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Text Prediction in Web-based Text-Processing

Abstract

This thesis describes the research undertaken to investigate the optimal implementation of text predic-
tion. Using a 16.7Tb large dataset, a double-blind experiment is executed with 156 participants which
predicts up to 4 words ahead what a user is typing.

Following the main research question: Which User Interface Configuration Supports an Optimal
Implementation of Text Prediction in Physical Keyboard Supported Software? several hypotheses are
defined. The optimal implementation is defined as the text prediction system that leads to least errors
over the shortest time it takes a participant to retype a text.

The results show that that optimal implementation is no text prediction. The text prediction sys-
tem used for the experiment made users type more errors and it took users more time to retype a text
with the system enabled than without.

A significant result was found in the influence of the user interface used and the amount of words
predicted.

There are in total four user interfaces tested, and the autofill interface, among many familiar from
Google’s search bar, results in the least amount of errors typed. However, even with this interface
enabled, typing without text prediction results in significantly less errors.

The amount of words predicted varies from 0 (the words being typed is completed by the system)
to 4 (the word being typed is completed and four additional words are predicted). With three words
predicted, the amount of errors typed is the lowest. But likewise to the user interface, the control
experiment without prediction performs significantly better.

It is from these results that the author can only conclude that the optimal implementation of text
prediction is no text prediction.

In further research, the author presents an invertedway of text predictionwhichmight increase the
accuracy of the predictions, and a longitudinal study to further understand the significant results.
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Terms & Definitions

• Software keyboard: a keyboard that is not physically present. For example a keyboard displayed
on a touch screen or other display. These can be utilized using a finger, mouse, pen or other
input device. In this thesis the software keyboards discussed will primarily use touch screens
and fingers for input unless otherwise described. Alternative terms are on-screen keyboard,
virtual keyboard.

• Hardware keyboard: a physical, hardware keyboard, with physical keys to be pressed. Al-
though the researchdescribed in this thesis ismostlyAnglophone, and thusdiscussesQWERTY
keyboards, a hardware keyboard in this thesis describes any 104/105-key keyboard as found
on mobile phones, laptops and desktop pcs, irrelevant of its layout. Alternative terms are
QWERTY keyboard, physical keyboard, hard-pressed keyboard.

• N-gram: in this research a block of n words, coupled to a frequency list to see which words
more frequently follow previous n words. In a table of n-grams frequency, we can guess the
nth word after a block of n − 1 words. Other research has used n-grams as characters instead of
words.

• EntropyRateConstancy: also known asUniform InformationDensity, the concept that speak-
ers try to keep the entropy constant to make it easier to listen/read texts.

• Machine Learning: is described in a complicated fashion in Sebastiani (2002), but can be de-
fined as a field of study that gives computers the ability to learn without being explicitly pro-
grammed. Machine learning consists of a set of algorithms that take input, evaluate it and
produce an output based on that input. In the research described here, it receives text input
from the user typing, evaluates that, and provides a prediction, but does not learn. Often ab-
breviated as ML.

• Bayesian Network: an implementation of ML, which shows a network of random variables
and their conditional interdependencies via a directed graph.

• Markov Network: like a Bayesian Network, but undirected.

• Human-Computer Interaction (HCI): a field of research that investigates the interaction be-
tween humans and computers, both hardware and software. Often-namedComputer-Human
Interaction which is synonymous, but human-computer interaction is preferred as it puts the
human first.
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1
Introduction

Theresearchdescribed inthisthesis endeavors tobring state of the art text prediction toword

processors such asMicrosoftWord andGoogleDocs. Most smart-phones can already predict theword

a user is typing (default on android, the swiftKey app, and Apple’s iOS8), however this technology is

not yet readily available in the browser. The experiment executed as part of this thesis implements text

prediction technology in text fields in the browser.

For example, when a user types: “Th” the prediction technology should predict that the user is
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about to type “The”. However, using a 16.7 Terabyte dataset from Google, the prediction technol-

ogy should be able to predict up to four words further. Thus “Th” becomes: “This is a remarkable

system”.

The results of this thesis describe whether or not text prediction can successfully be implemented

in the browser, and how such an optimal implementation should look like. Which user configuration

is the most effective, and how many words should an optimal implementation predict.

This introduction covers an overview of where text processing has come from, beginning in the

mid-sixties, to where it has led to. It is followed by a review of the state-of-the-art, and describes the

research-gap this thesis intents to fill.

1.1 From Power Typing to T9

When IBM in 1964 introduced the IBM MT/ST machine, text processing got its first form as

we know it today. A dedicated machine to text processing, which for the first time in history allowed

users to correct errors. ”The operator needed severalmonths’ experience and had to learnmany special

control sequences to become fully productive” (Haigh, 2006, p. 10). This was also dubbed ”power

typing”. Although it took another eight years forword processors to become buzzwords, and another

10 years before word processing became a killer application: an application so valuable it was worth

buying a completely new system for. By that time, Tex had vested itself with programmers and aca-

demics for its great control over spacing and layout. On the hardware level, the 70s saw a significant

lowering of video-display and printer prices, boosting development in text processing, but it took till

1986 when Xerox created the first modern day word processing application: the Bravo Text Editor

(Lampson, 1986).

The Bravo text Editor was used as a basis for Microsoft’s Word, which, as the years progressed, ex-

tended its feature set. So did the usage of text processing. Was once the user group secretaries, over

the past decades this broadened to basically every computer user and went from dedicated machines
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using magnetic tape to mobile devices sending emails (Haigh, 2006).

In the meantime, the seminal work by Damerau (1964) and Levenshtein (1966) provided the first

insights into spelling error correction. It proposed theDamerau-Levenshtein distancemeasure, which

accounts for deletions, insertions and transposition in wrongly typed words. Word-processors started

to use this model to provide for auto-correction, ie a spell checker.

Within this feature set, on both stationary computers and mobile devices, auto-correction —and

in lesser sense word prediction— has become a standard.

MicrosoftWord, amongother applications, does have the additional ability to auto-correctminimal

errors in typing, such as changing the capital of letters and adding apostrophes where needed. Auto-

correction thus addresses minor errors in spelling, grammar and style.Auto-correction in Microsoft

Word currently uses fixed rules. If the conditions of a rule are met, the auto-correction executes its

correction pattern. These rules can be very simple, for example if a user types (c) it is automatically

corrected to ©, or more flexible, for example letters at the beginning of a sentence should start with a

capital and detecting and converting text to lists.

Text prediction addresses the prediction of words that the user is about the type. It differs from

auto-correction as it adds the estimation of the word that is being typed, and possibly any upcoming

words. It does not take insertions, deletions or transpositions in words into account.

Text prediction has a solid base inmobile devices and in special-needs devices. The limited availabil-

ity of screen real estate or finger movement means that text prediction can significantly improve the

user experience. This started in the early nineties with the invention of PDAs (Mackenzie & Soukor-

eff, 2002). The introduction of Apple’s Newton and the Palm Pilot also spawned a new research field

to investigate the ability of handwritten-input. For an overview of these systems, see Mackenzie and

Soukoreff (2002).

The knowledge gained from the research of PDAs and derivatives transferred to mobile phones

with for example T9 (Garay-Vitoria & Abascal, 2005; Mackenzie & Soukoreff, 2002). The limited

screen sizes of phones created an impasse for the full-size 104-key keyboards ubiquitous with personal
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computers. Ambiguation of the keyboard was necessary to decrease the amount of keys on the screen.

T9 does this by assigning 3 letters to each key on the keypad, using the 0 as a delimiter (space-bar), as

shown in figure 1.1.

Figure 1.1: A depiction of a T9 keyboard.

The ambiguity this creates is shown in Table 1.1 below, (adapted from Mackenzie & Soukoreff,

2002). It shows the keys pressed on the keypad, the primary word it references to and the secondary

word it could reference to (0s have been removed for clarity, but would be typed to delimit a word).

In this case, the user is willing to type “The quick brown fox jumps over the lazy dog”, which results

in the default text of “The quick brown fox jumps over the jazz dog”. Jazz is a more probable word in

the English language than lazy, and will thus be predicted first, before lazy*. The user would have to

press a designated button to select the secondary word. T9 works quite well, with an estimated 95%

accuracy for the English language and is reasonably fast at around 45 words per minute (Silfverberg

et al., 2000).

Asmobile phones changedover time, sodid their keyboards. A series of cellphoneswere introduced

that had so-called mini-QWERTY keyboards, ∼50-key keyboards that could slide or flip from the

phone. However, the academic community seemed tohave found it little interesting, only a fewpapers

*In the frequency list used, jazz is at the 3887th place, lazy is not present
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Table 1.1: Key ambiguity in the sentence “TheQuick Brown Fox JumpedOver The Lazy Dog”

Key

8 4 3 7 8 4 2 5 2 7 6 9 6 3 6 9 5 8 6 7 7 6 8 3 7 8 4 3 5 2 9 9 3 6 4

Primary word

t h e q u i c k b r o w n f o x j u m p s o v e r t h e j a z z d o g

Secondary word

t i e s t i c k c r o w n l u m p s m u d s t i e l a z y f o g

discuss the virtue of a qwerty keyboard on cellphones (e.g. Clarkson et al., 2005; Clawson et al., 2008;

Starner, 2004). Mini-keyboards, partial qwerty-keyboards and other hardware input methods were

introduced Garay-Vitoria and Abascal (2005); Mackenzie and Soukoreff (2002), but especially virtual

keyboards introduced a new high in text prediction research.

The computing power of smart-phones and the introduction of touch screens, allowed for new

software keyboards to be devised. These keyboards, included inAndroid, iOS8 and apps like SwiftKey

and Swype, include text predictionmechanisms. Text prediction, however, has not been implemented

in the same level in word processing applications such asMicrosoftWord andGoogle Docs as it has in

mobile phones and special needs devices.

1.2 On Entropy and Block Size

Text prediction tends to use n-grams as a basis. N-grams are defined by block-size: each n in

an n-gram has a specific size. Early research in this field, such as that of Shannon (1951), uses characters

as the block-size. Thus each n is a single character; 1-gram or unigrams is 1 character, 2-grams (bigrams,

n = 2) and 3-grams (trigrams, n = 3) are a sequence of two respectively three characters (see also Biskri

& Delisle, 2002). Later research uses a single word as block size (Garay-Vitoria & Abascal, 2005).
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In Shannon’s research on the variations of the English language, it is shown that the entropy of

the English language equals 8 characters, finding that characters in the English language has an upper

limit entropy of 1.3 bits. However, other work suggests that the entropy is more in the line around

1.76 bits (Brown et al., 1992) whereas “the best computer algorithms whose prediction is based on

sophisticated statistical methods reach entropies of ≈ 22.4 bits” (Schürmann & Grassberger, 1996,

p. 1). These entropy measures are taken into account in text predicting and show the expected noise

when predicting text.

This research focuses on using a complete word as block-size. As Garay-Vitoria and Abascal (2005)

conclude in their overview of current text prediction systems developed and in use: “the word is usu-

ally selected due to its optimum relationship between hit ratio, keystroke saving and cognitive cost on

the part of users” (p.191).

Interestingly, the entropy increases with each subsequent sentence within a paragraph Genzel and

Charniak (2002). It influences which words are used (lexical) and how words are used (non-lexical).

Jaeger (2010) discusses this principle, and the results of Genzel and Charniak (2002) in detail, stating

that “If the real per-word entropy based on all preceding context, world knowledge, et cetera is con-

stant throughout discourse, estimates of a priori per-word entropy that ignore inter-sentential infor-

mation should increase throughout discourse. Intuitively, words with a priori high information […]

should tend to occur later in the discourse than words with low information. The reasoning behind

this prediction is that, on average, more preceding context makes words more predictable, thereby

decreasing their information-content” (p. 24).

The default keyboards of smart-phones (Android, iOS and Windows Phone 8 and others) and

third party apps such as Swype and Swiftkey perform a text prediction with a block-size of a word. By

matching the typed letters to the nearest word, as described in (Larson, 2008), the software estimates

which word you’re likely to type and corrects any mistakes. More extensive implementations use ma-

chine learning to understand the context of the words in the sentence and utilize that information to

better estimate the word the user is typing. However, to the author’s knowledge, entropy constancy
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such as shown by Genzel and Charniak (2002) is not taken into account in these applications.

1.3 Research Trigger

As shown in section 1.1, auto-correction is employed by text processors, and text prediction is

employed by most smart-phones. Text processors, such as Microsoft Word and Google Docs do not

employ text prediction. This disparity in features between text processors and mobile phones is the

research trigger of this thesis. The author can only wonder why text processing does not implement

the text prediction so commonly found in mobile phones. To keep both modes of operation aligned,

mobile phones and desktop, this research uses the same block-size as mobile text prediction utilizes.

Yet, to keep the contrast between smart-phones and desktop word-processing clear, this research will

only employ physical keyboards as part of its investigation.

This thesis implements text prediction in a web-based text processing application. As described

in more detail in the following sections, the current literature focuses primarily on mobile implemen-

tations and special needs devices. It researches the influencing factors in word prediction usage and

implementation in text-processing.

This thesis is setup as follows: theRelated Literature&Research question section, Page 8, discusses

the related literature and the research questions to fill the gaps in the current literature. Starting on

page 17, theResearchApproach is discussed, including the dataset (page 18), sampling (page 19), the ex-

periment setup (page 21) and the research model (page 37). This is followed by the Analysis &Results

chapter on page 39, which includes the answers to the research questions. This thesis in concluded by

the Conclusion chapter at page 50. The final chapter, Discussion, discusses the implications of these

results and limitations of this work.
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2
Related literature & Research question

This chapter provides an overview of recent research in evaluating keyboards. Both hardware

and software keyboards are discussed. The current literature roughly classifies software keyboards in

two categories: those for general purpose as found on smart-phones and those for specific cases, as an

aid in virtual reality for “user[s] who, because of their impairment, cannot control or operate in the

real world but can do so in a virtual one” Jones (1998, p. 45). This overview will pertain to keyboards

for general purposes.
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Annet et al. have developed the RS theory, stating that handedness influences how the brain func-

tions, including reading, writing and typing, but seems not to influence texting (Annett, 1975, 1985;

Bub & Lewine, 1988; Lavidor & Ellis, 2002). Mobile usage, on the other hand, is influenced by hand

preference (Arif, 2012; Song et al., 2011). Interestingly, gender influences texting as well (Lambert &

Hallett, 2009).

Keyboards layouts influence typing as well. Although the reason for QWERTY and AZERTY

layouts to be prevalent is due to historical adoption, not because they are the best layouts (Enguehard

& Naroua, 2008), research does show that QWERTY keyboards are the fastest, most accurate key

entry devices and they take the least cognitive effort Cerney et al. (2004); Curran et al. (2006).

Remarkably, how well can you type does not influence your memory of key positions on a key-

board; a study conducted by Liu et al. (2010) found that “skilled typists have poor explicit knowledge

of the spatial layout, despite their ability to make rapid keystrokes to specific key locations” (p 482).

Software keyboards differ not only physically from hardware keyboards. Allen et al. (2008) show

that the hardware keyboard of a blackberry phone has a significantly higher hit rate, and significantly

lowermiss rate than that of an iPhone,wherehit ratemeasures thepercentageof keys correctly touched.

These results are corroborated by Cerney et al. (2004) who show that speed of entry is the highest on

hardware keyboards, compared to on-screen keyboards, T9 and letter recognizer (handwriting detec-

tion on a pocket pc).

Furthermore, it shows that physical keyboards have the least cognitive effort, the highest level of

comfort and about equal accuracy as software keyboards. Contrary to these results, Anson et al. (2006)

describe that on-screen keyboards are quicker especially with the text prediction capabilities turned on

but realize the contradiction stating “word prediction […has not earlier] been found to increase typing

speed when using a standard keyboard […] that [does] not require the individual to look away from

the source document. This study differed from earlier work by combining word prediction […] with

input methods that included the need to look away from a source document” (Anson et al., 2006,

p. 152).
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Although true, the research does not provide an extensive statistical analysis of its results. Magnu-

son and Hunnicutt (2002) show that over the long-term (13 months) on-screen keyboards with text

completion are equal or faster than hardware keyboards. Text completion is also a key factor in the

study by Bérard and Niemeijer (2004), which show that predictions averaging at 10 words can be suc-

cessful in improving type speed and reducing effort by a factor of two, improving that to a factor of

three if the vocabulary is known.

For cognitive load, no single measure exists. As Chalmers (2003) describes in his literature review

of cognitive theory in Human-Computer Interaction (HCI), the measuring of cognitive functions

depends on the experiment. However, as Alves et al. (2008) detail, cognitive effort in writing can

effectively be measured by reaction time and pausing. Other related research measures effort as a re-

duction of spaces and punctuation (Bérard & Niemeijer, 2004), typing speed per word (Cerney et al.,

2004; Clawson et al., 2008; Silfverberg et al., 2000), and speed per keystroke (Magnuson&Hunnicutt,

2002).

2.1 Research Questions: Optimally implementing text prediction

As can be inferred from the literature discussed above, an optimal implementation of text predic-

tion would need a minimal cognitive load, which would ensure a higher text speed, and thus a more

efficient way of writing.

Furthermore, we know from the fields of usability and HCI that an effective user interface would

reduce the cognitive effort (see for example: Chalmers, 2003) and supports anoptimal implementation

of text prediction, as Bérard and Niemeijer (2004) show. It is for these reasons that the following

research question is formulated:

Research Question 1: Which User Interface Configuration Supports an Optimal Implementation of

Text Prediction in Physical Keyboard Supported Software?
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The optimal implementation of text prediction comprises of four facets: the amount of words

predicted, the user interface, the amount (or lack) of typing errors and the user interface configura-

tion. These facets are described in the hypotheses in the section 2.2. However, the amount of words

predicted is a special case. It influences the other facets:

• The more words predicted, the less typing errors can be made.

• The difference in the amount of words predicted directly influences the user interface and how

it displays these words.

• The more words predicted, and inserted, the faster a user can type

It is for this encompassing nature that a research question is devoted to the amount ofwords predicted.

2.1.1 Amount of words predicted

The concept of text prediction itself has only been researched in the narrowest definition

of text prediction, namely the prediction of the word that is being typed. The work by Bérard and

Niemeijer (2004) for example discusses 10 words, but those are 10 predictions of the word that is being

typed (e.g. a top 10 list). There is no literature showing the prediction of following words. This is in

the author’s opinion remarkable. Not only is there a limit in the amount ofmost commonusedwords,

asNation andWaring (1997) show there are idioms and expressions that occur often as a unit (and thus

a preset word order). Using n-grams, a system can extract which sentence andword orders occurmost

often, thus allowing for prediction of these word orders. Hypothetically, scanning resources can iden-

tify the style of the author and the style of the message outlet, which can be utilized in the prediction

of the word order. A likewise method is used in statistical translation Brown et al. (1991).

It is for this reason that the following sub-research question investigates the amount of words to

be predicted. The research assumes the amount of words predicted influences both the usability of

the application and the error rate. In the analysis, the correctness of the predicted words will be taken
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into account, as previous research (Bérard&Niemeijer, 2004, among others) has shown that cognitive

effort reduces when correctness of the predicted words increases.

Research Question 2: How does the amount of predicted words influence an optimal implementation?

The amount of words predicted is limited to five, including the prediction of the word being typed.

This limitation is set by the dataset in use. For a detailed description of the dataset, see section 7.1.

2.2 Hypotheses

In an effort to answer the here above mentioned research questions, hypotheses are defined.

These are categorized by two variables: type speed and error rate. The hypotheses related to type

speed test the influence of text prediction on a user’s type speed. The hypotheses related to the error

rate test the influence of text prediction on the amount of spelling errors a user makes while typing, or

the error rate if you will.

2.2.1 Type Speed influenced by the User Interface

Research performed by Tam and Wells (2009) describes the usage of a separate PDA’s which display

the predicted words on it. Results showed a decline in words per minute being typed, but an increase

in the accuracy. Bérard andNiemeijer (2004) showed that displaying up to 10 possible words increased

typing speed, and depending on the prediction method used Trnka et al. (2008) were able to increase

the communication rate with 1.56 words per minute over no prediction used. It thus shows that the

presentation of the words predicted influences the type speed.

Following this previous research the first hypothesis is stated as follows:

Hypothesis 1: The presentation of predicted words influences the type speed

In line with this work performed the assumption is that text prediction increases the type speed.

We thus formulate the hypothesis as:
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Hypothesis 10: μ1 − μ2 = 0

Hypothesis 11: μ1 − μ2 > 0

Where μ1 is the mean type speed of the control experiment and μ2 is the mean type speed of the

treatment experiment. The hypothesis is one-sided to express the assumption that prediction will

influence the type speed ina positive way: users will type faster with prediction.

Earlier work distinguishes four forms of user interfaces:

1. Box-below. A list of suggestions below theword being typed. The position of below is ambigu-

ous. In some implementations, the list of suggestions is at the bottomof thewindow (Adaptex,

2006; Crick Software, 2014). In this research the suggestions are placed below the word being

typed, as is more common (Don Johnston Inc., 2014; PRC, 2014). The implementation in the

experiment is displayed below in Figure 2.

2. Box-above. The list of predictions is listed above the word being typed (Microsoft, 2009). The

implementation in the experiment is displayed below in Figure 2.

3. Box–beside. The list of predictions is shown right next to the text being typed (A.I.type, 2011;

Penfriend, 2014). Figure 2 displays this.

4. Autofill. Instead of a box with multiple predictions, it automatically completes the sentence

in line. This is popularized by Google’s Instant search feature (Sullivan, 2011). Figure 2 below

displays this variation.

One other variation in current use is a floating, dragable window with the predictions (Microsoft,

2014). It is more versatile, the user can move it to any location. However, such a separate window

(or floating box) is difficult to implement and only found in one instance. Furthermore, it is a clear

deviation from the variations listed above and its usage brings along another variable: the position of

the box. It is therefore not used in this research.
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(a)Box-below (b)Box-above

(c)Box-beside

(d)Autofill

Figure 2.1: The four variations of user interfaces distinguished (as implemented in this thesis’ experiment)

2.2.2 Type Speed influenced by the Amount of Words Predicted

Trnka et al. (2008) show with their research that depending on the method used for text prediction

the type speed is influenced. Otten and Van Berkum (2008) show in their research that although

human language is a generative system, humans can anticipate thewords to come in a sentence. As they

state: “[one] can make intelligent guesses about the words they might soon encounter, based on the

message conveyed by the discourse so far” (p. 491). Furthermore, the author assumes that the amount

of predicted words will influence the cognitive effort on the basis that more words will provide more

items in the user interface and thus make it more difficult to use (as shown for example by: Gregor &

Dickinson, 2006).

The following hypothesis is therefore formulated as follows:

Hypothesis 2: The amount of predicted words influences the type speed

Like hypothesis 1, this hypothesis is one-sided, as there is an assumption that more words predicted
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will positively influence the speed of typing. After all, more predictionsmeans less typing. The formal

hypothesis is defined as follows:

Hypothesis 20: μ1 − μ2 = 0

Hypothesis 21: μ1 − μ2 > 0

Where μ1 is the mean type speed of the control and μ2 is the mean type speed of the treatment

experiment.

2.2.3 Spelling Errors Reduced by the Amount of Words Predicted

Likewise to hypothesis 2, the amount of predicted words might influence the error rate due to differ-

ences in the user interface. As Silfverberg et al. (2000) show, the accuracy is significantly influenced

by the input method. Trnka et al. (2008) showed that different methods of text prediction affect the

accuracy. Kane et al. (2008) showed with their TrueKeys application that the prediction of text, the

accuracy increases as users no longer have to type the full word. Instead they can select it, and the

application types the word for the user. It is therefore that hypothesis 3 tests whether the amount of

predicted words affects the accuracy, or error-rate.

Hypothesis 3: The amount of predicted words influences the error-rate

It is assumed that the more words are being predicted, the more can be selected and thus error-less

inserted by the application, decreasing the error-rate. It is for this assumption that the hypothesis are

formulated as:

Hypothesis 30: μ1 − μ2 = 0

Hypothesis 31: μ1 − μ2 > 0

Where μ1 is the mean error-rate of the control and μ2 is the mean error-rate of the treatment.
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2.2.4 Spelling Errors Reduced by the User Interface

Within usability, the effectiveness of use has been well researched, see e.g. (Hartson et al., 2001; Horn-

bæk & Law, 2007), although effectiveness is a term that differs per usability application. Effectiveness

is often mentioned next to the aesthetics of usability (Quinn&Tran, 2010) or satisfaction of use (Cal-

isir & Calisir, 2004; Frøkjær et al., 2000). What is aesthetically pleasing is often perceived as usable

(Hoffmann&Krauss, 2004; Tractinsky et al., 2000). The effectiveness of this experiment is the words

being typed, in a flawless manner. Many typing errors suggests an ineffective usability. The presen-

tation, or user interface configuration, of the predicted words can influence the effectiveness of the

experiment. For example, if the user interface is distracting, the amount of errors could go up as users

lose their concentration in typing. We therefore investigate if this holds true in this experiment.

Hypothesis 4: The presentation of predicted words influences the error-rate

There is no assumption that one interface performsbetter over the other, thus contrary to the earlier

formulated hypotheses, this hypothesis is double-sided.

Hypothesis 50: μ1− μ2 = 0

Hypothesis 51: μ1 − μ2 ̸= 0

Where μ1 is the mean error-rate of the control and μ2 is the mean error-rate of the treatment.

2.2.5 Overall goal and main assumption

To clarify the goal of the hypotheses, the best expected result could be formulated as the highest typing

speed and the least error-rate. This is also shown in the research model, section 3.7, page 37. The

assumption is that this happens at the highest amount of words predicted, as this would mean less

typing by the user and the prediction would obviate possible errors. Furthermore, prediction would

imply less typing, thus time, to write that word in the document.
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3
Research Approach

To answer the research questions and hypotheses described in chapter 2, a factorial experi-

ment is executed. The experiment is diagrammed below, and discussed in more detail in section 3.3.

A factorial experiment is deemed suitable as it allows for experimentswith a larger amountof factors

and levels, whilst not requiring a larger number of experimental units (Hinkelmann & Kempthorne,

2008).

This chapter is divided as follows: first we discuss the dataset underlying the experiment (section
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3.1), then we discuss the sampling of that dataset. On page 21, section 3.3 the experiment itself is dis-

cussed. This is followed by the section on text creation (page 35) and section 3.6 on page 37 on partici-

pant selection. Section 3.7 describes the research model underlying the experiment and this research.

3.1 The Dataset

In 2010,Googlereported in apaper published in Science that theydigitized 5,195,769books, about

four percent of all books ever published (Michel et al., 2011). From these digitized books, a corpus of

n-grams is created, containing over 500 billionwords including 361 billion English words. This corpus

is offered on-line for download, in the forms of 1- to 5-grams datasets.

In 2012, Google presented their updated dataset, now covering six percent of all books. In the

English dataset this amounts to 4,541,627 volumes and 468,491,999,592 raw tokens extracted, where a

token is a word, punctuation and other symbols as described by Lin et al. (2012). This dataset is the

basis of the dataset described in this thesis.

Thedata contains of tab-delimited text files, with each line then-gram, the year that n-gram is found

in published works, the total amount of times (match count) and the amount of unique works the

n-gram is found (volume count). For each year, a separate line is used. This results in the following

template:

Ngram year match_count volume_count

For a 1-gram this would be:

Analysis 1991 335 91

For a 5-gram this would be:

Analysis is often described as 1991 35 2

The n-grams extracted from the published works can bemultiple sentences long and can spanmul-

tiple pages. This dataset, totalling 1.68 Terabyte of compressed data at an estimated average compress-

ing rate of 90%, is used as the initial dataset. Since the uncompressed dataset is incredibly large (∼16.7
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Terabyte) it is sampled to become usable. Note that compression ratio and uncompressed size are es-

timated, since the workstation did not have enough available storage to decompress all files at once.

The average compression ratio and count the total size is estimated through a sample. Gunzip pro-

vides compression ratios for each file. A total of 28 files are decompressed (decompressed files totalling

2.2Tb), and their respective compression ratios are averaged and from that the total dataset size is cal-

culated.

This complete dataset is sampled and used in the experiment. The next section details the sampling

method used.

3.2 Sampling

The herein-above mentioned dataset is sampled to cope with the large size. We sample the 5000

most frequent used words for the following reasons: 5000 words totals to an amount of data that is

easier to cope with than the full 16.7 Terabyte of worth of data. It removes unused, archaic words.

This, as the dataset includes books from the 19th century and before. It removes non-existent words

and unneeded tokens present in the dataset such as identifiers for adjectives and nouns (denoted as

_ADJ_ and _NOUN_ respectively in the dataset) These 5000words are known be any proficient English

speaker, and thus decreases the chance of a bias in the experiments.

This latter point is of importance. Althoughmany academics have tried to estimate the vocabulary

size of native speakers, going back as early as 1875 (Holden, 1875), it has been incredibly difficult to

determine and many attempts are flawed (Nation, 1993). Although the goal of our sampling, nor

this research, is to test the vocabulary of the participants, it is important to keep it in perspective as it

might result in a bias in the results. The amount of 5000 words is on the safe side. The vocabulary of

a minimal high-school educated person is estimated between 10.000 and 75.000 words (D’Anna et al.,

1991). The sampling method described fits the best practices described by Nation (1993).

The list of 5000 words (the frequency list) is obtained from wordfrequency.info, a website created
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by Mark Davies, a professor of Linguistics at the Brigham Young University. The list is based on the

450 million word corpus from the Corpus of Contemporary American English (COCA), a modern

corpus (updated summer 2012) and its earliest text data go back no further than 1990. This results in

a modern and complete frequency list.

The sampling method consists of four steps:

• Remove doubles from the frequency list

• Remove all n-grams that consist of words not present in the frequency list

• Remove all n-grams older than 1990

• Remove all extraneous data from the dataset (such as volume count and tokens)

The complete sampling method is also depicted in figure 3.1.

Figure 3.1: A diagram of the samplingmethod used. Modeling approach based on (van derWeerd & Brinkkemper,

2008).

This sampling results in a dataset of 68Gb. The dataset is then inserted in a database. The match

count from the dataset (the amount of times a specific n-gram is found in the dataset) is used to cal-

culate the probability of an n-gram occurring. This follows the standard independent probability

20



formula P(A B). Each word in an n-gram is perceived as its own probability term of that word occur-

ring after the previous words in that n-gram. See Appendix C: Technical Details of Sampling formore

detail.

3.3 Experiment Setup

The experiment executed is an online accessible, within-subjects factorial experiment. The de-

scription for each experiment is available in two languages, Dutch and English to accommodate for a

large group of target participants.

Participants are recruited through the personal and professional network of the authors and uses

a snowball method in combination with online social networks (Browne, 2005) to expand its reach.

The participant selection is detailed in section 7.6.

The experiment design is selected on the basis of the following criteria:

• Amount of participants needed

• Time needed to conduct the experiment

• Is a longitudinal experiment preferred

• Is within or between subjects preferred

• What factors and levels are tested

A single experiment design was chosen instead of a staged experiment design as a large participant

base is required for positive results. In a staged model, it is required to retain the large participant

turnout over the multiple stages, which is difficult.

Although a staged-experiment designwould allow for smaller stages, and thus less time required per

individual experiment, participant retention and the ability to perform within-subjects analysis were

factors to choose for a slightly larger single experiment. Coherent with the research approach, this
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setup allows for multiple, independent experiments if more rounds are needed to achieve a successful

evaluation.

In order to evaluate the optimal implementation of text prediction, a negative control and a treat-

ment need to be in place. Although there are arguably various ways to implement such an experiment

this research follows the method set forth by Trnka et al. (2008). They describe that retyping of text

is the best method of research. If participants need to type their own free form text, this would influ-

ence cognitive effort. Furthermore, comparing free form text between participants is difficult without

imposing rules that might increase cognitive effort and create a bias.

Another possibility is to provide an oral version of a text that participants need to transcribe. Aside

from the difficulty of providing audio in a robust cross-platform manner, this would increase the dif-

ficulty in preventing bias resulting from participants more trained in transcribing, and participants

better able to listen and type in parallel, including cognitive bias.

Therefore, the experiment features two texts that participants need to retype. The text creation is

explained in section 3.5.

Figure 3.2: A diagram of the experiment setup. Modeling approach based on (van derWeerd & Brinkkemper, 2008)

The experiment is conducted online, in uncontrolled environments. To allow for as many plat-
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forms as possible, the system is tested for cross-platform support so that no browser or operating sys-

tem can influence the experiment. Details of the system are described in section 3.4.

Randomization is performedby the apt descriptionofAtkinson andBailey (2001): “In a completely

randomized design the treatments, with their given replications, are first assigned to the experimental

units systematically, and then a permutation is chosen at random from the n! permutations of the

experimental units” (p. 57). In other words, participants who enter the experiment are given their ran-

dom permutation of levels of both factors: one of four user interfaces and one to five words predicted.

Neither system nor author is aware who is given which permutation. Obviously, random in this case

is computer simulated random.

The experiment itself exists of six steps:

• Survey I

• Instructions for control experiment

• Control experiment

• Instructions for treatment

• Treatment

• Survey II

These steps are depicted in figure 3.2. Each step is detailed in the sections below.

3.3.1 Step 1: Survey I

The first survey consists of questions to understand the user. The answers are used to under-

stand the responses, perform a qualitative analysis and to see how the results fit with earlier research

conducted, as explained in chapter 2. The questions regard the following topics:

• Handedness: left or right. Handedness might influence the results (Arif, 2012; Lambert &

Hallett, 2009)

23



• Keyboard-layout: QWERTY,AZERTY,QWERTZor other. Keyboard layoutmight provide

a bias in the results due to different character location (Clarkson et al., 2005; Clawson et al.,

2008)

• Perceived type skill: five point Likert scale, including an option “no answer”. Type skill influ-

ences type speed and cognitive effort (Anson et al., 2006; Liu et al., 2010)

• Level of English: five point Likert scale, including an option “no answer”. Participants are

likely to have English as a native tongue or a second language, which possibly influence cogni-

tive effort.

• Age: open month and year fields. Age possibly influences cognitive effort due to computer

literacy.

• Sex: male or female. Could be an influencing factor (Lambert & Hallett, 2009)

• Email: Although the research is anonymous, the question regarding the participants email ad-

dress is used to assure each participant only participates once and will not receive any reminder

emails concerning the experiment.

Due to the recent debate on gender-issues in web applications (Oremus, 2014), although part of a

much larger research area (see for example Harrison et al. (2012) for an overview, and Mäkinen and

Raisamo (2008) for an application in information technology) the term gender is avoided for the term

sex as it is more definite. XKCD, after a large investigation on color in gender recommends using “Do

youhave a YChromosome”which results in an absolute answer, it also needs an explanation regarding

the Y chromosome (XKCD, 2010).

3.3.2 Step 2: Instructions for control experiment

This step provides the instructions to the control experiment. It describes that the next step

includes the retyping of a small text. A likewise text-box and typing area is presented to familiarize

participants with the layout of the control experiment.
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The instructions mention that not getting distracted is essential, and that if needed the experiment

can be paused by clicking next to the text field. This to minimize the timing of the experiment to get

influenced by distractions.

The following is also explicitly mentioned:

• Type in normal speed. It’s not a race.

• The participant does not need to understand the text. This because some participants might

not be fluent in English and might get scared or confused.

• Typing errors (typos) do not need to be corrected.

Typing corrections are, like any other character, caught and stored by the system. The mentioning

of typing errors is primarily to prevent participants to spell check their text after they have typed it.

If the participant has read the instructions, and optionally typed some text in the text area, it can

continue to the next step by a clear, designated button.

3.3.3 Step 3: Control-Experiment

The negative control-experiment features a text that participants need to retype. It features a

text that is equal to each participant, and a text field in which the user has to retype the text. Since it is

a negative control experiment, no text prediction and auto-correction systems are used. After the user

is done typing, he or she can click the button to continue to the next step.

3.3.4 Step 4: Instructions for treatment

The instruction forthetreatment step prepares the participant for the treatment experiment

step. It provides the same introduction and explicitly mentioned guidelines as in the instructions for

the control-experiment step as well as instructions on how the prediction system works.
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However, it now includes a modified text field with the random designated levels of both factors

applied to it. This allows the participant to try out the text prediction in the random variety assigned

to him. The rest of the interface and system is equal to the control experiment.

3.3.5 Step 5: Treatment Experiment

Equal to step 3, the participant has to retype a text presented. The text is different from the text in

Step 3, but is very alike in statistical terms. These texts are detailed in section 3.5.

Likewise to Step 4, the randomly selected levels of both factors are applied to the text prediction

applied in the text field. This assures that the graphical user interface for the text prediction and the

amount of words predicted are equal between Step 4 and Step 5. Between each participant, the text

to retype is equal in this step.

Once the participant has retyped the text, he or she can press the next step button to continue.

3.3.6 Step 6: Survey II

The last step includes a small survey to gather qualitative information from the participant. This

information is used to understand the results from the experiment and gather feedback concerning

user experience and cognitive effort.

The questions cover the following:

• overall experience

• speed of the text prediction

• accuracy of the text prediction

• perceived improvement in typing

• perceived speed in typing

• Space for comments and experience
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The results from this step might give insight in the overall results from the experiment. None of

the fields is mandatory in this step.

After completing this step, the participant is guided to a final screen which shows some simple

statistics on the words per minute, time spend on the experiment, and the difference between the

participant and the average. This step also allows for the participant to share the experiment on social

media.

3.4 The experiment system

Great care is put in the development of the underlying system that serves the experiment to each

participant. As the participants access the experiment and its underlying system online, there is no

control over the platform or environment the participants use. The system is therefore developed as

robust as possible to encompass many platforms. This section describes the system, its design from a

functional and technical perspective.

3.4.1 General Architecture

A text prediction system is developed as part of the experiment. There are several ways text

prediction is performed. Larson (2008) describes a way of word-shape recognition, which creates a

virtual line or shape around each word and compares these shapes in order to predict text. Another

way of performing text prediction is by using n-grams to analyze the most used word combinations,

and using those for the prediction order. The latter method is used in the research described here.

Although a variety of options are available, a web-based application is deemed most suitable. Al-

though one could argue that aMicrosoftWord plug-inwould be the best option, as users have presum-

ably experience using Word, since Microsoft Office currently dominates the market, there are many

issues with developing such a plug-in and receiving the data from it. There is a hurdle imposed as the
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participant needs to install the plug-in, approve the sending and receiving of data through the plug-in

and issues concerning false-positives from anti-virus software and firewalls might occur.

A web application on the other hand allows for easy monitoring, logging and reporting. It easily

integrates with uncontrolled environments (no hassle with installing software) and the text exercises

can be integratedwith the surveys. There’s no hurdle pertaining to the installation of software and the

logging and transmission of data will not be interfered by anti-virus or firewall activities.

Figure 3.3: The server-database architecture.

The software architecture is based on a server-sided JavaScript (NodeJS) architecture. For the front-

end text-prediction service and text processing processes. MongoDB is used as a datastore of the re-

sults, for its non-relational structure and REST-interface. Neo4J is used as the persistent storage for

the dataset as described in section 3.4.8. See figure 3.3 for an overview of this architecture. A double

database architecture is used as Neo4J is a graph database, which are not suited for storing flat data

such as the results from this experiment. Next to that, this decreases the load on Neo4J, as writes are

very expensive, and allows for optimum performance whenever users are executing the experiment in

parallel.

The system consists of four web pages. The first is the home page, where potential participants

enter. Here a very small introduction is given to the experiment, and unsupported systems are blocked

from entering the experiment. Figure 10 shows the setup of the website.

From the homepage, there are links to the privacy clause, and an information page with more in-
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Figure 3.4: The application architecture of the online experiment.

formation about the experiment, the authors of the experiment and the university at which the exper-

iment is executed. The homepage is also the entrance towards the actual experiment.

Although the privacy and information page are bilingual, the experiment is not. The homepage

has different buttons for the experiment in a different language (either Dutch or English).

The experiment itself consists of separate pages for each step of the experiment, as outlined in sec-

tion 3.3. After the experiment is completed (step 6), the participant is guided to an additional page

where he can see descriptive statistics on the time it took him to participate in the experiment, words

per minute typed and the deviation from the average participant. There is also the ability to share the

experiment through social media and a button to return back to home.

A series of design decisions is made to take some control over the participants. These are outlined

below

3.4.2 Cross-platform accessibility

Due to the nature of the experiment, browsers older than 2010 are excluded from participation.

These browsers lack features regarding AJAX and precise timing. Participants using those browsers

(e.g. Internet Explorer 9) receive a message and the entry to the experiment is blocked. Although a

potential large group of participants might still use these older browsers, especially since Internet Ex-

plorer 9 is the latest version shippedwithWindowsXPwhich has still not been eradicated from the IT
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landscape, the problems concerning the lack of features are too large to work around. Other browsers,

such as the old yet younger Internet Explorer 10 and Safari 6 and 7, are neither feature complete,

but workarounds (so-called polyfills and fallbacks) are implemented to allow participation. These

workarounds, especially regarding timing, diminish the accuracy of the timing of the steps in the ex-

periment, but considering the large potential group of participants running Internet Explorer 10 and

Safari this is a trade-off that needs to be made in order to secure enough participants.

The system is tested on Ubuntu, Mac OS X Lion and Windows 7, running a combination of the

browsers Chrome, Firefox and Internet Explorer (only onWindows) on 10 different computers. After

all the problems with proper usage of the experiment are solved, the experiment is opened for usage

of the participants. This assured that technical problems did not influence the results.

3.4.3 Mobile devices

Since this research focuses on hardware keyboards, mobile devices are blocked from the ex-

periment. A friendly message notifies those users and the entry to the experiment is blocked. In the

odd case a participant uses a hybrid device, which features a hardware keyboard, there is an option to

deviate the blockade and participate in the experiment.

3.4.4 Copy-paste prevention

In order to prevent “cheating” of the experiment, the system has protection from copy-paste

actions, and allows only the typing of characters and no shortcuts such as [ctrl]+[c] to copy. The

right-mouse is disabled on the experiment pages. This prevents all possible methods of copy-pasting

text during the experiment. Although participants can still disable JavaScript (which in turn disables

all the copy-paste protections) this would also disable the storing of experiment results, preventing

them from being entered in the database.
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3.4.5 Recording and storage of data

Atthecontrolandtreatment experiment, each keystroke is recorded and time stamped. From

this, the typing speed, the error rate and other statistics can be calculated. This fine-tuned recording of

each character also allows for discovery of large pauses between characters being typed. These record-

ings are being stored in a robust manner. As long as the participant is executing the experiment, the

recordings are stored in the browsers LocalStorage, or if an older browser is used in a cookie. After step

6 is completed, this data is then transferred from the browser into a remote database. This method

allows for participants that might lose internet access to continue with the experiment without losing

data. This might happen because they are on the move or on a public wireless connection.

3.4.6 Time

The experiment is designed to take no longer than 18 minutes, with a 12.5 minutes average. A

relative short experiment lowers the barrier of entry and allows for participation in a coffee break or

other short break from regular office activities.

3.4.7 Server Response Time

In order tominimize the time for predictions to appear in the user interface, latency is reduced to

a bare minimum. Through a series of tests, the average response time is established at 21.8ms, from

request by a participant to results returned. Testing allowed for a robust system that can handle sig-

nificant increase in traffic. Although the experiment saw a rise of 1170% in server requests from partic-

ipants, the amount of response time increased with only 1.83% to 22.2ms.

This minimal, stable response time from the server negates a bias in the results from overloaded

servers. See Appendix E: Server Response Time Statistics on page 74 for more detail.
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3.4.8 Persistent Data Storage

The dataset as described in section 3.1, is stored in Neo4j, a graph database. Graph databases,

contrary to relational databases, store data as nodes in a graph. This fits the data used in the experiment

very well. Each n-gram can be visualized as a path, where each word in the n-gram is a node.

Neo4j allows nodes to have properties, this feature is used to identify nodes and their parameters.

The following properties are added to each node in the dataset:

• NID: a unique integral identifier for internal use.

• Gram: the position of the node in the n-gram, ranging from 1 to 5.

• Word: the word of the gram/node.

• Rank: the absolute occurrence of the word, limited to that n-gram. For example, the 2-gram

node “by” has rank 24. This means that in the dataset the word “by” occurred 24 times in an

n-gram where the 1-gram is “a”.

• Probability: the probability of a node occurring following a designated path. Following the

example set forth above for the 2-gram node “by”, the probability is 0.0388294.

Rank and probability are both stored, as rank allows for easy sorting on integers within a certain n-

gram, whereas probability is needed to calculate the probability of a path.

The total dataset of 68 Gb results in 172.299.644 nodes with a combined 344.502.622 properties

and 172.391.219 edges stored in the database.

3.4.9 Prediction Engine

Thetextprediction in the experiment is setup following the random levels assigned to each factor

in the experiment. We will only discuss the factor number of words predicted here.
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As slow performance will influence the user experience, and therefore the results, a fast server is

required to provide with enough performance. As the technical aspects of building a text prediction

system is not part of this thesis, the application will not useMarkov blankets and other low-level com-

puter science semantics to find the correct matches. Instead, it will implement a series of trees, each

having their own computed probability of occurrence. The sibling nodes on each tree represent an

n-gram. For each n-gram dataset (1 to 4-gram) separate trees will be build. See figure 3.5 for an example

of such a tree.

Figure 3.5: a representation of a 3-gram tree, showing a tree-id (#001) and the probabilities of each node to be ac-
cessed.

At the beginning of each sentence, indicated by a period, the user types a first letter. From that mo-

ment on, all root nodes at the trees are scanned, by first letter, and ranked by the probability attached

to each node. These words are then presented to the user. Depending on the amount of n-grams the

system provides, upcoming words, selected by traversal down the tree, are selected by their probabili-

ties. If the end of a tree is reached, the word is searched for as a root node, and the prediction continue

from thereon.

If oneword is predicted (level equals one), the text prediction only predicts theword the participant

is currently typing. At punctuation or a space the prediction starts over. The prediction in this case is
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a lookup to all 1-gram nodes in the database. It uses the probability properties of each node to list the

five most probable words being typed. With each character being typed, a new lookup is performed,

filtering the words on the matching first characters.

If more than one word is predicted, the same method as for one word is used, however, for the five

most probable first words, the path is continued and the five most probable words are selected. If the

first word is not matched to the word that is being typed, that word is used as the 1-gram its path is

followed selecting the best five following words. The following example explains.

Let’s assume the random assigned level is three. This means that three words are being predicted by

the system, including the word being typed. As the first character is typed, a lookup in the database

is performed and matches the five most probable words that are being typed, all starting with the

first character being typed. Five is chosen as the software that currently implements text prediction,

such as described in sections 3 and 4, display at a maximum 5 words. Then, for each word matched,

five 2-grams are matched with the highest probability, and for each of those, the five most probable

3-grams are being matched. This results in a total selection of 53 paths. For each path, the combined

probability is calculated (P(1−gram)×P(2−gram)×P(3−gram)), and the five highest probabilities

are returned. Figure 3.6 depicts a network view the lookups performed.

This method allows for high server response rates, as the lookups through the database are now

confined to a relevant subset of the total network. Since the participant only needs to see the fivemost

probable n-grams, searching through the whole graph is a wasteful effort.

This method assures that the amount of n-grams defined by the randomly selected level is always

predicted. Even if, following the example above, the first two words do not match, those mismatched

but typedwords are then used as basis for the lookup for the thirdword. This allows to test if a certain

level of amount of words predicted works or not. A large amount of mismatches will show in more

time spend typing and possibly more type errors.

Appendix A: System (Pseudo-)code (on page 63) has a code description of the above detailed pre-

diction engine.
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Figure 3.6: An example of the network of lookups performed

The prediction gets inserted when the tab or return-button is pressed, the right-arrow is pressed or

double space-bar. The tab-button is a prominent button in integrated development environments,

the return-button is used by autofill systems such as Google’s search bar, and double space-bar is used

by the auto-correction system on Mac OS X. Navigating through the five predictions can be done by

mouse, or by the down-arrow keys. This makes the right arrow-key intuitive for insertion.

3.5 Text creation

The experiment features three different texts: the example text which is equal in both instruc-

tion steps, the text to be retyped in the control experiment and a text to-be retype in the treatment.

All texts use solely words present in the frequency list.

The example text is very short:

“there is no doubt that this book is available from a store in the mall.”

This is for a couple of reasons: during test-rounds, participants are found to be completely typing
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the example text, even in the control experiment. This increased the time to complete the experiment

without adding value to the experiment results. This text works very well with the prediction mech-

anism. An earlier version of the example text had a few mismatches with the system. This caused

confusion with the participants testing the experiment. This text has been drafted to have very few

to no prediction mismatches. Especially if the amount of words predicted is high, this text has no

mismatches, thereby showing very well how the system works.

The texts used in the experiment steps are unique fromone another. These texts are customdrafted

to prevent any bias from participants who otherwise might be familiar with the text or the topic at

hand. Those participants might need less time or cognitive effort to retype the text. Letting partici-

pants type the same text twice would incur a bias the second time, where participants might be able

to retype the text faster as they are already familiar with it. Although randomly switching the order

of control and treatment might negate this bias, two separate texts are chosen to negate the bias. The

two separate texts are different, but certain aspects alike.

• The amount of words differs by two, the text for the control has 130 words and the text for the

treatment consists of 128 words.

• Both texts consist of 18 complex words (words with more than three syllables).

• Both texts have 198 syllables, where the control text has on average 1.52 syllables per word, the

treatment text averages 1.55 syllables per word.

• Both texts have 5.1 characters per word.

• Sentence length is nearly equal, for the control text 14.44 words per sentence on average, for

the treatment text 14.22 words per sentence.

• Flesch reading ease score (Flesch, 1948) are nearly equal at 63.3 and 61.5

• The automated readability index (Smith & Senter, 1967) is equal at 9.7

• Flesch-Kincaid grade level are nearly equal at 8 and 8.2 (Kincaid et al., 1975)

• Coleman-liau index (Coleman&Liau, 1975) andGunning’s Fog index (Gunning, 1969) are for

both texts equal at respectively 12.1 and 11.3. Likewise for the SMOG index (McLaughlin, 1969):
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10.7

• The texts use a nearly equal words, 12.5% difference in word choice

As once can see, although the texts differ, the readability indices and the word selection are essentially

the same. Appendix F: ExperimentTexts (page 64) has the full texts used in the experiment. Appendix

F:WordOccurrenceAnalysis (page 77) describes a detailed analysis on thewordoccurrence in the texts.

3.6 Participant selection

Initial participant selection uses direct emails to personal and professional networks of the

authors. Furthermore, invitations to participate are posted on both twitter and Facebook. From there

on, a snowball method is utilized to gather more participants. In the final step of the experiment, the

ability is provided to invite others to the experiment through Facebook, twitter and LinkedIn. The

final step features some descriptive statistics to entice the participants to invite others and compare

these. The authors engaged in discussions on Facebook to allure the network to participate as well. A

reminder email is send to those who received a direct email, but did not participate in the experiment

within one week. There is no further contact with participants. Once they enter the experiment, they

are assigned randomly the factors without the authors or the system being aware which participant is

who. This assures a double blind process.

3.7 Research model

The experiment can be modeled in a research model. The research model is relatively straight-

forward, as a series of dependent variables test the optimal word implementation, described by the

error-rate and typing speed. The error-rate and typing speed are measured per state. A state can be
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any combination of the number of words predicted and a variation in the user interface. See figure 6

for the research model.

Figure 3.7: The researchmodel showing the dependent variables influencing “optimal word prediction” as defined by

the independent variables “Error Rate” and “Typing Speed” (based on: Verschuren &Hartog, 2005).

The variables tested are displayed in table 3.1. The User interface variations are selected from the

literature. These contain the following:

• Prediction in line with the text being typed

• A select-box under the text being typed

• A select-box of predictions above the text being typed

• A vertical list of predictions next to the text being typed

NB.The two factors and their respective levels in the experiment are equal to the independent variables

described in this section.

Table 3.1: Variables measured in Experiment step 2 & 4

Independent # of Words predicted UI Variations

0 – 4 words 4 variations

Dependent Error Rate Speed

number of misspelled words in milliseconds
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4
Analysis & Results

This chapter details the analysis performed on the data returned from the experiment, and the

results from that analysis. The chapter starts with a description of the participants (section 4.1), test

rounds that have been executed (section 4.2 on page 40), outlier analysis (section 4.3, page 41), and the

analysis of the response data including results (sections 4.4 to 4.7.)
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4.1 Participants

Toestimatetheamountofparticipantsneeded, a power analysis is performedusingG*Power

3.1 (Faul et al., 2009). This is done on forehand using power calculations as after-the-fact interpreta-

tions of power law analysis is fundamentally flawed (Hoenig & Heisey, 2001). An effect size of 0.5,

α of 0.05, df of 12* and a total number of groups of 20 resulted in an estimation of the total sample

size of at least 116 participants at an actual power of 0.952.

The total amount of participants is 153. Eight respondents have been removed from this set, these

were early participants that were used for testing the experiment. 145 participants remain from this.

The results from these participants are used for the analysis described below.

4.2 Test rounds

The experiment is extensively tested to assure proper cross-platform functioning. As de-

scribed in section 3.4.2, accessibility could not be maintained on certain platforms. With platforms

that are supported, various tests with various participants are executed. In total 8 participants ran a

total of 12 rounds to test the system. The testing consists of two stages: early testing and full walk-

through testing.

The early testers, five in total are invited through personal (digital) contact and selected from the

personal network of the author. They are given access to the system and afterwards a qualitative review

is held. This review is executed either in person or by digital means such as email. The review is an

open interview where the following questions are used as a guideline:

• How did the system work?

• Was did as expected?

*df is calculated as Total variations in words predicted-1×Total variations in UI -1
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• How was the speed and accuracy of the system?

• What did you think of the texts being used?

• How long did it take?

Through these sessions, it became clear that all participants retyped the full example text. This text

is subsequently shortened to the version described in section 3.5. It also became clear that the system

was still relatively slow for fast typing. This resulted in an advanced effort to reduce response times

from the system. For slower participants, it became clear that texts were too long. These are reduced

from on average 350 words to approximately 190. Some participants performed the round twice to

re-evaluate the system after changes are applied.

In the second roundof testing, participants are asked toperform the experimentwhile the author of

the system lookedwith them. Participants are asked to talk aloud onwhat they are doing and thinking.

After the experiment some short questions are asked by the author to gain a better explanation of their

decisions.

This round resulted inminor changes to the texts describing the steps and the texts that participants

retype, the survey itself and some alignment of elements in the web-pages. Design decisions such

as the lack of a back button, to coerce participants to not revise their steps, sliding of elements and

completeness of the description of the steps are affirmed during this step.

Since nomajor revisions or changes came to be during this round, the testing was finished after five

participants and no further round followed.

4.3 Outlier Analysis

Thedataset is analyzed for outliers. Two are removed. These participants did not fully complete

the experiment, making the data worthless. Further analysis to the duration times of both the control

and treatment showed some statistical outliers, shown in figure 4.1. The outliers in the control exper-
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iment do take a significant amount of time to complete it, but from the data it cannot be found that

they tampered with the experiment in any way. These are therefore left in.

(a)Control experiment (b) Treatment experiment

Figure 4.1: Outlier analysis of the participants. Y-axis in milliseconds.

This, however, is not the case for the treatment experiment. The data of six participants shows

that the duration of the treatment took less than twenty seconds to complete. Further inspection

shows that these participants did not fully complete the treatment experiment. On the other side of

the graph, the outliers take about 15 minutes to finish the treatment. Although this is very long, the

estimated total time of the experiment is 15minutes, further in-depth investigation shows no reason to

assume that the data is incomplete or has been tampered with. These outliers are left in. Participants

1 to 8, 18, 19, 22, 25, 26, 93, 107 and 146 have been removed.
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4.4 Analysis of the control and treatment: is prediction faster?

The first analysis performed is a within-subject T-test to test for the difference text prediction

makes, regardless of the UI selected or the amount of words predicted.

The results are bland. The tables below provide an overview of the analysis. Table 4.1 shows the

standard deviation and standard error of the mean. This is in milliseconds. A deviation of 144,120

thus equals 144 seconds. Needless to say, a large deviation.

Table 4.1: Descriptive statistics of the typing speed (control vs. treatment)

Mean N Std. Deviation Std. Error Mean

Control 190,186.28 137 94,625.443 8,084.397

Treatment 239,540.16 137 144,120.638 12,313.057

Table 4.2 shows the results of the T-test. It is clear that the results are significant. The difference

between the control (x̄ = 190) and treatment (x̄ = 240) is significant as indicated by the t-test,

t(136) = 5.91, p < .05. This indicates that the treatment, i.e. the prediction, slows participants

down contrary to speeding it up.

Table 4.2: Paired samples T-Test on typing speed (control vs. treatment)

95% Conf. Interval

Mean Std. Deviation Lower Upper t df Sig.

−49, 353.88 97, 828.81 −65, 882.49 −32, 825.27 −5, 905 136 .00

The next section investigates whether the certain combinations of factors is faster than the control

experiment.
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4.5 Analysis of the treatment: which prediction is faster?

As described in section 4.4, generally speaking the treatment is significantly slower. However,

the qualitative results show that there is reason for further investigation. The last survey, concerning

the comments on the experience of the prediction system are mixed.

A between-subjects factorial ANOVA is executed to understand the influence of the user interface

and the amountofwords predictedon the typing speed. Table 4.3 describes the factors and the amount

of cases per level.

Table 4.3: Descriptive analysis of the factorial ANOVA showing the factorsWords and UI

UI variation 1 2 3 4

N 36 28 32 41

Words 0 1 2 3 4

N 20 20 37 30 30

The main effect words, F(4, 0.184) = 0.946, p < .05, the amount of words predicted by the

system is insignificant on the duration time of the treatment experiment. The user interface, denoted

byUI,F(3, 1.308) = 0.275, p < .05, has an insignificant effect as well on the duration of the treatment

experiment. The interaction effect (P = .557) is not significant either, F(12, 0.892) = 0.557, p < 0.05.

These results lead to the conclusion that neither prediction scheme, regardless of the amount of

words or the user interface, has a significant effect on the typing speed, as measured by the duration of

the treatment experiment.
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Table 4.4: Between-subjects factorial ANOVA effects on typing speed over amount of words predicted and UI varia-

tion.

Source Type III SS2 df Mean Square F Sig.

Corrected Model 342808208461.621 19 18042537287.454 .851 .643

Intercept 6800692304182.072 1 6800692304182.072 320.579 .000

Words 15655427748.707 4 3913856937.177 .184 .946

UI 83222352969.489 3 27740784323.163 1.308 .275

Words× ui 227156848316.233 12 18929737359.686 .892 .557

4.6 Analysis of the control and treatment: reduces prediction type er-

rors?

A paired samples T-test is performed to investigate the difference text prediction offers to the

amount of type errors (typos) made by the participants. This test has no regard for the UI selected or

the amount of words predicted.

The results are surprising. Table 4.5 shows the mean of the amount of errors recorded. If a word

typed has an error (ie. Did not match the words in our frequency list) it is counted as one error. Mul-

tiple errors, such as a missing character and a wrong character in a word are only counted once. This

shows that with prediction, the amount of typing errors are almost double. The standard deviation is

almost equal (13.25 for the control, 14.55 for the treatment) showing that participants overall justmade

more errors, without a disparity in variance.

Table 4.6 below shows the results of the paired samples T-test. It is clear that the results are sig-

nificant. The difference between the control (x̄ = 19.7) and treatment (x̄ = 39.8) is unsurprisingly

significant as indicated by the Student’s T-test, t(136) = 12.64, p < .05. This indicates that the treat-

ment, i.e. the prediction, evokes more typing errors instead of reducing them.
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Table 4.5: Descriptive statistics on typing errors (control vs. treatment)

Mean N Std. Deviation Std. Error Mean

Control 19.66 137 13.254 1.132

Treatment 39.81 137 14.548 1.243

Table 4.6: Paired samples T-Test on typing errors (control vs. treatment)

95% Conf. Interval

Mean Std. Deviation Lower Upper t df Sig.

−20.146 18.655 −23.298 −16.994 −12.640 136 .00

4.7 Analysis of the treatment: which prediction influences the amount

of errors?

As described in section 4.6, generally speaking the treatment results show more typing errors

than those in the control. However, the qualitative results show that there is reason for further in-

vestigation. The last survey, concerning the comments on the experience of the prediction system are

mixed. Participants with less words predicted state that they found the prediction better working. We

therefore perform a deeper analysis,

A within-subjects factorial ANOVA is executed to understand the influence of the user interface

and the amount of words predicted on the amount of typing errors. Table 4.7 describes the factors

and the amount of cases per level.

The main effect words, F(4, 4.405) = 0.002, p < .05, the amount of words predicted by the

system is insignificant on the amount of type errors of the treatment experiment. The user interface,

denoted by UI, F(3, 2.712) = 0.048, p < .05, has an significant effect as well on the amount of type
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Table 4.7: Amount of cases per UI variation and amount of words predicted

UI variation 1 2 3 4

N 36 28 32 41

Words 0 1 2 3 4

N 20 20 37 30 30

errors of the treatment experiment. The interaction effect (P = .495) is not significant,F(12, 0.956) =

0.495, p < 0.05.

Table 4.8: Between-subjects Factorial ANOVA on typing errors over amount of words predicted and UI

Source Type III SS2 df Mean Square F Sig.

Corrected Model 7101.727 19 373.775 2.017 .012

Intercept 195594.222 1 195594.222 1055.397 .000

UI 1507.690 3 502.563 2.712 .048

Words 3265.340 4 816.335 4.405 .002

UI×Words 2126.402 12 177.200 .956 .495

These results show that although there is no interaction effect between the amount of words pre-

dicted and a certain user interface, there are significant differences between the amount of words pre-

dicted on the amount on typing errors produced, and likewise for the user interface. The following

analysis investigates these effects.

Table 4.9 shows the descriptives of the amount of errors produced by the user interface configu-

ration. As we can see, UI 2 and UI 4 produce the least amount of errors. See also Fig 1 and 2 for a

depicting of these configurations. Especially UI 4 is a particular good interface, it has not only the

least amount of errors produced, it also has the smallest standard error resulting in very consistent

results.
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Table 4.9: Descriptive statistics of typing errors over UI

95% Conf. Interval

UI Mean Std. Error Lower Upper

1 43.952 2.333 39.331 48.573

2 37.578 2.822 31.989 43.167

3 44.951 2.578 39.844 50.057

4 37.196 2.308 32.625 41.767

Table 4.10: Descriptive statistics of typing errors over amount of words predicted

95% Conf. Interval

Words Mean Std. Error Lower Upper

0 52.064 3.125 45.876 58.252

1 39.646 3.332 33.048 46.244

2 37.843 2.378 33.134 42.552

3 37.308 2.563 32.233 42.384

4 37.734 2.565 32.655 42.813
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Investigating the effect of the amount ofwords predicted on the typing errors, we see that the higher

amount of words predicted, the lower the amount of errors, in line with expectations. The difference

between auto-completing a word and predicting words is remarkable, a drop in average of 13 words

misspelled. The lowest amount of errors are typed when three words are predicted. The difference is

more or less half a word. Although our analysis offers no answer to why this setup generates the least

spelling errors, it might be because at three words the most predictions are correct.

It must be noted, however, that even though these results are significant, both the best case of the

user interface and amount of words predicted are not lower than the control experiment.
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5
Conclusion

From the analysis performed in chapter 4, specifically sections 4.4 to 4.7, conclusions can be

drawn. This chapter discusses these conclusions. Furthermore, this chapter answers the research ques-

tion set forth in chapter 3.

The main research question of this thesis set forth in chapter 2 is:

Research Question 1: Which User Interface Configuration Supports an Optimal Implementation of

Text Prediction in Physical Keyboard Supported Software?
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An optimal implementation is defined as an implementation of text prediction that provides the

fastest typing speed over the lowest error-rate. Error-rate is calculated as the total amount of typing

errors in an experiment text. The secondary research question is stated in chapter 2 as follows:

Research Question 2: How does the amount of predicted words influence an optimal implementation?

The amount of predictedwords is the greatest innovation of this research and has an all encompass-

ing influence on text prediction, as described in section 2.1.1.

To answer these research questions, several hypotheses are defined. The conclusions concerning

the affirmation of these hypotheses is discussed below. As detailed in chapter 2, the hypotheses are

split into two categories, those concerning the typing speed, and those concerning the error-rate. In

that respective other the hypotheses are detailed below.

5.1 Conclusions Regarding the Affected Type Speed

The first hypotheses states that:

Hypothesis 1: The presentation of predicted words influences the type speed

The null hypothesis is described as μ1−μ2 = 0 and the alternative as μ1−μ2 > 0, where μ1 is the

mean type speed in the control experiment and μ2 the type speed in the treatment experiment. Con-

cerning the results of the factorial ANOVA performed in section 4.4 the null hypothesis is affirmed.

There is no significant difference between the type speed in the control experiment and the treatment.

This entails that the user interface, neither of the four described in section 2.2.1, do not affect the

speed of which users type. To be clear, the results show that the results from control experiment are

faster than those of the treatment.

Regarding the effects of type speed on the amount of words predicted, the following hypothesis is

defined:

Hypothesis 2: The amount of predicted words influences the type speed
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The null hypothesis is described as μ1−μ2 = 0 and the alternative as μ1−μ2 > 0, where μ1 is the

mean type speed in the control experiment and μ2 the type speed in the treatment experiment. Con-

cerning the results of the factorial ANOVA performed in section 4.5, the null hypothesis is affirmed.

Likewise with hypothesis 1, there is no significant difference between the amount of words predicted.

As the T-test results show, see section 4.4, there is a large mean difference in favor of the control exper-

iment. This indicates that participants are slower to retype a text with text prediction than without,

contrary to hypothesis 2. The difference in the amount ofwords predicted has no significant influence.

5.2 Conclusions Regarding the Affected Error Rate

To understand the influence text prediction has on the error-rate, both the amount of words as theUI

are investigated. The following hypothesis is defined in section 2.2.3:

Hypothesis 3: The amount of predicted words influences the error-rate

The null hypothesis is described as μ1 − μ2 = 0 and the alternative as μ1 − μ2 > 0, where μ1 is

the mean amount of errors typed in the control experiment and μ2 the mean amount of type errors

in the treatment experiment. Concerning the results of the factorial ANOVA performed in section

4.7, the null hypothesis is affirmed. The amount of words predicted does influence the amount of

typing errors significantly, however, in the wrong direction. The results show that the more words

are predicted, the less spelling errors are made, with a maximum at 3 words predicted. However, the

results following the analysis performed in section 4.6 show that although the amount of words does

influence the amount of spelling errors, there is a significant difference between the control and the

treatment. This means that the control, no prediction, results in less errors.

To understand the effects of the user interface on the error-rate, the following hypothesis is defined

in section 2.2.4:

Hypothesis 6: The presentation of predicted words influences the error-rate
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The null hypothesis is described as μ1 − μ2 = 0 and the alternative as μ1 − μ2 ̸= 0, where μ1 is

the mean amount of errors typed in the control experiment and μ2 the mean amount of type errors

in the treatment experiment. The results following the Factorial ANOVA performed in section 4.7

show that there is a significant result between the different user interfaces, and that user interface 4

the least typing errors evokes. User interface 4 is the auto-fill configuration, and is arguably the least

distracting user interface. Furthermore, participants will be the most familiar with that interface as

Google among others uses it. That being said, on a case by case basis, the average amount of errors

typed in comparison with the control is still almost double (see section 4.6).

5.3 Answering the Research Questions

To answer the research questions, based on the results of the analysis performed, it can be concluded

that the best configuration is no words predicted, or in other words the control experiment. As de-

tailed in chapter 4, the results show that there is a significant difference between typing with and

without text prediction. Without text prediction is faster and produces less errors. Themean amount

to retype the text differs by nearly 50000 milliseconds, or 50 seconds. The amount of errors typed is

significantly different, with the control evoking almost half the amount of typing errors. This leads to

the conclusion that text prediction as implemented in this research is not an effective way to increase

type speed nor reduce typing errors.

Regarding the secondary research question “How does the amount of predicted words influence

an optimal implementation?”, the results are two-fold. On the one hand, the analysis shows that the

control experiment is faster and evokes less typing errors no matter how many words predicted. On

the other hand, there is a clear distinction between the amount of words predicted irrespective of the

control experiment results. The results show a hockey-stick line on the amount of type errors. The

line decreases from null words predicted to 3 words predicted, and then tips up again, albeit slightly.

This implies that three words predicted is the optimal amount of words that can be predicted by a text

prediction system.
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6
Discussion

Following the results of the analysis (chapter 4) and the conclusion described in chapter 5, this

chapter discusses the results in an effort to understand the conclusion and the implications of the

results.

The conclusion states that text prediction as used in this experiment is an unsuccessful means to

make typing faster or decrease the amount of typing errors.

The sixth step in the experiment consists of a survey for participants to describe their qualitative
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experience. These results will be used in section 6.1 to further analyze the conclusion set forth in chap-

ter 5. Section 6.2 discusses limitations of this research and section 6.3 summarizes the assumptions

made in this research and how it affects the conclusions. This chapter is concluded by the directions

for future research, section 6.4 on page 62.

6.1 Experience and Qualitative Results

The qualitative results provide the comments in line with the conclusion. There can be three

themes distilled: Speed, User Interface and Accuracy. These are detailed in the sections below.

6.1.1 System speed

Fromcommentsoneachpermutation of factor and level comments are pointed towards the speed

of the system. There is a strong correlation between the amount of words predicted, and the speed

of the prediction system. The more words, the slower the system. This results in two options, either

people are ignoring the prediction scheme as they feel it lags them in typing, or, and this seems to be

more prevalent people wait for the prediction to work.

Although it can be speculated that as users get adjusted to the system, they will find a strategy that

improves their typing speed and utilize the prediction only when it matches their speed, there is no

such result from the experiment or the qualitative analysis.

The speed is measured at an average of 22 msec per request. A server request is a prediction round:

sending request for prediction to returning the answer and displaying it to the participant. This is

particularly fast for a web application. Obviously, this average will be on the high end for one to two

word predictions, and on the low end when a full 5 words is being predicted. However, with typing

speeds more than 100 words per minute this might be too slow. This thus negatively influences the

typing speed.
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A possibility is to load the prediction dataset, or a part thereof, in memory. This would reduce

the requests significantly as no connection to a server needs to be made. However, with this dataset

at 68Gb, loading it in memory is unfeasible. This isn’t unsurmountable through, one could create a

dataset from scratch which would slowly build up in size, and only use the most common parts. Or

create a profile for certain topics in such a way that only relevant predictions are cached in thememory.

If we accompany that with only a prediction of one or twowords ahead, the dataset gets decimated. If

this is implemented on offline software, such asMicrosoftWord, the database can be hosted on a local

hard drive, which would further reduce the latency.

6.1.2 Accuracy of predictions

Thecomments fromthe survey clearly detail that the accuracy was atmoments terrible. Especially

when more than 2 words are predicted, that is, the word being typed and more than one additional

word, the predictions are rarely spot-on. This obviously influences the type speed and the user expe-

rience. Wrong predictions make users start to dismiss the system at all. Reading multiple predictions,

none of which match, is a time investment that does not pay itself back by the prediction. When the

threshold of time spend reading all the predictions does structurally not return an actual prediction

that can be inserted, that is time wasted giving participants a distrust in the system.

Adetailed analysis of the dataset shows that the chances of hitting a correct predictionbecome lower

the more words need to get predicted. This is rather obvious, the calculation of a correct prediction is

expressed as a cumulative probability:

P(Prediction) = P(W1)× P(W2) · · · × P(Wn)

Where W is the word being predicted and n signifies the position of that word in the predicted

sentence. This probability inherently becomes smaller the more words are added to the prediction,

thus diminishing the accuracy.

Furthermore, language canbe seen as a generative systemwith infinite possibilities. This perspective
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dictates that prediction of language and especially sentences is impossible due to the flexible nature of

sentence construction. Human language can be made up on the flow, as long as it pertains to the

grammar rules of such a language. This perspective is a very bleak view on text prediction in general.

Yet, systems such as SwiftKey on android do work and have millions of avid users.

Looking at cognitive effort, it is very likely that the best user interface is the autofill configuration.

It only provides one prediction, which minimizes the time scanning the prediction if it is correct or

not. Especially regarding the fact that the system in the treatment is not very accurate.

Accuracy can be improved by implementing machine learning. By scanning for words that a user

actually types, and the order in which a user uses words the accuracy can be greatly improved. It is

used by themajority of the auto-completion software packages. Especially if profiles are used to define

word and sentence usage in distinct settings, the accuracy can be greatly improved. Language usage is

different when a user types a formal letter versus a chat-session on WhatsApp or Facebook.

6.1.3 User interface and deviations of the interface

The results from the qualitative survey denote a few issues regarding the interface.

First of all, on certain configurations, although unclear on which exact configuration, the box-

above has an error inwhich itmoves continuously further to the top of the screenwhile the participant

types. This creates a scene inwhich the user at certainmoment in time can no longer see the prediction

box and has to scroll to the top. The box-above is a deviation from the other that it needs ample of

white space between the text to be retyped and the text field. This creates a disparity from the other

user interfaces, but primarily shows that box-above is a poor choice user experience wise. In a large

text, the box-above will start floating over previously typed text. This can be jarring in the overview

of the text being typed.

Second, the more words are being predicted, the larger the box with predictions becomes. With

particular longprediction lengths in both the amount ofwords as the individualword lengths, the user
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interface has narrow the prediction box to keep it within screen limits. The prediction strings then

start to encompass multiple lines negating readability. A negative user experience from an aesthetic

view, as well as a usability view.

Third, the more words being predicted, the longer it takes to read the predictions. This has been

mentioned above as well, but usability and user experience of putting time into reading prediction

that are not accurate are not to be underestimated. It can deter users from using the system at all.

Fourth and finally, many comments pointed out that the movement of the box is a disturbance

insteadof feature. This inherently is also affectedby the lowaccuracy of the system. Wrongpredictions

and an additional element that float over text is considered (rightfully) annoying.

It is difficult to improve on these findings. It seems that autofill with one or two word prediction

is the best user interface, although the statistical analysis doesn’t show this. Autofill has minimal clut-

tering on the screen, and the low amount of prediction heightens the accuracy.

6.2 Limitations

This research is conducted under a series of limitations. These limitations are discussed in the

sections below.

6.2.1 Type speed vs Internet Speed

The authors deliberately chose to implement an experiment accessible online. The main rea-

sons are the ease for participants to participate in the experiment and the ease of programming.

From the start itwas clear that throughput of server request shouldbe as high as possible and latency

as low as possible. Although this has been achieved, an average of 19 milliseconds response time on

request is low, it is clear from the results that fast participants type faster than that. This has inherently

influenced the results.
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Most likely, a local system would be faster as the round-trip times will be based on local access to

theRAM.However, reaching participants with such a systemwould’ve been so difficult that the reach

this research has would have been unattainable with a local system.

6.2.2 Machine learning

The system does not utilize machine learning. Machine learning would have made the predic-

tion a lot more accurate. However, machine learning also influences the dataset. This means that

each time a participant participates in the experiment, the underlying dataset, and thus the treatment,

differs from the previous participant. Scientifically this is hard to explain. Therefore, no machine

learning is applied.

6.2.3 Experiment texts

The texts used are not common texts. Although they do use common words, they are different

topics than one normally reads in magazines or sees on television.

This is by design, a common text would create a bias for users that are more knowledgeable about

a topic than another. However, this does mean that retyping such a text is more difficult than a text a

participant is comfortable with. The qualitative results show this.

Furthermore, the probabilities in the dataset are based on the most common occurrence of a string

of words in literature. The text used in this experiment is disparate with the literature and the most

common sentences. This has inevitable influenced the accuracy of the system.

That being said, the vocabulary in the dataset is large enough not to undermine the results of this

experiment. By drafting texts that only use words present in the vocabulary, vocabulary size has been

eliminated as a hidden variable.
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6.2.4 Trees vs Network

Storing the dataset can be done in a variety of ways, twomethods are considered of this experi-

ment: Trees or Networks.

The implemented method is a series of trees. In essence each first word in a string is the stem of

the tree, and each following word sprout of from there. This is by far the easiest way to implement

this. Although it results in sprouts that are redundant, ie multiple occurrences are present at different

stems, it is very easy to setup.

To remove redundancy one can implement a network where all these trees are laid over each other

and the redundant sprouts are removed. This furthermore reduces hard limit of predictions. With

trees a query traverses the path until that path ends (the end of the sprout). With a network, there

is no such limit. Networks however are on a technical level much harder to implement as one has to

keep track of all the possible routes. A tree has a scope of nn possible paths, with nn * 5 properties in

the total dataset. A network has nn possible paths, with nn * nn possible properties in the network.

The amount of properties create an overhead that is sizable, increasing latency and round-trip times.

6.2.5 Easing into use

This experiment isnot a longitudinal study. Thismeans that all participants see the treatment, the

text prediction, for the first time. Personal experience from the authors states that it takes some time

to get used to text prediction. Users of integrated development environments will state this as well. A

longitudinal study could change the conclusions from this research. Especially taking the results into

account and implementing these in the text prediction. Alas, great future research.
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6.3 Assumptions

Likeeveryresearchendeavor, there are assumptionsmade in order to complete it. This research

is no different.

Pertaining the system, the assumption for the research question and hypotheses is that more pre-

diction equals less errors. Even more essential, is that prediction is always faster, the only question is

which combination of user interface and the amount of words predicted.

Although intrinsically a valid assumption, it is false. This research shows that prediction is not

inherently faster, and shows thatmore prediction does not equal less errors. The incorrect predictions

that accidentally get inserted result in insertions ofwrongwords, and thus characters, thanwithout any

predictions. Obviously, this is dependent on the corpus being used. If a tailor-made corpus is being

used, created from earlier written texts by a user and updated and tokenized by machine learning, the

chances ofwrongful insertions are obviously less often the case. The author is comfortable to state that

the assumptionmore prediction equals less errors is valid if there is an accurate and correct prediction.

This however limits the more prediction assumption.

Furthermore, instead of relying on stemming and other computational linguistics to create a pre-

diction, the assumption in this research is that context that is derived from sentences and strings of

sequential words is enough for prediction. Although not completely false, such methods could have

improved the accuracy of the prediction.

A side effect of that assumption is that tense is correctly predicted, negating the use of stemming,

because tense is determined by verbs early in the string, or in previous predictions. This assumption

is falsified by this research. The accuracy of many words prediction is lacking to infer tense in a usable

manner.
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6.4 Future Research

The results from the research described in this thesis allows for further research. In the eyes of

the author, the following two scenario’s are very interesting:

1. The results show thatmorewords predicted, the lower the error-rate, and that autofill is always

the best performing user interface. A follow-up study is interesting in this regard. Note that

there is no interaction effect. Settingup an experimentwhich avoids the issues regarding latency

might be a good first step. But a proper long-term study will provide a more robust inside in

the usability of a prediction system which predicts multiple words.

2. The prediction method here utilizes the current, or previous words being typed to predict

ahead. What is an interesting venture is to see how the predictionworkswhen a certain amount

of words is being typed and used to prime the result set but trying to predict words. With the

current dataset, the amount of words predicted would be halved at least, but the results might

be worth it regarding accuracy.

As an example: when a user types the first the characters, theword, ormorewords are predicted.

The base for this prediction is a context-less two characters. With this method, the prediction

starts after x words have been typed, providing context for the prediction. Technically this

might be difficult to implement, and probably needs markov blankets.
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A
System (Pseudo-)code

The code that has been used with this thesis is available in an archive submitted with this thesis.

Furthermore, parts of the code have been open sourced, and are available at bitbucket.org.

The dataset directory consists of all code used in the sampling of the data and result extraction from

the database.

The app directory consists of all code used to run the experiment.
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B
Experiment Texts

This appendix contains the custom drafted texts used in the experiment, step 3 and 5.

B.1 Text used at Step 3 (the control experiment)

Banking and financial researchers speculate that students investmore often. Southern companies tend

to do better than northern companies, something that has to do with the climate. Since global warm-

ing is proven to be accelerated by humans, southern companies should see economic growth. How-

ever, the research of northern companies did not show this fact. Thismight have to dowith the results,
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which discount for international companies. Returns of the southern officesmight go to the northern

companies. Differences between companies located north and south, and thus not in between tem-

perature sides of the world, diminish these results. Studies will find if this is the case, by following up

on these interesting results in these countries at a later time. For what it’s worth, this text is not a fact.

B.2 Text used at Step 5 (the treatment experiment)

In an interesting case, it is found that students tend to invest more often in southern companies than

in northern companies. The research is held under students following economic, financial or banking

studies. They speculate that southern companies have higher returns than northern. The researchers

are not sure if it is related to the climate. Research at a later time might be able to show this, as global

warming will diminish the differences between temperature at different sides of the country, and thus

between companies located north or south. The research did however not discount for international

companies. Maybe southern companies have offices in more countries. For what it’s worth, global

warming is proven to be accelerated by humans. Which is the only true fact in this text.
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C
Technical Details of Sampling

Because of the size of the dataset, only the 5-grams are sampled, the 2 to 4-grams are inferred from that

dataset. There are some notes on this, as it influence certain non-trivial aspects of the dataset, yet are

not perceived to have a deep impact on the experiment or the research results.

For every n-gram following the base-word, it is checked of itmatches the 5000most frequentwords

(the frequency list). If it doesn’t, the algorithm stops and continues with the next line. For 5-grams

thismakes sense, since onlywords in the frequency list are to-be sampled. However, for lower n-grams

these normally would’ve been included. The following example illustrates this:
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Let’s say the frequency list consists of the words: I, and, eat, many, apples, and want.

The file of n-grams we’re sampling from has these lines:

Listing C.1: The example n-gram file

1 I eat many apples and 1990 1 1

2 I eat many pears or 1990 1 1

3 I eat some apples and 1990 1 1

4 I want every banana now 1990 1 1

Our algorithm will save line 1, as all words match those in the frequency list. Line 2 and 3 however,

will be discarded, as there is no perfect match (pears and some are not present in the frequency list). In

a 3-gram setting, I eat many (line 2) is matching, and in a 2-gram setting I eat and apples and

(line 3) are both matching, and those would thus have been added.

Because of the size of the dataset, all 5000 most frequent words are included in a multitude. It is

therefore safe to assume that both the entries I eat, I eat many and apples andwill be included

in our dataset as a 5-gram. I want likewise. By inferring lower n-grams from the 5-gram dataset, line

1 will include the match in line 2 in Listing C.2:

Listing C.2: Inferred n-grams (ngram:frequency)

1 1gram: I: 1

2 2gram: I eat: 1

3 3gram: I eat many: 1

4 4gram: I eat many apples: 1

5 5gram: I eat many apples and: 1

What isn’t inferred in the example illustrated in Listing C.2 is the adjusted frequency. If every n-

gram would be separately sampled instead of being inferred from the 5-gram, the following n-grams

would be stored from this example:

67



Listing C.3: Adjusted frequency in n-grams (ngram:frequency)

1 1gram: I: 4

2 2gram: I eat: 3

3 2gram: I want: 1

4 3gram: I eat many: 2

5 4gram: I eat many apples: 1

6 5gram: I eat many apples and: 1

Focusing on the 2-grams, I eat has a frequency of 3, I want of 1. In the experiment, when a

participant types I the prediction engine will look for themost likely next words. The possibility thus

being eat and want. The best prediction has the highest ranking, in this case eat, and thus will first

predict eat and then want. Note that in this limited example I want is not in the inferred n-grams

list, but as mentioned above, it is safe to assume that in the dataset I want is present as a 5-gram due

to the size of the dataset and the nature of our sampling method.

In a non-sampling environment, this could have a significant impact as certain word combination

will be obscure and other trivial. As we sample the 5000 most frequent words, obscure combinations

are decimated. Furthermore, the ranking now is based inferred and thus based on the results from our

sampling method.

Since the texts the participants have to type over only use words from the frequency list, inferring

the ranking will have a negligible impact on performance. Worst case scenario, the experiment will

have a positive bias to the ranking, since there is a preconception of the words in the total database

and words to-be typed by the participant. In a real-life case, where for instance email or social media

is scanned to fill a database, these preconceptions exist as well. Thus, in a pragmatic perspective, the

bias might exist but rather mimics reality instead of distorting it.

The sampling was performed in a three-step method.

First, the original text files from Google’s N-gram dataset were read, and sampled to include only

data older than 1990, with words that only exist in our frequency list. This data was then stored as
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JSON files. The JSON files are subsequently read and ranked.

Table C.1: 5-gram ranking provided by the dataset

1-gram 2-gram 3-gram 4-gram 5-gram Rank

aesthetic feeling the feeling of 34

aesthetic feeling and is fit 70

Although the sampled data has rankings included, these rankings only applied to the full line of

words, and has no information on a smaller amount of n-grams. This is shown in table C.1 (JSON

syntax removed for readability). In the following example “aesthetic feeling”has been found in the text

by the two lines as displayed in table C.2. At 3-gram, the sentence splits inwording, the upper sentence

continuing with the word “the” (found 34 times at this position in this sentence in the dataset), the

lower with theword “and” (found 70 times at this position in this sentence in the dataset). To provide

the best prediction of this sentence, the application logic follows the n-gramwith the highest ranking.

If one is to visualize a tree, after the 2-gram the tree splits into two branches. since these branches don’t

split, the ranking on 4-gram and 5-gram is null. This shown in table C.1. To acount for these branches,

the stem of the tree (1-gram and 2-gram) have the combined ranking of the branches.

Table C.2: Combined ranking based on the dataset

1-gram (rank) 2-gram (rank) 3-gram (rank) 4-gram (rank) 5-gram (rank)

aesthetic (104) feeling (104) the (34) feeling (0) of (0)

aesthetic (104) feeling (104) and (34) is (0) fit (0)

This ranking also allowed for calculating the individual probabilities of each n-gram. These were

calculated following the independent probability P(A ∪ B), which can be calculated by dividing the

ranking of ngram by the previous n-gram, P =
n−gram

n(−1)−gram . thus for the 3-gram “the” with ranking 34,

the previous n-gram, 2-gram “feeling” has a ranking of 104. The probability is 34 ÷ 104 = 0.327.
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Obviously, for 1-grams this poses a problem. The probabilities for 1-grams were calculated in the

third step. All 1-grams were read, and the rankings summed. Then, for each 1-gram, the probability is

calculated using the sum of all 1-gram rankings: P =
1−gram∑
1−gram .
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D
Technical Optimization of Sampling

With the large amount of data that is part of the Google Dataset, normal sampling methods do not

apply. They take simply too much time to execute. At 6 Gb per 20 minutes, sampling the dataset

would take about 3 years to complete.

The following data shows the optimization attempts that lead to the final sampling code. The

statistics are run on a 450Mb dataset file. Times are in seconds.
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D.1 With Sub and encode/decode

To scrub data from prefixes and tokens, each line in the dataset file needed to get analyzed. Due to the

nature of the dataset and the way python handles unicode, the lines needed to get encode and recoded.

Table ?? shows the first profile that is ran. It includes a regex (the sub command) and string com-

mands to remove parts (strip) and split strings (split).

Table D.1: Profiling results of the ampling code

Total amount of calls Cumulative time operation

4396965 9.022 method ’split’ of ’_sre.SRE_Pattern’

4396965 4.166 method ’strip’ of ’str’

4396965 15.740 method ’sub’ of ’_sre.SRE_Pattern’

total time for the top 3 heaviest operations: 28.928 seconds

D.2 Without Sub and with encode/decode

As regex are very cpu intensive, additional split operations are used to avoid the use of them. This

resulted in a total time of 21.671 seconds for the top 3 heaviest operations. A reduction of 7.2 seconds.

Table D.2: Optimization results without Regex function Sub, with encode and decode operations

Total amount of calls Cumulative time operation

4396965 9.259 method ’split’ of ’_sre.SRE_Pattern’

6359235 8.187 method ’split’ of ’str’

4396965 4.225 method ’strip’ of ’str’
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D.3 Without Sub or encode/decode

It was assumed that encoding and decoding of the lines would be very cpu intensive. A new version

waswritten to avoid the usage of those operation, but those involvedmore complexsplit operations.

The results were negative, at 21.899 seconds an increase of .2 seconds.

Table D.3: Optimization results without Regex or encode/decode operations

Total amount of calls Cumulative time operation

4396965 9.474 method ’split’ of ’_sre.SRE_Pattern’

6357351 8.180 method ’split’ of ’str’

4396965 4.245 method ’strip’ of ’str’

D.4 Only simple string functions

Although encode and decode resulted in a longer time, it was noticed that simple string operation

might be able to cut off additional seconds over more complex operations. Table D.4 details this. Al-

though these string operation would be increased, (from 4396965 to 10756200 operations, an increase

of factor 2.4) this saved the necessary seconds. From 21.7 to 17.98 seconds. A back of the napkin calcu-

lation tells us that if these results are sustainable on the full dataset of 16.7 Tb instead of 267 Mb, this

would save 72 days of computations.

Table D.4: Optimization results with only simple string operations

Total amount of calls Cumulative time operation

10756200 13.775 method ’split’ of ’str’

4396965 4.208 method ’strip’ of ’str’
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E
Server Response Time Statistics

The following figures detail the server response times, used in the optimization of the experiment.

Figure E.1 shows the response times during testing. It shows an average of 21.8 ms, which is a mean

decrease of 84.4% over the previous week. In that previous week themajority of the server-side system

was developed. These results are taken at the time for testing. Figure E.2 shows the response time at

the busiest time during the execution time of the experiment. The responds went up by 1.83%, to 22.2

ms per request. But the amount of requests went up with 1170% to 159,000 requests in that week.
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Figure E.1: Server Response times, June 23rd.
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Figure E.2: Server Response times, July 1st.
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F
Word Occurrence Analysis

In order to assure equality in the texts, both texts are drafted using onlywords in the frequency list. As

the 5000 words listed there easily encompass the 198 words of the experiment texts, an effort has been

made to use predominantly words that are used in both texts. Any bias resulting from words that are

unknown to the participant or other linguistic effects can be negated this way.

The following is a table of the words used, and their frequency. Control denotes the frequency of

the word occurring in the text used for the control experiment. treatment denotes the frequency of

the word occurring in the text used for the treatment experiment.
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Table F.1: WordOccurrence in both Experiment Texts

Word Control Treatment Word Control Treatment

a 1 2 more 2 1

able 1 0 north 1 1

accelerated 1 1 northern 2 3

an 1 0 not 2 3

and 1 3 of 1 3

are 1 0 offices 1 1

as 1 0 often 1 1

at 2 1 on 0 1

banking 1 1 only 1 0

be 2 1 or 2 0

better 0 1 proven 1 1

between 2 2 related 1 0

by 1 2 research 3 1

case 1 1 researchers 1 1

climate. 1 1 results 0 3

companies 6 7 returns 1 1

countries. 1 1 see 0 1

country 1 0 show 1 1

did 1 0 should 0 1

differences 1 1 sides 1 1

different 1 0 since 0 1

diminish 1 1 something 0 1

discount 1 1 south 1 1

Continued on next page
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Table F.1: Continued from previous page

Word Control Treatment Word Control Treatment

do 0 3 southern 3 3

economic 1 1 speculate 1 1

fact 1 2 students 2 1

financial 1 1 studies 1 1

find 0 1 sure 1 0

following 1 1 temperature 1 1

for 2 2 tend 1 1

found 1 0 text. 1 1

global 2 1 than 2 1

go 0 1 that 2 2

growth 0 1 The 7 7

have 2 0 these 0 3

held 0 1 They 1 0

higher 1 0 this 2 4

however 1 1 thus 1 1

humans. 1 1 time 1 1

if 1 1 to 4 5

in 5 2 true 1 0

interesting 1 1 under 1 0

international 1 1 up 0 1

invest 1 1 warming 2 1

is 5 3 what 1 1

it 2 0 which 1 1

Continued on next page
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Table F.1: Continued from previous page

Word Control Treatment Word Control Treatment

it’s 1 1 will 1 1

later 1 1 worth 1 1

located 1 1 with 0 2

Maybe 1 0 world 0 1

might 1 2
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