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Abstract

Slowly chirped two-dimensional photonic crystal cavities are promising devices for creating
photonic Bose-Einstein condensates. Before experimentally achieving such a condensate,
one first has to thoroughly investigate the electromagnetic eigenmodes in such crystals.
However, slowly chirped photonic crystals leading to cavities for light will easily have
sizes in the order of tens of micrometers. Therefore simulating the behaviour of light in
these crystals is very time consuming. In this thesis we demonstrate a novel and intuitive
approach to obtain the envelopes of the electromagnetic modes in these crystals. An enor-
mous advantage of this approach is that it can calculate the energies and the envelopes
of these eigenmodes to a high accuracy in a few seconds.
We model a chirped photonic crystal using a local density approach; we assign a potential
energy for light, extracted from photonic bandstructure calculations, to each unit cell of
the crystal. We also obtain an effective mass from the curvature of the photonic band at
this energy. With these ingredients we are left with the task of solving the corresponding
Schrödinger equation, which is an elegant and far less time-consuming exercise than cal-
culating the envelopes of the electromagnetic modes using finite-difference time-domain
simulations.
In this thesis it is shown that for one- and two-dimensional quadratically chirped pho-
tonic crystals the agreement between the envelopes obtained by these simulations and
the analytical ones resulting from this model is larger than 90% for the lowest energy
eigenmodes.
Moreover, even with small distortions on this quadratic behaviour of the widths of a one-
dimensional chirped photonic crystal, the corresponding numerically obtained solutions
of the Schrödinger equation clearly have an excellent agreement with the simulated mode
envelopes.
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Introduction

1 Introduction

Ninety years ago, Satyendra Bose developed the foundations of the statistical mechanics of
an ideal photon gas [1]. Albert Einstein generalized his ideas to bosonic matter [2]. In the
latter case, bosons in a condensed state that we now call a Bose-Einstein condensate (BEC)
are described. In this quantum phase a macroscopic amount of particles occupies the quantum
ground state. Much later, theoretical methods were developped to be able to achieve photonic
BECs by introducing thermalization mechanisms of the photons that do not involve a decrease
of the photon density (see for instance Zel’Dovich et al. [3]).
Fifteen years after the first experimental realization of an atomic BEC in 1995 [4, 5], the
Quantum Optics Group of the University of Bonn led by Martin Weitz achieved the first
experimentally realized photonic BEC [6]. There, the photons were confined in two dimensions
using an optical cavity and brought into thermal equilibrium by continuous absorption and
emission by a dye solution. The curved mirrors of the cavity also introduce a cut-off frequency
in the dispersion relation in the transverse direction, thereby giving the photons an effective
mass. This BEC can thus also be seen as a condensate of massive bosons, as in the case of an
atomic BEC.
In our Cold Atom Nanophotonics group we plan to realize such a condensate in a different way,
namely by using a chirped photonic crystal (PhC) of semiconductor material. This chirped
PhC will give rise to a harmonic trapping potential. The semiconductor material takes care
of the thermalization of the photons. A large advantage of this approach is that by tuning
the PhC parameters, the periodic character of the structure can be more or less pronounced
and a large nonlinearity can be obtained. This gives the opportunity to look at quantum
phase transitions from a BEC to an insulating state whereby there is a small integer number
of photons located in each unit cell of the crystal. This would be the first experimental
achievement of such a phase transition of light.
With these exciting goals in mind, we first need to investigate the electromagnetic eigenmodes
of such a PhC.
Besides being of fundamental interest, these PhCs have many applications such as omni-
directional mirrors [7], heterostructure cavities [8], slow-light generation [9], PhC LEDs [10],
solar cells [11] and (chirped [12]) PhC fibers [13].
For all these applications, the design of the crystal effects the light behaviour rigorously.
This behaviour usually is simulated during the development of the PhC. This requires large
computational power and a lot of computing time. These simulations are normally done using
finite-difference time-domain calculations, which break up time and space in very tiny pieces
and compute the solutions to the Maxwell equations numerically at each grid point for each
time step.
In this thesis a novel model is described to obtain the envelopes of these modes in one- and
two-dimensional non-absorbing PhCs in a few seconds. It involves a local density approach
which gives rise to an effective potential. We also assign the photons in the crystal an effective
mass so that we are left with solving a simple Schrödinger equation to find the envelopes of
the modes in the PhC. Because of the low computational effort, this model opens up new
possibilities to develop and understand large devices relevant to optoelectronics, photovoltaics
and solid-state lighting. An article based on this thesis will be submitted to the open-access
optics journal Optics Express [14].
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2 Theory

In this chapter the basic theoretical concepts of one and two-dimensional PhCs are introduced.
Afterwards a novel and intuitive model is introduced for chirped PhCs. Central in this model
is a local density approximation, in which an effective potential energy and effective mass
are assigned to photons in the crystal. Hereby, the problem of finding the electromagnetic
eigenmodes in the crystal is mapped to solving the much simpler Schrödinger equation. In
this way the envelopes of these eigenmodes can be calculated very quickly, circumventing
time-consuming computer simulations.

2.1 Introduction to photonic crystals

The subject of PhCs is a fascinating interplay between solid state physics and electromag-
netism. A lot of concepts and terminology that are used in the field of solid state physics to
describe the behaviour of electrons in crystals are transferred to the field of PhCs. Here we can
talk about optical or photonic bandstructures and bandgaps when describing the dispersion
relation of the light in a PhC. On the other hand, since one knows that light can be considered
as an electromagnetic wave, classical electromagnetism comes into play.
We will assume that the reader is familiar with the basics of both electromagnetism and solid
state physics. The main reference for this section is Joannopoulos et al. [15].

2.1.1 Electromagnetism

As a natural starting point we begin with stating the four well known laws of classical electro-
magnetism, the Maxwell equations [16]

∇ ·D = ρf , ∇×E =− ∂B
∂t
,

∇ ·B = 0, ∇×H = Jf + ∂D
∂t

,

(2.1)

where E, D and B denote the electric field, the electric displacement and the magnetic field,
respectively. H = µ−1

0 B −M, where µ0 = 4π × 10−7 N/A2 denotes the permeability of free
space and M the magnetization. ρf and Jf indicate the free charge and free current densities.
These general equations are valid in all macroscopic matter, but we will confine our interest to
the subclass of dielectric materials where, to a good approximation, there are no free charges
nor currents. If the fields under consideration are not too strong, the higher order susceptibil-
ities that relate the polarizability to applied electric fields can be disregarded. The medium
will be assumed to be isotropic as well. Since we shall only use fixed relative permitivities of
1 (air) and 12 in our simulations, the possible dispersion of the (relative) dielectric constant
ε is neglected. It is also a plausibel assumption that we are in a non-absorbing regime, so
that ε ∈ R>0. Finally, in most cases of interest regarding PhCs the relative permeability is
extremely close to unity, i.e. µ = 1.
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All these assumptions result in the following equations, which the reader can readily verify

∇ ·H = 0, ∇×E =− µ0
∂H
∂t

,

∇ · (εE) = 0, ∇×H = ε0ε
∂E
∂t
,

(2.2)

where ε0 = 8.854 187 817× 10−12 C2/Nm2 denotes the permittivity of free space, all fields de-
pend on position and time, and the dielectric function ε only on the position r.
We can use separation of variables to separate the time-dependent part from the spatial de-
pendence and we can write the resulting harmonic modes as

H(r, t) = H(r)e−iωt and E(r, t) = E(r)e−iωt. (2.3)

Here, ω denotes the angular frequency of such an electromagnetic mode. Substituting these
expressions into Equations 2.2 results in two sets of equations for the spatial parts. The first
one consists of the divergence equations, which imply that the electromagnetic field modes are
built up out of transverse plane waves. The other two are of more interest and can be written
as

∇×E = iωµ0H, (2.4)
and

∇×H = −iωε0εE. (2.5)
Eliminating the electric field from the above equations and using c−2 = ε0µ0 we arrive at the
wave equation

Θ̂H := ∇×
(
ε−1∇×H

)
=
(ω
c

)2
H, (2.6)

where we also have defined the Hermitian operator Θ̂.1 Because of the hermiticity of the
operator Θ̂, we know that the eigenvalues

(
ω
c

)2 are real and that eigenmodes with different
eigenvalues are orthogonal to each other. Furthermore, the assumption that ε > 0 implies that
ω is real. The wave equation can in general only be solved using numerical methods. These
methods try to use as many symmetry arguments as possible. This is a general feature in
modern physics and the importance of symmetry can hardly be overrated. We shall treat it
in the context of PhCs in the next subsection.

2.1.2 Symmetry

When a system posseses a certain symmetry S, Θ̂ commutes with the associated symmetry
operator Ŝ. This means that this symmetry operator and the more intricate operator Θ̂ have
a complete set of eigenfunctions in common. Using this, one can classify these eigenfunctions
and gain insight in the allowed electromagnetic modes.
Let us now consider a one-dimensional PhC with a discrete translational symmetry of the
dielectric function ε(r) in the x-direction and continuous translational symmetry in the per-
pendicular directions, so that ε(r) = ε(r+a) for all r ∈ R3, where a denotes the lattice vector.
Eigenfunctions of T̂ dx , the translational operator over a distance d, are plane waves eikxx, as in
the case of continuous translational symmetry

T̂ dx e
ikxx = eikx(x−d) = e−ikxdeikxx, (2.7)

1With the inner product between two fields F1 and F2 defined by 〈F1,F2〉 =
∫

F1∗F2 dr, see Joannopoulos
et al. [15] for a proof of the hermiticity.
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so that we see that the corresponding eigenvalue is e−ikxd. In contrary to the continu-
ous/homogeneous case, we now have a degeneracy in momentum space, since adding an integer
number times 2π

a to some kx yields the same eigenvalue. As the wave equation is a linear differ-
ential equation, a linear combination of degenerate eigenfunctions or eigenmodes gives another
eigenmode. We can thus write such a mode as

Hk(r) = eik⊥·ρ
∑
m

ckxe
i(kx+ma∗) x = eik·r

∑
m

ckxe
ima∗ x = eik·r ukx(x), (2.8)

where k = (kx, ky, kz), ρ = (y, z) denotes the cartesian coordinate in the perpendicular plane,
and a∗ = 2π

a the primitive reciprocal lattice vector. The function ukx
(x) is thus a periodic

function with the periodicity of the crystal. We conclude that we can write an eigenmode as
a planewave modulated by such a periodic function, i.e. in Bloch’s form.
The periodicity in momentum space allows us to restrict ourselves to consider only wavevectors
k with kx ∈ [−πa ,

π
a ], which is called the first Brillouin zone (BZ), analogous to the solid state

physics terminology.
The above discussion generalizes straightforwardly to two and three dimensions. In the latter
case the eigenmodes can be written as

Hk(r) = eik·r uk(r), (2.9)

where uk(r) again obeys the periodicity of the crystal, and k can be chosen in the first BZ.
In the case of a two-dimensional PhC with discrete translational periodicity in the x and y
directions and continuous translational periodicity in the z direction, there is also a mirror
symmetryMz withMz(x, y, z) = (x, y,−z) that leaves the structure invariant. This leads to
a classification in terms of polarization of the eigenmodes of such a PhC that divides them in
even (unchanged under mirroring) and odd (sign change under mirroring) modes. As electric
fields transform as vectors under reflections and magnetic fields as pseudovectors, we see that
the even modes can only have electric components in the (x, y)-plane and a magnetic compo-
nent in the z-direction. Vice versa for the odd modes. The former are in the field of PhCs
called transverse-electric (TE) modes, whereas the latter are referred to as transverse-magnetic
(TM) modes.
An interesting consequence of symmetry is the time-reversal invariance. By complex conju-
gating (or changing the sign of time in Equation 2.3) the wave equation and noting that H∗k
equals H−k (use Equation 2.9), we infer that H−k and Hk have the same eigenvalues and
thus frequencies. The optical band structures of materials that satisfy the assumptions made
earlier thus have inversion symmetry.

2.1.3 One-dimensional photonic crystals

We now investigate the case of one-dimensional PhCs in a bit more detail. These crystals
generally consist of slabs of dielectric material that extend to infinity in two perpendicular
(x and y) directions. In the remaining (z) direction the constituting slabs are organized in a
periodic manner. As in the previous subsection, we call the accompanying lattice vector a. As
an easy, fundamental and interesting case let us now look at a one-dimensional PhC consisting
of two alternatingly stacked dielectric materials with dielectric constants ε1 and ε2. As we
know, the z direction is of most interest, so we shall confine ourselves to wavevectors parallel
to kz. Because of the periodicity we can further restrict our attention to the wavevectors in
the first BZ. Finally, as discussed in Subsection 2.1.2, the dispersion relation obeys inversion
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symmetry so that we only have to look at non-negative values of kz. This region is called the
irreducible BZ.
Now, if ε1 = ε2, the material actually is homogeneous. Putting plane wave solutions H0e

ikzz

into the wave equation yields the familiar equation for the light line: ω = ckz/
√
ε. This is

a straight line in the dispersion diagram2. If we let ε2 increase a bit and assign it a relative
slabwidth of 0.45 of the lattice constant a = |a|, then the line is perturbed and a first photonic
band gap arises at the edge of the first BZ as can be seen in Figure 2.1. This bandstructure was
computed using the open source MIT Photonic Band package.3 In that region of frequencies

0.0 0.2 0.4 0.6 0.8 1.0

k
[

2π
a

]
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

ω
/2
π
[ c a

]

Figure 2.1: Optical bandstructure (blue) of a one-dimensional PhC with a dielectric slab
width w = 0.45. In red a local parabolic approximation, which we will use later on to assign
an effective mass to photons in this PhC (see Equation 2.13), is depicted. The vertical gray

dashed line indicates the edge of the first BZ.

there is no single wavevector that can sustain an eigenmode of the crystal. There are at least
two ways to qualitatively account for this gap. We can first use an argument often employed
in solids state physics and look at a plane wave falling onto the crystal in the z direction. This
wave partially reflect at each dielectric interface. These reflections interfere constructively if
the wavelength λ of the incoming wave is exactly 2a. This occurs when k = ±πa , which are
the outer edges of the first BZ4. Another argument uses symmetry considerations and the fact
that it is energetically favourable for a mode to have the energy of its electric field component
located at regions of high dielectric constant5 In this case, we look at the modes just beneath
and above the bandgap. As we just recalled, their wavelength is 2a. Since we have a mirror
symmetry in the plane lying in the center of the central slab with the higher dielectric constant

2The line folds back if we insist using the periodicity of the structure and draw the full dispersion diagram in
the first BZ.

3See Appendix A for more information about the used software.
4In general a wave with a wavelength λ that obeys mλ = 2a, with m ∈ N will produce constructive reflections.
These higher order reflections give rise to photonic bandgaps at higher energies.

5This can be rigorously shown using a variational theorem, see Joannopolous et al. [15].
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ε2, the modes thus have to be even or odd with respect to this symmetry. Obviously, the even
one has the highest intensity of its electric field in regions with a high dielectric constant and
vice versa for the odd mode. We can thus understand that the former one has a lower frequency
than the latter one. Also, we can argue that this effect is more pronounced if the difference
|ε1 − ε2| increases. The lower and upper band are also referred to as the dielectric and air
band, respectively.

2.1.4 Two-dimensional photonic crystals

Two-dimensional PhCs have a dielectric function ε that obeys ε(r) = ε(r+b) for vectors r ∈ R3

and for b in the two-dimensional lattice. Typically one should think of a regularly spaced set of
rods of a certain material embedded in some other medium. In contrast to the one-dimensional
case, we encounter a new feature that is not present in the classical field of solid state physics.
Namely, polarization starts to play a prominent role, e.g. in the dispersion diagrams. As
discussed in Subsection 2.1.2, modes can be divided into two classes when considering two-
dimensional PhCs: TM and TE modes. This means the band structures will also be subdivided
into these two components. One thus expects large bandgaps between consecutive bands when
the difference in degree of localization at high ε regions is large between the modes represented
by these bands. Since the TM modes have their electric field pointing parallel to all dielectric
interfaces in the PhC, they can be concentrated in merely the high ε material, whereas the
TE modes have to cross the dielectric boundaries (considering a PhC consisting of dielectric
rods surrounded by air) and have to have large portions of their modes residing in the low
ε medium as well. This explains why the bands of TE and TM modes can be very different
from one another. In a PhC containing such rods, we thus expect that the energy difference
between successive TE bands are smaller than between TM bands (keeping in mind that the
upper band has to be perpendicular to the lower band).
The situation is different in a PhC that does not consist of disconnected dielectric rods, but for
instance equals the union of a one-dimensional PhC with thin dielectric slabs positioned parallel
to the (x,z)-plane and an identical one with slabs parallel to the (y,z)-plane. In this way they
together form a network of squares of dielectric material, as seen in the (x,y)-plane. Now, the
lowest frequency electric field in the (x, y)-plane can be concentrated in these dielectric planes
and the next one, being orthogonal to the first one, has to have a much lower concentration
in these planes. This can give rise to a gap between the TE bands.
Combining the insights from the discussion above, we now want to design a structure that
exhibits a complete photonic bandgap. Then, for certain frequencies, the PhC will act as a
mirror for incoming waves of any polarization. This structure incorporates elements of both
PhCs given above, in that it consists of rods and the dielectric medium is also one globally
connected piece of material. The rods, now really air holes, are placed in a triangular lattice.
In this way a good compromise can be made between isolated high ε regions (favours large
TM bandgaps) and connected high ε regions (favours large TE bandgaps). Namely, by making
these holes large enough with respect to the size of unit cell, the dielectric material that remains
is so small that, in a z slice, it consists of small areas connected by thin bridges between them.
In this way, both the EM and TM modes simultaneously exhibit photonic bandgaps as can be
seen in Figure 2.2.
The construction of the 1st BZ for this triangular lattice is the same as in the case for electrons
in crystals. In general, first the primitive or basis reciprocal lattice vectors bi have to be
determined from the basis lattice vectors bi. For that we construct the matrix Brec as composed
of {bi}i as columns and similarly the matrix B as composed of {bi}i as columns, both using
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Figure 2.2: Optical bandstructure with the TE (red) and TM (green) bands of a two-dimensional PhC consisting
of a triangular lattice of air holes, embedded in a dielectric medium with dielectric constant ε = 12. The radius of

these holes equals ρ = 0.42. The blue horizontal region represents the complete photonic bandgap.

the natural ordening of the index. We can then write their relation as Brec = 2π
(
BT
)−1,

where a T indicates the transpose of a matrix6.
In the case of a two-dimensional triangular lattice, we can take the first two basis vectors b1, b2
to be the two vectors pointing from one air hole to two of its neighboring air holes a

(
1
2 ,±

√
3

2 , 0
)
,

where a equals the distance between two adjacent air hole centers. For the third basis vector b3
we conveniently choose (0, 0, 1). Performing the matrix operations indicated above we arrive
at the following expressions for the basis reciprocal lattice vectors: b1, b2 = 2π

a (1,± 1√
3 , 0) and

b3 = (0, 0, 2π).
Now, a BZ is constructed in such a manner that there is a unique wavevector k in this region
that corresponds to the wavevector of a given Bloch function. The 1st BZ is such a region
containing k = 0 and it is defined in the following way. For each basis reciprocal lattice vector
and their opposite (negative) vectors a plane can be considered that intersect this vector
halfway and perpendicular, so that its normal points in the direction of this reciprocal vector.
The volume bounded by these planes equals the 1st BZ [17]. It is thus the set of k-points that
have a distance to k = 0 that is not larger than the distance to any other reciprocal lattice
vector7. If also non-translational symmetries of the crystal are taken into account, we can
further narrow our attention down to the irreducible BZ as indicated in gray in the inset of
Figure 2.2. A triangular or hexagonal lattice thus yields a hexagonal reciprocal lattice (which
is rotated over π

6 radians with respect to the original one). The resulting 1st BZ can be seen
as unrotated with respect to the original lattice. The vertices of the irreducible BZ carry the

6This implies that bi · bj = 2πδi
j , where δ

i
j denotes the Kronecker delta function, i.e. the bases of the lattices

are dual to one another.
7The 1st BZ is the Wigner-Seitz cell in reciprocal space.
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same names as in solid state physics and are also indicated in the same figure.

2.1.5 The notion of effective mass

The air band (which in Figure 2.2 is the 3rd TM band) can of course be approximated around
its minimum kmin by a 2nd order Taylor expansion in k, where the linear term vanishes

E(k) = E(kmin) + 1
2! (k− kmin)T D2E(kmin)(k− kmin). (2.10)

Here, D2E(kmin) denotes the Hessian8 of the energy of this band at kmin. One thus immedi-
ately sees that the group velocity Dω(k) of a mode residing in the air band at such a minimum
equals zero9.
The curvature of any dispersion gives rise to the notion of an effective mass of the particle
under consideration. This relation is well-known in solid state physics where the particle in
question is a valence electron in some periodic potential generated by the nuclei and lower-shell
electrons [18]. In general, the dispersion can be anistropic. In that general case the effective
mass m∗ is defined by (

1
m∗

)
i,j

= ~−2 ∂2E

∂ki∂kj
. (2.11)

Qualitatively we can thus say that a large curvature corresponds to a small effective mass.
In the isotropic case the Hessian reduces to a scalar multiple of the identity matrix and the
effective mass then can be simply defined by

m∗ = ~2
(
∂2E

∂k2

)−1

. (2.12)

Combing this expression with Equation 2.10, the dispersion near the minimum can be expressed
as

E(k) = E(kmin) + ~2

2m∗ (k− kmin)2, (2.13)

which thus (approximately) holds when the dispersion around kmin is (nearly) isotropic.

2.2 Chirped photonic crystals

An important variation on the notion of a PhC is a chirped PhC, for which a parameter like
the local mean dielectric constant ε is slowly varied in space, but locally has the structure of a
PhC. A chirped PhC itself thus cannot be classified as a (by definition periodic) PhC, however
if the chirping rate is slow enough the (almost) periodic nature still gives us the opportunity to
talk about unit cells, bandstructures, etc. In fact, we will later show that under this condition,
these notions are very useful and should also be considered as slowly varying inside the crystal.

8This is the matrix containing the second-order partial derivatives with respect to the components of k.
9We here also used the familiar relation between the energy of a photon and its (angular) frequency, which is
given by E = ~ω, with ~ the reduced Planck constant.
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2.2.1 Cavities

As alluded to in Chapter 1, the goal is to create a cavity and, at the same time, a periodic
potential for photons. For that, we want to use two-dimensional triangular chirped PhCs of
air rods in a dielectric medium, where the dielectric material has a dielectric constant of 12.
As shown in Subsection 2.1.4, a complete bandgap appears when the radius of the cylindrical
air rods is large enough. For photons with an energy just above the bandgap, the bottom
energy Ekmin can be interpreted as its potential energy. In a chirped PhC we can now use the
idea mentioned above and thus locally define a potential that one would assign to it when it
was part of a periodic PhC (local density approximation). Increasing the hole size means that
the bottom of the air band, i.e. the effective potential, shifts to higher energies. A cavity can
thus be created by making the hole size larger while going further away from the center of the
crystal. This trapping effect is for instance also used in double-heterostructure cavities [19].
By slowly chirping one can thus create a cavity in which light can be trapped but also expe-
riences a practically periodic potential. Electromagnetic field modes can thus be expected to
be written (within a good approximation) as a periodic part, modulated by a slowly varying
envelope, as suggested by Vigneron et al. [20]. Using Equation 2.9, the magnetic field of the
modes can thus be written as

H(r) = ψ(r)
∑
{kmin}

Hkmin(r)eikmin·r, (2.14)

where the sum runs over the wavevectors in the 1st BZ where the air band attains its minimum.
The scalar function ψ(r) denotes the envelope. For the electric part a similar equation holds.
It is this envelope function ψ(r) that we want to know for a given chirped PhC. This func-
tion only arises because of the chirping of the crystal and does not contain information on
the periodicity nor the local structure of the PhC. A light mode populating the air band10

experiences an effective potential that we can easily calculate. We can also assign a mass to
it; the effective mass m∗ that we derive from the curvature at the minimum of the air band.
For a certain range of hole sizes and thus bandstructures, it turns out (as we shall later show)
that this effective mass can, to a good approximation, be considered constant.
We thus encounter a particle (the photon) that has a mass m∗ and experiences an effective
potential V (r). It thus satisfies the wave equation for such particles11(

− ~2

2m∗∇
2 + V (r)

)
φ(r) = E φ(r), (2.15)

which is of course the time-independent Schrödinger equation. In this equation the eigenvalue
E denotes the energy of the particle which state is represented by the wavefunction φ(r). Note
that we used the letter ψ to denote the envelope function of the electromagnetic mode and the
letter φ for the corresponding wavefunction because these are exactly the functions we want
to compare quantitatively.
Or more specifically, we want to investigate how well the wavefunction that we obtain by solving
the Schrödinger equation using only the effective mass and potential (employing bandstructure
calculations) matches the envelope function of the mode, which is computed by simulations
that numerically solve Equation 2.612.
10We have to assume here that this band is isolated from other bands in a sufficient large energy range
containing the bottom energy. This assumption is valid in both the one-dimensional and two-dimensional
PhCs that we consider in this manuscript.

11We factored out the time-dependency e−iωt, as in Equation 2.3.
12For more information about these finite-difference time-domain (FDTD) simulations: see Appendix A.
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Theory

To extract the envelope function ψ from the simulations, we assume that the simulated mode
has the form given by Equation 2.14. Furthermore, if the crystal is chirped slowly enough,
the mode is delocalized over a large enough area so that its (spatial) Fourier transform (FT)
consists of small (and thus isolated) islands in momentum space, i.e. the width of the FT of
ψ(r) is much smaller than the distance between the vectors kmin. The FT of the product of
two functions results in the convolution of the FTs of the two functions. The FT of equation
2.14 can thus be written as

H̃(k) = ψ̃(k) ∗ H̃kmin(k), (2.16)

where ∗ denotes a convolution and we have defined H̃kmin(k) as∑
{kmin,κ}

H̃kmin,κδ(k− (kmin + κ)), (2.17)

where κ runs over the reciprocal lattice vectors (because of the periodicity of the Hkmin(r)
term in Equation 2.14).
In momentum space we subsequently select one isolated peak centered at a kmin in the 1st BZ
by putting a mask13 around it. Hence we are left with the following expression

ψ̃(k) ∗ H̃kminδ(k− kmin). (2.18)

Taking the inverse FT hereof, multiplying with e−ikmin·r and normalizing, yields the envelope
ψ(r).
We shall employ this recipe in both one and two-dimensional chirped PhCs in order to compare
this envelope with the solutions of the corresponding Schrödinger equation.

13This mask is a step function which equals 0 outside the selected region and is equal to 1 inside this region.
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3 Results

In this chapter we discuss the FDTD simulation results and investigate how well our model
works in three different cases. Firstly, we consider a one-dimensional quadratically chirped
PhC. Secondly, we continue with a one-dimensional crystal on which noise in the slab width
has been introduced. Lastly, we examine a two-dimensional triangular PhC that is chirped
quadratically.

3.1 One-dimensional cavity

In this section we investigate our model for a perfect one-dimensional harmonic cavity and
for a distorted one-dimensional harmonic cavity. In the first case we can use the analytical
eigenstates of the quantum harmonic oscillator to quantify our local density approach. In the
second case we need to use a numerical tool to solve the Schrödinger equation.

3.1.1 Effective mass and effective potential

The one-dimensional chirped PhC investigated here, contains dielectric slabs with a dielectric
constant of ε = 12. The normal of the slabs point parallel to the x-direction. We again
denote the slab width w as a fraction of the lattice constant a (= 500 nm). For a whole
range of widths we have calculated the (optical) bandstructure. From these bandstructures
we obtained Emin(w), the energy at the minimum of the air band, which depends on the slab
width w. This relation is plotted at the top of Figure 3.1. Beneath it the effective mass m∗,
calculated from the curvature at the same wavevector kmin (as explained in Subsection 2.1.5),
is depicted as a function of the width.
One immediately sees that if we confine ourselves to the widths ranging from 0.35 until 0.45,
we can take the effective mass to be constant to a good approximation. We can also fit a
line to the energy curve in this range. In this way, we arrive at the linear empirical relation
between Emin and w

Emin(w) = −1.49w + 1.38, (3.1)
where Emin is given in units of electronvolt (eV).
As we would like to create a harmonic potential for the photons in the cavity, we thus have to
decrease the width quadratically away from the center:

w(x) = wmax −
(
x

η

)2
, (3.2)

where wmax denotes the center width, x the distance from the center of the PhC and η is a
parameter that controls the chirping rate. The larger η is, the slower the width decreases away
from the crystal center and the larger the entire crystal becomes.

3.1.2 FDTD results

As we now have designed a chirped PhC, we want to find the electromagnetic modes that are
sustained in this crystal with an energy just above the first (optical) bandgap. We calculate
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Figure 3.1: Bandstructure calculations for a range of slab widths w. In (a) the
energy of the bottom of the band Emin(w) (red circles) is depicted. A first
order polynomial (blue) is fitted to the data points that lie within the range

depicted by the two vertical black dashed lines. In (b) the effective mass m∗ is
indicated by green triangles.

these modes by performing FDTD simulations using the software package Meep14. For these
simulations we place a point current source Hz in the neighborhood of the center, away from
any symmetry point. At this excitation point we create a broad electromagnetic pulse with a
center frequency fcen close to the frequency that corresponds to the bottom of the air band.
The pulse width f∆ is relatively broad, as we want to cover a range of frequencies to excite
and detect also higher modes so that we can compare these modes with the corresponding
higher harmonics of a harmonic potential. Letting the pulse evolve over some time, the FDTD
simulation yields a combination of the modes that were excited and lists their eigenfrequencies.
As we are interested in the separate mode profiles, we subsequently use narrow pulses, with a
width denoted by fδ, centered at these frequencies and run a new simulation to get clear mode
patterns, i.e. the field distribution for the modes. The number of the modes we find depends
on the width of the broad excitation pulse.
The spatial resolution of a one-dimensional simulation is given by the number of pixels that are
used per unit cell. If one increases this spatial resolution, the program automatically decreases
14See Appendix A.
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the time steps accordingly. This means, for instance, for a two-dimensional simulation that
a doubling of the resolution amounts to approximately an eight fold increase in computation
time. It turns out that for the parameters listed in Table 3.1, that from a resolution of 32 on,
the mode profile changes are very minimal15.
The units that are employed in the table match the units used by the MIT software16.

Parameter Value
a 500 nm
η 40 a
wmax 0.45
resolution 128 px

a
f∆ 0.2 c

a
fcen 0.3 c

a
fδ 0.001 c

a
excitation point −4 a

Table 3.1: Parameters used for the simulation of light
modes in a one-dimensional chirped PhC, where c

denotes the speed of light in vacuum.

An FDTD simulation using the values of Table 3.1 results in the mode patterns of Figure
3.2. Here the square of the absolute value of the modes are plotted in blue, together with the
dielectric function ε(x) of the PhC in gray.

3.1.3 Local density results

To test our model we want to compare the envelopes of these modes with the lowest-energy
wavefunctions of the corresponding one-dimensional quantum harmonic oscillator. The cur-
vature of the harmonic potential (arising from Equations 3.1 and 3.2) determines the spatial
extent of the wavefunctions. This extent can be neatly expressed by its harmonic oscillator
length lHO =

√
~

m∗Ω , where Ω denotes the (constant) frequency spacing between the wave-
functions. If we define ξ as the dimensionless variable x

lHO
, we can write the well-known

analytical solutions of the Schrödinger equation for a particle with mass m∗ trapped in the
one-dimensional harmonic potential ~

2 Ωξ2 as [21]

φn(ξ) =
(√
π lHO

)− 1
2 1√

2nn!
Hn(ξ)e−ξ

2/2, (3.3)

where n ∈ N0 and Hn(ξ) denotes the nth Hermite polynomial. Their respective energies are
given by

En =
(

1
2 + n

)
~Ω. (3.4)

In Figure 3.2 we depict the squared absolute values of these eigenmodes together with the
square of the first four wavefunctions. One can clearly see the excellent agreement for each
n ≤ 3 between the squared absolute value of the envelope of the mode and the squared wave-
function.
15To check this, we of course had to run simulations employing higher resolutions as well.
16See Appendix B.
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We can start quantifying the degree of agreement by comparing both frequency spacings. For
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Figure 3.2: Comparison of the FDTD results with the probability distributions
of the corresponding wavefunctions. Apart from the again plotted intensities of

the first four eigenmodes, the squared absolute value of the first four
wavefunctions of the quantum harmonic oscillator are depicted (red dashed). In
the background the dielectric function ε(x) (gray) of the PhC is plotted, its

value indicated on the right axis.

that we have to admit that the frequency spacing between the electromagnetic modes as cal-
culated by the FDTD simulations is not exactly constant, but slightly decreasing as can be
concluded from Table 3.3.
We see that the spacing decreases for higher mode numbers, i.e. for the modes that are more
spatially extended. These modes are still well localized inside the crystal and have negligible
intensity at the boundary. They even do not reach the regions where the slab widths are smaller
than 0.35, but they do touch the boundary of the range of widths indicated in Figure 3.1. It
also might have something to do with (one of) the approximations made in the MPB scheme:
the width-energy relation is not perfectly linear and the effective mass obviously is not truly
constant. This means that the potential deviates from being strictly harmonic.
Comparing these frequency spacings from Table 3.3 with the harmonic oscillator frequency
4.23THz, that we inferred from the MPB calculations in combination with the quadratic
chirping, we see that those differ by about 10%.
As discussed in Section 2.2, we can determine the envelope of a mode if we know the loca-
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Mode number Frequency
[
c
a

]
0 0.29209
1 0.29846
2 0.30465
3 0.31077
4 0.31660
5 0.32237

Table 3.2: Frequencies of the first six modes found by a
simulation using the parameter values given in Table 3.1.

Mode numbers Frequency difference
[
c
a

]
Frequency difference [THz]

0-1 6.37× 10−3 3.82
1-2 6.19× 10−3 3.71
2-3 6.12× 10−3 3.67
3-4 5.83× 10−3 3.50
4-5 5.77× 10−3 3.46

Table 3.3: Frequency differences between the modes mentioned in Table 3.2.

tion in momentum space of this mode, which resides at the bottom of the air band. In the
one-dimensional case all the extrema of the bands lie at the edge of the irreducible BZ [15]
and thus kmin = π

a . Following the procedure explained in Section 2.2, which we schematically
depict in Figure 3.3, we thus find the envelope ψm for m ∈ {0, 1, . . . , 5}.
To quantify the agreement with the corresponding wavefunctions we will calculate the coeffi-
cient cm,n = 〈ψm|φn〉. However, by default Meep only outputs the real part of the electromag-
netic field that it computes. Since we also want the absolute values of the modes and because
the corresponding wavefunctions can be complex-valued, we need the imaginary part of the
fields as well. One can easily change the default setting of Meep, but that doubles the amount
of computation time, memory usage and storage space. A more efficient way is to realize that
the FT from the time domain to the frequency domain of the real part of the magnetic field
H(r, t) can be written as

H̃(r, ω) =
∫ ∞
t=−∞

H(r, t) cos(ωt) dt. (3.5)

Using Euler’s formula we write this as

1
2

∫ ∞
t=−∞

H(r, t)(eiωt + e−iωt) dt. (3.6)

If we now only integrate from t = 0 until t =∞, we have the following identity:

1
2

∫ ∞
t=0

H(r, t)(eiωt + e−iωt) dt = 1
2

∫ ∞
t=−∞

H(r, t)e−iωt dt. (3.7)

By taking the inverse FT of this expression we thus retrieve the complex-valued magnetic field
H(r, t). We are now in the position to calculate the contributions |cm,n|2 of the wavefunctions
φn to the envelope of the mode ψm. As an example, the results for the third envelope ψ2 are
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Figure 3.3: Obtaining the envelope of an eigenmode of the one-dimensional chirped PhC.
In (a) the field (blue) of Figure 3.2(a) is again plotted for convenience. In (b) the spatial
Fourier transform (blue) of this field is depicted. A mask (red dashed) is centered at the

edge of the first BZ. Multiplying (b) with the complex conjugate of the corresponding plane
wave and taking the inverse Fourier transorm results in the envelope (green dashed) in (c).

given in Figure 3.4. One can see that the contribution of the 3rd wavefunction exceeds 90%
while the others contribute very little. The envelopes of the lower modes ψm show even higher
contributions |cm,m|2 as shown in Table 3.4. The envelopes of the electromagnetic modes in a
quadratically chirped PhC thus can, up to a large extend, be described by the wavefunctions
of the one-dimensional quantum harmonic oscillator.
The results shown here for the chirping rate parameter η = 40 a should be seen as a proof
of concept. However, decreasing the value of η means that the local density approximation
becomes less accurate. On the other hand, for large values of η the eigenmode energies are
smaller spaced apart and are (much) harder to excite using a single broad pulse. Also the
computation time increases, as a larger η implies a slower chirping and thus a larger PhC. The
size of the crystal scales linearly with η and is about 2√wmaxη.

3.1.4 One-dimensional distorted harmonic cavity

In contrast to the perfectly quadratically chirped PhCs discussed so far, PhCs that are fab-
ricated in the real world suffer from all kinds of imperfections. Notably the widths and the
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Mode number m Contribution |cm,m|2
0 98.2%
1 95.1%
2 92.4%
3 89.7%
4 86.5%
5 82.4%

Table 3.4: For each m ≤ 5 the contribution of the mth wavefunction to
the envelope of the mth eigenmode of the one-dimensional perfect

quadratically chirped PhC is given here.
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Figure 3.4: Envelope of a single mode ψm compared with the wavefunctions φn of the
quantum harmonic oscillator. In (a) the envelope of ψ2 is shown. From (b) until (e) the
first four wavefunctions are depicted. In (f) the sum of the remaning higher harmonics is
plotted. The contributions of these wavefunctions to ψ2 are given in their respective upper

right corners.
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Mode number m Contribution |cm,m|2
0 98.2%
1 95.1%
2 93.0%
3 89.1%
4 85.7%
5 80.6%

Table 3.5: For each m ≤ 5 the contribution of the
mth wavefunction to the envelope of the mth

eigenmode of the one-dimensional distorted chirped
PhC is given here.

positions of the dielectric slabs will acquire some distortions with respect to the desired values.
Distortions of the latter kind do not influence the average local dielectric constant. The energy
or frequency of a mode will therefore change only marginally. In the dispersion diagram this
moving of the position of a slab amounts to moving a little bit in k-space. However, since we
are at the minimum of the band, this has no effect on the energy of the mode up to first order
in k.
Distortions on the slab widths do have a large impact on the modes. This is the case because
the minimum of the air band is directly influenced by a change in the width, as can be inferred
from Equation 3.1.
To take this into account in the simulations, we introduced a randomly generated distortion
of the widths of the slabs, that before yielded a harmonic cavity. In that way Equation 3.2
now generalizes to

w(x) = wmax −
(
x

η

)2
+ ∆w(x), (3.8)

where ∆w(x) denotes the width distortion. This distortion is picked from a normal distribution
with a standard deviation σw of 10 nm17. A simulation with these widths results in the
mode fields as depicted in Figure 3.5. We also want to test our model for this anharmonic
effective potential. We can no longer rely on the analytical solutions of the quantum harmonic
oscillator, but we have to numerically solve the one-dimensional Schrödinger equation using
the induced distorted potential, and samem∗ as before. This can be achieved using a Numerov
method [22–24], a derivation of which is given in Appendix C.
In Figure 3.5 we superimposed the numerical results on the modes we found in the FDTD
simulations, we see that the agreement with the envelopes of the modes is very good. The
contributions |cm,m|2 of the mth wavefunction to the mth envelope are given in Table 3.5.
We thus have shown that our local density approach works not only in the case of a perfect
harmonic cavity, but also when we introduced distortions on the slab widths of such a one-
dimensional chirped PhC.
We should note here that the agreement is, a bit suprisingly, worse (especially for the spatially
larger modes) if we do not use the linear approximation between the slab width and energy
(equation 3.1) but use the exact relation as depicted in Figure 3.1. This might be explained as

17One can imagine that the larger σw becomes, the worse the local density approximation holds. Another
effect is that it gets harder to excite all the lower modes using one broad pulse. We have not extensively
tested these limits. However this second issue seems to be the dominant effect and already appears in the
case of perfectly quadratically chirped PhCs for larger values of η. In both cases, the mode frequencies can
become very closely spaced and can have rather different Q-values, so that one of them is lost during the
simulation.
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Figure 3.5: FDTD results of the fields in a distorted harmonic potential. The intensity of
the fields (blue) are plotted as a function of the position x for the first four eigenmodes. In
each plot, the numerically obtained wavefunctions (green dashed) are included. Each green

dot depicts a grid point used in the numerical solving method. In the background the
dielectric function ε(x) (gray) of the PhC is plotted, its value indicated on the right axis.

follows. These larger modes in fact experience a higher effective mass than the used average
effective mass m∗ in the range of widths 0.35 − 0.45. In the linear approximation this is
compensated by a higher effective potential at smaller widths.

3.2 Two-dimensional harmonic cavity

As we plan to experimentally achieve a photonic BEC in a two-dimensional harmonic cavity, we
shall now investigate the results for a two-dimensional quadratically chirped PhC. As explained
in Chapter 2 we use a triangular lattice of air holes in a dielectric medium as our PhC, since the
optical bandstructure of such a material exhibits a complete photonic bandgap for large enough
hole sizes. In this section we will examine the correspondence between the wavefunctions
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obtained using the local density approach and the electromagnetic modes resulting from the
FDTD simulations in such a two-dimensional structure.

3.2.1 Effective mass and effective potential

Performing bandstructure calculations for PhCs with a varying air hole radius ρ, reveals that
a clearly visible bandgap is apparent when this radius exceeds about 40.5% of the lattice
parameter. The first band above the bandgap is the third TM-band for all structures with a
large enough radius18. As for the one-dimensional structure we would like to find a relation
between the hole size/radius and the effective mass and potential, which we can use to create
a harmonic potential. The two-dimensionality of the system implies a possibly anisotropic
effective mass as mentioned in Subsection 2.1.5. Fortunately it turns out that the effective mass
is almost isotropic when calculated from the third TM-band at the location of the minimum of
the band. This minimum appears to be practically at the K-point, which allows us to extract
the effective mass from the bandstructure in two directions: In the direction of the M -point,
the effective mass m∗KM equals 3.87 µme, where me denotes the electron mass. In the direction
of the Γ-point, m∗KΓ = 4.08 µme. This amounts to a difference of only 5%.
The relation between the hole radius and energy of the bottom of this band in the range
2ρ ∈ [0.81, 0.91] turns out to be again nearly linear as can be seen in Figure 3.6(a).
The effective massesm∗KM , m∗KΓ are plotted in Figure 3.6(b) as a function of the air hole radius.
Analogous to the one-dimensional case one thus should increase the hole size quadratically as
a function of the distance to the crystal center to create a harmonic potential. In polar
coordinates r, ϑ this is written as

ρ(r, ϑ) = ρ(r) = ρmin + 1
2

(
r

η

)2
, (3.9)

where ρmin denotes the center hole radius.The resulting two-dimensional harmonic effective
potential can be expressed by

V (r, ϑ) = V (r) = 1
2m
∗Ω2r2 (3.10)

where Ω denotes the harmonic oscillator frequency and m∗ = 1
2 (m∗KM +m∗KΓ). Here m∗KM

and m∗KΓ are both averaged over their values in the range 2ρ ∈ [0.81, 0.91].
We shall now look at the two-dimensional simulations results and how well they resemble the
wavefunctions of a two-dimensional isotropic quantum harmonic oscillator.

3.2.2 FTDT and local density results

The parameters used for the two-dimensional simulation are given in Table 3.6. It turns out
that for this simulation a resolution of 32 suffices as well. This means that the results from
these simulations like the mode profiles only change very little upon increasing the resolution
further. The simulation with a resolution of 64 took about 36 h per mode on a single core of

18In fact, from a radius of about 0.48 on, the second TE-band attains a lower minimum than the third TM-
band. This is not an issue here, since the lowest energy modes belonging to this band are sufficiently localized
in the center of the crystal so that they do not extend into the outer region where the radii become of this
order.
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Figure 3.6: MPB calculations for a range of hole radii ρ. In (a) the energy of
the bottom of the third TM-band Emin(w) (red circles) is depicted. A first
order polynomial (blue) is fitted to the data points that lie within the range
depicted by the two vertical black dashed lines. In (b) the effective masses

m∗
KM , m∗

KΓ are indicated by green squares and purple triangles, respectively.

an Intel Core i3-2130 processor19. As explained in the case of the one-dimensional simulations
in Subsection 3.1.3, the real-valued resulting fields have to be extended with their imaginary
parts.
The intensities of the first four modes, together with the dielectric function, are plotted in
Figure 3.7.
Again, as in the one-dimensional case, we want to extract the envelope function ψm(r, ϑ) from
each of these modes. The procedure to do this, already described for the general case, is also
schematically depicted in Figure 3.8 for the two-dimensional case. Here it is clearly visible that
the fundamental mode is mostly located around the six K-points in the first BZ in momentum
space.
To compare these envelopes with the analytical solutions to the corresponding Schrödinger
equation, we have to investigate these solutions in some detail. This has been done in Ap-

19As in the case of the one-dimensional simulations, this high resolution was employed only to test whether a
resolution of 32 sufficed.
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Parameter Value
a 500 nm
η 40 a
ρmin 0.405
resolution 64 px

a
f∆ 0.05 c

a
fcen 0.4 c

a
fδ 0.001 c

a
excitation point (−1.775 a, −1.044 82 a)

Table 3.6: Parameters used for the simulation of electromagnetic modes
in a two-dimensional chirped PhC.
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Figure 3.7: FDTD results of the fields in two dimensions. From white to dark
red, the intensity of the fields are depicted for the first four eigenmodes. On top
of these fields, the chirped PhC is plotted, where the dielectric material is shown

in black and the air holes in white.

pendix D. These wavefunctions φn,l, where n is the principal quantum number that determines
the energy and the quantum number l determines the z-component of the orbital angular mo-
mentum, are given in Equation D.18. They are here restated for convenience

φn,l(r, ϑ) = Cn,le
−(r/lHO)2/2 (r/lHO)|l| L|l|n−|l|

2

(
(r/lHO)2

)
eilϑ, (3.11)

where Llp(ζ) the generalized Laguerre polynomials and Cn,l = l−1
HO

√
2p!

(p+|l|)! a normalization
constant, with p = n−|l|

2 . Each energy level n is (n+ 1)-fold degenerate.
For each of these wavefunctions φn,l the coefficient cm,{n,l} in the expansion of the envelope
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Figure 3.8: Obtaining the envelope of an eigenmode of the two-dimensional chirped PhC.
In (a) the intensity of the field of Figure 3.7(a) is again plotted for convenience. In (b) the
spatial Fourier transform of this field is depicted. A mask (blue dashed) is placed around an
intensity maximum (here centered at the third K-point). Applying this mask results in (c).
Multiplying (c) with the complex conjugate of the corresponding plane wave and taking the

inverse Fourier transform results in the envelope in (d).

ψm of the electromagnetic mode found in the FDTD simulations can be calculated as

cm,{n,l} = 〈ψm|φn,l〉. (3.12)

We can then form for a certain energy (frequency) level n the total wavefunction

φn =
∑
l

cm,{n,l}φn,l. (3.13)

The contribution |cm,n|2 of this wavefunction to the envelope can be computed using |cm,n|2 =∑
l

|cm,{n,l}|2.

In Figure 3.9 the contributions to the third envelope (which itself is depicted in the upper
left corner) are given and the corresponding φn for n ∈ {0, . . . , 5} are shown. We find a good
agreement between the third envelope and third harmonic oscillator wavefunction: |c2,2|2 =
92.0%, when we used the upper right K-point in the demodulation procedure to find the
envelope20. For the lower envelopes even higher values are found. For higher m, |cm,m|2
slowly decreases as the harmonic oscillator approximation deteriorates for the larger modes.21

20All the K-points in the first BZ are assigned integers in a clock-wise manner, starting with 1 at the most left
K-point.

21We have investigated the comparison up to m = 5.
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For completeness, all the contributions |cm,m|2 for m ≤ 5 and for all pairs of K-points in
the first BZ are listed in Table 3.7. We cannot yet attribute the differences between the
contributions when varying the K-point used in obtaining the envelopes, but we can note here
there seems to be some relation with the position of the excitation point. However, increasing
the pulse durations in the simulations does not alter the values in Table 3.7. In this table, the
contributions for the higher modes in fact are not exactly equal for opposing K-points, which is
in contradiction with the time-reversal symmetry of the modes. For a complete understanding
of these issues concerning the higher modes further investigation is thus needed.

Mode number m Contribution |cm,m|2
K-points 1,4 K-points 2,5 K-points 3,6

0 99.1% 98.9% 98.9%
1 96.9% 98.1% 92.7%
2 96.1% 89.1% 92.0%
3 91.2% 94.4% 81.1%
4 89.3% 72.4% 84.9%
5 87.4% 80.9% 80.2%

Table 3.7: For each m ≤ 5 and each pair of opposing K-points used in the process to obtain
the envelop of a mode (see Figure 3.8), the contribution of the mth wavefunction to the
envelope of the mth eigenmode of the two-dimensional chirped PhC is given here. See

Footnote 20 for the assignment of the K-point numbers.
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Figure 3.9: Envelope of a single mode ψm compared with the wavefunctions φn of the quantum
harmonic oscillator. In (a) the envelope of ψ2 is shown. From (b) until (g) the first six

wavefunctions are depicted. In (h) the sum of the remaning higher harmonics is plotted. The
contributions of these wavefunctions to ψ2 are given in their respective upper right corners.
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4 Conclusion

The intuitive model described in this thesis, where a slowly chirped PhC is modeled as an
effective potential for a massive boson and the envelopes of eigenmodes are found by solving
the corresponding Schrödinger equation, has been shown to be very accurate. For the treated
one- and two-dimensional harmonic cavities, the agreements between the lowest eigenmodes
and their corresponding analytical wavefunctions have been shown to be higher than 90%.
The distorted one-dimensional case also exhibited qualitatively similar results. This accuracy
is surprisingly good, especially when one keeps in mind that the time needed to calculate the
envelopes in this novel model is many orders of magnitude smaller than the time it takes to
simulate them using an FDTD approach.
The limits of the validity of this model have not been fully exploired yet, but it is clear from
Figures 3.1 and 3.6 that the model works better in some ranges of hole/slab sizes than in
others. It tends to be less accurate when a larger range of air holes/slabs is covered by the
modes under consideration.
It can be also expected that the local density approximation becomes less accurate if the
hole/slab size is changed too rapidly.
Keeping in mind that the boundaries of the validity of the model are not precisely known at
the moment, it can be of great interest when designing large PhCs, for example in the field of
solid-state lighting.

27



Outlook

5 Outlook

In this thesis the electromagnetic modes in a large area quadratically chirped PhC were de-
scribed. In particular the novel model that we discussed to calculate the envelopes of these
modes has been investigated in great detail. This was just the first part of larger project in
which we plan to create a Bose condensed photon gas. The next step to reach this goal is
to perform FDTD simulations in which the quadraticaly chirped PhC is replaced by the very
same crystal, except that it has to be modified in such a way that an incoming electromag-
netic wave, originating from a laser source, can be coupled in and out the PhC. The optimal
design of this crystal is one of the first challenges ahead. When the eigenmodes of this new
structure are known, the actual experimental design (semiconductor material, thickness, etc.)
and fabrication of the PhCs can be taken up. This will be a formidable achievement in itself,
when one takes into account the extremely thin dielectric material that constitutes the crystal.
Subsequently a designated laser will pump the crystal, which partly absorbs and re-emits these
photons and thereby allowing them to thermalize, and will hopefully form a photonic BEC
with an energy just above the optical bandgap of the corresponding periodic PhC.
If this succeeds, the periodicity of the structure can be more exploited. A similar approach
has been taken in the field of atomic BECs where a periodic potential over the condensate can
be created using opposing laser beams, thereby creating an optical lattice [25,26].
By tuning several experimental parameters, large non-linear effects in the PhC are expected
to occur and thereby opening the way to describe the photonic BEC in the periodic potential
by the Bose-Hubbard model. In this way we hope to make a quantum phase transition from
the superfluid BEC state to a Mott-insulator state with a small integer number of photons per
unit cell.
These fascinating challenges are not only of fundamental interest but may also imply applica-
tions in the field of quantum information and novel PhC LEDs.
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Appendix A Software

For the bandstructure calculations the open source software package MIT Photonic Bands
(MPB) was employed. This package involves an iterative eigensolver algorithm that solves
Maxwell’s equations for periodic structures in a plane-wave basis [27]. It thus tries to find
eigenmodes of Equation 2.6, under the restriction of the divergenceless of the H-field.
To find the electromagnetic eigenmodes of non-periodic structures using finite-difference time-
domain (FDTD) simulations, we invoked another open source program developed at MIT:
Meep [28]. This acronym officially stands for MIT Electromagnetic Equation Propagation.
This software package solves Maxwell’s equation in the time-domain and lets them evolve for
some small time-interval and using a fine computational grid.
To determine the frequency components of electromagnetic fields the accompanying free pro-
gram Harminv was exploited. For more information about this method, see for instance
Mandelshtam et al. [29, 30].
At the edges of a finite computational region so-called perfectly matched layers (PMLs) can
be defined. These artificial layers are supposed to absorb any light that enters it22 and thus
represents an empty space surrounding the in silico structure. The electromagnetic modes
that are discussed in this thesis all have a negligible intensity outside the considered PhC and
thus in the PML.

22This, however, does not always work perfectly [31, 32].
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Appendix B Units

The MIT software has not adopted the SI-unit system. Therefore one often has to convert the
output of calculations to numbers in more conventional units. We therefore spend here some
words on the scale-invariant MIT units and on how to convert them to SI-units.
In the units utilized by the MIT software the speed of light in vacuum c, the vacuum permit-
tivity ε0 and vacuum permeability µ0 are put to 1. Furthermore the lattice constant a is also
defined to be 1. If we, for instance, encounter a frequency of f = 0.3 and set a equal to 0.5 µm,
this frequency equals 0.3 c

a ≈ 180THz in SI-units. Wavevectors are treated differently in Meep
in comparison with MPB. In MPB these are given in a basis of reciprocal lattice vectors. In
Meep they are expressed in rectangular coordinates, in units of 2π

a . Here an example is pro-
vided which exhibits how to work with these units. Assume we have obtained a dispersion
diagram using MPB and we want to assign an effective mass m∗ to photons residing in the air
band of the periodic structure used in the calculation. We thus intend to use Equation 2.13,
which is here conveniently displayed again

E(k) = E(kmin) + ~2

2m∗ (k− kmin)2. (B.1)

As we are now only interested in the unit conversion factor for the effective mass, we can forget
about the constant energy term and put kmin also equal to 0. We then divide the remaining
equation by Planck’s constant to obtain

f(k) = h

2m∗(2π)2 k2. (B.2)

We can now extract the factor c
a out of the frequency f and 2π

a out of the wavevector k, as
to convert the SI-units to MIT-units (as to correspond to the output of the software). Moving
the frequency factor to the right, results in

f(k) = h

2m∗ack2. (B.3)

If we fit the dispersion around kmin (= 0), we find that the coefficient ζ of the quadratic term
in k thus equals

ζ = h

2m∗ac . (B.4)

Since we know ζ from the fit, we can now express m∗ in MPB output as

m∗ = h

2ζacme
, (B.5)

where we have also divided by the electron mass me.
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Appendix C Normalized Numerov integration method

The Numerov method is an efficient algorithm for solving second order linear differential
equations in one dimension that does not involve a first order term23. We can thus use it to
solve the one-dimensional Schrödinger equation

d2φ(x)
dx2 + k2φ(x) = 0, (C.1)

where we have defined k2 as 2m∗
~2 (E − V (x)).

In order to numerically solve this equation for some given potential V (x), it is necessary to
discretize the one-dimensional space. This is achieved using equidistant points xi and we define
h to be the stepsize xi+1 − xi.
Let us now assume that we can Taylor expand a solution φ of the Schrödinger equation around
xi, such that

φ(xi+1) = φ(xi) + hφ′(xi) + h2

2 φ
′′(xi) + h3

3! φ
(3)(xi) + h4

4! φ
(4)(xi) +O(h5), (C.2)

where the O notation means that the error R5(h, xi) made by this approximation obeys

lim sup
h→0

∣∣∣∣R5(h, xi)
h5

∣∣∣∣ <∞. (C.3)

If we use the shorthand notation of denoting φ(xi) by φi and similarly for the derivatives, we
can also write

φi−1 = φi − hφ′i + h2

2 φ
′′
i −

h3

3! φ
(3)
i + h4

4! φ
(4)
i +O(h5) (C.4)

and thus
φi+1 + φi−1 = 2φi + h2φ′′i + h4

12φ
(4)
i +O(h6). (C.5)

We now want to find expressions for these higher order derivatives in terms of φ itself. Since
φ obeys the Schrödinger equation we know that its second derivative equals −k2φ, so that

φ
(4)
i = −(k2φi)′′. (C.6)

Furthermore, the first derivative φ′i can be approximated by

φ′i =
φi+ 1

2
− φi− 1

2

h
, (C.7)

where we have generalized the shorthand notation by writing φi+ 1
2
instead of φ(xi+ h

2 ). Taking
the derivative of this expression yields

φ′′i =
φ′
i+ 1

2
− φ′

i− 1
2

h
, (C.8)

which, using Equation C.7, can be rewritten as

φ′′i = (φi+1 − φi)− (φi − φi−1)
h2 . (C.9)

23Our main reference for this section is Van der Zwan [24].
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This leads, together with Equation C.6 to

h2φ
(4)
i = −k2

i+1φi+1 + 2k2
i φi − k2

i−1φi−1. (C.10)

This means we can rewrite Equation C.5 (neglecting the rest term) as

(1− Ti+1)φi+1 − (2 + 10Ti)φi + (1− Ti−1)φi−1 = 0, (C.11)

where we have used the common notation Ti := − 1
12h

2k2
i . This three-point equation we

would like to convert into a two-point equation, i.e. we want to employ the faster normalized
Numerov method.
If we define Fi := (1− Ti)φi and Ui := 2+10Ti

1−Ti
we can write Equation C.11 conveniently as

Fi+1 − UiFi + Fi−1 = 0. (C.12)

Now we are in the right position to proceed to the normalized setting, by defining Ri := Fi+1
Fi

and thereby allowing us to write the resulting two-point equation

Ri = Ui −
1

Ri−1
. (C.13)

Or starting the integration from the other side one can obtain analogously

R̃i = Ui −
1

R̃i+1
, (C.14)

where R̃i := R−1
i−1. One can then reconstruct the wavefunction by using the definitions given

above to obtain the following relations

φi+1 = (1− Ti)Ri
(1− Ti+1)φi,

φi−1 = (1− Ti)R̃i
(1− Ti−1)φi.

(C.15)

Because of the existence of non-physical solutions which are not normalizable, this does not give
the desired wavefunction yet. In an unnormalized Numerov method one starts the integration
procedure from both sides on, until they meet in the middle of the computational grid. After
multiplying one of them by a constant (the Numerov algorithm and the Schrödinger equation
are linear in the solutions φ), they can always be made to concide in the center. The real
test whether they constitute a real wavefunction is whether their derivatives are equal at the
meeting point xn. To ensure the independency on the absolute value at this point, we thus
want to find a root of the function D(E) that takes the difference of the two logarithmic
derivatives y+

n and y−n of the two constructed φ at xn.
For the normalized scheme, we approximate the logarithmic derivative φ′i

φi
by F ′i

Fi
, which is

the most accurate when the potential varies slowly in space24. This fraction can, again, be
numerically approximated by Fi+1−Fi

hFi
, so that we have Ri = 1+y+

i and similarly R̃−1
i+1 = 1+y−i .

This means that finding a root of the function D(E) is translated into finding a zero of

RnR̃n+1 − 1. (C.16)

If this condition is fullfilled, an eigenvalue E of the Hamiltonian is found and a wavefunction
can be built up using the Ri, Ui and Fi after setting R0 and F0 to small starting values.
24There are higher order approximation schemes than the one described here, but this simple approach suffices
here.
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Appendix D Two-dimensional isotropic quantum harmonic
oscillator

In this appendix the solutions to the two-dimensional isotropic quantum harmonic oscillator
are investigated. The two main references for this section are Cohen-Tannoudji et al. [33] and
Karimi et al. [34].
In cartesian coordinates the Schrödinger equation of this harmonic oscillator is written as{

− ~2

2m

(
∂2

∂x2 + ∂2

∂y2

)
+ 1

2mω
2(x2 + y2)

}
φ(x, y) = E φ(x, y), (D.1)

wherem denotes the mass and E the energy of the particle that is described by the wavefunction
φ. ω denotes the harmonic oscillator frequency. A natural starting point in solving this
equation is to use the method of separation of variables. It can then be easily seen that the
wavefunction is just the product of two wavefunctions that are solutions to the one-dimensional
Schrödinger equation with a harmonic oscillator potential, i.e. φnx,ny

(x, y) = φnx
(x)φny

(y)
with energy Enx,ny

= Enx
+ Eny

. Here ni, with i ∈ {x, y}, denotes an integer that indexes
the discrete solutions with energy Eni

of the quantum harmonic oscillator problem. These
wavefunctions are given by Equation 3.3 and their respective energies in Equation 3.4. By
defining the annihilation operator [35]

â†x :=
√
mω

2~

(
x̂− i

mω
p̂

)
, (D.2)

where a hat above an observable denotes the corresponding operator, and p̂ = −i~ d
dx̂ the

momentum operator. The creation operator âx is defined as its hermitian conjugate. For the
two-dimensional harmonic oscillator the operator ây and its hermitian conjugate are defined
in the same manner. The following relations between the consecutive wavefunctions can then
be deduced

âx φn(x) =
√
nφn−1(x),

â†xφn(x) =
√
n+ 1φn+1(x)

(D.3)

and analogous equations for the φny
(y). We are now in the position to define the num-

ber operators N̂x = â†xâx and N̂y = â†yây, so that the hamiltonian Hx,y can be written as
~ω(N̂x+ N̂y +1). Furthermore the wavefunction φnx,ny

is an eigenfunction of N̂x and N̂y with
eigenvalues nx and ny, respectively. One thus speaks of having nx quanta of light in the x
direction and ny quanta in the y direction.
The wavefunction φnx,ny

can thus be built up from the lowest energy wavefunction φ0,0 by
letting the creation operators repeatedly operating on φ0,0

φnx,ny = 1√
nx!ny!

(â†x)nx(â†y)ny φ0,0. (D.4)

Note that the states with an energy Etot
nx+ny

:= Enx,ny
are (nx + ny)-fold degenerate.

Since we assume that the potential landscape and the mass m are isotropic, the axes x and
y do not enjoy a privileged rôle and we should exploit this rotational symmetry around the
z-axis. It is therefore natural to look at the z-component of the angular momentum Lz, which
is classicaly defined by

Lz = xpy − ypx, (D.5)
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i.e. it is the last component of (x, y, z)t × (px, py, pz)t.
Since

x̂ =
√

~
2mω (â†x + âx),

p̂x =i
√

~mω
2 (â†x − âx),

(D.6)

and similarly for their y-equivalents, we can write Lz as

Lz = i~(âxâ†y − â†xây). (D.7)

As
[
âi, â

†
j

]
= δij for i, j ∈ {x, y}, we deduce the important commutation relation

[Hx,y, Lz] = 0. (D.8)

Let us now define the two convenient operators

â± = 1√
2

(âx ∓ iây) (D.9)

and their hermitian conjugates
â†± = 1√

2
(â†x ± iâ†y). (D.10)

Again, the commutators obey the relations
[
âi, â

†
j

]
= δij for i, j ∈ {+,−}. It is also readily

verified that 2 â†±â± = â†xâx + â†yây ∓ iâ†xây ± iâxâ†y, so that we can write the hamiltonian and
the z-component of the angular momentum as

Hx,y =~ω(â†+â+ + â†−â− + 1),
Lz =~(â†+â+ − â†−â−).

(D.11)

By using the operators N̂+ = â†+â+ and N̂− = â†−â−, we can write Equation D.11 more
compactly as

Hx,y =~ω(N̂+ + N̂− + 1),
Lz =~(N̂+ − N̂−).

(D.12)

The operator N̂− (N̂+) can be interpreted as the number of (counter)clockwise rotating quanta,
i.e. the number of quanta with a negative (positive) orbital angular momentum around the z
axis.
The eigenvalues of these operators are denoted by n+, n− ∈ N0 and their common eigenfunc-
tions can be, analogous to Equation D.4, constructed as

φn+,n− = 1√
n+!n−!

(â†+)n+(â†−)n− φ0,0. (D.13)

From Equation D.12 we can conclude that these are also eigenfunctions of the hamiltonian and
Lz, with the respective eigenvalues ~ω(n+ 1) and ~l, where n = n+ + n− and l = n+ − n−.
Given an energy of ~ω(n + 1) and the relation l = n − 2n−, we see that the (n + 1)-fold
degeneracy can here be expressed by noting that l can have the values n, n− 2, . . . , 2− n,−n.
To acquire explicit expressions for the operators â± and â†± in the polar coordinates

x = ρ cosϑ,
y = ρ sinϑ,

(D.14)
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we first write the operators as functions of cartesian coordinates. For example, we find for â+

â+ = 1
2

{√
mω

~
(x− iy) +

√
~
mω

(
∂

∂x
− i ∂

∂y

)}
. (D.15)

By using the inverse of the Jacobian matrix of the coordinate transformation to polar coordi-
nates and Euler’s formula, we arrive at

â+ = e−iϑ

2

{√
mω

~
ρ+

√
~
mω

(
∂

∂ρ
− i

ρ

∂

∂ϑ

)}
. (D.16)

The others can be constructed in a similar fashion and are listed below

â†+ =eiϑ

2

{√
mω

~
ρ−

√
~
mω

(
∂

∂ρ
− i

ρ

∂

∂ϑ

)}
,

â− =eiϑ

2

{√
mω

~
ρ+

√
~
mω

(
∂

∂ρ
+ i

ρ

∂

∂ϑ

)}
,

â†− =e−iϑ

2

{√
mω

~
ρ−

√
~
mω

(
∂

∂ρ
− i

ρ

∂

∂ϑ

)}
.

(D.17)

This leads to the following expression for the eigenfunctions indexed by the energy n and the
orbital momentum l

φn,l(ρ, ϑ) = Cn,le
−(ρ/lHO)2/2 (ρ/lHO)|l| L|l|n−|l|

2

(
(ρ/lHO)2

)
eilϑ, (D.18)

where lHO =
√

~
mω denotes the harmonic oscillator length, Llp(ζ) the generalized Laguerre

polynomials and Cn,l = l−1
HO

√
2p!

(p+|l|)! a normalization constant, with p = n−|l|
2 the number of

dark rings in the probability distribution |φn,l|2. These eigenfunctions are called Laguerre-
Gauss modes.
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