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Abstract

Bose-Einstein condensates of quasiparticles such as exciton-polaritons, magnons and massive photons

allow for new experimental possibilities as compared to the atomic Bose-Einstein condensates. In this

Thesis we focus on a condensate of photons, first created at Bonn University in 2010. One of the recent

achievements is the measurement of number fluctuations in such a condensate of photons. We present

a general theory to calculate these number fluctuations in a harmonically trapped interacting Bose

gas and apply this to the available experimental results on the condensate of photons, finding good

quantitative agreement. Additionally, we investigate the fundamental phenomenon of phase diffusion,

which is based on the fact that a Bose-Einstein condensate can be described as a symmetry-broken

phase. However, the symmetry-broken phase is only well defined in the thermodynamic limit, such that

in a finite system the phase of the Bose-Einstein condensate can have nontrivial dynamics. We propose

a new type of interference experiment involving a condensate of photons to measure this dynamical

behavior of the phase. By calculating the effects of quantum and thermal fluctuations we find different

time scales on which the interference pattern vanishes. Based on these time scales, we conclude that

phase diffusion is experimentally observable within the precision of current devices.
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Nomenclature

Here we list all symbols we use throughout this Thesis, in alphabetic order.

Symbol Definition Units Description

α − 1 damping parameter for photons

β (kBT )−1 J−1 reciprocal temperature

c clight/n m·s−1 speed of light in medium with index of re-

fraction n

δ ~(ωcutoff − ω0) J detuning dye

D0 − m distance between centers of cavity mirrors

D(x) D0 − 2(R−
√
R2 − |x|2) m distance between cavity mirrors

D g/2πR2
TF J diffusion constant Schrödinger equation

phase

∆ − J energy difference excited and ground state

dye molecule

ε − K−1 first-order correction to index of refraction

ε̄ Meff/M 1 fitting parameter effective reservoir size

φ0(x) − m−1 macroscopic 2D condensate wave function

g − J·m2 photon-photon contact interaction

g̃ mg/~2 1 dimensionless interaction strength

gmol − J·m3/2 coupling constant photons and dye molecules

g(2)(t1, t2) 〈N0(t1)N0(t2)〉
〈N0(t1)〉〈N0(t2)〉 1 second-order correlation function

g(2)(0) 〈N2
0 〉/〈N0〉2 1 zero-time delay autocorrelation function

Γ − s−1 decay rate excited state dye molecules

kx (kx, ky) m−1 transverse photon wavenumber



k+ (0, 0, kz) m−1 wavenumber of photons in the condensate

λcutoff ~/mc m cutoff wavelength cavity

µ − J chemical potential

m ~kz(0)/c kg effective photon mass

M − kg dye molecule mass

N0 − 1 number of photons in condensate

〈N〉 − 1 average number of photons in microcavity

Nc − 1 critical particle number for condensation

nmol − m−3 density dye molecules in microcavity

nph − m−2 density of photons in the microcavity

〈Nn
0 〉

∫∞
0 dN0P (N0)Nn

0 1 n-th moment of the probability distribution

P (N0) − 1 probability distribution for N0

qho

√
~/mω m harmonic oscillator length

qmin qho
4
√

1 + g̃N0/2π m minimized variational parameter

R − m radius of curvature of cavity mirrors

RTF (4gN0/πmω
2)1/4 m Thomas-Fermi radius 2D trapped Bose gas

r (x, y, z) m three-dimensional position vector

σ − 1 width Gaussian initial wave function

tcol 5~σ/2D s time scale collapse quantum interference

tosc ~/2DN0 s time scale oscillation quantum interference

trev 2π~/D s time scale revival quantum interference

t
(1)
dis ~/4αDN2

0 s time scale collapse quantum interference

with dissipation

t
(2)
dis 2~βN0/α s time scale collapse thermal interference

V ext(x) mω2|x|2/2 J 2D isotropic harmonic trapping potential

ω c
√

2/D0R s−1 isotropic harmonic trapping frequency

ωcutoff mc2/~ s−1 cavity cutoff frequency

ω0 − s−1 dye-specific zero-phonon frequency

x 〈N0〉/〈N〉 1 condensate fraction

x (x, y) m two-dimensional transverse vector

vi



Chapter 1
Introduction

Research on Bose-Einstein condensation has been an extremely active field of study in physics for almost

two decades, both experimentally and theoretically. Since its first theoretical proposal by Bose [1] and

Einstein [2] in the years 1924-1925, it took seventy years for the first weakly-interacting Bose-Einstein

condensate to be created experimentally. Only after the development of advanced experimental tech-

niques like laser cooling and evaporative cooling, the first condensates in weakly interacting dilute

atomic alkali gases were observed in 1995. Almost simultaneously, three experimental groups created

a condensate in atomic vapors of 87Rb [3], 7Li [4] and 23Na [5]. The reason that these condensates

were so hard to create, is that condensation in atomic gases only occurs at extremely low temperatures.

In the case of a vapor of 87Rb-atoms, the experimentalists cooled the gas down to a mind-boggling

170 nK.

In recent years, Bose-Einstein condensates of bosonic quasiparticles have also been created, such

as an exciton-polariton condensate in 2006 [6, 7], a magnon condensate in 2006 [8] and a condensate

of photons in 2010 [9]. These condensates of quasiparticles are realized under different circumstances

compared to the atomic condensates. For instance, the condensates are created at higher temperatures

than the condensates of dilute atomic gases: from several Kelvin for the exciton-polariton condensate

to room temperature for the photonic condensate. Additionally, the condensates of quasiparticles

are not in true equilibrium, since the steady state is a dynamical balance between particle losses and

particle gain by external pumping with a laser. Due to these differences, new experimental possibilities

have opened up. For example, large number fluctuations of the order of the total particle number have

been observed in a condensate of photons [10].

In this Thesis we focus on condensates of photons. For a long time it was believed that photons

could not undergo Bose-Einstein condensation. An illustration of this belief can be found in the clas-
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sical textbook on statistical mechanics by K. Huang [11]: “Bose-Einstein condensation can only occur

when the particle number is conserved. For example, photons cannot condense. They have a simpler

alternative, namely, to simply disappear in the vacuum.”. The reasoning behind this statement is that

for blackbody radiation, which is a thermal gas of photons in free space, the number of photons N and

the temperature of the gas T are related via N ∝ T 3. This prevents the onset of Bose-Eintein con-

densation, because upon lowering the temperature of the system, the amount of photons also decreases.

Thus, in order to create a Bose-Einstein condensate of photons, one needs to find a so-called number-

conserving thermalization process, by which the temperature and the photon number can be changed

independently. The first suggestion of such a process was made in 1969, when Compton scattering of

photons within a totally ionized plasma was considered [12]. It was shown that Bose-Einstein conden-

sation occurs only when the absorption of the photons is negligible. However, in realistic experimental

situations the absorption is not negligible in such a system, preventing the onset of Bose-Einstein

condensation. A different route was followed in the years 1999-2001. In Refs. [13, 14, 15, 16] Chiao

et al. consider a photon gas in a nonlinear Fabry-Pérot cavity. Due to the boundary conditions at the

cavity walls, the photon gas becomes effectively two dimensional and the photons can be described by

a dispersion relation similar to that of a massive boson. In this setup, thermalization is sought from

photon-photon scattering due to the nonlinearity of the cavity. However, thermalization, a prerequi-

site for Bose-Einstein condensation, only occurs for sufficiently large nonlinearities. Unfortunately, the

necessary magnitude of the nonlinearity cannot be reached experimentally and prevents the creation

of a condensate in this type of system.

With some modifications, a similar experimental setup to the one proposed by Chiao et al. was used

by the group of Martin Weitz at Bonn university to create the first condensate of photons in 2010.

The main difference is the fact that the Fabry-Pérot cavity was filled with a solution of fluorescent dye

molecules in an organic solvent. Thermalization of the photon gas is reached not by photon-photon

scattering, but rather by multiple absorption and emission cycles of the photons by the fluorescent dye

molecules [17]. It is this experimental setup, and the results obtained with it, that forms the starting

point for the theoretical investigations in this Thesis.

1.1 Outline

We start in Chapter 2 by describing in detail the experimental set-up the physicists of Bonn University

used to create the first condensate of photons. We also introduce some necessary theoretical concepts

relevant for the condensate of photons. We proceed in Chapter 3 by considering the general case of

a two-dimensional harmonically trapped gas of interacting bosons. For this system we calculate the

probability distribution for the number of particles in a condensate by using a variational approach.

We compare our results to the recent experimental results on a condensate of photons. Subsequently,



1.1. OUTLINE 3

we discuss possible interaction mechanisms for the photons. In Chapter 4 we start by proposing a new

type of interference experiment that can be done with the condensate of photons. The goal of the

experiment is to measure phase diffusion. We also calculate typical interference patterns and estimate

different timescales to investigate if it is experimental feasable to detect phase diffusion. Finally, we

discuss the results from our research in Chapter 5. We also give an elaborate outlook on work in

progress and what would be interesting to look at in the future.



Chapter 2
Bose-Einstein Condensation of Light

In this chapter we introduce the basic concepts for understanding the first experimental realization

of Bose-Einstein condensation of photons by the group of M. Weitz at Bonn University in 2010. As

already discussed in Chapter 1, the most challenging experimental task is to be able to independently

tune the photon number and the temperature of the photon gas. We start by giving a general idea

of the experimental scheme used by the Bonn group. We proceed by showing how the photons in the

experimental setup can be described as quasiparticles with an effective mass. Subsequently, we explain

the thermalization mechanism of the photon gas in depth. Hereafter, we calculate the minimal number

of photons inside the cavity necessary for Bose-Einstein condensation to set in. Finally, we discuss

experimental evidence for the condensation of photons. As an outlook to our theoretical description

of the photon gas in the next chapter, we also show experimental results indicating that the photons

are in fact interacting.1

2.1 Experimental Scheme

In the Bonn experiment photons are confined in an optical microcavity formed by two spherical mirrors,

see Fig. 2.1a. Between these mirrors a solution is placed, consisting of an organic solvent (typically

methanol or ethanol) and fluorescent dye molecules (typically Rhodamine 6G or perylene-diimide). By

pumping the solution with an external laser photons are introduced into the cavity. These photons

are repeatedly absorbed and re-emitted by the dye molecules, yielding thermal equilibrium between

the dye solution and the photon gas. In section 2.3, we discuss in more detail how this leads to a

number-conserving thermalization process.

1A lot of the material in this chapter is a revised version of the excellent articles by the Bonn group [9, 17, 18, 19, 20].

Here we give our personal take on their work.
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2.2. MASSIVE PHOTONS 5

(a) Experimental scheme (b) Cavity spectrum and absorption/fluorescence dye

Figure 2.1: Schematic image of the bispherical optical microcavity in Fig. (a). In Fig. (b) a sketch of the cavity

modes is displayed. The multiplets corresponds to all modes with a fixed longitudinal mode of q and a variable transversal

mode. Also, the absorption α(ν) and fluorescence f(ν) spectrum of the dye molecules as a function of the frequency ν

are shown. The multiplet with q = 7 (depicted in black) lies within both the absorption and the fluorescence spectrum

of the dye molecules. Images taken from Ref. [9].

Furthermore, due to the boundary conditions imposed by the mirrors the longitudinal modes in the

cavity are quantized. Additionally, the longitudinal modes in the resonator obtain a large frequency

spacing because of the small spatial mirror separation (typically between 1 and 2 µm) in the longitudi-

nal direction. In fact, this frequency spacing is of the order of the emission width of the dye molecules,

such that the dye molecules can only absorb and emit photons of the same longitudinal mode. This

is schematically displayed in Fig. 2.1b. Also, the spontaneous emission rate of the dye molecules is

changed by the finite volume of the cavity, as compared to the rate in vacuum [21]. One can show that

the spontaneous emission rate is modified to prefer emission of photons in the longitudinal direction,

i.e., with relatively low transverse momenta [22]. In this manner the microcavity is approximately only

populated by photons with one longitudinal mode. Therefore, in good approximation this mode is

fixed and the gas of photons becomes effectively two dimensional.

In the next section we show how this confinement leads to a modified dispersion relation for the

photons. In fact, the dispersion relation is altered from going linearly with momentum, to quadrat-

ically with momentum. This allows one to view the photons as particles with an effective mass.
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Figure 2.2: Schematic picture of the microcavity to indicate the relevant coordinate axes and symbols. The distance

between the mirrors depends on the radial coordinate x: D(x). The distance between the two mirror centers is approxi-

mately D0 ' 1.46 µm for a typical experiment. The image is not to scale, e.g. the curvature of the mirrors is actually

R ' 1 m.

2.2 Massive Photons

To show how the dispersion relation for the photons becomes quadratic, we start by considering the

standard energy-momentum relation for photons in a medium with a speed of light c, that is,

ε(k) = ~c|k| = ~c
√
k2
z + |kx|2, (2.1)

where kz denotes the longitudinal wavenumber of the photons and kx = (kx, ky) is the transverse

wavenumber of the photons. Assuming metallic boundary conditions for the two cavity mirrors,

the photon field must vanish at the mirrors. By using elementary geometry one shows that the

distance D between the mirrors depends on the radial direction |x| =
√
x2 + y2 and is given by

D(x) = D0 − 2(R −
√
R2 − |x|2), where D0 is the distance between the two centers of the mirrors

and R denotes the radius of curvature of those mirrors. These quantities are schematically depicted in

Fig. 2.2. To obtain a standing wave, as is necessary when one assumes metallic boundary conditions for

the mirrors, the quantization condition on the longitudinal wavenumber becomes kz(x) = qπ/D(x),

with q ∈ N>0.

In the paraxial limit the mirrors have a small separation in the longitudinal direction and a curva-

ture which is much larger than the typical radial distance. This amounts to taking kz � |kx| and

|x| � R. Since typical experimental values are D0 ' 1.46 µm and R ' 1 m, such that we can take

the paraxial limit and we find for the longitudinal wavenumber

kz(x) =
qπ

D0 − 2(R−
√
R2 − |x|2)

≈ qπ

D0

(
1 +

2|x|2
D0R

)
, (2.2)
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such that we have kz(0) = qπ/D0 at the center of the mirrors. Substituting Eq. (2.2) into Eq. (2.1)

we find for the dispersion relation of the photons in the paraxial limit [9]

ε(k) ≈ ~ckz(x)

(
1 +

|kx|2
2kz(x)2

)
≈ ~ckz(0) +

2~c|x|2kz(0)

D0R
+

~c|kx|2
2kz(0)

:= mc2 +
1

2
mω2|x|2 +

~2|kx|2
2m

, (2.3)

where we defined the characteristic trap frequency ω := c
√

2/D0R and the effective photon mass

m := ~kz(0)/c. With these definitions we have written the dispersion relation in the suggestive form

of a dispersion relation for a massive particle in an isotropic two-dimensional harmonic trapping po-

tential given by V ext(x) = mω2|x|2/2. Furthermore, from Eq. (2.3) we obtain that the photons in

the cavity have a minimal energy mc2. This defines a cutoff frequency and cutoff wavelength for the

cavity via the equalities mc2 = ~ωcutoff = hc/λcutoff.

For typical experimental values we find m ' 6.7 · 10−36 kg, ω ' 8π · 1010 s−1 and ~ωcutoff = 2.1

eV [9]. Note that the value for the effective photon mass is ten orders of magnitude smaller than

the typical mass for the atoms used in experiments concerning Bose-Einstein condensation of dilute

atomic gases. Therefore, contrary to dilute atomic gases, one does not have to go to extremely low

temperatures to reach a phase space density of order unity. In fact, for realistic photon densities inside

the microcavity, room temperature is enough to reach Bose-Einstein condensation.

Now that we have discussed how the photons in the microcavity acquire an effective mass, we explain

in the next section how the temperature of the photon gas can be tuned independently from the

number of photons. Additionally, we discuss how this leads to a fixed number of photons within the

microcavity.

2.3 Number-Conserving Thermalization

The photons in the microcavity are repeatedly absorbed and emitted by the present dye molecules.

To understand how this leads to thermalization, we must first consider the electronic stucture of the

dye molecules. The dye molecules typically consist of many different atoms, giving them a complex

electronic structure. In general, the molecules will have electronic levels, which are split into different

sublevels with different energies due to the possible excitation of rotational and vibrational states of

the dye molecule. In the literature this is often referred to as a rovibrational structure. Analogously

to Ref. [19], we denote the set of lower electronic levels by S0 and the set of excited electronic levels

by S1. A schematic picture of this structure is displayed in Fig. 2.3.

If a photon is absorbed by a dye molecule, an electron is excited from a state α ∈ S0 to a state
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Figure 2.3: Schematic picture of the typical electronic structure of a dye molecule. The ground state (S0) and excited

state (S1) are both split into sublevels. The energy difference between the lowest energy states of S0 and S1 is called

the zero-phonon line and is denoted by ~ω0. The figure is based on a similar figure in Ref. [23].

β ∈ S1. These excited states typically have a lifetime of the order of nanoseconds [17]. Whilst being

in an excited state, the dye molecule undergoes collisions with solvent molecules on a femtosecond

time scale. These collisions cause the electron to access different sublevels within the excited state,

which is illustrated in Fig. 2.3 by the transition to the states β′, β′′ and so on. Due to the fast nature of

these dye solvent collisions, the population of the rovibrational structure of the dye molecules is given

by a thermal distribution at the temperature T of the solution. Subsequently, the thermal distribution

of the solvent molecules is transferred to the photon gas via the dye molecules by multiple absorption

and emission cycles. This leads to a thermalized distribution for the spectral distribution of the photon

gas [23]. For a more precise mathematical treatment on this process using rate equations the reader

is referred to Ref. [18].

Using the mechanism described above, the temperature of the photon gas in the microcavity can

simply be changed by changing the temperature of the dye solution. Note that this process does not

change the number of photons in the cavity. Indeed, the process allows for independent adjusting of

the photon number and the temperature of the photon gas. Recall that this is in contrast to blackbody

radiation, for which the number of photons N and temperature are inescapably linked via N ∝ T 3.

Now that we have found a way to change the temperature of the photon gas, a mechanism to manipu-

late the number of photons in the cavity remains to be found. Firstly, note that the minimal energy of

photons in the microcavity ~ωcutoff is two orders of magnitude larger than the typical thermal energy

of 25 meV. Therefore, photons cannot be created spontaneously by thermal fluctuations inside the

microcavity, as is the case with blackbody radiation. Thus, after introducing photons into the micro-

cavity with an external laser, the average number of photons remains fixed during the thermalization

process. More photons can simply be added to the system by increasing the power of the external laser.
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However, there is a small caveat: we treated the system ideally. In reality there are some losses

of photons due to e.g. leaking through the mirrors because of an imperfect reflectivity and a finite

quantum efficiency of the dye [23]. This is compensated for by carefully pumping with the external

laser. In fact, the loss of photons by leaking through the mirrors yields a handy diagnostic tool. By

analyzing the photons leaking through the mirrors, one can obtain information on what is happening

inside the microcavity. This means that nondestructive measurements of the condensate inside the

microcavity can easily be performed, contrary to the typical case in atomic condensates.

In the next section we calculate the critical particle number necessary for Bose-Einstein condensa-

tion to set in.

2.4 Critical Particle Number

In the previous two sections we have shown how thermalization is reached in the microcavity and that

the photons in the optical microcavity can be described as quasiparticles with an effective mass in

a two-dimensional harmonic trapping potential. We proceed by considering the necessary conditions

for Bose-Einstein condensation of the photon gas. From quantum mechanics we know that the two-

dimensional harmonic oscillator Hamiltonian can be solved independently in both directions to yield

the quantum numbers nx, ny ∈ N and the corresponding energy2

ε(nx, ny) = (nx + ny + 1)~ω = εx + εy + ~ω. (2.4)

For energies large compared to the ground state energy, we ignore the ground-state energy ~ω and

consider the εi = ni~ω to be continuous variables. The number of states available to particles with

an energy less than ε = εx + εy is called N(ε) and is given by [24]

N(ε) =
Ns

~2ω2

∫ ε

0
dεx

∫ ε−εx

0
dεy =

Ns

2

(
ε

~ω

)2

, (2.5)

where the integer Ns denotes the number of spin components of the boson. Note that the photons are

described with an effective mass m, associated with their fixed longitudinal wavenumber. However,

the effective nonrelativistic form of the Hamiltonian does not change the spin degeneracy for these

photons inside the cavity. Thus, we still have Ns = 2, as is the case for ‘ordinary’ photons. The

density of states D(ε) follows from taking the derivative of the number of available states

D(ε) =
dN(ε)

dε
=

2ε

~2ω2
. (2.6)

2In general the expression would read ε(nx, ny) = ~ωx(nx + 1/2) + ~ωy(ny + 1/2), but here it simplifies due to the

isotropy of the harmonic trapping potential, i.e., ωx = ωy = ω.
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Note that we have kBT � µ, which implies that the thermal cloud around the condensate can be

accurately described by a noninteracting thermal gas of bosons. This then implies that for temperatures

T below the critical temperature for Bose-Einstein condensation, the average number of particles in

excited states 〈Nex(T )〉 can be determined from the ideal-gas result for µ = 0. We obtain

〈Nex(T )〉 =

∫ ∞
0

D(ε) dε

exp (βε)− 1
=

1

3

(
π

~βω

)2

, (2.7)

which determines the critical particle number Nc for a fixed temperature T by the relation Nc =

〈Nex(T )〉. This means that if we keep the temperature fixed and increase the number of particles

beyond this critical particle number, the excess particles start occupying the ground state. Hence,

a Bose-Einstein condensate forms if the number of particles in the system is larger than Nc. For a

typical trap frequency ω ' 8π · 1010 and temperature T = 300 K, we obtain a critical particle number

of Nc ≈ 77,000.

Finally, note that the two-dimensional harmonic trapping potential in the effective dispersion relation

Eq. (2.3) is crucial for Bose-Einstein condensation to occur in the two-dimensional gas of photons.

Indeed, for a homogeneous gas of bosons confined to an area A, i.e., without a trapping potential,

the density of states is a constant: D(ε) = Am/π~2 [24]. The critical particle number at a fixed

temperature T is then equal to

Nc =
Am

π~2

∫ ∞
0

dε

exp (βε)− 1
, (2.8)

which diverges due to the pole at ε = 0. Thus, the critical particle number is infinite and Bose-Einstein

condensation cannot occur at a finite temperature. Hence, the harmonic trapping potential in Eq. (2.3)

gives the photon gas the possibility to condense.

In the next section we briefly discuss how the critical particle number for the onset of condensa-

tion is reached inside the microcavity. Additionally, we show experimental evidence for the phase

transition of the photon gas to a Bose-Einstein condensate of photons.

2.5 Experimental Evidence for Photon Condensation

In order for a condensate of photons to appear in the microcavity, one has to increase the number of

photons in the cavity above the critical particle number. This is done by increasing the power of the

external pump laser. However, one cannot simply keep increasing the pumping power, as the energy

dissipated in the system increases accordingly. This would induce heat development, possibly chang-

ing the optical properties of the system.3 Therefore, the laser light is acousto-optically chopped to

3In fact, in Subsection 3.7.1 we argue that the index of refraction of the dye solution is altered due to a change in

temperature and estimate a corresponding effective photon-photon interaction due to temperature fluctuations. This
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Figure 2.4: Images of the radiation emitted along the cavity axis that leaks through the cavity mirrors. The images

are made by the sensor of a color CCD camera. As the pumping power of the external laser is increased from below [Fig.

(a)] to above [Fig. (b)] the critical pumping power, the number of photons in the cavity becomes larger than the critical

particle number of Nc ≈ 77, 000 and a condensate peak becomes visible in the center. Images taken from Ref. [9].

0.5-µm pulses, with a repetition time of several milliseconds. It is important to note that the lifetime

of the excited states of the dye molecules is two orders of magnitude smaller than the pulse duration.

Additionally, the lifetime of the photons in the cavity is four orders of magnitude smaller than the

pulse duration. Due to these large differences in time scales, the experiment is effectively performed

in a quasistatic regime [18].

In Fig. 2.4 we show two typical images of the light that leaks out of the microcavity onto the CCD

camera. The images depict the radiation that is emitted along the longitudinal cavity axis. Hence,

the radiation falling exactly onto the center of the CCD camera corresponds to photons with zero

transversal wavenumber which are in the ground state of the system. On the other hand, photons

with a nonzero transversal wavenumber are emitted at an angle to the optical axis. Due to their higher

total wavenumber, the latter photons have a higher energy, resulting in a blueshift of the color of the

radiation from yellow to green. Fig. 2.4a depicts a typical image for a pumping power below the critical

pumping power. In this case we see a smooth transition from yellow radiation in the center to green

radiation off-center. When the power is increased above the critical pumping power, an image like

Fig. 2.4b appears on the CCD camera. We see that the intensity of the yellow light in the center of

the image has increased dramatically, which is interpreted as a macroscopic occupation of the ground

state of the system. Furthermore, the transition from yellow to green radiation is more abrupt. This

is a qualitative visual indication that a Bose-Einstein condensate of photons has formed.

More quantitative evidence for the onset of condensation of photons is depicted in Fig. 2.5. The

spectral photon distribution as a function of the wavelength of the light is displayed for increasing in-

tracavity powers in Fig. 2.5a. The light power in the cavity is determined by measuring the transmitted

power through the mirrors. With a separately measured transmission coefficient for the mirror, one

change in temperature can be caused by overpumping with the external laser.
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(b) Spatial photon distributions

Figure 2.5: Experimental signatures of the onset of condensation of photons. Fig. (a) depicts the spectral photon

distribution in arbitrary units as a function of the wavelength of the light for increasing intracavity power. The optical

powers are normalized to the experimentally determined critical power Pc = (1.55 ± 0.60) W. Above the critical power

the signal becomes highly peaked around a wavelength associated with the transverse ground-state energy. Fig. (b) shows

the spatial photon distribution in arbitrary units along an axis intersecting the trap center as a function of the distance

from that center. The lowest curve corresponds to a condensate fraction of 0% and the highest to a fraction of about

25%. Note that the curves are shifted upwards by hand for clarity. The images are revised versions from images in Refs.

[9, 18].

can then calculate the power inside the cavity. For low intracavity powers we observe a Boltzmann

distribution for the spectral distribution. As the intracavity power is increased, the maximum of the

distribution shifts to higher wavelengths. Above a certain critical pumping power, a narrow peak in

the spectral distribution appears around the cutoff wavelength. Upon increasing the power even fur-

ther, the peak increases in height. This behavior is again a signature for the onset of Bose-Einstein

condensation of the photons. Additionally, the critical pumping power is experimentally determined

to be Pc = (1.55± 0.60) W. With this, one can estimate the critical photon number in the cavity by

considering the power per photon. This yields Nc = (6.3± 2.4) · 104 [9], which is consistent with the

critical particle number we estimated by using Eq. (2.7). Interestingly, the critical particle number was

experimentally determined to be roughly the same for a dye solution of Rhodamine 6G in methanol

and a solution of perylene-diimide in aceton. This is to be expected, as Eq. (2.7) is only a function of

the trapping frequency ω and independent of the properties of the dye.

Furthermore, we show spatial photon distributions in Fig. 2.5b. These were obtained by recording

images like those in Fig. 2.4 for different intracavity powers. Note that the curves in the figure are

shifted upwards for visual clarity. We see that the intensity of the transmitted light at the center of the

spot on the CCD camera increases drastically upon increasing the pumping power, again indicating

the phase transition to a condensate of photons.
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Figure 2.6: Plot of the condensate diameter in µm against the condensate fraction in percentages. The red line

depicts the result expected when the photons do not interact. The included experimental data points in the figure are

fitted to a numerical solution of a Gross-Pitaevskii equation with a nonzero photon-photon interaction strength g. The

figure is a revised version of an image in Ref. [9].

Finally, we observe in Fig. 2.5b that the width of the condensate increases for the increasing con-

densate fractions corresponding to higher intracavity powers. This is evidence for the existence of

repulsive interactions between the photons in the microcavity. As this will be crucial for our theoretical

treatment of number fluctuations in the photon condensate in the next chapter, we discuss this in

more detail in the next section.

2.6 Interaction Effects

Klaers et al. systematically measured the diameter of the photonic condensate as a function of its con-

densate fraction, as is shown in Fig. 2.6. In these measurements, the condensate diameter is defined

as the full width at half maximum of the condensate density. We see that if the condensate fraction,

and thus the number of photons in the condensate, is increased, also the diameter of the condensate

increases. There is an intuitive explanation for this in terms of interactions between the photons in

the condensate.

If there were no interaction between the photons, we would simply expect the condensate diame-

ter to be constant as a function of the condensate fraction. Namely, in the case of a harmonically

trapped gas of ideal bosons, the exact condensate density is a Gaussian [24]. The characteristic decay

length for this Gaussian is the harmonic oscillator length qho =
√

~/mω. The corresponding conden-

sate diameter is twice this value and indicated by a red line in Fig. 2.6. Note that for small condensate

fractions the diameter should approach this value (as it does in the figure), because highly dilute gases

can be treated as noninteracting. On the other hand, we can consider the case of repulsive interactions

between the photons. Say we add particles to the condensate. Due to the repulsive interactions, the
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particles will increase their separation to lower the total interaction energy. This implies that the con-

densate grows in size when the condensate fraction increases. This is exactly the behavior we deduce

from the experimental results in Fig. 2.6.

These considerations motivated Klaers et al. to fit the results to a numerical solution of the Gross-

Pitaevskii equation [9]. This famous equation is well known and accurately describes the dynamics

of a Bose-Einstein condensate at sufficiently low temperatures. In the case of a harmonic trapping

potential with frequency ω its time-independent variant reads(
−~2∇2

2m
+

1

2
mω2|x|2 − µ+ g|φ0(x)|2

)
φ0(x) = 0, (2.9)

where φ0(x) is the macroscopic wave function of the condensate, µ is the chemical potential of

the system and the last term represents a contact interaction between the photons with a strength

g. Solving this differential equation for φ0(x) for a fixed value of g and subsequently calculating the

corresponding diameter of the condensate, the dashed curve in Fig. 2.6 was obtained. We observe good

agreement, indicating that interactions between the photons are crucial in order to explain experimental

results. Finally, note that the fact that these experimental results can be modelled accurately with the

Gross-Pitaevskii equation is another proof that the photons have indeed formed a condensate.

2.7 Conclusion

In this chapter we have explained recent experimental endeavors to create a Bose-Einstein condensate

of light. The main experimental difficulty was to find a number-conserving thermalization process,

i.e., a way to tune the number of photons in the system and the temperature of the photon gas

independently. We explained that this is possible by confining photons in a dye-filled microcavity. The

photons in the cavity behave like particles with an effective mass in a harmonic trapping potential, such

that they are quasiparticles. The most promising aspect of the experimental setup is that measurements

can be performed without destroying the condensate: one simply measures the photons leaking from

the cavity mirrors and performs analysis on this signal.



Chapter 3
Number Fluctuations in a Condensate of

Light

In this chapter we investigate number fluctuations in Bose-Einstein condensates. We variationally

obtain an equilibrium probability distribution for the number of particles in a condensate by intro-

ducing an effective contact interaction into the grand-canonical Hamiltonian of a generic Bose gas.

Subsequently, we proceed by investigating these distributions for different condensate fractions and

interaction strengths and compare them to experimental results on a condensate of photons. We also

calculate the zero-time delay autocorrelation function g(2)(0) to quantify the number fluctuations and

compare this again to the experiments on photonic condensates. In both cases we find good quantita-

tive agreement. Finally, we discuss possible microscopic mechanisms for the photon-photon interaction.

The contents of this chapter have been accepted for publication in the Physical Review Letters as

“Interaction Effects on Number Fluctuations in a Bose-Einstein Condensate of Light”, E.C.I. van der

Wurff, A.-W. de Leeuw, R.A. Duine and H.T.C. Stoof.

3.1 Introduction

Fluctuations are ubiquitous in physics: from the primordial quantum fluctuations in the early universe

that reveal themselves as fluctuations in the cosmic microwave background, to current fluctuations in

every-day conductors. For large voltages, the latter fluctuations give rise to shot noise, that is due to

the discrete nature of charge [25]. As a consequence, shot noise can be used to determine the quanta

of the electric charge of the current carriers in conducting materials [26]. Indeed, it has been used

to characterize the nature of Cooper pairs in superconductors [27] and the fractional charge of the

15
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quasiparticles of the quantum Hall effect [28]. For low voltages, the noise in the current is thermal

and is called Johnson-Nyquist noise [29, 30]. Contrary to shot noise, thermal noise is always present in

electrical circuits, even if no externally applied voltage is present, since it is due to thermal agitation

of charge carriers, that leads to fluctuating electromotive forces in the material.

Theoretically, fluctuations in equilibrium are described by the fluctuation-dissipation theorem, as for-

mulated by Nyquist in 1928 and proven decades later [31]. This theorem relates the response of a

system to an external perturbation to the fluctuations in the system in the absence of that perturba-

tion. Given a certain fluctuation spectrum we can reconstruct the response of the system. Therefore,

this theorem is very powerful, as was fervently argued by the Japanese physicist Kubo [32].

Having stressed the importance of fluctuations in physics and the information they contain, we now

zoom in on condensate-number fluctuations as our main point of interest. Traditionally, weakly in-

teracting Bose-Einstein condensates were first observed in dilute atomic vapors [3, 4, 5]. For these

systems, it is very difficult to measure number fluctuations because typically number measurements

are destructive. Therefore, theoretical work has focused more on density-density correlation functions

[33, 34]. However, with to the creation of the condensate of photons, new experimental possibilities

have opened up. For example, large number fluctuations of the order of the total particle number have

been predicted and observed in a photonic condensate [10, 20], which drew quite some attention [35].

In this chapter we investigate these number fluctuations in a two-dimensional harmonically trapped gas

of interacting bosons. We start by calculating the probability distribution for the number of particles

in the condensate in the next section.

3.2 Particle Number Probability Distribution

We consider a harmonically trapped Bose gas with a fixed number of particles. Because condensates

of quasiparticles are typically confined in one direction, we specialize to the case of two dimensions.

However, the following treatment is completely general and can easily be generalized to higher or lower

dimensions.

To investigate the number fluctuations, we need to calculate the average number of particles 〈N0〉
in the condensate. Because condensates of quasiparticles allow for a free exchange of bosons with

an external medium we treat the system in the grand-canonical ensemble: the probability distribution

P (N0) for the number of condensed particles is of the form P (N0) ∝ exp[−βΩ(N0)], with Ω(N0)

the energy functional of the gas of bosons and β := (kBT )−1 the reciprocal temperature. To find

the grand potential we use a variational wave function approach. We note that the bosons in the

condensate typically interact with each other. Indeed, the experimental results on the diameter of the

photonic condensate as a function of the condensate fraction shown in Section 2.6 indicate that the
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photons exhibit nonnegligible repulsive interactions. A reasonable first approximation for the form of

this interaction is a contact interaction, as essentially every interaction is renormalized to a contact

interaction at long length and time scales, independent of the precise origin of the interaction.

Therefore, we consider the following energy functional for the macroscopic wave function φ0(x) of

the Bose-Einstein condensate [36]

Ω[φ0(x)] =

∫
dx

[
~2

2m

∣∣∇φ0(x)
∣∣2 + V ex(x)

∣∣φ0(x)
∣∣2 − µ|φ0(x)|2 +

g

2

∣∣φ0(x)
∣∣4 ], (3.1)

with x is the two-dimensional position, the first term represents the kinetic energy of the condensate,

V ex(x) = mω2|x|2/2 is the harmonic trapping potential, µ is the chemical potential for the particles

and g is the coupling constant of the effective pointlike interaction between the particles. Note that if

we vary the energy functional with respect to the field φ∗0(x), we exactly obtain the Gross-Pitaevskii

equation Eq. (2.9) which was used to successfully model the increase of the condensate diameter as a

function of the condensate fraction in Section 2.6.

We use the Bogoliubov substitution φ0(x) =
√
N0ψq(x), with the normalized variational wave func-

tion ψq(x), such that
∫

dx|φ0(x)|2 = N0. Subsequently, we minimize the energy as a function of

the variational parameter q, which describes the width of the condensate. As an ansatz we take the

variational wave function to be the Gaussian ψq(x) = (
√
πq)−1exp

(
−|x|2/2q2

)
. Substituting this into

the energy given by Eq. (3.1) we obtain

Ωq =
~2N0

2mq2
+

1

2
mω2N0q

2 +
gN2

0

4πq2
. (3.2)

Minimizing this last expression with respect to the variational parameter, we find

qmin =
4

√
2π~2 +mN0g

2πω2m2
= qho

4

√
1 +

g̃N0

2π
, (3.3)

where we defined the dimensionless coupling constant g̃ := mg/~2 and the harmonic oscillator length

qho =
√
~/mω. Note that for a sufficiently small number of condensate particles qmin reduces to

qho. This is to be expected: for a small number of particles interactions become negligible and the

gas behaves as an ideal Bose gas in a harmonic trapping potential. It is well known that in this case

the Schrödinger equation for the wave function of the condensate can be solved exactly and yields

ψho(x) ∝ exp(−|x|2/2q2
ho) [24].

By substituting the minimal value for the variational parameter into the energy functional, we ob-

tain the probability distribution for the number of particles in the condensate

P (N0) ∝ exp

[
βN0

(
µ− ~ω

√
1 +

g̃N0

2π

)]
, (3.4)
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where the normalization is
∫∞

0 dN0P (N0) = 1. Experimentally, the relevant parameter is the con-

densate fraction x := 〈N0〉/〈N〉, with N the total number of particles. Thus, to relate our results

to the experiments we need a relation between 〈N0〉 and the average total number of particles. We

already derived the average number of particles in the excited states 〈Nex(T )〉 in Eq. (2.7). The crit-

ical temperature Tc is defined by 〈N〉 = 〈Nex(Tc)〉, i.e., all particles are in excited states, such that

the ground state becomes occupied upon lowering the temperature. With this criterion, we find the

relation 〈Nex(T )〉 = 〈N〉(T/Tc)2, which enables us to write for the average number of photons in the

condensate

〈N0〉 := 〈N〉 − 〈Nex(T )〉 =
x

3(1− x)

(
π

~βω

)2

. (3.5)

As expected, 〈N0〉 ≥ 0 since the fraction x obeys 0 ≤ x < 1. With the expressions we derived in

this section we are fully equiped to quantify number fluctuations in the condensate. However, first we

investigate the legitimacy of the Gaussian variational ansatz in the next section.

3.3 Condensate Diameter

Within the variational treatment we performed above, qmin is a measure for the radius of the conden-

sate. For a small number of particles, the wave function of the condensate approaches a Gaussian. We

may define the diameter of the condensate as the full width at half maximum of the condensate density,

which yields in this case dgauss = 2qmin

√
ln(2). However, for a large number of condensate particles

interactions between the particles become more important. The limiting case in which the interactions

between the particles become much more important than the kinetic energy of the individual particles

is called the Thomas-Fermi limit [24, 36]. In this case we expect a different density profile for the

condensate. In fact, we can solve for this density profile by neglecting the kinetic term in Eq. (3.1)

and minimizing with respect to the field φ∗0(x). This yields for the condensate density

|φ0(x)|2 =

(
µ−mω2|x|2/2

g

)
θ(µ−mω2|x|2/2), (3.6)

where the Heaviside function θ is introduced to make sure that the condensate density remains positive

for all x. We use this expression to find the relation between the number of particles in the condensate

N0 and the Thomas-Fermi radius of the photon condensate in two dimensions

N0 = 2π

∫ RTF

0
r

(
µ−mω2r2/2

g

)
dr =

π

4
mω2R4

TF, (3.7)

such that RTF = (4gN0/πmω
2)1/4. Again we define the diameter of the condensate to be the full

width at half maximum of the condensate density, which yields in this case dTF =
√

2RTF.
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Figure 3.1: Plot of the diameter of the condensate in µm on a logarithmic scale of the condensate percentage. The

included data points were kindly provided by J. Klaers and the inset is from Ref. [9]. The Gaussian diameter (blue) yields

better results for smaller condensate fractions, whereas the Thomas-Fermi diameter (red) is better for larger condensate

fractions. However, the qualitative behavior is similar. The inset shows the numerical solution of the Gross-Pitaevskii

equation discussed in 2.6, which shows similar behavior.

We compare both expressions for the condensate diameter in Fig. 3.1, in which we included exper-

imental data points for a condensate of photons, which were already discussed in Section 2.6. As

expected, we observe that the Gaussian diameter works best for small condensate fractions and the

Thomas-Fermi diameter for higher condensate fractions. However, the qualitative behavior of both

approaches is the same for large condensate fractions. This is also known from condensates of dilute

atomic gases [37]. This observation justifies the further use of the results we obtained within the

Gaussian approximation in the previous section.

In the next section we briefly discuss how Schmitt et al. performed measurements on number fluctua-

tions in a condensate of photons [10].

3.4 Measuring Number Fluctuations

The experimental setup used to detect the intensity correlations of condensed photons is displayed in

Fig. 3.2. The first part of the setup is again the dye-filled optical microcavity pumped by an external

laser beam as described in Chapter 1. What is new is that the light which leaks through the mirrors

is guided through a mode filter. By selecting the photons on having zero transverse momentum,

this apparatus makes sure that only condensed photons proceed to the next stage of the experiment.

Subsequently, one can perform a Hanbury-Brown-Twiss experiment with the mode-filtered photons. In

this experiment, the photon beam is split up into two beams by a beamsplitter. These two beams fall
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Figure 3.2: Experimental setup used to measure intensity correlations of condensed photons. Photons leaking through

the mirrors of the microcavity are selected on having zero transverse momentum and then led through a Hanbury-Brown-

Twiss experiment. The avalanche photodiodes (APD) have single photon sensitivity. Image taken from Ref. [10].

onto photo-diodes with a single-photon sensitivity and then an electronic correlator is used to make

time histograms of the detection of single photons [10]. Using this setup, time correlations of the

condensate population are determined in the form of the second-order correlation function, which is

defined as

g(2)(t1, t2) :=
〈N0(t1)N0(t2)〉
〈N0(t1)〉〈N0(t2)〉 , (3.8)

where 〈N0(t)〉 is the average number of photons in the condensate at time t. In fact, measurements

indicate that the avarage number of photons in the condensate is independent of time. Additionally,

one deduces from typical experimental results that the second-order correlations are only a function

of the time delay τ in the arrival of two beams of photons on the detectors τ := t2 − t1 [10]. It is

therefore more interesting to consider the time-average second-order correlation function

g(2)(τ) := 〈g(2)(t1, t2)〉t2−t1=τ =
〈N0(0)N0(τ)〉
〈N0(0)〉〈N0(τ)〉 , (3.9)

which can readily be measured in experiments. Photon bunching, i.e., g(2)(τ) > 1 is observed for

small time delays in these experiments, as is expected when one performs a Hanbury-Brown-Twiss

experiment with bosons. In fact, it is the zero-time delay autocorrelation function, given by

g(2)(0) := lim
τ→0

g(2)(τ) =
〈N2

0 〉
〈N0〉2

(3.10)

which is most often used to quantify number fluctuations. Indeed, one can express the standard devia-

tion of the number of photons in the condensate 〈δN0〉 in terms of the zero-time delay autocorrelation

function: 〈δN0〉 = (g(2)(0) − 1)1/2〈N0〉. Hence, if we know g(2)(0), we know how the number of

particles in the condensate fluctuates. In general, g(2)(0) = 2 for a single-mode thermal state and

g(2)(0) = 1 for a coherent state [21].
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Figure 3.3: Typical plots of the probability distribution for the photons in the condensate for a fixed interaction

strength and different condensate fractions xred = 0.04, xorange = 0.28, xyellow = 0.40, xgreen = 0.45 and xblue = 0.58. We

used a temperature of T = 300 K and a typical experimental value for the trapping frequency: ω = 8π · 1010 Hz.

In the next section we self-consistently solve for the probability distribution for the number of photons

in the condensate. With the probability distribution, we are able to calculate the zero-time delay

autocorrelation function and compare it to the experimental results.

3.5 Comparison with Experiment

With the theory presented in Section 3.2 we are able to find the probability distribution in a self-

consistent manner. The procedure is as follows. Given an interaction strength g̃, we use the normal-

ized probability distribution in Eq. (3.4) to calculate the chemical potential as a function of 〈N0〉, i.e.,

µ = µ(〈N0〉). Given a condensate fraction x, we then use Eq. (3.5) to calculate 〈N0〉 and the corre-

sponding µ. Finally, we use the obtained chemical potential to plot the probability distribution at fixed

x and g̃. Typical plots of the probability distribution for different condensate fractions are displayed

in Fig. 3.3. Clearly, we have exponential behavior due to a Poissonian process for small condensate

fractions and Gaussian behavior for larger condensate fractions. Physically, this shows that the effect

of repulsive interactions is to reduce number fluctuations, as the interactions give fluctuations an en-

ergy penalty. Increasing the interaction strength yields Gaussian behavior for even smaller condensate

fractions. These Gaussians are also more strongly peaked around 〈N0〉 for higher interaction strengths,

which is expected since stronger interactions between the bosons leads to the supression of fluctuations.

We can compare our theoretical curves from Fig. 3.3 for the probability distribution directly to ex-

perimental results obtained by Schmitt et al. These results are obtained with a similar setup to the

one in Fig. 3.2. If one simply lets the mode-filtered photon beam fall onto a photomultiplier tube (in-

stead of performing a Hanbury-Brown-Twiss experiment), the time evolution of the number of photons

in the condensate can be measured. Typical measurements are displayed in Fig. 3.4a. The probability
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(a) Temporal occupation condensate mode (b) Probability distribution condensate photon number

Figure 3.4: Fig. (a) shows the number of photons in the condensate mode as a function of time, normalized to the

time-averaged number of photons in the condensate. The different curves correspond to different condensate fractions,

ranging from 1% (orange) to 58% (dark blue). From this data, the probability distribution for the number of photons in

the condensate can be calculated, as is displayed in Fig. (b) for the different condensate fractions. Images taken from

Ref. [10].

distribution for the number of photons in the condensate P (N0) can be determined from these exper-

iments. It is displayed for different condensate fractions in Fig. 3.4b. These experimental curves for

the probability distribution should be compared to our theoretical curves in Fig. 3.3. We observe good

agreement. In fact, we can exactly reproduce the experimental results for every condensate fraction

by simply using the dimensionless interaction strength g̃ as a fitting parameter.

Next, we obtain the second moment 〈N2
0 〉 from the probability distribution P (N0) in the same self-

consistent manner. This gives us all the information needed to quantify the number fluctuations of the

condensate in terms of the zero-time delay autocorrelation function g(2)(0). A plot of g(2)(0) against

the condensate fraction is displayed in Fig. 3.5 for different interaction strengths g̃. Theoretically, we

know that for thermal photons g(2)(0) = 2 [21], which is exactly what we observe in our plots for the

corresponding case x = 0. If all photons in the cavity are part of the condensate, i.e., for a condensate

fraction of unity, we have the coherent state result g(2)(0) = 1. The interpretation of the behavior

in between these limits is as follows. Suppose we fix the condensate fraction x. At small interactions

the quartic term in the energy in Eq. (3.1) is small and the minima of the energy are small and broad,

yielding large number fluctuations. If we increase the interaction, the minima become deeper and

more narrow, effectively reducing the fluctuations. The same reasoning holds for a fixed interaction

strength and increasing condensate fractions.

In Fig. 3.5 we also plotted the experimental data points of Ref. [18]. Note that experimentalists stress

that the experimental data points for small condensate fractions are unreliable due to systematic mea-

surement errors. Roughly what happens is that the condensate spot, as displayed in Fig. 2.4b, becomes
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Figure 3.5: Plot of the zero-time delay autocorrelation function g(2)(0) against the condensate fraction x for ω =

8π · 1010 Hz and T = 300 K. The different curves correspond to different interaction strengths: g̃red = 5 · 10−7,

g̃orange = 2 · 10−6, g̃green = 5 · 10−6, g̃blue = 3 · 10−5, g̃purple = 2 · 10−4. All curves are compared to the included

experimental points from Schmitt et al. [18]. The experimental results for small condensate fraction x are unreliable due

to systematic measurement errors. Indeed, theoretically we have limx→0 g
(2)(0) = 2.

smaller for decreasing condensate fractions. This makes it more difficult to filter out the noncondensed

photons from the condensed photons.

We are able to reproduce all data sets in Fig. 3.5 by tuning the interaction parameter g̃. Unfortu-

nately, only one experimental value for g̃ is known. By measuring the size of the condensate for

different condensate fractions, it was experimentally found that g̃ = (7 ± 3) · 10−4 [9], which only

differs a factor of two with our result for the purple curve gpurple = 2 ·10−4. However, we note that the

trapping potential, concentration of dye molecules and effective photon mass were somewhat different

for the purple data points and the measurement of the interaction strength. We expect the interaction

strength to vary smoothly with variations in the experimental parameters. Hence, the agreement is re-

markable and points to the important role of interactions on number fluctuations in these experiments.

Furthermore, we note that the data points in Fig. 3.5 were obtained for different dye molecule densities

nmol and detunings δ := ~(ωcutoff−ω0), which is the difference between the low-frequency cavity cut-

off and the dye specific zero-phonon line frequency, which we introduced in Fig. 2.3. The used values

for δ and nmol for the curves in Fig. 3.5 are included in Fig. 3.6. Within our theory, the dependence

of number fluctuations on these parameters can be incorporated via their influence on the interac-

tions. Therefore, it would be useful to perform systematic measurements of g̃ for different detunings

and molecule concentrations, as is also proposed in Ref. [38]. With this information, we would be able

to directly compare all experimental results with our theoretical predictions for the number fluctuations.
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Figure 3.6: Fits to the experimental results for g(2)(0) based on a different model as explained in Ref. [20]. The

fitting parameter ε̄ := Meff/M quantifies the “effective reservoir size” of the heat bath of molecules, Meff, to its real

value M . The figure is a revised version of an image in Ref. [10].

Before we continue with discussing possible interaction mechanisms for the photon-photon interaction,

we first discuss a different explanation for the experimental results displayed in Fig. 3.5.

3.6 A Different Explanation?

In Ref. [20] Klaers et al. consider a different model to explain the experimental results of Fig. 3.5. In

this alternative model no photon-photon interaction is assumed. Still, the authors are able to obtain

similar results to ours for g(2)(0), by using a single fitting parameter. These fits are displayed in

Fig. 3.6. On the other hand, the theory we presented in this chapter is entirely based on photon-

photon interactions, suggesting that one of the theories might be less appropriate for the system at

hand. Therefore, we briefly discuss this alternative theory and try to indicate where it deviates from

our own theory.

Klaers et al. consider a master equation for the probability pn(t) to find n photons in the condensate.

The molecules are modeled as two-level systems and the system has a corresponding absorption coef-

ficient A and a rate E of spontaneous and stimulated emission. Additionally, the sum of the number

of photons in the lowest cavity mode and the number of excited molecules, defined as X, is assumed
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to be constant. The authors argue that the master equation is given by

ṗn = En(X − n+ 1)pn−1 − E(n+ 1)(X − n)pn

+A(n+ 1)(M −X + n+ 1)pn+1 −An(M −X + n)pn, (3.11)

where M is the total number of molecules, X−n is the number of electronically excited molecules and

M −X+n is the number of ground-state molecules. Note that by writing down this master equation,

the molecules are considered to be in a single mode, i.e., without any center-of-mass translational

degrees of freedom. As there are many momentum modes available to the dye molecules at room

temperature, this might not be an appropriate statistical description.

By assuming that the probability pn(t) becomes stationary for large times, one finds a solution to

the master equation Eq. (3.11) by recursive substitution

pn(t→∞)

p0
=

(M −X)!X!

(M −X + n)!(X − n)!
exp (−nβδ) , (3.12)

where δ := ~(ωcutoff − ω0) is the dye-cavity detuning we introduced earlier. Note that if one uses

this probability distribution to calculate the average number of photons in the condensate 〈n〉, one

does not find a Bose-Einstein distribution. In Appendix A.1 we treat the system grand-canonically and

write down a master equation similar to Eq. (3.11). We show that in this treatment, we do obtain a

Bose-Einstein distribution for the average number of photons in the condensate.

Furthermore, by using the probability distribution Eq. (3.11), the authors do a similar calculation

to ours and obtain the curves in Fig. 3.6. The fitting parameter ε̄ is used to quantify the, what the

authors call, “effective reservoir size” Meff, by ε̄ = Meff/M . Notice that this effective reservoir size

Meff is varied up to two thousand times its ‘real value’ M to reproduce the experimental results. Addi-

tionally, the experimental data is interpreted by the authors as signaling a transition from the canonical

to the grand-canonical regime. However, the absolute value of the effective molecular heat bath varies

from 109 to 1010 dye molecules, which usually is sufficiently large for there to be no difference in the

choice of ensemble. We believe this behavior is a result of the assumption that the molecules do not

have center-of-mass translational degrees of freedom.

Summarizing, we have tried to indicate where the alternative model by Klaers et al. deviates from

our own model, which is based on the assumption of a photon-photon interaction. In the next sec-

tions, we focus on the possible microscopic origin of this interaction.

3.7 Possible Photon-Photon Interactions

The question remains what microscopic mechanism causes a photon-photon interaction that depends

on both nmol and the detuning δ. In fact, we conclude from the experimental data in Ref. [18] that
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the interaction behaves counter-intuitively: it decreases both for an increasing molecule density and

for a decreasing detuning. Three different mechanisms are expected to play a role1 [38]:

1) Thermal lensing;

2) Kerr nonlinearities;

3) Dye-mediated photon-photon scattering.

The first mechanism is due to a temperature-dependence of the index of refraction. We set up a

model for this in the following subsection and use it to estimate the resulting dimensionless interaction

strength. The other two mechanisms are due to nonlinearities, i.e., the index of refraction is intensity

dependent due to the properties of the solvent molecules (the Kerr effect), or due to photon-photon

scattering mediated by the dye molecules. The former effect has been investigated in Refs. [38, 39]

and turns out to be negligible. We therefore consider the latter effect in subsection 3.7.2 in the form

of a box diagram and use it to calculate the dimensionless interaction strength resulting from this

effect.

3.7.1 Thermal Lensing

Thermal lensing is the phenomenon that the index of refraction n depends on the temperature of the

medium. In the experiment of interest to us, nonradiative decay of the dye molecules, local fluctuations

in the photon number and the external pumping with a laser lead to temperature fluctuations around

the average temperature T0. For a homogeneous temperature distribution this implies, to lowest order,

that n(T ) = n(T0)+ ε(T −T0). As the photon energy Eq. (2.3) depends on the index of refraction via

the speed of light in the medium, these temperature fluctuations couple to the photons, as we show

explicitly below.

We model this mechanism by assuming that the temperature fluctuations behave diffusively. Thus,

we consider the following action in imaginary time for the complex-valued photon field φ(r, τ) and the

real-valued temperature fluctuation field δT (r, τ)

S[φ, φ∗, δT ] =

∫
dr

∫
dτ

[
φ∗(r, τ)

(
~
∂

∂τ
− ~2∇2

x

2m
− mc2

n2
+

1

2
mω2|x|2 − µ

)
φ(r, τ)

+
δT (r, τ)

2T0

(
cp +

κ∇2
r

i∂τ

)
δT (r, τ)

]
, (3.13)

where r = (x, y, z) is a three-dimensional vector, x = (x, y) the two-dimensional transverse vec-

tor, ∇2
x denotes that we only consider motion in the transversal direction, cp is the heat capacity of

1Private correspondence with J. Klaers and M. Weitz.
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the solution and κ the thermal conductivity of the solution. The part which is quadratic in the tem-

perature fluctuations is constructed such that it has the correct diffusive pole and diffusion propagator.

To include thermal lensing, we now write for the index of refraction n(T ) = n(T0) + εδT (r, τ), whilst

keeping kz fixed. Substituting this into the action and expanding for small temperature fluctuations,

we obtain

S[φ, φ∗, δT ] =

∫
dr

∫
dτ

[
φ∗(r, τ)

(
~
∂

∂τ
− ~2∇2

x

2m
+

1

2
mω2|x|2 − µ+

mc2ε

n2(T0)
δT (r, τ)

)
φ(r, τ)

+
δT (r, τ)

2T0

(
cp +

κ∇2
r

i∂τ

)
δT (r, τ)

]
, (3.14)

where we removed a constant offset in the energy by redefining the chemical potential µ with respect

to this ground-state energy. Furthermore we note that the field φ(r, τ) has an equation of motion in

the longitudinal direction which decouples, such that we may write φ(r, τ) = φlong(z)φtrans(x, τ), with

φlong(z) the photon field in the longitudinal direction and φtrans(x, τ) the photon field in the transverse

direction. Similar to our derivation of the effective photon dispersion relation Eq. (2.3) in Chapter 2,

we assume metallic boundary conditions and demand that the longitudinal part of the photon field is

a standing wave. We obtain the normalized longitudinal solution

φlong(z) =

√
2

D0
sin

(
qπz

D0

)
, (3.15)

with D0 distance between the centers of the cavity mirrors and q ∈ N>0. Subsituting this longitudinal

solution into the action Eq. (3.14) and using the fact that it is normalized, we find

S[φ,φ∗, δT ] =

∫
dx

∫
dτ φ∗trans(x, τ)

(
~
∂

∂τ
− ~2∇2

x

2m
+

1

2
mω2|x|2 − µ

)
φtrans(x, τ)

+

∫
dr

∫
dτ

[
δT (r, τ)

2T0

(
cp +

κ∇2
r

i∂τ

)
δT (r, τ) +

mc2ε

n2(T0)
δT (r, τ)φ∗(r, τ)φ(r, τ)

]
. (3.16)

Note that the last term in the expression above represents a coupling between the photons and the

temperature fluctuations in the form of an interaction vertex. Now we would like to find an effective

action for the photon field by integrating out these temperature fluctuations. By going to Fourier

space we show in Appendix A.2 that the effective action reads

Seff[a, a∗] =
∑
k,n

a∗k,n(−~G−1
γ (k, iωn))ak,n

− 1

~2βV

(
mc2ε

2n2(T0)

)2 ∑
k,p,k′

n,m,n′

GT (p, ωm)a∗k+p,n+mak,na
∗
k′,n′ak′+p,n′+m, (3.17)
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Figure 3.7: Feynman diagram for the photon-photon interaction due to exchange of temperature fluctuations δT

(zigzag propagator). The photons γ are indicated by a wiggly propagator.

where we omitted an uninteresting term and we defined the inverse photon propagator

−~G−1
γ (k, iωn) := −i~ωn + εγ(k) − µ. The last term in the effective action gives us the effective

photon-photon interaction due to the coupling of the photons to the temperature fluctuations. It is

graphically depicted as a Feynman diagram in Fig. 3.7. We read off the associated photon-photon

four-point vertex

Γ
(4)
3D(p, ωm) = −2

~
GT (p, ωm)

(
mc2ε

2n2(T0)

)2

. (3.18)

Note that we extracted a factor of (2~βV )−1, as is the convention for a four-point vertex in the

imaginary time formalism [36]. By dimensional analysis, we note that [Γ
(4)
3D ] = J·m3. Hence, as the

photon gas is confined to two dimensions we must scale this quantity to

Γ
(4)
2D(p, ωm) =

(∫ D0

0
|φlong(z)|4 dz

)
Γ

(4)
3D(p, ωm) =

2Γ
(4)
3D(p, ωm)

3D0
, (3.19)

where we used the solution for the longitudinal photon field Eq. (3.15). Note that the integral does

not depend on the value for q. Now we do have [Γ
(4)
2D ] = J·m2. With this expression for the four-point

vertex, we calculate the effective dimensionless coupling constant g̃ of the photons in the condensate

due to thermal lensing. Taking the photons in the condensate, i.e., with Matsubara frequency zero

and only a nonzero momentum of kz in the z-direction, we obtain2

g̃ =
mΓ

(4)
2D(0, 0)

~2
=

m3c4ε2T0

3D0~2n4(T0)cp
. (3.20)

Note that this expression has neither an explicit dependence on the detuning δ, nor on the concentration

of dye molecules nmol, as it is fully determined by the properties of the solvent. Both the temperature

dependence of the single-photon energy and the heat capacity might depend on the number of dissolved

2Note that as all condensate photons have momentum k+ = (0, 0, kz), conservation of momentum in the Feynman

diagram Fig. 3.7 implies that the three-dimensional temperature momentum must be identical to zero, i.e., p = 0.
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dye molecules, but as the experiments by Schmitt et al. are performed for small concentrations of

dissolved Rhodamine 6G, we expect at least this latter effect to be small. Typical numerical values for

the constants in Eq. (3.20) for liquid methanol with 10−3 mol·L−1 Rhodamine 6G dissolved at room

temperature are

• n = 1.34;

• ε = −5 · 10−4 K−1 [40];

• cp = c̃p/Vm with c̃p = 79.5 J·mol−1·K−1 and Vm = 40.0 · 10−6 m3·mol−1 [41].

Furthermore we use the typical values m = 6.7 · 10−36 kg, D0 = 1.46 · 10−6 m [9], yielding an es-

timate for the interaction strength of g̃ ∼ 10−9. This is several orders of magnitude below the only

experimental result g̃ ∼ 10−4. Together with the fact that Eq. (3.20) does not have the correct behav-

ior as a function of δ and nmol, this suggests that thermal lensing is not the dominant interaction effect.

Thus, we need to consider another microscopic mechanism for the photon-photon interaction. One

possible candidate is a nonlinearity due to the Kerr effect [38]. This effect is of an optoelectrical nature

and is caused by a change of the refractive index in a medium due to an applied electric field. In the

experiment at hand, the electric field is provided by the photons in the cavity. However, this effect

does not seem to depend on the dye molecules explicitly. Furthermore it was estimated in Ref. [38] to

be too small.

As described before, photon-photon scattering mediated by dye molecules is another possible can-

didate. Intuitively we expect that this mechanisms at least depends on the concentration of dye

molecules. We estimate its size in the next subsection.

3.7.2 Dye-Mediated Photon-Photon Scattering

We now neglect the temperature depence of the index of refraction and focus on dye-mediated photon-

photon scattering. Additionally, we neglect the harmonic trapping potential for the photons, since this

is not important for the coupling between the photons and the molecules. We therefore consider the

following Euclidean action which includes the interactions between the photons and the molecules

[42]

S =
∑
k,n

a∗k,n(−i~ωn + εγ(k)− µ)ak,n +
∑
p,ρ,n

b∗p,ρ,n(−i~ωn + ε(p)− µρ +Kρ)bp,ρ,n

+
gmol√
~βV

∑
k,p,n,n′

(
ak,nbp,↓,n′b

∗
p+k,↑,n+n′ + a∗k,nbp+k,↑,n+n′b

∗
p,↓,n′

)
, (3.21)

with ρ ∈ {↑, ↓}, V is the three-dimensional volume of the system, gmol is the coupling constant be-

tween the photons and the molecules, ε(p) = ~2|p|2/2M is the dispersion relation for the molecules
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with mass M and εγ(k) = ~c
√
k2
x + k2

y + k2
z the dispersion relation for the photons3 , in which kz

is the fixed longitudinal momentum and c the speed of light in the medium. We use the convention

that a sum over p is three-dimensional, whereas a sum over k is a two-dimensional sum over a three-

dimensional vector with a fixed z-component. Furthermore, we introduced the photon field amplitude

ak,n and molecule field amplitude bp,ρ,n. The photon fields are bosonic and we model the molecules

as fermions, although this is not important since in the end we always consider the classical limit for

the dye molecules. Additionally, we model the molecules as a two-level system consisting of an excited

state (↑) and ground state (↓), with corresponding chemical potentials µ↑ and µ↓, and associated

energies K↑ = ∆ and K↓ = 0. Finally, the last two terms describe the absorption and emission of a

photon by a dye molecule.

From the action Eq. (3.21) we read off the propagators of the noninteracting theory in Fourier space


Gγ(k, iωn) =

−~
−i~ωn + εγ(k)− µ,

Gρ(p, iωn) =
−~

−i~ωn + ε(p)− µρ +Kρ
,

(3.22)

with ωn denote the appropriate Matsubara frequencies. In Appendix A.3 we derive an effective action

for the photons by integrating out the molecular fields in Eq. (3.21). It reads

Seff[a∗, a] =
∑
k,n

a∗k,n

(
− i~ωn + εγ(k)− µ+ ~Σ(k, iωn)

)
ak,n

+
1

2~βV
∑

k,k′,k′′

n,n′,n′′

Γ(4)(k,k′,k′′, iωn, iωn′ , iωn′′)a
∗
k,nak′,n′a

∗
k′′,n′′ak−k′+k′′,n−n′+n′′ , (3.23)

where we defined the self-energy as

~Σ(k, iωn) :=
g2

mol

~2βV

∑
p,m

G↓(p, iωm)G↑(p + k, i(ωn + ωm)), (3.24)

and the photon-photon interaction vertex is defined as

Γ(4)(k,k′,k′′, iωn, iωn′ , iωn′′) :=

− g4
mol

~4βV

∑
p,m

G↑(p + k, i(ωm + ωn))G↓(p, iωm)G↑(p + k′, i(ωm + ωn′))

×G↓(p + k′ − k′′, i(ωm + ωn′ − ωn′′)). (3.25)

Graphically, the photon self-energy and the photon-photon interaction vertex are depicted in Fig. 3.8.

To make an estimate of the interaction strength resulting from the photon-photon interaction vertex

3Contrary to Chapter 2 we now use a subscript γ to distinguish between the dispersion relation of the photons and

that of the molecules.
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(a) Photon self-energy diagram, Eq. (3.24)
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(b) Photon-photon scattering diagram, Eq. (3.25)

Figure 3.8: Feynman diagrams for the photon self-energy and photon-photon interaction vertex. Wiggly lines indicate

photon propagators. In both diagrams the molecule (straight line propagator) forms a closed loop of ground (↓) and

excited (↑) states. Matsubara frequencies ωm are denoted as m.

Eq. (3.25), we need numerical values for the coupling constant gmol and for the energy difference ∆

between the ground state and excited state of the dye molecules. It turns out that the interaction

vertex actually diverges. This can be resolved by a rather intuitive solution: we assign a finite lifetime

to the excited states of the molecules, quantified by the decay rate Γ. Similar to the procedure followed

in Ref. [42] we use Fermi’s golden rule to calculate the absorption spectrum of the dye as a function

of the frequency ω. Subsequently, we can fit this to the experimental absorption spectrum of the dye

and obtain the necessary constants.

By modelling the dye molecules as classical particles, i.e., obeying a Maxwell-Boltzmann distribution,

we show in Appendix A.4 that the absorption cross section at equilibrium is given by

σabs(ω) =

√
2πg2

mol

~2Γc
exp

(
−(~ω −∆)2

2~2Γ2

)
. (3.26)

We compare this expression quantitatively to the experimental data for the fluorescent dye [43, 44].

The absorption spectrum for the dye is asymmetric and impossible to fully reproduce within this simple

treatment. However, we can perform a fit to the line shape and obtain typical values such as

• gmol = 4 · 10−33 J·m3/2;

• Γ = 1.15 · 1014 Hz;

• ∆ = 3.8 · 10−19 J.

The found value for ∆ is very close to the value found in Ref. [42], where the dye molecules were also

modeled as a two-level system, but without a finite lifetime for the excited state. However, the value

for Γ seems to be rather large. In Section 2.3 we noted that the lifetime of the excited states in the

dye molecules is of the order of nanoseconds. An estimate of the lifetime τ we have obtained now
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Figure 3.9: Dimensionless interaction parameter g̃ as a function of the chemical potential βµ. We used T = 300

K, β~Γ = 2.9, D0 = 1.46 µm, gmol = 4.1 · 10−33 J·m3/2 (chosen such that we reproduce the photon self-energy) and

m = 6.7 · 10−36 kg. The blue curve is for nmol = 9 · 1023 m−3 and βδ = 4.9. The green curve has twice the molecule

density and the red curve has unchanged nmol but βδred = 2.9. As an illustration, the black curve has slope 10−8 and the

dashed black curve 0.5 · 10−8. The intersection of the black and blue curve yields the correct µ for the parameters of the

blue curve. Doubling nmol we can either find the intersection of the green curve and the black line, or the intersection of

the blue curve with the dashed curve, which has half the slope. In the latter case we explicitly see g̃ decreasing.

is simply τ ∼ 1/Γ, which is significantly smaller than nanoseconds. This indicates that the two-level

approximation might not be very good. Still, for now we continue with these results.

Subsequently, we evaluate the photon-photon interaction vertex Eq. (3.25) in Appendix A.5 for pho-

tons in the condensate, i.e., with Matsubara frequency zero and momentum k+ = (0, 0, kz). The

resulting dimensionless interaction parameter is given by

g̃(µ) =
mg4

molβnmol

~4Γ2D0
f(βµ− βδ), (3.27)

with f(βµ−βδ) is a smooth dimensionless function peaked around zero, which cannot be determined

analytically. Although we have now found this expression for g̃, we still have to solve for g̃(µ) self-

consistently with the Gross-Pitaevskii equation Eq. (2.9). Considering the center of the trap, i.e.,

V ex = 0, this amounts to solving

g̃(µ) =
mµ

~2nph
(3.28)

for µ, with nph the photon density. Graphically, this means that we need to find the intersection of g̃(µ)

and (m/~2nph)µ. After finding the intersection value µint, this should be reinserted into Eq. (3.27)

to yield the self-consistent dimensionless interaction strength g̃(µint). Typical value for the densities

are

• nph ' 1012 m−2 [42];
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• nmol ' 9 · 1023 m−3 [42],

yielding for the dimensionless interaction strength an estimate of g̃ ∼ 10−8− 10−7. This is still rather

small compared to the experimental value of g̃ ∼ 10−4. However, the magnitude of g̃ is rather uncer-

tain due to the simplification of the rovibrational energy spectrum of the dye molecules to a two-level

system. A thorough treatment in which all excited states in the rovibrational manifold have a different

coupling strength to the photons might change the size of the interaction strength considerably. Inter-

estingly, this box diagram does have the correct behavior as a function of δ and nmol, as we discuss now.

If the magnitude of g̃ and the slope m/~2nph are such that the intersection occurs on the right

side of the peak in g̃, increasing the molecule density (and thus proportionally g̃) means that the

point of intersection moves to the right. This implies that the strength of the interaction decreases.

A graphical representation is given in Fig. 3.9. This is exactly the counter-intuitive behavior we are

looking for. In order to relate the interaction strength g̃ to the detuning, we note that g̃ only depends

on µ−δ. Therefore, by changing δ we shift the position of the maximum of g̃. Thus, if we alter δ such

that g̃ moves to the left, the interaction strength decreases. In conclusion, this box diagram yields a

possible mechanism for the counter-intuitive behavior of the interaction that we found by comparing

our theory for photon condensate-number fluctuations to available experiments [18].

3.8 Conclusion

In this chapter we presented a general theory to calculate number flucutations in harmonically trapped

Bose-Einstein condensates. The crucial ingredient was the introduction of a nonvanishing photon-

photon interaction strength. Comparing our results with recent experiments on a condensate of

light, we found good quantitative agreement. However, systematic measurements of the interaction

strength are necessary to understand the true nature of the interaction. In the literature thermal

lensing is expected to be the dominant interaction mechanism in the condensate of photons. However,

we performed a microscopic calculation to estimate its size and found that it is in fact too small.

As an alternative mechanism we proposed a nonlinearity in the form of dye-mediated photon-photon

scattering. This mechanism appears to have the correct behavior as a function of the concentration of

dye molecules, but was also found to be small. We argued that this might be due to the fact that we

oversimplified the difficult dye molecules to a two-level system. Finally, we note that if the interaction

is indeed a contact interaction at long wavelengths, then this would imply that the photon condensate

is also a superfluid.



Chapter 4
Phase Diffusion in a Condensate of

Light

In this chapter we study phase diffusion in a Bose-Einstein condensate of photons. After introducing

the concept of phase diffusion in the introduction, we propose an interference experiment between the

condensed photons and an external laser to measure phase diffusion in the photonic condensate. Since

phase diffusion is governed by both quantum and thermal fluctuations of the number of condensed

particles, we calculate average interference patterns for both cases seperately. We treat the quantum

fluctuations by deriving and solving a Schrödinger-type equation for the phase. For the thermal fluc-

tuations we derive a set of stochastic differential equations for the phase of the condensate and the

number of particles in the condensate. For the at present experimentally most relevant situation where

thermal fluctuations dominate, we conclude that representative results of individual measurements can

be obtained from the stochastic equations.

The contents of this chapter have been submitted for publication in the Physical Review Letters

as “Phase diffusion in a Bose-Einstein condensate of light”, A.-W. de Leeuw, E.C.I. van der Wurff,

R.A. Duine and H.T.C. Stoof.

4.1 Introduction

Phase transitions are every-day phenomena that have many high-tech applications in daily life, such as

for example the isotropic-nematic phase transition in LCD screens. Additionally, phase transitions are

often encountered in fundamental research, such as in the description of superconductivity [45] and

the electroweak and QCD phase transition in cosmology [46, 47, 48]. As a result, throughout history

34
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much effort has been put in understanding phase transitions. A crucial step was the development of

Landau theory in 1937 [49], which provided a general framework to describe symmetry-breaking phase

transitions.

Many phase transitions are associated with spontaneous symmetry breaking of a continuous sym-

metry [50, 51]. In these transitions the state of the system after the phase transition does not show

the same symmetry as the Hamiltonian. As an illustration of spontaneous symmetry breaking, we

consider the Heisenberg model for ferromagnetism [52]. In this system the Hamiltonian is invariant

under SU(2) symmetry operations, i.e., it is invariant under rotations of the spins. After undergoing the

phase transition the spins align in a particular direction and the state of the system breaks spin rotation

invariance. However, the original symmetry still has consequences as a global rotation of all spins leaves

the energy invariant. Therefore, the ordered phase is infinitely degenerate and spontaneous symmetry

breaking by itself does not provide an explanation for which particular ground state the system chooses.

We can investigate this problem by looking at the probability distribution of the quantum-mechanical

observable that acquires a nonzero expectation value upon undergoing the transition. In the context of

Bose-Einstein condensation, the Hamiltonian is invariant under global U(1) transformations associated

with the conservation of the number of atoms. Therefore, the number of condensed particles and the

phase of the condensate are conjugate variables. Heisenbergs uncertainty principle implies that for

a fixed number of condensed particles the phase of the condensate fluctuates. Thus, in finite-sized

condensates the phase is not fixed and the system is not in a state with a definite phase.1 Rather,

the phase of the condensate is characterized by a probability distribution, which can have nontrivial

dynamics of its own. It is exactly this nontrivial dynamics of the phase of the condensate which is

known as phase diffusion.

Phase diffusion was first considered by You and Lewenstein in 1996 in the context of condensates

of dilute atomic gases [53, 54]. In the years after its first introduction, considerable theoretical work

was done on phase diffusion, as can be found in Refs. [55, 56, 57, 58, 59]. Additionally, there have

also been attempts to measure phase diffusion in atomic condensates. In experiments by the groups

of Ketterle and Cornell, two independently created Bose-Einstein condensates were made to interfere,

resulting in a measurement of the phase difference between the condensates [60, 61]. To measure

phase diffusion, however the phase difference should be measured dynamically. Unfortunately, interfer-

ence experiments with atomic Bose-Einstein condenates are destructive, which means such dynamical

measurements are impossible. With a photon Bose-Einstein condensate, the situation is different. As

1To understand that a finite size of the condensate is crucial, note that the commutation relation for the conjugate

variables is [φ̂, N̂ ] = i~, with φ̂ the phase operator and N̂ the number operator. Applying the number operator to a

Fock state will give the number of particles N as an eigenvalue. Thus, in order for the phase operator to obey the

commutation relation, the variance δφ of the phase should go as δφ ∼ Nα with α < 0. In the thermodynamic limit this

vanishes.
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Camera

Pump Beam
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Figure 4.1: Proposal for an experimental setup to measure the phase diffusion of a Bose-Einstein condensate of photons

in a dye-filled microcavity. The mode filter selects the condensate mode of the light that leaks through the mirror. These

condensed photons interfer with an external laser. By measuring the intensity of the combined signal information is

obtained about the phase diffusion of the Bose-Einstein condensate of photons. Image made by Arie-Willem de Leeuw.

the photons continuously escape from the condensate and are replenished by pumping with a laser,

one can do interference experiments in a nondestructive manner. In the next section we propose such

an experiment.

4.2 Measuring Phase Diffusion

Experimentally, information on the phase of a light source can be determined from a simple interfer-

ence experiment with another light source. In the case of the photonic condensate, we should simply

collect the photons leaving the Bose-Einstein condensate and let them interfere with a reference laser

that is tuned close to the eigenfrequency of the cavity. We make sure that only photons from the

condensate participate in the interference experiment by guiding the light that comes from the cavity

through a mode filter, which lets through only the photons coming from the condensate. This is similar

to the experimental situation in Fig. 3.2. By measuring the interference signal with a fast photodiode,

the phase diffusion can be directly observed using a spectrum analyzer. A schematic picture of the

experimental setup is shown in Fig. 4.1.

The phase diffusion of the condensate is governed by both quantum and thermal fluctuations of

the number of condensed particles. Fluctuations are dubbed ‘quantum’ when they remain present

at zero temperature, whereas thermal fluctuations disappear in this limit. Both types of fluctuations

contribute to the interference pattern appearing on the screen. In the following, we discuss both

contributions separately.
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4.2.1 Quantum fluctuations

Let us first consider quantum fluctuations. Since for a finite-size condensate of photons the phase is

not well defined, we introduce a density operator ρ̂ that takes into account that the photons can be

in a superposition of different coherent states with different phases. Following Ref. [21], we write for

the intensity of the combined signal of the laser and the condensate at the detector

Ī(r, t) = Tr
[
ρ̂Ê−(r, t)Ê+(r, t)

]
, (4.1)

where the bar denotes averaging and Ê−(r, t) and Ê+(r, t) indicate the negative and positive frequency

part of the sum of the electric field of the laser and the Bose-Einstein condensate. We write

Ê+(r, t) = EL(r)âLe
i(k·r−ωt) + EC(r)âCe

i(k·r−ωt), (4.2)

with EL(r) the norm of the electric field of the laser, EC(r) the norm of the electric field of the

photon beam coming from the condensate, âL and âC the annihilation operators for the laser and

condensate, ω the frequency of the condensate and laser and finally k the corresponding wave number.

Additionally, Ê−(r, t) is given by the complex conjugate of Eq. (4.2). Note that we have assumed that

the radial distances from respectively the laser or the condensate to the detector are the same and

that the laser is frequency-locked to the condensate. These conditions simplify the following equations

significantly, but can be reintroduced easily when necessary.

For our system the relevant basis states are the coherent states |θC〉 ⊗ |θL〉, where |θL〉 is a co-

herent state of the laser with phase θL and |θC〉 a coherent state of the Bose-Einstein condensate

with a certain phase θ. Note that we consider these product states as the photons from the laser and

the Bose-Einstein condensate are reasonably assumed to be independent. Due to the properties of

coherent states, we have

âL|θC〉 ⊗ |θL〉 = ρLe
iθL |θC〉 ⊗ |θL〉

âC |θC〉 ⊗ |θL〉 = ρCe
iθ|θC〉 ⊗ |θL〉 (4.3)

where ρL and ρC represent the amplitude of the coherent states of the laser and the condensate.

We proceed by assuming that the laser is in a pure state. However, the photons coming from the

condensate are in a mixed state as the global phase of the condensate is not well defined. Therefore,

the density operator is given by [62]

ρ̂ =

∫ 2π

0
dθP (θ, t)|θC〉 ⊗ |θL〉〈θL| ⊗ 〈θC |e−|ρC |

2
e−|ρL|

2
, (4.4)

where P (θ, t) is the probability for the Bose-Einstein condensate to have phase θ at a time t, i.e.,

P (θ) = |Ψ(θ, t)|2, for a wavefunction Ψ(θ, t) which describes the quantummechanical evolution of
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the phase as a function of time. Since the probability is normalized, we have Tr[ρ̂] = 1. By using the

properties in Eq. (4.3), we obtain for the intensity

Ī(r, t) =

∫ 2π

0
dθP (θ, t)〈θL| ⊗ 〈θC |Ê−(r, t)Ê+(r, t)|θC〉 ⊗ |θL〉

:= IL(r, t) + IC(r, t) + ĪI(r, t), (4.5)

where IL(r, t) = E2
L(r)ρ2

L, IC(r, t) = E2
C(r)ρ2

C and the interference contribution to the intensity

reads

ĪI(r, t) = 2AI(r, t)

∫ 2π

0
dθP (θ, t) cos θ, (4.6)

where we set the phase θL = 0 without any loss of generality and defined AI(r, t) := EL(r)EC(r)ρLρC .

Since the intensity of the photons coming from the condensate is independent of the phase, this

interference part of the intensity is the only relevant contribution for observing phase diffusion. In

order to calculate a typical interference pattern from Eq. (4.6), we need an explicit expression for

the probability distribution P (θ, t) for the phase of the condensate. We calculate this probability

distribution by quantizing a field theory in Section 4.3. However, first we consider phase diffusion due

to thermal fluctuations in the next section.

4.2.2 Thermal Fluctuations

Similar to the description of Brownian motion in statistical physics, we describe the thermal fluctua-

tions of the phase of the condensate by a Langevin equation. In fact, as the phase of the condensate

and number of particles in the condensate are conjugate variables, we need two Langevin equations.

These equations, also known as stochastic equations of motion, are coupled. For now, we postpone

the derivation of these Langevin equations to Section 4.6.

As the description of the thermal fluctuations is different from the quantum fluctuations, we need

to modify our expression for the interference pattern. In the previous section we found an expression

by taking the average over an ensemble consisting of various quantum states, each with a certain

probability. A single experimental measurement, however, typically yields

II(r, t) = 2AI(r, t) cos(θ(t)), (4.7)

where θ(t) is the solution to the relevant stochastic equations of motion, for one realization of the

noise. As mentioned before, the fluctuations of the phase of the condensate are only present in this

interference part of the intensity and therefore we are primarly interested in this part of the intensity.

Additionally, note that every realization of the noise results into a different interference pattern, and

therefore every individual measurement will give a different result. In order to extract information on
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the phase diffusion of the condensate due to thermal fluctuations, we should average Eq. (4.7) over

all configurations of the noise. Using the Langevin equations we motivate in Section 4.6, we perform

this averaging in Section 4.7.

Now that we know how the interference pattern due to both thermal and quantum flucutations depends

on the phase, we proceed with looking at phase diffusion due to quantum fluctuations by deriving the

probability distribution for the phase in the next section.

4.3 Phase Probability Distribution

For an explicit expression of the intensity Eq. (4.6) as a function of time, we need to determine the

probability P (θ, t). In analogy with Ref. [36], we obtain this probability by quantizing a field theory

that describes the dynamics of the phase of a Bose-Einstein condensate of photons. Again we describe

the photons as an interacting Bose gas in a two-dimensional isotropic harmonic trapping potential with

frequency ω. Recall that the photons have a constant zero-momentum energy mc2, with c the speed of

light in the medium. Note that we have assumed the laser to be frequency locked to mc2. Therefore,

in imaginary time the relevant action of the bosonic photon fields φ(x, τ) is given by2

S[φ∗, φ] =

∫ ~β

0
dτ

∫
dx φ∗(x, τ)

(
~
∂

∂τ
− ~2∇2

2m
+

1

2
mω2|x|2 − µ+

g

2
|φ(x, τ)|2

)
φ(x, τ), (4.8)

where x = (x, y) is the two-dimensional position, g is the interaction strength and µ is the chemical

potential of the system. Note the similarities with Eq. (3.1), which we used to derive the probability

distribution for the number of particles in the condensate. In order to make the phase of the conden-

sate appear explicitly, we use the variable transformation φ(x, τ) =
√
ρ(x, τ)eiθ(x,τ), where ρ(x, τ)

represents the density of the system and θ(x, τ) the phase of the condensate. In terms of these new

fields the action reads

S[ρ, θ] =

∫ ~β

0
dτ

∫
dx

[
i~ρ(x, τ)

∂θ(x, τ)

∂τ
+

~2ρ(x, τ)

2m
|∇θ(x, τ)|2 +

~2

8mρ(x, τ)
|∇ρ(x, τ)|2

+

(
1

2
mω2|x|2 − µ

)
ρ(x, τ) +

g

2
ρ2(x, τ)

]
. (4.9)

Due to the coupling between the density and phase field, we need to integrate out the density field

ρ(x, τ) to extract the dynamics of the phase of the condensate. This can be done exactly in the

Thomas-Fermi limit, which we introduced in Section 3.3. Thus, we neglect the kinetic terms in the

action, i.e., ∇ρ(x, τ) and ∇θ(x, τ). We stress again that this approximation is valid only if the

2In Chapter 3 we started from an action over all space and spend some time explicitly separating the longitudinal and

transverse part of the photon field. Here we immediately consider only the two-dimensional transverse photon field. The

coupling constant g is assumed to be scaled appropriately.
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interaction energy is much more important than the kinetic energy. We obtain

S[ρ, θ] ≈
∫ ~β

0
dτ

∫
dx

[
i~ρ(x, τ)

∂θ(x, τ)

∂τ
+

(
1

2
mω2|x|2 − µ

)
ρ(x, τ) +

g

2
ρ2(x, τ)

]
. (4.10)

Recall that we derived the Thomas-Fermi equilibrium density profile 〈ρ(x)〉 and also the associated

Thomas-Fermi radius RTF = (4gN0/πmω
2)1/4 in Eqs. (3.6) and (3.7) in Section 3.3. Using these

results, we perform a fluctuation expansion ρ(x, τ) = 〈ρ(x)〉+ δρ(x, τ) in the action, yielding

S[ρ, δρ, θ] =

∫ ~β

0
dτ

∫
dx

[
i~
(
〈ρ(x)〉+ δρ(x, τ)

) ∂θ(x, τ)

∂τ
+
g

2

(
δρ2(x, τ)− 〈ρ(x)〉2

)]
. (4.11)

Subsequently, we split the square in the previous result and integrate out the density fluctuations to

find

Seff[ρ, θ] =

∫ ~β

0
dτ

∫
ATF

dx

[
i~〈ρ(x)〉∂θ(x, τ)

∂τ
+

~2

2g

(
∂θ(x, τ)

∂τ

)2 ]
, (4.12)

where we omitted irrelavant shifts in the action, which are not a function of the phase. Furthermore,

note that the spatial integral in the expression above is restricted to the Thomas-Fermi area, given by

ATF = πR2
TF, as the average density profile is only defined in this region of space.

To proceed, we split the phase in a position-independent and position-dependent part, i.e., θ(x, τ) =

θ0(τ) + θ1(x, τ). As the photons in the condensate occupy the ground state, we are mostly interested

in the global U(1)-part of the action, given by S[θ0]. Retaining only this global part, omitting the

subscript on θ0 and subsequently performing a Wick rotation τ → it yields

Seff[θ] =

∫
dt

[
ATF~2

2g

(
dθ(t)

dt

)2

− ~N0
dθ(t)

dt

]
:=

∫
dtL[θ̇], (4.13)

with N0 =
∫
ATF

dx〈ρ(x)〉 the number of particles in the condensate. Note that the Wick rotation

amounts to exp
(
−
∫

dτL/~
)
→ exp

(
i
∫

dtL/~
)
, such that we had to extract an overal factor of −i

in going from Eq. (4.12) to Eq. (4.13).

Summarizing, the treatment above has given us an effective action in real time for the global U(1)-part

of the action associated with an interacting Bose gas in a harmonic trapping potential, in the Thomas-

Fermi limit. We proceed by calculating the conjugate momentum pθ associated to the Lagrangian in

Eq. (4.13) and find the Hamiltonian H of the system

H =
g

2ATF~2

(
pθ + ~N0

)2

. (4.14)

Now we quantize the system by imposing the canonical commutation relation [θ, pθ] = i~, resulting

in pθ = −i~∂/∂θ. The Schrödinger equation for the phase θ is then found to be

i~
∂Ψ(θ, t)

∂t
= −D

(
∂

∂θ
+ iN0

)2

Ψ(θ, t), (4.15)
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where we defined the “diffusion constant”3 D := g/2πR2
TF. with RTF the Thomas-Fermi radius of

the condensate. We derive the general solution to this Schrödinger equation for the phase in Appendix

B.1 and it reads

Ψ(θ, t) =
∑
n∈Z

cnexp

(
− iD(n+N0)2t

~
+ inθ

)
, (4.16)

where the coefficients cn are determined by the initial condition of the wavefunction. In the next section

we shall assume a strongly peaked initial wavefunction to calculate these coefficients. Subsequently,

we calculate and plot a typical interference pattern due to the quantum fluctuations.

4.4 Interference due to Quantum Fluctuations

In order to demonstrate the phase diffusion due to quantum fluctuations and to calculate a typi-

cal interference pattern, we consider the example that the initial wavefunction is a superposition of

Gaussians centered around θ = 0 mod 2π,

Ψ(θ, 0) =
1

(πσ2)1/4

∑
n∈Z

exp

(
−(θ + 2πn)2

2σ2

)
. (4.17)

Taking this superposition ensures that the wavefunction is periodic, i.e., Ψ(θ, 0) = Ψ(θ + 2π, 0). In

principle we have a slightly different normalization factor, but for the small values of σ < 1 considered

here, this is a very good approximation. In experiments one would measure the phase of the conden-

sate, thus letting the wave function collapse, and then subsequently look at its dynamics. Hence, we

start from a wavefunction that is strongly peaked and therefore we can use in good approximation

that σ < 1.

For this initial wavefunction, we can determine cn exactly and obtain an analytic expression for the

wavefunction at a time t. We show in Appendix B.2 that it reads

Ψ(θ, t) =

(
σ2

4π3

)1/4∑
n∈Z

exp

(
− iD(n+N0)2t

~
+ inθ − n2σ2

2

)
. (4.18)

Using this wavefunction, we calculate the probability P (θ, t) = |Ψ(θ, t)|2. Typical plots of this proba-

bility are shown in Fig. 4.2. At t = 0 we have a sharp peak and therefore the phase of the condensate

is well defined. However, if time evolves the peak smears out and moves its position in time. As time

evolves even further, the probability regains its original shape. This phenomenon is known as collapse

and revival of the wavefunction, which was recently observed in a somewhat different context [63]. It

3We use quotation marks because it has units of energy J instead of the more common units m·s−2 for a diffusion

constant.
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Figure 4.2: The probability P (θ, t) for the phase of the Bose-Einstein condensate of photons at different times for

N0 = 5 · 104 and σ = 10−1. The dashed, dotted and solid curve are the probability at t = 0, t = t0 and t = 3t0 with

t0 := ~/D
√
N0 =

√
16π/g̃ω2. We clearly see the diffusion of the phase of the condensate as time evolves.

is a direct consequence of the invariance of the wavefunction for t→ t+ 2πk~/D for every integer k,

as can be deduced from Eq. (4.16). Hereafter, cycles of collapse and revival of the wavefunction occur.

Moreover, we use our expression for the probability to obtain the average interference pattern as

defined in Eq. (4.6). Again for small σ < 1, we find in Appendix B.3 that

ĪI(r, t) ≈
4σAI(r, t)√

π
cos

(
5(1 + 2N0)σt

2tcol

)∑
n∈Z

cos

(
5nσt

tcol

)
e−n(n+1)σ2

, (4.19)

with tcol = 5~σ/2D. In fact, this can be simplified even further under the assumption of small σ to

yield

ĪI(r, t) ≈ 4AI(r, t) cos

(
5(1 + 2N0)σt

2tcol

)
exp

(
−25t2

t2col

)
. (4.20)

A typical plot of an interference pattern is displayed in Fig. 4.3. The time scale tcol gives a measure of

the time needed for this pattern to vanish for the first time. Furthermore, this expression contains two

other important time scales. The first scale is the oscillation time of the intereference pattern, which

for a relatively large number of condensed photons N0 � 1 is given by tosc = ~/2DN0. By using the

relation µ = mω2R2
TF/2, valid in the Thomas-Fermi limit, one shows that D = (1/2)(∂µ/∂N0), such

that tosc = 2~/µ. Physically, this is the well-known AC Josephson effect. The additional factor of two

comes from the fact that we effectively performed an expansion of the grand-canonical energy around

the average number of particles up to second order in Section 4.3. By resummation up to all orders,

one shows that in fact tosc = ~/µ, which is the result we shall continue to use.
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Figure 4.3: Typical plot of the interference pattern from Eq. (4.19) due to quantum fluctuations as a function of the

time scale tcol for N0 = 103. The high-frequency behavior has frequency 1/tosc, whereas the envelop function decays

over the time scale tcol. The time scale of revival trev is too long to be visible in this plot.

The second time scale, given by trev = 2π~/D, is the revival time for which the interference pat-

tern returns to its original shape. Note that this time scale is larger than tosc by a factor of 4πN0.

Furthermore, in the thermodynamic limit N0 →∞, we find that D ∝ 1/
√
N0 → 0 and both tcol →∞

and trev → ∞. Hence, in the thermodynamic limit the condensate can be described as a symmetry-

broken phase, such that no phase diffusion occurs.

In the next section we again consider the interference pattern due to quantum fluctuations. How-

ever, this time we include the effects of dissipation due to the self-interaction of the photons with the

heat bath of dye molecules.

4.5 Interference due to Quantum Fluctuations with Damping

In the previous calculations we have ignored that the photons are confined to a dye-filled optical

microcavity and that there is dissipation through the interaction with these dye molecules. As is shown

in Ref. [42], for low energies these interaction effects can in very good approximation be represented

by one single dimensionless damping parameter α. To incorporate this damping into our calculation,

we note that damping results into finite lifetimes for states with a nonzero energy. Therefore, as a
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first attempt to include dissipation, we change Eq. (4.16) into

Ψ(θ, t) =
∑
n∈Z

cn

∫ ∞
−∞

dE ρ(E,n) exp

(
− iEt

~
+ inθ

)
, (4.21)

where we introduced a spectral function ρ(E,n), given by

ρ(E,n) =
1

π

αE

(E −D(n+N0)2)2 + α2E2
. (4.22)

Note that limα→0 ρ(E,n) = δ(E−D(n+N0)2), such that in the limit of negligible damping Eq. (4.21)

reduces to the original expression Eq. (4.16). Also, note that a consequence of approximating the dis-

sipation effects with its low-energy limit is a violation of the sum rule, since the integral of the spectral

function over all energies gives 1/(1 + α2). However, the experimental value of α is rather small and

therefore this approximation only leads to a small deviation [42].

We proceed by calculating the integral in Eq. (4.22) by contour integration and subsequently fol-

low the same steps as in Appendix B.3. For a relatively small number of condensed photons and upon

neglecting terms of order α2, the interference pattern with dissipation ultimately reads

Ī(r, t;α) ' e−t/t
(1)
dis ĪI(r, t), (4.23)

where t
(1)
dis = ~/4αDN2

0 and ĪI(r, t) is given by Eq. (4.19). Thus with dissipation there is an-

other time scale t
(1)
dis , which indicates the decay time of the interference pattern. One shows that

t
(1)
dis/tcol = 1/10ασN2

0 , such that the shortest decay time scale is determined by the number of parti-

cles in the condensate N0. Note that for very large condensates N0 � 1, the low-energy approximation

of the dissipation is no longer valid and we have to incorporate the complete energy dependence of the

photon decay rate Γ(E) as calculated in Ref. [42]. In good approximation the dissipation time scale

is then found by replacing αDN2
0 by ~Γ(DN2

0 )/2. In practice this means that for large condensate

fractions, the dissipative time scale due to quantum fluctuations becomes too large to be observable

experimentally.

This section concludes our study of the contribution of quantum fluctuations to the interference pat-

tern. In the next sections we derive the necessary stochastic equations to describe thermal fluctuations

of the condensate parameters.

4.6 Stochastic Equations

The Gross-Pitaevskii equation is a mean-field equation which describes the average dynamics of a

Bose-Einstein condensate. In order to describe the nonequilibrium dynamics of a condensate, we have

to go beyond a mean-field description. The theory for this is developed in Refs. [64, 65]. Here we only
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cite the most important conclusions.

By using Keldysh theory and employing the so-called many-body T-matrix approximation, one derives

that the probability distribution P [N, θ, t] for the number of particles N and phase θ of a condensate

at a time t is given as a functional integral by

P [N, θ; t] =

∫ N(t)=N

θ(t)=θ
d[N ] d[θ]exp

(
i

~
Seff[N, θ]

)
, (4.24)

with the effective action

Seff[N, θ] =

∫ t

t0

dt′
[

2N(t′)

~ΣK

(
~θ̇(t′)− µ

)2

+
~

2ΣKN(t′)

(
Ṅ(t′) +

2R

~
N(t′)

)2]
. (4.25)

In this action the condensate chemical potential µ is redefined to include interaction effects, ΣK is the

Keldysh self-energy and R is the imaginary part of the retarded self-energy that describes the exchange

of bosons between the condensate and the thermal cloud. In fact, the last two quantities are related

via

~ΣK(k, ω) = −2i[1 + 2NBE(~ω)]R(k, ω), (4.26)

with NBE(x) := (eβx− 1)−1 the Bose distribution. The interaction of the photons with the molecules

can be described by one dimensionless parameter α, as is derived in Ref. [42]. This means that

we have R(k, ω) = −iα~ω. Since we are dealing with Bose-Einstein condensation, we can also

use the fluctuation-dissipation theorem for large occupation numbers, meaning that we may ap-

proximate 1 + 2NBE(~ω) ' 2/β~ω. Because the photons are at room temperature, we expect

this to be a very good approximation. Substituting these approximations into Eq. (4.26), we ob-

tain ~ΣK(k, ω) = −4iα/β.

We proceed by performing two Hubbard-Stratonovich transformations on the path integral in Eq. (4.24),

one for the global phase θ and one for the number of particles N in the condensate. By again following

the lines of Ref. [65] we find up to first order in α~θ̇(t) = −µ+ ν(t)/
√
N(t),

~Ṅ(t) = −2αµN(t) + 2~
√
N(t)η(t),

(4.27)

where the stochastic generalized forces η(t) and ν(t) are Gaussian and obey〈ν(t)〉 = 〈η(t)〉 = 〈η(t)ν(t′)〉 = 0,

〈ν(t)ν(t′)〉 = ~2〈η(t)η(t′)〉 ' α~β−1δ(t− t′).
(4.28)

Note that the strength of the noise for the number N(t) and phase θ(t) of the condensed photons

scales differently with the number of condensed photons. For larger number of photons the fluctuations
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Figure 4.4: The result of cos(θ(t)) as a function of t/tosc with tosc = ~/µ ' 5 · 10−10 s. Here θ(t) is a solution to

the Langevin equation describing the dynamics of the phase of the condensate for N(t) = 〈N〉 = 4 · 104, α = 10−1 and

~β ' 2.5 · 10−14 s. The solid curve is the result for an arbitrary noise configuration and the dashed curve represents the

average over 500 different configurations of the noise.

in the particle number increase, but the fluctuations in the global phase decrease. Moreover, in the

thermodynamic limit the noise for the global phase vanishes and we obtain again a condensate with a

well-defined phase.

Now that we have obtained the necessary Langevin equations, we proceed by evaluating the inter-

ference pattern due to thermal fluctuations in the next section.

4.7 Interference due to Thermal Fluctuations

To highlight the fluctuations of the phase due to thermal fluctuations we would like to minimize the

fluctuations in the intensity of the external laser and the light coming from the condensate. Since

the intensity of the condensate is proportional to the number of condensed photons, we are interested

in the regime with small number fluctuations. As can be deduced from the discussion in Chapter 3

and Eqs. (4.27), the number fluctuations decrease for increasing condensate fractions. Therefore, we

consider large condensate fractions such that the fluctuations in the interference pattern are dominated

by phase fluctuations, and we take N(t) = 〈N(t)〉 := N0.

In Fig. 4.4 we show the result for cos(θ(t)), where θ(t) is a solution to the stochastic Eqs. (4.27)

for a condensate fraction of roughly 35 %. The solid curve gives the interference pattern for a certain

realization of the stochastic forces. Every realization of the noise results into a different interference

pattern, and therefore every individual measurement will give a different result. However, once we

average over more and more noise realizations 〈cos(θ(t))〉 converges, and we do observe the decay

associated with the dissipation.
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In order to get more information about this decay of the intensity II(r, t), we have to take the average

of Eq. (4.7) over all noise configurations. By using the Fokker-Planck equation as derived in Ref. [65],

we find up to first order in α
~
∂

∂t
〈cos(θ)〉 = µ〈sin(θ)〉 − α

2βN0
〈cos(θ)〉,

~
∂

∂t
〈sin(θ)〉 = −µ〈cos(θ)〉 − α

2βN0
〈sin(θ)〉.

(4.29)

These equations admit analytic solutions and we find for the average of the interference part of the

intensity

〈II(r, t)〉 = 2AI(r, t) exp

(
− αt

2~βN0

)
cos

(
µt

~

)
, (4.30)

which coincides with the result in Fig. 4.4 where we averaged over 500 noise realizations. Again we

observe two relevant time scales in the expression above. The first is the dissipative time scale in the

exponential t
(2)
dis = 2~βN0/α, whereas the second is the characteristic oscillation time of the cosine

tosc = ~/µ. Note that this latter time scale is again a manifestation of the AC Josephson effect,

similar to what we found in Section 4.4.

For typical values for the trap frequencies ω, we obtain that tosc is in the order of picoseconds.

Since this is rather small, we expect that it is challenging to measure these oscillations experimentally.

However, it might be possible to measure one of the other time scales we have found in this chapter.

Realistic experimental parameters are large condensate numbers N0 � 1 and α ranging from 10−1 to

10−2. As discussed in Section 4.5, the time scale t
(1)
dis , which describes dissipative effects due to quan-

tum fluctuations, diverges for large condensate numbers. It is therefore not measurable in a typical

experimental setup. Fortunately, the decay time due to thermal fluctuations t
(2)
dis is in the nanoseconds

regime, which is within the precision of current devices.

4.8 Conclusion

We have proposed an interference experiment of condensed photons with an external laser to observe

phase diffusion experimentally. Furthermore, we have shown that the typical outcome of individual

experiments can be obtained from a stochastic equation for the phase of the condensate. Additionally,

we have demonstrated that thermal fluctuations dominate and we found that the decay time of the

average interference pattern is in the nanosecond regime, which is an accessible time scale in experi-

ments. Finally we note that although the calculations in this chapter are specific for a Bose-Einstein

condensate of photons, the concepts and ideas presented are also applicable to Bose-Einstein conden-

sates of exciton-polaritons. Also in these condensates we can get experimental information about the
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global phase of the condensate. For example, in Refs. [66, 67] the relative global phase of two coupled

exciton-polariton condensates is measured in order to investigate Josephson oscillations.



Chapter 5
Discussion and Outlook

In this final chapter we first recapitulate all results and conclusions from this Thesis. Subsequently,

we consider work in progress and what might be interesting to look at next.

5.1 Results of this Thesis

The main goal of this Thesis was to advance the theoretical description of a Bose-Einstein condensate

of photons. We built upon the theory developed by the experimentalists of Bonn university and also

upon previous work performed in our research group. In the process we kept a close eye on recent

experiments and also on new experimental possibilities.

We started by noting in Chapter 1 that over the past decade different condensates of bosonic quasi-

particles have been created, among which a condensate of massive photons. These condensates of

quasiparticles are different from the ‘traditional’ condensates of dilute atomic vapors, e.g., they can

be created at higher temperatures and are in a steady state, but not in a true equilibrium. The main

problem in creating a condensate of photons is to find a number-conserving thermalization process,

i.e., a way to tune the photon number and temperature of a photon gas independently. In Chap-

ter 2 we discussed in detail the experimental setup used to create the first condensate of photons.

Number-conserving thermalization is made possible by confining photons in a dye-filled microcavity.

Theoretically, we described the photons in the cavity as particles with an effective mass in a harmonic

trapping potential. Additionally, due to imperfect cavity mirrors, photons leak from the cavity. This

yields a diagnostic tool ‘for free’: one simply collects photons leaking from the cavity and performs

an analysis on this signal. This situation is in stark contrast to measurements on atomic condensates,

which are often destructive. It is this aspect of the experimental realization of a condensate of photons

49
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which allows for new kinds of experiments as compared to the experiments on atomic condensates. On

the other hand, the specific experimental realization of the Bonn condensate of photons also brings

about certain limitations. For instance, the harmonic trapping frequency is determined by the radius

of curvature of the mirrors and the mirror separation. In order to change this frequency, one has to

change the experimental setup itself. An electronic mechanism to be able to change the trapping

frequency continuously would be more useful.

The measurements on large number fluctuations in a condensate of photons motivated our investiga-

tions in Chapter 3. We presented a general theory to calculate number flucutations in harmonically

trapped Bose-Einstein condensates. We specialized to two dimensions, but the calculation can be

performed in any dimension. The crucial ingredient was the introduction of a four-point vertex in

the energy functional of the harmonically trapped Bose gas. Using the probability distribution for the

number of photons in the condensate, we were able to quantitatively describe recent experiments on

the photonic condensate. Firstly, we could reproduce any experimental curve of the photon number

probability as a function of the photon number, for any condensate fraction, by simply using the in-

teraction strength as a fitting parameter. Secondly, we reproduced all curves of the zero-time delay

autocorrelation function as a function of the condensate fraction for different dyes, again by using

the interaction strength as a fitting parameter. Interestingly, the only available experimental result on

the dimensionless interaction strength coincided well with one of our fits to experimental data points

which were obtained in similar circumstances to that one measurement. This suggest that interactions

play an important role in condensate number fluctuations.

Subsequently, we tried to uncover the microscopic origin of the photon-photon contact interaction

in a condensate of photons. Experiments indicate that the mechanism must depend on the type of

dye molecules, as well as the concentration of the dye solution. Possible mechanisms we considered

were thermal lensing and nonlinear effects. In the literature, the former effect is considered to be

most important. However, we modeled it by treating temperature fluctuations diffusively and found

that it is too small. Additionally, it does not depend on the dye in any way. As a possible solution,

we proposed dye-mediated photon-photon scattering. This mechanism does depend on the dye, but

was also found to be too small. This may be the case because we heavily simplified the difficult dye

molecules to a simple two-level system.

Thus, we concluded that systematic measurements of the interaction strength are necessary to under-

stand the true nature of the interaction. These experiments are very important, since if the interaction

is indeed a contact interaction at long wavelengths, then this would imply that the photon conden-

sate is also a superfluid. Additionally, knowing the microscopic mechanism might give the powerful

possibility to tune the photon-photon interactions, similar to the usage of Feshbach resonances in

experiments on Bose-Einstein condensates of dilute atomic vapors.
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In Chapter 4 we switched from explaining recent experiments to proposing a new type of experi-

ment. Phase diffusion is the phenomenon that the global phase of a finite-sized condensate has a

nontrivial dynamics in time. We proposed an interference experiment of condensed photons with an

external laser to observe phase diffusion experimentally. For this type of experiment, we calculated

interference patterns due to quantum fluctuations and thermal fluctuations separately. In the process

we found several time scales. One of these causes a high-frequency oscillation in the interference

pattern and can be identified as the AC Josephson effect. For reasonable experimental parameters

these oscillations are of the order of picoseconds. This makes them out of reach for current-day exper-

iments. Additionally, we found several collapse time scales, on which the interference pattern vanishes

for the first time. The question is if the shortest of these time scales is long enough to be measurable

experimentally. Indeed, we estimated that the collapse time due to thermal fluctuations is of the order

of nanoseconds, making it measurable using today’s machinery.

Next, we briefly discuss work which is not part of this Thesis, but is already under way.

5.2 Work in Progress

We already mentioned that if the photon-photon interaction from Chapter 3 is a contact interaction at

long wavelengths, then this would imply that the photon condensate is also a superfluid. However, an

important question is how to prove this experimentally. A well-known smoking gun for superfluidity is

the observation of quantized vortices. Indeed, quantized vertices were observed in an ultracold vapor

of 87Rb by ‘stirring’ it with a laser, proving it is also a superfluid [68]. However, it is very challenging,

if not impossible, to perform a similar experiment in the dye-filled optical microcavity used to create

a condensate of photons.1

In fact, there is another smoking gun related to superfluidity in a Bose-Einstein condensate. When one

suddenly rotates the eigenaxes of a harmonically trapped Bose gas around a small angle, the gas starts

to perform an oscillation around the new axes. In the case of an anharmonic trapping potential, the

condensate can oscillate in the so-called scissor mode. The resonant frequency of this mode is different

in the superfluid and normal phases of the photon gas due to the irrotational flow of a superfluid which

does not allow for rigid-body rotation [69, 70]. At the moment we are trying to calculate if it is feasible

to excite the photonic condensate to a scissor mode, such that one might experimentally prove the

photonic condensate is a superfluid.

Additionally, we are investigating if the scissor mode is damped by the emission of condensate photons

in pairs with opposite momentum. This would be a novel manifestation of the dynamical Casimir

1Private correspondence with J. Klaers and M. Weitz.
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effect, which was first observed in 2011 in a very different system [71]. There are many questions

worth investigating. Is the necessary frequency of oscillation of the mirrors feasible? Is the effect large

enough to be experimentally observable? What is the spatial distribution of the photon emission from

the condensate?

Note that in order to perform these experiments, one needs to have an anharmonic trapping fre-

quency which can be tuned continuously. As we discussed in the previous section, this is not possible

in the experimental setup used in Bonn: the trapping frequency is harmonic and can only be changed

by using mirrors with a different radius of curvature and mirror separation. Therefore, it would be

useful to use a different experimental setup and create a condensate of photons which is more flexible.

In fact, a recently proposed idea for such a new type of experiment is to work with nano-fabricated

semiconductor microcavities instead of dye-filled optical microcavities [70].



Appendix A
Detailed Calculations - Number

Fluctuations

In this appendix we explicitly do calculations leading to some results we used in the chapter on number

fluctuations.

A.1 Rate Equation Model

In this appendix we discuss a rate-equation model for the condensate of photons. Every process of

absorption or emission depends on the number of photons n, the number of excited molecules N↑ and

the number of ground-state molecules N↓. Therefore, the probability for every process is a function of

all three: p = p(n,N↑, N↓). A reasonable approximation is the Stosszahlansatz1: we assume that the

probability factorizes as p(n,N↑, N↓) = pnpN↑pN↓ . Using this, we write down the master equation for

the probability pn to have n photons in the system

dpn
dt

=

∞∑
N↑,N↓=0

[
Γ

 n+ 1→ n

N↓ → N↓ − 1

N↑ → N↑ + 1

 pn+1pN↓pN↑ + Γ

 n− 1→ n

N↓ → N↓ + 1

N↑ → N↑ − 1

 pn−1pN↓pN↑

− Γ

 n→ n− 1

N↓ → N↓ − 1

N↑ → N↑ + 1

 pnpN↓pN↑ − Γ

 n→ n+ 1

N↓ → N↓ + 1

N↑ → N↑ − 1

 pnpN↓pN↑

]
, (A.1)

1This approximation was introduced for the first time by James Clerk Maxwell (1831 - 1879), who assumed that the

velocities of colloiding particles are uncorrelated in the context of kinetic gas theory. He called this assumption molecular

chaos. Ludwig Boltzmann (1844 - 1906) later refered to the approximation as the Stosszahlansatz, which translates as

‘collision number hypothesis’.
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where the first term and third term describe absorption and the second and fourth term emission of a

photon. We integrated out the dependence on N↑ and N↓ by summing over all their possible values.

The transition rates Γ can be calculated by using Fermi’s golden rule. Generally, this amounts to

evaluating matrix elements of the in and out state, which are of the typical form

Γ

 n→ n− 1

N↓ → N↓ − 1

N↑ → N↑ + 1

 ∝ |〈N↑ + 1, N↓ − 1, n− 1|b̂†↑b̂↓â|n,N↓, N↑〉|2 = n(N↑ + 1)N↓, (A.2)

where â† (â) represents the photon creation (annihilation operator, b̂† (b̂) the molecular creation

(annihilation) operator and we assumed the molecules to behave like bosons. In the end we shall take

the classical limit for the molecules, such that the choice of describing the molecules by fermions or

bosons should not matter. We proceed by setting the constant of proportionality in Eq. (A.2) to be A

for an absorption process and E for an emission process. Performing the summations in Eq. (A.1), we

obtain

dpn
dt

= A〈N↓〉〈N↑ + 1〉
(
(n+ 1)pn+1 − npn

)
+ E〈N↑〉〈N↓ + 1〉

(
npn−1 − (n+ 1)pn

)
. (A.3)

In order to obtain the time derivative of the average number of photons, we multiply Eq. (A.3) by n

and sum over every possible amount of photons

d〈n〉
dt
≈ −A〈n〉〈N↓〉+ E〈n+ 1〉〈N↑〉, (A.4)

where we took the classical limit for the molecules in the last step by setting 〈N↓/↑+1〉 ≈ 1. Following

exactly the same treatment, we find the time derivatives of the average number of ground-state and

excited-state molecules
d〈N↑〉

dt
≈ A〈n〉〈N↓〉 − E〈n+ 1〉〈N↑〉,

d〈N↓〉
dt

≈ −A〈n〉〈N↓〉+ E〈n+ 1〉〈N↑〉.
(A.5)

The time behavior of the whole system is now described by the two differential equations above and

Eq. (A.3). In fact, by adding and substracting equations we see that the total number of molecules is

constant: d〈N〉/dt = d〈N↑ +N↓〉/dt = 0. Furthermore, we find that the sum of the average number

of photons and excited molecules in the system is also constant: d〈N↑ + n〉/dt = 0. So we see that

in our grand-canonical treatment we get the necessary conservation laws ‘for free’, although they are

only valid on average. Now we proceed by assuming the detailed balance condition. In this system, it

reads

E〈N↑〉
A〈N↓〉

= e−β(∆−∆µ), (A.6)
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with ∆µ := µ↑ − µ↓ the difference in the chemical potentials of the excited-state and ground-state

molecules and ∆ the energy difference. If we consider the static case and substitute the detailed

balance condition into Eq. (A.3) we find that

〈n〉 =
1

eβ(∆−∆µ) − 1
, (A.7)

i.e., the photons obey a Bose-Einstein distribution in equilibrium. This allows us to identify the

chemical potential of photons µ to be in equilibrium equal to ∆µ.

A.2 Effective Action Thermal Lensing

Due to the fact that the action Eq. (3.16) contains both volume and surface integrals, it is easier to

go to Fourier space. Thus, we define the necessary Fourier transforms as

φ(r, τ) = (~βV )−1/2
∑

p,n ap,ne
i(p·r−ωnτ),

φtrans(x, τ) = (~βA)−1/2
∑

k,n ak,ne
i(k·x−ωnτ),

δT (r, τ) = (~βV )−1/2
∑

p,n δTp,ne
i(p·r−ωnτ),

(A.8)

with V the volume of the space, A := V/D0 the corresponding area and ωn = 2πn/~β bosonic

Matsubara frequencies. Note that we use the convention that a sum over k is over all vectors with

a fixed z-component kz and sums over p are ordinary three-dimensional sums. Substituting these

Fourier transforms into the action Eq. (3.16), we arrive at

S[a, a∗, δT ] =
∑
k,n

a∗k,n(−~G−1
γ (k, iωn))ak,n +

∑
p,n

δT ∗p,n(−~G−1
T (p, iωn))δTp,n

+
1√
~βV

(
mc2ε

2n2(T0)

) ∑
k,p,n,m

(
a∗k+p,m+nak,nδTp,m + a∗k,nak+p,m+nδT

∗
p,m

)
,

(A.9)

where we used the fact that the temperature fluctuations are real-valued: δT ∗p,n = δT−p,−n. In the

process we defined the inverse propagator in Fourier space for the temperature fluctuations

−~G−1
T (p, ωn) =

1

T0

(
cp −

κ|p|2
ωn

)
. (A.10)

The partition function corresponding to the theory described by the action Eq. (A.9) is given by a path

integral as

Z =

∫
d[a∗] d[a] d[δT ]exp

(
−S[a, a∗, δT ]

~

)
. (A.11)
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Hence, we complete the square for the field δTp,n in Eq. (A.9), perform the associated path integral

over δTp,n and re-exponentiate to arrive at

Z =

∫
d[a∗] d[a]exp

(
−S

eff[a, a∗]

~

)
(A.12)

with the effective action

Seff[a, a∗] =
∑
k,n

a∗k,n(−~G−1
γ (k, iωn))ak,n − ~Tr[log(−G−1

T (p, ωn))]

− 1

~2βV

(
mc2ε

2n2(T0)

)2 ∑
k,p,k′

n,m,n′

GT (p, ωm)a∗k+p,n+mak,na
∗
k′,n′ak′+p,n′+m, (A.13)

Note that the emergence of the second term in the expression above is the result from the path integral

over δTp,n, whereas the last term comes from completing the square. It is this last term which gives

an effective photon-photon interaction, mediated by the temperature fluctuation.

A.3 Effective Action Dye-Mediated Photon-Photon Scattering

By using the action in Eq. (4.11), we write down the partition function Z of the theory as a path

integral over the photonic and molecular fields. We denote the photonic part of the action Eq. (4.11)

by Sγ , the molecular part by S0 and the interaction part by Sint. Subsequently, we perform perturbation

theory in the interaction parameter gmol to integrate out the molecules [36], i.e.,

Z =

∫
d[a∗] d[a] d[b∗↓] d[b↓] d[b∗↑] d[b↑]exp

(
−1

~
(
Sγ + S0 + Sint

))
= Z0

∫
d[a∗] d[a]exp

(
−1

~
Sγ

)(
1 +

1

2~2
〈S2

int〉0 +
1

24~4
〈S4

int〉0 +O(g6
mol)

)
, (A.14)

where we used the fact that 〈Smint〉0 = 0 if m is odd and defined
Z0 :=

∫
d[b∗↓] d[b↓] d[b∗↑] d[b↑] exp(−S0/~),

〈. . . 〉0 :=
1

Z0

∫
d[b∗↓] d[b↓] d[b∗↑] d[b↑](. . . ) exp(−S0/~).

(A.15)

By using Wick’s theorem we find for the term at order g2
mol

〈S2
int〉0 = −2g2

mol

~βV
∑

k,p,n,n′

a∗k,nak,nG↑(p + k, i(ωn + ωn′))G↓(p, iωn′). (A.16)
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This term can be interpreted as a self-energy for the photons. We do a similar computation for the

term at order g4
mol. Expanding out the interaction term yields sixteen terms, of which ten do not

contain the appropriate combination of fields to yield a non-zero result when we Wick contract them.

The remaining six terms turn out to be identical, yielding

〈S4
int〉0 =

12g4
mol

(~βV )2

∑
p,k,k′,k′′

n,n′,n′′,m

a∗k,nak′,n′a
∗
k′′,n′′ak−k′+k′′,n−n′+n′′

[
G↑(p + k, i(ωm + ωn))

×G↓(p, iωm)G↑(p + k′, i(ωm + ωn′))G↓(p + k′ − k′′, i(ωm + ωn′ − ωn′′))
]

− 12g4
mol

(~βV )2

( ∑
p,k,n,n′

a∗k,nak,nG↑(p + k, i(ωn + ωn′))G↓(p, iωn)

)2

. (A.17)

The first term can be diagrammatically displayed as a box diagram. The second term can be represented

by a disconnected diagram: it is simply one half times the square of the self-energy diagram. All

disconnected diagrams disappear automatically when we sum the connected diagrams into an exponent.

Hence, the sum of the self-energy and the box diagram gives us the desired effective action

Seff[a∗, a] =
∑
k,n

a∗k,n

(
− i~ωn + εγ(k)− µ+ ~Σ(k, iωn)

)
ak,n

+
1

2~βV
∑

k,k′,k′′

n,n′,n′′

Γ(4)(k,k′,k′′, iωn, iωn′ , iωn′′)a
∗
k,nak′,n′a

∗
k′′,n′′ak−k′+k′′,n−n′+n′′ , (A.18)

where the photon self-energy and the photon-photon scattering vertex are defined as in Eqs. (3.24)

and (3.25).

A.4 Calculation Imaginary Part Self-Energy Photons

By using Fermi’s golden rule we calculate the absorption cross section from the imaginary part of the

self-energy given by Eq. (3.24). To avoid divergencies when calculating the photon-photon interaction

we first introduce a finite lifetime for the excited molecular state. To do this we recall that the spectral

function ρ(k, ω) is defined as

ρ(k, ω) := − 1

π~
Im
[
G(+)(k, ω)

]
, (A.19)

where the retarded Green’s function follows from a Wick rotation of the Green’s function: G(+)(k, ω) =

G(k, iωn → ω + i0). Given a spectral function, we calculate the corresponding Green’s function by

using the following relation

G↑(k, iωn) = ~
∫ ∞
−∞

dω
ρ↑(k, ω)

iωn − ω
. (A.20)
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For a free theory the spectral function is just a delta function centered around the single-particle energy.

We give the excited molecule a finite lifetime by broadening the spectral function to a Gaussian profile,

i.e.,

ρ↑(k, ω) =
1√

2π~Γ
exp

(
−(~ω − ε(k)−∆ + µ↑)

2

2(~Γ)2

)
, (A.21)

such that the spectral function satisfies the frequency sum rule
∫∞
−∞ d~ωρ↑(k, ω) = 1. Note that this

spectral function is still centered around the single-particle energy of the excited molecule and that we

have

lim
Γ→0

ρ↑(k, ω) = δ(~ω − ε(k)−∆ + µ↑). (A.22)

We consider the molecules in the classical limit. Thus, by using the Maxwell-Boltzmann distribution

NMB(x) := exp(−βx), the molecule density in the excited state n↑ is equal to

n↑ ≈
1

V

∫ ∞
−∞

d~ω
∑
k

ρ↑(k, ω)NMB(~ω)

=
1

Λ3
exp

(
βµ↑ − β∆ +

1

2
(β~Γ)2

)
, (A.23)

where the thermal de Broglie wavelength Λ is defined as Λ :=
√

2πβ~2/M . As limω→−∞NFD(ω) = 1

and we integrate over ω, the approximation in the calculation above is only valid when the spectral

function is almost zero for negative ω. As the spectral function is centered around ~ω = ε(k)+∆−µ↑,
a reasonable restriction is ∆− µ↑ − 2Γ~ > 0. This condition is fulfilled for the values of ∆ and Γ we

use. We are thus allowed to take the limit NFD(ω) → NMB(ω) in the following, even if we integrate

over ω.

Note that in the ground state the molecules still have an infinite lifetime and therefore the density of

molecules in the ground state is given by n↓ = Λ−3 exp
(
βµ↓

)
. We express the chemical potential of

the ground state in terms of ∆µ := µ↑ − µ↓ and nmol := n↓ + n↑ as

exp
(
βµ↓

)
=

nmolΛ
3

1 + exp
(
β(∆µ−∆) + (~βΓ)2/2

) , (A.24)

which is a relation we will use later on. We now explicitly calculate the self-energy by starting from

the definition provided in Eq. (3.24) and invoking Eqs. (A.20) and (A.21)

~Σ(k, iωn) =
g2

mol

~2βV

∑
p,m

G↓(p, iωm)G↑(p + k, i(ωm + ωn))

=
g2

mol

~βV
∑
p,m

∫ ∞
−∞

d~ω′
(

ρ↑(p + k, ω′)

i~(ωn + ωm)− ~ω′

)(
−~

−i~ωm + ε(p)− µ↓

)

=
g2

mol

V

∑
p

∫ ∞
−∞

d~ω′
(

ρ↑(p + k, ω′)

−i~ωn + ~ω′ − ε(p) + µ↓

)(
NFD(~ω′)−NFD(ε(p)− µ↓)

)
, (A.25)
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where we performed the Matsubara summation and introduced the Fermi-Dirac distribution, which

is defined as NFD(x) := (exp (βx) + 1)−1. Since we are considering a bath of molecules at room

temperature, we are allowed to take the limit NFD(x) → NMB(x) := exp (−βx). Furthermore, we

perform a Wick rotation to obtain the retarded self-energy. The only term that changes in the self-

energy is

1

−i~ωn − ε(p) + µ↓ + ~ω′
→ iπδ(~ω′− ε(p) +µ↓− ~ω) +P

(
1

~ω′ − ε(p) + µ↓ − ~ω

)
, (A.26)

with the symbol P symbolizing the principal value of the fraction. With the help of the relationships

above, we find for the imaginary part of the self-energy

R(k+, ω) := −Im(~Σ(+)(k+, ω))

= −πg
2
mol

V

∑
p

∫ ∞
−∞

d~ω′ρ↑(p + k+, ω
′)δ(~ω′ − ε(p) + µ↓ − ~ω)

(
e−β~ω

′ − e−β(ε(p)−µ↓)
)

=

√
πg2

molβ exp
(
βµ↓

)
(1− exp (−β~ω))

Λ3
√

2(2βε(k+) + (~βΓ)2)
exp

(
−(ε(k+) + ∆−∆µ− ~ω)2

2((~Γ)2 + 2ε(k+))

)
, (A.27)

with k+ = (0, 0, kz) the wave number for photons in the condensate. By setting ∆µ = 0 and kz = ω/c

and taking the part of the expression above proportional to N↓, we obtain the absorption cross section

at equilibrium. As it turns out the result is almost (or in very good approximation) independent of the

exact value kz, and therefore from now onwards we take kz = 0, thereby simplifying our treatment

considerably. Using Fermi’s Golden rule in the form σabs(ω) = 2Rabs(ω)/c~N↓, we we find

σabs(ω)
∣∣
kz=0

=

√
2πg2

mol

~2Γc
exp

(
−(~ω −∆)2

2~2Γ2

)
. (A.28)

A.5 Calculation Box-Diagram

We now evaluate the photon-photon interacting strength in the condensate, i.e., with Matsubara

frequency zero, and set kz = 0, as is justified by the previous section. This amounts to the Feynman

diagram in Fig. A.1. By using G2
↓(p,m) = −~∂↓G↓(p,m), we obtain

Γ(4)(0,0,0, 0, 0, 0) =
g4

mol

~3βV
∂↓
∑
p,m

G2
↑(p,m)G↓(p,m)

=
g4

mol∂↓
2πβ~4Γ2Λ3

∫ ∞
−∞

d~ω
∫ ∞
−∞

d~ω′exp

(
βµ↓ −

(~ω + ∆µ−∆)2) + (~ω′ + ∆µ−∆)2

2(~Γ)2

)

× 1

ω − ω′
(

1

ω′
(1− e−β~ω′)− 1

ω
(1− e−β~ω)

)
(A.29)



A.5. CALCULATION BOX-DIAGRAM 60

γ,k+

γ,k+

γ,k+

p, ↓,m

p+ k+, ↑,m

γ,k+

p, ↓,m

p+ k+, ↑,m

1

Figure A.1: Feynman diagram for a fourth-order photon-photon interaction. The photons γ are considered to

be part of the condensate and are thus at zero frequency and momentum k+ = (0, 0, kz), as their z-component

momentum is fixed and kx = ky = 0 for the ground state of the homogeneous photon gas. The molecule forms

a closed loop of ground (↓) and excited (↑) states, with momentum p and Matsubara frequency ωm.

where we again performed the Matsubara summation, we took the limit NFD(x) → NMB(x) and

finally performed the p-integral. After we have substituted Eq. (A.24), we perform the differentiation.

Setting ∆µ − ∆ := µ − δ and introducing the dimensionless quantities ω := β~ω, ω′ := β~ω′, we

obtain

Γ(4)(0,0,0, 0, 0, 0) =
g4

molβnmol

2π~2Γ2{1 + exp
(
βµ− βδ + (β~Γ)2/2

)
}

∫ ∞
−∞

dω

∫ ∞
−∞

dω′(ω − ω′)−1

× exp

(
−(ω + βµ− βδ)2 + (ω′ + βµ− βδ)2

2(β~Γ)2

)

×
(

1

ω′
(1− e−ω′)− 1

ω
(1− e−ω)

)(
1 +

ω + ω′ + 2β(µ− δ)
(β~Γ)2

)
:=

g4
molβnmol

~2Γ2
f(βµ− βδ), (A.30)

with f(βµ− βδ) a smooth dimensionless function peaked around zero. Again we must scale Γ(4) →
2Γ(4)/3D0, as the photon gas is confined to two dimensions, to obtain the effective coupling constant

g of the photons in the condensate.



Appendix B
Detailed Calculations - Phase

Diffusion

In this appendix we explicitly do calculations leading to some results we used in the chapter on phase

diffusion.

B.1 General solution Schrödinger equation phase

In this section we solve the Schrödinger equation for the phase as it is given in Eq. (4.15) by

i~
∂Ψ(θ, t)

∂t
= − g

2ATF

(
∂

∂θ
+ iN0

)2

Ψ(θ, t). (B.1)

We invoke separation of variables in the form of the ansatz Ψ(θ0, t) = T (t)Θ(θ0). Substituting this

in the differential equation yields

i~
T (t)

dT (t)

dt
= −D

(
−N2

0 +
2iN0

Θ(θ)

dΘ(θ)

dθ
+

1

Θ(θ)

d2Θ(θ)

dθ2

)
, (B.2)

such that we may conclude that both sides of the equality should equal the same constant, which we

call E. The time-dependent part is given by

dT (t)

dt
=
E

i~
T (t), (B.3)

which is solved by T (t) ∝ e−iEt/~. For the phase-dependent part we find

d2Θ(θ)

dθ2
+ 2iN0

dΘ(θ)

dθ
+

(
E

D
−N2

0

)
Θ(θ) = 0. (B.4)
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In order to solve this ordinary differential equation, we make an additional ansatz of the form Θ(θ) ∝
eλθ. Substitution yields a characteristic equation with solutions λ± = −i(N0 ±

√
E/D). Thus, the

full wave function becomes

Ψ(θ, t) =

(
αeiθ
√
E/D + βe−iθ

√
E/D

)
e−i(Et/~+N0θ), (B.5)

where α, β ∈ C are integration constants. By demanding periodicity, i.e., Ψ(θ, t) = Ψ(θ + 2π, t), we

find

α+ β = αe2πi
√
E/D + βe−2πi

√
E/D, (B.6)

which yields a quantized energy En = D(n + N0)2, for n ∈ Z. The general solution now becomes

Ψ(θ, t) =
∑
n∈Z

cn exp

(
− iD(n+N0)2t

~
+ inθ

)
. (B.7)

The constants cn can be found when an initial wavefunction Ψ(θ, 0) is provided. In the next section

we do this calculation for a Gaussian initial wavefunction.

B.2 Specific Solution Schrödinger Equation Phase

We start with an unnormalized initial wavefunction which is a superposition of Gaussians centered

around θ = 0 mod 2π,

Ψ(θ, 0) = α
∑
n∈Z

e−(θ+2πn)2/2σ2
. (B.8)

Note that this wavefunction is constructed such that is periodic in θ. The normalization of the

wavefunction determines the value of α. Thus,∫ 2π

0
dθ |Ψ(θ, 0)|2 = |α|2

∑
n,m∈Z

∫ 2π

0
dθ e−(θ+2πn)2/2σ2

e−(θ+2πm)2/2σ2

= |α|2
∑
n,m∈Z

∫ 2π(n+1)

2πn
dθ e−θ

2/2σ2
e−(θ+2π(m−n))2/2σ2

= |α|2
∑
m∈Z

e−(πm)2/σ2

∫ ∞
−∞

dθ e−(θ+πm)2/σ2

= |α|2√πσ
∑
m∈Z

e−(πm)2/σ2
. (B.9)
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In general we are interested in sharply-peaked wavefunctions, where the phase of the Bose-Einstein

condensate is well-defined. In this case σ � 1 and we have in very good approximation

α =
1

(πσ2)1/4

(∑
m∈Z

e−(πm)2/σ2

)−1

≈ 1

(πσ2)1/4
. (B.10)

The coefficients cn can be determined by using the orthogonality of the basis {einθ}n ∈Z. We find

cn =
1

2π

∫ 2π

0
dθ Ψ(θ, 0)e−inθ

=
α

2π

∫ 2π

0
dθ

∑
m∈Z

e−(θ+2πm)2/2σ2
e−inθ

=
α

2π

∫ ∞
−∞

dθ e−θ
2/2σ2

e−inθ

=
ασ√
2π
e−n

2σ2/2 ≈
(
σ2

4π3

)1/4

e−n
2σ2/2, (B.11)

where we used the approximate value for α from Eq. (B.10). Hence we find for the total wavefunction

Ψ(θ, t) =

(
σ2

4π3

)1/4∑
n∈Z

exp

(
− iD(n+N0)2t

~
+ inθ − n2σ2

2

)
. (B.12)

B.3 Interference due to Quantum Fluctuations

By using the wavefunction we calculated in the previous section, the interference pattern due to

quantum fluctuations can now be calculated explicitly,

ĪI(r, t) := 2AI(r, t)

∫ 2π

0
dθ|Ψ(θ, t)|2 cos θ

=
AI(r, t)σ

π3/2

∑
m,n∈Z

exp

[
iDt

~

(
(m+N0)2 − (n+N0)2

)
− σ2(m2 + n2)

2

]

×
∫ 2π

0
dθei(n−m)θ cos θ, (B.13)

The integral on the second line yields∫ 2π

0
dθ exp(i(n−m)θ) cos θ = 2π(δn,m−1 + δn,m+1). (B.14)
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Substituting this expression into ĪI , we obtain

ĪI(r, t) =
2AI(r, t)σ√

π

∑
n∈Z

{
exp

[
i
Dt

~

(
(n+ 1 +N0)2 − (n+N0)2

)
− σ2((n+ 1)2 + n2)

2

]

+ exp

[
i
Dt

~

(
(n− 1 +N0)2 − (n+N0)2

)
− σ2((n− 1)2 + n2)

2

]}

=
4AI(r, t)σ√

π
e−σ

2/2
∑
n∈Z

e−n(n+1)σ2
cos

(
(2n+ 1 + 2N0)Dt

~

)
, (B.15)

where we used Euler’s formula to write the complex exponential in terms of a cosine and a sine. After

a shift in the sums, the imaginary parts cancelled and the real parts added up. For small σ and the

assumption N0 � 1 (which is compatible with the fact that we used the Thomas-Fermi limit when

we derived the Schrödinger equation for the phase) this reduces to

ĪI(r, t) ≈
4AI(r, t)σ√

π
cos

(
5(1 + 2N0)σt

2tcol

)∑
n∈Z

cos

(
5nσt

tcol

)
e−n(n+1)σ2

, (B.16)

where we introduced the characteristic time scale tcol = 5~σ/2D. The result in Eq. (B.16) can be

simplified by noting that for small σ we can approximate the envelop function by

σ
∑
n∈Z

e−σ
2n(n+1) cos

(
5nσt

tcol

)
≈ σ

∑
n∈Z

e−σ
2n2

cos

(
5nσt

tcol

)
≈
∫ ∞
−∞

dx e−x
2

cos

(
5xt

tcol

)
=
√
πexp

(
−25t2

t2col

)
. (B.17)

Thus, we find in total for the interence pattern

ĪI(r, t) ≈ 4AI(r, t) cos

(
5(1 + 2N0)σt

2tcol

)
exp

(
−25t2

t2col

)
. (B.18)
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M.H. Szymańska, R. Andr, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud and Le Si Dang,

Bose-Einstein condensation of Exciton Polaritons, Nature 443, 409 (2006).

[7] R. Balili, V. Hartwell, D. Snoke1, L. Pfeiffer and K. West, Bose-Einstein Condensation of Micro-

cavity Polaritons in a Trap, Science 316, 1007 (2007).

[8] S.O. Demokritov, V.E. Demidov, O. Dzyapko, G.A. Melkov, A.A. Serga, B. Hillebrands and A.N.

Slavin, Bose-Einstein Condensation of Quasi-Equilibrium Magnons at Room Temperature under

Pumping, Nature 443, 430 (2006).

[9] J. Klaers, J. Schmitt, F. Vewinger and M. Weitz, Bose-Einstein Condensation of Photons in an

Optical Microcavity, Nature 468, 545 (2010).

65



BIBLIOGRAPHY 66

[10] J. Schmitt, T. Damm, D. Dung, F. Vewinger, J. Klaers and M. Weitz, Observation of Grand-

Canonical Number Statistics in a Photon Bose-Einstein Condensate, Phys. Rev. Lett. 112, 030401

(2014).

[11] K. Huang, Statistical Mechanics, Wiley (1987).

[12] Y.B. Zel’dovich and E.V. Levich, Bose Condensation and Shock Waves in Photon Spectra, Sov.

Phys. JETP 28, 1287 (1969).

[13] R.Y. Chiao and J. Boyce, Bogoliubov dispersion relation and the possibility of superfluidity for

weakly interacting photons in a two-dimensional photon fluid, Phys. Rev. A 60, 4114 (1999).

[14] R.Y. Chiao, Bogoliubov dispersion relation for a ‘photon fluid’: Is this a superfluid?, Optics

Communications 179, 157 (2000).

[15] M.W. Mitchell, C.I. Hancox, R.Y. Chiao, Dynamics of atom-mediated photon-photon scattering,

Phys. Rev. A 62, 043819 (2000).

[16] E.L. Bolda, R.Y. Chiao and W.H. Zurek, Dissipative Optical Flow in a Nonlinear Fabry-Pérot
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