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Abstract

In this thesis we consider dynamics of skyrmions driven by the Spin Hall effect,
in particular in finite systems. We look at the interaction of a skyrmion with the
boundary of the system. We find that the magnetization at the edge is tilted, which
is expected to lead to a repulsive potential that tends to push the skyrmions away
from the edge.
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1 Introduction

Do you also dislike it when your smartphone runs low
on battery that quick? Topologically stable skyrmions
may possibly be the answer for us! Skyrmions can be
used for a more efficient way of data storage and data
processing. As they have many advantages; like their
size, it is only a few nanometres in diameter, so the
information density in a square area can be very high.
Another very important feature is the low power con-
sumption that is needed for spin currents to drive the
skyrmions. Lower power consumption means longer
battery life! We first give an introduction to the topics
involved, i.e. magnetism in materials in general and an
introduction to skyrmions. An excellent textbook on
magnetic materials is 14.

1.1 Magnetic materials

Let us start with the general subject of magnetism in
materials. We can distinguish three different kinds of
magnetism:

1) Diamagnetism; all materials have this magnetic
property, it counters the externally applied magnetic
field (to some extent) and usually it is very weak,
however there are some materials with strong diamag-
netism, for example superconductors. Their ability to
levitate above a permanent magnet comes from this
diamagnetism.

2) Paramagnetism; in materials with this type of
magnetism, magnetization is created directional and
proportional to the externally applied field. After
switching the field off, the material will not retain the
magnetic properties it had with the field still on. This
is because of thermal fluctuations which randomize the
spin orientation, so the magnetic properties of material
will be similar to the state prior to turning the field
on.

3) Ferromagnetism; applying a magnetic field on
materials with this kind of magnetism will align all
magnetic domains in the same direction, and by doing
so creating a very strong (ferro)magnet, sometimes
the magnetization of this material will be far greater
than the externally applied magnetic field. Even after
removing the external field the material will be mag-
netized. You have to apply a magnetic field in the
opposite direction if you want to demagnetize it, as
can be seen in the hysteresis loop figure 1.

Figure 1: Hysteresis loop; starting in point a) we see
that the magnetization B can only reach zero if the ap-
plied field is taken in the -H direction. Image taken
from 13.

The amount of magnetic force necessary to demag-
netize the material is called the coercivity. In gen-
eral the coercivity is directly correlated with magnetic
anisotropy. So the higher the magnetic anisotropy of
the material, the more effort it takes to demagnetize
it. In ferromagnets we can have all kinds of spin exci-
tations, i.e the spins1 can be oriented in a certain way.
An interesting type of such an excitation is a domain
wall. The domain wall corresponds to a gradual transi-
tion between two magnetic domains, see figure 2. The
size of the domain wall depends on the ratio between
the exchange energy and anisotropy of the material and
usually the size is in the order of 102 atoms.

Figure 2: Domain wall; a transition between a mag-
netic domain with spin-up and a magnetic domain with
spin-down.

Another type of excitations are spin-waves. To illus-

1The magnetization and spin are directly related through some proportionality factors e.g. the Bohr-magneton
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trate this consider a system where all the spins point
in the same direction, now we flip the spin of one atom,
but then it tends to go back, because all of his neigh-
bours are pointing in the other direction, so it grad-
ually flips at the expense of his neighbours. On their
turn they act on their neighbours, making them flip
etc. These spin-flips propagate like a wave through
the material, and hence the name, spin-waves. These
propagating deviations of the spin orientations are also
known as magnons.

Another form of excitations in magnetic materials
are skyrmions. And that is exactly what we will inves-
tigate in the following sections.

1.2 Skyrmions

The subject of this Thesis is a skyrmion in a ultra
thin magnetic film. Other good articles on this subject
are.4,15,18 To begin with we must answer a couple of
the questions that might have emerged at this point:
e.g. “What are skyrmions exactly?” and “Why are we
interested in them?”. In this section we will try to
answer these questions.
A skyrmion is a topological structure of magnetiza-
tion vectors. These vectors are standing in a spiral-like
configuration (see figure 3). The magnetization vec-
tor field Ω(x) describes this profile of the skyrmion.
The magnetization orientation of an atom in a point
x=(x,y,z), is mathematically given by:

Ω(x) = sin
(
θ(ρ, ϕ, z)

)
cos
(
φ(ρ, ϕ, z)

)
ρ̂

+ sin
(
θ(ρ, ϕ, z)

)
sin
(
φ(ρ, ϕ, z)

)
ϕ̂

+ cos
(
θ(ρ, ϕ, z)

)
ẑ,

where θ is the polar angle and φ the azimuthal angle.

Figure 3: a) and b) illustrate 3D skyrmions that can
be found in some bulk materials, c) illustrates a 2D
skyrmion with the magnetization in the center pointing
down. Image taken from 16.

We will not look at 3D skyrmions, but only at ultra thin
films - which are comparable with 2D skyrmion struc-
tures. To be more specific, we look at layered magnetic
systems with perpendicular magnetic anisotropy, e.g.
Pt/CoFe/MgO multilayer as in 18.

Figure 4: Platinum-cobalt interface, with a thickness
of only a couple of atoms, the gray and black dots rep-
resent the cobalt and platinum atoms.

We define θ to be zero when the magnetization is in
the +z-direction, aligned with the external field (clearly
most of the magnetization will be in this direction),
and in the center of the skyrmion, θ will be π. The
skyrmion is rotationally symmetric. The azimuthal an-
gle φ of the magnetization vectors has a constant value
φ0, depending on your system’s materials. In ferro-
magnets the magnetization rotation has no preferred
handedness, but inversion symmetry breaking can lift
the chiral degeneracy.2 The Dzyaloshinskii-Moriya in-
teraction favours magnetization rotation with a fixed
chirality, hence φ0 will be fixed. Meaning that the di-
rection of the magnetization vectors will only depend
on the polar angle θ. For the system we consider φ0
will be zero.

Figure 5: Skyrmion with φ0= 0, also called the
“Hedgehog”-formation. Image taken from 9.

Since the discovery that skyrmions can be manipu-
lated with very low currents in 2009,17 active research
has been undertaken in this field. Skyrmions can be
driven under smaller (about an order 105) currents
than ferromagnetic domain walls. This can be ex-
plained by observing that domain walls have intrinsic
pinning sites whereas skyrmions do not. Furthermore
skyrmions can avoid impurities in a material, con-
tributing a lot to their movement freedom;5 this can
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lead to faster execution time in devices. This raises po-
tential to a new generation of devices for information
storage. Therefore it is very important to understand
as much as possible about skyrmions, and thus lots of
research is and must be conducted. Currently in-
dividual skyrmions can be created and destroyed, this
has been done by a number of people in a number of
different ways: it has experimentally been found that a
single skyrmion can be created via local spin-polarized
currents from a scanning tunnelling microscope,3 and
that skyrmions can be created dynamically by desta-
bilizing the ferromagnetic background state through
a spin-polarized current.10 Some work has already
been done on the skyrmion dynamics in an infinite
system.6,12 We will look at the static skyrmion profile
in Chapter 2. In Chapter 3 we consider the effect of an
electric current in the platinum layer, this in turn will
affect the skyrmion via the Spin Hall effect. Then we
continue to find the boundary conditions for a finite
system, and finally attempt to find out more about the
associated skyrmion dynamics.

2 Static skyrmion profiles

In this chapter we find the magnetization profile of a
skyrmion, and its dependence on different parameters.
We follow the discussion in 12. Our starting point is
the energy of the system as a function of the magnetic
orientation vector Ω(x),

E(Ω) = tFM

∫
dx

{
− Js

2
Ω · ∇2Ω +K(1− Ω2

z)

+
C

2

(
ŷ ·
(

Ω× ∂Ω

∂x

)
− x̂ ·

(
Ω× ∂Ω

∂y

))
+ µ0HM(1− Ωz)− µ0MΩ ·Hd

}
,

with tFM the thickness of the ferromagnet, which in
our case, as said, is very thin. Furthermore Js the spin-
stiffness due to exchange-interaction, K the anisotropy
constant and C the strength of the Dzyaloshinskii-
Moriya interactions (DMI) that arise due to the spin-
orbit coupling in combination with lack of inversion
symmetry.

The exchange-interaction is a short range effect
and tends to align all neighbouring spins in the same
direction. The DMI is also a short range effect, but
whereas the exchange interaction wants to align the
spins, the DMI contributes to making the neighbouring
spins stand orthogonal to each other. This competi-
tion between these two terms results in the chirality
of the skyrmion. Furthermore we have the uniax-
ial anisotropy in the z-direction, applicable to a (e.g.

Pt/Co) layered system. The term µ0HM comes from
the Zeeman energy density, which gives the coupling
of the system to the external magnetic field H, and µ0

is the magnetic permeability in free space.

In order to calculate the integral in the above equa-
tion, we transform E[Ω] to polar coordinates
(θ(ρ, ϕ, z), φ0, z) and obtain:

E(θ)

2πtFM
=
Js
2

∫
dρρ

{(
dθ

dρ

)2

+
sin2(θ)

ρ2
+ 2C2(1− cos(θ))

+cos(φ0)

(
dθ

dρ
+
sin(θ)cos(θ)

ρ

)
+(C1 + C3cos

2(φ0))sin2(θ)

}
,

where we rescaled the constants by bringing some fac-
tors like Js outside of the integral, leaving us with
the three dimensionless parameters; C1 = 2JsK

C2 C2 =
µ0HMJs

C2 C3 = 2µ0M
2Js

C2 . Different values of these pa-
rameters will be compared, but first we need to vary
the energy to get a differential equation for θ, i.e.

E(θ)→ E(θ + δθ).

Varying the energy results in:

E(θ + δθ) = E(θ) +

∫
dρ(∗∗)δθ,

where (**) is:

d2θ

dρ2
+

1

ρ

dθ

dρ
− sin(θ)cos(θ)

ρ2
+ cos(φ0)

sin2(θ)

ρ

−
(
C1 + C3cos

2(φ0)
)
sin(θ)cos(θ)− C2sin(θ) = 0.

As we have seen, the skyrmion profile only depends
on the polar angle θ. So what we want to do next is
to solve this differential equation for θ. Note however,
that this cannot be done analytically. Therefore we
have to solve it numerically. Numerically we find the
skyrmion solution θSk for different values of C1, C2 and
C3. We have plotted these in figure 6.
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Figure 6: Three plots with different values of C2,
respectively C2= 0, 1 and 2. C3=0.

3 Skyrmion dynamics in an infi-
nite system

In this chapter we will take a look at the dynamic be-
haviour of a skyrmion in an infinite system, that is, a
system without boundaries. In the first paragraph we
will find that a skyrmion will not move if there is not
an electric field to drive it. Thereafter we will apply
an in-plane electric field and observe the skyrmion’s
movement. We follow the discussion in 12.

3.1 Dynamics

We start with the Landau-Lifshitz-Gilbert equation
(LLG), which gives a good description of the magneti-

zation dynamics of the skyrmion.

∂Ω

∂t
= − γ

M
Ω× δE[Ω]

δΩ
− αGΩ× ∂Ω

∂t
, (3.1)

where γ is the gyromagnetic ratio, M the magnetiza-
tion and αG the Gilbert damping constant. Further-

more δE[Ω]
δΩ = 0 for the skyrmion solution, shown in

Appendix A, and we’ll be using this in Chapter 4 to
find the boundary conditions. So the LLG equation
reduces to:

∂Ω

∂t
= −αGΩ× ∂Ω

∂t
. (3.2)

To represent the skyrmion’s dynamic motion, it is nec-
essary to add a time dependence, such that the mag-
netization has a time dependence term, i.e.,

Ω(x)→ Ω(x−Xsk(t)).

This transforms the LLG equation into:

∂Ω(x−Xsk(t))

∂t

= −αGΩ(x−Xsk(t))× ∂Ω(x−Xsk(t))

∂t
,

Now we take the crossproduct between Ω(x −Xsk(t))
and the LLG equation. This leads to:

Ω(x−Xsk(t))×−∇Ω · ∂Xsk(t))

∂t

+ Ω(x−Xsk(t))×
(
αGΩ(x−Xsk(t))×−∇Ω · ∂Xsk(t))

∂t

)
= 0.

Next we take the dot product with the partial deriva-
tives and integrate over all space. In order to calcu-
late this integral we change our coordinate system from
Cartesian to polar coordinates.
As we took φ0 = 0, we consequently have

Ω(θ) = sinθρ̂+ cosθẑ, (3.3)

resulting in:

εij4ẋj − αGAẋj = 0, (3.4)

with εij the Levi-Civita symbol. This tells us that
ẋ = ẏ = 0 which means that the velocity of the
skyrmion is zero in the absence of driving forces.

3.2 Moving skyrmion

To get the skyrmion moving, we add an in-plane cur-
rent Jε in the x-direction. To take this into account
we need to modify the LLG equation and we add
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a term which describes this current. It is given by
βΩ× (Is × Ω), with Is the spin current and

β =
γh̄θSHJε
2eµ0Mtp

.

Here θSH the effective spin-Hall angle of the
normal-metal layer. Going through the same proce-
dure as above, this new term becomes:

−
∫
dx

∂Ω

∂xi
· (Ω× (βΩ× (Is ×Ω)))

= −εijπβIxi

∫
dρ

(
ρ
dθ

dρ
+ sinθcosθ

)
.

The integral on the right hand side can be evaluated
numerically, we just call it a constant B. Putting it all
together we get:

εij4ẋi − αGAẋj = −εijβBIxi , (3.5)

From this we can find the skyrmion’s velocity. It is
remarkable that the ẏ component of the velocity has
a non-zero value, so the movement will not be only in
the direction of the applied electric field, (see 12).

4 Skyrmion dynamics in a finite
system

Figure 7: Skyrmion in a finite system with length 2L.

4.1 Boundary Conditions

Our purpose in this section is to find how the mag-
netization vector is oriented near the edge of a fi-
nite system, and how this will influence the motion of
the skyrmion. We will find that the magnetization at
the edge is tilted, presumably resulting in a repulsive
force on the skyrmion. To find the boundary condi-
tion for a finite system we begin with demanding that

the Landau-Lifshitz-Gilbert equation on the boundary
should be zero.

∂Ω

∂t
= − γ

M
Ω× δE[Ω]

δΩ
= 0. (4.1)

Now, we first plug in δE[Ω]
δΩ

− γ

M
Ω×

(
∇2Ω + ŷ

C

2

∂Ω

∂x
− x̂C

2

∂Ω

∂y

)
= 0.

Next we perform some calculations and (we use the
third term in appendix A to) rewrite the equation to:

− γ

M

∫
J

2
Ω×∇2Ω + Ω× CδΩ ·

(
∂Ω

∂x
× ŷ
)

= 0,

and obtain with some more mathematical steps (via
appendix B) the boundary condition for Ω:

∂Ω

∂x
=

1

ξ

(
ŷ ×Ω

)∣∣∣∣∣
Edge

. (4.2)

This is in agreement with the findings of previous stud-
ies.11 The above result gives us the opportunity to find
the boundary conditions in terms of θ. To do this we
simply fill in Ω in the above equation, from which, we
distill:

∂θ

∂x
=

1

ξ

(
cos(φ)

)
. (4.3)

For φ0 = 0 this means

∂θ

∂x
=

1

ξ
. (4.4)

4.2 Varying the polar angle theta

In this section we vary the energy with respect to
θ. (Varying with respect to φ gives no contribution.)
Varying θ as said leads to:

E[θ + δθ, φ] ' E[θ] +

∫
δE

δθ
δθ,

With

δE

δθ
= −Js

∂2θ

∂x2
+ 2K sin(θ) cos(θ)

+ C sin2(θ) sin(φ)
∂φ

∂x
− µ0HM sin(θ) = 0.

We now consider θ to be small, so that:
cos(θ) ≈ 1, sin(θ) ≈ θ, O(θ2) = 0 and φ = φ0 = 0.
After using these approximations, a lot of terms drop
out and we remain with a second order differential
equation:

∂2θ

∂x2
= αθ, (4.5)

where we defined α := 1
Js

(µ0HM − 2K).
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4.3 Solving the polar angle theta on the
edge

The general solution to this second order differential
equation is of the form:

θ(x) = Aei
√
αx +Be−i

√
αx. (4.6)

Using θ(0) = 0 we have A = - B and this in combi-
nation with the boundary condition from section 4.1,
evaluated at the edge, gives us:

∂θ

∂x

∣∣∣∣
L

= i
√
αAei

√
αL + i

√
αAe−i

√
αL =

1

ξ
. (4.7)

Now we can solve for A and insert it in equation (4.6),
which results in:

θedge(x) =
1√

αξcos(
√
αL)

sin(
√
αx), (4.8)

with α = 1
Js

(µ0HM − 2K) and ξ = Js
2C . Just to get a

feeling on how the magnetization in the edge depends
on the length of the system we have made a few plots,
see figure 8.

Figure 8: A plot of θedge for different sizes of the sys-
tem, we see that the curve gets steeper for bigger length
scales.

So we have found that the magnetization at the edge
is described a sine, but for small x it behaves linearly,
as can be seen clearly in figure 8. Therefore we will
introduce a linear function f(x) which represents the
magnetization at the edge as follows:

f(x) =

{
c(x−(L−ξ))

ξ if x > L− ξ
0 if x ≤ L− ξ

for some arbitrary constant c. We just want to un-
derstand the system qualitatively, so for simplicity we
take c=1. Now the total magnetization of our finite
system is given by adding the skyrmion profile to the
magnetization profile at the edge, shown by figure 9.

Figure 9: A plot of θtotal(x) = θSk(x) + f(x). In this
figure we see the total magnetization profile of our sys-
tem, i.e., the sum of the skyrmion profile θSk plus the
magnetization profile of the edge f(x).
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4.4 Equations of Motion

In a similar way as in section 3.2, we will apply an elec-
tric field, which will induce a motion of the skyrmion
as we saw earlier. But now our system has bound-
aries, which means that there will be an interaction be-
tween the skyrmion and the edge when the skyrmion
approaches this boundary. We expect that the edge
will act as a bumper, so when the skyrmion comes in,
it collides with the edge and bounces back. To make it
more visual take a look at figure 10b,c. The closer the
skyrmion gets to the edge the stronger the repulsive
force. And for sufficient high velocities the skyrmion
will probably break through and escape. To check these
statements we want to calculate the system’s potential
energy profile. Doing this is beyond the scope of this
thesis, but nonetheless we will provide a starting point
to do this.

Figure 10: In these figures we see the total profile
of our system, a) Total profile cross-section in the x-
direction. b) Orientation of the magnetization vectors
schematically. c) (semi-)topdown-view on a hedgehog-
skyrmion and edge profile.

So first we need to have θtotal(x) = θSk(x) + f(x) ex-
plicitly, where f(x) as before and we will use an ap-
proximation for the numerical skyrmion solution θSk
namely θSk(x)= πe−x. The skyrmion profile in Carte-
sian coordinates, which we need to evaluate the energy
in a finite system, is given by:

Ωsk(x, y, z) =


sin(θ(

√
x2 + y2)) x√

x2+y2

sin(θ(
√
x2 + y2)) y√

x2+y2

cos(θ(
√
x2 + y2))



Now to find the potential energy we define a potential
V(x) by means of

V [Ω(θtotal)]. (4.9)

Numerical evaluation of this potential is beyond the
scope of this thesis.

5 Conclusion

In conclusion, after introducing the topic of magnetism
in materials, we studied the profile of a static skyrmion,
as well as the dynamics of a skyrmion in an infinite
system. Also we have found the magnetization at the
edge of a finite system. We found that the Dzyaloshin-
skii–Moriya interaction is responsible for the magnetic
tilt at the edge. Furthermore we made a start to use
this to describe the dynamics of a skyrmion in such
a finite system. Hopefully we are now one step closer
to skyrmion-based magnetic information storage. The
boundary repulsion can possibly be used to control
skyrmion dynamics in nanowires, from which we may
build efficient magnetic memory with very low energy
consumption. This results in a longer discharge cycle
for your smartphone’s battery, which can contribute
to your daily happiness. Above all it will reduce the
amount of energy required in data storage worldwide!
But we are not there yet, research must be continued
to realize skyrmion based data carriers.

Future research on this topic can be performed by
calculating how the interaction between the skyrmion
and edge magnetization goes. We have investigated a
system with easy-axis anisotropy, it should be noted
that some recent study,1 finds enhanced stability for
the skyrmion with an easy-plane anisotropy instead of
easy-axis, so this may be a field to endeavour. There is
also research being conducted on creating (“writing”)
skyrmions, but not so much research on efficiently and
quickly detecting (“reading”) skyrmions. Research in
this field is encouraged.
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6 Appendices

6.1 Appendix A

The δE[Ω]
δΩ term.

First we use some variational calculus
E[Ω]→ E[Ω + δΩ]. (6.1)

After doing this we will get something in the form

E[Ω + δΩ] = E[Ω] +

∫
dx
δE[Ω]

δΩ
δΩ. (6.2)

The calculation is done below.
Our expression for the energy is

E(Ω) =tFM

∫
dx

{
− Js

2
Ω · ∇2Ω +K(1− Ω2

z)

+
C

2

(
ŷ ·
(

Ω× ∂Ω

∂x

)
− x̂ ·

(
Ω× ∂Ω

∂y

))
+ µ0HM(1− Ωz)− µ0MΩ · ~Hd

}
We vary the energy, to keep things clear and transparent we’ll do this term by term.

1) First term −Js2 Ω · ∇2Ω;

Ω · ∇2Ω→ (Ω + δΩ) · ∇2(Ω + δΩ) (6.3)

= Ω · ∇2Ω + δΩ · ∇2(Ω) + Ω · ∇2δΩ + δΩ · ∇2δΩ. (6.4)

2) Second term K(1− Ω2
z);

K(1− Ω2
z)→ K(1− (Ωz + δΩz)

2) (6.5)

= K(1− (Ω2
z + δΩ2

z + 2ΩzδΩz)) (6.6)

≈ K(1− (Ω2
z + 2ΩzδΩz)) (6.7)

= K(1− Ω2
z) +−K2ΩzδΩz). (6.8)

3) Third term

C

2

(
ŷ ·
(

Ω× ∂Ω

∂x

)
− x̂ ·

(
Ω× ∂Ω

∂y

))
→ C

2

(
ŷ ·
(

(Ω + δΩ)× ∂(Ω + δΩ)

∂x

)
− x̂ ·

(
(Ω + δΩ)× ∂(Ω + δΩ)

∂y

))
=
C

2
ŷ ·

((
Ω× ∂Ω

∂x

)
+

(
Ω× ∂δΩ

∂x

)
+

(
δΩ× ∂Ω

∂x

)
+

(
δΩ× ∂δΩ

∂x

))

− C

2
x̂ ·

((
Ω× ∂Ω

∂y

)
+

(
Ω× ∂δΩ

∂y

)
+

(
δΩ× ∂Ω

∂y

)
+

(
δΩ× ∂δΩ

∂y

))

=
C

2
ŷ ·

((
Ω× ∂Ω

∂x

)
+

(
δΩ× ∂Ω

∂x

)
+

(
Ω× ∂δΩ

∂x

))

− C

2
x̂ ·

((
Ω× ∂Ω

∂y

)
+

(
δΩ× ∂Ω

∂y

)
+

(
Ω× ∂δΩ

∂y

))
,
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we do the part with the ŷ term first. The x̂ is done in a similar fashion.
Partial integration gives us:∫

C

2
ŷ ·
(

Ω× ∂δΩ

∂x

)
. =

C

2
ŷ ·
(

Ω× δΩ
)∣∣∣∣∣

S

−
∫
C

2
ŷ ·
(
∂Ω

∂x
× δΩ

)
(6.9)

Cyclic permuting, i.e. (a · (b× c) = b · (c× a)):

ŷ ·
(
∂Ω

∂x
× δΩ

)
= δΩ ·

(
ŷ × ∂Ω

∂x

)
. (6.10)

Using the above gives:

=
C

2
ŷ ·
(
δΩ× ∂Ω

∂x

)
− C

2
δΩ ·

(
ŷ × ∂Ω

∂x

)
+
C

2
ŷ ·
(

Ω× δΩ
)∣∣∣∣∣

S

(6.11)

=
C

2
δΩ ·

(
∂Ω

∂x
× ŷ
)
− C

2
δΩ ·

(
ŷ × ∂Ω

∂x

)
. (6.12)

= CδΩ ·
(
∂Ω

∂x
× ŷ
)
. (6.13)

Doing the same for x̂ and obtaining:

= −CδΩ ·
(
∂Ω

∂y
× x̂
)
. (6.14)

4) The fourth term is simply:

µ0HM(1− Ωz)→ µ0HM(1− Ωz)− µ0HMδΩz. (6.15)

5) And the fifth:

µ0MΩ · ~Hd → µ0MΩ · ~Hd + µ0MδΩ · ~Hd. (6.16)

Now we collect all terms with δθ and equal it to zero, we neglect higher orders of δθ.

δΩ · ∇2(Ω)−K2ΩzδΩz + CδΩ ·
(
∂Ω

∂x
× ŷ
)
− CδΩ ·

(
∂Ω

∂y
× x̂
)
− µ0HMδΩz + µ0MδΩ · ~Hd = 0.
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6.2 Appendix B

We start with

− γ

M

∫
Ω× δE

δΩ
= − γ

M

∫
J

2
Ω×∇2Ω + Ω× CδΩ ·

(
∂Ω

∂x
× ŷ
)
, (6.17)

Integrating over a box with length d on the edge:

− γ

M

∫ d/2

−d/2
dx
{J

2
Ω×∇2Ω + CΩ×

(
∂Ω

∂x
× ŷ
)∣∣∣∣∣

a

}
= 0. (6.18)

Rewriting by taking a partial derivative out in front of the first term we want to do this for the second term
as well:

− γ

M

∫ d/2

−d/2
dx
{J

2

∂

∂x

(
Ω× ∂Ω

∂x

)
+ CΩ×

(
∂Ω

∂x
× ŷ
)∣∣∣∣∣

a

}
= 0, (6.19)

This can be done because:

∂

∂x

(
Ω×

(
Ω× ŷ

)∣∣∣∣∣
a

)
=
∂Ω

∂x
×
(

Ω× ŷ
)∣∣∣∣∣

a

+ Ω×
(
∂Ω

∂x
× ŷ
)∣∣∣∣∣

a

(6.20)

and

∂Ω

∂x
×
(

Ω× ŷ
)∣∣∣∣∣

a

= Ω
(∂Ω

∂x
· ŷ
)
− ŷ
(∂Ω

∂x
·Ω
)

= 0. (6.21)

So using the previous we have:

− γ

M

∫ d/2

−d/2
dx
{J

2

∂

∂x

(
Ω× ∂Ω

∂x

)
+ C

∂

∂x

(
Ω×

(
Ω× ŷ

)∣∣∣∣∣
a

)
. (6.22)

And now we can take out the partial derivative:

− γ

M

∫ d/2

−d/2
dx

∂

∂x

{J
2

Ω× ∂Ω

∂x
+ CΩ×

(
Ω× ŷ

)∣∣∣∣∣
a

}
= 0, (6.23)

− γ

M

∫ d/2

−d/2
dx

∂

∂x

{J
2

Ω×
(

Ω× ∂Ω

∂x

)
+ CΩ×

(
Ω×

(
Ω× ŷ

)∣∣∣∣∣
a

)}
= 0. (6.24)

The integral is zero only if:

J

2

(
∂Ω

∂x

)
+ C

(
Ω× ŷ

)∣∣∣∣∣
a

= 0, (6.25)

J

2

(
∂Ω

∂x

)
= −C

(
Ω× ŷ

)∣∣∣∣∣
a

, (6.26)

∂Ω

∂x
= −C 2

J

(
Ω× ŷ

)∣∣∣∣∣
a

. (6.27)

Renaming the prefactor,

∂Ω

∂x
= −1

ξ

(
Ω× ŷ

)∣∣∣∣∣
a

(6.28)

=
1

ξ

(
ŷ ×Ω

)∣∣∣∣∣
a

. (6.29)
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