
A Neural Network GUI Tested on
Text-To-Phoneme Mapping

MAARTEN TROMPPER

Universiteit Utrecht
m.f.a.trompper@students.uu.nl

Abstract

Text-to-phoneme (T2P) mapping is a necessary step in any speech synthesis system. For some languages,
like English, it can be hard to derive a good set of rules to cover all letter-phoneme correspondences. This
paper presents an open-source GUI for training artificial neural networks that is tested on the problem of
text-to-phoneme mapping. The results are just below 80% accuracy with a standard feed forward neural
network.

I. INTRODUCTION

1.1 Problem description

Text-to-phoneme mapping is an important step
in any text-to-speech system. Some languages,
like Finnish or Japanese, have regular phono-
logical mapping rules. For other languages, like
English or French, it can be very hard to find a
complete set of rules [1, p. 49]. Here, we con-
sider the problem of converting English text to
phonemes by training artificial neural networks.
For this purpose, an environment to train and
test the networks is needed, as well as a means
of coding textual information into activation
values that the networks can use.

II. BACKGROUND ON ANNS

2.1 Artificial neural networks

An artificial neural networks (ANN; for brevity
also referred to as ’neural networks’ or sim-
ply ’networks’) is a mathematical graph that
is inspired by natural neural networks; brains.
They consist of inter-connected neurons that
propagate or inhibit a certain flow of activation
through neural pathways.

There are some distinct differences between
the functioning of artificial and biological neu-
ral networks. ANNs usually have a controlled
signal flow (from the input neurons to the out-
put neurons, layer-to-layer) and don’t use neu-
rotransmitters. They also usually contain way
less neurons than the brains of high function-
ing organisms do: up to a thousand in a typical
ANN compared to billions of neurons in a hu-
man brain.

ANNs are frequently used for tasks that are
associated with human functioning, like recog-
nizing patterns for which a rule-based system
or an efficient algorithm is hard or impossible
to find. Examples include face recognition [9]
and e-mail spam filtering [8].

An ANN can learn by adjusting the weights
of the connections between neurons to values
which correspond closer to the desired input-
output mapping. This adjustment is most com-
monly done by a supervised learning algorithm,
although any learning paradigm can theoreti-
cally be used. Other learning paradigms in-
clude unsupervised or reinforcement learning.

Most neural networks work in the following
way, using supervised learning:

1. An input pattern is presented to the net-

1

mailto:m.f.a.trompper@students.uu.nl

work, represented as an array of numbers.
The numbers are commonly real-valued
numbers between 0 and 1. This is done by
copying these numbers to the firing val-
ues of their corresponding input nodes.

2. The input pattern is propagated through
the network by setting the firing values
of all subsequent nodes. The activation
value of the subsequent nodes depends
on some activation function, most fre-
quently the delta function 2. The activa-
tion function ensures that the firing value
of any node is a real number between
0 and 1. Eventually the signal reaches
the output nodes, and so the network
presents its output.

3. If the network is in the training phase, the
activation values of the nodes are com-
pared to the desired activation values.
The network weights are then updated
to better respresent the desired mapping

2.1.1 Feed Forward Neural Network

The feed forward neural network (FFNN; also
called perceptron, see Figure 1) was the first
type of neural network to be developed. It is
one of the most commonly used and studied
network architectures, due to its simplicity and
all-round performance.

An FFNN is built up in layers, which each
consist of an array of nodes. A node in a layer

is only allowed to have connections with nodes
in the next layer. The final layer has no outgo-
ing connections, and is the output layer. The
output is computed by propagating the input
layer-by-layer, hence ’feed forward’.

An FFNN has at least two layers: an input
layer and an output layer. Because it has only
been proven than FFNNs with one or more
hidden layers are universal approximators, a
hidden layer is usually added. [2] Perceptrons
with at least one hidden layer are referred to as
’multi-layer perceptrons’.

Also, it is common for an FFNN to start out
fully connected. That is, every node in a layer is
connected to every node of the following layer.
After the network is trained, it is common prac-
tice to delete the weights that play a neglectable
role in the calculation of the output layer. This
speeds up the propagation of the input signal.

2.1.2 Recurrent Neural Network

Because the input layer in an FFNN gets over-
written when a new pattern is presented, the
network won’t be able to show any sort of mem-
ory from the previous input. Having this kind
of memory is desirable in certain situations,
though. For example, it is desirable when the
input size is not bound to a specific size, such
as in the task of recognizing handwriting. The
recurrent neural network (RNN) is an adapta-
tion of the FFNN to allow it to model sequential
data. This is done by making a connection be-

Figure 1: A feed forward neural network. The nodes marked ’0’ make up the input layer. These nodes propgatate to
nodes marked ’1’; nodes on the hidden layer. Finally, these nodes propagate to nodes marked ’3’, which is the
output layer.

2

tween some or all output nodes to some input
nodes and propagating the output values when
a new input pattern is presented.

This means that for each new pattern, in ad-
dition to the input pattern some information
about the previous pattern(s) is also presented
to the network. In the words of Ilya: [4]

"The RNN’s high dimensional hid-
den state and nonlinear evolution
endow it with great expressive
power, enabling the hidden state of
the RNN to integrate information
over many timesteps and use it to
make accurate predictions. Even if
the non-linearity used by each unit
is quite simple, iterating it over time
leads to very rich dynamics."

III. METHODS

To test the performance of T2P mapping with
neural networks, two tools have been devel-
oped and made available on GitHub.1 The tools
consist of an encoding GUI and a training GUI.

The encoding GUI allows the user to convert
input-output maps of text characters to maps
of activation values that can be read by neural
networks. The tool also allows the user to ran-
domly split the resulting map into a training set
and a testing set.

The training GUI can load these maps and
construct a new neural network. Using one of
multiple training algorithms, the network can
then be trained and tested.

The tools were designed to be easily exten-
sible so that they can be made to work with
different data formats, encodings and network
(training) types.

3.0.3 Learning rate and momentum

Learning rate and momentum are two impor-
tant variables in training the network. The both
numbers determine the rate with which neuron
weights are nudged to their desired values. The
learning rule for updating these is the following
formula, called the delta rule [1]:

∆wj,i = a(tj − yj)g′(hj)xi (1)

where
∆wj,i is the addition made to the weight from
neuron i to neuron j
a is the learning rate
g(x) is the neuron’s activation function
tj is the desired output for neuron j
hj is the weighted sum of neuron j’s input
yj is the actual output of neuron j
xi is the ith firing value from neuron i

A momentum is added so that the networks
don’t fall into local minima. The momentum
adds to the delta rule as a fraction of the previ-
ous weight increment.

∆wj,i(t) = ∆wj,i + m(∆wj,i(t− 1)) (2)

where
m is the momentum
t is the current training iteration
m(∆wj,i(t− 1)) = 0 for t < 1 (there is no mo-
mentum if there has been no previous training
iteration)

3.1 Database

Testing and training was done using the CMU
Pronouncing Dictionary2 , an ASCII-encoded
(Arpabet) phonetic pronunciation dictionary
for American English which contains some
125.000 words (about 110.000 words after prun-
ing). The dictionary was pre-processed and
pruned for the purpose of this experiment.

1 https://github.com/digitalheir/Neural-Network-GUI
2 http://www.speech.cs.cmu.edu/cgi-bin/cmudict

3

https://github.com/digitalheir/Neural-Network-GUI
http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Figure 2: Detail of the encoding tool

3.1.1 Database pre-processing

Because the words-to-phonemes mapping of
the CMU dictionary is not aligned (e.g., it does
not show which letter maps to which phoneme),
some pre-processing of the dictionary was nec-
essary. Word alignment is still an active area of
research, but an approximation was made with
a state-of-the-art open-source program called
M2M aligner3.

This program is designed to work with the
CMU dictionary syntax, and consequently our
encoding tool was designed to work with the
output syntax of the M2M aligner.

However, the M2M aligner ended up with
575 symbol types, while the CMU dictionary
uses only about 100 (consisting of alphabetic
letters, numbers, and phonemes).

The reason why the M2M aligner outputs
so many different types is because the M2M
aligner will merge two letters into a single type
if they account for one phoneme. Conversely, if
a single letter accounts for two phonemes, the
phoneme types will be merged.

A word that demonstrates this last case is
’nixes’, where ’x’ accounts for both a ’K’ and an
’S’ phoneme. This word maps to the phonetic
translation:

N IH K S IH Z

The M2M aligner aligns the pair in the follow-
ing manner:

N|I|X|E|S| N|IH|K:S|IH|Z|

Because it is desirable to have the least
amount of types possible in our neural net-
work, only one letter was allowed to map to
one phoneme. To fill the resulting gaps, null-
phonemes and null-letters are inserted. The
example above would generate:

N|I|X|_|E|S| N|IH|K|S|IH|Z|

Because we employ a number of context
letters when training and testing the neural net-
work, inserting null-letters should not pose a
big problem, although there is some loss of in-
formation.

Note that the insertion of null letters is
a choice made to keep the experiment sim-
ple. The challenge of mapping one input letter
to multiple phonemes persists for real-world
text, where information about the number of
phonemes a letter maps to is not known a pri-
ori.

After this, lexical stress information was re-
moved from the phonemes. For example, ’OW’,
’OW0’, ’OW1’ and ’OW2’ were all converted to

3 http://code.google.com/p/m2m-aligner/

4

http://code.google.com/p/m2m-aligner/

’OW’. This was done to keep the experiments
as simple as possible, as well as to reduce the
number of symbol types in the phoneme dictio-
nary.

To further reduce the number of types, all
characters were converted to uppercase. Be-
cause the input only consists of letters charac-
ters, and the output consists only of phoneme
characters, there is no risk of mis-interpreting a
character.

After pre-processing, the dictionary was
pruned from very rare letters letter-to-phoneme
pairs. ’Very rare’ was rather arbitrarily defined
as occurring less than 40 times in the entire dic-
tionary. Rare letters include the hyphen and the
character 2 in the word ’C-2’.

3.2 Encoding

For encoding dictionaries of aligned input-
output strings into neural patterns, a GUI was
made. (See Figure 2.)

The method of encoding text characters to
neural patterns is of consiberable importance.
Because most networks require a fixed number
of input values and return a fixed number of
output values, it is impossible or impractical
to map entire words to their complete phonetic
translations.

Furthermore, a holistic approach might hin-
der the network to abstract the phonological
rules.

Because of these reasons, the strings were
encoded as single letter-to-phoneme pairs. Let-
ters were accompanied by a fixed number of
context letters to the left and to the right.

Also important is the method of encoding
character types into activation patterns. Two
algorithms have been implemented to do this:
orthogonal and non-orthogonal encoding. Both
encodings translate a token into a binary num-
ber, corresponding to an activation pattern, but
the orthogonal encoding allows only one ’1’ in
the binary number. For an alphabet {aa, bb, cc},

an example encoding could be as follows:

Orthogonal: {aa→ 001, bb→ 010, cc→ 100}

Non-orthogonal: {aa→ 01, bb→ 10, cc→ 11}

Orthogonal encoding generally produces
better results than non-orthogonal encoding,
except when the number of weights is unre-
alistically low. [1, p. 74] Because of this, in
the experiment only orthogonal encodings are
used.

3.3 Training and Testing

To train and test the neural network, a GUI was
made with two implementations of the feed for-
ward neural network. (See Figure 3.) One of
the implementations was object-oriented (for
clarity) and the other primitives-based (for per-
formance). The implemented training function
is backpropagation. Networks nodes were in-
stantiated with the sigmoid activation function.

Interfaces for RNNs and a rudimentary im-
plementation were also made, together with the
backpropagation-through-time algorithm, but
these were not tested well enough to produce
reliable results for the experiment.

The network GUI allows the user to load
data sets for training and testing that are gener-
ated with the encoding tool. It allows the user
to instantiate a new network and training func-
tion along with the ability to change important
parameters such as learning rate. The GUI can
render a graph representation of the network
and keeps track of network performance over
the test set. The test results can be exported to
a CSV file.

For the experiment, a number of networks
were tested against a number of training and
testing sets. The testing conditions varied in:

• learning rate

• momentum

5

Figure 3: Training & testing tool showing a recurrent neural network

• number of context letters

Another important variable is the number
of weights. This variable was held constant at
6000 weights for the purpose of this experiment.
Dealing with different numbers of context let-
ters means dealing with differing numbers of
input nodes, which would alter the total num-
ber of weights in the network. Because of this,
some care had to be taken to instantiate the net-
work with a correct number of hidden nodes.
Because the FFNNs that are used are fully con-

nected, the number of nodes in the hidden layer
can be calculated with the following equation:
n ∗ x + x ∗m = 6000
Where n is the number of input neurons and m
the number of output neurons. To get a feeling
of how the number of weights influences the
performance of a network, consult [1].

6

IV. RESULTS AND DISCUSSION

(Consult the appendix for more detailed results.)

The top performing networks score just un-
der 80% accuracy (see Figure A.1). As would be
expected, raising the number of context letters
raises accuracy, up to a point of about 5 input
letters. Both of these observations are corrobo-
rated by [1, p. 62]. Within the testing bounds,
increasing the learning rate had a positive ef-
fect on overall network accuracy. Varying the
momentum has had minimal effect, which sug-
gests that there is little risk of local minima on
the error minimization surface for this problem.

It is observed that most difficulty lies in con-
verting vowels to their phonemes, as can be
seen in Figure A.3. The vowel groups monoph-
thongs and diphthongs respectively score 56%
and 46% accuracy over the entire testing set.
Compare this to nasals (97%), liquids (93%) and
fricatives (86%). It is hypothesized that this is
due to the ambiguous nature of vowels (e.g.,
the non-trivial distribution of possible vowels
among input patterns), but such a statement
merits more research.

So it would make sense, if one were to try
and improve the overall network accuracy, to
focus on improving accuracy on vowels.

It is also noted that lowering the learning
rate tends to produces a more erratic-looking
performance graph, the shape of which is con-
sistent when varying momentum. See Figure
A.2 for the four testing extremes (minimum and
maximum for learning rate and momentum).

REFERENCES

[1] Enikö Beatrice Bilcu, Text-To-Phoneme-
Mapping Using Neural Networks. Tampere
University of Technology, 2008. 1.1, 3.0.3,
3.2, 3.3, 4

[2] Balázs Csanád Csáji, Approximation with Ar-
tificial Neural Networks. Faculty of Sciences;
Eötvös Loránd University. 2.1.1

[3] Stuart J. Russell and Peter Norvig, Artifi-
cial Intelligence: A Modern Approach. Prentice
Hall, 3rd edition, 2009.

[4] Ilya Sutskever, e.a., Generating Text with
Recurrent Neural Networks. University of
Toronto. 2.1.2

[5] Paul J. Werbos, Backpropagation Through
Time: What It Does and How to Do It. Pro-
ceedings of the IEEE, Vol. 78, No. 10, 1990.

[6] Simon Haykin, Neural Networks: A Compre-
hensive Foundation. Prentice Hall, 2nd edi-
tion, 1998.

[7] Orhan Karaali, e.a., Speech Synthesis with
Neural Networks. Motorola, Inc., 1996.

[8] Yue Yang, Anti-Spam Filtering Using Neu-
ral Networks and Baysian Classifiers. North
Florida Univ., 2007. 2.1

[9] Tom Mitchell, Machine Learning. McGraw
Hill, 1997. 2.1

7

I. APPENDIX A: FIGURES

For the raw result data, which is a more detailed list of results, consult the generated result files in
the GitHub repository4. This data contains the scores for all individual letter-to-phoneme mappings,
for each tested network condition.

Figure A.1: Bar charts showing performance as a function of momentum and learning rate, for various amounts of input
letters

4https://github.com/digitalheir/Neural-Network-GUI/tree/master/report/results

8

https://github.com/digitalheir/Neural-Network-GUI/tree/master/binaries/sampleData/results

Figure A.2: Performance graphs for various learning rates and momentums, with 9 input letters

9

Figure A.3: Table showing accuracy on single letters and phonemes, divided into phoneme groups. Conversions that
occurred less than 500 times in the test set were deleted from the table, so totals do not necessarily add up.

10

	Introduction
	Problem description

	Background on ANNs
	Artificial neural networks
	Feed Forward Neural Network
	Recurrent Neural Network

	Methods
	Learning rate and momentum
	Database
	Database pre-processing

	Encoding
	Training and Testing

	Results and discussion
	APPENDIX A: Figures

