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Introduction 

 

Ever since the dawn of computer science, leading computing experts have wondered if it is possible 

to build a machine intelligence equal to humans. Computation experts and science fiction writers 

alike have since speculated what this “Artificial Intelligence” (AI) would look like and how a 

logical machine, free of our base emotions, would operate. Some even contemplated whether a far 

enough advanced machine intelligence, achieved by a high computations per second limit and 

sophisticated algorithms, would grant machines self-awareness or emotions, enabling and 

motivating the computer to undertake actions other than those it was strictly programmed to do. 

Ever since then, talented programmers have set out to build logically operating systems to mimic 

human intelligence and philosophers of Artificial Intelligence have wondered what the status of 

these reasoning machines should be. In their review of the computer science literature, most 

philosophers have paid particular attention to those machines equipped with software that reasoned 

based on logic, while largely disregarding the learning computer programs. 

 There is a strange dissonance here. In the development of these systems, a large focus has 

been placed on replicating the surface reasoning tasks that humans are famously capable off. 

Whether it concerns playing chess (Deep Blue),1,2 Jeopardy (Watson),3 or solving a puzzle to find 

out who the murderer was given a particular list of statements (General Problem Solver),4 or even 

carrying out a conversation such as Eliza or Parry,5 attempts to create intelligence, and 

philosophical arguments surrounding those attempts, have often focussed on giving it tasks we 

strongly associate with logical reasoning or the straightforward computation of all possible 

outcomes. Due to a wide variety of reasons, human cognitive reasoning has been taken as the part 

of intelligence that required duplication for a functional and intelligent AI, with little or no attention 

to the foundation of mental faculties that human intellect has been built on and, amongst 

philosophers of AI at least, a general disregard for any learning capacity. This is, in my view, 

wrong. If we truly wish to create a real Artificial Intelligence comparable to ours, we cannot 

                                                 
1 Fine, J. (1997). Deep Blue wins in final game of match; Chess computer beats Kasparov, world's best human player. 

http://faculty.georgetown.edu/bassr/511/projects/letham/final/chess.htm. MSNBC (retrieved 6 June 2014). 
2 IBM 100 (2011). Icons of Progress; Deep Blue Overview. http://www-

03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/. IBM (retrieved 16 May 2014). 
3 Jackson, J. (16 February 2011). IBM Watson vanquishes human Jeopardy foes. 

http://www.pcworld.com/article/219893/ibm_watson_vanquishes_human_jeopardy_foes.html. PCWorld (retrieved 

15 May 2014). 
4 Copeland, B.J. (1993), Artificial Intelligence: A philosophical introduction (Oxford, 1993). 24-26. 
5 Copeland, B.J. (1993), Artificial Intelligence: A philosophical introduction (Oxford, 1993). 12-15. 

http://faculty.georgetown.edu/bassr/511/projects/letham/final/chess.htm
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
http://www.pcworld.com/article/219893/ibm_watson_vanquishes_human_jeopardy_foes.html
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disregard the very foundations upon which our own intelligence has been constructed, nor can we 

leave the capability to learn out of the philosophical debate. If a true AI is to be created, one 

recognisable as intelligent and capable of a wide variety of tasks, it is important that the research 

involved pays much closer attention to the more natural, biological foundations upon which human 

intelligence is built and it should therefore include not just out reasoning capabilities, but our 

learning abilities and an eye for our motivations as well. In short, those feelings and emotions that 

were sometimes supposed to arise from a high enough reasoning intelligence, should instead be 

included from the get go. 

 In the rise of organic intelligence, the brain structures that govern emotions developed first,6 

before the cerebral cortex which handles rigorous reasoning, logic, and which is also responsible for 

supporting the arithmetic that is the primary raison d'être for digital computers. Not only are those 

ancient, more primitive brain structures still present in the human brain, they also still have a major 

impact on our behaviour.7,8,9,10,11 Starting at the cortical, analytical functionality of the brain 

disregards the entire foundation that our logical reasoning is built on. This is one of the reasons that 

AI's, especially those under the review of philosophers, often seem to lack common sense.12 

Scientific evidence suggests that humans do not so much arrive at their conclusions through 

applying rigorous logic, but instead apply a whole range of intuition-driven processes that involve 

past experiences and even current moods. These processes are based on motivational learning that 

ties external events to internal consequences. It is this web of connections that also supports logical 

reasoning, but logical reasoning is often not involved in decision-making. Of course, when you ask 

a human why they have made a particular decision, they will often invoke logical explanations as a 

justification for their decisions, even when logic has had little to do with it.13 This sparks the 

question: 

  

                                                 
6 Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions (New York, 1998). 
7 Decety, J. & Svetlova, M. (2012). Putting together phylogenetic and ontogenetic perspectives on empathy. 

Developmental Cognitive Neuroscience 2 (1) 1-24. 
8 Bos, P.A., Panksepp, J., Bluthé, R.M. & Van Honk, J. (2012). Acute effects of steroid hormones and neuropeptides 

on human social-emotional behavior: A review of single administration studies. Frontiers in Neuroendocrinology 33 

(1) 17-35. 
9 Moscarello, J.M. & LeDoux, J.E. (2013). The contribution of the amygdala to aversive and appetitive Pavlovian 

processes. Emotion Review 5 (3) 248-253. 
10 Rilling, J.K. (2013). The neural and hormonal bases of human parental care. Neuropsychologia 51 (4) 731-747. 
11 Eisenberger, N.I. (2012). The pain of social disconnection: Examining the shared neural underpinnings of physical 

and social pain. Nature Reviews Neuroscience 13 (6) 421-434. 
12 McCarthy, J. (2007). From here to human-level AI. Artificial Intelligence 171 (18) 1174-1182. 
13 Nisbett, R.E. & DeCamp Wilson, T. (1977). Telling more than we can know: Verbal reports on mental processes. 

Psychological Review 84 (3) 231-259. 
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 What role do non-reasoning, motivational systems play in human intelligence?  

 

Much of the literature in Artificial Intelligence and the Philosophy of Artificial Intelligence is 

nonetheless focussed on reasoning through logic, and the corresponding brain structure: the cortex. 

This can perhaps be explained by a belief in human exceptionalism that stems from old 

philosophical considerations:14 humans are taken as the archetype of intelligent creatures, so the 

emphasis goes to those structures and functions that separate humans from animals, with the 

enlarged cerebral cortex and its logical-reasoning capabilities being the obvious candidate. Such a 

focus on what makes humans special can provide an obvious blind spot for the factors that humans 

have in common with other animals that yet may still be fundamental to intelligence, because only 

the differences receive much attention. Another possible explanation is inherent to the tools 

available, namely computing itself: computers were designed to process arithmetic calculations and 

arithmetic and logic mesh very well. It is simply attractive to focus on the kind of tasks that the 

computer seems most capable of handling: applying logic rules in a rigorous fashion. This is more 

likely to produce quick and clean results, even if it may turn out to be a glorious dead end when all 

is said and done.  

 As was already mentioned, in many cases the focus in the philosophy of AI has been on 

computers replicating human behaviour and reasoning, while less attention has gone into those AI 

that learn. This is unfortunate, as learning is a key element of intelligence. A non-learning machine 

may be able to display intelligent behaviour in the situation it was programmed to perform in, but 

when that situation changes, that same intelligent behaviour can suddenly be quite dumb revealing 

the apparent intelligence to be a farce instead. This has often let to the conclusion that AI in general 

are incapable of humanlike intelligence. This is hardly fair, as the AI’s on review have indeed been 

inadequate in that respect and therefore shouldn't function as the basis for pan-AI philosophical 

judgements. In my mind, this also means that any Artificial Intelligence worthy of the name needs 

to have the ability to learn. Still, even in learning AI, the pattern of a strong focus on logical rules 

emerges. A fair amount of computer programs have been given tools to learn, but most of these 

have functioned purely in relation to the outside world and the adjustment of learning mechanics 

generally comes from an external source. A fundamental aspect of human learning is therefore 

missing: motivation. 

                                                 
14 Williams, J. (2007). Thinking as natural: Another look at human exemptionalism. Society for human ecology 12 (2) 

130-139. 
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 Regrettably, the focus on reasoning and deduction through logic in the literature has left 

little room for questions concerning the non-cortical basis of learning. In my opinion, leaving out 

fundamental parts of how the brain learns and decides, results in a machine “intelligence” that is 

perhaps capable of impressive feats previously only performed by intelligent life forms, such as 

being able to play chess, but which is nonetheless hard to recognize as intelligent. Learning is a 

fundamental aspect of intelligence, yet learning is still often one of the most artificial aspects of 

Artificial Intelligence. AI's assign values for different situations and then adjust these values based 

on the end result. While this may superficially be somewhat like humans, AI do not learn because 

they are driven or motivated to do so, but rather because they have been hardcoded to adjust these 

values. They do not change these values due to some internal consequence, but rather the 

adjustment of these values is the only internal consequence. Although an AI with weighted 

functions already appears considerably more intelligent and natural in its behaviour, the disregard 

for the underlying structures that motivate the brain, leaving out the purpose and drive behind 

human learning, renders machine learning still a very artificial product with a less than natural feel. 

An AI produced without an integrated punishment and reward system is in my opinion not a 

“human” AI, but an “alien” AI. This leads to the follow-up question: 

 

Given modern insight into the role of punishment and reward-systems in 

biological intelligence, what contribution can motivational systems make to 

Artificial Intelligence from both a practical and a philosophical perspective? 

 

The answer to these questions will hopefully open the door for a more “natural” Artificial 

Intelligence. During the past few decades, a larger emphasis has been placed on the development of 

neural nets. Neural nets are an abstraction of the neuronal networks that make up the brain. Their 

parallel processing has unlocked new ways of storing information: rather than storing a string of 

symbols to a fixed memory location, in Neural Nets the information is somehow stored in the 

connection strengths between the “Neurons”.15 Although these Neural Nets are often simulated 

through an old fashioned serial processing computer, they could be produced in practice. In order to 

learn from a dataset, a second computer changes the connection-strengths between Neurons at 

random in an attempt to produce a predetermined desired response to a set of training examples. 

                                                 
15 Henceforth I will use the noncapitalised “neuron” for the biological range of cell types, while I will use the 

capitalised “Neuron” for artificial, binary neurons. 
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Once the neural net has been instructed on this set of examples, it can be put to the test on untrained 

samples to see if it has learned the right thing. A lot of the aspects of human data-retention are 

mimicked in a superior way by Neural Nets when compared to old fashioned serial logic AI.16 

However, the learning mechanism itself is external to the trained Neural Net and also has no 

motivational component. Integrating a motivational system into this new Neural Net form of AI 

may serve to make it even more human-like. This leads to the final shape of my Research Question: 

 

Research Question 

In what manner can biological reward and punishment systems be integrated in the Neural 

Net-approach to creating Artificial Intelligence with humanlike learning and recognisable 

intelligence? What are the consequences of such a Natural AI for the field of Philosophy of 

AI? 

 

Thesis 

I will argue in this paper that intelligence is simply a compounded form of basic adaptability: being 

adaptable is what intelligence is all about. Adaptability itself can be broken down into its constituent 

parts: interaction, evaluation, storage and action adjustment. Adaptability is greatly benefitted by 

introducing punishment and reward-systems as these provide the necessary information to attach 

value to stored information. I will argue that human reward and punishment is based on homeostatic 

monitoring, which is itself grounded in the death and survival consequences inherent in natural 

selection. It is the interplay of punishment and reward-systems with homeostasis which allows for 

the successful creation of meaningful connections between outside stimuli and inside consequences. 

These connections allow for meaningful storage, provide meaning to interactions and in 

consequence allow successful and meaningful action adjustment beyond directly programmed 

responses. It is upon this foundation of internal consequence and therefore motivation that human 

intelligence, capable of higher level evaluation and decision-making is built. Integrating a similar 

system into the Neural Net approach, which by its nature strongly favours connections, will 

eliminate some of the more pressing philosophical issues with mechanical intelligences being 

deemed “unnatural” or “ungrounded” and therefore not truly intelligent. Motivation in the human 

brain works at a cellular, and therefore neuronal level, which allows for a pretty much seamless 

integration of motivational reinforcement learning as a training mechanism that regulates 

                                                 
16 Copeland, B.J. (1993), Artificial Intelligence: A philosophical introduction (Oxford, 1993). 
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connection strengths in Neural Nets. This may provide researchers in the field of AI with new ways 

to implement self-learning programs and opens up new avenues of flexible AI instruction. The 

Philosophy of AI will also need to adjust to motivational learning in Artificial Intelligence. I will 

argue that rejection of Artificial Intelligence as potentially meaningful on the basis of its eventually 

symbolic nature does not hold, because adaptability, and with it intelligence, is not about the matter 

that composes it, physical or digital, but about the valued connections and consequences that can be 

supported. This provides an interesting answer to the Chinese Room Argument, the Simulation 

Objection and the Symbol Grounding Problem. 

 

The goal 

The goal of this paper is twofold. I aim to provide a list of desiderata for a recognisably adaptable 

and learning system based on intrinsic motivation, inspired by biology, and linking internal 

consequences to external factors. Coincidental with this goal is the effective removal of some of 

Philosophy of AI's greatest objections to Artificial Intelligence: the Simulation Argument and the 

Symbol Grounding Problem. 

 

The argument 

The argument will be built along the following structure:  

Before moving to the inner workings of motivational systems, I will first give a brief introduction of 

what I mean by developing “Artificial Intelligence” in Chapter 1, namely the quest for Strong AI. 

While exploring what I mean by “Artificial Intelligence” I will also explore what I believe 

constitutes “intelligence”, for which I'll introduce a strongly reduced variant of Jack Copeland's 

“massive adaptability” which I call bare-bone adaptability. I will argue that biological intelligence is 

completely reliant on valued learning and that learning is the cornerstone of being adaptable. 

Through this argument I hope to establish that intelligence is a continuum of greater or smaller 

adaptability and that even the most primitive life form has something that can be equated to a very 

rudimentary intelligence, which allows it to adjust to changing circumstances and undertake actions 

beneficial to its survival. It is from this most rudimentary form of adaptability that I think human 

intelligence eventually stems. 

 After exploring these issues, I will delve into the biological (Chapter 2: Adaptability without 

a Brain) and neuroscientific (Chapter 3: Reward and the Brain) background of biological 

intelligence by illuminating the role evolution has played in the formation of basic learning 
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mechanics in unicellular life, as well as the emergence of higher learning mechanisms in complex 

life forms such as humans. In concert with that, I will shortly delve into the role of hormones, the 

central nervous system and the brain. In this chapter on adaptability without the brain, I will first 

evaluate an important survival mechanism, homeostasis, and the impact it has on another important 

survival mechanism: the sensory apparatus of the bacteria that allows it to evaluate its environment. 

These two mechanisms combined have contributed greatly to adaptability. I will then show how the 

transition from single-celled organisms to multi-cellularity can maintain this interplay of 

homeostasis and sensory evaluation. It turns out that at the cellular level, organisms are capable of 

distinguishing good from bad, an important motivational tool for guiding their behaviour, and an 

ability that is later reused in communication between the body, the brain and individual brain-cells. 

In the chapter on the relationship between reward and the brain (Chapter 3), I will reveal the 

mechanisms at work in motivational learning at the macroscopic level. I will illuminate the function 

of reward-systems in the brain, as well as their hormonal basis, as an explanation for much of our 

natural learning processes, which often are neither strict reasoning nor even conscious. To illustrate 

this non-explicit-rule-following learning mechanism, I will illuminate some of the mechanisms 

through which humans learn in everyday life, in particular subconscious learning. Afterwards, the 

motivational connection between conscious learning and reasoning, and subconscious and 

emotional thought processes will be revealed. 

 After these two more biological chapters, I will draft up the rough schematics for a self-

motivating “feeling” Artificial Intelligence. In Chapter 4 I will abstract the biological principles that 

underlie motivational learning to a level where they could be used in constructing an artificial 

motivational mechanism with a more natural feel. This first rough draft, called Motivated AI (MAI), 

will only have one homeostatic value to take into account, but the positive and negative associations 

that are derived from it will be fully instated allowing it to attach value to its interactions without 

outside help. Naturally, the proposed model will not be perfect yet, but it will illustrate some of the 

advantages that come from implementing motivational learning into AI. The objective of this 

chapter, which is strongly rooted in Chapters 2 and 3, is to create a list of desiderata for an AI 

system that incorporates a more natural learning mechanism. These requirements for the system can 

then function as a basis for further AI research, as well as opening up new avenues for philosophical 

research into the implications of having motivational-learning AI. 
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The consequences 

In Chapter 5 I will then explore what philosophical objections may oppose calling a sufficiently 

advanced AI with inbuilt punishment and reward systems “intelligent”. I will argue that punishment 

and reward-systems help create an internal meaning which is grounded in internal and external 

reality. This position should assist in circumventing the symbol grounding problem, although an 

evolutionary mechanism that weeds out poor internal representation-to-reality correspondence is 

still required. I will also go over the physical differences between computer hardware and the lower 

levels of software and the “hardware and software” that make up biological intelligence. Rather 

than equating the computer hardware and software to biological wetware, I will argue that computer 

hardware and software is actually much more akin to physical forces, particles or DNA. Accepting 

this argument will allow for a serially processed digital computer to run a digital version of a 

parallel Neural Net without losing any philosophical credence. My argument will be that it is 

adaptability, the ability to learn from new situations and adjust behaviour accordingly and 

adequately is both the foundation and the distinguishing ability of any being or thing that has any 

claim to being called “intelligent”. Upon what this adaptability is constructed is of no real 

relevance, as long as the internal consequences are real. 

 Before I get to my concluding remarks, I will review three modern attempts at exploring 

human-like Artificial Intelligence. One, called Soar, is a very ambitious, symbolic, top-down and 

explicitly rule-driven cognitive model. The other two, called RMCLS and AuGMEnT are potential 

lay-outs for Artificial Neural Networks that use the broadcasting of a Global Reward Signal to 

modulate connection strengths between Neurons and thereby train them. Though much more 

limited in current design aspirations, the creators of these bottom-up Networks hope to get to the 

essence of biological reward-learning. I will review this small sample of recent endeavours in AI 

practice for possible overlaps and interconnections with the proposed MAI model. In essence, I will 

give a short summary of each AI project and the ways in which the new proposed model could 

positively impact their learning, adaptability and philosophical foundation.  

 

Methodology. 

This thesis will be based on a comprehensive, interdisciplinary study of the literature in the 

biological and neuroscientific fields as well as forays into the fields of Artificial Intelligence and the 

Philosophy of Artificial Intelligence. An important focus has been placed on review articles and 

books covering the subjects. Books and articles have been selected on the basis of relevance to the 
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subject and academic quality.  
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Chapter 1: Defining Artificial Intelligence 

 

Programs such as Eliza, Parry, Shrdlu, the General Problem Solver (GPS), Sam17 and the most 

famous computer conquerors of human champions Deep Blue18,19,20 and Watson,21 have achieved 

impressive levels of performance thanks to cleverly written algorithms and, quite often, brute 

computing power. They are illustrations of Artificial “Intelligence” that performs pretty well under 

the given circumstances. There is, however, something wrong with regarding these success stories 

as pinnacles of Artificial Intelligence in the way that I will be using the term: they are not really 

about intelligence and are instead about clever programming. 

 Watson is the most recent case of a computer coming out ahead in a match of man versus 

machine. In this case, the playing field in question was Jeopardy, a well-known game show contest 

of knowledge in which contestants answer a wide variety of trivia questions. Watson was built by 

IBM and equipped with a very large database and software capable of interpreting human sentences 

and their context-sensitive nature in order to excel at answering these trivia questions. Thanks to 

over 200 million pages of content and 6 million logic rules, Watson was often capable of producing 

the right answer and when pitted against human competition, it proved capable of doing so at a 

higher speed than his human opponents. Although it started out a bit slow, during the match its lead 

grew steadily and it absolutely trounced the human opposition. Apparently its logic rules and 

enormous database had made it more adept at producing the required information than the Jeopardy 

champions it was playing. And yet it still made a few obvious and stupid mistakes, such as offering 

“Toronto”, a Canadian city, as the answer to a question asking for the largest US airport named after 

a World War II hero.22 For a supposedly intelligent program, Watson had made a very silly mistake, 

as the correct answer was most definitely part of its database, as was the information that Toronto is 

                                                 
17 Copeland, B.J. (1993). Artificial Intelligence: A philosophical introduction (Oxford, 1993). 
18 IBM 100 (2011). Icons of Progress; Deep Blue Overview. http://www-

03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/. IBM (retrieved 16 May 2014). 
19 Fine, J. (1997). Deep Blue wins in final game of match; Chess computer beats Kasparov, world's best human player. 

http://faculty.georgetown.edu/bassr/511/projects/letham/final/chess.htm. MSNBC (retrieved 6 June 2014). 
20  Russell, S. & Norvig, P. (2010). Artificial Intelligence A Modern Approach: Third Edition (New Jersey, 2010) 29. 
21 Jackson, J. (16 February 2011). IBM Watson vanquishes human Jeopardy foes. 

http://www.pcworld.com/article/219893/ibm_watson_vanquishes_human_jeopardy_foes.html. PCWorld (retrieved 

15 May 2014). 
22 Jackson, J. (16 February 2011). IBM Watson vanquishes human Jeopardy foes. 

http://www.pcworld.com/article/219893/ibm_watson_vanquishes_human_jeopardy_foes.html. PCWorld (retrieved 

15 May 2014). 

http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
http://faculty.georgetown.edu/bassr/511/projects/letham/final/chess.htm
http://www.pcworld.com/article/219893/ibm_watson_vanquishes_human_jeopardy_foes.html
http://www.pcworld.com/article/219893/ibm_watson_vanquishes_human_jeopardy_foes.html
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a Canadian city and not named after a World War II hero. Of course, the crux here is that Watson 

isn't really intelligent in the way that humans are, instead it has sophisticated algorithms that let it 

select a word from its database that is the most likely “answer” to the input it receives. Without 

knowing what either the question or the answer truly is or even knowing what a question truly is, 

Watson provides output that we then recognise as a (correct) “answer”. In many ways Watson is a 

quintessential Chinese Room (see Chapter 5), which explains its impressive answering capabilities 

as well as its otherwise puzzling stumble. 

 Watson is not alone in combining startling competence with shocking strike-outs. Eliza, 

Parry, Shrdlu, the General Problem Solver and Sam could all be stumped when their assignment 

was slightly outside of their capabilities. They lacked “common sense”, had no understanding of 

their programmed task and could be tricked into clearly displaying their lack of actual 

comprehension. Deep Blue was a very impressive chess computer, but it couldn't do anything else, 

nor did it really know what chess was: it just produced output based on input it received combined 

with extensive “training” that favoured certain outputs over others in certain situations. Watson was 

basically a very strong search engine, combined with natural language interpreting algorithms and a 

limitation to providing just one answer. It had no abilities outside its highly specialised purpose 

although its specialised purpose does allow for repurposing in other fields of data retrieval: Watson 

has been put to use in the field of medicine as an advisor to medical professionals.23 From these 

examples, it appears obvious that programming millions of logic rules, coupled to an enormous 

database still leaves a lot to be desired for producing a well-rounded, truly intelligent AI. The 

examples of AI triumph mentioned above are simply not qualified for that title, but before we can 

get to the question of what would be required for a truly intelligent AI, it is perhaps fitting to first 

specify what I mean when I speak of Artificial Intelligence. 

 

What is Artificial? 

Artificial Intelligence is a broad term with a variety of meanings. The term naturally falls apart into 

two: “Artificial” and “Intelligence”. The word “Artificial” has a variety of meanings in and of itself, 

but for Artificial Intelligence two particular branches of meaning are of special importance: 

                                                 
23 Upbin, B. (8 February 2013). IBM's Watson Gets Its First Piece Of Business In Healthcare. 

 http://www.forbes.com/sites/bruceupbin/2013/02/08/ibms-watson-gets-its-first-piece-of-business-in-healthcare/. 

Forbes (retrieved 27 August 2014). 

http://www.forbes.com/sites/bruceupbin/2013/02/08/ibms-watson-gets-its-first-piece-of-business-in-healthcare/
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Artificial 

 made by human skill; produced by humans (opposed to natural): artificial flowers. 

2. imitation; simulated; sham: artificial vanilla flavoring.24 

 

The first branch of meaning, “produced by humans”, is pretty straightforward as long as we 

eliminate any natural reproduction mechanisms as a qualification for the “produced by humans”-

clause. The field of Artificial Intelligence strives to create something intelligent through 

construction, rather than through the obvious “natural” means, i.e. giving birth. Anything “artificial” 

is “manufactured”, rather than “grown”. The second meaning is one that actually sparks a fair bit of 

debate among Philosophers of AI. Is any “AI” we manage to create an imitation, a simulation or a 

sham? After all, in creating an intelligence we seek to create one we would recognise as intelligent, 

otherwise there would be no way for us to know whether we succeeded. In order for any AI to pass 

that test, it must imitate at least some forms of human intelligence.  

 On the basis of this assumption and to do away with any tricky definitional questions 

rewarding the word “intelligence”, Alan Turing, an important founder of the AI field, proposed a 

test in 1950 where a computer actually plays an imitation-game in a natural language test.25 The 

Turing Test directly measures AI performance in a human intelligence skill (namely human natural 

language and acting like a human, albeit in typewriting). If the AI is capable of consistently fooling 

a human investigator into thinking it is human, then it must be considered intelligent according to 

Turing. However, as natural language processing is but one of many shapes and forms of 

recognisable intelligence, even a machine that passes the Turing Test can be argued to not be truly 

intelligent, depending on its make-up. An example of this kind of reasoning can be found in John 

Searle's famous Chinese Room Argument, where he describes a computer that can give the perfect 

natural language answers without actually understanding what it is saying. According to Searle, the 

Chinese Room's apparent intelligence is actually a sham. Other debates focus more on the question 

whether a simulation of intelligence should be regarded as intelligent or not and how the symbols 

used by an AI can gain any intrinsic meaning or “grounding” for that AI. However, these 

philosophical issues are for a later moment (see Chapter 5), we are now only just determining what 

                                                 
24 Dictionary.com. http://dictionary.reference.com/browse/artificial?s=t. Dictionary.com (retrieved 14 January 2014). 
25 Turing, A.M. (1950). Computing Machinery and Intelligence. Mind 59 (236) 433-460. 

http://dictionary.reference.com/browse/artificial?s=t
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is meant by “Artificial”, for which I will now give the following definition: 

 

“Artificial Intelligence is an Intelligence created not through natural means, such 

as natural or semi-natural biological procreation, but rather through manufacture. 

Some uncertainty of whether this is actually possible, or that perhaps the best we 

can hope for is nothing more than a 'simulation', is already contained in the term, 

although not always expressed.” 

 

Although the above definition of artificial is still reasonably broad, for all practical intents 

and purposes AI's are nearly always conceived of as computers with or without a robot 

body. Although this thesis will review the importance of several key learning mechanisms 

for creating a proper Artificial Intelligence, it is useful to bear in mind that a digital 

computer is currently both the most popular and the most likely candidate for 

implementing these and any comments will be made keeping a computer framework in 

mind. 

 

Before we explore the depths of the meaning of the word intelligence, a short look at the 

field of AI is in order. According to Russell and Norvig, the field of Artificial Intelligence 

is roughly divisible along the lines of at least four different sets of definitions for the 

developmental goals of AI research.26  

 AI Systems with rational thought, where designs focus on determining the best possible 

outcome through applying strict and rigorous logic, regardless of the actual human 

method used. This approach is best conceived of as the “logic AI” approach. 

 AI Systems with humanlike actions, where the designs emulate human behaviour, 

although the underlying processes that cause it do not need to be the same. This field can 

be called “social” or “mimicking AI”. 

 AI Systems with rational actions, which strive for achieving the best possible outcome, 

even when there is no rational thought that determines the course of action. Systems like 

these acknowledge that even in situations where the outcome of actions cannot be 

                                                 
26 Russell, S. & Norvig, P. (2010). Artificial Intelligence: A Modern Approach; Third Edition (New Jersey, 2010) 2. 
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foreseen, undertaking any action can still be more rational than inaction, even if 

unfounded. Humans are a source of inspiration, but not a criterion by which the validity 

of a particular trick is measured. This field can be considered “practical AI”,  

and finally: 

 AI Systems with humanlike thinking, where the designs focus on emulating human 

thinking processes and are rather averse to information-technology shortcuts that 

produce the same outcomes through entirely different means. This approach is often 

denoted as “natural AI”. 

It is this last sub-discipline of AI that carries the interest of this thesis. 

 

Although there is some implicit appeal to learning as a part of intelligence in these set definitions, 

each of these descriptions focusses more on thought-processes and actions, rather than learning, 

perhaps presupposing it in “thinking”. Regardless, all of these fields make use of the field of 

Machine Learning, which is concerned with constructing computer programs that automatically 

improve through experience.27 Programs, in short, that learn and can apply this knowledge. 

 Artificial Intelligence today knows many practical applications, ranging from Google's 

useful search and auto-completion algorithms28 to more niche systems, such as diagnostic tools in 

medicine29. For these applications of Artificial Intelligence, the restraints are not very severe: as 

long as any particular program achieves the intended result without wasting too many resources, the 

underlying process that guides this “intelligence” does not need to adhere to strict rules as to what 

actually qualifies as intelligent. These are specialised intelligences and the possibility of making 

such dedicated, intelligent programs is called “Weak AI”, although a more gracious name would be 

“Expert Programs”. These programs are masters in their own field, but outside of their very narrow 

band of expertise, they completely break down. None of these programs would be able to survive in 

a natural world, or even be able to conceive of one, as the tools in their arsenal are simply 

unsuitable and they were never designed with that purpose in mind. 

 However, from the dawn of Artificial Intelligence a different dream has pervaded the field, 

                                                 
27 Mitchell, T.M. (1997). Machine Learning (Boston, 1997) xv. 
28 Mikolov, T., Sutskever I. & Quoc, L. (15 August 2013). Learning the meaning behind words. http://google-

opensource.blogspot.nl/2013/08/learning-meaning-behind-words.html. Google Knowledge (retrieved 24 March 

2014). 
29 Agah, A. (ed.) (2014). Medical Applications of Artificial Intelligence (Boca Raton, 2014). 

http://google-opensource.blogspot.nl/2013/08/learning-meaning-behind-words.html
http://google-opensource.blogspot.nl/2013/08/learning-meaning-behind-words.html
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pursued vigorously by some while disregarded as preposterous by others. This dream is that 

perhaps, one day, humans will create a computer with suitable programming that will equal us, or 

even surpass us, in all-round, actual intelligence. Through sheer computer power and human 

ingenuity, perhaps a computer can be made that truly thinks! This belief is what is called “Strong 

AI” and this paper seeks to contribute to this Strong AI-thesis. Before that is possible, however, we 

must first discuss the meaning of the word “intelligence”. 

 

What is Intelligence? 

Intelligence is a very strange, and hard to define category. In philosophy it is traditionally placed 

under the “mental” aspects and the Philosophy of Mind, and away from the physical, mechanical 

workings of our bodies, a distinction that can be traced back to at least René Descartes in the 

seventeenth century. According to Descartes, the human essence can be split into the divisible, 

material and mechanical body and the indivisible, immaterial mind.30 During the twentieth century, 

quite a few philosophers have argued against this separation of the “mental” and the “physical”, 

better known as dualism, and have instead insisted that mental states can be reduced to physical 

phenomena.31 The philosophical debate surrounding what should replace dualism is very interesting 

and quite complicated, but it is outside the scope of this thesis. I will instead lay out my basic 

assumption on this matter right now: 

  

“Intelligence should not be regarded as a strictly “mental” quality. The physical 

state of the brain, and in fact the physical state of the body, has an inseparable 

impact on intelligence. There are many bodily processes that influence intellectual 

activity and it is wrong to try to understand intelligence in a purely mental frame of 

reference. Trying to do so closes doors that should remain open. Intelligence is firmly 

rooted, embodied if you will, in the hardware it resides in. Its sole biological function 

is to keep that body alive and, to this end, that body is an integral part of that 

intelligence.” 

 

                                                 
30 Robinson, H. (2012). Dualism. http://plato.stanford.edu/archives/win2012/entries/dualism. In: Zalta, E.N. (ed.). The 

Stanford Encyclopedia of Philosophy (Winter 2012 Edition) (retrieved 24 March 2014). 
31 Searle, J. (2004). Mind: A brief introduction (Oxford, 2004) 47-81. 

http://plato.stanford.edu/archives/win2012/entries/dualism
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The above does not signal, however, any kind of human or biological exceptionalism: just because 

the biological body is a part of intelligence in us, it does not mean that there is only one kind of 

body that can support intelligence. I hope to display in the rest of this thesis why intelligence being 

embodied is a crucial factor in making it recognisable. In the meanwhile, we should seek to avoid 

any philosophical or popular preconceived notions and assumptions regarding intelligence. Perhaps 

it is more useful to replace the term “intelligence” with something that is less culturally laden. A 

good start, in my opinion, would be to swap the quest for intelligence out for a quest for Jack 

Copeland’s “being Massively Adaptable”. Copeland describes it as such:  

 

“An organism's inner processes are massively adaptable if it can do such things as 

form plans, analyse situations, deliberate, reason, exploit analogies, revise beliefs 

in the light of experience, weigh up conflicting interests, formulate hypotheses and 

match them against evidence, make reasonable decisions on the basis of imperfect 

information, and so forth. Moreover it must be able to do these things in the 

boisterous complexity of the real world – not merely in a 'toy' domain such as 

Shrdlu's simple world of coloured blocks.”32  

 

Implicit in this definition, but not explicitly mentioned because we take them for granted, are three 

very vital parts of intelligence and adaptability as we know it: the ability to interact with the 

outside world (whatever that may be, although Copeland requires it to be the “real world”), the 

ability to remember what is important and why, and the ability to adjust actions on the basis of 

current interactions and earlier recollections. In fact, the above definition flows from compounding 

these three basic requirements. So what we really need for a bare-bone definition of adaptability is: 

 

 A “being” must be capable of interacting with its environment (requiring some form of 

perception and some means of altering itself or the environment),  

 A “being” must be capable of storing these interactions/perceptions, (more commonly 

known as having a “memory”), 

 A “being” must be capable of adjusting its interactions based on previous 

                                                 
32 Copeland, B.J. (1993). Artificial Intelligence: A philosophical introduction (Malden 1993), 55. 
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interactions/perceptions (more colloquially known as “learning”). 

 

These three requirements interact and overlap, allowing for complex and changeable behaviour. 

Still, they are not exhaustive of even bare-bone adaptability. After all, even if a being is capable of 

interacting with the environment and storing what happens, how does it determine what to adjust?  

How does it determine what is important and on what basis does it do so? In the above definition 

there is no call for establishing relative value, but relative value is necessary in determining the 

right choice or even in establishing what is important. A being must not only be capable of 

interacting with the environment and be able to store that information, but it must also be capable of 

evaluation: it needs some way to establish which interactions have been “beneficial” and which 

interactions have been “detrimental”. A being, even one that is only bare-bones adaptable, needs to 

be able to store valued information. In other words, if a being must be capable of adjusting to its 

environment, the interactions and perceptions it attains need to be stored in a meaningful33 way. 

This brings us to my final definition of bare-bone adaptability: 

 

 A “being” must be capable of interaction with its environment (requiring some form of 

perception and some means of altering itself or the environment),  

 A “being” must be capable of evaluating its interactions with the environment, 

 A “being” must be capable of storing these valued interactions, (more commonly known as 

having a “memory”), 

 A “being” must be capable of adjusting its interactions based on these values attained 

through previous interactions/perceptions (more colloquially known as “learning”). 

 

As massive adaptability has just been equated to full-blown intelligence, I will call this bare-bone 

adaptability a form of bare-bone intelligence. I will argue that even our highest-level reasoning 

skills eventually flow from these four basic prerequisites and that they do not exist in a vacuum. 

Instead, high-level reasoning can emerge in any organism sufficiently competent at the four given 

tasks. While “storing” and “adjusting” may be considered more important to our general ill-defined 

notion of “intelligence”, adequately valued perception of and interaction with the environment is in 

                                                 
33 “Meaningful” in this case refers to making connections between actions and their consequences. 
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fact a prerequisite of the other two. No useful learning is possible without detection of, and 

interaction with the environment (no matter how broadly or narrowly it is defined) and a means of 

evaluating that contact as no possible consequence or need for adjustment can otherwise be 

discerned. In the rest of this thesis, I will pay particular attention to the evaluation that is integral to 

bare-bone intelligence and learning, but so often overlooked. In order to find methods for 

implementing this in AI and the Philosophy of AI, I will explore how biological organisms evaluate 

their interactions, from the bare-bone intelligence found in simple organisms, to the complex 

intelligence found in humans. 

 But why even bother with determining, or creating, bare-bone intelligence, which enables 

behaviour which most people would not describe as intelligent, such as the actions of ants, or even 

of single-celled organisms, when it is higher intelligence that we're after? Because the distinction 

what is generally considered intelligent and what is not, is a lot like the distinction between what is 

a hill and what is a mountain. While a hill is definitely not a mountain, you cannot create a 

mountain without creating a hill first and this is precisely what is generally overlooked when 

discussing Artificial Intelligence: it is attempted to create and review an “intelligence” without the 

bare-bone that, in my opinion at least, is the backbone. Being “massively adaptable”, or truly 

intelligent, is only an increase in adaptability of the organism along a gliding scale, not a completely 

separate state of being. Humans and other relatively intelligent creatures known to us did not arise 

from a different spawn than “unintelligent” life and many of the mechanisms underlying 

“unintelligent” life may be a vital part of what we call intelligence now. In order to understand 

“massive adaptability”, we therefore need to understand “adaptability” first. 

 

Objections against cheapening “Intelligence” by applying bare-bone adaptability 

A possible objection to the above definition of bare-bone adaptability is that it allows an 

impressively wide variety of organisms some measure of “intelligence”, quite likely even all. It can 

even be argued that the most humble bacterium satisfies the demands in a very basic manner. After 

all, the cell-membrane that encloses bacteria is capable of detecting chemicals in its environment 

and in many cases even allows them to communicate among species members, and even across 

bacteria species.34 The detection of particular harmful chemicals, or chemicals associated with 

                                                 
34 Federle, M.J. & Bassler, B.L. (2012). Interspecies communication in bacteria. The Journal of Clinical Investigation 

112 (9) 1291-1299. 
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harmful substances or organisms, will trigger the bacterium to undertake evasive action, while the 

detection of beneficial substances will encourage the bacterium to stay put. Not only behaviour is 

affected either, detection of high bacterial numbers in the surroundings can alter target-gene 

expression in individual bacteria as well.35  

This detection and response mechanism not only satisfies the first of the four demands 

(interaction), but the demands of storage and adjustment are also satisfied without the use of a 

brain or even a nervous system of any sort. The storage mechanism in a bacterium is not a bunch of 

neurons like our brain as a bacterium is much too small to contain other cells and in fact ceases to 

be a bacterium by definition the moment it would associate with neurons. The storage mechanism is 

still, however, a very familiar information storage and retrieval method: DNA. DNA allows bacteria 

to adjust to their environment across generations, as mutations in the DNA will allow for differing 

adaptations. Natural selection then eliminates, on average, those adaptations which did not improve 

or maintain the current survivability. Over time, the organism “learns” because its predecessors 

“learned” by process of elimination and the out-competing of the less fit. This transfer of stored 

knowledge and adaptations is called “vertical transfer”.36 Of course this manner is very primitive 

and can only be called “learning” if we look from the perspective of the self-replicating DNA-

strains, rather than the organism they support. Random mutation, combined with the death of 

organisms whose interactions and behaviours do not cope properly with the survival-threats of their 

environment, allows bacterial DNA to store “value” to behaviour across generations: those 

interactions that prolong life are good and maintained, while those behaviours that invite death are 

bad and removed from storage through organism death. In this most primitive of adaptabilities, the 

second demand of evaluation is externalised: the environment selects beneficial interactions, 

forcing adaptation through elimination. This type of evaluation is present at any level of biological 

adaptability and relies completely on the severe “teachings” of the environment in combination with 

random chance, but it provides a form of learning none the less.  

However, it is not the only learning mechanism present in bacteria. There are in fact 

mechanisms that allow for much quicker adjustment to their surroundings and which evade quite a 

bit of untimely bacterial death. Recent study has demonstrated that bacteria are capable of 

                                                 
35 Miller, M.B., Bassler, B.L. (2001). Quorum sensing in bacteria. Annual Review of Microbiology 55. 165-199. 
36 Lawrence, J.G. (2005). Horizontal and vertical gene transfer: The life history of pathogens. In: Russell, W. & 

Herald, H. (ed.). Concepts in Bacterial Virulence; Contributions to Microbiology 12 (Basel, 2005) 255-271. 
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exchanging genetic information amongst each other, even between species. This process, called 

“lateral transfer”, allows the bacteria to learn snippets of DNA-code from one another, which can 

lead to quick changes and adaptations to new environments within the short lifetime of a single 

organism. It is, among other adaptations, the primary cause for bacterial antibiotic resistance.37 This 

is also not a rare process, as bacterial genomes often contain a significant amount of foreign DNA.38 

Another method of quicker learning is the activation and deactivation of genes already present in 

the DNA, an adaptational method explored by the field of Epigenetics. These adjustments, which do 

not change the DNA code but do change which genes are actually expressed, are a quick response to 

environmental factors allowing the bacteria, and higher life forms, to “learn” what its environment 

is like and to adapt by switching on the genes that produce the more desired responses (through the 

production of the right amino acids).39 Furthermore, bacteria even have a rudimentary temporal 

memory, part of their environmental detection system, that allows them to improve their navigation 

in response to positive or negative environmental stimuli.40 I will expand on this mechanism in the 

chapter on adaptability without a brain.  

 It is therefore not all that farfetched to state that bacteria are capable of learning from their 

environment: they can interact with their surroundings and are capable of influencing them, as well 

as being able to adjust their actions to their surroundings and storing environmental information and 

working solutions. The basic point here is not that bacteria are intelligent in the same way that we 

are. Their level of adaptability is not comparable to ours: their genetic adaptation is much quicker 

than ours, although we do possess the same genetic abilities, while humans and other complex life 

forms have more ways of learning during individual lifetimes than the relatively inelegant forms of 

natural selection and genetic modification. The point is that learning is essential to adaptability and 

therefore intelligence and that it is not necessarily an exclusively “mental” category. It is not even 

strictly limited to the brain. Higher intelligence is a form of massive adaptability that seeks to 

implement changes in the way the organism behaves during its lifetime, rather than across 

                                                 
37 Gyles, C. & Boerlin P., (2014). Horizontally transferred genetic elements and their role in pathogenesis of bacterial 

disease. Veterinary Pathology 51 (2) 328-340. 
38 Dobrindt, U., Chowdary, M.G., Krumbholz G. & Hacker, J. (2010). Genome dynamics and its impact on evolution 

of Escheria coli. Medical Microbiology and Immunology 199 (3) 145-154. 
39 Danchin, E., Charmantier, A., Champagne, F.A., Mesoudi, A., Pujol, B. & Blanchet, S. (2011). Beyond DNA: 

integrating inclusive inheritance into an extended theory of evolution. Nature Reviews: Genetics 12 (7) 475-486. 
40 Magnab, R.M. & Koshland, D.E. Jr. (1972). The gradient-sensing mechanism in bacterial chemotaxis (temporal 

gradient apparatus/stopped-flow/S. Typhimurium/motility tracks/memory). Proceedings of the National Academy of 

Sciences of the United States of America 69 (9) 2509-2512. 
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generations, but it must still evaluate effects of its behaviour on the body it controls. Intelligence, by 

its very nature, is therefore embodied in the body whose behaviour it is controlling. It is important 

to remember this when we venture into the world of microbiology. In the next chapter, we will look 

at a gliding scale of biological adaptability, or learning, but before we do so, I will conclude with a 

final definition for what I am referring to when I refer to “creating Artificial Intelligence”: 

 

“Creating Artificial Intelligence is the quest to manufacture a machine which is 

characterized by its massive adaptability. It is a machine that is capable of 

interacting with its environment, capable of storing these interactions in a 

meaningful way and able to adjust its future interactions based on these learned 

experiences.” 
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Chapter 2: Adaptability without a Brain 

 

So why look at biological intelligence? The answer is simple: the only beings we know of that are 

generally considered “intelligent” are of biological origin. Now that we have established that 

intelligence is rooted in biological adaptability it makes sense to look at the biological origin of 

intelligence, or rather its constituent part “adaptability”. By establishing what methods biological 

organisms use to establish their adaptability, we can hopefully extract useful information as to how 

to make Artificial Intelligence. As adaptability primarily focusses on learning, I will focus on the 

role of biological evolution in the development of learning with a special interest in the mechanisms 

that allow organisms to connect environmental events and their own actions to the proper set of 

consequences. The biological methods of evaluation may prove instrumental in creating an 

adaptable AI and will be the focus of my investigation. 

  

Evolution and learning 

It could be argued that evolution is a process of learning. In fact, this is precisely what I argued in 

Chapter 1 where I showed that adaptability is not just a mental attribute in the traditional sense, but 

a physical attribute as well. All biological organisms are geared to survive long enough and in large 

enough quantities in order to reproduce. As already proposed by Charles Darwin and Alfred Russel 

Wallace in the mid-nineteenth century, this is not because organisms are designed that way, but 

because those organisms that did not sufficiently meet the criteria have gone extinct through a 

process best known as “natural selection”.41 It is important to realise that there is no organizing 

force in evolution steering organisms down one evolutionary path or another, but natural selection 

does function as a learning mechanism as organisms adapt to their new environment through 

internal storage of successful survival techniques and the deletion or suspension of detrimental 

aspects. Through the ultimate consequences of death and procreation, natural selection also 

“grounds” internal information storage to the outside world. After all, organisms whose internal 

mechanisms do not reflect at least successful avoidance of death and successful pursuit of survival, 

including procreation, will go extinct. Internal representation of external factors is therefore 

grounded in the external environment through this evolutionary process. It is this “natural selection” 

                                                 
41 Gregory, F. (2008). Chapter 17: New ideas about life and its past. Natural science in western history (Boston, 2008). 
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that provides a fundamental source of value for organism interaction-evaluation: in the end it is 

their death or survival that distinguishes good interactions from bad. In the following section, I will 

delve into an important mechanism for meaningful internal representation of death and survival: 

homeostasis. It is my hypothesis that it is the monitoring of homeostasis that allows biological 

organisms to attach meaning to their internal representations by making the proper connections 

between interactions and their internal consequences: a crucial connection for effective self-

contained learning. 

 

Two short warnings  

The driving force behind “natural selection” is only a random and changing set of restrictive 

circumstances that cut off all mutations that hinder the survival and reproduction of a particular 

organism too much. Although this is a more accurate way of representing what actually happened 

and still happens throughout the course of evolutionary history, many scientists and non-scientists 

use more goal-oriented language to describe what takes place for simplicity's sake. So although 

giraffes with longer necks tended to be better nourished and therefore on average survived longer 

and reproduced more effectively, passing their genes on in greater number than their short-necked 

counterparts, most would simply say that giraffes “developed longer necks in order to reach the top 

of the trees”. This greatly simplifies the description and streamlines communication, but, like most 

simplifications, it also clouds the true mechanism behind the giraffe's evolution: giraffes with longer 

necks were simply less handicapped in dealing with their environment and passing on their genes 

than giraffes with shorter necks. “Natural selection” did not so much “select” the long-necked 

giraffes as it “deselected” the short-necked specimens.  

 Although the shorthand is inexact and at times misleading, it is in many cases a much less 

convoluted way of speaking about particular subjects and mechanisms. Therefore, usage of goal-

oriented language may surface in the following section, but the reader should keep in mind the 

random training environment behind natural, low-level adaptation. The natural environment in 

essence grants a near infinite amount of trials that the biological organisms must use to train their 

survival mechanisms. 

 Another warning is required for the assumption that there is a definite hierarchy to the levels 

of advancement found in life forms. Although through scientific history, the assumption has often 

been made that there is a scala naturae where some “lower” organisms today are considered 
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primitive exemplars of aeons past, this assumption is impossible to maintain in modern day 

evolutionary biology. Instead, creatures belong in clades that separated from each other in the 

evolutionary tree at given points in time. No matter how early the separation, every organism alive 

today is part of a crown-species, a species that has gone through the same billion years of random 

mutation and natural selection that humans and their direct ancestors have.42 This means that 

detecting traits in unicelled organisms and then concluding that those traits must have been present 

in our unicelled common ancestors is a dangerous path to follow. Regretfully, there are painfully 

few ways of exploring the capabilities and behaviours of long extinct microorganisms. In the 

following section I will assume that traits shared by all living organisms are not the result of 

convergent evolution, but most likely due to having originated in a single common progenitor 

species. 

 

Three short definitions 

The following two terms will surface on a regular basis in the following chapter. Their meaning is 

not necessarily as straightforward as it appears, so a short definition of their use is in order:  

- Reward: a reward is the internal value signal representing a survival value for an organism. 

This survival value can be bad or good, often depending on the circumstances. Whenever 

the word “reward” is used in a general context, it should be taken to include both reward and 

punishment. 

 Survival: survival in an evolutionary context is less about the survival of an individual and 

much more about the survival of its genetic make-up, better known as DNA. Using this 

definition handily includes procreation in survival-necessities, which allows for a better 

description of natural selection. A survival value can be positive or negative, often 

depending on the circumstances. 

 Signifier: a signifier is an external signal (such as a detected chemical) that can be used as a 

reward-event predictor. It “signifies” the availability of reward or impending punishment. 

  

  

                                                 
42  Murray, E., Wise, S. & Rhodes, S. (2011). Chapter 4: What can different brains do with reward? In: Gottfried, J.A. 

(ed.). Neurobiology of Sensation and Reward (Boca Raton, 2011). 
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Staying alive: the constant struggle for homeostasis 

All living organisms, from the smallest single-celled organisms to the most massive of plants and 

animals, have a delicate internal balance that must be maintained in order for them to stay alive. 

This balance, called homeostasis, is not a matter of keeping a particular bodily value as low as 

possible, or as high as possible, but one of keeping a value within a specific range.43 Anything too 

high or too low is a negative condition as it severely increases the chances of death. Anything 

within the optimum range is a positive condition as it signifies sustained survival.44 Furthermore, 

organisms don't have a single parameter for which to maintain homeostasis, but a multitude 

including, but not limited to: temperature, pH-value, hydration, and nutritional values such as 

usable energy and the availability of required chemical compounds. Homeostasis is a concept that 

permeates the field of biology and serves as the explanation as well as the driving force for a wide 

variety of self-regulatory mechanisms that maintain internal balance. 

 Maintaining this internal balance is crucial and tricky. If one of the parameters, such as 

temperature, falls too low or rises too high, cellular damage starts to occur and internal processes 

such as metabolism may no longer work as required. The correct temperature can be found on a 

gradient, with values too low and too high both being detrimental to creature survival. Somewhere 

in between lie values that are sustainable, although some of these values may still produce better 

results than others. Some of these homeostasis-parameters are very strict. For instance, the human 

blood pH-value is kept within a narrow range: 7.37 to 7.43, with an ideal value of 7.40.45 Any 

deviation outside this band triggers a range of internal problems that will lead to an untimely death 

if left unattended. To offset these problems, the organism experiences internal drives, it needs to 

detect that something bad is going on, and it must then act upon this if it is to survive. However, 

actions themselves also require the expenditure of resources. This means that any organism that 

undertakes action automatically risks disruption of homeostasis if it undertakes that particular action 

for a time without being compensated for this resource loss with a gain, or at least a draw, in 

survivability. Actions are detrimental to homeostasis unless they somehow benefit the homeostatic 

balance. 

                                                 
43 Craig, A.D. (2003). A new view of pain as a homeostatic emotion. Trends in neuroscience 26 (6) 303-307. 
44 Damasio A. & Carvalho G.B. (2013). The nature of feelings: evolutionary and neurobiological origins. Nature 

Reviews Neuroscience 14 (2) 143-152. 
45 Lewis, James L. III (October 2013). Acid-base regulation. 

http://www.merckmanuals.com/professional/endocrine_and_metabolic_disorders/acid-

base_regulation_and_disorders/acid-base_regulation.html?qt=&sc=&alt. The Merck manual (retrieved 2 June 2014). 

http://www.merckmanuals.com/professional/endocrine_and_metabolic_disorders/acid-base_regulation_and_disorders/acid-base_regulation.html?qt=&sc=&alt
http://www.merckmanuals.com/professional/endocrine_and_metabolic_disorders/acid-base_regulation_and_disorders/acid-base_regulation.html?qt=&sc=&alt
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 To make matters worse, inaction will also automatically lead to homeostasis disruption in all 

organisms.46 This is due to the fact that all organisms have some form of metabolism where they 

convert chemical compounds or photons, henceforth referred to as nutrients, into energy. These 

nutrients are required for DNA-replication and for the repair of DNA-damage caused by 

environmental factors. This not only serves to sustain the current individual, but is also required for 

cellular growth as well as ensuring the long-term survival of the DNA through procreation as any 

creature not procreating will eventually die out. 100% Efficiency in this conversion is impossible 

due to the random damaging environmental factors that force the need for reparation, as well as the 

physical impossibility to transmute one nutrient into another without at least some loss of energy. 

As perhaps is most fittingly expressed through the law of conservation of energy, the internal 

processes of the organism itself, combined with the impossibility of attaining 100% efficiency, will 

cause internal homeostasis to be disrupted as nutrient availability without outside influx will dry up. 

Enduring inaction will therefore inevitably prompt organism-action if it seeks to survive, otherwise 

internal and external factors can and will disrupt internal homeostasis and through that process send 

the organism on a path towards death. 

 Avoidance of death is something strongly promoted by natural selection. So strongly even, 

that death without procreation could be considered the antithesis to evolution: any DNA that has 

evolved and still exists today has had to implement a mechanism that counteracts the death-process 

or it would simply no longer be around. To maintain their internal homeostasis, organisms have 

internal negative feedback loops that detect deviations and activate countermeasures.47 As 

mentioned, organisms are constantly depleting their internal environment, this means that the 

eventual tools for correcting homeostatic disruption need to come from the external environment. 

On the other hand, external environments can also disrupt internal homeostasis if they are 

sufficiently hostile. It is therefore vital that the organism has a way of mitigating detrimental 

environmental factors and seeking out helpful environments. If an environment is too hot or too 

cold, maintaining internal homeostasis becomes too difficult and the organism needs to undertake 

action to counteract this imminent threat. Even an environment that contains a high concentration of 

nutrients can be problematic, as many nutrients can be toxic in high quantities.48 However, when 

                                                 
46 Some mosses, seeds and micro-organisms can lie dormant for millennia, waiting for circumstances to improve, but 

eventually even they will succumb to randomly occurring damage. 
47 Craig, A.D. (2003). A new view of pain as a homeostatic emotion. Trends in neuroscience 26 (6) 303-307. 
48 Hathcock, J. N. (1989). High nutrient intakes – the toxicologist's view. Symposium Upper limits of nutrients in infant 
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any internal balance is disrupted, an organism can also use outside help to restore internal 

homeostasis. For instance, when the organism is becoming dehydrated to the point where damage 

will start to occur, it becomes important for it to acquire water. So much so that the risk of death due 

to the need for water may overwrite the need to avoid other potentially lethal hazards.49 It becomes 

essential for an organism to take risks. After all, any undertaken action includes the risk that it is 

more detrimental to homeostasis than the benefits it provides, not only through aversive external 

effects, but also through a higher degree of resources spent. The mechanism through which action is 

promoted and this homeostasis-oriented action-taking is encouraged, is called reward and 

punishment. It serves as a translation between internal needs and external factors, as well as driving 

internal motivation to change external factors to more beneficial or less detrimental ones. It is likely 

that feelings have arisen in this context of maintaining homeostasis.50,51  

 Homeostasis seems therefore to be the perfect foundation for connecting actions to their 

internal consequences and providing them with value. Serious disruption of internal homeostasis 

brings the ultimate consequence for any organism, death, while the restoration of homeostatic 

parameters to their proper range increases survival. Evaluating the impact of actions on homeostasis 

is therefore vital to organisms and absolutely central to adaptation during an organism’s lifetime. 

Monitoring internal homeostasis and making connections between homeostatic disruptions and 

external factors as well as organism-actions therefore allows organisms to attach consequence to 

their actions and with it evaluate them. With these evaluated actions they can start taking informed 

decisions, in other words they can now learn from their actions through a method both quicker and 

more efficient than natural selection and organism death. 

 

Reward learning in single-celled organisms 

To illustrate the importance of combining external input with valued judgement on the basis of 

homeostasis, let us return to some of the smallest and least intelligent organisms on the planet. 

Bacteria are generally not considered intelligent and most people are only familiar with their 

generational methods of adaptation, i.e. strict mutation and natural selection. However, even these 

                                                 
formulas (November 7-8, 1988) 1779-1784. 

49 The case of the drinking wildebeest and the crocodile lying in wait comes to mind. 
50 Damasio A. & Carvalho G.B. (2013). The nature of feelings: evolutionary and neurobiological origins. Nature 

Reviews Neuroscience 14 (2) 143-152. 
51 Craig, A.D. (2003). A new view of pain as a homeostatic emotion. Trends in neuroscience 26 (6) 303-307. 
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single-celled organisms have an internal homeostasis to maintain and it seems therefore likely that 

they have a way of adapting to circumstances during their own lifetime.  

 

As discussed in the section on Artificial Intelligence, adaptability boils down to four basic points: 

 

 A “being” must be capable of interaction with its environment (requiring some form of 

perception and some means of altering itself or the environment),  

 A “being” must be capable of evaluating its interactions with the environment, 

 A “being” must be capable of storing these valued interactions, (more commonly known as 

having a “memory”), 

 A “being” must be capable of adjusting its interactions based on these values attained 

through previous interactions/perceptions (more colloquially known as “learning”). 

 

All these four requirements are requirements posed by natural selection upon any being that seeks 

to survive long enough to procreate. Being adaptable is what evolution is all about and interaction 

with the environment is very important. Any organism that seeks to adjust its interactions with the 

environment to increase its odds of survival, needs to perceive non-lethal input from the 

environment and then execute a, hopefully appropriate, response. However, it is important that any 

organism that wants to adjust to its environment, is also capable of assigning meaning to the signals 

it picks up from both the environment as well as internal signals. This is a mechanism so crucial, 

even simple bacteria use it, not just through the passing on and exchange of genes that has already 

been discussed in Chapter 1, but even through direct environmental monitoring. Although I will 

discuss bacteria, members of the Prokaryote domain, the following also applies to unicelled 

organisms that fall under the Eukaryote domain, the same domain that humans, plants, animals and 

algae fall under. I have decided to stick with bacteria in the coming section in part because it makes 

for an easier read. Much more importantly though, I want to show that adaptability, reward and 

punishment is something that is shared by all life, not just the Eukaryotes. With this, I hope to evade 

the exceptionalism that has plagued the Philosophy of Mind, Intelligence and AI, where humans, 

great apes, primates and mammals have all been ascribed special and unique properties at one point 

or another that are hard to maintain when compared to supposedly out-group species. 
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Interpreting external signals is fairly straightforward for single-celled organisms. An environmental 

signal signifies something that either: 

 

 increases your chances of dying, a negative signal, or 

 increases survivability, a positive signal, or 

 does neither, a neutral signal.  

 

It seems therefore obvious that bacteria judge incoming signals on two vectors: a positive effect 

value and a negative effect value. For single celled organisms and organisms without a distinct 

neural net, sensations and reward signifiers are basically the same thing. So much so that 

constructing sensors for chemicals or other potential signals that do not carry a positive or a 

negative connotation could be considered redundant and a waste of resources from an evolutionary 

standpoint.52 Further down the line I will discuss why neutral signals will still be picked up by 

organisms, but for now it is useful to note that good and bad are rooted in the very foundation of 

life: good at its best promotes life, bad at its worst terminates it. Neutral signals require no 

particular change in behaviour, while signals that signify danger require a quick opposing response 

(such as rapid motion in the opposite direction of the signal). Signals that signify beneficial 

environments (such as food) require approaching responses. 

 

As already stated, bacteria need to maintain internal homeostasis like all living organisms. As only a 

thin membrane separates their vulnerable internal mechanisms from the outside world, monitoring 

change in their environment is very important. They need to be able to detect danger, or positive 

circumstances, so they can adjust their behaviour accordingly. There is plenty of scientific evidence 

that they indeed do this. Bacteria capable of movement, respond by altering their movement 

patterns when they detect changes in temperature, light, salinity, oxygen and specific metabolites 

and other signalling molecules. Movement in response to the last is called chemotaxis.53  

 In order to respond to chemical stimuli, bacteria developed one of the first senses, perhaps 

the first sense altogether: a sense of smell. Receptors on the outside of the membrane are capable of 

                                                 
52 Gottfried, J.A. (2011). Preface. In: Gottfried, J.A. (ed.). Neurobiology of Sensation and Reward (Chicago, 2011). 
53 Baker M.D., Wolanin, P.M. & Stock, J.B. (2005). Signal transduction in bacterial chemotaxis. BioEssays 28 (1) 9-

22. 
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binding chemical molecules in the environment and can then release intracellular communication in 

a way very similar to our own.54 However, due to their respective size in comparison with the size 

of the molecules they are sensing, bacteria are often too small to adequately measure particle 

density with their limited surface area. There is simply not enough room to fit the required amount 

of sensors to accurately detect concentration densities at this scale, let alone being able to detect 

gradient differences between one side of the bacterium and the other. To make matters worse, the 

random fluctuations in concentrations of chemicals at the bacterial size-scale is impractically high, 

making it near impossible for bacterial “senses” to detect which way avoids death by a single 

measuring moment in time.55 Due to size restrictions, bacteria seem unable to reliably tell which 

way is safer or more beneficial and yet it is obvious from their behaviour that they reliably move 

away from danger and towards attractive stimuli. However, this paradox only occurs when one 

assumes that bacteria are incapable of comparing changes in their environment across time-

intervals.  

 Research has uncovered that bacteria possess mechanisms for the detection of temporal 

gradients, that is to say, they are able to compare concentrations of signal transmitters over a time 

interval and then evaluate whether the new situation is an improvement or not.56 Many motile 

bacteria57 possess two basic modes of movement: a coordinated, mono-directional burst of 

movement and a “tumble” mechanism that rotates them into a random new direction.58 When they 

are present in an environment with a uniform distribution of a positive signifier, no matter the 

concentration, they will alternate between movement along an almost straight line and random 

tumbling at a default rate.59 This is their normal state, it is required for the detection of changes as 

well as more straightforward survival: as has been mentioned, permanent internal homeostasis is 

                                                 
54 Gottfried, J.A. & Wilson, D.A. (2011). Chapter 5: Smell. In: Gottfried, J.A. (ed.). Neurobiology of Sensation and 

Reward (Boca Raton, 2011). 
55 Magnab, R.M. & Koshland, D.E. Jr. (1972). The gradient-sensing mechanism in bacterial chemotaxis (temporal 

gradient apparatus/stopped-flow/S. Typhimurium/motility tracks/memory). Proceedings of the National Academy of 

Sciences of the United States of America 69 (9) 2509-2512. 
56 Magnab, R.M. & Koshland, D.E. Jr. (1972). The gradient-sensing mechanism in bacterial chemotaxis (temporal 

gradient apparatus/stopped-flow/S. Typhimurium/motility tracks/memory). Proceedings of the National Academy of 

Sciences of the United States of America 69 (9) 2509-2512. 
57 Bacteria with the ability of self-propulsion. 
58 Chatterjee, S., da Silveiram R.A. & Kafri, Y. (2011). Chemotaxis when bacteria remember: Drift versus diffusion. 

PloS Computational Biology 7 (12) Special section 5. 1-8. 
59 Magnab, R.M. & Koshland, D.E. Jr. (1972). The gradient-sensing mechanism in bacterial chemotaxis (temporal 

gradient apparatus/stopped-flow/S. Typhimurium/motility tracks/memory). Proceedings of the National Academy of 

Sciences of the United States of America 69 (9) 2509-2512. 
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impossible for life forms, they always consume energy and so must find new energy to replenish the 

old. This provides an internal drive to undertake action. 

 However, when introduced to a higher concentration of the same positive signifier, bacteria 

will change their behaviour: they increase the lengths of their mono-directional burst, which results 

in less frequent random tumbling. The same occurs when they detect a lowering concentration of a 

negative signifier. This increases their movement towards the positive signifiers and away from the 

negative ones. When bacteria are introduced to a lower concentration of positive signifiers, or a 

higher concentration of negative signifiers, they will instead shorten the duration of their straight 

runs, which results in more frequent tumbling to change direction until a more beneficial 

concentration is detected60. The combination of these two factors leads to bacteria moving 

effectively towards a positive signifier and away from negative signifiers, as they rapidly change 

direction when their current direction leads to a negative temporal gradient, while staying more true 

to their direction when a positive temporal gradient is detected. Once their changed movement 

method no longer appears to provide any advantage, that is to say, when they no longer detect any 

temporal changes in positive or negative signifiers, bacteria revert to their normal state of straight 

runs and random tumbles.61 Bacteria, in other words, compare the old situation to the new and 

decide whether it has improved, has grown worse or has stayed the same and then adjust their 

behaviour accordingly. This is another vector of adaptability: bacteria keep track of value-changes 

over time which requires them to temporarily store a survival value, interact with the environment, 

compare the two values and then adjust their behaviour accordingly. So far, this is done on 

predetermined avoidance and approach signifiers, but no permanent learning of the living organism 

is yet involved. Adjustment of approach or avoidance on the basis of negative or positive signifiers 

taken across a time-differential, is a very basal form of adaptation present in bacteria. 

 All well and good, bacteria are able to adjust, but this does not cover the whole range of 

their reward-sensing apparatus. It can actually learn as well and by a much quicker method than 

genetic exchange and mutation. Research has uncovered that bacteria prefer environments that 

“smell” like the environment in which they grew up.62 The chemical signals of their original 

                                                 
60 Chatterjee, S., da Silveiram R.A. & Kafri, Y. (2011). Chemotaxis when bacteria remember: Drift versus diffusion. 

PloS Computational Biology 7 (12) Special section 5. 1-8. 
61 Magnab, R.M. & Koshland, D.E. Jr. (1972). The gradient-sensing mechanism in bacterial chemotaxis (temporal 

gradient apparatus/stopped-flow/S. Typhimurium/motility tracks/memory). Proceedings of the National Academy of 

Sciences of the United States of America 69 (9) 2509-2512. 
62 Gottfried, J.A. & Wilson, D.A. (2011). Chapter 5: Smell. In: Gottfried, J.A. (ed.). Neurobiology of Sensation and 
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environment, even when they don't signify any particular positive effect as expressed by the DNA-

code that stores the information of generations past, are preferred over other neutral signals. The 

bacterium has learned to associate these chemical signals with a positive thing, presumably a safe 

and stable environment (something that occurs in macroscopic organisms as well). As a 

consequence, the response each individual bacterium displays to any given signal depends on the 

history of that particular cell.63 Bacteria are also capable of learning new smells. Neutral signals that 

coincide with the occurrence of reward signifiers, can take on the value of those reward signifiers 

themselves, becoming positive or negative signifiers in the process.64 This process of learning is 

fundamental in the survival of motile bacteria and the main reason for detecting neutral signals. 

Bacteria are capable of long-term evaluation of new chemicals, based on their interactions with the 

environment and pre-established valued chemicals. An impressive feat suggestive of a rudimentary 

learning that can certainly be qualified of bare-bone adaptability.  

 However, it is also suggestive of something deeper. Rather than a one on one, 

straightforward coupling of reward signifiers with the corresponding good or bad, it seems that 

bacteria are capable of decoupling chemical sensing and the values attached to the sensed 

chemicals. It appears that they instead have mechanisms to signify good or bad, that are separate of 

the chemicals they give value. Although I have been unable to find this mechanism, it seems that 

external signifiers are mapped to this “reward matrix”. The presence of a separate reward-system 

seems established even in these relatively simple life forms. Bacteria are not just capable of 

detecting whether change occurs, or even whether it is beneficial or detrimental, they are even 

capable of adjusting their evaluation based on training. This means that the four component parts of 

adaptability (interaction, evaluation, meaningful memory and action-adjustment) are indeed all 

present even during bacterial lifetime adaptability. The evaluation, or “meaning-giving” component 

of the stored information appears to reside in a reward and punishment matrix that has, as of yet, 

remained unidentified.  

 

  

                                                 
Reward (Boca Raton, 2011). 

63 Baker M.D., Wolanin, P.M. & Stock, J.B. (2005). Signal transduction in bacterial chemotaxis. BioEssays 28 (1) 9-

22. 
64 Gottfried, J.A. & Wilson, D.A. (2011). Chapter 5: Smell. In: Gottfried, J.A. (ed.). Neurobiology of Sensation and 

Reward (Boca Raton, 2011). 
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Reward and change 

Perhaps now the question arises: what about rewards signalling that the current state is stable and 

good? There is no reward-signal mentioned for this in the bacterial example above. Whether in a 

homogenous environment of positive signifiers, or one of negative signifiers, bacteria do not adjust 

their behaviour from the norm. Instead they tumble and swim about with their regular pattern. It is 

only when they are introduced to a change over time, that they adjust their behaviour to enhance or 

counteract this change, depending on its nature.65 The explanation for this is simple. 

 As mentioned previously, organisms need to maintain internal homeostasis. This 

homeostasis is the norm, it is normal and should not change. This means that initial internal change 

is bad. An organism whose food stocks are dwindling, or whose pH-value is increasing, or who 

suffers from any other deviation from the norm, is experiencing a negative change. This negative 

change has an absolute negative value: if it persists, it increases chances of death. To prevent these 

deviations, organisms have internal negative feedback mechanisms that are triggered when their 

homeostasis is disrupted. This mechanism sets in motion changes that counteract the imbalance. If 

the mechanisms somehow exacerbate the matter, they are bad as they increase the chance of death. 

However, if they manage to restore the original homeostasis, their change is good as they promoted 

survivability. Although death is absolute, the perception of organisms of things bad or good is 

always referring to change, and the threat thereof, in internal homeostasis over time.  

 This means that feedback mechanisms only operate when there is a change on which to act. 

They are alerted by a negative reward-signal when the situation is getting worse, the part of the 

organism that gives off this signal is usually counted as part of the feedback mechanism, while they 

are encouraged by a positive reward-signal when the situation is improving. When the current 

situation is stable and no change is required, there is no signal to give because there is no action to 

undertake and the release of reward signals stops through a negative feedback mechanism. Reward 

and punishment, triggered by signifiers and internal disruption, serve a motivating role exclusively 

and do not cause actions in a state of equilibrium such as established homeostasis.  

But why not always strive for perfection in the outside environment? Although internal 

cellular homeostasis is set within near-fixed parameters, external homeostasis is not quite as fixed. 

                                                 
65 Magnab, R.M. & Koshland, D.E. Jr. (1972). The gradient-sensing mechanism in bacterial chemotaxis (temporal 

gradient apparatus/stopped-flow/S. Typhimurium/motility tracks/memory). Proceedings of the National Academy of 

Sciences of the United States of America 69 (9) 2509-2512. 
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As the cellular membrane separates the internal from the external, the external homeostasis can 

differ from the internal necessities as long as the organism is able to cope with the differences 

through internal mechanisms. This means that the external requirements for homeostasis are not 

quite as strict as the internal requirements. Although any organism has a preferred optimum of 

external values, they also have a wide range in which their survival is perhaps not optimal, but still 

good enough. This is a necessity, as, unlike their internal environment, the external environment is 

very difficult to manipulate and the perfect environment may simply not exist. It is therefore 

important that organisms only spend energy on intensive interaction, deviation from the most basic 

actions required to stay alive in a homeostatic environment, when they have an indication that such 

action will have beneficial effect, i.e. when there is something bad to avoid, or something good to 

seek out. In other words: when they are motivated by external signifiers and their internal reward 

system to undertake action. 

 An evolutionary change has allowed organisms a bigger influence on their external 

environment though. Cooperation between cells has greatly increased malleability of the 

environment while also causing a host of new problems. It is through this change that the reward 

systems have taken on a new role. 

 

Communication between cells 

Since their origin, single-celled organisms have had an interesting problem. Due to the nature of 

their breeding, or really that of any breeding organism, a successful organism in a suitable 

environment is unlikely to find itself alone for very long. Due to cytokinesis, the division of a single 

full-grown bacterial cell into two new bacterial cells, bacteria often find themselves living close to 

other cells of the same species and often even the same genetic make-up. This leads to various 

problems, such as the rapid depletion of required resources and the production of potentially 

harmful amounts of unusable waste products. Furthermore, reward-signifiers become harder to 

detect when isolated by layers of other organisms and their absorption of the signals. Many motile 

bacteria and protozoa66 therefore take action to create some distance between themselves and other, 

competing bacteria.  

 However, this is not always the case. Several single-celled organisms that we know of are 

                                                 
66 Single-celled organisms belonging to the Eukaryotes, rather than the Prokaryotes-group. 
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known to form clusters on occasion, or even habitually. According to the fossil record, this type of 

multicellularity has occurred in prokaryotes and eukaryotes for several billion years.67 This can be 

explained through the fact that there are circumstances in which living in a group of likeminded, or 

even identical individuals can be beneficial. One of these advantages is that organisms living in a 

group can exert greater pressure on their environment. The combined output of millions of bacteria 

is guaranteed to make more of an impact than that of individual bacteria.68 Clustering together can 

make cells less vulnerable to predators, it can help them conserve nutrients, it also allows them to 

divide labour, or even expands their range of metabolic opportunities.69 Another advantage is that 

living in a group with likeminded individuals can also provide an early warning system as long as 

the individual cells know the signs to look for. This leads to improved environmental detection. 

Living in a group, chemical signals could be used to warn of deadly threats that provide very little 

warning of their own. Even threats so aggressive and stealthy that they are already demolishing the 

outlying cells can now be signalled, as long as the signals are able to outpace the damaging factor. 

The key to survival in a group is therefore communication and in unicellular organisms capable of 

forming clusters a large part of their sensing apparatus seems indeed geared towards intercellular 

communication.70 This section deals with setting up meaningful interactions between individual 

cells and it can be kept relatively short, because it is really not that complicated. 

 

Meaningful communication between micro-organisms 

Every single-celled organism absorbs nutrients and signifiers from the environment, while releasing 

left-over chemicals. As signifiers are also simply chemicals, and bacteria are quite capable of 

picking these up, the most primitive mechanisms for inter-organism communication was already in 

place before communication was most likely attempted. Communication likely started by an 

accidental repurposing of the chemo-sensory array and the associated reward-signalling mechanism 

to analyse waste-products of organisms of the same species or different species. Their increased 

presence indicates increased organism-density, which can be a positive or negative factor depending 

                                                 
67 Grosberg, R.K. & Strathmann, R.R. (2007). The evolution of multicellularity: a minor major transition? Annual 

Review of Ecology, Evolution, and Systematics 38. 621-654. 
68 Park, S., Wolanin, P.M., Yuzbashyan, E.A., Silberzan P., Stock, J.B. & Austin R.H. (2003). Motion to form a 

quorum. Science 301 (5630) 188. 
69 Grosberg, R.K. & Strathmann, R.R. (2007). The evolution of multicellularity: a minor major transition? Annual 

Review of Ecology, Evolution, and Systematics 38. 621-654. 
70 Baker M.D., Wolanin, P.M. & Stock, J.B. (2005). Signal transduction in bacterial chemotaxis. BioEssays 28 (1) 9-

22. 
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on the needs of the individual so it makes sense for this survival mechanic to start monitoring this. 

It seems logical that, for instance, the waste-product of a successful metabolism of nutrients became 

a positive indicator of nutrients in the environment, while the waste-products of cellular damage 

and repair became an indication of danger. Through their ability to distinguish chemicals, cells 

became capable of detecting warning signs generated by other organisms. Thanks to their internal 

reward/punishment matrix, combined with environmental information (other signifiers), cells were 

capable of grounding them with meaning. Organisms particularly adept at generating and 

perceiving these warnings as well as understanding them, had a greater adaptive value, letting them 

procreate more effectively and outcompete the organisms that did not. Eventually, cells became 

quite capable of communicating with other cells through chemical signalling. The internal 

consequences of external signals allowed the cells to give value to the signals of other cells and 

therefore ground them with survival-meaning: positive or negative signifiers on one or more 

homeostatic axons. 

 

Meaningful communication within macro-organisms: the development of neurons and the 

brain 

Even in groups of single-celled organisms, signalling is fairly straightforward. Releasing chemicals 

into the surrounding environment functions as a communication mechanism between individual 

cells within groups. However, the real communicational challenges and opportunities arose when 

some cells started a closer cooperation, with the evolution of organisms that were composed of a 

multitude of differentiated cells working tightly together for their common survival. Although it is 

still unsure through which mechanisms single-celled organisms gave rise to complex71 

multicellularity, the fact of the matter is that it did, and on several occasions to be precise.  

 Multicellular organisms arose from single-celled organisms on at least 25 separate 

occasions.72 However the rise of complex multicellular organisms with a differentiated cellular 

structure is much rarer, having only arisen a handful of times on separate occasions. Examples of 

separate groups of multicellular life forms are plants, insects and animals, who have each evolved 

                                                 
71 “Complex” multicellularity refers to organisms composed out of differentiated cells, in contrast to for instance 

biofilm producing grouping single-celled organisms that live in groups. 
72 Grosberg, R.K. & Strathmann, R.R. (2007). The evolution of multicellularity: a minor major transition? Annual 

Review of Ecology, Evolution, and Systematics 38. 621-654. 
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from a different lineage.73 As complex multicellularity provides several interesting evolutionary 

advantages, such as size, functional specialization and division of labour, it is somewhat surprising 

that only a handful of lineages have persisted and branched out.74 An important factor in achieving 

complex multicellularity is establishing meaningful and expedient communication between cells of 

different types and functions. 

 For cells cooperating in a single complex organism, the feedback loop between the cellular 

death of one cell and the death of another is not so strong as among uniform multicellular 

organisms. Although harm may befall some cells in an organism, this does not spell immediate 

doom to others, it may even be required for the survival of the organism. Multicellular organisms 

even feature mechanisms that allow for programmed cell death, a suicide trigger that forces cells to 

sacrifice themselves for the benefit of the group.75 Malfunction of this mechanism is one of the 

problems in cancerous growth, showing the importance of individual cell death in complex 

multicellular organisms. It is therefore adamant that a mechanism is created that directly mediates 

between the survival of single cells and the ability to accept some cellular damage for greater gains. 

The complex organism that is composed of these single cells requires valued detection of the 

outside world and internal problems on a scale that surpasses single-cell survival. This new 

evaluation-mechanism is rooted in two forms of cellular communication. The first is a form that 

was already prevalent amongst the single celled organisms: communication through chemicals 

released into a plasma that connects individual cells. The second technique is new: some cells 

specialised into oblongated, sensory cells whose only purpose became to detect danger and distress 

on a level higher than that of single cells and then rapidly communicate this to other cells for 

adequate action. These cells, the first primitive neurons, are the ancestors of all neural systems. 

As discussed above, cells in a multicellular organism have the individual ability to register 

and evaluate aspects of their surroundings that they have inherited from their unicellular ancestors. 

However, cells within multicellular organisms have the challenge of a varied exposure of cells to 

external and internal environments. On the other hand, complex multicellular organisms provide the 

opportunity for cells to specialise and one of these possible specialisations is dedication to sensory-

                                                 
73 Grosberg, R.K. & Strathmann, R.R. (2007). The evolution of multicellularity: a minor major transition? Annual 

Review of Ecology, Evolution, and Systematics 38. 621-654. 
74  Grosberg, R.K. & Strathmann, R.R. (2007). The evolution of multicellularity: a minor major transition? Annual 

Review of Ecology, Evolution, and Systematics 38. 621-654. 
75 Grosberg, R.K. & Strathmann, R.R. (2007). The evolution of multicellularity: a minor major transition? Annual 

Review of Ecology, Evolution, and Systematics 38. 621-654. 
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functions: detection of potential death and survival signals at the organism scale.76 Neurons are one 

such a specialisation. These specialised cells have taken over the function of detection and long-

distance communication that requires a certain degree of speed, as well as greater accuracy. 

Through the net formed by neurons, signals from one part of the body can quickly travel to another 

part of the body, enhancing organism survival through greater speed.  

 When thinking of neurons, it is easy to think of only the brain, but no brain is required for 

neurons to function on a basic level. Neurons came first, the brain came second and in fact a large 

number of species function with neuron cells, but without a central governing neuron organ. Many 

complex organisms in fact do not even have a centralised nerve system, such as members of the 

Cnidaria, which includes jellyfish. These creatures instead possess a diffuse network of neural 

connections, allowing cells in one part of the body to communicate and cooperate with cells located 

elsewhere in a rudimentary fashion. These communications allow for simple approach and 

avoidance behaviour, but it's hard to establish if the organism has any kind of integrated “feeling” 

experiences beyond the cellular level.  

  From the above it follows that not all neurons are brain-neurons. An example of non-brain 

neurons are sensory neurons, such as those specialised in photoreception or chemoreception. 

Sensory neurons bear cilia or microvillar structures on their surfaces, which are connected to 

complex membrane structures. They detect the outside environment through means that are strongly 

reminiscent of those applied by bacteria, but they then communicate by electrical potential through 

synapses located on their axons (long tail-like structures, part of the neurons body, that allow the 

signal to be transported far away before being transmitted to other neural cells) or via synapses to 

adjacent neural cells.77  

 Interestingly enough, these communications still require chemical communications to work. 

Although neurons build up an electric potential across their body, most of the actual communication 

from neuron cell to neuron cell across synapses is mediated by the release of chemicals called 

neurotransmitters. These neurotransmitters are what prompt neurons to undertake or abstain from 

                                                 
76 Jacobs, D.K, Nakanishi, N., Yuan, D., Camara, A., Nichols, S.A. & Hartenstein V. (2007). Evolution of sensory 

structures in basal metazoa. Integrative and Comparative Biology 47 (5) 712-723. 
77 Jacobs, D.K, Nakanishi, N., Yuan, D., Camara, A., Nichols, S.A. & Hartenstein V. (2007). Evolution of sensory 

structures in basal metazoa. Integrative and Comparative Biology 47 (5) 712-723. 
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action.78,79 

As complexity increases, it becomes harder and harder for cells that experience the benefits of a 

particular action to communicate this to the cells responsible for the action. For instance, cells that 

are being overheated will have trouble rewarding the brain-neurons responsible for alleviating the 

pain by applying cooling water. The old method of simply dumping their rewarding chemicals into 

the surrounding liquids in the hopes of them reaching the to-be-rewarded cells, has two major 

drawbacks: 

 

 It is slow. This can lead to a dissociation between the actual beneficial act and the evaluating 

reward. Without adequate coupling between the two, negative or positive actions will not be 

properly signalled or reinforced, which disables the adaptability requirement of proper 

evaluation. It is also quite possible for cells to receive the wrong message, encouraging or 

discouraging them to undertake actions that were not meant to be valued, resulting in a kind 

of anti-adaptability. 

 It is inaccurate. Not just the cells and pathways responsible for the beneficial action may be 

rewarded, but cells and actions that have nothing to do with the positive effect are reinforced 

as well. This is undesirable, as it makes it impossible to specialise the beneficial behaviour. 

Do note, that to some extent this still happens, even in a centralised nervous system with a 

dedicated reward system. 

 

So reward, the cellular representation of survival value, needs to be dealt out more accurately and in 

a much speedier manner when distributed within a complex multicellular organism. Otherwise 

beneficial action by a group of neurons in the brain will be unrewarded or wrongly rewarded and 

therefore unvalued or valued improperly. To mediate between signals from remote parts of the body 

and the brain neurons responsible for actions, the new neuronal network developed a specialisation. 

Some neurons became tasked with dealing out positive and negative signalling chemicals to other 

neurons in appropriate situations, representing the body experience in the brain. These chemicals 

and the connections they enforce are, in my view, the basis for our experience of reward and 

                                                 
78 Fields, R.G. & Stevens-Graham, B. (2002). New insights into neuron-glia communication. Science 298 (5593) 556-

562. 
79 Kalat, J.W. (2004). Biological Psychology; 8th Edition (Belmont, 2004) 53-58, 60-61. 
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punishment. From both an evolutionary and an ontogenetic perspective, this experiential aspect of 

body-representation in the mind can be considered the lowest level of both mind and consciousness, 

as it provides an integrated bodily experience in the brain.80  

 

Conclusion 

Thanks to cellular evaluation-systems, single-celled organisms are motivated to take actions or 

cease taking actions. This evaluation takes place on the basis of homeostasis. Maintaining 

homeostasis is required for survival, while letting a disrupted homeostasis go unmanaged will result 

in death. By combining homeostatic measurements with interactions with the environment and 

storing the now valued results, it becomes possible to create meaningful connections that are 

ultimately rooted in the survival/death paradigm that dominates evolution. Successful mapping of 

external events to internal consequences grants even microscopic organisms the ability to attach 

value to new signifiers. In other words, they become capable of learning on a very rudimentary 

level. To support this learning, single-celled organisms are equipped with a mechanism that 

evaluates the impact of environmental signifiers by making valued connections with homeostatic 

disruptions and with other already valued environmental signifiers. Due to this mechanism, single-

celled organisms can assign survival values to previously meaningless external signals. It is through 

this method of connecting external events to internal consequences that single-celled organisms are 

able to adapt to changing circumstances during their lifetime rather than by the less direct natural 

selection mechanism. In essence, it provides a bare-bone adaptability that goes beyond random 

chance. Being able to make valued connections (evaluation) between external signals and organism 

actions (interaction) appears to reside in the necessity for organisms to maintain homeostasis. By 

monitoring homeostasis, an organism can evaluate the outcome of actions that would otherwise 

require the final evaluation: natural selection through death of the ill-adjusted.  

 Due to the nature of homeostatic monitoring and the necessity of recognising and valuing 

signifiers that are not pre-valued in the DNA-code, the reward/punishment signal is presumably 

separated from the received signifiers. This microscopic ability for attaching value to signifiers also 

allows for macroscopic valued feedback between single-celled organisms living in groups, as well 

as the differentiated cells present in complex multicellular life. Cells can now communicate among 

                                                 
80 Damasio A. & Carvalho G.B. (2013). The nature of feelings: evolutionary and neurobiological origins. Nature 

Reviews Neuroscience 14 (2) 143-152. 
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one another by interpreting the chemical signals that they release and grounding them on the 

internal meaning provided by their own homeostatic evaluation. In the development of complex 

multicellularity, a new type of communication cell was differentiated: the neuron. These neurons 

were capable of making connections amongst each other and centrally directing organisms by 

steering coordinated actions between groups of cells. In order to do so, they developed the ability to 

motivate other cells into action, a motivation quite possibly reliant on the already present 

reward/punishment matrix and definitely dependent on chemical signalling. Although neurons 

famously transmit their information along their cellular body through electricity, any 

communication between neurons instead comes down to the exchange of chemical signals called 

neurotransmitters. These neurotransmitters allow cells to communicate amongst each other in a 

meaningful way, enabling them to encourage or discourage action (such as the firing of a neuron) 

under particular circumstances. This allowed for a new level of adaptability, but also required a new 

level of organisation. The next chapter deals with this new organisational level: reward and 

punishment in organisms with brains. 
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Chapter 3: Reward and the Brain 

 

When humans act, they often do so because they feel the drive to do so. Unlike computer programs, 

which automatically and unequivocally act according to their software protocols because they must, 

humans act because they, at one level or another, want to. They have been motivated to undertake 

actions and from the results of these actions they learn what to do better in future situations. Unlike 

computer actions, which are set in stone and often not open to any kind of value judgement, human 

actions have to be linked to values in order to be adaptive.  

 When humans learn, they can do so passively or actively. Passive learning occurs at a mostly 

subconscious level and is strongly dominated by rewards and punishments experienced as the result 

of, or in co-occurrence with, actions. Humans do not even need to be consciously aware of these 

signifying factors for them to still play a role in their learned behaviour. Motivation, driven by 

reward and punishment, therefore plays a key role in passive learning. Active learning, on the other 

hand, is a much more conscious experience. When it comes down to memorising a list of German 

verbs or learning how to fix your car by watching instructional videos posted on YouTube, 

conscious motivation plays a central role. Knowledge that failure to learn the verbs may for instance 

result in a bad grade in school or communication errors with a vital business partner can produce 

negative, or avoidance motivation. On the other hand, knowing that learning to fix your car can 

save a lot of money on repairs or allow for a purposeful pastime can provide positive, approach 

motivation. Fear of the consequences of failure and the anticipation of the benefits of success are 

the motivating factors for undertaking action and deciding which action to take.  

 As learning is an important part of our intelligence, the crucial part in my view as explained 

in Chapter 1, and evaluation is crucial to determining what to learn and why, reward and 

punishment play a very large role in human intelligence. After exploring the implementation of 

positive and negative evaluation at the cellular level, it now is time to explore reward and 

punishment at the organism level. It will come as no surprise that the organ most involved with 

reward is also the organ widely regarded as the seat of our learning intellect: the brain. So how does 

processing reward benefit from the presence of a brain? Centralised information processing, 

combined with a comparative function, can allow complex organisms to make complex choices 

based on the multitude of reward signifiers they detect. The brain provides the ability to integrate 

information from multiple sensory organs and can, through reward learning, establish reward-
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expectancy. Due to the fact that a brain allows for projection over time, more commonly known as 

the ability to plan (no matter how weakly developed in some organisms), it can also decide not to 

engage in reward-driven behaviour by postponing it to a later moment or abandoning it entirely if 

other options also offer motivation. In the most limited case, a centralised brain allows merely for 

the selection among several rewarding alternatives, in a wider case, the brain can make long term 

decisions based on current and prospective rewards and punishments. In the more extreme cases, a 

brain can even use the meaning provided by reward to give meaning to experiences far removed 

from the primitive death/survival paradigm it has been founded on, such as appreciating music or 

architecture.81 In the following chapter, I will discuss how this is possible. 

 

Language use 

“Feelings” and “emotions” are terms that often come up when discussing reward outside of a 

Behaviourism-context. I will use these terms because I do not agree with Behaviourism, which has 

fallen into disfavour in the academic world. In fact, I think that humans are not the only type of 

animal to experience emotions and have feelings: other animals with central nervous systems 

almost certainly experience them as well. I believe this to be the case based on the large overlaps in 

both physiological make-up (which I will provide some evidence for in the section on Reward in the 

Brain) and behavioural components which are too similar to be ignored. That said, there is of course 

a chance that animals do not experience all the emotions and feelings we have, experience them 

differently or even experience feelings or emotions we don't have (we know for a fact that many 

animal senses cover different parts of spectra than ours, or are even different senses entirely, such as 

a shark's electro sense). Luckily, only the presence of feelings is required, not their exactly identical 

nature.  

 Regretfully, “feelings” and “emotions” don't have strongly separated definitions in the 

literature. Although the use of the word “emotions” always includes the meaning of “affect”, which 

implies the creature or its actions were affected, the word “feeling” is used more ambiguously: 

sometimes it is used as a synonym to “emotion”, but at other times it is purely used to describe 

“unaffective” sensory input. To put it in other words, emotions “move” the brain while feelings may 

move the brain, but may also simply “inform”. This difference can be illustrated by appealing to 

                                                 
81 Murray, E., Wise, S. & Rhodes, S. (2011). Chapter 4: What can different brains do with reward? In: Gottfried, J.A. 

(ed.). Neurobiology of Sensation and Reward (Boca Raton, 2011). 
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everyone's everyday experience of sight: seeing is generally not experienced as affective, until you 

see something that holds affective value or your eyes are oversaturated with light such as when 

looking directly at a bright light source. Another example, this time from the neuroscientific 

literature, is the possible removal of the unpleasant component from the feeling of pain. It is 

possible to only experience the sensory information that signals pain, without experiencing the 

unpleasant feeling that accompanies it.82 In the following chapter, I will treat feelings as having an 

affective value unless otherwise specified. Non-valued sensations I will call exactly that: sensations. 

The experience of pain and other affective sensations that are usually called feelings, I will refer to 

by the more customary term of “feeling” although they could also be called an “emotion” instead.83 

Due to the nature of the following chapter, which focusses solely on learning through reward and 

punishment, the non-affective “sensations” will be largely left out of the discussion. 

 

Homeostasis 

Just like single-celled organisms, multicellular, complex organisms with a central nervous system 

(CNS) need to maintain homeostasis (see Chapter 2) not just at a cellular level but also at the 

organism level. Because the brain is responsible for most behaviour in CNS-organisms, homeostasis 

needs to be represented in the brain in order to allow adaptability to account for survival values. 

Homeostasis is indeed represented in the brain by brainstem structures that monitor internal 

homeostasis through the bloodstream and lymphatic system, and guide automated internal actions 

as well as activating higher functions when automated action is insufficient for restoring 

homeostasis. A second channel of homeostasis monitoring is provided by the sensory neurons 

distributed throughout the body which, among other things, monitor light intensity and colour 

(external) or signal the occurrence of physical damage (internal). Thanks to the brain's 

representation of homeostasis, there are two prime motivations for human behaviour:  

 

- Internal motivation, which consists of drives such as hunger. Drives are triggered by the 

need to maintain bodily homeostasis which ensures short-term survival, as well as triggers 

that provide more general pro-fitness such as maintaining muscle tissue through use. Drives 

                                                 
82 MacDonald, G. & Leary, M.R. (2005). Why does social exclusion hurt? The relationship between social and 

physical pain. Psychological Bulletin 131 (2) 202-223. 
83 Craig, A.D. (2003). A new view of pain as a homeostatic emotion. Trends in neuroscience 26 (6) 303-307. 
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also take care of such long-term survival necessities such as procreation. Drives require the 

detection of internal homeostatic disruption. A possible example is the reduction of salt 

levels in the bloodstream, which triggers a drive to ingest salt.84 

- External motivation, which consists of incentives such as external signifiers of positive or 

negative factors that require creature action to obtain or avoid.85 External motivation relies 

on detecting advance warnings of imminent internal danger or potential reward that requires 

action. It is an extra layer of adaptability that allows for earlier responses. Although the 

chemical or other triggering signifier comes from an external source, the associated 

motivation comes from within the body. A possible example is the detection of the presence 

of a predator by sight, sound or smell, where the signifier is external, but the drive to avoid 

pain and death is internal. 

 

As discussed in the previous chapter, these two prime motivations are built upon the two primordial 

consequences that underlie all motivated behaviour of living organisms: death and survival. Both 

serve as a grounding point for a variety of rewards and punishments, thanks to their representation 

in homeostasis. Some examples for how they affect our feelings are in order. 

 

The Death-consequence: 

- Pain is the predictor and reward-signal of death. Pain indicates damage, or impending 

damage, at the cellular level as well as the organism level which may pose a threat to the 

physical survival chances of the pain experiencer. The strength of the signal is often an 

indication of the amount of damage sustained and correlates to the increased chance of 

death. Of course the feelings associated with the Death-consequence are not limited just to 

pain. Other feelings include hunger, thirst, temperature and itch, which all act as immediate 

motivators.86 It is worth noting that the experience of pain consists of two separate 

components: the sensation of pain and the affect of pain. While pain sensation is gathered by 

the pain receptors present throughout the body, to inform the brain about ongoing tissue 

damage, the affect of pain harbours the actual motivation part. This is the uncomfortable 

                                                 
84 Gray, P. (2002). Psychology; Fourth Edition (New York, 2002) 188-189. 
85 Gray, P. (2002). Psychology; Fourth Edition (New York, 2002) 188-189. 
86 Craig, A.D. (2003). A new view of pain as a homeostatic emotion. Trends in neuroscience 26 (6) 303-307. 
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feeling that accompanies pain.87 I will come back to this later on. Pain in humans is an 

emotion that motivates behaviour to re-establish homeostasis or at least to prevent further 

damage.88 It functions as a reactive motivator. 

- Fear is an emotion that drives humans to avoid pain and other death-signifiers, and with 

them death. Fear indicates increased chances of pain and is instrumental in avoiding pain, it 

therefore functions as a predictive motivator. It is grounded by being valued through pain, 

which is then grounded in death. 

  

The sight of leprosy-sufferers with their missing fingers, toes, feet, hands or even limbs is all too 

familiar from images encouraging donations to support the treatment of leprosy. What many people 

don't know is the way in which leprosy causes the destruction of body parts: rather than causing 

them to fall off directly, leprosy causes loss of sensation by damaging nerves. The loss of sensation 

that follows from this makes leprosy-sufferers insensitive to those vital warning signs (called pain) 

that prevent and indicate damage to tissue. This leads to secondary infections which do most of the 

visual and structural damage.89 This illustrates the importance of pain-receptors and pain avoidance 

in order to avoid serious damage and death. 

 

The Survival-consequence: 

- Pleasure is the predictor and signifier of survival. Pleasure indicates an improvement to the 

physical survival chances of the organism or its DNA and is grounded in survival and 

procreation. The amount of experienced pleasure is indicative of the survival-value. Pleasure 

is designed to motivate survival promoting behaviour and acts as a reactive motivator. 

Example types of pleasure are a sweet taste when hungry, salt when salt-deprived, and the 

satisfaction achieved through acts of procreation. 

- Attraction is the drive to approach pleasure and with it survival. Attraction indicates 

increased chances of pleasure and it mostly motivates people by the feelings of happiness it 

promises they experience when giving in to that attraction. Attraction functions as a 

                                                 
87 MacDonald, G. & Leary, M.R. (2005). Why does social exclusion hurt? The relationship between social and 

physical pain. Psychological Bulletin 131 (2) 202-223. 
88 Craig, A.D. (2003). A new view of pain as a homeostatic emotion. Trends in neuroscience 26 (6) 303-307. 
89 American leprosy missions (2014). Leprosy frequently asked questions. http://www.leprosy.org/leprosy-faqs/. 

American leprosy missions (retrieved 6 March 2014). 

http://www.leprosy.org/leprosy-faqs/
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predictive motivator. It is grounded by being valued through pleasure, which is grounded in 

survival. 

 

Pain and pleasure 

Pain and pleasure are quite likely two different signals given off by the reward centres. So unlike 

the attributes of cold and heat in physics, where cold is simply a lack of heat, pain is not the absence 

of pleasure or vice versa. This is visible, for instance, in the hormonal signalling of pregnant 

females. Some hormones ready the female for maternal behaviour by decreasing fear and avoidance 

of infant-related stimuli, while others increase attraction towards infant related stimuli.90 As both 

hormone sets positively impact the female attitude towards infants, one by decreasing the bad, the 

other by increasing the good, two different approaches can modify behaviour allowing for some 

system redundancy. Similarly, a particular neurotransmitter opposition is posited to exist between 

dopamine and acetylcholine, where the first encourages approach, while the second fosters 

avoidance of substances.91 Other evidence comes from the field of reinforcement learning, where it 

has become clear that learning from positive and learning from negative feedback is at least 

separable in some cases, suggesting two different signals.92 Other differences lie in their differing 

effects: unlike the pleasure signal, pain signals interrupt ongoing behaviour.93 They are also much 

more expedient at promoting quick learning and quick responses aimed at terminating, reducing or 

escaping the source of threat.94 In order to facilitate this, learning through pain appears to take a 

different and quicker path through the amygdala as well, resulting in quicker but less damage-

resistant learning than the more pleasurable path.95 

 That said, it is important to realise that the exact relationship between pain and pleasure is 

very complicated and still far from understood. From personal experience, most humans will most 

                                                 
90 Decety, J. & Svetlova, M. (2012). Putting together phylogenetic and ontogenetic perspectives on empathy. 

Developmental Cognitive Neuroscience 2 (1) 1-24. 
91 Hoebel, B.G., Avena, N.M. & Rada, P. (2007). Accumbens dopamine-acetylcholine balance in approach and 

avoidance. Current Opinion in Pharmacology 7 (2007) 617-627. 
92 Fellows, L.K. (2011). Chapter 16: The neurology of value. In: Gottfried, J.A. (ed.). Neurobiology of Sensation and 

Reward (Boca Raton, 2011). 
93 Eccleston, C. & Crombez, G. (1999). Pain demands attention: a cognitive-affective model of the interruptive 

function of pain. Psychological Bulletin 125 (3) 356-366. 
94 Eisenberger, N.I. (2012). The pain of social disconnection: Examining the shared neural underpinnings of physical 

and social pain. Nature Reviews Neuroscience 13 (6) 421-434. 
95 Moscarello, J.M. & LeDoux, J.E. (2013). The contribution of the amygdala to aversive and appetitive Pavlovian 

processes. Emotion Review 5 (3) 248-253. 
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likely admit that it is quite possible to have mixed feelings towards a particular object or subject. 

From this experience we can posit that pain and pleasure are indeed not the same system, but they 

are certainly related. A positive factor and an equal negative factor do not cancel each other out, but 

instead result in a mix bag of emotion. Exploration of human subcultures such as sadomasochism, 

demonstrates that it is even possible to experience painful sensations as pleasurable and vice versa, 

provided enough retraining of the reward system has taken place.  

 Another distinction can be found in the relativeness of pleasure-values in particular. Where 

some kinds of pain are negative across the board (such as the pain that results from mutilation, 

barring extreme corner cases), pleasure value is much more dependent on the internal state of the 

organism.96,97 Of course, quite a few pain types are also situation-dependent, such as the discomfort 

and pain that may be associated with temperature-sensing: an icy bottle is likely to be experienced 

as unpleasant or even painful on a cold day, while it may be a sweet release on a hot day.98  

 All of this only goes to show how important homeostasis is for these basic feelings and 

emotions. The very purpose of life is to survive and procreate, while avoiding death. Maintaining 

homeostasis is an extremely important part in this and allows for the development of affective 

values. To see how brains use homeostasis and feelings to improve biological adaptability, we 

should continue onto learning. 

 

Emotion and learning: assigning value to experience 

There are at least two important methods through which the reward system provides motivation: 

hedonic impact and incentive salience.99 

 Hedonic impact refers to the direct effects of contact with a particular substance, for instance 

the consumption of a sandwich. If this sandwich satisfies a particular short-term drive, such as 

hunger, or has other beneficial homeostatic effects such as restoring salt-levels, the reward system 

will release neurotransmitters that give off a pleasurable sensation. This may be just a good taste 

which is an increase of the pleasure factor, or it can be combined with a quenching of the negative 

                                                 
96 Fellows, L.K. (2011). Chapter 16: The neurology of value. In: Gottfried, J.A. (ed.). Neurobiology of Sensation and 

Reward (Boca Raton, 2011). 
97 Gray, P. (2002). Psychology; Fourth Edition (New York, 2002) 188-189. 
98 Craig, A.D. (2003). A new view of pain as a homeostatic emotion. Trends in neuroscience 26 (6) 303-307. 
99 Berridge, K.C. (2007). The debate over dopamine's role in reward: the case for incentive salience. 

Psychopharmacology 191 (3) 391-431. 
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feelings associated with hunger, a decrease of the punishment factor.100 This process rewards the 

organism for undertaking good actions by both positive affirmation and the reduction of negatively 

charged drives. Hedonic impact is more commonly referred to as how much organisms “like” 

something and it can be positively impacted by hunger or other drives that signal bodily 

deprivation.101 Hedonic impact is the direct experience of a reward or punishment and can be 

greatly increased if it satisfies internal homeostatic shortages. It is directly coupled to, and valued 

by, homeostasis, which is grounded on the survival/death-consequences that underlie all living 

creatures. 

 Incentive salience is the motivational power of pre-existing knowledge about rewards 

associated with undertaking a particular action, such as the consumption of a particularly tasty 

hamburger. Because the previous reward was so good, the brain has associated a good reward with a 

particular input, motivating the creature to seek out that particular pleasure when confronted with it. 

This mechanism is predictive and comes into play after learning an association. Because a previous 

experience has been good, the brain assumes that repeating it will also be beneficial, motivating 

new goal-directed behaviour. This mechanism is responsible for acting on signifiers that remind the 

organism of a particularly tasty (rewarding) sandwich, even when it’s not that hungry, or seeking 

out a particular drug, even when the chemical dependency has been broken.102 Incentive salience is 

more commonly known as how much creatures “want” something,103 it relies on consciously or 

subconsciously remembered experience and produces an anticipated reward. It is triggered by 

external factors and provides external motivation to undertake action. 

 These two methods combined have a great impact on organism adaptability. As has become 

apparent, incentive salience is created from hedonic impact thanks to a learning process. During 

interactions of the organism with its environment, the hedonistic, positive factor becomes associated 

with stimuli indicative of the new positive situation. These stimuli then become a trigger for 

reward-expectancy themselves through a process called reward learning. The same, but inverted, 

goes for negative experiences and negative stimuli. A negative stimulus triggers a negative reaction 

from the intrinsic drives for self-preservation. This negative reaction is linked to any present 

                                                 
100 Craig, A.D. (2003). A new view of pain as a homeostatic emotion. Trends in neuroscience 26 (6) 303-307. 
101 Gray, P. (2002). Psychology; Fourth Edition (New York, 2002) 188-189. 
102 Saunders, B.T., Yager, L.M. & Robinson T.E. (2013). Cue-evoked cocaine “craving”: role of dopamine in the 

accumbens core. The Journal of Neuroscience 33 (35) 13989-14000. 
103 Gray, P. (2002). Psychology; Fourth Edition (New York, 2002) 188-189. 
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signifiers through reward learning, providing them with incentive salience to take preventive 

measures before actual harm has been done.  

 The learning mechanism through which this occurs is called reward learning and is 

presumably governed by its own hormonal associates, although which ones impact which part of 

the process still remains unclear.104 In fact, the body has a multitude of neurotransmitters associated 

with reward and punishment motivation, of which most functions, interactions and other inner 

workings are far from unravelled.105,106  

 Through hedonistic impact, brains learn the survival or death value of eating particular foods 

or taking other particular actions. Through reward learning they are able to store these positive or 

negative values in memory, complete with situational information such as salt-deprivation (eating 

large quantities of salt when you are not salt-deprived is not a good idea, and the brain should make 

sure the new memory does not encourage this behaviour). Observations that relate to this 

experience are also stored with emotive value and become reward signifiers themselves. Whenever 

the creature then observes the signifiers, they can trigger incentive salience which motivates the 

organism to adapt its behaviour. In the end, incentive salience is derived from earlier experienced 

hedonic impact, which is derived from homeostatic monitoring, which is ultimately derived from 

the survival/death mechanic.  

 

Emotion and learning: what to remember? 

Reward and punishment not only works on direct action, or even just by creating incentive salience. 

It has other memory properties too. When a desired behaviour is taught to animals in the lab, 

rewards and punishment are often used as studied variables, as well as training aides. In doing so, 

scientists discovered that reward and punishment have not one, but two major reinforcement-effects 

on memory.107 

 Reward/aversion-learning is strongly coupled to the approach/avoidance effect detectable in 

all organisms. In my opinion, reward/aversion is necessary for triggering approach/avoidance 

                                                 
104 Berridge, K.C. (2007). The debate over dopamine's role in reward: the case for incentive salience. 

Psychopharmacology 191 (3) 391-431. 
105 Barbano, M.F. & Cador, M. (2007). Opioids for hedonic experience and dopamine to get ready for it. 

Psychopharmacology 191 (3) 497-506. 
106 Berridge, K.C. (2007). The debate over dopamine's role in reward: the case for incentive salience. 

Psychopharmacology 191 (3) 391-431. 
107 White, N.M. (2011). Chapter 3: Reward: What is it? How can it be inferred from behaviour? In: Gottfried, J.A. (ed.). 

Neurobiology of Sensation and Reward (Boca Raton, 2011). 
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effects in multicellular organisms, although some scientists prefer to strongly separate the two by 

declaring reward/aversion to be a conscious process, while approach/avoidance does not have to 

be.108 I disagree with reward or aversion being something experienced on a conscious level, due in 

part to the myriad of rewards we take on a daily basis that reinforce our behaviour without our 

consciousness noticing them. While they are generally experienced unconsciously, these small 

rewards can become conscious if we pay particular attention to them, but regardless of conscious 

attention, their reinforcing aspects work. Regardless, positive or negative signifiers will produce 

approach or avoidance reactions.109 This is the method of learning that has been described as 

reward learning in the preceding section. 

 In humans as in animals, another interesting learning process takes place on the basis of 

reward/punishment. Many people are able to recall where they were and what they were doing 

when they heard of the sudden death of a loved one even though their location and activity in all but 

the most extreme cases was unrelated.110 This form of traumatic memory can even occur with more 

impersonal but still emotionally impactful events, such as the assault on the Twin Towers in 2001. 

The reason for this is that events of reward significance strongly improve memory in biological 

organisms. This is not limited to humans or even to traumatic events. The learning curve of rats can 

be accelerated by applying punishment such as shocks, or rewards such as food for a hungry rat, 

just after or prior to the training task. A very interesting mechanic lies hidden in the fact that it 

doesn't have to be a reward-value that correlates to the training task. Reward and punishment are 

interchangeable when training a rat to, for instance, find food in a maze. A rat that has walked into a 

corridor without food (a negative result) before being removed from the maze and shocked or given 

food, will in both cases better remember that that particular corridor is empty. This may seem 

counterintuitive, but it is a strong indicator that reward-signifiers reinforce memory directly.111 This 

method of learning is called memory modulation. The unrelated reward-significant context 

reinforces the whole process of memory creation, including the parts that had no actual relevance to 

the reward. 

 There is a strong hint here that allows for some philosophising how reward works within 

                                                 
108 White, N.M. (2011). Chapter 3: Reward: What is it? How can it be inferred from behaviour? In: Gottfried, J.A. (ed.). 

Neurobiology of Sensation and Reward (Boca Raton, 2011). 
109 Avoidance includes freezing. 
110 Actions responsible for the death of the lovedone obviously do not qualify. 
111 White, N.M. (2011). Chapter 3: Reward: What is it? How can it be inferred from behaviour? In: Gottfried, J.A. (ed.). 

Neurobiology of Sensation and Reward (Boca Raton, 2011). 
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complex organisms. Rather than being specifically coupled to only the circumstances and instances 

that actually contributed to its occurrence, reward is coupled to the state of the brain and a period of 

time, even when the gained reward obviously has nothing to do with the learned information. 

Although this may at first seem odd, it actually makes perfect sense. The brain operates in a world 

where there are many uncertainties. Its function is to improve survivability by strongly increasing 

adaptability to organism surroundings: it must connect actions to consequences in order to provide 

the values on which it can make decisions in the future. However, due to the uncertainty inherent in 

the world, on which inner workings the brain is largely clueless, the brain cannot know what 

particular factor led to the experience of a reward-signifier. Although it is possible that the eating of 

that mealy piece of fruit led to stomach cramps, it could be due to other environmental causes, such 

as a vile stench that was present, the colour of the walls, a stomach virus or, to name something 

both invisible and extreme, radioactive radiation. To complicate matters further, a time factor may 

be involved. A delay between action and the valued effect it facilitates is present in a great many of 

stimuli-reward relations. In order to learn the relevant combination, the brain must therefore learn 

all the potential signifiers, across time and space, on the assumption that on repeated tasks 

eventually the real signifier will be the most enforced. I will discuss a possible mechanism through 

which it does this later on.  

 So, because the brain cannot know in advance which information is actually relevant to the 

emotional experience, it tries to store all information that could be relevant. Furthermore, because a 

reward signal was received, the brain knows that there was something worth remembering (be it 

something bad or something good). The stronger the reward signal, the more important the creation 

of a strong memory. This explains why a hungry mouse that receives a reward signifier while 

looking for food, will better remember that the corridor was empty if it receives a positive or 

negative signifier in close time-proximity to the event, regardless of what kind of signifier it 

received. In order to learn from encountered rewards and punishments, the brain must cast a wide 

memory net. As it can't be sure what actions and consequences are connected precisely, it must 

enforce a wide variety of connections and value them in the hope that the right connection is among 

them and will be reinforced more often than the others. This process is responsible for many 

memory effects, illuminating the massive role that reward plays in brain adaptability. The brain is 

there to link action to consequence and reward learning (evaluation) is how it does it. It's now time 

to look at reward learning in psychological practice. 
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Conditioning: subconscious learning through reward 

Conditioning, the most well-known example of reward-learning, was made famous by the 

experiments done by the Russian Ivan Petrovich Pavlov (1848-1936). Like other important 

scientific breakthroughs, his discovery was something he initially considered a problem with his 

experiment: the fact that the dogs he was experimenting on started to salivate in response to signals 

that preceded the actual administration of food, hindered his research on digestive reflexes in these 

animals. However, his experiments on dogs soon revealed their natural precondition to attach a pre-

existing reflex to new conditioning stimuli.112 If, for example, the sound of a bell preceded the 

delivery of food to the dog, the dog would very rapidly learn to associate the two, leading to pre-

emptive salivation as soon as the bell was rung.  

 This form of conditioning, where a stimulus that previously did not elicit a reflexive 

response starts eliciting a reflexive response after being paired with a stimulus that already elicits 

that response, is called classic conditioning. Other tests have revealed this mechanic to be very 

present not just among animals, but among humans as well. If, for instance, humans are exposed to 

a bright flash of light, a negative stimulus that triggers a defensive mechanism in the muscles 

surrounding the eyes, paired with a clicking sound, the clicking sound will start triggering a 

blinking response without the flash of light being present.113 Classical conditioning ties predictive 

outside stimuli to behaviour. It is, in essence, reactive towards outside stimuli and geared towards 

providing a quick and adequate response. 

A second form of conditioning through the use of rewards or punishments is operant, or 

instrumental conditioning. In the case of operant conditioning, the consequences of a response 

decrease or increase the likelihood that the response occurs again. For instance, when behaviour, 

such as touching a pointy cactus, is immediately followed by physical pain, it is less likely that that 

behaviour will occur again.114 Operant conditioning ties consequences to behaviour, when that 

behaviour has been, or appears to have been, instrumental in causing the consequences. It is 

designed to increase the effectiveness of actions initiated by the organism itself, increasing its 

survival value and decreasing its risks of death. 

                                                 
112 Gray, P. (2002). Psychology; Fourth Edition (New York, 2002) 99. 
113 Gray, P. (2002). Psychology; Fourth Edition (New York, 2002) 98. 
114 Gray, P. (2002). Psychology; Fourth Edition (New York, 2002) 98-99. 
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 Reflexes are mediated by the nervous system as quick responses to disruptions of 

homeostasis. They are important for keeping organisms alive, as conscious, thoughtful activity is 

often too slow to correct for a sudden imbalance such as tripping. By responding quickly and 

automatically, reflexes prevent a lot of potential damage which is in accordance with maintaining 

homeostasis and adaptability. However, reflexes that do not actually prevent damage are bad. The 

same reflex can be dangerous in one situation, such as eliciting a fearful scream when a predator is 

sighted as that may draw its attention, while potentially beneficial in another, eliciting the same 

scream to alert others for a cooperative defence or retreat. As speed is still of the essence, the body 

has several ways to modify or suppress reflexive responses. It learns to associate outside stimuli 

with outside rewards or threats, as well as associating detrimental behaviour with negative 

consequences, and beneficial behaviour with positive consequences. Reflexes can even be 

suppressed or completely vanish when their relevance declines, an example of this is the suckling-

reflex,115 which rapidly loses survival value as the child ages beyond early infancy. In order to change reflexive behaviour, or 

rather in order to learn and adapt to the environment, the body harnesses the reward system. 

Avoidance of painful stimuli and consequences and the pursuit of pleasurable stimuli and 

consequences promotes certain behaviours and not others through a learning process completely 

dependent on the pain-reward system. Being able to condition reflexes is useful because it allows 

for the activation of counter-measures based on learned indicators that may appear before the actual 

stimulus has occurred.116 That said, conditioning is not limited to reflexive behaviour. To 

understand the tight relation between physical consequences and emotions, it is useful to know that 

conditioning not only works with physical consequences, but also with emotions. Pairing an 

unconditioned stimulus with an existing fear or positive emotion causes conditioning along the 

same lines, showing that it is the value of the stimulus, not the stimulus itself that allows for 

affective pairing.117 More on this will follow in the section on higher reward learning. 

 

Unconditioning 

Conditioned associations can also be removed again through a similar learning process. If a 

conditioned stimulus no longer predicts the unconditioned stimulus, it starts to lose its association 

                                                 
115 Kaneshiro, N.K. (12 April 2013). Infant reflexes. http://www.nlm.nih.gov/medlineplus/ency/article/003292.htm. 

Medline Plus (retrieved 6 March 2014). 
116 Gray, P. (2002). Psychology; Fourth Edition (New York, 2002) 105. 
117 Gray, P. (2002). Psychology; Fourth Edition (New York, 2002) 104. 

http://www.nlm.nih.gov/medlineplus/ency/article/003292.htm
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and the corresponding reflexive response through a process called extinction. Extinction is, perhaps 

surprisingly, not a process of forgetting a conditioned response, but instead one of learning to no 

longer display the conditioned response. Extinction is really a learned inhibition of the reflexive 

response, so another acquired information-instance, rather than the deletion of earlier association. 

This is evidenced by two remarkable occurrences: if the unconditioned stimulus has been 

extinguished, but then hasn't occurred for a long enough period, it may trigger the conditioned 

response again as it spontaneously recovers from the “unlearning”. Just as the cessation of 

unconditioned stimuli can weaken a conditioned response, the lack of responses to inhibit makes the 

inhibit-response weaker. Another proof is the immediate re-emerging of the conditioned response if 

the conditioned stimulus is paired once again with the unconditioned stimulus. Just a single pairing 

is enough to re-establish the conditioned response.118  

 The evolutionary and reward-system associations are clear. If a conditioned stimuli loses its 

learned value by no longer being associated to a reward/pain experience, the positive/negative 

experience associated with it needs to be suppressed to prevent unnecessary actions. In effect, the 

parts of the brain involved in error detection detects a negative discrepancy. It then uses 

reinforcement mechanics to reinforce the suppressing neurons, perhaps by releasing the associated 

negative value neurotransmitters. However, because the conditioned stimulus has been an effective 

predictor in the past, the brain retains its information just in case it becomes useful again in the 

future. Perhaps additional information is required to narrow down the predictive value of the 

conditioned response, or some other additional predictor can be found. It is therefore useful for the 

brain to inhibit the learned behaviour, rather than destroy it. 

 Conditioning also has a generalisation effect. Stimuli that resemble the conditioned stimulus, 

will also trigger the conditioned behaviour. The more they resemble the original stimulus, the more 

likely the conditioned behaviour is to occur and the stronger the reaction will be. This is likely part 

of the brains insecurity about the world and its actual states, which require it to cast a wide net to 

catch signifying stimuli. If, however, the resembling stimulus is an accurate predictor of a lack of 

unconditioned stimulus, it will be strongly discriminated from the effective unconditioned stimulus 

and will trigger no, or the inverse behaviour.119  

 Again, expanding the range of conditioned stimuli that are viewed as predictive is useful, 

                                                 
118 Gray, P. (2002). Psychology; Fourth Edition (New York, 2002) 102-103. 
119 Gray, P. (2002). Psychology; Fourth Edition (New York, 2002) 103. 
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but only in so far as they will actually still predict the unconditioned stimulus. Once again, 

widening the selection criteria is useful for learning through a less than complete dataset, but when 

the widened criteria fail to predict, they are swiftly eliminated through a lack of reward-pain 

valence and error-detection. However, the wide net may also be due to the way in which reward 

learning works at the cellular level. I will address this in the section on reward at the neuronal level. 

 

A case of subconscious learning 

The best illustration, perhaps, on just how subtle our reward-pain systems influences our learning of 

the right behaviours when it comes to operant conditioning, can be found in an experiment by R. F. 

Hefferline et al in 1959. In this experiment, adult participants were listening to music that was 

occasionally disrupted by static noise, a very unpleasant experience. Some of the participants were 

told nothing about the interjected static, but were instead informed that it was an experiment on the 

effects of music on body tension, while others were informed on the static and the fact that it could 

be disengaged by a specific response and were tasked with finding out what that specific response 

was that would turn it off. Interestingly, both groups increasingly displayed the behaviour (a 

twitching of the thumb) that would cut the static short, yet neither group could inform the 

experimenters on what method performed the feat. Instead, the misinformed group merely reported 

a decrease in static, unwitting of their contribution to its reduction, while the informed group didn't 

know what they did to reduce it.120  

 No conscious puzzle-solving had solved the puzzle and many participants were not even 

aware that there was a puzzle to be solved. And yet, the puzzle was solved: the participants 

successfully reduced the unpleasant static without even being aware of doing it. They 

subconsciously learned the value of twitching their thumb in response to the bothersome static that 

was disrupting the music. This is a clear illustration of how painful experiences and the body's 

innate desire to avoid or reduce those, can and will trigger learning processes on even the 

subconscious level through the coupling of circumstances to results. The subconscious brain 

managed, with the help of the reward system, to interact with the environment, store successful 

interactions in a meaningful way (i.e. only using the memory when the static played) and alter its 

                                                 
120 Gray, P. (2002). Psychology; Fourth Edition (New York, 2002) 110. Although later experimenters did criticise the 

experiment, the conclusions were upheld by later, more stringent experiments, such as:  

 Laurenti-Lions, L., Gallego, J., Chambille, B., Vardon, G. & Jacquemin, C. (1985). Control of myoelectrical 

responses through reinforcement. Journal of the Experimental Analysis of Behavior 44 (2) 185-193. 
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behaviour, all so that an annoying disruption of auditory function would cease. The reward system 

had combined with unconscious action to improve organism adaptability without any higher brain 

function. It is now time to turn to some of the higher learning functions. 

 

Higher learning 

Reward and punishment is very important for higher level learning as well. A simple philosophical 

reflection on our internal learning will suggest as much. Whenever humans are in a learning 

environment, one or both of the reward system’s main pathways are always present. When we learn 

foreign languages in school, we do so often because we face repercussions such as bad grades and 

reprimands if we do not invest the time to do so. Alternatively, knowing that learning a foreign 

language is an investment in our future survival121 due to the expanded options and skillsets it 

enables, can provide positive motivation to learn them. The knowledge of future punishment or 

reward functions as a motivational crutch that motivates our actions. There is also a more primitive 

motivation at work. We may actively like or dislike the learning activity. Some people may enjoy 

learning about the rules of a complicated game as they find that to be fun, while others may hate 

having to go through a rulebook as they find that to be boring. Some have learned that the act of 

studying is inherently rewarding through association, while others have learned the opposite value: 

that studying is boring and to be avoided.  

 Likewise, in the classroom, a good teacher engages and educates their students not just by 

explaining carefully, or providing the correct exercises, but also by creating an interesting 

environment where participation is encouraged. Intrinsic learning, learning that engages the 

learner’s natural interests, is very important and can be reduced in effectiveness by providing 

external motivations that are unsuited to the learner.122 These more basic motivations compete with 

the higher order long-term reward mechanics in determining why we do what we do. It is no 

accident that the concept of reward and punishment comes back time and again in learning methods 

designed for humans.123 Intrinsic reward and external reward are very important to human learning, 

because they signal what is important for the human to do and to learn. 

                                                 
121 In western societies with a properly functioning social security, this “survival” is less about physical survival and 

more about quality of life and social status. 
122 Armstrong, J.S. (2012). Natural learning in higher education. In: Seel, N. M. (ed.). Encyclopedia of the sciences of 

learning (2012) 10p (page numbers unknown). 
123 Armstrong, J.S. (2012). Natural learning in higher education. In: Seel, N. M. (ed.). Encyclopedia of the sciences of 

learning (2012) 10p (page numbers unknown). 
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Reward and planning 

So far so good. We have established that biological adaptability is irrevocably intertwined with 

reward and punishment in micro-organisms, as well as demonstrated that reward and punishment 

also have a significant impact on the behaviour and adaptations of multicellular organisms 

including humans. Reward and punishment play important roles in learning in biological organisms. 

However, involvement does not mean they are a prerequisite. As the purpose of this thesis is to 

illustrate the role of reward and punishment in not just learning, but also higher level intelligence 

such as we recognise in humans, it is important to return to the adaptability and intelligence debate 

offered in Chapter 1. In this chapter I proposed to replace the vague concept of intelligence with the 

somewhat more defined concept massive adaptability as presented by Jack Copeland. I proposed 

that massive adaptability is not an inherently different form of adaptability than regular adaptability, 

but rather a more complicated and complex form. Massive adaptability is, in my view, composed of 

layers of adaptability intertwined and intersected to form a more complex whole. From that 

statement I posed that intelligence as we recognise that in humans, is not just built on the building 

blocks provided by earlier life forms, but fundamentally constructed out of them. If this is true, and 

reward and punishment are truly fundamental, we should see a serious breakdown of higher order 

intelligent processes such as planning when the lower level processes such as reward and 

punishment break down.  

 Indeed, planning and decision-making suffer greatly when the reward system is damaged. 

Given that planning involves increasing risk the further ahead the brain projects and the role of 

emotions in decision-making becomes more and more prevalent the greater the uncertainty of the 

outcomes, emotion and projected emotion can be assumed to play an important role in the planning 

and execution of planned tasks.124 Emotion, reward and punishment have been demonstrated to play 

an enormous role in complex decision-making,125 including making decisions in social contexts.126 

We use past experience, memories laden with affective value by the reward system, to generate 

expectations about the future. This is visible in the activation of the same brain networks in both the 

                                                 
124 Bechara, A. (2004). The role of emotion in decision-making: Evidence from neurological patients with orbitofrontal 

damage. Brain and Cognition 55 (2004) 30-40. 
125 Quartz, S.R. (2009), Reason, emotion and decision-making: risk and reward computation with feeling, Trends in 

Cognitive Sciences 13 (5) 209-215. 
126 Rilling, J.K. & Sanfey, A.G. (2011). The neuroscience of social decision-making. Annual Review of Psychology 62. 

23-48. 
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act of remembering and the act of predicting.127 Insight, the ability to predict outcomes based on 

similar situations experienced in the past and learn from outcomes that did not fit the prediction, is 

dominated by the Orbitofrontal Cortex which also plays an important role in the experience of 

reward. Furthermore, substances that interfere with the default functioning of the reward system, 

such as the drug cocaine, also interfere with this insight learning function.128 Malfunctioning of the 

reward-systems may result in the inability to make decisions, or the tendency to make deeply 

flawed ones. Patients who suffer from brain damage in these areas often are still capable of 

performing actions, but are no longer able to determine the why, which can lead them to 

contextually inappropriate behaviour.129 

 Without the reward-systems intact, human adaptability and with it intelligence suffers a 

tremendous hit. Many higher level functions we associate with intelligence become much harder or 

quite impossible to execute. Under the definition of bare-bone adaptability I have given in Chapter 

1 and the assumption that massive adaptability is built from bare-bone adaptability, it will come as 

no surprise that the disruption of one of the four pillars (interaction, evaluation, storage and 

adjustment) will severely impact intelligence in general. That these functions do not cease entirely 

may be due to the widespread representation of reward in the brain: it is hard to knock-out all 

reward systems and representations, and the structures built on them before this happened are still 

influenced by evaluation’s previous presence. Now that we have discussed the workings of reward 

in organisms, from conditioning to planning, it is time to explore its location in the brain. 

 

Reward in the brain: feelings and emotions 

In spite of many years of research, the exact location of reward in the brain is still unknown. Several 

regions have been strongly implicated in experiencing and processing reward, which at the very 

least demonstrates its importance to human cognitive function. In this section I will explore some of 

these regions and their functions. 

 The importance of reward and its associated feelings and emotions is perhaps best illustrated 

                                                 
127 Fellows, L.K. (2011). Chapter 16: The neurology of value. In: Gottfried, J.A. (ed.). Neurobiology of Sensation and 

Reward (Boca Raton, 2011). 
128 Lucantonio, F., Takahashi, Y.K., Hoffman, A.F., Chang, C.Y., Bali-Chaudhari, S., Shaham, Y., Lupica, C.R. & 

Schoenbaum, G. (2014). Orbitofrontal activation restores insight lost after cocaine use. Nature Neuroscience 17 (8) 

1092-1099. 
129 Fellows, L.K. (2011). Chapter 16: The neurology of value. In: Gottfried, J.A. (ed.). Neurobiology of Sensation and 

Reward (Boca Raton, 2011). 
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by its presence in the most fundamental part of the brain, the brainstem. This part of the brain is 

located at the very base of the brain where the spinal cord meets the cranial cavity. It is the oldest 

component part of the brain and it is absolutely vital to survival. Damage to the brainstem has far-

reaching consequences for human functionality and the region appears to be very much involved 

with feelings and emotion. Lesions in the dorsal (posterior) half of the upper brainstem are 

associated with severe conditions such as coma and vegetative states, where feelings and even 

sentience are abolished, while lesions in the ventral (anterior) half of the upper brainstem cause 

locked-in syndrome, where feelings and consciousness are preserved, but physical action is 

impossible.130 Needless to say, the disruption of either set of functionalities is deadly when 

untreated. To demonstrate that the lack of feelings without the brainstem is not simply due to total 

brain shutdown, it is useful to note that inducing feelings in humans during experiments shows 

activation of brainstem structures. On a darker note, mammals whose cortex has been removed still 

exhibited coherent, goal-oriented behaviour consistent with feelings.131 Electrical stimulation of 

certain brainstem regions can elicit behaviours consistent with emotional responses imbued with 

positive and negative valence in mammals. This also occurs in humans, with the added benefit that 

they can and will report experiencing the corresponding feelings. A key role for the brainstem 

appears to reside in triggering and supporting emotion and feeling.132 

 On the basis of this evidence, my earlier rejection of the idea that feelings are somehow 

limited to humans, or even to mammals seems all the more reasonable. Non-human mammals, 

birds, reptiles and even phylogenetically older species definitely and clearly display behaviour 

completely consistent with emotions and feelings. From a brain-oriented approach, these species 

show dramatic differences with humans at the level of the cerebral cortex. Although the danger of 

anthropomorphising animals is always present in biology and psychology, the brainstem, the 

presumed vital area for feelings, is essentially conserved in layout, design and function suggesting 

that feelings are not exclusive to humans and it is very likely that they have long been present in 

evolution. It seems fair to conclude that animals most likely share the basic feelings and emotions 

                                                 
130 Damasio A. & Carvalho G.B. (2013). The nature of feelings: evolutionary and neurobiological origins. Nature 

Reviews Neuroscience 14 (2) 143-152. 
131 It is always difficult to establish feelings in animals as they are such a personal experience, but this philosophical 

quagmire can be easily expanded to throw doubt on the presence of feelings in fellow humans. A notion that seems 

to me to be quite absurd. 
132 Damasio A. & Carvalho G.B. (2013). The nature of feelings: evolutionary and neurobiological origins. Nature 

Reviews Neuroscience 14 (2) 143-152. 
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that we experience.133 This is consistent with my position that feelings, as an extension of reward 

and punishment, are deeply rooted in adaptability. It seems that the oldest and most vital part of the 

brain has as one of its core tasks the integrated control of reward-feelings and their relation to 

signifiers. 

 However, feelings are so important for information processing that they are not limited to 

the brainstem alone. The limbic system has also been strongly implicated in correlating rewards 

with events and handling the experience. Many regions and structures within the limbic system play 

an important role and fire up when positive or negative experiences are encountered. The limbic 

system is also strongly connected to cortical regions which can reinforce or inhibit feelings and 

emotions to a certain degree.134,135 Examples of limbic regions involved are the hypothalamus, the 

amygdala and the striatum, while at the cerebral cortex level the insula, the anterior cingulate cortex 

(ACC), the dorsal anterior cingulate cortex (dACC), ventromedial prefrontal cortex (PFC) and 

orbitofrontal cortex (OFC) been shown to play an important role in valuing outcomes with feelings 

and emotions.136,137,138,139,140,141,142,143 

 Although it is very difficult to pinpoint the exact location of the neuronal structures 

necessary for the development of feelings, only the brainstem structures seem absolutely vital, an 

                                                 
133 Damasio A. & Carvalho G.B. (2013). The nature of feelings: evolutionary and neurobiological origins. Nature 

Reviews Neuroscience 14 (2) 143-152. 
134 Bush, G., Vogt, B.A., Holmes, J., Dale, A.M., Greve, D., Jenike, M.A. & Rosen, B.R. (2002). Dorsal anterior 

cingulate cortex: a role in reward-based decision making. Proceedings of the National Academy of Sciences 99 (1) 

523-528. 
135 Damasio A. & Carvalho G.B. (2013). The nature of feelings: evolutionary and neurobiological origins. Nature 

Reviews Neuroscience 14 (2) 143-152. 
136 Damasio A. & Carvalho G.B. (2013). The nature of feelings: evolutionary and neurobiological origins. Nature 

Reviews Neuroscience 14 (2) 143-152. 
137 Decety, J. & Svetlova, M. (2012). Putting together phylogenetic and ontogenetic perspectives on empathy. 

Developmental Cognitive Neuroscience 2 (1) 1-24. 
138 Craig, A.D. (2003). A new view of pain as a homeostatic emotion. Trends in neuroscience 26 (6) 303-307. 
139 Bush, G., Vogt, B.A., Holmes, J., Dale, A.M., Greve, D., Jenike, M.A. & Rosen, B.R. (2002). Dorsal anterior 

cingulate cortex: a role in reward-based decision making. Proceedings of the National Academy of Sciences 99 (1) 

523-528. 
140 Fellows, L.K. (2011). Chapter 16: The neurology of value. In: Gottfried, J.A. (ed.). Neurobiology of Sensation and 

Reward (Boca Raton, 2011). 
141 Lucantonio, F., Takahashi, Y.K., Hoffman, A.F., Chang, C.Y., Bali-Chaudhari, S., Shaham, Y., Lupica, C.R. & 

Schoenbaum, G. (2014). Orbitofrontal activation restores insight lost after cocaine use. Nature Neuroscience 17 (8) 

1092-1099. 
142 Chikazoe, J., Lee, D.H., Kriegeskorte, N. & Anderson A.K. (2014). Population coding of affect across stimuli, 

modalities and individuals. Nature Neuroscience 17 (8) 1114-1122. 
143 Schoenbaum, G., Roesch, M.R., Stalnaker, T.A. & Takahashi, Y.K. (2011). Chapter 15: Orbitofrontal Cortex and 

Outcome Expectancies: Optimizing Behavior and Sensory Perception. In: Gottfried, J.A. (ed.). Neurobiology of 

Sensation and Reward (Boca Raton, 2011). 
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important clue that the neuronal reward system is as old as the brain itself.144 A wide selection of 

brain structures are involved with the processing of feelings, which suggest they play an important 

role in the brain indeed. According to my thesis that reward and punishment are vital for proper 

adaptive behaviour, this result can hardly be called a surprise. Although the question of where 

reward and punishment is located still has an unsatisfying answer, the matter of how feeling 

evaluation may be established is even more perplexing. In the following section I will discuss how 

reward-learning may function on the neuronal level. 

 

Reward learning at the neuronal level: a philosophical explanation 

The reward-system has interesting effects at the microscopic scale. Release of reward-signalling 

hormones has been shown to trigger neuronal growth and specialisation in the brain areas associated 

with the external signal picked up by the senses. When a reward is for instance coupled with a 

particular sound, not only the part of the brain responsible for reviewing the reward is fine-tuned 

and plastic, the part of the brain that processes the raw signal gets modified by reward-growth as 

well. Through reward learning, the neurons associated with processing the relevant information are 

fine-tuned and the brain area adapts and can even expand. Even the primary sensory areas are 

therefore influenced by reward, responding to reward-information with appropriate growth.145,146 

This shows that reward has a direct promotional effect at the cellular level. Apparently neurons that 

receive rewarding chemicals are strengthened in their behaviour and growth in their area is 

encouraged.  

 This is not odd when you consider that neurons are still first and foremost cells. That means 

that they stem from cells that had their own internal positive and negative signifier matrix such as 

found in microorganisms (see Chapter 2). They are also very susceptible to changes in their 

environment.147 It seems to me to be reasonable to assume that the positive/negative matrix 

presumed to exist in Chapter 1 has been preserved to facilitate intercellular communication, 

                                                 
144 Damasio A. & Carvalho G.B. (2013). The nature of feelings: evolutionary and neurobiological origins. Nature 

Reviews Neuroscience 14 (2) 143-152. 
145 Weinberger, N.M. & Bieszczad K.M. (2011). Chapter 1: Introduction: From traditional fixed cortical sensationism to 

contemporary plasticity of primary sensory cortical representations. In: Gottfried, J.A. (ed.). Neurobiology of 

Sensation and Reward (Boca Raton, 2011). 
146 Camalier, C.R. & Kaas, J.H. (2011). Chapter 9: Sound. In: Gottfried, J.A. (ed.). Neurobiology of Sensation and 

Reward (Boca Raton, 2011). 
147 Cook, N.D. (2008). The neuron-level phenomena underlying cognition and consciousness: synaptic activity and the 

action potential. Neuroscience 153 (3) 556-570. 
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especially since neurons have to travel and grow connections guided by chemical signals after they 

have been created. The ultimate consequence has also been preserved at the cellular level: neurons 

that fail to establish sufficient connections will suffer cellular death.148 It is also known that the 

chemical neurotropic that prevents neuronal death also increases branching of incoming axons, 

which enables the creation of more connections, an important part of memory creation.149 That 

means that neurons can be individually encouraged or discouraged to pursue certain kinds of action. 

I posit that it is this encouragement that tweaks neuronal connectivity, which results in enforcing 

beneficial connections, while increasing the inhibition on detrimental ones. Rewarding chemicals 

have a particular effect on neurons that are active or have recently been active: these neurons are 

encouraged in their behaviour.  

Neurons that fire in beneficial circumstances are therefore being promoted again and again, 

which enforces behaviour at the macroscopic level. The arrangement of neurons into smaller 

networks that have their own specialisations also allows for learning associations in uncertain 

environments. Imagine a very restricted environment. In this environment only four different 

stimuli can be detected: a flash of light, a burst of sound, a smell and a touch. Say the “organism” 

living in this environment detects a flash of light, a burst of sound, and a touch, while it also 

experiences a reward (homeostasis is improved). The brain releases reward-transmitters and the 

neurons that fired for the light, sound and touch stimuli are reinforced with a positive value that puts 

their “significance” with respect to the experienced reward at (1). On a second trial, the organism 

experiences a rewarding sensation, but this time, the organism has detected a smell, a burst of sound 

and a touch. The sound and touch neurons will receive another encouragement which puts them at 

(2), while the smell neurons level with the light neurons which are not enforced by this encounter 

and stay valued at (1). A third encounter with the rewarding sensation seals the deal: the organism 

now detects a burst of sound and a flash of light, while experiencing the reward. The sound neurons 

are reinforced most strongly (3), while the other sensations trail at (2) or less, resulting in the 

outcome that the sound burst will now be the most potent signifier of the incoming reward (see 

Figure 3.1).  

 

                                                 
148 Kalat, J.W. (2004). Biological Psychology; 8th Edition (Belmont, 2004) 109. 
149 Kalat, J.W. (2004). Biological Psychology; 8th Edition (Belmont, 2004) 111. 
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Figure 3.1: Overlapping reward signals. The resulting stimulation of neurons associated with light, 

sound, touch and smell after three trials paired with reward, where the sound was the actual 

signifier, while light, touch and smell were only randomly paired. Trial 1 featured a light, a sound 

and a touch. Trial 2 featured a sound, a touch and a smell. Trial 3 featured a light and a sound. All 

trials featured a reward paired with the sensory data. By simple up regulation of active neurons 

during reward-signified trials, the organism can determine that sound is the most important factor. 
 

This mechanism can be helped along by the guided attention of the animal involved. Depending on 

the way in which an animal associates a reward with certain circumstances, the brain-area responds 

with growth or not. The way an animal processes information has a direct impact on the brain areas 

that are stimulated by reward to grow.150 This is indicative of a process in the brain that can guide 

the transmission of the reward and preselect the brain-areas that are susceptible to reward 

stimulation. Let us now turn to the potential mechanisms that produce these reward-signals. 

 

Value-assigner and Arbiter 

On the basis of the information contained above, as well as the information gathered from Chapter 

2, I will now posit two hypothetical reward-learning mechanisms that could explain the very 

important functions of reward-learning in the brain. The first is the reward/punishment matrix itself, 

which I will call the “Value-assigner”. Some areas of the brain seem specialised in releasing 

positive or negative neurotransmitters that affect the rest of the brain. It is likely that this 

mechanism produces the reward/punishment values that give meaning to organism actions and 

sensory input. The Value-assigner signals other parts of the brain when they have presumably 

                                                 
150 Weinberger, N.M. & Bieszczad K.M. (2011). Chapter 1: Introduction: From traditional fixed cortical sensationism to 

contemporary plasticity of primary sensory cortical representations. In: Gottfried, J.A. (ed.). Neurobiology of 

Sensation and Reward (Boca Raton, 2011). 
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performed positively, or when they have performed negatively instead. This burst of value-giving 

chemicals also indicates what is important and what is not: events that trigger negative or positive 

reward will always be important to remember, so they can respectively be avoided or approached 

later on. I speculate that value signalling neurotransmitters always have a signal enhancing effect: 

either they enhance firing that encourages the firing of other neurons, or they enhance the firing that 

inhibits the firing of other neurons. Because reward signals are released around the time of the 

creation of the memory and the brain cells storing that memory through their connections are 

therefore active, the memory will be automatically reinforced because the cells themselves are 

strengthened in their connection. 

 The Value-assigner releases its signals when prompted by another mechanism that makes the 

actual comparison on the basis of which positive or negative are defined and signalled. The oldest 

mechanism that performs this function is most likely the homeostatic monitor, which may very well 

reside in the brainstem. This brain-mechanism is simply concerned with comparing past, current 

and ideal homeostatic states of the body. Based on the relations between the three, this brain 

component, which I will call the “Arbiter”, can decide whether the most recent actions or received 

external signifiers are to be associated with a positive, a negative or a neutral change. Most likely, 

the Arbiter has an internal representation of the ideal homeostatic values, as well as a representation 

of past measurements. It can then compare these to newly measured homeostatic values. This 

allows the Arbiter to judge whether:  

 

 the new homeostatic values are better or worse than the old, 

 the new homeostatic values require further action (because homeostasis is still not 

achieved). 

 

The first part of this Arbiter judgement can form the basis for positive or negative signals to other 

brain cells: if homeostatic values have been improved, their activity has led to a positive outcome 

and they need to be encouraged to do the same behaviour again if the situation calls for it. The 

reverse goes for homeostatic deterioration, which needs to be inhibited. This can be done by 

sending negative signals to active cells or instead sending positive signals to cells that need to 

inhibit those active cells. This second option would be in concordance with the way unconditioning 

seems to work: a strengthening of inhibition rather than a weakening of excitation, perhaps 
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inhibitory brain cells are rewarded by a different neurotransmitter. In this functionality the Arbiter 

takes on the role of action-evaluator.  

The second part of the Arbiter judgement forms the basis for creature action. As discussed in 

Chapter 2, action can be detrimental to creatures unless there is something to gain. The Arbiter can, 

on the basis of homeostatic imbalance, prompt for action in the unbalanced category: there is a 

disruption in homeostasis and action is required to compensate for it. In this manner, the Arbiter 

functions as an action-driver and motivates the taking of actions through homeostatic monitoring. 

 Branching off from the first Arbiter-functionality, other options of using reward-learning can 

bloom as well. It is known that the brain features networks that track errors by comparing actual 

outcomes to expected outcomes.151 Two brain regions hypothesised to have this functionality are the 

OFC152 and the ACC, though, sadly, a lot of uncertainty about the roles of each brain region 

involved in reward still exists.153 Perhaps it is these specialised Arbiters that are capable of directing 

reward to a more restricted area such as to explain the directed attention effect mentioned earlier 

(see: reward learning at the neuronal level: a philosophical explanation). The parts of the brain 

involved in an accurate outcome will receive a dosage of rewarding neurotransmitters, which at the 

cellular level informs the neurons that their action or inaction contributed to a beneficial outcome. 

This causes them to strengthen the connections that were involved. Because all neuronal 

connections that were involved in the beneficiary action where reinforced, this microscopic 

reward/punishment mechanism in effect reinforces the macroscopic behaviour, enforcing the 

strength of the prediction. If the prediction turns out to be in error, different neurotransmitters will 

be released, to discourage whatever action or inaction the particular brain cells have undertaken, in 

effect inhibiting the macroscopic behaviour and weakening the original prediction in a manner 

reminiscent of unconditioning. 

 Together, Arbiter-modules and Value-assigner modules could encourage macroscopic 

behaviour by monitoring homeostasis and then encouraging cellular activity. Behaviour at the 

creature level may thus be explained through simply neuronal adaptation thanks to reward-systems 

                                                 
151 Murray, E., Wise, S. & Rhodes, S. (2011). Chapter 4: What can different brains do with reward? In: Gottfried, J.A. 

(ed.). Neurobiology of Sensation and Reward (Boca Raton, 2011). 
152 Schoenbaum, G., Roesch, M.R., Stalnaker, T.A. & Takahashi, Y.K. (2011). Chapter 15: Orbitofrontal Cortex and 

Outcome Expectancies: Optimizing Behavior and Sensory Perception. In: Gottfried, J.A. (ed.). Neurobiology of 

Sensation and Reward (Boca Raton, 2011). 
153 Fellows, L.K. (2011). Chapter 16: The neurology of value. In: Gottfried, J.A. (ed.). Neurobiology of Sensation and 

Reward (Boca Raton, 2011). 
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that are grounded in monitoring and maintaining homeostasis. Especially the Value-assigner module 

comes off as being extremely versatile and multi-purposable: releasing excitatory signals in brain 

areas can potentially be exploited by multiple Arbiters making use of the same Value-assigner 

system. In the following paragraph, I will discuss one such possible borrowing of such Value-

assigner functionality in the human brain. 

  

“Hacking” the Value-assigner 

Perhaps the best way to show the multiple applicability of the reward system is to demonstrate how 

it may have been relatively recently repurposed in nature. One prime example of the malleability of 

the reward system can be found in an evolutionary adaptation residing in mammals, which is very 

strongly present in humans. Neuroscientist research has uncovered a strange relationship between 

affective physical pain and the affective pain caused by social emotions.154  

 Broad research during the 20th century has revealed the importance of social ties for the 

welfare and survival of pretty much all mammalian species. Unlike the young of most reptiles, 

mammal infants are generally completely dependent on other members of their species for their 

nutrition, protection and other care. Mammals living in groups also have the shared responsibility 

for gathering food, the care of infants and protection from predators, which is crucial to each 

individual's survival. This means that a threat, or actual damage, to social bonds can be just as 

dangerous as actual physical harm to the individual which explains why social bonds need to be 

protected.155,156 An excellent way to motivate an individual to protect its social bonds is to wire this 

social survival mechanism into that age-old survival mechanism: the reward-system. 

 As social connections are broad and their survival impact can reach quite far, the definition 

of “social pain” must be taken broad as well. Social pain in the oncoming section is defined as:  

experiences that signal loss, or potential loss, of social connection or value. From an evolutionary 

standpoint of group dynamics, these losses of social connection or value indicate an increased 

survival risk. This means that both in situations where the subject receives (perceived) damage to 

social standing due to his own actions or lack of action, as well as in situations where social bonds 

                                                 
154 MacDonald, G. & Leary, M.R. (2005). Why does social exclusion hurt? The relationship between social and 

physical pain. Psychological Bulletin 131 (2) 202-223. 
155 Eisenberger, N.I. (2012). The pain of social disconnection: Examining the shared neural underpinnings of physical 

and social pain. Nature Reviews Neuroscience 13 (6) 421-434. 
156 MacDonald, G. & Leary, M.R. (2005). Why does social exclusion hurt? The relationship between social and 

physical pain. Psychological Bulletin 131 (2) 202-223. 
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are severed although the individual is clearly not to blame such as the unavoidable death of a “loved 

one”, the individual is likely to experience social pain. As these are negative factors that increase 

the chances of untimely death, they should be coded as negative experiences and may therefore be 

coupled to negative feelings such as pain. It makes sense for the body to wire the emotions of social 

loss through the physical pain system. After all, the pain system has been established to prevent 

damage by motivating the cessation of action, or promoting it. Trying to keep social bonds alive and 

satisfied with your behaviour limits social damage, and pain, the mechanism that motivates the 

prevention of physical damage, seems a useful fit to make this happen.157 Social pain does not 

generally hijack the entire pain experience. It especially triggers the uncomfortable part of the pain 

sensation, while leaving out most of the sensory somatic components, which is further proof that the 

reward-matrix associated with physical pain has been repurposed for social pain. However, in cases 

of extreme social pain, many people even report somatic symptoms such as an actual heartache, 

making the relation between social and physical pain even clearer. In the same manner, the pleasure 

system rewards us for establishing new positive social bonds or successfully maintaining current 

ones. Several hormones are released when we experience positive social interactions, most famous 

amongst them being oxytocin, which not only reduces social stress, but also decreases physical 

pain.158 

 There is plenty of evidence that a repurposing of the pain/pleasure matrix, the Value-assigner 

for short, is indeed what has taken place in biological organisms. Research has provided both direct 

and indirect evidence that experiences of social pain indeed rely on some of the same 

neurobiological substrates that are also vital for experiencing physical pain.159  

 I will start out with the indirect evidence. In natural languages around the world, the words 

to describe physical pain and social pain are quite often the same. In English for instance, physical 

pain analogies are often used for social pains, such as “hurt feelings”, “broken hearts” etc. This 

suggests a potentially universal overlap in the experience of social and physical pain.160 Universal 

overlaps in language may well be due to universal overlaps of experiences, suggesting that the 

                                                 
157 Eisenberger, N.I. (2012). The pain of social disconnection: Examining the shared neural underpinnings of physical 

and social pain. Nature Reviews Neuroscience 13 (6) 421-434. 
158 Eisenberger, N.I. (2012). The pain of social disconnection: Examining the shared neural underpinnings of physical 

and social pain. Nature Reviews Neuroscience 13 (6) 421-434. 
159 Eisenberger, N.I. (2012). The pain of social disconnection: Examining the shared neural underpinnings of physical 

and social pain. Nature Reviews Neuroscience 13 (6) 421-434. 
160 Eisenberger, N.I. (2012). The pain of social disconnection: Examining the shared neural underpinnings of physical 

and social pain. Nature Reviews Neuroscience 13 (6) 421-434. 
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underlying cause is not so much cultural as it is biological. Aside from being strongly associated 

with physical discomfort, experiences of social pain can be just as detrimental to actual individual 

health as physical pain: both chronic physical pain sufferers, and those who are socially isolated or 

have suffered societal loss are more likely to commit suicide than control groups.161,162 Both 

physical as well as social pain are known to cause anxiety disorders, which are characterized by a 

heightened focus on possible harm and harm avoidance. Two concerns have been shown to lie at the 

root of anxiety disorders: fear for possible physical harm and the corresponding pain, and fear for 

possible social harm which includes rejection or evaluation.163 Depression, another mental illness 

with strong social connotations, can be caused by both physical and social pain.164 Another 

argument is that people asked to recall prior episodes of social pain report as much pain experienced 

as when they are recalling physical pain. Moreover, following the death of a loved one, a term 

representing strong social bonds and therefore high social “capital”, bereaved people not only report 

feeling intense psychological pain but often complain of somatic pain as well.165 There's more. 

Patients who suffer from chronic pain also experience more social pain than control subjects. 

Patients who suffer from higher levels of daily pain, also have higher levels of anxious attachments 

and are more concerned about being rejected by others. The reverse is also true. People who are 

more sensitive to social pain also report more somatic symptoms and physical pain.166  

 This does not only apply to the sick, but also occurs in the healthy. People who report higher 

levels of physical pain following the same negative stimulus also suffer more when they are socially 

excluded.167 Those who have a particular mutation of the mu-opioid receptor called OPRM1 

polymorphism have both a heightened physical pain perception, as well as demonstrating higher 

social pain when faced with rejection, which is supported by having more detectable activity in the 

                                                 
161 Tang, N.K.Y. & Crane, C. (2006). Suicidality in chronic pain: a review of the prevalence, risk factors and 

psychological links. Psychological Medicine 36 (5) 575-586. 
162 Mee, S., Bunney, B.G., Reist, C., Potkin, S.G. & Bunney, W.E. (2006). Psychological pain: a review of evidence. 

Journal of Psychiatric Research 40 (8) 680-690. 
163 Eisenberger, N.I. (2012). The pain of social disconnection: Examining the shared neural underpinnings of physical 

and social pain. Nature Reviews Neuroscience 13 (6) 421-434. 
164 Mee, S., Bunney, B.G., Reist, C., Potkin, S.G. & Bunney, W.E. (2006). Psychological pain: a review of evidence. 

Journal of Psychiatric Research 40 (8) 680-690. 
165 Eisenberger, N.I. (2012). The pain of social disconnection: Examining the shared neural underpinnings of physical 

and social pain. Nature Reviews Neuroscience 13 (6) 421-434. 
166 Eisenberger, N.I. (2012). The pain of social disconnection: Examining the shared neural underpinnings of physical 

and social pain. Nature Reviews Neuroscience 13 (6) 421-434. 
167 Eisenberger, N.I., Jarcho, J.M., Lieberman, M.D. & Naliboff, B.D. (2006). An experimental study of shared 

sensitivity to physical pain and social rejection. Pain 126 (1-3) 132-138. 
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related brain areas.168 Opiates, best known for their pain-relieving effects, not only reduce physical 

pain, but also reduce separation distress behaviours in non-human mammals and humans.169 Finally, 

oxytocin, heralded as the love-hormone, is a social bonding hormone and is released when someone 

is being comforted by a loved-one. It reduces sensitivity to both social and physical pain.170 

 It seems clear that mechanics that monitor and motivate social interaction has indeed 

repurposed the Value-assigner module for its own reward-related purposes, allowing for successful 

motivated behaviour on the basis of older neurological scaffolding. The homeostatic values 

represented by somatic pain and pleasure, death and survival also underlie human social interaction. 

Likewise, the experience of social damage and physical damage overlap. This demonstration of 

malleability of the Value-assigner in the connections it values, pleads for the versatility of its 

implementation. It is becoming more and more feasible that projection of reward onto more abstract 

concepts, such as art, also becomes possible through associations with more physical valued 

processes. This clears the way for implementing the Value-assigner as a module that can be inserted 

into self-teaching Neural Net AI. 

 

Conclusion 

Reward systems are present throughout living organisms. As established in Chapter 2, even the 

simplest bacterial cells are able to detect changes in their environment and are capable of 

connecting these changes with an internal evaluation system that determines whether the change is 

bad or good and that steers behaviour accordingly. Although many of these affective values are 

instinctual associations, it is possible to unlearn this information as well as learning new affective 

values for new, or previously meaningless compounds. Bacteria can then undertake action, as well 

as learn additional circumstantial information that can improve its reward/punishment prediction. 

This capacity to detect environmental signals and connect them with internal values has allowed 

cells to start communicating and even cooperating with each other. With the emergence of complex 

multicellular organisms and central nervous systems, this traditional method of chemical signalling 

                                                 
168 Way, B.M., Taylor, S.E. & Eisenberger N.I. (2009). Variation in the mu-opioid receptor gene (OPRM1) is associated 

with dispositional and neural sensitivity to social rejection. Proceedings of the National Academy of Sciences of the 

United States of America 106 (35) 15079-15084. 
169 Eisenberger, N.I. (2012). The pain of social disconnection: Examining the shared neural underpinnings of physical 

and social pain. Nature Reviews Neuroscience 13 (6) 421-434. 
170 Decety, J. & Svetlova, M. (2012). Putting together phylogenetic and ontogenetic perspectives on empathy. 

Developmental Cognitive Neuroscience 2 (1) 1-24. 
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has become too slow and inaccurate. Specific cells specialised into what we now call neurons, 

which function as quick relays for important information. Through electrical signalling, these 

neurons can cause cells in different parts of the body to quickly act upon communication sent by 

sensory neurons. 

As complexity grew further, a centralised governing system emerged. This “brain” was 

tasked with making macroscopic decisions to promote the health of the entire community of cells: 

the organism. In order to be able to do this, the innate cellular ability to distinguish reward and 

punishment was presumably utilised. Specific functions of the brain, generalised as the “Arbiter” 

were dedicated to evaluating the impact of the environment and organism actions on internal 

homeostasis, as well as comparing the outcomes of predictions made by the brain with the actual 

outcomes as perceived in the environment. These evaluations are based in monitoring homeostasis, 

which is itself based in the ultimate grounding: survival or death through natural selection. Which 

parts of the brain can act as Arbiters is still very much a topic of research. After judging whether the 

outcome represents an improvement or degradation of performance, the Arbiter then informs 

another department of cells with an evaluative function, which I generalised as the “Value-assigner” 

of positive or negative valence. These specialised neurons then release their rewarding signals, 

predominantly neurotransmitters, into the corresponding brain areas with a process that likely 

produces feelings in our day to day experience. Feelings produced in this manner function as 

internal representation and communication of value. They are rooted on internal consequences, 

provided by the homeostatic monitoring performed by the Arbiter, and grant meaning to internal 

information storage of organism interactions with its environment.  

The mechanism through which the Arbiter and Value-assigner provide value to internal 

information storage works at the same level where information storage itself takes place: the 

connections at the neuronal level. Neurons that have been active when the Value-assigner produces 

its feelings-inducing transmitters, receive these signals which serve as encouragement for their 

behaviour, whether it has been the inhibition of other cells, or excitation of other cells. By 

delivering neuron-level reward every time a positive marker is encountered, all correlating actions 

and sensations are encouraged. By the randomisation of the environment, the neurons involved in 

performing and registering the relevant interactions are encouraged most, as they will be rewarded 

in all positive situations, which separates them from neurons that have only been activated due to 

chance simultaneous activation. This stronger selection of actually relevant neuron firings vs non-
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relevant neuron firings can be more pronounced by allowing negative instances to send a negative, 

or inhibitory signal that will adjust the value wrongful connections. The possible modularity of the 

Value-assigner in reward-learning can be demonstrated by the use of physical pain reward circuits 

for social pain motivation, encouraging the use of the Value-assigner as a reward-matrix that can be 

accessed by several different networks in order to use its rewarding properties. 

 Upon this relatively simple mechanism of large scale, cellular-level rewards, it is possible to 

build great adaptability. Reward and punishment play a decisive role in the way humans and other 

central-nervous-system organisms learn. It promotes unconscious learning, better known as 

conditioning, as well as conscious “explicitly motivated” learning. It is this reward-system that 

allows organic creatures to learn so effectively, as well as giving an inherent valence and grounding 

to all learned information through the connection between homeostasis (the basis for reward and 

punishment) and survival and death. Reward, or value, stored as connection-strengths in neural 

memory, also plays an important role in predicting future outcomes and deciding preferences on 

short as well as longer timescales. When aspects of reward-learning are disabled, adaptable 

behaviour up to human levels of intelligence becomes disrupted, showing its importance in both 

bare-bone and massive adaptability. The reward-system, built on homeostatic monitoring and 

cellular communication, is both responsible for action prompting as well as providing action and 

perceptive valence. Reward-systems may therefore be a useful addition in self-training Neural Nets 

and may also strongly impact the philosophy of any AI built on them. Let us now turn to a first 

model of such an AI. 

 

 

 

 

 

 

 

 

 

 

  



Nathan R.B. Perdijk. 0473170. Supervisor: J.J.C. Meyer. 

Master Thesis: History and Philosophy of Science. 

Artificial Reward and Punishment: Chapter 3: Reward and the brain. 

 

 85 

Literature 

American leprosy missions (2014). Leprosy frequently asked questions. 

http://www.leprosy.org/leprosy-faqs/. American leprosy missions (retrieved 6 March 2014). 

 

Armstrong, J.S. (2012). Natural learning in higher education. In: Seel, N. M. (ed.). Encyclopedia of 

the sciences of learning (2012) 10p (page numbers unknown). 

 

Barbano, M.F. & Cador, M. (2007). Opioids for hedonic experience and dopamine to get ready for 

it. Psychopharmacology 191 (3) 497-506. 

 

Bechara, A. (2004). The role of emotion in decision-making: Evidence from neurological patients 

with orbitofrontal damage. Brain and Cognition 55 (2004) 30-40. 

 

Berridge, K.C. (2007). The debate over dopamine's role in reward: the case for incentive salience. 

Psychopharmacology 191 (3) 391-431. 

 

Bush, G., Vogt, B.A., Holmes, J., Dale, A.M., Greve, D., Jenike, M.A. & Rosen, B.R. (2002). 

Dorsal anterior cingulate cortex: a role in reward-based decision making. Proceedings of the 

National Academy of Sciences 99 (1) 523-528. 

 

Camalier, C.R. & Kaas, J.H. (2011). Chapter 9: Sound. In: Gottfried, J.A. (ed.). Neurobiology of 

Sensation and Reward (Boca Raton, 2011). 

 

Chikazoe, J., Lee, D.H., Kriegeskorte, N. & Anderson A.K. (2014). Population coding of affect 

across stimuli, modalities and individuals. Nature Neuroscience 17 (8) 1114-1122. 

 

Cook, N.D. (2008). The neuron-level phenomena underlying cognition and consciousness: synaptic 

activity and the action potential. Neuroscience 153 (3) 556-570. 

 

Craig, A.D. (2003). A new view of pain as a homeostatic emotion. Trends in neuroscience 26 (6) 

303-307. 

http://www.leprosy.org/leprosy-faqs/


Nathan R.B. Perdijk. 0473170. Supervisor: J.J.C. Meyer. 

Master Thesis: History and Philosophy of Science. 

Artificial Reward and Punishment: Chapter 3: Reward and the brain. 

 

 86 

 

Damasio A. & Carvalho G.B. (2013). The nature of feelings: evolutionary and neurobiological 

origins. Nature Reviews Neuroscience 14 (2) 143-152. 

 

Decety, J. & Svetlova, M. (2012). Putting together phylogenetic and ontogenetic perspectives on 

empathy. Developmental Cognitive Neuroscience 2 (1) 1-24. 

 

Eccleston, C. & Crombez, G. (1999). Pain demands attention: a cognitive-affective model of the 

interruptive function of pain. Psychological Bulletin 125 (3) 356-366. 

 

Eisenberger, N.I. (2012). The pain of social disconnection: Examining the shared neural 

underpinnings of physical and social pain. Nature Reviews Neuroscience 13 (6) 421-434. 

 

Eisenberger, N.I., Jarcho, J.M., Lieberman, M.D. & Naliboff, B.D. (2006). An experimental study 

of shared sensitivity to physical pain and social rejection. Pain 126 (1-3) 132-138. 

 

Fellows, L.K. (2011). Chapter 16: The neurology of value. In: Gottfried, J.A. (ed.). Neurobiology of 

Sensation and Reward (Boca Raton, 2011). 

 

Gray, P. (2002). Psychology; Fourth Edition (New York, 2002). 

 

Hoebel, B.G., Avena, N.M. & Rada, P. (2007). Accumbens dopamine-acetylcholine balance in 

approach and avoidance. Current Opinion in Pharmacology 7 (2007) 617-627. 

 

Kalat, J.W. (2004). Biological Psychology; 8th Edition (Belmont, 2004). 

 

Kaneshiro, N.K. (12 April 2013). Infant reflexes. 

http://www.nlm.nih.gov/medlineplus/ency/article/003292.htm. Medline Plus (retrieved 6 March 

2014). 

 

Laurenti-Lions, L., Gallego, J., Chambille, B., Vardon, G. & Jacquemin, C. (1985). Control of 

http://www.nlm.nih.gov/medlineplus/ency/article/003292.htm


Nathan R.B. Perdijk. 0473170. Supervisor: J.J.C. Meyer. 

Master Thesis: History and Philosophy of Science. 

Artificial Reward and Punishment: Chapter 3: Reward and the brain. 

 

 87 

myoelectrical responses through reinforcement. Journal of the Experimental Analysis of 

Behavior 44 (2) 185-193. 

 

Lucantonio, F., Takahashi, Y.K., Hoffman, A.F., Chang, C.Y., Bali-Chaudhari, S., Shaham, Y., 

Lupica, C.R. & Schoenbaum, G. (2014). Orbitofrontal activation restores insight lost after 

cocaine use. Nature Neuroscience 17 (8) 1092-1099. 

 

MacDonald, G. & Leary, M.R. (2005). Why does social exclusion hurt? The relationship between 

social and physical pain. Psychological Bulletin 131 (2) 202-223. 

 

Mee, S., Bunney, B.G., Reist, C., Potkin, S.G. & Bunney, W.E. (2006). Psychological pain: a review 

of evidence. Journal of Psychiatric Research 40 (8) 680-690. 

 

Moscarello, J.M. & LeDoux, J.E. (2013). The contribution of the amygdala to aversive and 

appetitive Pavlovian processes. Emotion Review 5 (3) 248-253. 

 

Murray, E., Wise, S., & Rhodes, S. (2011). Chapter 4: What can different brains do with reward? In: 

Gottfried, J.A. (ed.). Neurobiology of Sensation and Reward (Boca Raton, 2011). 

 

Quartz, S.R. (2009). Reason, emotion and decision-making: risk and reward computation with 

feeling. Trends in Cognitive Sciences 13 (5) 209-215. 

 

Rilling, J.K. & Sanfey, A.G. (2011). The neuroscience of social decision-making. Annual Review of 

Psychology 62. 23-48. 

 

Saunders, B.T., Yager, L.M. & Robinson T.E. (2013). Cue-evoked cocaine “craving”: role of 

dopamine in the accumbens core. The Journal of Neuroscience 33 (35) 13989-14000. 

 

Schoenbaum, G., Roesch, M.R., Stalnaker, T.A. & Takahashi, Y.K. (2011). Chapter 15: 

Orbitofrontal Cortex and Outcome Expectancies: Optimizing Behavior and Sensory Perception. 

In: Gottfried, J.A. (ed.). Neurobiology of Sensation and Reward (Boca Raton, 2011). 



Nathan R.B. Perdijk. 0473170. Supervisor: J.J.C. Meyer. 

Master Thesis: History and Philosophy of Science. 

Artificial Reward and Punishment: Chapter 3: Reward and the brain. 

 

 88 

 

Tang, N.K.Y. & Crane, C. (2006). Suicidality in chronic pain: a review of the prevalence, risk 

factors and psychological links. Psychological Medicine 36 (5) 575-586. 

 

Way, B.M., Taylor, S.E. & Eisenberger N.I. (2009). Variation in the mu-opioid receptor gene 

(OPRM1) is associated with dispositional and neural sensitivity to social rejection. Proceedings 

of the National Academy of Sciences of the United States of America 106 (35) 15079-15084. 

 

Weinberger, N.M. & Bieszczad K.M. (2011). Chapter 1: Introduction: From traditional fixed 

cortical sensationism to contemporary plasticity of primary sensory cortical representations. In: 

Gottfried, J.A. (ed.). Neurobiology of Sensation and Reward (Boca Raton, 2011). 

 

White, N.M. (2011). Chapter 3: Reward: What is it? How can it be inferred from behaviour? In: 

Gottfried, J.A. (ed.). Neurobiology of Sensation and Reward (Boca Raton, 2011). 



Nathan R.B. Perdijk. 0473170. Supervisor: J.J.C. Meyer. 

Master Thesis: History and Philosophy of Science. 

Artificial Reward and Punishment: Chapter 4: Modelling Motivated Artificial Intelligence. 

 89 

Chapter 4: Modelling Motivated Artificial Intelligence 

Reminder: I will use the capitalised “Neuron” for the constituents of Neural Nets, while the 

noncapitalised “neuron” refers to the biological cell type that inspired them. 

 

Now that it is clear that value in biological organisms is derived from homeostasis and its link to the 

ultimate consequences of natural selection (death and survival) it is time to make a first draft of an 

AI that is capable of assigning values on its own. We can now take the first steps towards creating a 

model of an AI that is designed to associate positive or negative values with its actions on the basis 

of internal consequences. In the current chapter I will attempt to create the basics of Arbiter and 

Value-assigner functionality that can be integrated in a modular fashion with memory and action-

decision mechanics. As creating an actual AI is beyond the scope of this thesis, I will only produce a 

theoretical, and, regretfully, incomplete model of an AI that learns and acts on the basis of 

homeostatic feelings.171 I will dub this AI model “MAI”, short for Motivated AI, because this AI 

will be driven by homeostatic disturbance backed by actual cessation of function, rather than 

performing actions because it’s directly programmed to do so. MAI will not require an outside 

source to establish value for it, but will instead provide its own value on the basis of which it will be 

capable of adjusting. What I hope to show is that such an AI would be capable of displaying 

adaptable behaviour that is also firmly connected to reality through consequences. 

 

As discussed in the section on Artificial Intelligence, adaptability boils down to four basic points: 

 

 A “being” must be capable of interaction with its environment (requiring some form of 

perception and some means of altering itself or the environment),  

 A “being” must be capable of evaluating its interactions with the environment, 

 A “being” must be capable of storing these valued interactions, (more commonly known as 

having a “memory”), 

 A “being” must be capable of adjusting its interactions based on these values attained 

through previous interactions/perceptions (more colloquially known as “learning”). 

                                                 
171 The word “feelings” in this context is not meant to imply emotions, only the negative or positive evaluation of 

information based on homeostatic feedback. 
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Although interaction and storing will both feature in this section, the emphasis will be placed on the 

application of evaluation as a means to adjust the AI's behaviour. MAI will have an internal 

reference frame by which it can judge its interactions, attach value to what it stores and from there 

make useful adjustments. This is in opposition to the standard AI that lacks an internal reference 

frame and relies on other, often external, processes to make adjustments. Rather than use standard 

AI Neurons, which both inhibit and excite, I will use more nature-inspired Neurons that either 

inhibit or excite, a functionality that can be duplicated with regular AI Neurons by locking either the 

inhibitory or the excitatory connections to zero. 

 

MAI requirements 

In order to build an AI that can support Arbiter and Value-assigner functionality, some basics need 

to be present in its design. 

 

MAI will need some measures that will provide representation of the outside world. I will list 

within brackets what part of adaptability they support: 

 

3. “Neurons” that the program uses as sensors to keep track of outside parameters. These 

outside parameters could be extremely limited, such as the ability to detect whether it is light 

or dark, or a full spectrum of detection including sight, touch, hearing and other sensor-input 

available or unavailable to humans (interaction), and 

4. “Neurons” that represent actions targeted at the outside world (interaction). These actions 

could vary from the limited flicking of a light switch, to a much broader scope of actions 

such as complicated movement patterns. 

 

Some measures representing the inside world are also required. These measures include: 

 

 Some range of “homeostatic” parameters wherein the program must try to stay 

(evaluation), 

 “Neurons” that the program uses as sensors to keep track of these parameters (evaluation), 

 Some automated, time-dependent process that disturbs homeostasis to drive action-
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selection and simulate natural homeostatic disruption, this can instead be achieved by using 

an actual draining battery that can be recharged (evaluation), and 

 A rising degradation-counter, which will deactivate MAI if it stays outside the homeostatic 

zone for too long, connecting it to an ultimate consequence: death (grounding evaluation). 

This counter will slowly go down if MAI spends enough time at the required homeostasis to 

simulate repair. 

 

Other required program capabilities: 

 

 Some form of memory-storage, capable of storing internal and external perceptions, as well 

as actions (storage), 

 An action-selection mechanism that selects between available actions based on action-

memory (interaction), combined with relevant action-prompts provided by: 

 An Arbiter-mechanism. This mechanism must be capable of ascertaining homeostatic 

imbalance in order to trigger the action-decision mechanism. It must also be capable of 

judging action-impact on homeostasis from the provided internal perception. It must be able 

to assess not just in which direction they adjust homeostatic values, but also whether this is 

good or bad in the given situation (evaluation). The Arbiter then informs the action-selection 

mechanism and the: 

 A Value-assigner-mechanism, which commits this verdict to memory through signal 

modulation, making the memory meaningful by attaching values that are directly connected 

to consequences (evaluation, storage and adjustment), and finally 

 A priming-mechanism, internal to the Neuron itself, which allows it to be modulated by 

signified reward. Inactivity of this priming-mechanism prevents Neuron-connections that 

were not part of the reward-producing action from being reinforced (evaluation, storage and 

adjustment).  

 

One last prerequisite, that is easy to forget but very much a necessity: 

 

- The possibility of the external environment affecting homeostasis (interaction and 

consequences), such as light or darkness affecting energy levels. 
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The hardware 

Ideally, a real-world, physical Neural Net would be created to support the learning mechanisms 

above. However, physical Neural Nets are prohibitively expensive to create and maintain. 

Additionally, they have physical limitations that are hard to get around: Neural Nets can become 

bulky very quickly, the “growth” of new “Neurons” and connections between them is very hard to 

implement and there is a high risk for unplanned physical damage to name but a few problems 

inherent in physical Neural Nets. With the MAI approach to learning, there is also a very real 

chance of damage inflicted upon the system by MAI itself. This is due to the fact that MAI is 

supposed to detect real, physical consequences and act on them: program failure to avoid damage 

could result in the destruction of a physical net, making a physical net unsuitable for MAI-

experimentation. Even successful evaluation may result in limited damage as MAI finds out the 

consequences. Therefore, at least in the foreseeable future, it seems more practical to settle for a 

computed Neural Net. I will argue in the chapter on Philosophy that this has no negative 

philosophical implications for the status of the program's reality, adaptability or even its grounding. 

 

Establishing homeostasis 

Seeing that this is only a first attempt, it seems wise to keep things relatively simple and give MAI 

only one homeostatic parameter to keep track off: the amount of electric energy. This particular 

example parameter is chosen for two reasons:  

 

- It has native survival consequences for a computer, due to their electricity dependence, 

which enhances realism, 

- It forms a very easy analogue for biological organisms who require their own type of 

energy to stay functional, including later options for including storage of reserves,172  

 

Like in biology, too little energy will lead to a less than optimal performance on a computer. In the 

more extreme cases the value could fall low enough to cause a cessation of function as simply not 

                                                 
172 As an aside, some microscopic organisms are actually thought to survive on nothing but electricity itself.  

 Brahic, C. (16 July 2014). Meet the electric life forms that live on pure energy. 

http://www.newscientist.com/article/dn25894-meet-the-electric-life-forms-that-live-on-pure-

energy.html?page=1#.U8fh_LGvTX4. New Scientist 2978 (retrieved 21 July 2014). 

http://www.newscientist.com/article/dn25894-meet-the-electric-life-forms-that-live-on-pure-energy.html?page=1#.U8fh_LGvTX4
http://www.newscientist.com/article/dn25894-meet-the-electric-life-forms-that-live-on-pure-energy.html?page=1#.U8fh_LGvTX4
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enough energy is available to continue functionality. Also as in biology, where too much unbound 

glucose can destroy cells or an overstuffed intestinal tract may rupture, a too high dose of electric 

energy (in the form of electric current) can cause damage to the physical 

computer hardware decreasing performance and ultimately causing 

irreparable breakdown. Therefore, by picking energy as the functional 

homeostatic value, a degree of realism is preserved if dire consequences 

such as the cessation of a faulty program are enforced. Because MAI will 

initially be run on virtual hardware (a simulated Neural Network), no 

physical energy restraints will penalise poor decisions and failure to 

rectify them. Instead, simulated restraints, where the insufficient or 

excessive power reduces MAI's efficiency and starts the process of 

“degradation” which eventually shuts MAI down, will serve as the 

limiting factor. I will discuss the philosophical consequences of this in 

Chapter 5.  

Here an obvious objection appears already against the claim that 

this AI would be new or special. Modern computers already have 

programs running that monitor power surges and overheating (which is 

an important side-effect through which high energy destroys computer 

hardware). These programs will often also take actions to prevent the 

computer hardware from its untimely destruction: CPU rates will be 

throttled to reduce energy consumed and through that reduce the heat 

produced. These programmes may even force the computer to go into a 

hard shut down to prevent damage from occurring. Of course, this 

resembles the behaviour of MAI in some ways, as MAI will also try to 

self-regulate. Surely MAI is not a unique program in every way and of 

course computers run programs that monitor their physical health as 

predetermined by outside programming. However the manner in which 

this function is integrated is fundamentally different: unlike normal 

computers, where the heat-monitor is a separate program that runs in the 

background and only controls the CPU, the fan and the ON/OFF switch, the integration of this 

monitoring function in MAI will be complete: every act MAI performs, every link it makes, 

Figure 4.1: Illustration of 

the used example 

homeostatic range. The 

white range indicates no 

signal: between 7C and 

8C no corrective action is 

required so no signal is 

given. Increasing redness 

away from the 7C to 8C 

range indicates 

increasing survival 

threat. 
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everything will be associated with its effect on the energy running through the computer. The 

importance of every action is the impact it has on the available energy and MAI will adapt not only 

reduce the damage caused by power surges and overheating, but also to prevent them. 

 Let us return to creating MAI. 

 

The internal detection array: 

In order for MAI to detect danger to its homeostasis, MAI needs to monitor what state the energy 

value (C) is currently in (henceforth actual state), as well as knowing what state it should be in 

(homeostasis). Let’s arbitrarily place the ideal energy for the machine’s hardware between values 

7C and 8C.  Anything below or above is detrimental to prolonged survival and needs to be adjusted 

to prevent damage or even cessation of function. The larger the difference between the ideal values 

and the actual value, the more serious the threat (see Figure 4.1). Obviously, MAI now needs 

sensors to tell its actual state. These sensors for the brain in the human body are neurons, it seems 

only apt that we replace them with “Neurons” similar to those found in Neural Nets (with the 

exception that these will be exclusively excitatory). At first glance, MAI seems to need only three, 

or perhaps even only two Homeostatic Neurons: 

 

- Neuron A fires when energy < 7C, 

- Neuron B fires when energy > 8C, and 

- Neuron C, which fires when 7C ≤ energy ≤ 8C. Neuron C is not actually necessary and 

biologically unlikely. Research and every day experience suggests that biological organisms 

are not informed if homeostasis is maintained, but only receive signals of change and threat. 

Provided Neuron A and B function properly, the program doesn’t need to be informed that 

it’s currently in the safe zone, it just needs to know if it’s in the red zones and if its situation 

is improving or growing worse. (See Chapter 2). 

 

An alternative way to model this is with another set of Neurons: 

 

- Neuron X fires when energy > 7C, 

- Neuron Y fires when energy < 8C, and 

- Neuron Z, which fires when 7C ≤ energy ≤ 8C isn’t true. Again this third Neuron is not quite 
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as necessary, as it only informs the body that it is currently not in the safe zone. This 

required information is already available (if both X and Y fire, homeostasis is between 7C 

and 8C). That said, there is some biological suggestion for a function like Neuron Z. 

Touching extreme heat or cold, for instance, often feels the same (i.e. painful temperature) 

for a short time before more specific information arrives (i.e. hot or cold). This allows for a 

quick reflexive cessation of contact where a quickness to act is more important than a 

detailed reason. It is also possible that this function resides within the Arbiter (see below) 

instead. 

 

It is possible to double-layer the two groups of neurons, which provides redundancy. 

If Neuron A and Y fire (see Figure 4.2), the Arbiter knows that energy is below 7C. If Neurons B 

and X fire, the Arbiter knows that energy is above 8C. If Neurons X and Y fire and A and B do not, 

the Arbiter knows that energy is between 7C and 8C, or rather, that homeostasis is 

currently being maintained. From biological sources we know that there is no 

signal for achieved homeostasis, which suggests that the biological equivalent of 

Neuron X, Y and C-types don't exist, as those fire during achieved homeostasis. 

Their biological absence is possibly due to the fact that firing neurons cost more 

energy than non-firing neurons while they would, in this case, provide no useful 

information. The redundancy matter in nature is probably fixed instead by having 

more neurons (for implementation, see below). Regardless of biological realism, 

because the Neurons A and B suffice, I will disregard the C, X, Y and Z 

possibilities for now, to simplify what is to come. 

This orchestration will work for the first basic internal monitoring task: 

knowing when the balance is off and in which direction it is off. It allows the 

program to take countermeasures that it knows are effective in changing the 

balance, or to experiment with new countermeasures if it doesn’t know of a 

method yet. However, in this second case it can quickly run into problems: most 

methods will not result in an immediate drop or rise in energy, so how does MAI 

know it is on the right track or not? With only these sensors, the computer is 

unable to decide what is a beneficial action and what is a detrimental action, unless that action 

completely changes the state MAI is in (see Table 4.1).  

Figure 4.2: 

Example of 

Neuron 

activation 

when energy 

has dropped 

below 7C. 

Neuron's A 

(below 7C) and 

Y (below 8C) 

are active, as 

is the Arbiter, 

while Neurons 

B and X lie 

dormant. 
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MAI doesn’t necessarily have time to test each method long enough to see what its effects 

are, if it has any effect at all. Worse, in many cases it won't be able to detect a change when such a 

change definitely occurs. In order to dramatically shorten the timespan for arriving at a conclusion 

as well as enabling a wider range of possible conclusions, we need to expand our Neuronal 

assembly to allow for a much more accurate reading. Let us assume that a total shutdown is 

imminent at 3C and takes considerably longer in the range between 3C and 7C (although 

progressively quicker as it reaches 3C). A linear line of Neurons derived from Neuron A to monitor 

<3C, <4C, <5C and <6C could provide the program with much quicker and versatile feedback.  

 

Table 4.1: Display of Arbiter judgements of possible states at T2 if T1 was a "too low". Note the lack of valued 

difference between states 3C to 6C and 9C and the resulting lack of valued association. 

Condition 

at T1 

HS 

Neurons 

firing T1 

Arbiter Possible 

T2 

HS 

Neurons 

firing T2 

Arbiter Improvement/ 

Worsening 

Association 

Energy 

5.1C 

A “Too 

low” 

Energy 

3C 

A “Too low” A  A, 

Unknown/No 

Neutral 

   Energy 

4C 

A “Too low” A  A, 

Unknown/No 

Neutral 

   Energy 

5C 

A “Too low” A  A, 

Unknown/No 

Neutral 

   Energy 

6C 

A “Too low” A  A, 

Unknown/No 

Neutral 

   Energy 

7C 

  Improvement Positive 

   Energy 

8C 

  Improvement Positive 

   Energy 

9C 

B “Too 

high” 

A  B, Changed 

to a different 

negative. 

Positive/ 

Negative 

 

Let us split Neuron A into Neuron group A with the following properties: 
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- Neuron A1 fires when energy < 7C,  

- Neuron A2 fires when energy < 6C, 

- Neuron A3 fires when energy < 5C, 

- Neuron A4 fires when energy < 4C, and 

- Neuron A5 fires when energy < 3C, 

 

This group allows the Arbiter a significant second layer of information. It can now not only 

establish if the present Energy value C is below the desired threshold, but the Neurons also allow it 

to judge how far below the threshold the threat is by both signal source (A5 is more serious than 

A1) as well as signal intensity (the higher the number of firing Neurons, the more severe the threat).  

 

 

Most importantly though, the system now has more possible states to compare. Rather than being 

limited to “Homeostasis”, “Too low” and “Too high”, with this extra layer of information, the 

system now also has access to more nuanced comparative statements such as “still too low, but an 

improvement”, “still too low, no change” and “still too low, now even worse” (see Table 4.2). With 

these more refined statements, the system is much more capable of producing a positive or negative 

statement about the effects of the most recent events. Only in a very limited case where the C 

doesn’t change, or doesn't change enough, to change the firing pattern will the Arbiter be unable to 

evaluate if there was any change at all. Naturally, the smaller the activation gaps between Neurons, 

Figure 4.3: Different Arbiter inputs at T1 and T2. 

Note that both from Neuron-source and from number 

of active Neurons (white circles depict firing 

Neurons, grey circles depict inactive Neurons), the 

Arbiter can tell both when change occurs and what 

the scale of the change is. 
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the more justified MAI will be to conclude that a particular action has had no positive or negative 

effect when no change in the Neuronal fire pattern is detected. The more accurate the reading, the 

faster the program can make informed decisions built on internal valence, at the cost of increased 

complexity and maintenance. 

 

Table 4.2: The same situation T1 and possible T2's, but with a more refined sensory apparatus. Note how the 

Arbiter is able to make a better judgement as well as provide more valued associations. 

Condition 

at T1 

HS  

Neurons 

firing T1 

Arbiter Possible T2 HS  

Neurons 

firing T2 

Arbiter Improvement/ 

Worsening 

Association 

Energy  

5.1C 

A1,2 “Too 

low” 

Energy <4C A1,2,3,4 “Too low” A1,2 → 

A1,2,3,4  

Much worse 

Very 

Negative 

   Energy 

>4C, <5C 

A1,2,3 “Too low” A1,2 → 

A1,2,3 

Worse 

Negative 

   Energy 

>5C, <6C 

A1,2 “Too low” A1,2 → A1,2 

Unknown/No 

Neutral 

   Energy 

>6C, <7C 

A1 “Too low” A1,2 → A1 

Improvement 

Positive 

   Energy 

>7C, <8C 

  A1,2 → Great 

Improvement 

Strong 

Positive 

   Energy 

>8C, <9C 

B1 “Too 

high” 

A1,2 → B1 

Great 

Improvement/

New Problem 

Strong 

positive/ 

Weak 

Negative 

   Energy 

>9C, <10C 

(etc.) 

B1,2 “Too 

high” 

A1,2 → B1,2 

Great 

Improvement/

New Big 

Problem 

Strong 

Positive/ 

Strong 

Negative 

 

Modelling 

Based on these sensory requirements and the list of other requirements listed in the earlier chapter, 

we can set up a schematic representation of the relations between the different factors that are 

included in MAI or directly affecting it: 
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Figure 4.4: Schematic depiction of interaction between the different modules that comprise MAI. 

White circles depict firing neurons, grey circles depict inactive neurons. Arrows depict direction of 

influence. 

 

Now that we know what kind of information-input the Arbiter requires, we can devise a possible 

solution for the comparative functions it executes. I will now demonstrate a set of possible Neuron-

based mechanisms that would respond to homeostatic change in an adequate fashion. These are in 

no way exhaustive, but should give a suitable starting point for the experimental exploration of 

MAI. 

 I will start with the comparative functions of the Arbiter. In the following illustrations, I 

sketch a possible Neuron-based network that can compare old homeostatic information to the 

current information and send the correct signal to the Value-assigner to be transmitted. In order not 

to clutter the illustration, I will only depict the possible paths and states that are associated with one 

single Homeostatic Neuron, Neuron A1. Every homeostatic sensory Neuron has a comparable 
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connection to the Value-assigner, so the amount of active connections that enter the Value-assigner 

can dictate the value-strength transmitted by its reward signal. For comparison across two moments, 

it is clear that Neuron A1 provides for a total of four possible different outcomes:  

 It fired at the first moment (A'1), but not at the second (Figure 4.5, on the left),  

 It fired at the second moment (A1), but not at the first (Figure 4.5, on the right),  

 It fired at both the first and the second moment (Figure 4.6, on the left), or  

 It fired at neither the first, nor the second moment (Figure 4.6, on the right).  

 

Figure 4.5: Arbiter determining changes in homeostatic value across time interval, part 1. The A1 

Neuron represents the status of homeostatic values at the current moment, the A'1 Neuron 

represents a previous moment. In the left situation, a firing homeostasis Neuron no longer fires, 

meaning an improvement of homeostasis. The Arbiter-output layer sends a signal to the Value-

assigner to release a positive reward signal. In the situation depicted on the right, the current 

homeostatic condition has worsened (A1 now fires) and the Arbiter prompts the Value-assigner to 

send a negative reward signal. The depicted network connections flow from top to bottom. 
 

Neuron firing flows from the homeostatic Neuron A1 (or the representative of its past behaviour, 

A'1), into the Arbiter Input Layer. An active A1 or A'1 will activate the corresponding inhibiting and 

excitatory Neurons in this layer. An inactive A1 or A'1 will not activate the Arbiter Input Layer. The 

excitatory and inhibiting Neurons are cross-connected: the Inhibitory Neuron of A1 inhibits, if 

activated, the Excitatory Neuron of A'1 and vice versa. This allows for the extinction displayed in 

Figure 4.6, while activation in Figure 4.5 proceeds unimpeded (the active inhibitory Neurons inhibit 

inactive excitatory Neurons, resulting in no net effect on activation output). Because activation of 

homeostatic Neurons is a bad sign, a change from activation to no activation (Figure 4.5, on the left) 

is positive, while the converse (Figure 4.5, on the right) is negative. An unchanged firing pattern 
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(Figure 4.6, both networks) is neither a positive change nor a negative change. 

 

Figure 4.6: Arbiter determining changes in homeostatic value across time interval, part 2. The A1 

Neuron represents the status of homeostatic values at the current moment, the A'1 Neuron 

represents a previous moment. In the left situation, the previously firing homeostasis A1 Neuron is 

still firing, meaning no improvement or worsening of homeostasis. The Arbiter sends no signal to 

the Value-assigner (the inhibitory Neuron prevents it). In the situation depicted on the right, the 

current homeostatic condition has also stayed identical and again the Arbiter sends no signal to the 

Value-assigner. In reality, the left situation is exceedingly rare, due to the great amount of 

homeostatic Neurons and the given that homeostasis is never completely stable. The depicted 

network connections flow from top to bottom. 

 

From Figures 4.5 and 4.6, it becomes apparent that a relatively simple cross-connected mechanism 

will allow the proper output Neuron to be activated. In the first situation in Figure 4.5, the current 

situation as displayed by A1 is an improvement over the old situation in A'1, and the Arbiter 

informs the Value-assigner accordingly, prompting a positive reward. In the second situation in 

Figure 4.5, the reverse is true and this time the Arbiter informs the Value-assigner to release a 

negative reward. In the second situation in Figure 4.6, no homeostatic neurons have given off a 

warning, either in the present, or at the previous measuring moment. The Arbiter takes no action 

and no reward is given by the Value-assigner. In the first situation depicted in Figure 4.6, something 

strange occurs that is extremely rare in biology: homeostasis is disrupted and has stayed exactly the 

same. The Arbiter has therefore given no rewarding signal. In all likelihood, this problem is due to 

insufficient homeostatic sensors (compare Table 4.1 and Table 4.2 and consider expanding the Table 

4.2 range of A-Neurons to allow for even smaller increments). Thanks to the Automatic 

Homeostatic Disruption mechanism (see Figure 4.4 and the section on MAI requirements), as well 

as the tendency for actions to produce homeostatic disruption due to the expenditure of resources, a 
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negative reward signal is likely to be produced sooner or later, allowing for comparative evaluation 

over time.173 

 The mechanics for homeostatic comparison between current homeostatic values and the 

ideal homeostatic values is similarly processed (see Figure 4.7). In Figure 4.7, H1 replaces A'1 as 

the comparative target, while the Action Selector replaces the Value-assigner as the target module. 

Because in ideal homeostasis Homeostatic Neurons are inactive, H1 (which stands in for the range 

of H1, H2, H3, etc.) is only displayed in its inactive state. Only the situations that feature inactive 

ideal homeostatic H1 Neurons are currently displayed, but if active H1 Neurons were somehow 

involved, the networks displayed on the left in both Figure 4.5 and Figure 4.6 would function in the 

same manner with the exception that the target module is not the Value-assigner but the Action 

Selector. 

 

 

                                                 
173 To improve action selection when an action does not have the desired effect, another Arbiter module could be added 

that compares actual effect to predicted effect. Such a structure is too complex to be covered in this thesis and may 

be a desirable addition in further experimentation. 

Figure 4.7: Arbiter-mechanism for prompting action-selection on the basis of homeostatic 

disruption. The A1 Neuron represents the status of homeostatic values at the current moment, the 

H1 Neuron represents ideal homeostasis. It is in many ways identical to the mechanism that feeds 

into the Value-assigner. The main difference is that the H1 Neuron and its derivatives do not fire 

and seem largely superfluous. However, the mechanism as presented is capable of handling a 

change in homeostatic preferences: if the required homeostatic value changes so that an H-Neuron 

fires when homeostasis is preserved, the Arbiter would still be able to assess homeostatic conditions 

correctly to prevent unnecessary Action Selector activation. It seems that adaptability is therefore 

served by conserving the “superfluous” structure. The depicted network connections flow from top 

to bottom. 
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This may lead to the impression that H1 and all its derivatives are superfluous: they seem to have no 

effect on the displayed outcome, because they are always inactive (see Figure 4.7). However, if a 

change were to occur that alters homeostatic preferences without a change in the sensitivity of the 

homeostasis-sensing A-Neurons, H1 and its group members can adjust by becoming active instead. 

Imagine for instance a change in the physical hardware that results in a new homeostatic ideal of 6C 

to 7C. As established earlier this chapter, the unadjusted Neuron A1 will fire if the value of “C” falls 

below 7C. This would result in constant signals to the Action Selector prompting action as well as 

output to the negative Value-assigner, which would give wrongly valued reinforcement to any 

further actions. By turning the default setting for the “ideal homeostasis” Neuron H1 from “non-

firing” to “firing”, this can be prevented (an active H-Neuron alongside an active A-Neuron will 

inhibit action-prompting and signifying, while an active H-Neuron alongside an inactive A-Neuron 

will cause Action Selector and Value-assigner activity). The Arbiter-mechanic will then still work in 

maintaining Neuron A activity at the same level as Neuron H activity, preventing unnecessary and 

detrimental Action Selector activation while promoting it when it is required. Due to the adaptive 

options keeping the more complicated structure provides (allowing for homeostatic reorientation 

without changing the sensor array), as well as the occurrence of (limited) homeostatic reorientation 

in biology, I have decided to maintain the inert H-Neurons and their derivatives even though no 

mechanism to reorient H-Neurons will be presented in this thesis. 

 It is important to note that, although the Figures 4.5 – 4.7 only display one homeostatic-

sensing Neuron (A1), a similar little network will exist for every A-Neuron (be there six, or six 

hundred), as well as B Neurons and any other sensory kind. The connections from the Arbiter to the 

Value-assigner and to the Action Selector are similarly expandable and intended to be cumulative. 

So six A-Neurons signalling the Value-assigner or Action Selector through the Arbiter mechanism 

would respectively prompt a higher reward, or more encouragement for action. The more little 

networks are added, the more precise the mechanism will function and the more adaptable it will be. 

We must now continue with the interaction between the reward-signal provided by the Value-

assigner and the memory-storage that the Action Selector depends upon. The inner workings of the 

Action Selector itself will not be elaborated upon, because it falls outside of the scope of this thesis 

which is concerned with the role of motivation in adaptability and not with the mechanism of action 

selection itself. After modelling the interaction of reward with action memory (see Figure 4.8), I 

will provide three methods through which the Value-assigner can bring its rewarding message to the 
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Neuronal connections that form the memory in Neural Nets. 

 

 

Figure 4.8: Value-assigner influence on action-selection. An action prompt reaches the Action 

Selector from the Arbiter (1). The Action Selector triggers the action memory for relevant actions 

(2). The Memory Neurons excite and inhibit Action Preparation Neurons at the Action Selector (3). 

The strongest signal (excitatory minus inhibitory) is selected by the Action Selector, triggering the 

execution of the action by activating the Action Execution Neurons (4). These not only execute the 

action, but also provide a feedback loop back to the relevant memory Neurons (5) and prime them 

for Reward (area R). Action execution leads to Output (6), which affects Homeostasis (7). This 

effect is judged by the Arbiter (8) and passed on to the Value-assigner (9), which gives off the 

corresponding Global Reward Signal (10). This signal is then picked up by the Neurons that are 

primed for reward (11). If the reward was positive, the excitatory Neurons are reinforced, if it was 

negative, the inhibitory Neurons are enforced. This impacts the signal strength associated with the 

action by either increasing it (through enhanced excitation), or lowering it (through enhanced 

inhibition), affecting the chance that the action will be selected again in these circumstances. 

 

Reward and connection strength 

The interaction of reward and action-memory starts when the Arbiter detects homeostatic disruption 

and prompts the Action Selector to undertake action. The Action Selector then activates the Neurons 

that compose its memory. This memory is created by connecting two kinds of Neurons: inhibitory 

Neurons and excitatory Neurons. These are connected to Action Preparation Neurons that 

correspond with actions that can be taken. These Action Preparation Neurons spike towards the 

Action Selector with a connection strength that is increased by excitatory Neurons and decreased by 

inhibitory Neurons in their corresponding memory. The Action Selector then selects the strongest 

signal and allows it to continue to the corresponding Action Execution Neurons, which not only 

perform the action, but also loop back to their corresponding memory Neurons, priming them for 
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modulation by the Value-assigner’s signal. Through the Output, Homeostasis is (presumably) 

affected, after which the Arbiter will judge the effects and prompt the Value-assigner to release a 

Global Reward Signal. Any Neuron that has been primed to accept this signal, will now have its 

signal strengths modulated on incoming and outgoing connections. In the posited MAI-model, 

negative signals strengthen inhibitory mechanisms, while positive signals strengthen excitatory 

mechanisms. The first will result in a lower peak of the corresponding Action Preparation Neuron, 

reducing the chance of that particular action being selected in this context, while the second results 

in a higher peak of the corresponding Action Preparation Neuron, further increasing the chance that 

the action will be selected above other actions given this context. To add to the versatility of this 

mechanic, the Reward, and with it the amount of signal modulation, can be dependent on the size of 

the homeostatic change detected by the Arbiter. As displayed in Figure 4.4, the memory function 

can be made more adjustable to changing circumstances by allowing external input, i.e. from 

external senses, to plug into the networked memory, activating excitatory or inhibitory Neurons. 

Activation or inactivation of particular senses can then be coupled to a higher or lower final Action 

Preparation strength of each particular action. Through the Global Reward Signal, interaction 

between action memory, other memory and senses can achieve new adaptable heights. I suspect that 

by connecting these modular Neural Nets to each other and enforcing the beneficial connections 

through the Global Reward Signal, a wide range of versatility and adaptability can be achieved by 

this self-teaching AI. This is, however, the topic of practical experiment, which means I must now 

abandon the subject. Not, however, before I posit how the Global Reward Signal can be executed.  

 

Transmitting the Global Reward Signal 

In the MAI model, information is stored in the connections between individual Neurons, of which 

there are two types: inhibitory and excitatory. It is adamant that the Global Reward Signal is able to 

travel to the proper Neurons in order to perform its function. In order to prevent the wrong Neuronal 

connections from being enforced, Neurons need to be primed for Reward first. This priming should 

only last for a predetermined amount of time, allowing the Value-assigner to release an unguided 

Global Reward Signal as only the primed Neurons will pick it up and reinforce their connections. In 

combination with this priming mechanic, I see three ways for the practical implementation of the 

Global Reward Signal, each inspired by biology.  

 The first is to follow the simplest biological route: the dumping of reward chemicals into the 
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neuronal environment. By this method, all Neurons will receive the signal, but only the primed ones 

will pick it up. There are some practical limitations in the nature of physical Neural Nets. A physical 

Neural Net lacks the complex biological apparatus that allows individual neuron cells to detect 

chemical signals in their environment. As a matter of fact, physical Artificial Neural Nets don’t 

really have a shared environment other than the air kept in the server room. It is likely that a 

mechanical solution to this problem can be devised (perhaps something involving the mounting 

structure), but for now this is not a serious problem because we are working with a simulated 

Neural Net. In a simulated Neural Net, the updating of primed Neurons could be solved more easily 

by including a check that verifies if a Reward signal is currently active in the system and, if so, 

what strength and value it has. This would have the benefit that only primed Neurons require extra 

attention when a Reward signal is in play. 

 A second solution works for both simulated as well as physical Neural Nets. It involves 

making connections from the Value-assigner to every Neuron that would ever need to be signified. 

If a Reward signal is to be transmitted, the Value-assigner sends it across all of its connections 

(perhaps repeatedly if the reward is larger), allowing primed Neurons to receive this input directly. 

An obvious downside to this would be the massive amount of connections the Value-assigner would 

have to make as complexity increases. The transmission of a Global Reward Signal would mean 

checking every single Neuron, a task which can make any system unwieldy and which makes this 

method unlikely. 

 A third solution works with the connections that are already present. The Neurons that are 

part of MAI all contain an extra channel that is independent of their normal connection strengths 

that allows them to pass rewarding signals “down the line”. The prerequisite of being primed makes 

sure that the signal is only implemented by those Neurons meant to be affected by it. Again, the 

downside is that every Neuron would need to be checked when a Global Reward Signal is in play, 

but perhaps the workload could be reduced by combining it with already occurring activations.  

 All three methods have their upsides and downsides. Which method is most efficient and/or 

effective will probably require some practical testing, as will the optimal configuration of the 

interlocking modules that implement MAI. It is now time for some directives for future work and to 

posit one final, uncomfortable question: 
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Is MAI a true Artificial Intelligence as described in Chapter 1? 

No, not really. MAI as it has been presented is adaptable: it can interact with the environment, 

evaluate these interactions based on internal consequences and with it form meaningful memories. 

It can then adjust its future interactions accordingly. However, it is still far away from planning, 

reasoning and other skills entailed in the definition of massive adaptability, or “intelligence”. 

Without an overseeing architecture, it is also quite likely that MAI doesn’t “experience” any 

feelings associated with its mechanisms, in spite of its inherent motivation (hence the name 

“Motivated AI, rather than “Feeling AI”). One likely cause of these problems is that MAI is still 

extremely simplistic. It has a very limited array of homeostatic values to monitor, includes only the 

most limited Arbiter mechanic and the Neurons with which it has been built are also still incredibly 

simple compared to their naturally occurring counterparts. MAI does, however, have a level of bare-

bone intelligence and this intelligence is grounded in reality as well as internal consequences 

through its learning mechanisms. MAI could therefore function as a grounding module 

implemented in other AI, in order to give internal meaning to external signifiers and to facilitate 

reasoning already present. Not only would this enable that AI to learn and behave in a more 

intelligent fashion, but it would also be more easily recognised as intelligent. MAI is currently little 

more a small behavioural decision-making unit that could for instance be fit into the Physically 

Grounded Systems approach of Nouvelle AI such as proposed by Brooks in 1990,174 to replace 

preprogrammed automated responses with self-directed learning that can establish which 

preprogrammed automated actions should be implemented in which situation.  

 

Future work 

An actual experiment involving MAI could show any shortcomings in its current design and could 

determine if it will actually work as envisioned. If MAI successfully passes that test, there are a 

number of regions in which its functions could be expanded. I will name some of the possible 

elaborations that could further improve MAI’s adaptability.  

Expansion of the number of different homeostatic variables (currently only one) and the 

introduction of more corresponding arbiter-modules can make MAI significantly more adaptable. A 

first field of expansion would be to add external sensors of varying types. For the sake of simplicity, 

                                                 
174 Brooks, R.A. (1990). Elephants don't play chess. Robotics and autonomous systems 6 (1) 3-15. 
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MAI as designed in the current chapter does not feature any explicit external sensors in spite of 

them being listed in the section on MAI Requirements. Instead, they have been abstracted away into 

the “External Input””Memory flow” of information in Figure 4.4, while in Figures 4.8 they are 

simply a potential part of the “memory layers” that are activated. Adding ranges of sensors which 

input into the Memory layers can allow MAI to take external variables into account when its Action 

Selector is operating. Feedback provided through the Value-assigner can modulate the impact of 

sensory information on the signal spike of Action Preparation Neurons through inhibition or 

excitation of memory layer Neurons, which would make the selection process significantly more 

adaptable. Another important field of expansion lies in the homeostatic variables. Requiring MAI to 

keep track of multiple variables will allow it to attach internal value to more encounters it has with 

the outside world, as well as giving those encounters more dimensions: a positive encounter on one 

homeostatic range may also represent a negative encounter on a different range. This could allow 

for complex behaviour to emerge as multiple arbiters vie for Action Selector control. A third, more 

complicated expansion would be to integrate an Arbiter-like function that compares predicted 

outcomes of an action to actual outcomes as reflected in homeostatic disruption. This evaluative 

function could improve the speed of the learning process by quickly eliminating actions that do not 

produce the wanted result, but will probably require considerably more work to implement. Finally, 

the largest improvement to MAI would be its implementation in a robot body, which allows for 

embodiment that doesn’t have to be predefined in a software environment. In the real world, such a 

MAI-robot could try to find its own way to energy, learning on its own through homeostatic 

monitoring which interactions are beneficial in achieving that goal. 

It is my belief that increasing the amount, range and functions of networks founded on MAI 

will eventually produce something that can be called massively adaptable, or in other words, 

intelligent. In the meanwhile, MAI is an improvement on the traditional Neural Net which needs to 

be trained by an external computer that tweaks its connections on the basis of a large set of training 

samples and countless trials. MAI tweaks itself and every disruption it encounters is its own, self-

evaluated training sample. By internalising the training, based on internal consequences, MAI even 

challenges some widespread preconceived notions in the Philosophy of AI. It is to these notions that 

we must now turn our attention. 
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Chapter 5: Motivation and the Philosophy of Artificial Intelligence 

 

Now that we have a first model of Motivated Artificial Intelligence (MAI), it is time to evaluate the 

impact of integrating motivational systems in AI on the matters of AI Philosophy. The philosophy of 

Artificial Intelligence knows a variety of problems, many of which have an overlap with Philosophy 

of Mind and other areas of Philosophy. I have selected three problems (although we will later find 

out that they are in fact only two problems) for further inspection, because they are connected so 

closely to the purpose behind MAI: providing AI with the tools to assign value to its interaction 

with the outside world. These three objections to the tenability of the quest for Artificial 

Intelligence, as described in chapter 1, are: 

 

1. The Chinese Room thought-experiment, 

2. The Simulation Objection, and 

3. The Symbol Grounding Problem. 

 

For the first two problems, I will mostly argue my case by presenting it against the claims made by 

John R. Searle, the inventor of the Chinese Room thought-experiment and a fervent proponent of 

both the Chinese Room and the Simulation Objection as viable and definitive “proofs” against 

Artificial Intelligence. According to Searle, a computer Artificial Intelligence that is intelligent in 

the same sense that we are, including “consciousness”, “feelings” and other attributes we associate 

with exercising our intelligence, is nothing but a fool's dream. His Chinese Room thought-

experiment is supposed to demonstrate that computers cannot possibly be able to understand the 

meaning of the symbols they are operating. Since we humans are able to understand what the 

symbols we operate mean, Searle concludes that a computer could never be intelligent in the same 

sense that we are. He often compounds this by bringing in the second issue, called the Simulation 

Objection. This objection entails the claim that a simulation of the human mind on a computer 

cannot be said to be conscious or intelligent in the same sense that we are, because a simulation of a 

thing is not the same thing as the original. In my defence of the quest for Artificial Intelligence, I 

will demonstrate some serious problems with the examples Searle chooses to convince people of the 

intuitive validity of his Chinese Room thought-experiment as well as the Simulation Objection he 

so often touts. I hope to demonstrate that the Chinese Room and Simulation Objection are not only 
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based on faulty comparisons, but also generally invalid. 

 The third issue, the Symbol Grounding Problem, lies at the core of philosophical problems 

in the field of Artificial Intelligence. Unlike the Chinese Room, which is really just an example of 

the Symbol Grounding Problem taken to its extreme, the Symbol Grounding Problem merely 

problematizes the relation between the “Intelligence” of AI and the symbols it manipulates without 

immediately concluding that no “grounding” is possible. The Symbol Grounding Problem is a 

philosophical problem that not only affects Artificial Intelligence, but the cognitive 

“computationalism” theory of the Mind as well.175 I will argue that the introduction of internal 

consequences, on which the evaluation of interactions can take place, allows for the “grounding” of 

programs on computers as long as the program is of a suitable type. Artificial Intelligence, if created 

from adaptable behaviour based on the four component parts of adaptability (interaction, evaluation, 

storage and adjustment) will be able to assign internal consequences to external signals. 

Connections and consequences established through valued adaptability will ground the symbols the 

AI is constructed with in reality and give it the ability to assign meaning to its interactions. First 

things first, let us deal with the Chinese Room. 

 

The Chinese Room: semantics and meaningful representation 

One of the most famous thought-experiments in the Philosophy of Artificial Intelligence is called 

“the Chinese Room”, devised by John Searle. In this thought-experiment he proposes to lock a man 

with only an understanding of the English language and no understanding of Chinese, neither in 

writing nor in speech, into a room. In this room, the man finds instructions to manipulate symbols 

presented to him through an input slot. After he manipulates the symbols via the instruction 

manuals filled with rules, he outputs a string of Chinese symbols to be read by Chinese people on 

the outside. Thanks to the brilliant design of the symbol manipulating manuals, these Chinese 

readers mistake the output for an intelligent reply to whatever they asked the “machine”. Searle then 

calls out that the man inside the Chinese room doesn't actually understand any Chinese. He is just 

manipulating symbols by following the manual, which completely robs him of any semantic 

understanding of what is going on. Of course, the man in this thought-experiment is a replacement 

for tasks normally left to a computer and the manuals of instructions are simply programmed rules 

                                                 
175 The computationalism theory of Mind assumes that human intelligence and thought is built on symbol manipulation 

by the brain. I do not agree with this theory, but will not discuss it as it falls outside the scope of this thesis. 
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that get the computer from the input to the output without any actual understanding being involved. 

Searle concludes that, since the man is taking over the computer's functions and doesn't understand 

the symbols manipulated, the computer doesn't have an understanding of the meaning of the 

symbols it manipulates either.176,177 Searle even makes a stronger statement, that a computer isn't 

even really capable of performing syntax or computation: both syntax and computation are solely 

projected unto the computer by its creators and users: humans.178 Searle's attack is two-fold. Firstly 

and perhaps unintentionally, it is an attack on the Turing Test. The computer running the Chinese 

Room-program should be able to pass the Test and therefore will be consistently mistaken for 

something intelligent. Searle, however, never actually calls out the test as defective (which it is) 

although he comes close in his 1990 paper “Is the brain's mind a computer program?”,179 

presumably because he believes that the fault lies not in the Test but in computers themselves. The 

second attack is that a computer will not actually understand anything, because it is unable to attach 

any meaning to the symbols it operates, which runs contrary to the claims of those who adhere to 

the Symbol System Hypothesis.180 

 Anyone who has any knowledge of the inside workings of the computer running the Chinese 

Room-program will conclude that it is indeed nothing more than a machine shuffling symbols 

about. According to Searle this means that a symbol manipulating machine will never understand 

what it is asked, nor will it understand what responses it gives, because its programming is entirely 

confined to syntax (form) and has no concept of semantics (meaning).181 After all, the poor English 

fellow182 who has been so crudely and cruelly locked away, has no way of understanding what any 

of the Chinese symbols mean that he's manipulating. He only knows that if he receives one 

particular set of symbols, he must output another particular set of symbols. Searle seeks to prove 

that no symbol manipulator will ever be able to gain understanding and therefore no symbol 

manipulator can ever be considered “intelligent” putting the “strong AI hypothesis” to the grave. He 

even flat-out states that since Neural Nets can be run on an old fashioned symbol manipulating 

                                                 
176 Searle, J.R. (2004). Mind: A brief introduction (New York, 2004) 62-63. 
177 Searle, J.R. (1990). Is the brain's mind a computer program? Scientific American 262 (1) 26-31. 
178 Searle, J.R. (2004). Mind: A brief introduction (New York, 2004) 64. 
179  Searle, J.R. (1990). Is the brain's mind a computer program? Scientific American 262 (1) 26-31. 
180 The Symbol System Hypothesis entails that true intelligence can be created using a digital computer that uses 

symbol-manipulation, conventional memory storage and other attributes of non-Neural Net AI.  

 Copeland, B.J. (1993). Artificial Intelligence: A philosophical introduction (Malden, 1993) 80. 
181 Searle, J.R. (1980). Minds, brains and programs. Behavioral and Brain Sciences 3 (3) 417-24. 
182 To be fair, Searle proposes himself to be the test subject. 
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computer, no Neural Net qualifies for meaningful intelligence either.183 Searle's thought experiment 

paints such a powerful picture that it has drawn, and still draws, a lot of attention in the field of 

Philosophy of Artificial Intelligence. 

 Luckily for the proponents of true Artificial Intelligence, there is a myriad of things wrong 

with Searle's thought-experiment that go beyond the ethically dubious act of locking someone in a 

closed off space with no means of communication outside of meaningless symbols. Quite a few 

potential flaws have been brought to light concerning Searle's reasoning. Possible objections have 

included the “systems reply”-argument that states that Searle only discusses a part of the system 

(only the computer itself), while leaving out the programming. Taken as a whole, hardware and 

software, the objection goes, the system may still understand. The reverse holds true as well: just 

because the system as a whole doesn't comprehend something, this does not preclude that parts of 

the system may still understand. This riposte is forwarded for instance by Jack Copeland184 and I 

will forward a variation on this theme further in this Chapter (see: the code of life).   

 There are other objections to be brought forward against Searle, but I must first object to his 

choice of computer program to convince the reader that the Chinese Room disproves the possibility 

that computation can provide any kind of semantics. After all, thought-experiments rely on 

intuition, which means that the example given has a large impact on the way the argument is 

received. I will state this outright: I do not dispute that the Chinese Room Computer as provided by 

Searle cannot think. The program that the man in the room is operating is a “trick” program that 

evades the need for actual intelligence by only shuffling words around, backed by a large database. 

It obviously has no means of understanding. That the program is so obviously stupid explains in 

part the popularity of Searle's argument. The machine that he recreates by replacing it with a person 

may be able to pass the Turing Test, for the sake of argument, but it will in no way be intelligent. It 

does not understand its output, but I am willing to admit that it may not even be intelligent if it did 

“understand” its output. Something extremely vital is missing from the Chinese Room Computer 

that disqualifies it from being intelligent without any regard towards it being a symbol manipulator: 

it has no ability to learn whatsoever. 

 Although Searle has created the “perfect symbol manipulator” by blowing up the syntax 

database to proportions that would put the well-known computer program PARRY to shame, most 

                                                 
183 Searle, J.R. (1990). Is the brain's mind a computer program? Scientific American 262 (1) 26-31. 
184 Copeland, B.J. (1993). Artificial Intelligence: A philosophical introduction (Malden, 1993) 125-130. 
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every day computer programs are considerably “smarter” than the machine he devised because they 

at least have a limited learning capacity. Even if the Chinese Room-program may respond in perfect 

Chinese at the moment of its creation, it is going to produce outdated facts in archaic language as 

society progresses past its construction. Although Searle's conclusion that his Chinese Room is not 

intelligent and that it doesn't understand is in my opinion correct, even though there are others who 

have argued otherwise, the reason that it doesn't understand is not confined to it being a symbol 

manipulator, but to the fact that it has no means to learn or evaluate connections. In order to 

understand something, you must first be able to learn something. In other words, you need to be 

adaptable.  

 

Chatterbots and the Turing Test 

Searle's warning against attributing intelligence to conversational computer programs is not 

completely unjust. Conversational programs, called “chatterbots”, “chatbots”, or simply “bots”, are 

a very real presence on the internet, where they may entertain idle people, or more maliciously prey 

on credit card data and other vulnerable information from unsuspecting humans. One such (non-

malicious) “chatter bot” has even been able to pass a variant of the Turing Test185 during the Turing 

Test 2014, according to the University of Reading.186 This “Eugene Goostman”-program was able to 

convince 10 out of 30 judges during a five minute conversation, that he was a 13 year old Ukrainian 

boy with English as his second language. The pretended identity was a very useful trick. It allowed 

the program to make mistakes that could be attributed to it being “young and foreign”, while it also 

enabled it to dodge questions it couldn't deal with, a trick that has been around since at least the 

“paranoid” PARRY-program. Programming it with intentional spelling and grammar errors even 

helps hide the fakery due to the fact that human typing is often imperfect, while it also masks 

unintended and otherwise peculiar errors. All things considered, computer programs that are 

designed to beat the Turing Test are generally designed to cheat the Turing Test. Because this 

                                                 
185 The Turing Test is a language test wherein a computer attempts to convince a human judge that it is, in fact, human 

by sending typed conversation back and forth. It is often paired with an actual human who is also submitted to the 

test. The precise criteria used (time-interval, with or without human test-subject, percentage of judges fooled) vary, 

which has led to earlier claims of Turing Test success. One thing is clear, Turing seems to have underestimated the 

willingness of programmers to “cheat” the intention of the test when he mentioned it in his famous 1950 paper:  

 Turing, A.M. (1950). Computing Machinery and Intelligence. Mind 59 (236) 433-460.  
186 University of Reading (8 June 2014). Turing test success marks milestone in computing history. 

http://www.reading.ac.uk/news-and-events/releases/PR583836.aspx. Press Releases University of Reading (retrieved 

24 June 2014). 

http://www.reading.ac.uk/news-and-events/releases/PR583836.aspx
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cheating is so obvious when one looks at the way the program works, they make for a compelling 

example of why symbol manipulators could never understand their symbols. This is an unfair 

display of strong Artificial Intelligence though and a more adaptable type of program should be put 

through the Chinese Room treatment to see if the thought-experiment has any merit. 

 

In the MAInese Room 

Let's envision what the Chinese Room Thought-Experiment would look like if we instead ran the 

“program” MAI (see: Chapter 4). As noted before, the program MAI is run on a computer 

simulation of a networked AI. It has, on top of regular Neural Net design, a subsystem (Arbiter and 

Value-assigner) that monitors homeostasis and evaluates actions based on their impact on 

homeostasis. It uses this information to actively up regulate or down regulate the responses of 

particular Neurons, thereby tweaking the information storage and prompting the AI to adjust its 

interactions. This program regrettably will not start out on a physical Neural Network, but will 

instead be simulated on an old fashioned symbol manipulating computer. This, however, means that 

the comparison to Searle's Chinese Room can be preserved, although Searle believes that it doesn't 

matter.187 I can now lock myself into this MAInese Room and pretend to be a computer running a 

program that is simulating a Neural Network with a homeostasis and reward-system built in. 

 Ok, so suppose I lock myself into this windowless, soundproofed and radiation shielded 

room that only has two narrow slits, carefully constructed so that nothing but a piece of paper will 

fit through. Inside the room I find piles and piles of manuals in a language I understand describing 

how to manipulate symbols I do not understand. I write them down on stacks of blank paper that 

function as a memory and repeatedly change these meaningless symbols in response to input-

symbols I receive through the Inbox slit. Of course, this input is also provided to me in symbols that 

I do not understand. I assume them to be Chinese but later on I am informed that they are in fact 

Japanese writing or another language and script entirely, it does not matter. However thanks to the 

manual I do know what to do with them. Curiously, as symbols come in through the inbox slit, I 

find that the manuals don't limit my actions to just producing a piece of paper with meaningless 

symbols that I then stuff through the output slot: the instructions also require me to change symbols 

within the instruction set. I find that most of the input not only results in output, but also results in 

                                                 
187 Searle, J.R. (1990). Is the brain's mind a computer program? Scientific American 262 (1) 26-31. 
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changes in the very manuals I am working from. I find myself jumping between pages as the 

references within the manual are constantly changed by my manipulations. I also find that some 

manuals are used a lot. One of them consists of symbols that are adjusted with every input/output 

combination I make and I silently refer to this as the Main Manual. Even when the inbox slot goes 

quiet and the input trickles down to a slow stream, I find that I am constantly required to change the 

contents of this book. The simple passing of time requires me to change the symbols around and 

sometimes, when I have changed the symbols again, the manual instructs me to produce output, 

which interacts with this particular book, and then a lot of input starts to poor in again. The 

connections that I am manually operating become more and more complex in response to the 

received input, the established output and their interaction. Clearly something outside has an 

impact, not just on what happens inside, but also on what ís inside.  

 Now. What to make of this experience? Certainly I did not learn the meaning of the symbols 

I was manipulating while slaving away in the MAInese Room. Frankly, I did not expect to learn the 

meaning. What I, as the operator, did notice was that the program I was running changed a lot. It 

changed in response to input, it changed while producing output, its output changed in response to 

its input and previous inputs, and it even changed when no input was given. It not only reacted to its 

environment, it actually interacted with the environment. It seemed to be in constant flux as it 

adapted to the input provided. Although I did not understand any of the symbols in the MAInese 

Room, I could tell that it was changing and adapting. The very symbols and the relations between 

them and the manuals they were written in, changed in response to the environment. The MAI 

program was altered at its core by these very interactions. This seems to me a very clear form of 

grounding: the symbols inside the room change and adapt in response to the input, the output and 

the passage of time. This limited form of grounding can be expanded upon by running one more 

instance of the MAInese Room-program: 

 Again, I am in the MAInese Room, performing the actions required for the program to run. 

However, this time something goes wrong. I keep changing the Main Manual as per the instructions 

in response to the outside input and the internal processes, while the output and input keeps 

streaming in. It even accelerates as the Main Manual repeatedly needs adjustment. And then it stops. 

Right there, in the manual, is a line that says “if this particular string of symbols comes about in this 

location, cease all symbol manipulation, do not provide any further output and do not accept any 

further input. Please wait for the door to open.” A short while later, the door opens and I am let out 
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of the room, only to be informed that after my marathon session, the program I was running failed 

to maintain its homeostasis with respect to its environment. It suffered too much disruption to 

continue and shut down instead. It died. Its internal mechanisms tried to keep up with the external 

world, but something went wrong, its main manual “Homeostasis” reached a definitive value for the 

ultimate consequence: it ceased functioning. Now MAI's internal workings as well as external 

actions are not only rooted through internal adjustment, but also in a final consequence found in 

biological organisms: failure to sufficiently adapt to the environment leads to the cessation of 

function. 

 

Searle would probably object to this representation of MAI. He’d argue that in spite of this interplay 

of mechanisms that lies much closer to what we would call intelligence, the computer running the 

program would still not understand what it was doing. Although Searle initially boasted the claim 

that “[t]he point of the parable is clear but it is usually neglected. Syntax by itself is not sufficient for 

semantic content”188, he more than once claims that the Chinese Room proves that a computer can't 

gain any semantic context.189 After all, I didn't understand the meaning of the symbols I was 

manipulating either. The computer is even worse off, having, as far as we know, no mind of its own 

with which it could try to ground the symbols. It was just manipulating 1's and 0's. In fact, I agree 

that the computer itself does not understand anything. However, perhaps the requirement that the 

computer should understand its own programming is a fundamental mistake. Let us examine the 

connection between the make-up of biological life and the understanding of the intelligence it runs. 

  

The code of life 

Searle's objection to computer-based AI is founded on the claim that logical syntax is restricted to 

formal languages and systems, without regard to any interpretation or meaning given to them. It is 

also based on the claim that it is somehow the computers function to understand the symbols it 

operates. Computers manipulate this logical syntax to do what they do, but because we as humans 

impose the meanings upon things we call syntactical. Searle concludes that computer syntax is 

strictly divorced from meaning without an outside agent or observer.190,191 No computer is able to 

                                                 
188 Searle, J.R. (2002). Consciousness and Language (Cambridge, 2002) 16. 
189 Searle, J.R. (2004). Mind: A brief introduction (New York, 2004) 62-64. 
190 Searle, J.R. (2004). Mind: A brief introduction (New York, 2004) 62-64. 
191 Searle, J.R. (2002). Consciousness and Language (Cambridge, 2002) 16. 
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form an understanding of its symbols because computation is, according to Searle, the empty 

shuffling of symbols that provides no means of semantics. I think the computer is entirely the 

wrong level of the system to explore. In order to back up this claim, I will explore what gives us 

“meaning” in human intelligence. The following could be perceived as a variant of the system reply, 

although it goes a bit deeper than that. Contrary to most “System-replies”, I will not argue that 

Searle is looking only at a part of the system. Instead, he is simply looking at entirely the wrong 

level of organisation. 

 We know, or perhaps more accurately feel, that meaningful content is possible in human 

intelligence. In other words: biological massive adaptability is capable of generating meaning and 

attaching it not just to objects, but to our symbolic representations of those objects as well. 

Somehow, the human brain, which produces our consciousness and our intelligence, enables the 

production of meaning. Where does this meaning come from? We know that our brain is composed 

of a great number of individual cells that can be divided into several different cell-types. These cells 

are interwoven with connections that allow them to excite and inhibit each other through electrical 

and chemical signalling. Somehow, this conglomerate of interacting cells that compose the brain is 

capable of producing consciousness, intelligence and meaning. I have speculated in Chapter 2, that 

these individual cells possess a very rudimentary meaning-mechanic: bad and good, the meaningful 

representation of death and survival at a cellular level. The reward-systems present in human 

intelligence are based on this primitive signalling of good actions and bad actions for its 

implementation of the widespread “good” and “bad” signalling that is so vital for meaning. But this 

cellular level, or “layer”, is not the smallest constituent part of the brain. After all, those brain-cells 

are composed of smaller parts as well. Is meaning conserved there too? Brain-cells contain DNA 

and mitochondria, a cellular membrane, enzymes and other structures found in organic cells. It 

seems strange to posit any conservation of “meaning” at this level of organisation, but perhaps some 

could still be found in DNA, which not only provides the code from which whole organisms are 

built, but functions as the storage of eons of experience: death and survival imposed by natural 

selection. Age-old selection of successful interactions and deselection of unsuccessful interactions 

reside in the DNA-structure, so maybe there is still some “meaning” here.  

To ensure that we have left the organisational levels where meaning still has any sense, we 

can go down even further: all these structures, including DNA, are built of smaller composite parts. 

DNA, the very code of life, is nothing more than a molecule, or rather two molecules paired 
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together. This DNA-molecule consists of the sequencing of four smaller molecules (guanine, 

adenine, thymine and cytosine), which make up the “code”. It is the sequence in which these 

molecules appear that holds the key to the massive and versatile amount of information stored in 

DNA. These sub-molecules individually, however, appear to store no relevant information. It is only 

in concert that they express anything and they only do so in the environment of suitable 

biomechanics that physically operate on their presence. It seems that at this level, the chemical 

compounds that make up DNA, all meaning disappears. Still, to be completely sure we have left the 

domain of “meaning”, we can go even deeper. Again, these smaller molecules can be broken up into 

smaller parts, the atoms of 5 elements: hydrogen, oxygen, nitrogen, carbon and phosphorus. These 

same atoms can be used to build constructs that are completely inert and that certainly do not have 

any interior “meaning” to any “experience” recognised by modern science. Surely at the atomic 

level all meaning is lost, but even these meaningless atoms can be divided further into subatomic 

particles that interact with the physical forces that bind our universe according to the Standard 

Model. I will call the physical forces and subatomic particles “Layer 1” required for biological 

massive adaptability. “Semantics”, as Searle likes to call meaning, is certainly not present at this 

lowest layer. Subatomic particles have no “feelings” and interactions with other subatomic particles 

do not have semantic properties other than that they either occur or do not occur, depending on 

probability and particle composition.192 Yet from this meaningless interaction of subatomic particles 

and physical forces, we know that meaning can arise: we are composed of these subatomic particles 

interacting with physical forces and after several layers of organisation we certainly experience 

meaning. So how does this apply to Searle’s argument that a digital computer cannot develop 

meaning? 

Any Artificial Intelligence that is constructed as a computer program on a digital computer has 

at least two layers that are important to it: 

 

- Layer 1: This layer is comprised of the Computer itself, which provides the physical 

hardware, and the Symbols, the 0's and 1's that are manipulated by the computer. This first 

layer is simply a layer of absolute requirements for an AI built on a computer: there has to 

                                                 
192  Even if someone were to disagree and state that atomic or subatomic particles are somehow responsible for 

meaning, I refer to the given that our digital computers are, in the end, also composed of subatomic particles. 

Extending meaning downwards indefinitely makes an even stronger case for potentially “meaningful” computers. 
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be a machine to operate the program, and there have to be symbols for the program to be 

expressed in and the computer to manipulate. 

- Together these requirements enable Layer 2. This layer is the software, or computer 

program which is constituted of the symbols 0 and 1 arranged in a particular order and 

moved about by the computer. 

- In a Neural Net run on a digital computer, a Layer 3 is required as well: the Neurons and 

their interactions are built in a computer program (that may itself also run on another 

computer program). 

 

Searle’s argument is that since the Computer doesn’t understand the meaning of the symbols it 

manipulates, there is no such thing possible as a “Strong AI”. This is ridiculous. The computer and 

its symbols may very well be “Layer 1” for an AI construct. An AI built on the foundations of a 

Computer and its Symbols is, like biological life and the subatomic particles and forces it’s built 

upon, not necessarily constrained by the computer’s lack of semantics in its own establishment of 

meaning. If it were, we would likewise be kept from meaning by the lifeless compounds that 

compose us. Atoms and forces simply interact the way they do, because that is what they are, and 

yet they still allow for meaning at the level of biological massive adaptability. Likewise, computers 

and symbols simply interact the way they do, because that is what they are, so who is to say that 

meaning is somehow outside of Strong AI’s reach (see Figure 5.1)? 

 

 

Figure 5.2: Layers of organisation. On the left are some of the layers of organisation that support 

biological massive adaptability. Although it seems trivial that no meaning is present at the "physical 

forces & elementary particles" layer, biological massive adaptability is eventually founded on this 

meaningless layer. Likewise, an AI may also be constructed on initially meaningless layers, the 

empirical question remaining what programming is necessary to fill in the intermittent layers and 
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enable a meaningful AI. Searle’s Chinese Room “proof” that computers have no semantic insight 

into the symbols they are manipulating has no impact on the question whether an advanced 

program constructed on that computer can contain semantic content of its own. 
 

 My argument is that, depending on the make-up of the computer program, the computer 

itself could take on the role of any of the supporting layers required for meaning, without it itself 

gaining understanding or holding any meaning of its own. For instance, the computer and its 

symbols could be equated to physical forces and the subatomic particles that are moved by them. 

After all, the computer moves the symbols and guides the interactions between the symbols. On top 

of this architecture, a sophisticated computer program could be built. The core of this conception is 

that the hardware is both absolutely vital and completely insignificant for massive adaptability. 

Likewise, it is not about the symbols. It does not matter what massive adaptability is built on, be it 

the stringing together of atoms in just the right way, or the compiling of “arbitrary” symbols into a 

code in just the right manner: if that manner is capable of interacting with its environment, 

evaluating the outcome, storing the information in a manner that reflects its own agenda and 

adjusting its behaviour accordingly, it is adaptable and it can possess meaningful representation. If it 

is very good at these things, and capable of doing so in a sufficiently complex manner, it is 

massively adaptable. 

 So does the computer understand? Is it massively adaptable? Yes and no. The atoms that 

compose our body are not intelligent, nor do they understand. Our individual brain-cells are 

unlikely to have a concept of understanding equal to that of our integrated experience. They are, 

however, crucial for our understanding and intelligence. Likewise, the computer and its symbols, if 

the architecture is that of an old fashioned digital computer, are both far removed and integral to 

any AI that is created upon it. It may take several layers of code just to enable it to serve as the basis 

for operating a Neural Net structure. The physical machine will have no conscious understanding of 

the symbols it operates, it just moves them about as automated based on the interactions between 

the symbols. But built upon those symbols, interactions and connections could be created that 

actually reflect the outside world as well as the consequences that these connections have for the 

computer program. It is these connections and interactions, and not the symbols or atoms that 

enable them, that matter. Because the computer program is bound to the computer in the same way 

that we are bound to our physical body, it may be more expedient to say that if a true AI is 

composed by a particular computer program on a particular computer, that “computer” is intelligent. 
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That does not mean that any kind of software on any old computer simply qualifies, adaptability 

and grounding are still required, but AI-software cannot be excluded from meaning prima facie. We 

must now proceed to a second argument is forwarded as “proof” that computers are uncapable of 

true intelligence, consciousness or meaning. It is the the Simulation Objection 

 

The Simulation Objection: a real storm in a glass of simulated water 

Searle, and others, reject that consciousness, mind, or meaning can be formed on a computer. Searle 

goes so far as to say that while it may be true that computer programs could be able to think, they 

are nevertheless unable to be conscious.193 He outright states in one of his books, although similar 

statements can be found in the others:  

 

“[C]onsciousness is a natural, biological phenomenon. It is as much a part of our 

biological life as digestion, growth, or photosynthesis.”194  

 

Somehow, through some mystical, unnamed law of nature, a machine can be programmed to think 

and to learn, but it can never be conscious. Searle calls his doctrine biological naturalism,195 and 

only gives two arguments for it. The first is his Chinese Room thought-experiment, which I have 

already rejected above. The other argument seems more fundamental to the physical world. It is the 

simulation argument, where the general thesis is that a simulation of a mind does not a real mind 

make. 

 To sell the simulation argument, Searle makes the comparison between a simulated mind 

and a simulated rainstorm over London in order to reveal the “mistake that a computational model 

of consciousness is somehow conscious”.196 Just as a simulated rainstorm will not make you wet, a 

simulated mind would not truly be capable of consciousness, or meaningful intelligence. This is a 

curious statement. First of all, simulations of rainstorms are not intended to be artificial rainstorms, 

while the creation of true AI certainly aims for the creation of an artificial mind. Different goals will 

lead to different results: the wetness of a rainstorm is, for the purposes of weather prediction, not a 

                                                 
193 Searle, J.R. (1980). Minds, brains and programs. Behavioral and Brain Sciences 3 (3) 417-24. 
194 Searle, J.R. (1997). The Mystery of Consciousness (New York, 1997) xiii, but see also: Searle, J.R. (2002). 

Consciousness and Language (Cambridge, 2002) 7. 
195 Searle, J.R. (1997). The Mystery of Consciousness (New York, 1997) xiv. 
196 Searle, J.R. (2002). Consciousness and Language (Cambridge, 2002) 16. 
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useful variable to implement in any way. There will be no simulation of wetness on London, or even 

falling water, as the model is designed to predict the weather, not to simulate a wet environment. 

This is a stark contrast with attempts at simulating a mind, where intelligent thought, and perhaps 

emotion and consciousness are the entire point. Searle is confusing a simulated rainstorm, which is 

really only a model, with attempts at creating a real artificial mind, which, as Jack Copeland put it, 

may be more akin to creating artificial coal.197 

 There are situations imaginable in which simulating wetness might apply. If one were to 

build a digital world for recreational purposes, such worlds are already plentiful and continually 

being improved upon,198 generating convincing wetness in a rainstorm may at one point become a 

design goal. Perhaps a virtual reality will be created that can trigger the wetness sensation as 

experienced by the human brain. In a sense wetness would be created within this virtual reality, 

although it obviously will not leave the simulation. However intelligence and mind are not exactly 

the same thing as wetness. Wetness has no action at a distance, it cannot communicate and a 

wetness expressed in code is unlikely to leak into the physical world. Although I agree with claims 

that there is no dualistic difference between mind and body, they are all part of the same construct 

for me, intelligence is about adaptability: interaction, evaluation, storage and adjustment. None of 

these basic factors require a biological, “non-simulated” body. We know that, unlike wetness, the 

expression of intelligence and mind is not limited by virtual barriers. Through interaction over the 

internet, countless minds communicate on a daily basis using symbols that are sent through 

computers and wires and emerge on the other end with the expression of the mind behind it still 

intact. And it is not just interaction between minds through a virtual gateway: interaction with 

virtual worlds is frequently and vehemently undertaken by humans and these virtual worlds 

function very much as real environments for their interactions.199 A virtual gateway is no limitation 

for interaction, which means that a virtual mind may be well equipped to communicate and interact 

with the physical world, provided it has access to means that can affect the physical world. Unless it 

was Searle's intention to state that it is impossible for the “simulated” Artificial Mind to leave the 

                                                 
197 Copeland, B.J. (1993). Artificial intelligence: A philosophical introduction (Malden, 1993) 47. 
198 Coincidentally, it has been suggested that one type of such digital worlds, interactive computer games, can function 

as a good research field for Human Level AI to explore natural behaviour. 

 Laird, J.E. & Lent, M. van (2001). Human-level AI’s killer application: Interactive computer games. AI Magazine 

22 (2) 15-26. 
199 Laird, J.E. & Lent, M. van (2001). Human-level AI’s killer application: Interactive computer games. AI Magazine 

22 (2) 15-26. 
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computer its program is running on and step out into the “real world”, any objection that a 

simulated mind could have no real world consequences is silly. If, however, that was all that Searle 

meant to state, his statement has become both trivial and strangely hypocritical: the human mind has 

been unable to exit the body that is “running” it just as well. 

 An artificial mind should have no problems interacting with the outside world through the 

digital portals that already allow our minds to interact with the outside world. This artificial mind 

could be constructed in the flesh, or silicon rather, by creating or simulating a Neural Net of a large 

number of interconnected Neuron units. As mentioned before, a physical Neural Net is infeasible 

for now, due to the almost insurmountable difficulties creating a physical Neural Net entails. 

Simulating this Neural Net on a computer would yield, according to Searle, a sterile mind capable 

of thought, but somehow incapable of meaning or consciousness. This is absurd as the presence of 

consciousness and meaning depends entirely on the kind of simulation. I will now argue just how a 

conscious, grounded mind could exist inside a computer, in the following section on the Symbol 

Grounding Problem. 

 

The Symbol Grounding Problem 

Secretly, the Chinese Room thought-experiment is an extreme illustration of a bigger problem that 

has plagued the Philosophy of Artificial Intelligence for decades. This very serious problem is 

called the Symbol Grounding Problem. Whenever we humans use words we get the feeling that we 

know what we are talking about, beyond the symbols or sounds the word is composed off. Although 

words are symbols of the things they represent, we seem to understand what they mean. It has 

proven very hard to come up with a satisfying answer as to how an Artificial Intelligence could 

come about actually understanding the symbols it is manipulating. Searle's example above 

highlights the trouble for a symbol manipulating computer to get to the meaning of any of the 

symbols it is manipulating. It is like trying to learn Chinese from a Chinese/Chinese dictionary 

without any preconceived knowledge of any language. When trying to find out the meaning of one 

string of symbols, you are led to another string of symbols, which leads you to another ad 

infinitum.200 

 One of the solutions proposed to this problem is to somehow “ground” the symbols by 

                                                 
200 Harnad, S. (1990). The symbol grounding problem. Physica D 42 (1-3) 335-346. 
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providing the AI with sensors with which to detect the environment.201 This has met with objections 

that the sensors may indeed detect their surroundings, but the computer still receives nothing but a 

string of symbols from the sensors attached to it,202 which are again intrinsically ungrounded 

according to some. Pain-detection, a kind of sensory input for humans, also relies on sensors that 

send electrical pulses to the brain, but we also very much feel pain. Yet somehow it seems strange 

that the symbols streaming in to the computer suddenly are experienced as pain, which is “the 

unpleasant experience that is associated with actual or potential tissue damage”.203 Simply attaching 

some sensors to a computer seems insufficient to ground that computer's symbols. 

 Another proposed solution to the symbol grounding problem is the application of Neural 

Nets, which, depending on your definition of symbolic, are or are not symbolic in nature.204 In the 

section on the Chinese Room, I have already forwarded some of my arguments as to why a properly 

constructed Neural Net AI should not immediately be considered an ungrounded straightforward 

symbol manipulator. I have proposed that the bits that digital computers manipulate, the “ones and 

zeroes” that form its most fundamental “symbols” should be seen as building blocks from which an 

adaptive organization could be crafted. This bypasses both the “necessity” for the computer itself to 

understand the symbols it manipulates and the uncanny observance that in the end, everything the 

computer does is simply a manipulation of bits. Instead, it is the connections and consequences that 

can be built up from these symbols that need to find meaning if the construct we built is to be 

regarded as truly intelligent and conscious. I have already suggested a means of grounding the 

connections in a way that exceeds the simplistic answer of “attaching some sensors to it”. I will now 

elaborate my view on the grounding problem and its possible resolving. 

  

What does it mean to be “grounded”?  

An important issue regarding the symbol grounding problem is that it has not been properly 

established what “grounding” is supposed to be. In twenty years, the debate appears to not have 

gotten much further than the vague comment that whenever we humans say something, do 

                                                 
201 Harnad, S. (1990). The symbol grounding problem. Physica D 42 (1-3) 335-346. 
202 Copeland, B.J. (1993). Artificial intelligence: A philosophical introduction (Malden, 1993) 131. 
203 Eisenberger, N.I. (2012). The pain of social disconnection: Examining the shared neural underpinnings of physical 

and social pain. Nature Reviews Neuroscience 13 (6) 421-434. 
204 Harnad, S. (1990). The symbol grounding problem. Physica D 42 (1-3) 335-346. 
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something, or in any other way express ourselves we mean something by it.205,206 This is somewhat 

shocking. After all, if we are unable to express grounding in any other way than an intuition, 

perhaps its existence is a simple illusion? This may perhaps prove true in the future, but at this point 

it seems clear to me at least that there are some words that I can learn and pronounce without 

grasping what they mean, or even what their function is. A quick search-request on Google provided 

me with a Chinese sentence written down in Pinyin notation: Chē zǐ zài hòu miàn. I do not know 

what it means. I actually do not know if it means anything at all, although I trust that it does. 

However, I can reproduce the letters and words in writing and may even be able to properly 

pronounce them if they were read to me or if I was handed a pronunciation guide. I will therefore 

labour under the assumption that it is indeed possible to manipulate symbols without knowing what 

they mean, which means that there is such a thing as a “meaning” to understand. And if there is 

such a thing, then the Grounding Problem is one that needs to be dealt with, even if the nature of the 

symbols (or atoms, see: The code of life) is irrelevant to their function.  

 Grounding is the accurate and reliable connection of internal representations, for instance a 

symbolic representations, to the external objects they refer to. Words, symbols or any other way of 

representing can then find their basis in actual reality. If a computer program is able to accurately 

and consistently couple its internal representation to external objects, its internal representation has 

found a basis in reality and can therefore be said to be grounded through this connection.207 Any 

utterance produced by an AI on the subject of a “mouse” can now be taken to actually refer to the 

real world organism we call a “mouse”, allowing for more connected conversation and instruction. 

(It is clear why the Symbol Grounding Problem applies so easily to the Chinese Room: the Chinese 

Room has no way to connect its internal representation to the outside world. There are no sensors 

with which to detect real world objects and there is no learning mechanic to ensure that internal 

representation stays connected to the outside world.) However, a reliable connection of internal 

representation to external objects is only part of the story. Even if a computer equipped with sensors 

is capable of reliably identifying a mouse as a mouse, this identification still seems devoid of the 

internal meanings and experiences we so strongly associate with words. This leads to the important 

                                                 
205 Harnad, S. (1990). The symbol grounding problem. Physica D 42 (1-3) 335-346. 
206 Harnad, S. (2009). From sensorimotor categories to grounded symbols. http://eprints.soton.ac.uk/268030/. 

University of Southampton. (Draft version published under Creative Commons Attribution No Derivatives) 5p. 
207 Nilsson, N.J. (2007). The Physical Symbol System Hypothesis: Status and Prospects. 50 Years of artificial 

intelligence (Berlin, 2007) 9-17. 

http://eprints.soton.ac.uk/268030/
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question: how can this grounded internal representation of the external world gain internal 

meaning?  

Above, I have rejected the notion that creating a grounded intelligence through symbol 

manipulation is impossible (see: The code of life). Rather than compare the computer-shuffling of 

symbols to human mental processes, I have instead equated the computer and its operations to our 

physical, rather than physiological, make-up. The computer's symbols, with the simple 0's and 1's at 

their core, could function as the universal particles manipulated by the computer to allow 

interaction between composite parts. Like the physical atoms and forces in our world, it could be 

quite possible to construct something more complex from the simple symbols of the computer. Even 

on an ungrounded, straightforward personal computer, this effect is very visible. The interaction of 

0's and 1's with the computer screen and loudspeakers produce interesting visual and auditory 

effects and patterns that go beyond mere 0's and 1's, even though all associated meaning comes 

from the human observer. It is therefore possible to create something complex from something 

simple. Perhaps a computer program can in fact function as a basis for a grounded and meaningful 

intelligence. So what would be required? Let us review the demands for bare-bone adaptability I 

laid out in Chapter 1, from the perspective of establishing meaning: 

  

5. A computer-program would need to be able to interact with its environment and be able to 

learn from the interaction. 

6. For that interaction to have any kind of grounding in reality as well as any internal 

evaluation, the computer-program needs to form connections between internal 

representation and external reality, these connections can be expressed in memory storage. 

7. To ensure that the grounded interactions have actual internal meaning, the connections and 

interactions need to have external as well as internal consequences that promote and allow 

for the evaluation of interactions and adaptations. 

 

A computer-program that adheres to the criteria posited above stands a good chance of establishing 

at least a primitive form of meaningful grounding, the key to which is evaluating internal 

consequences. If a computer-program is able to reliably interact with the outside world and alter its 

own programming in response to what it's learned from the environment, it would be inextricably 

linked to the environment. The internal code would depend on what the program had encountered, 
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creating a tight connection between the outside world and the computer code representing it. This 

primitive understanding should be complemented with connections to internal consequences to 

greatly improve it. The outside world should be linked to the inside world through an internal 

representation that makes it possible to differentiate between beneficial and detrimental, based on 

real world properties as demonstrated in Chapter 4. By linking external signals and internal 

representation to self-oriented evaluation, these internal representations gain an internal meaning. 

For that, the external environment needs to be capable of affecting the AI itself. In other words, for 

an AI that is not only grounded but has internal meaning as well, it needs to be embodied in the 

world it inhabits. External signals (senses) can now be linked to their internal consequences 

(homeostasis). Everything else, every action and plan, can now be attached to this additional 

grounding mechanism through reward or punishment (see Figure 5.2).  

In other words, the internal representation of the external environment has now gained an 

additional dimension: an internal value, a value that directly represents its significance, or 

insignificance, to the AI itself and the situation it is in. The external information now can be 

signified with an internal value for the AI, a meaning that goes beyond the reliable identification of 

a “mouse”. This “mouse” can now acquire a variety of internal meanings based on context: for 

instance a dead mouse can serve as a biofuel for replenishing energy reserves, while a live mouse 

gnawing on computer cables is a clear danger. Through external context and internal consequences, 

normal sensory input and internal representation can be grounded in both the environment and 

homeostasis. This illustrates once more why learning with internal consequences is the key to true 

intelligence. It allows for a constant update and revision of the connections between the outside 

world, the internal representations and the internal consequences. Without a learning mechanism in 

place that ensures this meaningful grounding, any intelligence would become detached from reality 

by the passage of time and fail to be adaptable in short order. It would cease, for all intents and 

purposes, to be intelligent. 
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Figure 5.3: Dual grounding in MAI. On the left an AI that is "grounded" through external sensors 

and reliable identification of its environment, while on the right grounding as approached by MAI is 

depicted. (The boxed areas denote components of the AI itself.) Grounding in the regular AI (left) 

only takes a single path which allows for successful external identification through internal 

representation, but allows no way of determining internal meaning. In MAI (right), external sensors 

convey their information on the external environment to internal representation, while homeostatic 

(HS) sensors report on the effects of the external environment and MAI’s actions on internal 

homeostasis. This allows MAI to not only successfully connect internal representation to external 

sensory information, but also allows it to determine what that external information means to its own 

survival. Internal representation in MAI is grounded through dual pathways, rather than just one, 

adding an extra dimension to grounding its internal representation. Furthermore, because internal 

homeostasis is coupled to the very real consequence of cessation of function (“death”), it is once 

again firmly rooted in reality. 

 

The grounding of AI through these measures may be further enhanced by the widening of sensory 

and homeostatic components. Expanding the external sensory array to more frequencies of light and 

sound, and broader detection of scent and other environmental clues, will allow for a more defined 

and more accurate connection between internal representation and the outside world it represents. 

Expanding the homeostatic array to include the monitoring of more kinds of survival/death-

conundrums, such as excessive heat or cold, physical impact trauma, radiation and energy-reserve 

monitoring, allows for a more varied valued input to give meaning to internal representation and 

context. Perhaps more steps are required to fill out AI-grounding, but the two prongs of external 

sensors and internal homeostasis-monitoring can already allow AI to reliably refer to the outside 
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world and place value on the external environment based on its own learning experiences. 

Now that we have established that meaningful grounding is the result of successfully 

connecting internal consequences to interactions with the external world, it is time to review one 

final, as of yet unnamed objection to programming any kind of intelligence, including MAI. 

 

Pre-programming homeostasis 

The first steps of programming MAI may have felt quite artificial. We assigned it a range of values 

for homeostasis to keep track off and then gave it “environmental options” that are preprogrammed 

to affect that homeostasis. Some may object that this is hardly fair, or even real at all: we are still 

“predetermining” consequences and therefore meaning! This objection falls apart into two 

fundamental objections: the first objection is the objection against pre-programming preferences, 

the second objection is against pre-programming interaction with the outside world. To determine 

their worth, let us once more turn to the biological example of a grounded, meaningful intelligence: 

humans.  

 Humans do not come into this world as a tabula rasa. Set in the brain of new-borns are a 

wide variety of “preprogrammed” reference frames, which include requirements for homeostatic 

safety and the tools to monitor these. These reference frames exist in order to kick-start the learning 

curve of the organism and prevent a lot of unnecessary death. These systems are encoded in the 

DNA code of the organism, which has been modified by millions if not billions of years of 

evolution to increase the chances of survival and decrease the chances of untimely death. It is in the 

very code of life that these prerequisite systems are captured and through the early stages of 

embryonic growth they are expressed as integral parts of the organism and its adaptive circuitry. A 

child is not an empty vessel, expecting an AI to learn and “be intelligent” from scratch is 

unreasonable given the hundreds of millions of years genetics and the brain (and the body) have had 

to develop. MAI does not have millions of years of evolution to pre-program its core instruction set, 

so these instructions must be composed and delivered in another way. This is essentially what we 

have done when we have built MAI to observe certain homeostatic values and attempt to stay 

within them. This is also what we have done when we program MAI to be rewarded when it 

succeeds in correcting a disturbed homeostasis and to associate negative values with disturbing 

homeostasis or exacerbating homeostatic disturbance. We have taken the role of millions of years of 

evolution to instruct MAI in the basic necessities for survival. This is not a problem unless those 
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basic necessities do not actually provide survival consequences. As long as the consequences are 

real, pre-programming the means to detect those disturbances in order to be able to learn how to 

avoid the consequences is not problematic. 

 “But the consequences are fake!” objectors could now exclaim. After all, the consequences 

detected by the MAI-program are also preprogrammed as long as MAI is not implemented in an 

actual robot body to interact with the actual outside world. The reply to this is twofold: first, if MAI 

can be instituted in an actual “body”, which can gather actual energy and store it, and which will 

stop functioning when energy reserves are depleted, MAI's consequences are very much real. A 

physical body that suffers from the same physical dependencies as biological organisms do (such as 

being prone to destruction, requiring energy to function, etcetera) will immediately reveal the 

homeostatic requirements for MAI to be very real. If it does not adhere to the homeostatic 

requirements for its body, nothing about its demise will be fake. Secondly, even if MAI is not 

provided with a robot body, but is instead given a simulated body, this does not change the fact that 

the consequences are still very real. Even though they are instituted by human programmers in the 

code that governs MAI's survival or death, the consequences are still the same: failure to adhere 

causes death, success prolongs survival. For those still not convinced: we can see this in biological 

organisms as well. Milk-producing Dutch cows have been selected to produce absolutely staggering 

amounts of milk, much more than would be helpful in the wild. In fact, milk cows would most 

likely quickly go extinct if all human involvement was ceased. However, human involvement isn't 

stopping. The evolutionary pressure that up-regulated the survival value of producing large 

quantities of milk is due directly to human involvement. Humans have caused the untimely death of 

cows that did not produce large quantities of milk (by either deselecting them for procreation, or 

leading them to actual slaughter) while greatly promoting the survival for the cows that did by 

instituting breeding programs. Of course, milk-production is a purely physiological characteristic: it 

has little to do with the brain or behaviour (or maybe it does, hormones secreted by the brain play 

an important role in milk-production), but the analogy can be easily extended to other domesticated 

animals such as dogs. Dogs have, since interaction with humans started, evolved to develop, among 

other things, a more submissive stance towards humans, this is definitely a brain function for which 

humans have applied selective evolutionary pressure. If we decide to apply survival values and 

death conditions upon MAI, this is in no way “fake”. If we decide that MAI should greatly enjoy 

finding more expedient ways to find the solutions to mathematical problems, we can certainly 
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decide that this should be represented in its survival conditions. We would be, in essence, doing 

nothing fundamentally different from out impact on domesticated animals. 

 In short, it is okay to pre-program the tools required to prevent untimely death and make 

intelligent inferences. Even if these are limited to being simulated within a computer, the 

consequences and the connections made on them will still be very real. The MAI-program, even 

one run in a simulated environment on an old fashioned computer, would still be grounded in its 

environment and have internal meaning for its interactions with it. 

 

The meaningful mind 

We are our body, we are our mind. The old philosophical school of Dualism is wrong to separate the 

two, nor are our minds and conscious experiences illusions. Mind and body are one and the same. 

Our physical and physiological make-up is what enables our mind to exist. More accurately, our 

mind is an aspect, a consequence even, of our physical and physiological make-up. This does not 

mean that a mind can only be created from biological matter. Our mind has evolved as part of the 

selective pressure for greater and greater adaptability. Its purpose is to make valued connections 

between our interactions with the environment and the consequences these have for our well-being. 

Any construction that can make those required connections can function as the “hardware” on 

which a mind is built. That “hardware” may even be built out of the “software” that runs on a 

computer. 

 When we have a conscious experience, such as that very basal experience of pain triggered 

by a pinch in the arm, it is our body that has that experience. Our brain, which is an integral part of 

that body, registers that pinch through the nerve system, where our mind becomes aware of the 

sensation. No single cell in the brain coordinates this registration, it is the brain as a whole that 

registers the experience, although some brain regions do experience more excitement than others. 

There is no impartial observer in the mind that reads out the minds' computations and is the true 

“person”, the true interpreter. The neurological evidence suggests that consciousness, mind and 

intelligence are an integrated network experience.208 Our “qualitative” experiences, seen by some as 

irreducible to material causes, are the valued connections in our mind based on the consequences of 

our interactions. We are our bodies and we are our brains. Every essence of our being, including 

                                                 
208 Thioux, M., Keysers, C. (2010). Empathy: shared circuits and their dysfunctions. Dialogues in Clinical 

Neuroscience 12 (4) 546-552. 
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consciousness, is completely integrated in our body. This means that when the neurons that govern 

pain and its affective component fire, we “feel” pain because we are in pain. The registration of 

those firing neurons, informing us of the consequences of our actions and allowing us to make the 

proper connections, is what pain is. That is what those neurons are for. They signify the 

consequences of our actions for our survival and provide meaningful connections, so that we may 

better adapt and prevent negative occurrences from happening in the future. The function of our 

brain is to enhance adaptability through the establishment of consequences and valued connections, 

it is this function that, in the end, creates the Meaningful Mind. 

 It is now time to turn to some examples of AI in practise, to see if the homeostasis-

evaluation MAI can be of practical use. 
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Chapter 6: Reward in Artificial Intelligence Practice 

 

Human-level AI and other humanlike AI projects 

At the end of the last century and during the first decade of the current century, some influential 

founders of AI have reformulated the desire that AI researchers try harder at creating the original 

goal of Artificial Intelligence: creating an intelligence that is comparable to humans across the 

board. Two of the approaches in this field are known as human-level AI (HLAI) and Artificial 

General Intelligence (AGI).209 In Chapter 1 I defined the type of Artificial Intelligence under 

investigation in my thesis as:  

 

“(…) [T]he quest to manufacture a machine which is characterized by its massive 

adaptability. [An AI] is a machine that is capable of interacting with its 

environment, capable of storing these interactions in a meaningful way and able 

to adjust its future interactions based on these learned experiences.” 

 

As “massive adaptability” is based on human intelligence, it seems obvious that my goals overlap 

with those of HLAI and AGI in that I am more interested in learning the roots of human intelligence 

and building an actual all-round intelligent machine, than building specialised one-trick programs.  

Human intelligence is obviously too complicated to create from scratch. The inescapable founding 

father of AI, Alan Turing, already speculated on simplifying the quest by creating a childlike 

intelligence that could be educated to the intelligence level of a human adult, rather than trying to 

create an adult intelligence from the get-go.210 Learning, therefore, seems paramount in creating 

such an educable intelligence. Turing speculated on the implementation of reward and punishment 

in these “Child-machines”, a kind of proto-HLAI, as a possible engine for education. One of the 

high-profile proponents of HLAI, Nils J. Nilsson, joins Turing in his claim that reinforcement 

learning is important. Surprisingly, perhaps, he then proceeds to give no further direction other than 

that the field has important research areas concerning the effective combining of reinforcement 

learning with perceptual, representation and action hierarchies as well as relational state 

descriptions.211 In a more recent paper on learning, not written by Nilsson but based on the TRP-

type programming that Nilsson developed, very little attention is given to reinforcement learning 

                                                 
209  Russell, S. & Norvig, P. (2010). Artificial Intelligence: A Modern Approach; Third Edition (New Jersey 2010) 27. 
210  Nilsson, N.J. (2005). Human-level Artificial Intelligence? Be serious! AI Magazine 26 (4) 68-75. 
211  Nilsson, N.J. (2005). Human-level Artificial Intelligence? Be serious! AI Magazine 26 (4) 68-75. 
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and no attention at all is given to reward and punishment mechanisms.212 It seems that the inclusion 

of reinforcement learning has been somewhat forgotten. I, however, do think that MAI can function 

as the basis of reward learning as well as offering a basis for sensory-motor system processing, 

another important part of Nilsson’s theoretical AI. It can function especially well as the evaluative 

basis for prediction, the precondition for planning. 

In the following pages I will explore three contributions to the field of AI that have an 

explicit focus on modelling the way humans think. I will try to apply the functions and structures 

that went into MAI to these discussed approaches, to see if any beneficial interaction can be 

established. Due to demands of time and space, the following selection is in no way meant to be a 

cross-section of the vast field involved with creating humanlike intelligence. They are just three 

examples of current AI research into humanlike AI. I will present one symbolic-AI project where 

the focus lies heavily on explicit rule-driven reasoning that is only supported in the background by 

reward learning, while the other two papers present possible Neural Net learning solutions that 

strongly involve reward modulation. 

 

Laird et al: Soar 

In a 2001 paper, Laird and Van Lent propose that AI-research concerning human-level AI should 

use “moddable” games as a basis for Artificial Intelligence research. The increasingly complex and 

realistic pre-existing universe provided by interactive videogames would provide the required and 

increasingly complex environmental information for the AI to process, while the interaction with 

the humans playing the games would force game-creators into more and more sophisticated AI that 

would prove more and more humanlike. Hoping that demand from commercial game-creators for 

better AI behaviour would fuel human-level AI research, Laird and Van Lent go as far as calling 

interactive videogames the prospective “killer-app” of HLAI. Thanks to the nature of the 

videogame environment and the low cost of the pre-existing software architecture in which AI 

programs and programmers could run amok, videogames were deemed very suitable for 

incremental research into human-level AI.213 A paper published in 2002 went into a few details 

regarding Laird’s own experiment with the Unreal Tournament Engine, called Haunt 2,214 but after 

another article published in 2004 that project seems to have been put on hold.215 Later exploration 

                                                 
212  Vargas, B. & Morales, E.F. (2009). Learning navigation Teleo-Reactive Programs using behavioural cloning. IEEE 

International Conference on Mechatronics (ICM 2009) 6pp. 
213 Laird, J.E. & Lent, M. Van (2001). Human-level AI’s killer application: Interactive computer games. AI Magazine 

22 (2) 15-26. 
214  Laird, J.E. (2002). Research in human-level AI using computer games. Communications of the ACM 45 (1) 32-35. 
215  Laird, J.E. (2011). Artificial Intelligence & computer games research. 

http://ai.eecs.umich.edu/people/laird/games_research.html. University of Michigan (retrieved 28 August 2014). 

http://ai.eecs.umich.edu/people/laird/games_research.html
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of reinforcement learning in a videogame environment is also found in a 2011 paper on Infinite 

Mario.216 Indeed Laird’s main project, Soar, uses videogames as well as the real world as a testing-

ground for its performance.217,218  

Soar is a general cognitive architecture that is designed with the ultimate design goal to have 

the same cognitive abilities as humans. As it is, it is both a program and a theory of mind as the 

cognitive architecture of Soar is supposed to be a representation of human cognition.219 Although 

Soar is intended as a Unified Cognitive Theory, it greatly differs from the biological approach 

featured in MAI: it is a top-down, explicit, rules-governed, decision-making hierarchy. This stands 

in stark contrast to MAI’s bottom-up approach, which may (and is intended to) produce behaviour 

that could be described by rules, but does not follow any explicit rules. To further complicate 

matters, Soar is a symbolic system, whereas MAI is based on Neural Nets. Nonetheless, some 

implementation of MAI-functionality may still be able to improve Soar functioning.  

Although it is only one of at least 4 major cognitive functions utilised by the Soar 

architecture, some reward-reinforcement learning has been integrated into its design since 2004.220 

The four predominant types of cognitive operations in Soar are chunking, reinforcement learning, 

episodic memory and semantic memory. Chunking occurs when the current rule-set is insufficient 

to make a decision on what to do. After consulting its memory banks for relevant further 

information, Soar will create a new rule on what to do if this particular situation comes up again, so 

that it doesn’t have to go through the decision-making process over and over again in the future. 

Chunking ensures that Soar has a rule for every situation, otherwise it will create one. The second 

cognitive function is Reinforcement learning, which is based on external feedback or the 

achievement of goals and sub-goals. It aids Soar by tweaking the value of operators: actions that 

Soar can undertake in particular situations, based on the rules provided in the architecture. 

Reinforcement learning therefore only plays a role in the background of Soar’s processing. The 

third cognitive function, Episodic Memory, stores the raw, uninterpreted memories of past events 

and goals so that they can be searched through or even repeated again step by step if a similar set of 

                                                 
216  Mohan, S. & Laird, J.E. (2011). An object-oriented approach to reinforcement learning in an action game. 

Proceedings of the Seventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment. 164-

169. 
217  Laird, J.E., Derbinsky, N. & Tinkerhess, M. (2012). Online determination of value-function structure and action-

value estimates for reinforcement learning in a cognitive architecture. Advances in Cognitive Systems 2. 221-238. 
218  Mohan, S., Mininger, A.H., Kirk, J.R. & Laird, J.E. (2012). Acquiring grounded representations of words with 

situated interactive instruction. Advances in Cognitive Systems 2. 113-130. 
219  Lehman, J. F., Laird, J. & Rosenbloom, P. (2006). A gentle introduction to Soar, an architecture for human cognition: 

2006 update. http://ai.eecs.umich.edu/soar/sitemaker/docs/misc/GentleIntroduction-2006.pdf. University of 

Michigan (retrieved 1 September 2014) 1-37. 
220  Nason, S. & Laird, J.E. (2004). Integrating reinforcement learning with Soar. International Conference on Cognitive 

Modeling 2004. 208-213. 

http://ai.eecs.umich.edu/soar/sitemaker/docs/misc/GentleIntroduction-2006.pdf
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circumstances and goals occurs. The final form of Soar’s cognitive functions is semantic memory, 

which stores abstracted structures that are absolute knowledge, such as the rules to baseball. This 

memory is small and fast, but may occasionally lack detail.221 

Soar functions by trying to fulfil externally set and defined goals. It will create sub-goals on 

its own in the pursuit of these set goals, but it has no original drive or motivation. Instead, it must be 

given tasks by the outside “environment”: a human controller. This seems at odds with the official 

objective to provide a Unified Cognitive Theory: humans have intrinsic goals pursued for other 

reasons than explicit demands by other humans, yet these are entirely lacking from Soar. Therefore 

the first contribution MAI could make to the Soar project is a renewed focus on the single goal that 

is shared by all healthy humans: maintaining homeostasis. This homeostasis could even be 

monitored by a Neural Net that plugs its rewarding-signals into the Soar mainframe as the basis for 

the reward-learning that already takes place. As is, reward in Soar is usually given by an external 

input variable, although it “can also be modified by internal knowledge (additional rules) that 

generates a reward for sub-goal achievement.”222 This reward, too, is eventually encoded in the 

environment, namely in the final assigned goal.223 In contrast, in MAI reward is encoded within the 

Neural Net architecture: it is the Arbiter that determines when it is produced, it is the Value-assigner 

that distributes it and it is the individual connections between memory Neurons that store its effects. 

By internalising reward, Soar could abandon explicitly defined reward in the external environment 

and instead have its human controller “plug into” the now already internal reward-matrix by 

connecting homeostatic means to requested goals. Even teacher-student learning can be promoted 

through this method: positive language from the teacher could tap directly into Soar’s rewarding 

circuits. As Laird et al have proposed, a dedicated and straightforward reward learning mechanism 

is to be preferred.224 Nothing seems to me more dedicated and straightforward than a full integration 

of reward into the system. 

It seems the only reason the chunking learning mechanism is necessary is the basic 

architecture that Soar is set up in: it is a rule-driven system so it requires explicit rules that are to be 

evaluated. In a 2010 paper by Wang and Laird, Soar is combined with reward learning and 

                                                 
221  Nason, S. & Laird, J.E. (2004). Integrating reinforcement learning with Soar. International Conference on Cognitive 

Modeling 2004. 208-213. 
222  Nason, S. & Laird, J.E. (2004). Integrating reinforcement learning with Soar. International Conference on Cognitive 

Modeling 2004. 208-213. 
223  Nason, S. & Laird, J.E. (2004). Integrating reinforcement learning with Soar. International Conference on Cognitive 

Modeling 2004. 208-213. 
224  Lehman, J. F., Laird, J. & Rosenbloom, P. (2006). A gentle introduction to Soar, an architecture for human cognition: 

2006 update. http://ai.eecs.umich.edu/soar/sitemaker/docs/misc/GentleIntroduction-2006.pdf. University of 

Michigan (retrieved 1 September 2014) 1-37. 
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unsupervised hierarchical categorization to produce its own reward-based learning in a “hunting 

game”. Although this paper efficiently uses reward in conjunction with object identification 

hierarchies, in my opinion a more flexible system would be achieved if Soar’s “reward” was instead 

founded on a homeostatic monitoring system, which can allow for both goal-selection and a broader 

applicability of reward. It could then even function as goal-creator. In order to still get the program 

to play the “hunter” game, Soar’s homeostatic “energy” values could be set to “too low” at the start 

of the trials, prompting it to gather new energy (hunt) and allowing it to find reward in success and 

punishment in failure.225  

 Soar also has trouble assigning reward in cases where background knowledge is insufficient. 

Background knowledge can influence reinforcement learning in Soar, but can suffer from the 

problem that all relevant features of the situation need to be included, but including irrelevant 

features will slow down learning because two similar instances will be valued as two entirely 

different instances.226 MAI does not suffer this problem because the reward signal is global: all 

active and signified connections are enforced when a reward is triggered, requiring no active pre-

selection of reward targets. The overlap across multiple trials as discussed in Chapter 3 takes care of 

differentiating the actually relevant signals from the static. This process can be even more effective 

when negative reward signals are also involved and can be further refined by implementing a 

reward-prediction-error Arbiter (see Chapter 4). 

 Unlike Soar, MAI does not work through a database of explicit rules. Instead its rule-like 

behaviour emerges from the system’s composition. The Chunking mechanism as presented in Soar 

is superfluous in MAI (which does not follow rules and therefore doesn’t suffer from rules-conflict 

impasse), any decision MAI makes is automatically weighted and stored in its memory for future 

retrieval. It seems that MAI may provide a more elegant starting point for humanlike intelligence 

than the symbolic cognitive architecture of Soar. It is now time to look at an architecture closer to 

MAI’s own, to see if MAI can make a greater contribution there. 

 

Rvachev: neurons as a reward-modulated combinatorial switch 

In a 2013 paper, Rvachev presents the application of pyramidal Neurons to act as a “combinatorial 

switch” in determining connection activation and connection strength.227 As has been done in the 

                                                 
225  Wang, Y. & Laird, J.E. (2010). Efficient value function approximation with unsupervised hierarchical categorization 

for a reinforcement learning agent. Web Intelligence and Intelligent Agent Technology (WI-IAT), 2010 

IEEE/WIC/ACM International Conference on Web Intelligence (WI-10) and Intelligent Agent Technology (IAT-10) 

(2) 197-204. 
226  Laird, J.E., Derbinsky, N. & Tinkerhess, M. (2012). Online determination of value-function structure and action-

value estimates for reinforcement learning in a cognitive architecture. Advances in Cognitive Systems 2. 221-238. 
227 Rvachev, M.M. (2013). Neuron as a reward-modulated combinatorial switch and a model of learning behavior. 
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current thesis, Rvachev approaches the learning problem of individual neurons in biological 

organisms from a reward and punishment perspective, where reward signals lie at the basis of a 

feedback pathway that informs neurons whether their spiking was beneficial or detrimental for a 

particular input combination. As also proposed in this thesis, Rvachev postulates that biological 

reward has a modulating effect of neuronal connection strengths. It works at the neuronal level, 

directly influencing information storage in neuron-connections. In Rvachev too, a global reward 

signal modulates action selection through a relatively simple memory-storage process at the 

neuronal level that tweaks connection strength. This global reward signal triggers long-term 

enhancement or weakening of the neuron’s spiking response to the preceding neuronal input firing 

pattern, which enables reward-learning on the basis of trial-and-error. In Rvachev, artificial 

pyramidal Neurons manipulate the signal strength of individual action Neurons by forming synaptic 

clusters on the dendrites of these Neurons. It is the strength of these clustered connections that is 

affected by the global reward signal. The summed values of these clusters are then used by the 

Neuron to determine whether it should fire or not in response to a particular input pattern.228 

The pyramidal Neuron approach posited by Rvachev could be a possible implementation of 

how to modulate signal strengths at the multi-Neuronal level, a discussion largely omitted in 

Chapter 4, where all memory properties were represented (and therefore simplified) by a single set 

of excitatory and inhibiting Neurons. There are, however, some important differences between 

Rvachev’s Neurons and those featured in MAI. Rvachev’s action Neuron’s operate on an “on/off” 

principle,229 while the Neurons in MAI’s action preparation layer are all on after being prompted by 

the action-selector, it is only their signal strengths that vary. Rvachev’s Neurons also don’t seem to 

feature a separate weighted signal for inhibition. Instead the program elaborated upon in the 

Discussion features a blanket reset of Neuronal synaptic cluster value when a negative reward 

signal is released. I will return to this in a moment, but let us first consider another important design 

difference: the lack of a reward-determining mechanism. 

Rvachev largely excludes the source of the global reward signals from the discussion. There 

is a short reference to a possible origin of the signal, which he calls ‘“elementary” reward 

generators’ (such as those reflecting pain or satisfaction of hunger).230 This seems to refer to an un-

modelled structure similar to the homeostasis-Arbiter-Value-assigner relationship described in 

                                                 
Neural Networks 46 (2013) 62-74. 

228 Rvachev, M.M. (2013). Neuron as a reward-modulated combinatorial switch and a model of learning behavior. 

Neural Networks 46 (2013) 62-74. 
229 Rvachev, M.M. (2013). Neuron as a reward-modulated combinatorial switch and a model of learning behavior. 

Neural Networks 46 (2013) 62-74. 
230 Rvachev, M.M. (2013). Neuron as a reward-modulated combinatorial switch and a model of learning behavior. 

Neural Networks 46 (2013) 62-74. 
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Chapter 4 of this thesis. He also names reward prediction error-mechanisms,231 which are the 

inspiration for the more advanced Arbiter-mechanic briefly discussed but not expanded upon in 

Chapter 4, as possible sources of a global reward signal. Due to the fact that the origin of the 

reward-signal is not really addressed, Rvachev misses an obvious possible solution to some of the 

learning problems of the reward learning program that he elaborates on in his discussion.  

His Neural Net-program, founded on the pyramidal neuron approach, was intended to learn 

the general detection of apples to eat and stones to discard using reward. To make matters 

complicated, the apples and stones has a total of 12 possible features, some of which could only 

occur when others were absent (e.g. three different sizes). Of these features, multiple overlapped 

(both a stone and an apple could be red and round, for instance), while others were unique to one 

particular type of object (e.g. having a stem). A large global reward signal (an addition of 0.25 

“weight” to active clusters) would be transmitted if the program ate an apple, while a much smaller 

global reward signal (an addition of 0.01 “weight” to active clusters) would be transmitted if the 

program discarded an object. A cluster’s weight would be reset to 0 if it had been excited while an 

associated action neuron fired and triggered a negative global reward signal. This meant that any 

clusters active during a decision that resulted in a negative signal, would be reset to 0.232  

This Neural Net could run into trouble if it decided to try pushing apples off the table 

considerably more often than it decided to try to eat them: pushing the apple off would also give a 

reward, it was just much smaller than eating it would give. If the Network threw away apples often 

enough, it would learn this as the standard reaction to all objects and no longer try the eating 

response. Rvachev addressed this problem (which led to the majority of the 4.5% failures of the 

network to pass the tests correctly) by replacing the random action selection mechanism that 

prompted exploration when not enough valued information was present in the network, with a 

cycling “round-robin” mechanism that would ensure that each option was selected evenly in the 

case of under-excitation. This reduced failure to pass the tests to 1.7%.233  

The apple-throwing problem could in my opinion also have been addressed through a more 

elegant Network design, taking into consideration motivation as it occurs in biological organisms. 

Although the network was characterised as “hungry” (as a justification for the eating of apples 

giving a large positive reward) this hungriness was not actually embodied in the network. Nowhere 
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in the Network was there any sign of why the Network would experience reward if an apple was 

eaten or a rock was thrown. Another problem lies in the fact that punishment (or negative reward) 

has not been modelled as a separate, opposed, vector, but instead has been implemented as a reset of 

the rewarding value in erroneous clusters to 0. The obvious solution to Rvachev’s apple-throwing 

problem lies in embodying this “hungry” aspect through homeostasis, as well as permitting a 

weighted modifying inhibiting signal rather than a resetting signal based on negative reward signals, 

such as done in MAI. If that were done, throwing away an object would be marked by the Arbiter as 

the expenditure of a (small) amount of energy, rather than a small benefit as in Rvachev. Thanks to 

the weighted negative reward signal, clusters would be weakened in their response, rather than 

reset, leading to a preference not to throw away objects. If attempting to eat a stone was then 

coupled by the Arbiter to a stronger weighted negative reward signal, throwing away an object 

would still be preferable if the alternative was something worse, such as eating a stone, but would 

otherwise be something to avoid when hungry. Any network that set out on throwing things away 

would, if following MAI’s design philosophy, establish that throwing away things that may be 

potential food is harmful to homeostasis and would instead try out the other options. Actually 

embodying homeostasis would, when hungry, favour trying to eat things over not trying to eat 

things, doing away with the apple-throwing problem. 

All things considered, the paper by Rvachev demonstrates that a global reward signal can 

indeed be used to modulate Neural Net signal strengths. This mechanic can, as demonstrated, 

function as the basis for generalised learning as also proposed in this thesis. Enforcing Neuronal 

strengths through reward signals can give the outside impression of “intelligent deduction” of 

aspects that signal an apple. According to Rvachev’s report, the network would indeed learn to pass 

the tests correctly in 95.5% of the unmodified cases and 98.3% of the round-robin cases. This result 

can be reformulated to say that the Network “learned” to generalise the characteristics of an apple 

versus a stone on the basis of rewards and without any explicit rule-formulating or rule-

following.234 To see if this successful result of global reward signal-driven learning holds up, a 

review of another reward-learning Neural Net is in order. 

 

Rombouts et al: Neurally plausible reinforcement learning of working memory tasks. 

In their 2012 paper, Rombouts et al also tackle the problem of reinforcement learning through a 

global reward signal and its effects at the neuronal level.235 Their model, called AuGMEnT 
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(Attention-Gated MEmory Tagging), is also inspired by neuroscience and uses the modulation of 

synaptic weights as the mechanism to modulate connection strengths. These synaptic weights are 

updated through a mechanism strongly reminiscent of the one proposed in MAI: the winning 

memory unit (the one that actually gets to express its action), not only expresses the action but also 

loops back to the synapses that have been responsible for its (feedforward) activation. This 

attentional feedback process, as Rombouts et al call it, informs the rest of the network about which 

action was taken and in the process it creates synaptic “tags” (akin to the more abstract "priming” 

mentioned in Chapter 4 of the current thesis) on the involved synapses. These tags expose the 

involved neuronal connections to a global “neuromodulatory signal” (a global reward signal also 

posited in Chapter 4 and Rvachev) that has been transmitted by a prediction error detection 

mechanism (the more advanced Arbiter-type shortly mentioned in Chapter 4). This global reward 

signal interacts with the tags and permits learning, even if some time passes between synaptic 

activity and the animal’s choice. Of course, the strength of the modulation fades over time.236 This 

allows for the memory modulation effects mentioned in Chapter 3, as well as enabling more time-

differentiated reward connections to be made, up to a point.237 

 However, some important differences between AuGMEnT and MAI are also noticeable. 

First of all, Rombouts et al do not discuss the method through which the rewarding signal is 

delivered to the tagged Neurons, leaving the actual distribution of the signal unidentified. Secondly, 

AuGMEnT does not seem to make use of specialised inhibiting Neurons, but instead passes 

inhibitory signals down through the same (unknown) pathway it transmits excitatory signals (the 

inhibitory variant is simply a negatively signed version of the positive reward value). This means 

that there is no inherently different mechanic for negative feedback, unlike the mechanic proposed 

in MAI. This has consequences for both the delivery of the signal as well as the structure of the 

network. The third important difference is that AuGMEnT is entirely fixed on reward prediction 

error evaluation: it has no homeostasis as a foundation for reward signals and it does not monitor 

actual effects of the environment on itself. It only evaluates the quality of its predictions. This sadly 

robs AuGMEnT of one of the grounding pathways, as well as leaving little leeway for the option of 

enabling different types of reward signals for different types of events. This possibility is preserved 

with multiple homeostatic parameters to be monitored, such as is possible in MAI.  

There are also potential upsides to the AuGMEnT approach. The synaptic weights from 

                                                 
memory tasks. Advances in Neural Information Processing Systems 25 (NIPS 2012) 1871-1879. 
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input Neurons to memory cells indeed became strongly correlated to the true weights of the 

represented symbols. This indicates that the global reward feedback mechanism indeed is successful 

in integrating sensory information into memory connection strengths. AuGMEnT, like Rvachev’s 

method, demonstrates that implementing reward feedback at the neuronal level is a viable way to 

strengthen or weaken connection-strengths and thereby training Neural Nets. Rombouts et al have 

also demonstrated that this technique will also function in greatly up-scaled Neural Networks, 

although a corresponding decrease in the modulatory strength of the reward signals is required.238 A 

property not considered by me in Chapter 4 but a consequence of the AuGMEnT-method is that 

association units with a strong feedforward connection also have a strong feedback connection. This 

entails that synapses on association units that provided a strong input for the actually selected 

action, will also respond stronger to a following reward signal. Those connections that have a large 

effect on the outcome of the firing pattern therefore are also most strongly adjusted with the 

following reward.239 Although this functionality is currently not present in MAI architecture, it can 

in all likelihood be easily implemented. All things considered, the paper by Rombouts et al also 

illustrates the validity of using a global reward signal to train Neural Networks on the basis of a 

global reward signal. 

 

The lack of homeostasis 

From a philosophical point of view, all three discussed AI architectures have something to gain 

from implementing homeostasis and homeostasis monitoring as the basis for their reward signals. In 

doing so, the programs designed can more freely interact with the real world, because they are now 

susceptible to un-programmed valued input: real world occurrences that hurt or help their 

homeostatic maintenance can form the basis of valued interaction with the world without the 

necessity for direct human intervention. By integrating the reward value in a way that is inherently 

connected to the outside world, these AI get access to a second path of grounding. Not just one that 

ties outside observations to inside representations, but also one that ties outside observations to 

internal consequences. Now, if the AI is confronted with an apple it is not limited to simply 

correctly identifying it as an apple, but it may also have a meaningful response grounded on internal 

valence. It may not just describe the apple as round, red and smooth, but may also be motivated to 

eat it when its hungry, or to leave it where it is when it is not without being specifically trained by 
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239 Rombouts, J.O., Roelfsema, P.R. & Bohte, S.M. (2012). Neurally plausible reinforcement learning of working 

memory tasks. Advances in Neural Information Processing Systems 25 (NIPS 2012) 1871-1879. 



Nathan R.B. Perdijk. 0473170. Supervisor: J.J.C. Meyer. 

Master Thesis: History and Philosophy of Science. 

Artificial Reward and Punishment: Chapter 6: Reward in Artificial Intelligence Practice. 

 

 146 

humans or another computer to do so. The importance of the apple is no longer limited to external 

context, but has acquired an internal context, an internal meaning as well.  

From a practical point of view, the lack of a homeostatic monitoring system may also be 

regrettable. The advantage of including grounded reward systems in learning AI is that it can be 

“repurposed” to apply to all kinds of learning task. Rather than encode new reward attachments to 

the newest learning task, the AI can now be enticed to learn by using its already present preference 

for (say) apples as a reward-mechanism. This makes adding new learning topics much more natural, 

using an intrinsic motivation of the construct to drive its behaviour. Direct access to the Signifier 

may even allow for spoken commands, or other methods, to give the AI actually valued and 

grounded feedback. An AI equipped with homeostatic-grounded reward-systems can be shown any 

new task and be given rewards for doing it well or, if necessary, punishment for doing poorly. This 

learning mechanic, so integral to the learning of humans, would add much to AI’s general learning 

capabilities and would put it one important step closer to massive adaptability. 
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Concluding Remarks 

 

At the start of this thesis I formulated the following research question: 

 

“In what manner can biological reward and punishment systems be integrated in 

the Neural Net-approach to creating Artificial Intelligence with humanlike learning 

and recognisable intelligence? What are the consequences of such a Natural AI for 

the field of Philosophy of AI?” 

 

It is now time to answer this question. 

 

In Chapter 1 I argued for the replacement of the term “intelligence” with the term “massive 

adaptability” as forwarded by Jack Copeland. I reduced this massive adaptability to something I 

called “bare-bone adaptability”, where only the essentials of adaptability are conserved. I posited 

that massive adaptability, and with it intelligence, is built from a multitude of small mechanisms 

that each allow for bare-bone adaptability. 

 The essentials for bare-bone adaptability are:  

 

 A “being” must be capable of interaction with its environment (requiring some form of 

perception and some means of altering itself or the environment),  

 A “being” must be capable of evaluating its interactions with the environment, 

 A “being” must be capable of storing these valued interactions, (more commonly known as 

having a “memory”), 

 A “being” must be capable of adjusting its interactions based on these values attained 

through previous interactions/perceptions (more colloquially known as “learning”). 

 

When I explored the relation between biological reward and punishment systems and this bare-bone 

adaptability, I discovered the massive importance of reward and punishment for biological 

evaluation. When exploring the evaluating structures in biological organisms, a few mechanisms 

became apparent as crucial components of any Motivated AI (MAI). The first discovery was that 

internal homeostasis, the ideal parameters of a variety of physical attributes such as PH-value and 

energy levels, is firmly connected to biological adaptability. It is through the consequences of 

actions for internal homeostasis that organisms are able to attach meaningful connections to their 
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internal representation of the outside world. In other words, monitoring homeostatic disruption 

plays a major grounding role in biological learning, driving it forward. Biological adaptability, and 

with it biological intelligence, is at the fundamental level embodied in homeostatic consequences, 

because maintaining homeostasis is directly coupled to natural selection. Failure to maintain 

homeostasis results in death, while restoration of homeostasis promotes survival. Monitoring 

homeostasis therefore allows organisms to make valued judgments without unnecessary death. 

The second noteworthy discovery was that developing a brain is only one way of providing 

adaptability. It became clear that even organisms as deceptively simple and limited as bacteria had 

some learning capacity that allowed them to adapt during their lifetime rather than just through 

brute-force natural selection. In the exploration of that learning-mechanism, it became apparent that 

bacteria are capable of detecting good from bad, learning new good and bad signs, and acting 

accordingly. Thanks to the grounding of their experiences in the consequences they have for internal 

homeostasis, bacteria are capable of learning to distinguish good from bad and attach value to 

previously valueless external signifiers.  

Since bacteria are single-celled life forms, this suggests that it is already possible at the 

cellular level to distinguish between good and bad, allowing for valued judgement. This opened the 

door to a third important part of MAI: valued communication. A fundamental grounding mechanism 

for cellular valued judgement lies in the maintenance of homeostasis, a requirement for any 

organism that seeks to survive. On the basis of this homeostasis, bacteria are able to attach positive 

or negative value to chemical signals they pick up from their environment, which among other 

things allow them to communicate among each other in a meaningful fashion. I posited that cellular 

evaluation and this chemical communication between cells plays an important role in complex 

multicellular life as well.  

 When exploring detection of good and bad in life with brains, it became apparent that brains 

are quite invested in the subject. The abilities discovered in bacteria were present in the brain as 

well, but with additional complexity. The brain has many important regions devoted to the detection 

of homeostatic disturbance, as well as regions preoccupied with distributing valued information to 

the other brain cells in other to promote or inhibit their activity. This intercellular communication is 

likely experienced at the macro-level as “reward and punishment”. A combination of macroscopic 

homeostatic evaluation and chemical signalling allows brain cells to strengthen beneficial 

connections, while weakening detrimental ones, thereby manipulating each other’s behaviour. This 

process is so potent that it even allows for connecting already valued signals to non-valued signals, 

allowing the non-valued signals to become valued as well. This process, called conditioning, still 
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plays a major role in the most massively adaptable organism we know of: the human. Disruption of 

these value-signalling mechanics leads to the breakdown of all kinds of aspects of human 

intelligence, such as insight, planning and decision-making. Because motivation also plays a large 

role in conscious learning, by driving action for instance, brains that do not process reward240 

properly will often display dysfunctional learning and/or lack of action. Reward signals, positive or 

negative, are also known to have a more general impact on learning. Learning occurs not only 

through direct motivation, but through memory modulation as well: the mere transmission of a 

rewarding signal is enough to improve memory storage, presumably because the rewarding signals 

strengthen the connections of active neurons. This makes sense if the transmission of rewarding 

chemicals indeed enforces active connections. At the macro-level this mechanic, although 

potentially a side effect of the other signalling function, also benefits the organism: the release of 

reward signals tends to be a good indicator that something important has happened that is worth 

remembering. 

Extrapolating from this information on reward in the brain, I abstracted a few functionalities 

important for motivated learning in biological organisms and adjusted them for the implementation 

in a new AI model I called Motivational AI (MAI). This MAI has the following modules to improve 

adaptation to its environment:  

 

 The first I called the Arbiter, which monitors homeostasis for disruptions and restorations. 

Although I refer to the Arbiter as a singular structure, multiple Arbiter-like mechanisms are 

likely in place to monitor a variety of homeostatic values. Furthermore, the detection of 

reward-prediction error is also likely done by a mechanism similar to, if not the same as, the 

Arbiter.  

 The second structure I called the Reward-assigner, which receives input from the Arbiter 

and releases the relevant reward signals to the rest of the network. It may be possible that the 

Value-assigner services multiple Arbiters, but there may also be multiple Value-assigners to 

correspond with different Arbiter tasks.  

 The third structure is the Action Selector, which is prompted by the Arbiter when 

homeostasis is disrupted and which relies on Memory modulated by the Value-assigner to 

facilitate action selection. 

 

                                                 
240 The word “reward” when used in a sentence without “punishment”, implies both positive and negative rewards 

unless it has been specifically noted otherwise. 
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These three functionalities are connected to each other and integrated in a Neural Net which they 

provide with an intrinsic valued learning ability grounded in internal consequences to external 

reality. 

 At the Neuron level, the Artificial Neurons used in MAI has two characteristics that are 

worth noting. The first is that the Neurons used by the MAI architecture are either inhibitory or 

excitatory, not both. This inhibitory or excitatory characteristic is directly linked to respectively the 

negative or the positive global reward signal released by the Value-assigner. The second Neuron-

characteristic is that they can be primed to accept reward signals (in their default mode of operation, 

they do not). This allows MAI to only enforce Neurons that actually contributed to taken actions. 

The emerging mechanics of internally valued adaptability can be increased in complexity by adding 

more Arbiter modules, opening MAI to more homeostatic sensitivities and adding modules that 

compare expected outcomes to actual outcomes. MAI can also give internal value to other Neural 

Net memory and sensory modules that are plugged into it, allowing for better self-evaluation and 

therefore better valued behaviour. Due to its evaluation of information on the basis of recognisable 

internal homeostasis, MAI has a much more recognisable potential intelligence. However, until an 

actual complex MAI has been constructed and tested, it is difficult to judge its actual potential. 

On a philosophical level, too, MAI may have a significant impact. The homeostatic 

approach to bare-bone adaptability calls into question the validity of the mantra “Minds are to 

Brains what Software is to Hardware”. If adaptability through connections to homeostatic 

consequences is the measure of bare-bone intelligence and intelligence is indeed the massive 

adaptability as Copeland forwards, the type of underlying physical matter is, perhaps ironically, of 

no consequence for embodied intelligences or “minds”. This even means that some of the 

underlying “physical” matter can be a simulation itself. Following this logic, MAI should not be 

evaluated as a software program running on computer hardware, but as a bunch of variable 

connections between outside consequences and internal actions valued on internal consequences. 

This immediately invalidates both the Chinese Room argument and the Simulation-objection: it is 

not the computer that MAI is stored on that is capable of understanding its symbols, but rather the 

various connections and consequences to the real world entailed in the MAI-simulating program 

that directly attach it to an understanding of the outside world. The adaptable connections in MAI 

are grounded in both external reality and internal consequences, effectively representing both. The 

symbols that can be used to build these connections are merely the physical constituents, or 

“building blocks”, of an intelligence that is grounded in external consequences and that attains 

internal meaning through the relation between external and internal consequences. The Symbol 
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Grounding Problem and Simulation Objection both don’t seem to apply to an adaptable system that 

has internal representation and evaluates consequences of external events. It is not about the 

meaning of the symbols used, but their effect. The fact that the homeostasis upon which all of this 

depends has been preprogrammed by humans is irrelevant: humans are preprogrammed by hundreds 

of millions of years of evolution and the consequences for MAI are still very much real. If MAI 

fails to respond to internal consequences in an adequate manner, it will cease functioning. Likewise, 

any real power projected by MAI into the world due to access to external components, be they arms 

or a text-screen, is very real as well. This does not mean, however, that MAI as it has been modelled 

so far, is “massively adaptable” and should be considered intelligent in the same degree that we are: 

it is by far not complex and versatile enough to qualify for such strong statements. MAI is, 

however, definitely adaptable and it is well grounded in the external environment. It may function 

as an important stepping stone in achieving AI capable of evaluating their environment. 

The consequences of MAI for already existing AI, such as Laird’s Soar or Rombouts et al’s 

AuGMEnT are visible at both the philosophical and the practical level. At the philosophical level, 

these AI miss out on a main pathway to the grounding of their internal knowledge representations. 

As long as they are without homeostatic consequences that are connected to their global reward 

signals, they can only achieve grounding through reliably connecting internal representations to 

outside events. With the implementation of a MAI-like architecture, this single grounding root can 

be joined by a second root that provides internal consequences based on the outside world. Internal 

representation can now not only reliably recognise external objects, but can also attach an internal 

meaning to them as well. At the practical level, MAI allows for additional versatility in the 

application of reward learning. The two reviewed Global Reward Signal approaches to training 

Neural Nets show that a Global Reward Signal as also featured in MAI can indeed be used to train a 

Neural Net AI. Making reward-learning directly connected to homeostatic values, which can again 

be directly affected by a large variety of real world events, allows for great repurposing options in 

teaching AI information. It offers both a more accessible handle for human teachers to express what 

is important to an implementation of MAI and the opportunity for the AI to explore and learn things 

for itself. A reliable and multi-functional reward-matrix allows for much greater versatility in 

learning, making any AI, at least potentially, significantly more adaptable and less dependent on 

human guidance. 

In short, it seems that biological reward and punishment systems have found a preliminary 

integration into the Neural Net approach to creating Artificial Intelligence through the MAI-model. 

Founded on the biological mechanisms of adaptability and homeostasis, MAI provides new learning 
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methods for Natural AI and deals with some of the more tenacious problems in the Philosophy of AI 

as well. Further exploration of the subject as well as actual experimentation will undoubtedly shed 

further light on the characteristics of human intelligence and the potential construction of a true AI. 
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