mapping, photon splatting with a small shadow map, photon splatting with a large 

shadow map and stratified photon splatting) are configured for optimal results. This means that 

it should render as fast as possible, with as little artefacts as possible. The algorithms require, 

besides processing power, certain amounts of memory in order to work. Resources such as the 

texture to store the indirect illumination are required for all algorithms and are therefore left out 

of the comparison as well. Furthermore, the few variables required to store parameters to 

control the algorithms are considered insignificant.   

From a theoretical point of view, both algorithms require a runtime of 𝑂(𝑛) in order to find all 

photon locations. In the photon mapping algorithm, these photons represent the final 

illumination. Our algorithm sees these single photon locations as bundles of light rays, requiring 

less photons. Balancing the KD-tree used in photon mapping requires a 𝑂(𝑛 log2 𝑛) pass, but so 

does our stratification pass. Yet, the stratification pass was limited in our implementation to a 

single level, causing every voxel to be indexed exactly one time, therefore decreasing the 

effective runtime to 𝑂(𝑛). In a final step, the data structures have to be sampled. For photon 

mapping, locating m photons in a tree with a total of n photons is 𝑂(𝑚 log2 𝑛). For photon 

splatting, only the smaller list of photons has to be linearly traversed and splatted, but as a splat 

affects multiple pixels it is expensive nonetheless.  
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In terms of algorithm specific memory (see Table 1), the voxel grid technique is the most 

expensive one. Every voxel cell contains an averaged position, color, direction and count. Even 

if the count is zero, the memory has to be reserved. More memory-optimal implementations are 

possible, but the memory gain does not justify the large penalty in execution time. In order to 

converge to a plausible result, a lot of overlap is required, resulting in a high voxel count. 

Depending on the scene geometry, a high voxel count combined with the sparsely located 

geometry does not map well to our data structure, suggesting the use of a spatially more 

interesting structure such as a dynamic octree.   

Table 1: Memory requirement for the algorithm specific data structures in the Cornell scene, using the highest quality 
parameters.  

 Injection Unit Total memory 

Photon mapping ~50000 
photons 

Color, position, direction (3x3 
floats = 36 bytes) 

~1.71 MB 

Photon splatting 
Small shadow map 
(w/o stratification) 

~25000 
photons 

Color, position, direction (3x3 
floats = 36 bytes) 

~0.85 MB 

Photon splatting 
Large shadow map 
(w/o stratification) 

~2500  
photons 

Color, position, direction (3x3 
floats = 36 bytes) 

~0.08MB 

Photon splatting 
(with stratification) 

256³ voxels Color, position, direction, count 
(3x3 floats + 1 integer = 40 bytes) 

576 MB 

 

The detailed timings for the indirect illumination and error metrics can be found in Graph 1 to 

Graph 4. The parameters are adapted for high to low quality. In case of photon mapping, the 

number of photons and nearest neighbors is increased for higher quality results. For the non-

stratified implementation the number of photons is increased. For the stratified 

implementation, the number of photons as well as the number of voxels is increased.  

There is a logical trend visible between the quality and timings when comparing the splatting 

approaches to photon mapping. In general the quality is lower as well as the time required to 

compute the image. This is a logic consequence of our novel strategies. Bundling the light rays 
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causes cheaper, but possibly incorrect visibility determination, balancing performance versus 

quality.   

Keep in mind that two similar images might end up with a larger error metric when there is a 

slight difference in exposure in both images. Studies [22] show that a human perception test is 

more reliable, but such a test falls outside the scope of this thesis. Some images used to generate 

these metrics are provided in Figure 10, Figure 11 and Figure 12 to allow the reader to judge.  
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Graph 1: Influence of parameters on quality and timing to render a Cornell Box using Photon Mapping. 
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Graph 2: Influence of parameters on quality and timing to render a Cornell Box using Photon Splatting with a small 
shadow map size. 
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Graph 3: Influence of parameters on quality and timing to render a Cornell Box using Photon Splatting with a large 
shadow map size. 
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Graph 4: Influence of parameters on quality and timing to render a Cornell Box using Stratified Photon Splatting. 
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Figure 10: Low quality renders from the Cornell Box. Left top: Photon Mapping. Right top: Stratified Photon Splatting.   
Left Bottom: Photon Splatting using a small shadow map. Right bottom: Photon splatting using a large shadow map. 

Figure 11: High quality renders from the Cornell Box. Left top: Photon Mapping. Right top: Stratified Photon Splatting.   
Left Bottom: Photon Splatting using a small shadow map. Right bottom: Photon splatting using a large shadow map. 
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Figure 12: High quality renders from the Conference scene. Left top: Photon Mapping. Right top: Stratified Photon 
Splatting.   Left Bottom: Photon Splatting using a small shadow map. Right bottom: Photon splatting using a large shadow 
map. 
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5.2 Common quality assessment criteria 

Global illumination has some typical criteria that have to be met in order to render a plausible 

image.  In this subsection, our approach as well as the photon mapped ground truth are assessed 

using these criteria.  

Depth discontinuities 

A property of global illumination is 

that depth discontinuities (such as 

grooves) often receive less 

illumination. Depending on the scene 

geometry and lighting, photons have a 

smaller chance of hitting these 

surfaces. This property is the main 

drive behind ambient occlusion techniques, and should be incorporated in any indirect 

illumination technique. Figure 13 shows a magnification of the corners of the Cornell scene 

where the corners are shaded slightly darker. It is noticeable that the stratified technique has 

this property a little less. This is caused by the requirement for a larger shadow map size, as is 

explained further in section 5.3. 

Color bleeding 

Surfaces that receive photons influence the color of the photon based on their material 

properties. If the photon is bounced on, following surfaces are influenced by that colored 

photon. This property is mainly visible where two differently colored materials meet, such as in 

corners.  The roof and back wall displayed in Figure 13 both have a gray albedo color, but are 

shaded green due to the photons bounced from the nearby green wall.  

Figure 13: Magnified corners of the Cornell scene. From left 
to right: photon mapping, splatting and splatting with 
stratification. Brightness and saturation are slightly adapted 
in order visualize the differences more clearly.  
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Indirect shadows 

A directly lit surface becomes an 

indirect area light source, casting soft 

shadows. As many of these generally 

overlap in a typical scene, the resulting 

shadow has a very soft appearance. The 

exit sign in Figure 14 is placed around 10 

centimeters away from the wall. It is not 

illuminated by direct illumination, but it 

is illuminated indirectly. Every indirect light source in itself causes a sharp shadow, but the 

overlap and normalization of many splats causes a smooth final result.  

Indirect intensity 

Surfaces that receive illumination from multiple 

indirect light sources should be shaded brighter. As 

our algorithm has a normalization pass, all this 

information has to come from the evaluation of 

multiple shading passes rather than the density 

intensity as is the case with photon mapping. As 

stated in the algorithm description, the weights can 

be adapted in order to converge faster, but this 

causes the issue of introducing more noise between 

multiple splats. Figure 15 displays the intensity as 

seen on the roof of the Cornell box in Figure 11. The 

splatting technique approaches the ground truth 

while the stratified pass does not give its light 

discretization.  

Figure 15: Brightness on the roof of the 
Cornell box. Left top: Photon Mapping. 
Right top: Stratified Photon Splatting.   
Left Bottom: Photon Splatting using a 
small shadow map. Right bottom: Photon 
splatting using a large shadow map. 

 

Figure 14: Multiple sharp shadows caused by indirect 
illumination. Screenshot taken before normalization to stress 
individual shadow maps. 
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5.3 Parameters 

As explained in the theoretical and implementation sections, the algorithm depends on a 

number of control parameters. It is important to understand the influence of these parameters 

on the performance and quality on the final results. The main parameters for the visibility 

determination are analyzed in this sub-section.  

The main difficulty to determine proper values for these parameters is that they are scene 

dependent. For a simple, low geometry scene such as the Cornell box, a low shadow map 

resolution will not cause any issues while the same resolution might introduce noticeable 

artifacts on the detailed geometry in the Conference scene. Therefore, these parameters are 

assessed using both scenes to cover various scenarios.  

5.3.1 Visibility determination 

The three main parameters in the visibility determination are the shadow mapping size, the 

shadow mapping resolution and the number of virtual light sources. 

Recall from the visibility explanation (see 

section 3.3) that a greater shadow map size 

will cause more overlap and therefore 

converge faster. This works great with large 

open surfaces. However, artifacts may occur 

when a ray skims close to geometry, but 

does not intersect with it. Figure 16 displays 

such a ray. From the first point of 

intersection, a small step back is taken and the shadow frustum (red box) is calculated. However, 

some points in this frustum will be considered visible, albeit they might not have been visible 

when a regular shadow map would have been used (as is the case with the green ray), causing 

light leaks.   

Figure 16: Cause of artifacts when a too large shadow 
map is used.  
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The Cornell box scene has two 

boxes close to the walls, making it a 

model example. By decreasing the 

number of photons and multiplying 

the shadow map size by factor three, 

the result as visualized in Figure 17 

becomes visible.  The light leaking 

causes the area behind the box to 

become overly bright.  

In order to converge, overlap is 

required due to the Monte Carlo 

nature of our algorithm. The more 

photons that are shot and the larger 

the shadow map size, the faster the 

algorithm converges. In other 

words: for a higher quality image, 

more overlap is required. On the 

other hand, increasing the shadow 

map size might introduce artifacts 

while increasing the number of photons linearly increases the rendering time. The number of 

overlap for the high quality Cornell box with small shadow map (as seen in Figure 11) is displayed 

in Figure 18.  

The final visibility setting is the shadow mapping resolution. The imperfect shadow mapping 

technique [5] shows that very low resolution shadow maps give plausible results, even for 

hemisphere point light sources. Since our algorithm calculates visibility in small orthographic 

volume, an extremely low shadow map resolution can be used. However, when thin geometry 

comes into play, indirect shadows might be off when using such a low resolution. Furthermore, 

Figure 17: SM Artifacts. Right image has a 3x larger shadow 
map than the left image. Both use the same number of splatted 
photons. 

Figure 18: Overlap in Cornell scene. Heatmap color range from 
blue (no overlap) to green (200x overlap) to red (400x overlap) to 
white (600x overlap). 
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when the shadow map area increases, the shadow map resolution should increase linearly in 

order to keep the same level of detail.  

Figure 19 displays the difference 

in shadow map resolution for 

detailed geometry. In the left image, 

a low resolution shadow map is used 

and the shadows behind the chairs 

are barely visible. When increasing 

the resolution, the shadows behind 

the chairs gain much more detail. Since we are dealing with thousands of light sources, even a 

slight increase in resolution causes a large impact on the rendering times.   

The optimal settings depend on the scene and the required quality. In general, the overlap (so 

shadow mapping size) should be maximized with as little photons as possible. The shadow 

mapping resolution should be set to the absolute minimum, where the minimum depends on 

the scene geometry and accepted quality. 

5.3.2 Stratification 

The three main parameters in the stratification pass are the number of photons that are shot 

into the scene, the number of voxels and the number of photons per bin.  

As seen in Table 1, the memory required for the number of voxels increases cubically. This 

means that the memory limit is quickly reached and the number of voxels should be kept as low 

as possible. The required number of voxels depends on the scene size and detail. Larger scenes 

require more detail closer to the camera, suggesting a grid-like implementation of the 

stratification pass.  Based on the distance away from the viewer, larger cells can be constructed, 

similar to the setup of cascaded light propagation volumes [17].   

Figure 19: shadow map resolution influence on indirect 
shadows. Left: 4x4 shadow maps, right 32x32 shadow maps. 
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The number of photons per 

voxel depends on the bucket size 

and the number of photons 

injected into the scene. The color 

of every photon is combined and 

splatted in a single pass per 

voxel. Using a too high photon or 

bucket count will cause large 

disparities between voxels, 

causing artifacts in the overlap. Therefore, using a very high photon count will result in artefacts 

as visualized in Figure 20. As a rule of thumb, a similar number of photons as would be used in a 

non-stratified approach can be applied.  

 

Figure 20: Artefacts when using high photon counts per voxel. 
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6 Conclusion & future work 

In this work, we have presented a novel visibility determination technique and virtual light 

source stratification strategy. Our techniques are capable of rendering plausible indirect 

illumination with a reasonable amount of resources, but unfortunately stay far away from real-

time frame rates. However, during the development of our algorithm, hardware compatibility 

was one of our main concerns. This means that large parts of the pipeline can be implemented 

using hardware acceleration and state of the art techniques. These techniques, such as 

imperfect shadow maps and tile based deferred rendering, are capable of dealing with visibility 

determination and shading of huge amounts of light sources.  Furthermore, the existing 

stratification pass could be extended with common real-time improvements, such as a cascaded 

data structure, significantly lowering memory requirements. Additionally, multiple light sources 

could be stored per voxel, mimicking point light sources. 

Besides from the speed of the algorithm, our results show that the final renders, even when 

given a large amount of time, still slightly diverge from the ground truth. The largest problem 

situates around intensities when using stratification. This suggests that the used formulas to 

calculate the properties of the stratified lights sources are not yet on-par. Further 

experimentation with these parameters can be done in order to approach ground truth even 

better. Furthermore, the entire algorithm is highly parameterized. More studies, perhaps using 

a mixed audience as reviewers, can define optimal settings between visual perception and 

performance.  

Finally our research shows that there are still potential trajectories within the vast field of 

global illumination. Visibility determination is one of the most important factors of the rendering 

equation and is often neglected in current state-of-the-art real-time algorithms due to its 

expensive nature. Our method for bundling light in a single ray creates a cheaper visibility test 

with reasonable results.  This ray casting method of finding the closest illumination could be 

applied to hemisphere point lights instead of photons as well, in order to compensate for the 

high cost to determine visibility for such light sources.   
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