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In this thesis we study functions f on SL2(R) that are periodic on the left: φ(γg) = φ(g) for all
g ∈ SL2(R) and γ ∈ Γ for a discrete subgroup Γ with the property that Γ\SL2(R) is compact. To
study these functions we use techniques that can be seen as a generalization of Fourier analysis of Z
periodic functions on the real line R: a (locally integrable) Z-periodic function on R can be written as
the infinite sum of the functions x 7→ einx with n ∈ Z.

Locally integrable periodic functions f on SL2(R) can be written as an infinite sum of special
functions as well. For this two steps are needed,

i. The group SL2(R) contains K := SO2(R) =

{
κθ :=

(
cos θ sin θ
− sin θ cos θ

)
: θ ∈ R

}
� R/Z and for

every g ∈ SL2(R) we have that θ 7→ f (gκθ) is 2πZ-periodic. Using Fourier analysis as noted
above we may decompose f into functions fk that satisfy fk(gκθ) = fk(g)eikθ, these functions
are called weight k functions. The map f 7→ fk is given by the Fourier integral operator fk(g) =∫ 1

0 f (gκ2θπ)e−iπ2kθdθ. The Fourier integral operator does not affect the behavior of f on the left,
and the weight functions in the decomposition of f are Γ-invariant on the left as well.

ii. We further decompose the functions fk into eigenfunctions of a second order differential op-
erator, the Casimir operator. One could say that the Casimir operator is a higher dimensional
version of the operator ∂2

x on R, since the functions x 7→ einx on R are precisely the Z-invariant
functions that are eigenfunctions of ∂2

x.
The Casimir operator is a linear operator and when restricted to weight functions the operator
is elliptic. The Casimir operator commutes with the action of SL2(R), and the eigenfunctions
that decompose fk will keep the Γ-invariance on the left and weight k transformation behavior
on the right.

The class of Γ-invariant functions that are both weight functions and eigenfunctions of the Casimir
operators, as they occur in the above described decomposition of locally integrable Γ-invariant func-
tions, are called automorphic forms. These are the proper analogue of the functions einx on R.

One technique to study automorphic forms further is to look for one-parameter subgroups H
of SL2(R) such that at each g ∈ SL2(R) the function h 7→ f (hg) is periodic on H and apply the
theory of one-dimensional Fourier analysis. The case when H = K has been studied extensively,
one major result is that the resulting special functions must lie in a one-dimensional space, as we

review in Proposition 1.14. In this thesis our focus lies on the group A =

{(
t

t−1

)
: t > 0

}
. A

dimension one theorem as in the case of K is not possible, the resulting special functions lie in a two
dimensional space called the space of Fourier terms. We will use the group N(A)/ZA, where N(A)
is the normalizator of A in GL2(R), to decompose the space of Fourier term into one-dimensional
subspaces.

In the first section we will introduce automorphic forms and the Fourier analysis there of. We will
also state the main proposition of this thesis, namely 1.10.

In the second section we will review the representation theory of the Lie-algebra of SL2(R), and
review what restrictions the inner-product of L2(Γ\SL2(R), χ) lies on As,k(Γ, χ).

In the third section we will relate the space of Fourier terms to the solution space of the hyperge-
ometric differential equation.
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1 Introduction to automorphy and Fourier analysis

In the first subsection we will give a precise definition of automorphic forms and study the relationship
between the functions on the group and on the upper half-plane. In the second subsection we review
some geometry and structure theory of SL2(R). In the last section we define the Fourier map with
respect to closed geodesics.

1.1 Automorphic forms

A real analytic-automorphic form with respect to a co-compact discrete subgroup Γ of SL2(R) and
unitary character χ of Γ is a twice differentiable function φ on H = {x + iy ∈ C : x ∈ R, y > 0} that
satisfies the following conditions

• Automorphic transformation behavior:

φ

(
az + b
cz + d

)
= χ

(
a b
c d

)
eik arg(cz+d)φ(z), ∀z ∈ H, ∀

(
a b
c d

)
∈ Γ, (1)

• Eigenfunction of the Laplace operator:

(−y2∂2
x − y2∂2

y + iky∂x) φ = λ φ, where z = x + iy, (2)

for some λ ∈ C (called the eigenvalue), k ∈ Z (called the weight of φ). Note that the choice of
arg(cz + d) is not important, because k ∈ Z. The parity of k, (respectively χ) is defined as the number
ε ∈ {0, 1} such that k ≡ ε mod 2 (respectively χ(−Id) = (−1)ε). If χ and ε do not have the same
parity then any function satisfying the automorphic transformation property is zero, therefore we will
assume that k and χ have the same parity.
The space of automorphic forms is denoted As,k(Γ\H, χ) and the space of eigenfunctions of the Laplace
operator, denoted by Lk, is denoted by Es,k(H) = {φ : Lkφ = s(1 − s)φ}.

1.1.1 Automorphic transformation property

The linear fractional transformation of P1(C) = C ∪ {∞} is defined by

g · ξ =
aξ + b
cξ + d

, if ξ , ∞, cξ + d , 0,

g · ∞ =
a
c
,

(
a b
0 d

)
· ∞ = ∞, if ξ = ∞, c , 0,(

a b
c d

)
· ξ = ∞, if cξ + d = 0.

for any g =

(
a b
c d

)
∈ SL2(R), ξ ∈ P1(C). The group SL2(R) has three orbits in P1(C), namely

H, P1(R) = R∪{∞} and −H. The map g 7→ g · z factors through PSL2(R) := SL2(R)/{±Id} and defines
a double cover of the group of maps of H which preserve the orientation and the set of hyperbolic
lines1, see [Kat92, Thm. 1.3.1].

1The hyperbolic lines of H are the half-circles with center at R and the lines iR>0 + x for any x ∈ R or “the half-circles
with center at infinity”.
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The transformation of weight k of a function φ on H is defined for any g =

(
a b
c d

)
∈ SL2(R) by

(φ|kg) (z) = e−ik arg(cz+d)φ

(
az + b
cz + d

)
.

The factor eik arg(cz+d) =
(

cz+d
|cz+d|

)k
is called a factor of automorphy, and we denote the factor cz+d

|cz+d| by

J(g, z). If c , 0 then the root of this factor is given as follows, J(g, z) = sign(c)i
(
− cz+d

cz̄+d

)1/2
. We will

encounter this factor when we discuss Fourier terms.
The function J satisfies J(g1g2, z) = J(g1, g2 ·z)J(g2, z). This property implies that the map g 7→ |kg

is a representation of SL2(R) on the space of functions on H: i.e. |kgg′ = |kg|kg′.
Functions on H with the automorphic transformation property as in (1) are those functions φ such that
φ|kγ = χ(γ)φ, these functions are called |χk -Γ-invariant.

The stabiliser of ∞ is P =

{(
∗ ∗

0 ∗

)
∈ SL2(R)

}
. The map p 7→ p · i is a double cover of H by P

as analytical varieties, a section is given by z 7→ p(z) := y−1/2
(

y x
1

)
. The stabilisator of i is

SO2(R) =

{
κθ | κθ :=

(
cos θ sin θ
− sin θ cos θ

)
, θ ∈ R

}
.

The map k 7→ J(k, i) is an isomorphism between SO2(R) and T = {z ∈ C : |z| = 1}.
Any element g ∈ SL2(R) can be uniquely written as g = p(z)κθ with z = g · i and eiθ = J(g, i)−1.

Indeed the element p(g · i)−1g leaves i ∈ H fixed, and hence is of the form κθ with eiθ = J(g, i)−1.
The decomposition g = p(z)κθ of SL2(R) allows us to define the lift of weight k of functions φ on

H to functions on SL2(R), defined by

σk(φ) (g) = φ|kg (i) = J(g, i)kφ(g · i), g ∈ SL2(R),

= φ(z)eikθ, if g = p(z)κθ.

The map σk is a linear bijection onto its range. The image of σk are those functions Φ on SL2(R) that
satisfy the property

Φ(gκθ) = Φ(g)eikθ, ∀g ∈ SL2(R), ∀κθ ∈ SO2(R), (3)

or equivalently, right translation of Φ by κθ ∈ SO2(R) corresponds to multiplying Φ with the character
κθ 7→ eikθ. Functions satisfying this property are called weight functions.

The group SL2(R) acts on the space of functions on SL2(R) itself, by left- and right-translation

φ|g (x) = φ(gx), ρ(g)(φ) (x) = φ(xg), g, x ∈ SL2(R).

Since left and right translation commute, the left translation of a weight function leaves the weight
fixed. The map σk intertwines the weight k action |k with left translation of functions on G:

σk ◦ |kg = |g ◦ σk, g ∈ SL2(R),

here ◦ means composition of maps. Indeed, this follows directly from the following multiplication
rule

γp(z)κθ = p(γ z)κθ−arg(cz+d), with γ =

(
a b
c d

)
. (4)

Hence functions φ on H are |χk -Γ-invariant if and only if the function g 7→ Φ(g) = φ|kg on SL2(R) sat-
isfies Φ|γ = χ(γ)Φ for all γ ∈ Γ.
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Holomorphic automorphic transformation property The vector space of holomorphic automor-
phic forms Mk(Γ, χ) with respect to a cocompact discrete group Γ of weight k and character χ of Γ are
functions φ on H that satisfy

i. Holomorphic automorphic transformation behavior:

φ

(
az + b
cz + d

)
= χ

(
a b
c d

)
(cz + d)kφ(z), ∀z ∈ H, ∀

(
a b
c d

)
∈ Γ,

ii. Holomorphic:
∂z̄ φ = 0, where ∂z̄ =

1
2

(∂x + i∂y)

We denote j(g, z) = cz + d which we call the holomorphic factor of automorphy, and φ|χ,hol
k g(z) =

χ(g)(cz + d)−kφ(g z) is called holomorphic transformation of weight k.
Similarly we have the vector space of anti-holomorphic automorphic forms M−k (Γ, χ), consisting of
functions φ on H such that φ̄ ∈ Mk(Γ, χ) is a holomorphic automorphic form.

The following lemma shows that holomorphic automorphic forms can be seen as a special kind of
real-analytic automorphic forms, namely those that are annihilated by a first order differential operator.
Note that holomorphic automorphic forms satisfy a first order differential equation, namely ∂z̄φ = 0
while automorphic forms satisfy a second order differential equation, namely (2).

The map =k between functions on H defined by =k(φ) (z) = yk/2φ(z) is an isomorphism of vector
spaces.

1.1 Lemma: The map =k intertwines |χ,hol
k with |χk , and induces an isomorphism

=k : Mk(Γ, χ)→ A k
2 ,k

(Γ\H, χ) ∩ ker(E−k ), E−k = −(2iy∂z̄ + k
2 ).

Proof: The map =k satisfies intertwining property: (=k(φ))|χk g = =k(φ) |χ,hol
k g for any function φ on

H. Indeed, from the property Im(g · z) =
Im(z)
|cz + d|2

it follows that for φ on H we have

(=kφ)|kg (z) = Im(g · z)k/2φ|kg(z)

=

(
|cz + d|
cz + d

)k (
Im(z)
|cz + d|2

)k/2

φ(g z)

= Im(z)k/2(cz + d)−kφ(g · z) = =k(φ|hol
k g) (z).

From

−2iy yk/2(∂z̄φ(z)) = (−2iy∂z̄ −
k
2 )y

k
2φ(z) = E−k (=kφ(z)), (5)

we see that a function φ is holomorphic if and only if =k(φ) is annihilated by E−k . The following
relation

Lk −
k
2 (1 − k

2 ) = (2iy∂z + k−2
2 )(2iy∂z̄ + k

2 ), (6)

shows that functions annihilated by E−k have eigenvalue k
2 (1 − k

2 ) under Lk. Hence the claimed iso-
morphism follows. �
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A similar isomorphism holds for anti-holomorphic forms. Indeed, for real λ and integral k,
complex conjugation of a function give isomorphisms Mk(Γ, χ) � M−k (Γ, χ) and As,k(Γ\H, χ) �

As,−k(Γ\H, χ). Since k is real we may apply these two isomorphisms to the isomorphism in lemma 1.1
after taken complex conjugation on both sides. This gives the following injection, after sending χ to
χ as well:

=k : M−k (Γ, χ)→ A−k(Γ, k
2 (1 − k

2 ), χ).

The image consists of those automorphic forms that are annihilated by E+
k = 2iy∂z + k

2 .
In the next subsection we discuss the differential operators Lk and E±k in more detail.

1.1.2 Differential operators

The operator
Lk = −y2∂2

x − y2∂2
y + iky∂x = (z − z̄)2∂z∂z̄ + k

2 (z − z̄)(∂z + ∂z̄)

is called the Laplace-Beltrami differential operator of weight k. The Laplace-Beltrami is an elliptic
operator on H, that is Lk is linear and the index σLk (z, ξ) = −y2||ξ||2 of Lk doesn’t vanish on H × (R2 −

(0, 0)). By elliptic regularity, see [Lan75, App. 4] the eigenfunctions of Lk are real-analytic functions
on H. Hence the name real-analytic automorphic forms for functions in As,k(Γ\H, χ).

The following operators are called Maass operators and were already mentioned in Lemma 1.1
and the ensuing comments,

E+
k = y∂y + iy∂x +

k
2

= +(z − z̄) ∂z +
k
2
, ∂z =

1
2

(∂x − i∂y), (7)

E−k = y∂y − iy∂x −
k
2

= −(z − z̄) ∂z̄ −
k
2
, ∂z̄ =

1
2

(∂x + i∂y). (8)

These operators shift the weight by 2. Indeed, let φ be a function on H, z ∈ H, g ∈ G and put
w = g · z, then

E+
k (φ|kg) (z) =

(
(z − z̄)∂z + k

2

) (
cz̄+d
cz+d

)k/2
φ(w) (9)

=
(

cz̄+d
cz+d

)k/2 (
(z − z̄)∂z = k

2
cz̄+d
cz+d

)
φ(w) (10)

=
(

cz̄+d
cz+d

)(k+2)/2 (
(w − w̄)∂w + k

2

)
φ(w), (11)

and similarly E−k ◦ |k = |k−2 ◦ E−k . For the last equality we used the following identities:

Im(g z) =
Im(z)
|cz + d|2

,
dg · z

dz
=

1
(cz + d)2 . (12)

The Maass operators decompose the Laplace-Beltrami operator as follows:

Lk = −E±k∓2E∓k ±
k
2 (1 ∓ k

2 ). (13)

From these identities it is easily verified that Lk is |k invariant, and that E+
k and Lk satisfy the following

commutation relation

E+
k ◦ Lk = E+

k (−E−k+2E+
k −

k
2 (1 + k

2 )) = (−E+
k E−k+2 + k+2

2 (1 − k+2
2 ))E+

k = Lk+2 ◦ E+
k , (14)

and similarly E−k ◦ Lk = Lk−2 ◦ E−k .
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From the above relations it follows that the Maass operators shift the weight of Maass automorphic
forms by 2:

E±k :As,k(Γ\H, χ)→ As,k±2(Γ\H, χ),

E±k :Es,k(H)→ Es,k±2(H).

1.2 Lemma: The operator E−k : Es,k → Es,k−2 is not invertible if and only if k = 2s or k = 2 − 2s,
and E−k : Es,k → Es,k+2 is not invertible is not invertible if and only if k = −2s or k = 2s − 2.

Proof: The composition E±k∓2E∓k : Es,k(H)→ Es,k(H) is given by

E+
k−2E−k = −(s − k

2 )(1 − s − k
2 ), E−k+2E+

k = −(s + k
2 )(1 − s + k

2 ), (15)

as follows from (13). Hence if −(s ∓ k
2 )(1 − s ∓ k

2 ) is non-zero then E∓k : Es,k(H) → Es,k±2(H) is
invertible.

If −(s∓ k
2 )(1− s∓ k

2 ) is zero, then the zero-space of E±k is non-empty. Indeed, from (5) we see that
the zero-space of E−k correspond to holomorphic functions on H; and similarly the zero-space of E+

k
correspond to anti-holomorphic functions on H. Hence if −(s∓ k

2 )(1− s∓ k
2 ) is zero, then E±k can’t be

invertible. �

The differential operators Lk and E±k onH arise as restrictions of differential operators on SL2(R) to
fixed weight spaces. Indeed, the following operators on G

ω = −y2∂2
x − y2∂2

y + y∂x∂θ (16)

E− = e−2iθ
(
−iy∂x + y∂y −

1
2i∂θ

)
(17)

E+ = e2iθ
(
iy∂x + y∂y + 1

2i∂θ
)

(18)

satisfy Lk ◦σk = σk ◦ω and E±k ◦σk = σk±2 ◦ E±, since σk(φ) (p(z)κθ) = φ(z)eiθ and hence ∂θσk(φ) =

ikσk(φ). In particular Lk is SL2(R)-equivairant and E±k satisfy the commutation relation in (9) if and
only if ω and E± commute with left translation. Such left-invariant differential operators are best
studied using the right derived action of the Lie algebra of SL2(R), this will be done in 1.1.3.

1.1.3 The derived action of the Lie algebra

The Lie algebra sl2(R) = {A ∈ M2(R) : tr(A) = 0} has a left, respectively right, action on functions
on SL2(R), given by the right, respectively left differentiation:

X|φ(x) :=
d
dt

∣∣∣∣∣
t=0

φ(x exp(tX)), respectively φ|X(x) :=
d
dt

∣∣∣∣∣
t=0

φ(exp(tX)x),

which we extend linearly to sl2 := sl2(R) ⊗ C. These actions give isomorphism, respectively anti-
isomorphism of Lie algebras between sl2 and first order left- respectively right-invariant differential
operators, and isomorphism of algebras between the universal enveloping Lie algebra of sl2(R),U(sl2)
and left- respectively right-invariant differential operators on SL2(R), see [Lan75, X Thm.1].

The real Lie-algebra sl2(R) has the following basis

W =
1
2

(
1

−1

)
, H =

1
2

(
1
−1

)
, V =

1
2

(
1

1

)
.
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Since [H,V] = W the elements H and V generate sl2(R) as a Lie-algebra. Now define

E± = H ± iV,

then [E−, E+] = 2i[H,V] = 2iW and hence E± are generators of sl2 as a complex Lie-algebra.
In the Iwasawa coordinates the right derived action of W is given by i

2∂θ. A locally integrable
functions φ on G is a weight k function as in definition (3) if and only φ is weakly an eigenfunction
of W of eigenvalue i k

2 . In the Iwasawa coordinates the operators E± are given by the differential
operators in (18). Indeed simply compute the operator PX(φ) (p(z)κθ) = d

dt

∣∣∣
t=0 φ(p(z) exp(tX)κθ) in the

Iwasawa coordinates and invert the relations given by PX = κθXκ−θ, for X = H,V .
In particular equation (9) is implied by the following relation

WE± = E±(W ± 1). (19)

The Casimir operator is defined as

ω = −H2 − V2 + W2 ∈ U(g). (20)

In [Lan75, X, Thm 3] it is proven that ω generates the center ofU(g) and is bi-invariant with respect
to the action of left and right translation of functions by elements of G.

In the Iwasawa coordinates the Casimir operator is given by the differential operator in (16). It
follows that Lk is |χk -equivariant and that Lk, E±k indeed satisfy (14).

The decomposition of the Laplace-Beltrami operator in (13) can also be verified using the Lie-
algebra structure, indeed we have

ω = −E+E− +
W
i

(
1 −

W
i

)
= −E−E+ −

W
i

(
1 +

W
i

)
. (21)

We can now define the space of automorphic forms As,k(Γ\G, χ) on the group,

Es,k(G) = Es,k = {φ ∈ C∞ | ωφ = s(1 − s)φ, Wφ = ikφ},

As,k(Γ\G, χ) = As,k(Γ, χ) = {φ ∈ Es,k(G) | φ|γ = χ(γ)φ}.

Here we write G = SL2(R), g = sl2. Combining the properties discussed above between G and H we
see that σk : As,k(Γ\H)→ As,k(Γ\G, χ) is an isomorphism of vector spaces.

1.2 Geometry of H and structure theory of SL2(R)

1.2.1 Fixed points

The fixed points of ±Id , g =

(
a b
c d

)
∈ SL2(R) in P1(R) are given by

1
c

a − d
2
±

√(
a + d

2

)2

− 1

 , if c , 0, (22)

∞,
b

d − a
, if c = 0, d , a. (23)

If |tr(g)| = 2 then g has a single (degenerate) fixed point in P1(R), in this case g is called parabolic.
It is well-known that co-compact discrete subgroups of SL2(R) can’t contain parabolic elements,

9



[Kat92, 4.2.1].
If |tr(g)| = |a + d| > 2 then g is called hyperbolic and has two fixed points that lie in P1(R). One fixed
point is attracting, and is equal to limn→∞ gn · z for any z ∈ H. The other fixed point is repelling.
The repelling or starting fixed point is called ξs and the attracting or final fixed point is called ξ f . If
c , 0 then examples of connected g-invariant sets in H are (unions of) the Euclidean circle segments
through ξs and ξ f , one of which is the unique fixed hyperbolic line called the axis of g and denoted lg.
We give lg the orientation from ξs to ξ f .
If |tr(g)| < 2 then g is called elliptic and has one fixed point in H and one in H−. The connected fixed
points sets of g in H are the circles whose hyperbolic center lies at z.2

Any hyperbolic g ∈ SL2(R) can be conjugated in SL2(R) to a unique ±
(

t
t−1

)
with t > 1.

Indeed if πg satisfies

πg · ∞ = ξ f , πg · 0 = ξs (24)

then πggπ−1
g fixes 0 and∞ with∞ being the attracting point, and hence is of the stated form.

1.3 Example: We now compute the matrix πg in the case when g =

(
a b
c d

)
is an hyperbolic

element with c , 0 and such that πg maps i to the unique point ξ0 on the axis of g whose imaginary
value is maximal.

Elaboration: Let g =

(
a b
c d

)
and, after replacing g with −g if neccesary, assume a + d > 2.

From (22) it follows that lg is the (Euclidean) half circle in H centered at a−d
2c and with radius

1
2|c|

√
(a + d)2 − 4, hence ξ0 = a−d

2c + i
2|c|

√
(a + d)2 − 4 ∈ H.

Let ε denote the sign of c. The matrix π =

(
ε ξ f ξs

ε 1

)
satisfies π · ∞ = ξ f , π · 0 = ξs. To verify

that and π · i = ξ and det(π) = ε(ξ f − ξs) is positive we need to compute the sign of ξ f −
a−d
2c .

The element g should map a−d
2c (the Euclidean center of the hyperbolic line lg) towards ξ f , hence the

sign of ξ f −
a−d
2c should be equal to sign of the following expression:(

a b
c d

)
·
(

a−d
2c

)
− a−d

2c = 1
2c

(a+d)2−4
a+d .

The sign of the right hand side is equal to the sign of c, hence ξ f = a−d
2c + 1

c

√(
a+d

2

)2
− 1.

It follows that π has positive determinant and π · i = ξ0, and projects to a matrix πg in SL2(R) with the
required properties. �

1.4 Lemma: If Γ is a discrete subgroup of SL2(R) and γ, γ′ ∈ Γ have one common fixed point, then
their set of fixed points is the same.

Proof: Suppose their fixed point set is not the same, but have one common fixed point say ξ1. Then
γ, γ′ must be both hyperbolic or one hyperbolic and one parabolic. Without loss of generality we may
assume that γ is hyperbolic. After replacing γ with γ−1, if necessary, we may assume that ξ1 is the
attracting fixed point of γ.

2Euclidean circles contained in H are hyperbolic circles and vice versa, but whose center lies at different points.
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As before we may choose π ∈ SL2(R) satisfying π · ∞ = ξ, π · 0 = ξ2, here ξ2 is the other fixed
point of γ. Then after conjugating γ and γ′ with π they are of the form

±α(t) =

(
t

t−1

)
, and ± p(z) = y−1/2

(
y x

1

)
, t > 1, z ∈ H.

Note that Re(z) , 0 otherwise γ, γ′ would have two fixed points in common. We define the following
sequence in Γ:

h(n) := γ−nγ′γn = πα(t)−n p(z)α(t)n π−1 = π y−1/2
(

y xt−n

1

)
π−1.

Then h(n) is non-constant and converges to παyπ
−1, contradicting the discreteness of Γ. Hence γ and

γ′ must have the same fixed point set. �

1.5 Lemma: The map l 7→ StabSL2(R)(ξ)∩StabSL2(R)(ξ′) that sends hyperbolic lines l to the stabilisator
in SL2(R) of the end points ξ, ξ′ is a bijection between

i. geodesics in H,

ii. maximal commutative subgroups of SL2(R) consisting of hyperbolic elements.

Proof: According to [Kat92, Theorem 2.3.2] two elements in SL2(R) commute if and only if they
have the same fixed point set. Hence Stab(ξ) ∩ Stab(ξ′) is a maximal commutative subgroup of
SL2(R) that contains only hyperbolic elements, and the map in the lemma is well defined.
The cited theorem also implies that all elements in a commutative subgroup H * {±Id} of SL2(R) must
have the same fixed point set X. If H contains an hyperbolic element h then X consist of two points
in P1(R), see (22), to which a unique geodesic lX corresponds. The map H 7→ lh is the inverse of the
map in the lemma, hence these maps are bijections. �

A geodesic l in H is said to map to a closed geodesic in Γ\H if the projection to Γ\H is compact.
A hyperbolic element γ ∈ Γ is called primitive if ±γ generate a maximal commutative subgroup of Γ.

1.6 Lemma: The following notions are equivalent

i. lifts of oriented simple closed geodesics in Γ\H of hyperbolic length ρ,

ii. primitive hyperbolic elements in Γ (modulo ±Id), with trace equal to 2 cosh(ρ).

Proof: As discussed before a primitive hyperbolic element γ ∈ Γ defines an oriented geodesic lγ in H.
The element γ identifies any pair of elements on l that are of length ρ apart and hence the projection
of l to Γ\H is compact, and since γ is primitive the projection is closed and of length ρ.

If a hyperbolic line l projects to a closed geodesic of length ρ, then there exists an element γ ∈ Γ

that maps a given point z ∈ l to a point z′ with d(z, z′) = ρ and preserving the orientation of the
geodesic. Let s denote the segment of l joining z and z′. Then s and γ(s) must join smoothly at z′,
otherwise the projection of l to Γ\H would have a corner. Hence l is invariant under γ, and l = lγ. �

From the above lemma it follows that closed geodesics in Γ\H corresponds to the conjugacy
classes of γ and γ−1 for primitive hyperbolic elements γ ∈ Γ. Since γ and γ−1 may belong to the same
conjugacy class, this correspondence does not respect orientation in general.
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1.2.2 Group of symmetries of A

In Lemma 1.5 we’ve seen that geodesics can be described using maximal commutative subgroups of
SL2(R). We will use this fact to define the group of symmetries of a geodesic using the algebraic
properties of the group SL2(R). We will later compute how this group acts on geodesics, see (34).

The following group is called the symmetry group of Ā

Symm = N(Ā)/Ā.

Here Ā denotes the projection of A =

{(
∗

∗

)
∈ SL2(R)

}
to PSL2(R), and N(Ā) is the normalizator

of Ā in PGL2(R). We chose the following set of representatives in PSL2(R) of the cosets in Symm:

Symm �N(A) ∩ PO2(R) = {e, h, v,w}, e =

[
1

1

]
, h =

[
1
−1

]
, (25)

v =

[
1

1

]
, w =

[
1

−1

]
. (26)

Here PO2(R) denotes the projection of the orthogonal group O2(R) of GL2(R) to PGL2(R). Note that
the representatives all satisfy x2 = e in PGL2(R).

We now consider the action of PGL2(R) on SL2(R) given by conjugation g 7→ cx(g) = x̄gx̄−1, g ∈
SL2(R), x ∈ PGL2(R) and x̄ ∈ GL2(R) a lift of x; note that the action does not depend on the choice
of lift of x.
The group Symm leaves the groups A, B and K = SO2(R) invariant, where

B = κ(−π/4)Aκ(π/4) =

{(
c s
s c

)
: c2 − s2 = 1, c > 0

}
. (27)

Indeed, the restriction of Symm to these groups is given by:

A B K
h α 7→ α v 7→ v−1 κ 7→ κ−1

w α 7→ α−1 v 7→ v−1 κ 7→ κ

v α 7→ α−1 v 7→ v κ 7→ κ−1

α ∈ A, v ∈ B, κ ∈ K. (28)

For x ∈ Symm we denote by x∗ the pullback of x to φ functions on G, x∗φ(g) = φ(x̄gx̄−1). The maps
v∗, h∗ restrict to maps Es,k → Es,−k, while w∗ : Es,k → Es,−k. Using E± = H ± iV the following
commutation relations between E± and the elements of Symm are easily verified:

h∗E± = E∓h∗, w∗E± = −E±w∗, v∗E± = E±v∗. (29)

The map h∗ is an involution of Es,0. We denote the decomposition of Es,0 into the eigenspaces of
h∗ as follows:

E±s,0 = E+
s,0 ⊕ E

−
s,0, φ 7→ 1

2 (φ + h∗φ, φ − h∗φ), (30)

E±s,0 = {φ ∈ Es,k : h∗φ = ±φ}. (31)

Note that (anti-)holomorphic forms cannot be eigenfunctions of h∗, as h∗ sends holomorphic functions
to anti-holomorphic functions.
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If k = 1, then h∗ is no longer an involution. Indeed, h∗ sends weight one functions to weight minus
one functions. To remedy this, we look at the operator E+ ◦ h∗, which is a linear map of Es,1. We have
for φ ∈ Es,1, using (15), that

(E+h∗)2φ = E+E−(h∗)2φ = E+E−φ = (s − 1
2 )2φ.

Hence if s , 1
2 the operator 1

s−1/2 E+ ◦ h∗ is an involution of Es,1. We denote the decomposition of Es,1
into the eigenspaces of this involution as follows:

Es,1 = E+
s,1 ⊕ E

−
s,1, (32)

E±s,1 = {φ ∈ Es,1 : 1
s−1/2 E+h∗φ = ±φ}. (33)

Note that (anti-)holomorphic forms have spectral parameter s = 1
2 , hence these do no occur in the

above decomposition.
In section 2.2.2 we will show that, under some restrictions on s, k, there exists similar definitions

of E±s,k. If 2s , k mod 2 then E±s,k = E(k−ε)/2Es,ε , see Proposition 2.10. We call elements of E±s,k
symmetric functions.

The action of Symm on the whole of SL2(R) is given in the Iwasawa coordinates as follows:

h̄p(z)κθh̄ = p(−z̄)κ−1
θ ,

w̄−1 p(z)κθw̄ = p(−1/z)κ
θ+

1
2 arg

(
−

z̄
z

)
+
π
2
,

v̄p(z)κθv̄ = p(1/z̄)κ−1

θ+
1
2 arg

(
−

z̄
z

)
+
π
2
.

(34)

The transformation by h follows by a direct computation, the transformation by w follows from equa-
tion (4) and the transformation by v = hw follows from combining the first two.

1.2.3 Orientation reversing isometries and reflections

In this section we review reflections in a given geodesic on the upper halfplane. Examples of reflec-
tions can be derived from (34). Indeed for the map p(z) 7→ h̄p(z)h̄ = p(−z̄) we see the map z 7→ z̄,
which is the reflection in the geodesic iR>0. Reflections are orientation reversing isometries. First we
will review orientation reversing isometries. Secondly we will review reflections in a given geodesic,
a subclass of orientation reversing isometries. Lastly we will review how reflections associated to a
given hyperbolic γ ∈ Γ act on automorphic forms in As,k(Γ, χ).

Orientation reversing isometries The group SL±2 (R) := {g ∈ GL2(R) | | det(g)| = 1} � GL2(R)/R>0

has an action on H and P1(R) = R ∪ {∞}, for g =

(
a b
c d

)
∈ SL±2 (R) and z ∈ H, ξ ∈ P1(R) given by

g · z =


az + b
cz + d

, if det(g) > 0,

az + b
cz + d

, if det(g) < 0,

g · ∞ =
a
c
,

(
a b
0 d

)
· ∞ = ∞, if ξ = ∞, c , 0,(

a b
c d

)
· ξ = ∞, if cξ + d = 0.

13



To see that this defines an action, note that the above map ξ 7→ g · ξ is a composition of the Moebius

transformation ξ 7→
aξ + b
cξ + d

and the map ξ 7→

{
ξ if det(g) > 0
ξ, if det(g) < 0

, and that both are commuting

actions of SL±2 (R) on P1(C).
The map g 7→ g · z factors through SL±2 (R)/{±Id} � PGL2(R) := GL2(R)/R∗ and defines a double
cover of the group of isometries of H. The matrices in SL±2 (R) with negative determinant corresponds
to orientation reversing maps.

1.7 Example: [Fixed points] Let g =

(
a b
c d

)
∈ SL±2 (R) with det(g) = −1 and c , 0. The fixed

points of g in R are given by

a − d
2c
±

1
c

√(
a + d

2

)2

+ 1 (35)

If tr(g) , 0 then g does not have fixed points in H. If tr(g) = 0 then all points on the unique geodesic
connecting the two fixed points in R, as given by the above equation, are fixed points of g.

Elaboration: If det(g) < 0 then the fixed points of g are given by solutions of the equation

c|z|2 + dz − az̄ − b = 0,

Hence on P1(R) the fixed points of g are given by (35).
By looking at the imaginary part of the above equation we see that: (d + a)Im(ξ) = 0. Hence if

tr(g) , 0 then g has no fixed points in H. If tr(g) = 0, then plugging a + d = 0 back into the equation
we find the quadratic equation defining the axis of g. �

Following the example p(z) 7→ h̄p(z)h̄ we extend the action of left translation of SL2(R) on itself
to an action of SL±2 (R) on SL2(R) as follows, let g ∈ SL±2 (R), x ∈ SL2(R):

g · x =


g x, if det g = 1,

g x
(
−1

1

)
, if det g = −1.

(36)

Note that the conjugation by w̄ and v̄ as in 34 give different maps from the above action, indeed these
are shifted on the right by an element of K.

Similarly to (4) the actions on the upper half-plane and on the group can be related using the
Iwasawa decomposition. Indeed, after combining (4) and the conjugation by h in (34) we find, for
g ∈ SL±2 (R), z ∈ H:

g · p(z) κθ = p(g · z) (κθ−(cz+d))±, g =

(
a b
c d

)
, ± 1 = sign(det g).

We denote the pullback of φ by left translation with g ∈ SL±2 (R) by |g, φ|g(x) = φ(gx). Suppose

det(g) = −1 then the map |g is not g-equivariant, indeed let X =

(
a b
c −a

)
∈ sl2(R) then:

X ◦ |g = |g ◦ hXh = |g ◦

(
a −b
−c −a

)
,

and hence W ◦ |g = −W ◦ |g and E± ◦ |g = E∓ ◦ |g. Combining W ◦ |g = −W ◦ |g with the bi-invariance
of ω we see that:

|g : Es,k → Es,−k, if det(g) = −1. (37)
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Reflections In the introduction we already noted that h : z 7→ −z̄ is a reflection in the geodesic iR>0.
The map h is the unqiue reflection in iR0, as can be easily verified by computing the matrices that
have 0, i and ∞ as fixed points. From Example 1.7 it follows that g ∈ SL±2 (R) is a reflection if and
only if det(g) = −1 and tr(g) = 0.
Let g ∈ SL2(R) and define sg = πghπ−1

g , recall that πg denotes a (chosen) matrix that satisfies (24),
then sg is the unique reflection in the axis of g, as introduced in subsection 1.2.1. It is easily verified
that a reflection sg commutes with h : z 7→ −z̄ modulo ±Id if and only if g = h or if g = v : z 7→ 1/z̄.
Hence two reflections commute in PGL2(R) if and only if they are the same or if their axis intersect
perpendicularly.

1.8 Lemma: Let g ∈ SL2(R) be an hyperbolic element, then the reflection sg in the axis of g is given
by:

sg =
g − g−1√
tr(g)2 − 4

Proof: Let g =

(
a b
c d

)
, then det(g−g−1) = −(a−d)2−4bc = 4− (a + d)2 < 0. Since tr(g−g−1) = 0

it follows that g−g−1
√

tr(g)2−4
has order two. Furthermore (g−g−1)g = g(g−g−1), hence g = (g−g−1)−1g(g−

g−1). It follows that the fixed points of g are fixed points of (g− g−1), and since g−g−1
√

4−tr(g)
has order two

it is the reflection in the axis of lg. �

Let γ ∈ Γ be an hyperbolic element. Combining (37) and the fact that the Casimir operator ω is a
bi-invariant differential operator, we find that

|sγ : As,k(Γ, χ)→ As,−k(sγΓsγ, χ).

Hence |sγ is a map between automorphic forms related to Γ if sγ normalises Γ, sγΓsγ = Γ. For such γ
and for k = 0 or k = 1, s , 1

2 we define:

A±,γs,k (Γ, χ) = {φ ∈ As,k(Γ, χ) : φ|πg ∈ E
±
s,k}. (38)

Tbe condition that an hyperbolic γ ∈ Γ satisfies sγΓsγ = Γ is very strong. Therefore we study
the following slightly weaker property, but which will still be useful for our analysis, namely γ and Γ

such that Γ and sγΓsγ are commensurable. Two Fuchsian groups Γ1 and Γ2 are commensurable if

Γ1 ∩ Γ2 is of finite index in both Γ1, Γ2.

For such Γi the group Γ1 ∩ Γ2 is a Fuchsian group as well. We define the commensurability group of
Γ as follows:

Comm(Γ) = {γ ∈ SL±2 (R) : γΓγ−1 is commensurable with Γ}.

If γ ∈ Comm(Γ) then As,k(Γ, χ) ⊂ As,k(Γ′, χ) for Γ′ = Γ ∩ sγΓsγ. For such γ and k = 0 or
k = 1, s , 1

2 the space As,k(Γ, χ) has a decomposition into symmetric automorphic forms with respct
to sγ, as follows. Let Es,0 = Id, Es,1 = 1

s−1/2E
+.

As,k(Γ, χ) ⊂ A+,γ
s,k (Γ′, χ) ⊕ A−,γs,k (Γ′, χ), φ 7→

(
(φ + |sγEs,k)φ, (φ − |sγEs,k)φ

)
.

Note that in general Γ , Γ′ and hence in the above equation equality doesn’t always hold.
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1.2.4 Group decompositions

Now we review two group decompositions of SL2(R). We know that any element g ∈ SL2(R) may be
written as p(z)κθ, where z ∈ H. On H the coordinates z = x + iy 7→ (x, y) ∈ R × R>0 on H have already
been used. These coordinates may be lifted to SL2(R), indeed we have p(z) = ηxαy, where

ηx =

(
1 x

1

)
, αy =

(
y1/2

y−1/2

)
, x ∈ R, y ∈ R>0.

Any element g ∈ SL2(R) may be written as ηxαyκθ with x+iy = g·i, eiθ = J(g, i), the triple g 7→ (x, y, θ)

is called the Iwasawa coordinate of SL2(R). Furthermore SL2(R) = NAK with N =

{(
1 ∗

0 1

)}
, A ={(

t 0
0 t−1

)
: t > 0

}
which is called the Iwasawa decomposition.

The Iwasawa coordinates have the property that the map g 7→ ηx′g corresponds to the map (x, y, θ) 7→
(x + x′, y, θ). We now look for a decomposition that has a similar property with respect to the map
g 7→ αrg, in order to study the left translation of automorphic forms by hyperbolic elements.

1.9 Lemma: On SL2(R) we have the following group decomposition, recall (27) for the definition
of B,

SL2(R) = Aκ(−π/4)AK = ABK,

and for each g ∈ SL2(R) the notation g = αβκ with α ∈ A, β ∈ B, κ ∈ K is unique.

Proof: Claim: let z ∈ H, then there exist unqiue q, t > 0 such that

z = α(q1/2)βt · i, where:

βt = κ(−π/4)αtκ(π/4) =
1
2

(
t1/2 + t−1/2 t1/2 − t−1/2

t1/2 − t−1/2 t1/2 + t−1/2

)
.

Define q = |z|2, t =
|z|+x

y , and note that t−1 =
|z|−x

y . Then βt · i = 2i+t−t−1

t+t−1 = z
|z| and hence z = α(q1/2)βt · i.

Uniqueness follows from the fact that the map t 7→ βt is a bijection between R>0 and {z ∈ H : |z| = 1}.
Now set z = g · i. Then (α(q1/2)βt)−1g fixes i, and hence is a unique element κη of K. Hence every

element g ∈ SL2(R) is of the form g = αq1/2β(tτ)κ(−π/4)α(tτ)κ(η + π/4) for unique q, τ, η. Hence
SL2(R) = Aκ(−π/4)AK. �

It turns out that the variable t is not suitable for our study. To introduce the parametrization which
we will use in Lemma 1.10 and subsection 3.2, we will first review the corresponding coordinate
system on H. Any z ∈ H is uniquely defined by q > 0, τ ∈ T \ {1}, T = {z ∈ C : |z| = 1} as follows

z2 = qτ−1, q = |z|2 ∈ R>0, τ = z̄
z ∈ T − {1}.

This is well-defined since the map z 7→ z2 is an isomorphism between H and C−R>0. Elements z ∈ H
can be expressed directly in terms of q, τ by z = iq1/2(−τ)−1/2, the minus sign in front of τ is included
according to our choice of argument in ] − π, π[.

The Maass operators on H in terms of q and τ are given as follows:

z∂z = −τ∂τ + q∂q, z̄∂z̄ = τ∂τ + q∂q (39)

E+
k = (1 − τ)(q∂q − τ∂τ) + k

2 , E−k = (1 − τ−1)(q∂q + τ∂τ) − k
2 . (40)
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On SL2(R) we define the following coordinate system:

g = α(q1/2)β(tτ)κ(η) 7→ (q, τ, η). (41)

If g = p(z)κ(θ) then the above parameters are given as follows:

q = |z|2, τ =

( t − i
t + i

)2
= z̄

z , η = θ + 1
4 arg(− z̄

z ).

For the last equality note that θ = η + arg(J(βt, i)−1) = η + arg
(
−i z
|z|

)1/2
= η − 1

4 arg(− z̄
z ).

1.3 Real-analytic function theory

1.3.1 Fourier analysis of periodic functions

In this section we review how to decompose the following set of periodic functions in Es,k,

Ps,k(ρ, χ) =
{
φ ∈ Es,k : φ(α(eρ)g) = χ φ(g)

}
, α(eρ) =

(
eρ/2

e−ρ/2

)
, (42)

relative to a χ ∈ C, |χ| = 1 and ρ > 0. Here χ is a constant, which we will later relate to the character
χ of Γ.
From the above periodicity condition on functions φ ∈ Ps,k(ρ, χ) it follows that for n ∈ C(ρ, χ) = {n ∈
C : χ = einρ} the integrand t 7→ e−inρtφ

(
α(etρ)g

)
is Z-periodic for every g ∈ G. The elements of

C(ρ, χ) are called the Fourier term orders and we define the nth Fourierterm of φ as follows:

Fn(φ) (g) =

∫ 1

0
e−inρtφ(α(etρ)g)dt.

From Fourier analysis, [Rud87, Chapter 9], it follows that the following sum converges point-wise

φ =
∑

n∈C(ρ,χ)

Fn(φ). (43)

Since φ is smooth and the integral is over a compact set, we have for any left-invariant differential
operator D that Dφ =

∑
n∈C(ρ,χ) Fn(Dφ) converges point-wise too. Hence (43) converges absolutely on

compact sets, and since φ is bounded the sum is absolutely convergent on the whole of H.
The map Fn satisfies the following,

Fn(φ) (α(et)x) = eintFn(φ) (x),

E± Fn(φ) (x) = Fn(E± φ) (x), for g ∈ SL2(R)
(44)

because the integral in the definition of Fn(φ) is over a compact set and the operator E± is left-
translation invariant. In particular it follows that Fn(φ) is an element of the following linear space,
called the space of Fourier terms on G

Ws,k,n = {ψ ∈ Es,k(G) | ψ|α(et) = eintψ}. (45)

We denote the pullback of the action of x ∈ Symm on functions on G by x∗. From equation (28)
we see that h∗ and v∗ send weight k functions to weight −k functions, and Fourier terms of order n to
order −n. Since Symm commutes with ω we have maps between spaces of Fourier terms as follows:
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h∗ :Ws,k,n → Ws,−k,n,

w∗ :Ws,k,n → Ws,k,−n,

v∗ :Ws,k,n → Ws,−k,−n.

(46)

Similarly we derive the following commutation relations between Fn and action of Symm,

h∗ ◦ Fn = Fn ◦ h∗, w∗ ◦ Fn = F−n ◦ w∗, v∗ ◦ Fn = F−n ◦ v∗. (47)

For k = 0 or k = 1 and s , 1
2 we define W±s,k,n = Ws,k,n ∩ E

±
s,k following (30) and (32). We define

furthermore F±n := Fn ◦ (Id ± Es,kh∗) = (Id ± Es,kh∗) ◦ Fn, recall Es,0 = Id and Es,1 = 1
s−1/2 E+ then:

F±n : Ps,k(ρ, χ)→ W±s,k,n.

1.10 Proposition: The space Ws,k,n is 2-dimensional, and for k = 0 and k = 1, s , 1
2 the space W±s,k,n

are one-dimensional. A basis ω±(s, k, n) for W±s,k,n can be chosen by: in the case k = 1 by normalizing
their values at the identity, and in the case of k = 0 by normalizing the values at the identity and the
values of the derivatives at the identity.

In subsection 3.2 we will relate Ws,k,n to the solution space of a Gaussian hypergeometric differen-
tial equation and prove the above proposition. For the normalisation in the case of k = 1 see Lemma
3.14 and for the case of k = 0 see [BLZ13, A.18].

1.11 Example: If E−φ = 0 then E±Fnφ = FnE± = 0 as well. And Fnφ can be related to holomorphic
functions as in section 1.1.1. Indeed, we have Fnφ(z, 0) = ysψ(z) with ψ a holomorphic function on

H satisfying ψ(etz) = e(in−k/2)tψ(z). Hence ψ must be a multiple of the function z 7→ zin− k
2 , and the

Fourier decomposition of ψ is given as follows

φ(z) =
∑

n

anzin−k/2, an ∈ C.

1.3.2 Fourier analysis of automorphic forms

Given a hyperbolic element γ ∈ Γ, tr(γ) > 2, then any φ ∈ As,k(Γ, χ) satisfies a periodicity condition
similar to equation (42). If πγ ∈ SL2(R) is a matrix satisfying (24) then the left translation of φ by
πγ, g 7→ φ(πγ g) = φ|πγ (g) satisfies (42) with χ = χ(γ) and ρ such that tr(γ) = 2 cosh(ρ). Hence for
given πγ we have nth-Fourierterm map at γ:

Fn ◦ |πγ : As,k(Γ, χ)→ Ws,k,n,

where n ∈ C(γ, χ) := {n ∈ C : χ(γ) = einρ}.
The following theorem shows that each automorphic form has a Fourier decomposition along

any hyperbolic γ ∈ Γ using the two basis Fourier terms ω+
s,k,n(x) and ω±s,k,n(x). If sγ belongs to the

commensurator group of Γ, then each of the two Fourier series corresponding to the (anti-)symmetric
Fourier terms defines an automorphic form.

1.12 Theorem: [Local dimension one theorem for the weights zero and one]
Let k = 0 or k = 1 and s , 1

2 , and let φ ∈ Aγ,±s,k (Γ, χ) see (38). Then the Fourier decomposition of φ
allong a primitive hyperbolic element γ ∈ Γ is given by:

φ(πγx) =
∑

n∈C(γ,χ)

anω
±
s,k,n(x)

where the sum is absolutely convergent on G.
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This is a local dimension one theorem: if an automorphic form φ is an eigenfunction of sγ then
the Fourier terms of φ must lie in a one-dimensional subspace of Ws,k,n. The locality comes from the
fact that a non-zero automorphic form can’t be, in general, an eigenfunction of sγ for more then one
γ at the same time.

1.3.3 Review of Fourier analysis along interior points

Similarly we can define a Fourier integral operator allong the group K. Let φ ∈ Es,k, then we define
the nth-Fourier term of φ at i as follows:

Fell
n (φ) (g) =

∫ 1

0
e−inθφ(κ(θπ)g)dθ,

where n ≡ k mod 2. Because the integral is over a compact set, we may change the differentiation
with integration, and hence Fell

n maps into Es,k. Furthermore the image of Fell
n is contained in

Well
s,k,n = {φ ∈ Es,k : φW = inφ}.

Similarly as before, the following sum is absolutely convergent on H:

φ =
∑
n∈Z

Fell
n (φ).

1.13 Example: [Holomorphic Fourier terms] If φ ∈ Es,k satisfies E−φ = 0, then E−Fnφ =

FnE−φ = 0 as well. Hence Fnφ(z, 0) = ysψ(z) with ψ a holomorphic function on H satisfying
ψ(κθz) = einθ(− sin(θ)z + cos(θ))kψ(z).
Using the identity κθ · z + i = e−iθ

− sin(θ)z+cos(θ) (z + i) we see that ψ must be a multiple of:

(z + i)−k
(z − i
z + i

)(n−k)/2
.

1.14 Proposition: The space Well
s,k,n is one-dimensional.

Proof: A basis for functions on G \ K satisfying φW = inφ and Wφ = ikφ, ωφ = s(1 − s)φ is given
in [Bru94, 4.2.9]. One function has singularity at 1 and the other function extends to a function on G
and is an element of Es,k, see [Bru94, 4.2.11]. �

1.15 Theorem: [Dimension one theorem for the elliptic case] If φ ∈ As,k(Γ, χ) and z ∈ H then
(Fn ◦ |p(z)) φ is an element of the one-dimensional space Well

s,k,n.

This a local dimension one theorem, since automorphic forms φ ∈ As,k(Γ, χ) are regular on the
whole of H the image of the Fourier map Fn,z = Fn ◦ |p(z) will always be in the same one-dimensional
space of bounded Fourier terms no matter at which point z it is taken.

2 Representation theory

In the first subsection we review the space L2(Γ\G, χ, k) and what restrictions the inner product lies on
the space As,k(Γ, χ). In the second subsection we review the representation theory of Lie-algebras and
we consider the decomposition of h∗-invariant g-modules into modules of (anti-)symmetric vectors.
In the last subsection we relate the representation theory of the Lie algebra sl2 to the representation
theory of the group SL2(R).
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2.1 Unitary structure

2.1.1 Invariant integration

Since the weights are real and characters χ unitary, complex conjugation φ 7→ φ̄ sends |χk -Γ invariant

functions on H to |χ
−1

−k -Γ invariant functions. In particular for any pair of |χk -Γ invariant functions φ, ψ
the function φψ̄ is |0-Γ-invariant, and may be integrated over the coset space Γ\H.

The measure µ on H defined by:

dµ =
dx ∧ dy

y2 = −2i
dz ∧ dz̄
(z − z̄)2 ,

is a SL2(R)-invariant measure, as can be seen from (12).
Any continuous Γ-invariant function f on H is determined by it’s values on a fundamental region

F , that is an open connected set F such that: F ∩ (Γ · z) contains at most one point for any z ∈ H and
the complement of Γ · F in Hhas zero volume. See [Kat92, 3.2.2] for a construction of fundamental
regions. The integration over the coset space Γ\H of f is defined as follows∫

Γ\H

f (z) dµ(z) =

∫
F

f (z) dµ(z).

From measure theory [Kat92, 3.1.1] we know that this integral does not depend on the choice of
fundamental regions. The integral is invariant with respect to left translation:

∫
Γ\H

f (g · z) dµ(z) =∫
g−1F

f (z) dµ(z) =
∫
Γ\H

f (z) dµ(z) since if F is a fundamental set for Γ then so is g−1 · F for any
g ∈ SL2(R).

The space C(Γ\H, k, χ) of continuous |χk -Γ-invariant functions has an inner product, given for φ, ψ ∈
C(Γ\H, k) by

〈φ, ψ〉k =

∫
Γ\H

φ(z)ψ(z) dµ(z).

The completion of C(Γ\H, k, χ) with respect to this inner product is denoted L2(Γ\H, k, χ).
From the isomorphism p 7→ p·i between the analytical varieties P andH it follows that the measure

dp =
dxdy

y2 on P in the Iwasawa coordinates is left invariant for the group P. From the commutation
relation ηxαy = αyηx/y it follows that the modular character ∆P of P is given by ∆P(p(z)) = y−1. On
K := SO2(R) we denote the Haar measure by dθ/2π, normalised such that SO2(R) has volume 1.
The unique Haar measure on SL2(R) that restricts to the above Haar measures of K and P and such
that K has measure 1 is given by dg = dp dθ

2π =
dxdy

y2
dθ
2π . Left invariance is easily verified using the

commutation relation (4). The measure is also right invariant, because the group SL2(R) is unimodular
since there exists no group homomorphisms of SL2(R) into the positive reals.

Similarly there is a inner product 〈, 〉 on C(Γ\G, χ) on the space of integrable |χ-Γ-invariant func-
tions

〈φ, ψ〉 =

∫
Γ\G

φ(g)ψ(g)dg =

∫
F

∫
K
φ(p(z)κθ)ψ(p(z)κθ) dθ

2πdµ(z), φ, ψ ∈ C(Γ\G, χ), (48)

The completion with respect to this inner product is denoted L2(Γ\G, χ). The subspace of weight k
functions inside L2(Γ\G, χ) is denoted L2(Γ\G, χ, k). Since Γ\G is compact we have As,k(Γ\G, χ) ⊂
L2(Γ\G, χ).
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The action of SL2(R) on L2(Γ\G, χ) by right translation is unitary with respect to this inner prod-
uct:

〈g|φ, g|ψ〉 = 〈φ, ψ〉, ∀g ∈ SL2(R), g|φ(x) = φ(xg). (49)

2.1 Proposition: The spaceAs,k(Γ, χ) is finite-dimensional.

Proof: The proof is taken from [Bor97, Theorem 8.5].
According to [Bor97, Lemma 8.3] closed subspaces of L2(Γ\H, χ) consisting of essentially bounded

functions must be finite dimensional. Since |χ| = 1 the spaceAs,k(Γ, χ) consists of bounded functions
on H.

To see As,k(Γ, χ) is closed in the L2-topology, let φn be a sequence in As,k(Γ, χ) converging to
φ ∈ L2(Γ\G, k, χ) in the L2-topology. Then since Γ\G has finite volume, the sequence φn converges to
φ as distributions on the space C∞c (G). Hence if φn ∈ As,k(Γ, χ) then ωφ = λsφ, Wφ = ikφ weakly.
By elliptic regularity φ is real-analytic, and is an element of As,k(Γ, χ). Hence As,k(Γ, χ) is closed in
the L2-topology. �

2.1.2 Spectral restrictions for unitary g-modules

If the space As,k(Γ\G, χ) is non-empty then (s, k) must belong to a certain set, which we will review
now.

The derived action of g on L2(G) is unitary, indeed after replacing g with exp(tX) in equation (49)
we find for differentiable φ:

〈Xφ, ψ〉 + 〈φ,Xψ〉 = 0, ∀X ∈ sl2(R).

From the unitary property it follows that (E+)∗ = (H + iV)∗ = −H + −i(−V) = −E−. It follows
that −E±E∓ is a non-negative operator and from the decomposition (13) it follows that ω − |k|2 (1 − |k|2 )
when restricted to weight k functions is non-negative too.

Iterating the Maass operator on a function φ ∈ Es,k(H), we see that for any l with l ≡ k mod 2 the
function

vl(φ) := E
l−k
2 φ, E

l−k
2 =


(
E+) l−k

2 , when l − k ≥ 0,(
E−

) |l−k|
2 , when l − k ≤ 0.

(50)

is an element of Es,l(H).

2.2 Lemma: Suppose φ ∈ As,k(Γ\G, χ) then

s ∈
{ 1

2 + iR ∪ 1
2Σ0(k), if ε = 1,

1
2 + iR ∪ 1

2Σ0(k)∪]0, 1[, if ε = 0.

with ε the parity of k and Σ0(k) = {l ∈ Z : l ≡ k mod 2, |l| ≤ |k|}.

Proof: Let ε denote the parity of k. If vε(φ) = 0 then there is an l ∈ Σ0(k) such that vl(φ) , 0 but
E∓vl(φ) = 0 with ± = sign(l). This shows that λ = ± l

2 (1 ∓ l
2 ) and hence s ∈ {± l

2 , 1 ∓
l
2 } ⊂

1
2Σ0(k).

If vε(φ) is non-zero then it is a non-zero eigenfunction of the positive operator Lε − ε2

4 , and hence
λ ≥ ε2

4 . It follows that s ∈
(

1
2 + iR

)
∪ [0, 1 − ε]. �

In Theorem 2.15 we will prove that for each pair (s, k) satisfying the above conditions, there is a
unitary g-module V and a φ ∈ V such that φ has weight k and eigenvalue s(1 − s) with respect to ω.
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2.1.3 Discreteness of the spectrum for automorphic g-modules

In this section we study the following integral operator on the space L2(Γ\G, χ, k), let φ ∈ C∞c (G) and
define

(ρ(φ) f )(g) =

∫
G
φ(h) f (gh) dh =

(∫
G
φ(h) (ρ(h) f ) dh

)
(g).

This is a bounded operator on L2(Γ\G, χ, k):

||ρ(φ) f ||2 = 〈ρ(φ) f , ρ(φ) f 〉

=

∫
G

∫
G
φ(g)φ(h)〈ρ(g) f , ρ(h) f 〉dgdh,

≤

∫
G

∫
G
|φ(g)φ(h)| |〈ρ(g) f , ρ(h) f 〉|dgdh,

≤

(∫
G
|φ(g)|dg

)2

|| f ||2,

since |〈ρ(g) f , ρ(h) f 〉| ≤ ||ρ(g) f || ||ρ(h) f || = || f ||2 by the Cauchy-Schwarz inequality and the fact that
ρ(g) is unitary.

The operator ρ(φ), φ ∈ C∞c (G) satisfies the following identities, which we leave to the reader to
verify,

ρ(φ)∗ = ρ(φ∗), where φ∗(g) = φ(g−1),

−X(ρ(φ) f ) = ρ(φX) f , ∀X ∈ sl2(R), f ∈ L2(Γ\G, χ, k),

ω(ρ(φ) f ) = ρ(φ)(ω f ), ∀ f ∈ C∞(Γ\G, χ, k).

2.3 Lemma: The operator ρ(φ) is a Hilbert-Schmidt operator.

Proof: We have

(ρ(φ) f )(g) =

∫
G

f (h)φ(g−1h) dh,

=

∫
F

∑
γ∈Γ

f (γh)φ(g−1γh) dh,

=

∫
F

f (h)K(g, h) dh.

Where
K(g, h) =

∑
γ∈Γ

χ(γ)φ(g−1γh), g, h ∈ G.

Since φ is compactly supported it follows that for fixed g, h ∈ G the sum is non-zero for only a finite
number of γ ∈ Γ, hence K is a continuous function on Γ\G × Γ\G and L2-integrable since Γ\G is
compact. �

2.4 Theorem: For each φ ∈ Cc(G) the space L2(Γ\G, χ, k) is a countable direct sum of eigenspaces
of ρ(φ), the eigenspaces for nonzero eigenvalues are finite-dimensional.
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Proof: In [Bum97, Theorem 2.3.2] it is proven that Hilbert-Schmidt operators are compact, and hence
ρ(φ) is a compact operator. The result follows from the spectral theorem for compact operators,
[Bum97, Theorem 2.3.1]. �

A Dirac-sequence is a sequence of functions φn such that

i. φn ≥ 0 on G, for all n,

ii.
∫

G φn(g) dg) = 1, for all n,

iii. for each neighborhood V of e there exists an N such that supp(φn) ⊂ V for all n > N.

Then, [Bor97, 13.1.iii],

ρ(φn) f
n→∞
−−−−→ f . (51)

We may choose a Dirac-sequence such that all the φn are self-adjoint.

2.5 Theorem: The space L2(Γ\G, χ, k) has a Hilbert space basis consisting of countably many
eigenfunctions of ω. In particular the automorphic forms lie dense in the space L2(Γ\G, χ). The
spectrum of ω in L2(Γ\G, χ, k) is countable with finite multiplicities.

Proof: [Bor97][13.4] Let φn be a self-adjoint Dirac-sequence. Then the finite dimensional eigenspaces
of the φn, n ∈ N span L2(Γ\G, χ, k), otherwise there exists f ∈ L2(Γ\G, χ, k) satisfying ρ(φn) f = 0
for all n, but this contradicts (51).

Let E be a finite dimensional eigenspace of a φn. Since ω commutes with ρ(φn), ω leaves E
invariant and since ω is self-adjoint E has a basis of eigenfunctions of ω. Because E consists of
weight k functions E has a basis of automorphic forms. Hence L2(Γ\G, χ, k) has a countable basis of
automorphic forms.

The linear space of automorphic forms in L2(Γ\G, χ, k) of a given eigenvalue are finite-dimensional
by Proposition 2.1, hence the spectrum of ω has finite multiplicities. �

2.2 Admissible modules

In this section we review representations of g by means of the right derived action of smooth functions
on G, especially functions that are Γ invariant on the left.

In this thesis we only consider g-modules V that are admissible, V is admissible if V is spanned by
its weight spaces Vl := {φ ∈ V : Wφ = i l

2φ}, l ∈ Z and that the weight spaces are finite dimensional.
An automorphic g-module is a g-submodule V of L2(Γ\G, χ) which is admissible.

2.2.1 Cyclic g-modules

For a weight eigenfunction φ ∈ Es,k(G) the space VK
f := U(g) f = {X f : X ∈ U(g)} is an

automorphic g-module, with the same parity and spectral parameter as φ and if φ is automorphic then
so isVK

f .
A g-module of the form V = U(g) φ for some φ ∈ V is called cyclic. If a g-module contains no nonzero
g-invariant submodules it is called irreducible. Irreducibility is stronger than the cyclic property,
indeed a module is irreducible if and only if every vector is cyclic.
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Every unitary g-module V can be decomposed into a direct sum of cyclic g-modules. Indeed, the
Casismir operator restricts to a self-adjoint operator of each weight space Vk. Hence Vk decomposes
into an eigenspaces Vk(s) of ω of eigenvalue s(1 − s), and

V =
⊕

s

⊕
ε=0,1

V(s, ε), V(s, ε) =
⊕

k∈Z
k≡ε mod 2

Vk(s).

It now suffices to give cyclic vectors for the spaces V(s, ε). If 2s < Z then any set of basis vectors φi

of a weight space Vl, l ≡ ε mod 2 is a set of cyclic vectors for V(s, ε), and V(s, ε) = ⊕VK
φi

. If 2s ∈ Z
then one needs to consider weight spaces Vk and V−k such that k ≥ max(s, 1 − s).

If all the functions in an admissible module V have the eigenvalue s(1 − s) with respect to the
Casimir operator and weights with parity ε we call s the spectral parameter of V and ε the parity of V .

Let V be an admissible module module with spectral parameter s and parity ε. If 2s < Z then E±

is an inverible operator on V . If 0 ≤ 2s = l ∈ Z and ε ≡ l mod 2, then the operator E (respectively
E+) is not invertible on Vl and V2−l (respectively Vl−2 and V−l. The latter situation is described in the
following picture:

ker(E+)� _

��

ker(E+)� _

��
...

E+
// V−l

E−oo

E+
%%

V2−l

E−
ee

E+
//

E−oo
...

E+
// Vl−2

E−oo

E+
%%

Vl

E−
ee

E+
//

E−oo
...

ker(E−)
?�

OO

ker(E−)
?�

OO

2.6 Lemma: Let f ∈ Es,k, then

VK
f = span(vl( f ) : l ≡ k mod 2),

Vl = C · vl( f )

Proof: From (21) it follows that E±E∓ = ±W
i (1∓ W

i )−ω. Since each function of the form Y1 . . . Yn f
with Y j ∈ {W, E+, E−} is an eigenfunction of both W (see (19)) and ω it follows that the function is
also an eigenfunction of E±E∓. Suppose ψ = Y1 . . . Yn f is such a function and there is a j ≤ n such
that Y j = W or Y j−1Y j = E±E∓. Then ψ = νY1 . . . Y j−1Y j+1 . . . Yn f or ψ = νY1 . . . Y j−2Y j+1 . . . Yn f ,
where ν is the eigenvalue of W or E±E∓ depending on whether Y j = W or Y j = E∓ with respect
to Y j+1 . . . Yn f . Repeating this process of removing occurrences of W and E±E∓ shows that ψ is a
complex multiple of vl(φ) for some l ≡ k mod 2. This shows that VK

f is the complex linear span of
the vl( f ).

The nonzero vl( f ) are linearly independent for different l, since they are eigenfunctions of W
with distinct eigenvalues. It follows that non-trivial finite linear combinations of the vl( f ) cannot be
eigenfunctions of W and that the eigenspace of eigenvalue l of W insideVK

f is equal to C vl( f ). �

If 2s , k mod 2 then E± is always invertible on Es,k, see (21). For such f the module VK
f is

always irreducible, since it is generated by El f , l ∈ Z. But if 2s ≡ k mod 2 then VK
f may contain

proper g-invariant sub-module, since E± may have a non-trivial kernel. For irreducible VK
f with
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f ∈ Es,k and 2s ≡ k mod 2, it follows that 2
iσ(W |VK

f ) is either one of the following sets:

Σ+(l) = {n ∈ Z : l
(2)
≡ n, n − l ≥ 0},

Σ0(l − 2) = {n ∈ Z : l
(2)
≡ n, |l − n| ≤ |l|},

Σ−(l) = {n ∈ Z : l
(2)
≡ n, n + l ≤ 0}.

Note that the operator E± is not invertible in a g-module V if and only if s ∈ 1
2Z, vectors v ∈ V for

which E±v = 0 are called highest respectively lowest weight vectors. The operator E± is an invertible
operator if and only if s , 1

2 and Re(s) = 1
2 or 0 < s < 1 in this case the module V doesn’t have any

lowest or highest weight vectors.
If all eigenvectors of iW in V have the same parity ε then we call ε the parity of V . Similarly, if

all vectors in V are eigenvectors of ω of eigenvale s(1 − s) then we call s the spectral parameter of V .
All unitary admissible g-modules can be decomposed into g-modules of the above form. From the

commutation relation in equation (19) it follows that E± : Vl → Vl±2. Hence Vε := ⊕k≡ε mod 2Vk is
a g-submodule of V and V = V0 ⊕ V1. Since ω lies in the center of U(g) it is a map between weight
spaces, ω : Vl → Vl. Since ω is self-adjoint and Vl is finite dimensional the space Vl is spanned
by the eigenvectors of ω and therefore V is spanned by the eigenvectors of ω. Since eigenvectors of
different eigenvalue of ω are linearly independent it follows that V is the direct sum of the submodules
{φ ∈ V : ωφ = s(1 − s)φ} in V .

2.2.2 Symmetric functions in Es,k

In this section we consider functions in Es,k that are symmetric with respect to h ∈ Symm. The map h∗

is not a linear map of the space Es,k for non-zero k, therefore we consider the map E−k : Es,k → Es,−k

as well.3 We define the space of (anti-)symmetric functions as follows. Let ε denote the parity of k:

E±s,k =
{
φ ∈ Es,k : h∗φ = ±Es,kφ

}
, Es,k = (−1)(k−ε)/2Bk(s)−1E−k, and:

Bk(s) =


(s) k

2
(1 − s) |k|

2
,

1
1
2−s

(
1
2 − s

)
|k|+1

2

(
s − 1

2

)
|k|+1

2
,

if k is even,
if k is odd,

where (a)n is the Pochhammer symbol defined by: (a)n = a(a + 1) . . . (a + n−1), a0 = 1 for a ∈ C, n ∈
Z≥0. Compare with Es,0 and Es,1 as defined in (30) and (32).

Note that Bk(1 − s) = (−1)εBk(s) and hence we have

E±s,k = E±1−s,k if k is even,

E±s,k = E∓1−s,k if k is odd.

In the following we will prove that the spaces E+
s,k and E−s,k decompose Es,k and that this decom-

position is equivariant for the action of the Maass operators E±. First we will need the following
technical lemma.

3Recall the convention introduced in (50).
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2.7 Lemma: Let k ∈ Z and denote by ε the parity of k. We have, as an operator on Es,k that:

EkE−k =
(
s − 1

2

)2ε
[s]2
|k|[1 − s]2

|k|, where:

[a]n :=
n−2∏
m=ε′

m≡n mod 2

(a + m
2 ), [a]0 = 1, ∀a ∈ C, n ∈ Z≥0, and ε′ the parity of n.

Proof: We will need the following identities on the space Es,l for l > 0, as follows from (15),

E+(E−)l = −(s + l
2 − 1)(1 − s + l

2 − 1)(E−)l−1 = −(s − l
2 )(1 − s − l

2 )(E−)l−1

E−(E+)l = −(s + l
2 − 1)(1 − s + l

2 − 1)(E+)l−1 = −(s − l
2 )(1 − s − l

2 )(E+)l−1 (52)

If k = 0 then E0E−0 = Id and [s]0[1 − s]0 = 1 by definition. If k = 1 then E+E− equals −(s − 1
2 )(1 −

s − 1
2 ) = B1(s) on Es,1. Hence the result holds for k = 0, 1.

To start induction suppose the claim holds for k − 2.
If E+ : Es,k−2 → Es,k is not invertible, then (s − k

2 )(1 − s − k
2 ) = 0 as follows from (15). Hence

Bk(s) = 0 and from (52) it follows that on Es,k we have EkE−k = Ek−1(E+E−k = −(s − k
2 )(1 − s −

k
2 )Ek−1E1 − k = 0. Hence EkE−k = Bk(s)

Now assume that E+ : Es,k−2 → Es,k is invertible. Then Es,k = E+Es,k−2 and we may write any
ψ ∈ Es,k as ψ = E+φ with φ ∈ Es,k−2. For such ψ = E+φ we have:

EkE−k ψ = Ek−1E+(E−)k (E+φ) = −(s − k
2 )(1 − s − k

2 )Ek−1E1−k (E+φ), according to (52),

=
(
−(s − k

2 )(1 − s − k
2 )

)2
E+Ek−2E2−k φ, according to (15),

=
(
−(s − k

2 )(1 − s − k
2 )

)2
E+(s − 1

2 )2ε[s]2
k−2[1 − s]2

k−2φ

= (s − 1
2 )2ε[s]2

k[1 − s]2
kψ.

Hence by induction EkE−k = [s]k[1 − s]k on Es,k.
If k < 0 then, since h∗E± = E∓h∗ and (h∗)2 = 1, we have

EkE−k = h∗E |k|E−|k|h∗ = (s − 1
2 )2ε[s]2

|k|[1 − s]2
|k|.

�

The number [a]n can be related to the Pochhammer symbol as follows

[a]n =

n
2−1∏
m=0

(a + m) = (a) n
2
, if k is even,

[a]n =

n−1∏
m=2

m≡0 mod 2

(a − 1
2 + m

2 ) =

n−1
2∏

l=1

(a − 1
2 + l), if k is odd,

= (a − 1
2 )−1(a − 1

2 ) n+1
2
.

Hence Bn(a) =
(
a − 1

2

)ε
[a]n[1 − a]n.
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2.8 Proposition: The maps h∗ and Es,k satisfy

(h∗Es,k)2 = 1, h∗Es,k =

{
Es,−k h∗ if k is even,
−Es,−k h∗ if k is odd,

Proof: We have:

h∗Es,k = (−1)(k−ε)/2Bk(s)−1h∗E−k

= (−1)(k−ε)/2B−k(s)−1Ekh∗, since Bk(s) = B−k(s), h∗E± = E∓h∗,

=

{
Es,−k h∗ if k is even,
−Es,−k h∗ if k is odd,

since (−1)k/2 = (−1)−k/2,

since (−1)(k−1)/2 = −(−1)(−k−1)/2.

And hence:

(h∗Es,k)2 = (h∗)2(−1)εEs,−kEs,k

= Bk(s)−2EkE−k, since (h∗)2 = 1,

= 1, since EkE−k = Bk(s)2.

�

Note that from the above proposition it follows that

h∗ : E±s,k → E
±
s,k, if k is even,

h∗ : E±s,k → E
∓
s,k, if k is odd.

2.9 Lemma: We have Es,k = E+
s,k ⊕ E

−
s,k.

Proof: The elements of E±s,k are precisely the eigenvectors in Es,k of the operator h∗Es,k of eigenvalue
∓1, hence E+

s,k ∩ E
−
s,k = {0} and E+

s,k ⊕ E
−
s,k ⊂ Es,k.

Let φ ∈ Es,k and define φ± =
φ±hEs,kφ

2 . Then φ± ∈ E±s,k since (h∗Es,k)2 = 1 and φ = φ+ + φ−. Hence
Es,k = E+

s,k ⊕ E
−
s,k. �

2.10 Proposition: The Maass operators act as follows

E± : E±s,k → E
±
s,k.

Proof: We have for k ≥ 0 on the space Es,k

Es,k+2E+ = (−1)(k+2−ε)/2Bk+2(s)−1(E−)k+2E+

= −(s + k
2 )(1 − s + k

2 )(−1)(k+2−ε)/2Bk+2(s)−1(E−)k+1, see (15),

= E−(−1)(k−ε)/2Bk(s)−1(E−)k = E−Es,k

E+Es,k = (−1)(k−ε)/2Bk(s)−1E+(E−)k

= −(s − k
2 )(1 − s − k

2 )(−1)(k−ε)/2B−1
k (E−)k−1, see (52),

= (−1)(k−2−ε)/2Bk−2(s)−1(E−)k−2E− = −Es,k−2E−.

Hence E± commutes with the operator h∗Es,k, and since E±s,k is the ±1-eigenspace of this operator the
lemma follows. �

Now we can define W±s,k,n and F±n for all weights: if Bk(s) , 0 then we define W±s,k,n = E±s,k ∩Ws,k,n

and F±n := Fn ◦ (Id ± Es,kh∗). We can now state the extension of Proposition 1.10 to all weights:

2.11 Proposition: If Bk(s) , 0 then the space W±s,k,n is one-dimensional.

This will be proven in subsection 3.2.
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2.3 Classification of g-modules

In this section we review a bijection between admissible g-modules and G-representations, which will
be used to apply the classification of G-representations to that of g-modules.

2.12 Proposition: Let H be a unitary representation of G. Then H has a decomposition as a Hilbert
space direct sum ⊕k∈ZHk, where Hk := { f ∈ H : ρ(κθ) f = eikθ f }.

[Bum97, Proposition 2.3.2]
If H is a representation of G then we define

Hfin = { f ∈ H : K f generates a finite dimensional subspace of H}.

A unitary representation H of G is called admissible if the weight spaces Hk are finite dimensional.
For admissible unitary representations H we have Hfin = ⊕

alg
k∈ZHk, here ⊕alg means the algebraic direct

sum: the space of vectors in H whose projection on only a finite number of Hk is non-zero, see
[Bum97, Proposition 2.4.4].

2.13 Proposition: The following mutually inverse operations define a bijection between g-modules
and group representations.

i. If V is a unitary admissible g-module on G then the closure of V in the norm topology induced
by the inner product is an unitary admissible group representation.

ii. If H is an unitary admissible group representation then the set of K-finite vectors in H is an
unitary admissible Lie algebra representation.

Proof: The closure of a unitary admissible g-module is G-invariant, see [Lan75, VI.1 Theorem 1],
and hence is a G-representation. The set of K-finite vectors is the set of weight functions, see [Lan75,
VI.1 page 25], hence the G-representation is admissible.
See [Bum97, Prop. 2.4.5] for the second part. �

2.14 Proposition: Irreducible unitary g-modules correspond to irreducible unitary G-representations,
under the bijection described in the previous proposition.

Proof: Irreducible unitary G-representations are admissible, a proof may be found in [Lan75, II.1
Theorem 2]. Hence the bijection of the previous proposition are well-defined on the set irreducible
unitary G-representations.

Suppose H is an irreducible unitary G-representation and let V , Hfin be a g-invariant subspace.
Then the closure of V is a proper G-invariant closed subspace of H and hence must be {0}. Hence Hfin

is irreducible.
Similarly one proves that if V is an irreducible unitary g-module then the closure is an irreducible

unitary G-representation. �

If H is an irreducible unitary G representation then, since the g-module has a parity and ω has a
unique eigenvalue s(1− s) in H, H has a parity and a spectral parameter. In the following theorem we
will review that the pair (s, ε) modulo s 7→ 1− s is a unitary isomorphism invariant for representations
of G.

2.15 Theorem: The following is a complete list of the isomorphism classes of irreducible unitary
representations of SL2(R)
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i. The unitary principal series, of both even and odd parities and Re(s) = 1
2 , s , 1

2 .

ii. The complementary series, of even parity and 0 < s < 1, s , 1
2 .

iii. D±l The holomorphic and anti-holomorphic discrete series4, of both even and odd parities, 2s ≡
ε mod 2.

iv. F1 The 1-dimensional representation.

The case ε = 1 = 2s is the only class of representations that doesn’t have a representative inside
L2(G), for this reason some authors call this representation class the mock discrete series, for example
[Lan75].
The one-dimensional representation class F1 is the only unitary finite dimensional representation of
G.

See [Bum97, Theorem 2.6.7]
The following table shows which weights occur for the holomorphic and anti-holomorphic dis-

crete seriesD±l and the finite dimensional representation Fl:

�D−l �� Fl � � D
+
l�

In Lemma 2.2 we’ve seen that in a representation of G the eigenvalues of W and ω must satisfy
certain rules. The above theorem states that for every (s, k) satisfying those rules there exists an
irreducible unitary representation. Only countably many unitary representations of SL2(R) will occur
as a representation in L2(Γ\G, χ), as proven in Theorem 2.5.

3 Fourier terms

In this section we analyze the space of Fourier terms Ws,k,n in more detail. In the first section we will
review the theory of boundary behavior and how this defines a splitting of Ws,k,n. In the last section
we related the space Ws,k,n to the solution space of a hypergeometric differential equation and give a
proof of Proposition 1.10.

3.1 Splitting of Ws,k,n

3.1.1 Boundary behavior

Let I ⊂ R be an open subset. We define the space of boundary eigenfunctions as follows

Es,k(H; I) =
{
φ ∈ Es,k(H) : z 7→ y−sφ(z) extends to a neighborhood of I in C in a real-analytic way

}
,

(53)

Es,k(I) = {φ ∈ Es,k(G) : z 7→ φ(p(z)) ∈ Es,k(H; I)} (54)

The Maass operators maps boundary functions to boundary functions:

E± : Es,k(I)→ Es,k±2(I). (55)

4Note that in this case we have two non-isomorphic representations corresponding to ( l
2 , ε)
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Indeed, suppose a is a real-analytic on a neighborhood of I, then from the following relation

E±k ysa(z) = ys(s ± k
2 ± (z − z̄)∂±z )a(z), ∂+

z = ∂z, ∂
−
z = ∂z̄, (56)

we see that E± maps ys times real-analytic functions to ys times real analytic functions. Because E±

generate g it follows that ⊕k Es,k(I) is a g-submodule of ⊕k Es,k.

3.1 Lemma: If s , 1
2 the two spaces Es,k(I) and E1−s,k(I) have zero intersection.

Proof: Suppose φ(p(z)) = ysa(z) = y1−sb(z) with a and b(z) = real analytic on a neighborhood of I.
Let x0 ∈ I and consider the power series expansion of a(z) =

∑
n,m an,m(z − x0)n(z̄ − x0)m around x0,

similarly for b. After replacing s with 1 − s, if needed, we may assume that Re(2s − 1) ≥ 0. Then
limy→0 |y2s−1| ∈ {0, 1}. From the relation y2s−1b(z) = a(z) evaluated at z = x0 it follows that

a(x0) = a0,0 = lim
z→x0

y2s−1
∑
n,m

bn,m(z − x0)n(z̄ − x0)m.

The limit on the right hand side equals a(x0) and hence must exist, but since 2s − 1 , 0 the only
possible limit is zero. Hence a0,0 = 0.

Let r, l ∈ Z≥0, we will now repeat the above technique to show that ar,l = 0. We have,

ã(z) = (E+)r(E−)l
∣∣∣
θ=0a(z)eikθ = (E+)r(E−)l

∣∣∣
θ=0y2s−1b(z)eikθ = y2s−1b̃(z)eikθ,

where b̃ is a real analytic function on a neighborhood of I as follows equation (56).
Again we evaluate this equation at z = x0. We have ã(x0) = Car,l where C is a non-zero

constant depending on a, k, r, l. And the right hand side equals zero, since only possible limit of
limz→x0 y2s−1b̃(z) is zero. Hence ar,l = 0 for any r, l ∈ Z≥0 it follows that a is zero, and hence φ is
zero. �

3.1.2 The spaces WR
s,k,n and WL

s,k,n.

We define WR
s,k,n as the intersection of Ws,k,n and Es,k(R>0), and WL

s,k,n as the intersection of Ws,k,n and
Es,k(R<0).

3.2 Proposition:
If 2s < Z≤0 then the space WR

s,k,n is one-dimensional and there exists a unique function µR(s, k, n) in
WR

s,k,n such that
lim
z→1

y−sµR(s, k, n) = 1.

Similarly for WL
s,k,n.

This proposition will be proven in section 3.2.

3.3 Corollary: If 2s < Z then Ws,k,n = WL
1−s,k,n ⊕WL

s,k,n = WR
1−s,k,n ⊕WR

s,k,n.

Proof: According to Proposition 3.2 both spaces WL
1−s,k,n and WL

s,k,n are non-empty and according
to Lemma 3.1, have zero intersection. And similarly for WR

1−s,k,n and WR
s,k,n. The space Ws,k,n is

two-dimensional, as will be proven in Lemma 3.12, the lemma follows. �

3.4 Lemma: Let 2s < Z≤0 then

E±µR(s, k, n) = (s ± k
2 )µR(s, k ± 2, n), E±µL(s, k, n) = (s ± k

2 )µL(s, k ± 2, n).
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Proof: From equation (56) it follows that y−sE±µR/L(s, k, n) = s ± k
2 + O(y), hence

lim
z→1

y−sE±µR(s, k, n) = s ± k
2 .

Since E±µR(s, k, n) ∈ WR
s,k±2,n, we have according to Proposition 3.2 that E±µR(s, k, n) = (s ± k

2 )µR(s, k ± 2, n).
Similarly for µL(s, k, n). �

3.5 Corollary: If 2s ≡ k mod 2 and 0 < s ≤ |k| then

WR(s, k, n) = WL(s, k, n) ⊂ Es,k(R∗).

Proof: If l = 2s then according to the previous Lemma E−µR(s, l, n) = 0 = E−µL(s, l, n). Then,
following the discussion on holomorphic Fourier terms on page 1.11, both functions are a multiple of
yl/2zin−l/2eilθ. Therefore WR(s, l, n) = WL(s, l, n) if 2s = l > 0. Now suppose k > s > 0. Since E+ is an
invertible operator on Es,k if 0 < s ≤ k we have that WR(s, k, n) = Ek−lWR(s, l, n) = Ek−lWL(s, l, n) =

WL(s, k, n).
The case k ≤ −s follows similarly, using anti-holomorphic Fourier terms. �

3.6 Lemma: The following is a list of bounded Fourier terms:

i. 0 ≤ Re(s) ≤ 1, in which case all functions in Ws,k,n are bounded on H,

ii. if Re(s) ≥ 0 and 2s ≡ k mod 2, 2|s| < |k| then µR(s, k, n) = µL(s, k, n) is bounded on H.

Proof: In the proof of this lemma We will work with functions on H. The function z→ ys is bounded
near R if and only if Re(s) > 0.

The fourier term µR
s,k,n is the product of a bounded function near R>0 and the function z → ys.

Hence µR
s,k,n is bounded near R>0 if and only if Re(s) > 0. Similarly for µL

s,k,n near R<0.
If 0 ≤ Re(s) ≤ 1, s , 1

2 then both µR
s,k,n and µR

1−s,k,n are bounded near R>0, since these functions
are a basis of Ws,k,n all functions in Ws,k,n are bounded near R>0. Similarly using the µL-functions one
argues that all functions in Ws,k,n are bounded near R<0. Hence all functions in Ws,k,n are bounded
near R∗, and since ∀t > 0 we have |φ|α(t)| = |φ| for any φ ∈ Ws,k,n it follows that all functions in Ws,k,n

are bounded on H.
If Re(s) > 1 then µR/L

1−s,k,n is not bounded on H. Hence µR
s,k,n is bounded on the whole of H if

and only if it is a complex multiple of µL
s,k,n. In view of Lemma 3.17 this is only possible if 2s ≡ k

mod 2, 2|s| < |k|. �

3.1.3 Symmetry group

We now compute the action of Symm, see (1.2.2), on the µR and µL functions. Recall that we denote
the pullback action of x ∈ Symm on functions on G by x∗.

3.7 Lemma:

h∗ : µR(s, k, n)→ µL(s,−k, n), (57)

w∗ : µR(s, k, n)→ eiπk/2µL(s, k,−n), (58)

v∗ : µR(s, k, n)→ e−iπk/2µR(s,−k,−n). (59)
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Proof: From (34) we see that h interchanges the boundary components R>0 and R<0. Let ysa(z)eikθ ∈

Es,k(R>0), then since Im(−z̄) = y we have

h∗(ysa(z)) = ysa(−z̄)

and z 7→ a(−z̄) is real analytic on a neighborhood of R<0. Hence h∗ is a map Es,k(R>0) → Es,−k(R<0)
and from (46) it now follows that h∗ : WR

s,k,n → WL
s,k,n.

Similarly w interchanges the boundary components R>0 and R<0. We have for ysa(z)eikθ ∈

Es,k(R>0)

w∗
(

ysa(p(z))
)

= Im (−1/z)s a(p(−1/z)
(
− z̄

z

)k/2

= ys |z|−2s
(
− z̄

z

)k/2
a (p(−1/z)) .

Hence if a is real analytic on a neighborhood of R>0 then y−s h∗(ysa(p(z))) is a real-analytic on a
neighborhood ofR<0, since |z|−2s

(
− z̄

z

)k/2
is real analytic onR∗, and w∗ is a map Es,k(R>0)→ Es,k(R<0).

If a(1) = 1 then w∗(a) (−1) = eiπk/2, and the result follows from the second equation of (46).
The case v∗ = (hv)∗ = h∗v∗ now follows after combining h∗ and w∗. �

3.8 Lemma: If 2s < Z<1 and Bk(s) , 0, then

µR(s, k, n) ± µL(s, k, n) ∈ W±s,k,n. (60)

Proof: Using Lemma 3.4 we see that E±µR/L(s,∓l, n) = (s − l
2 )µR/L(s,∓(l − 2), n), and hence for

k > 0:

E∓kµR/L(s,±k, n) =


k∏

l≡k mod 2
l=2−k

(s − l
2 )

 µR/L(s,∓k, n) (61)

=


k∏

l≡k mod 2
l=2−ε

(s − l
2 )




k−2∏
l≡k mod 2

l=ε

(s + l
2 )

 µR/L(s,∓k, n) (62)

=


k−2∏

l≡k mod 2
l=−ε

−(1 − s + l
2 )

 [s]k µ
R/L(s,∓k, n) (63)

= (−1)(k−ε)/2(s − 1
2 )[1 − s]k[s]k µ

R/L(s,∓k, n) (64)

= (−1)(k−ε)/2Bk(s) µR/L(s,∓k, n) (65)

Hence for k ∈ Z we have Es,kµ
R/L(s, k, n) = µR/L(s,−k, n) and h∗µR/L(s, k, n) = µL/R(s,−k, n), see

Lemma 3.7. Hence µR(s, k, n) ± µL(s, k, n) ∈ W±s,k,n. �

3.2 Hypergeometric functions

3.2.1 The hypergeometric differential equation

Recall (45) that elements φ in Ws,k,n satisfy

φ(exp(tH)g exp(θW)) = eintφ(g)eikθ. (66)
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The space of all (real-analytic) functions φ on G that satisfy the above transformation condition is
isomorphic to the space of (real-analytic) functions on T − {1}, T = {z ∈ C : |z| = 1}. Indeed define

Φs,k,n(p(z)κθ) = zin( y
z )seikθ

then Φ is nowhere zero on G and WΦ = ikΦ, Φ|H = inΦ, hence φ = ΦF for some unique F which in
the coordinates (41) is a function of τ alone.
The function Φ has been chosen in such a way that the action of ω − s(1 − s) on φ can be related to
the action of

DHG(a, b, c) = τ(1 − τ)∂2
τ + (c − τ(1 + a + b))∂τ − ab (67)

on F, as will be shown in the next proposition. The operator DHG(a, b, c) is the well-known Gaussian
hypergeometric operator.We define

Hs,k,n =
{
F ∈ C2(T \ {1}) : DHG

(
s − in, s − k

2 , 1 − in − k
2

)
F = 0

}
.

3.9 Proposition: The map LΦ(s, k, n) : Hs,k,n → Ws,k,n defined by

LΦ(s, k, n)(F) (z, θ) = Φs,k,n(z, θ)F( z̄
z )

is a linear bijection.

Proof: Using (56) it is easily verified that Φs,k,n satisfies:

E−Φs,k,n = (s − k
2 )Φs,k−2,n,

E+Φs,k,n(p(z)κθ) =
(

k
2 + in + (s − in) z̄

z

)
Φs,k+2,n(p(z)κθ).

(68)

Combining these two equations we also get:

(ω − s(1 − s))Φs,k,n =
(
−E+E− − (s − k

2 )(1 − s − k
2 )

)
Φ = (s − k

2 )(s − in)(1 − z̄
z )Φ.

Hence, using equations (39), we have for any smooth function F on C \ [0,∞] that

(ω − s(1 − s))|θ=0Φs,k,nF =
(
Φs,k,nE+

2 E−0 − E−k Φs,k,nE+
0 − E+

k Φs,k,nE−0 + (Lk − s(1 − s))Φs,k,n
)

F

= −(1 − τ)Φs,k,n
(
τ∂τ(1 − τ)∂τ − (s − k

2 )τ∂τ + ( k
2 + in + (s − in)τ)τ∂τ

− (s − k
2 )(s − in)

)
F

= −(1 − τ)Φs,k,nDHG
(
s − in, s − k

2 , 1 − in − k
2

)
F.

Hence LΦ intertwines the action of (τ − 1)DHG(s, k, n)(τ) with ω − s(1 − s), and the image of LΦ is
contained in Ws,k,n. Since Φs,k,n is nowhere zero on T − {1} it follows that LΦ is a bijection. �

3.2.2 The ω-series of Fourier terms

If c < Z≤0 the following sum converges absolutely for |z| < 1, z ∈ C,

W1(a, b, c)(z) := 2F1

[
a, b

c

∣∣∣∣∣∣ z
]

:=
∑
n≥0

(a)n(b)n

(c)n

zn

n!
, (69)

If a or b is a negative integer l then the above defines a polynomial of degree l; if this is the case then
c ∈ Z<l, that is c a negative integer smaller then l, is allowed as well.

This function satisfies the hypergeometric equation see [Luk75, 6.1], and has an analytic continu-
ation to C− [1,∞[, see [Luk75, 6.5]. In particular W1

(
s − in, s − k

2 , 1 − in − k
2

)
restricts to T− {1} and

hence defines an element of Hs,k,n.
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3.10 Lemma: For generic values of the parameters (following the rules after (69)) the following 4
functions are in Ws,k,n

ω1(s, k, n) (z, θ) = zin(1 − z̄
z )s

2F1

[
s − in, s − k

2
1 − in − k

2

∣∣∣∣∣∣ z̄
z

]
eikθ

ω2(s, k, n) (z, θ) = (−z̄)in(1 − z̄
z )s(− z̄

z )k/2
2F1

[
s + in, s + k

2
1 + in + k

2

∣∣∣∣∣∣ z̄
z

]
eikθ

ω3(s, k, n) (z, θ) = (−z̄)in(1 − z
z̄ )s

2F1

[
s − in, s + k

2
1 − in + k

2

∣∣∣∣∣∣ z
z̄

]
eikθ

ω4(s, k, n) (z, θ) = zin(1 − z
z̄ )s(− z̄

z )k/2
2F1

[
s + in, s − k

2
1 + in − k

2

∣∣∣∣∣∣ z
z̄

]
eikθ

These functions are invariant under s 7→ 1 − s.

Proof: The function ω1 is of the form ω1(s, k, n) = (2i)−sΦW1 where W1 ∈ Hs,k,n as in (69). From
equations [Luk75, 6.4(1-2)] it follows that ω1 is invariant under s 7→ 1 − s.

Using equations (34) the action of Symm on the ωi may be computed as follows,

h∗ωi(s, k, n) = ωi+2(s,−k, n),

w∗ωi(s, k, n) = e−πn+iπk/2ω1−i(s, k,−n),

v∗ωi(s, k, n) = e−πn−iπk/2ω3−i(s,−k,−n),

(70)

where i = 1, . . . 4 and the subscripts is to be read modulo 4.
Hence for i ∈ {2, 3, 4} we have ωi(s, k, n) = x∗cω1(s, k, n) for some x ∈ Symm, k′, n′ ∈ R and c ∈ C∗.
In view of equation (46) it follows that ωi(s, k, n) ∈ Ws,k,n as well. Since both x∗, ω1(s, k, n) and the
constant c are invariant under s 7→ 1 − s it follows that ωi(s, k, n) is invariant under s 7→ 1 − s as
well. �

3.11 Lemma: The action of the Maass operators on the ωi Fourier term series is given as follows

E−ω1(s, k, n) =
(s − k

2 )(1 − s − k
2 )

1 − k
2 − in

ω1(s, k − 2, n), E+ω1(s, k, n) = ( k
2 + in)ω1(s, k + 2, n),

E−ω2(s, k, n) = (− k
2 − in)ω2(s, k − 2, n), E+ω2(s, k, n) =

(s + k
2 )(1 − s + k

2 )

1 + k
2 + in

ω2(s, k + 2, n),

E−ω3(s, k, n) = (in − k
2 )ω3(s, k − 2, n), E+ω3(s, k, n) =

(s + k
2 )(1 − s + k

2 )

1 + k
2 + in

ω3(s, k + 2, n),

E−ω4(s, k, n) =
(s − k

2 )(1 − s − k
2 )

1 − k
2 + in

ω4(s, k − 2, n), E+ω4(s, k, n) = (in − k
2 )ω4(s, k + 2, n),

here assume that k, n, s are such that both sides of the equation are well-defined.

Proof: We will first compute how the action of the Maass operators on Ws,k,n correspond to an action
of Hs,k,n after the LΦ(s, k, n) operator. Using (39), (68) we compute

E−Φs,k,nF = Φs,k−2,n(s − k
2 + E−)F = Φs,k−2,n(s − k

2 − (1 − τ)∂τ)F,

E+Φs,k,nF = Φs,k+2,n( k
2 + in + (s − in)∂τ + E+)F = Φs,k+2,n( k

2 + in + (s − in)∂τ − τ(1 − τ)∂τ)F
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Using [Luk75, 6.2.1 (8), (9)] we can verify that the Lemma is true for the case ω1. The other cases
can be derived using the action of Symm and the commutation relations in (29). �

3.12 Lemma: The following gives a full list of when the ωi series of Fourier terms are well-defined
and when linear dependencies arise.

i. If n , 0 or k is odd then all ωi(s, k, n) are well-defined and any pair ωi(s, k, n), ω j(s, k, n), i , j
are linearly independent except in the cases:

(a) ω1 and ω4 if k ≡ 2s mod 2 and k
2 ≥ min(s, 1 − s),

(b) ω2 and ω3 if k ≡ 2s mod 2 and k
2 ≤ −min(s, 1 − 2).

ii. If k is even and n = 0 then a basis for Ws,k,n is given by

(a) for positive k by ω2 and ω3,

(b) for negative k by ω1 and ω4.

Note that if k = 0 = n then ω1 = ω2 and ω3 = ω4.

iii. If k and 2s are even, |k| ≥ max(2s, 2 − 2s) and

(a) if k positive then ω1 = ω4 is well-defined and is linearly independent of ω2 and of ω3,

(b) if k negative then ω2 = ω3 is well-defined and is linearly independent of ω1 and of ω4.

Proof: The ωi are of the form

ω1 = (2i)−sΦW1, ω2 = (2i)−sΦW̃2, W̃2(a, b, c) = eiπ(c−1)W2(a, b, c)

ω3 = (2i)−sΦW5, ω4 = (2i)−sΦW6.

Where the Wi are the hypergeometric functions given in [Luk75, 6.4]. Now, two ωi functions are
linearly dependent if the corresponding hypergeometric functions are. Two hypergeometric are lin-
early dependent if and only if their Wronskian [Luk75, 6.6 (16)] is zero. In [Luk75, 6.6 (18)-(23)]
the Wronskian’s are given in terms of Γ-functions. It is easily verified that for k ∈ Z, n ∈ R and
s(1 − s) ∈ R the Wronskians are zero if and only if the above conditions are satisfied. �

3.13 Proposition: If Bk(s) , 0 then the decomposition Ws,k,n = W+
s,k,n ⊕W−s,k,n is a splitting of Ws,k,n

into the one-dimensional subspaces W±s,k,n.

Proof: We have for k > 0 such that: (n , 0 if k even) that

Ekω1(−k) =


k−2∏
l=−k

l≡k mod 2

in + k
2

ω1(k)

= (−1)(k−ε)/2Bk(in)ω1(k)

E−kω1(k) =


k−2∏
l=−k

l≡k mod 2

(s− k
2 )(1−s− k

2 )

1−in− k
2

ω1(−k)

= (−1)(k−ε)/2 Bk(s)2

Bk(in) ω1(−k)
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If k even and n = 0 then

Ekω1(−k) =


−2∏
l=−k

l≡k mod 2

l
2

k−2∏
l=0

l≡k mod 2

(s + l
2 )(1 − s + l

2 )

1 + l
2

ω2(k)

= (−1)(k−ε)/2Bk(s)ω2(k)

E−kω2(k) =


k∏

l=2
l≡k mod 2

− l
2

0∏
l=2−k

l≡k mod 2

(s − l
2 )(1 − s − l

2 )

1 − l
2

ω1(−k)

= (−1)(k−ε)/2Bk(s)ω1(−k)

Hence if n , 0 if k is even we have:

ω±(s, k, n) := Bk(in)ω1(s, k, n) ± Bk(s)ω3(s, k, n) ∈ W±s,k,n.

Hence if k > 0 is even and n = 0 then

ω±(s, k, n) := ω2(s, k, 0) ± ω3(s, k, 0)

Note that ω±(s, k, n) is a non-zero function, since ω1 and ω3 are linearly independent. �

The following Lemma shows that the functions in W±s,k,n may be normalized by their value at (i, 0),
the unique fixed point of Symm in SL2(R), this will be used to compute the inverse to the map defined
in Lemma 3.8 for the case k = 1

3.14 Lemma: We have for n ∈ R and Re(s) = 1
2 , s , 1

2 that:

ω+(s, 1, n) (i, 0) = 2in+1 √π
Γ(1−in+

1
2 )

Γ( 1
2 (1−s−in))Γ( 1

2 (1−in+s))

ω−(s, 1, n) (i, 0) = 2in+1 √π
Γ(1−in+

1
2 )

Γ( 1
2 (s−in))Γ( 1

2 (1−in+1−s))
.

In particular these values are non-zero.

Proof: If we set a = s − in, b = s − 1
2 we have

ω+(s, 1, n) (i, 0) = 2s
(
(a − b)2F1

[
a, b
a − b

∣∣∣∣∣∣ − 1
]
− b 2F1

[
a, b + 1
a − b + 1

∣∣∣∣∣∣ − 1
])

ω−(s, 1, n) (i, 0) = 2s
(
(a − b)2F1

[
a, b
a − b

∣∣∣∣∣∣ − 1
]

+ b 2F1

[
a, b + 1
a − b + 1

∣∣∣∣∣∣ − 1
])

The Lemma follows after combining the following identities, taken from http://functions.wolfram.
com/HypergeometricFunctions/Hypergeometric2F1/03/03/01/

(a − b) 2F1

[
a, b
a − b

∣∣∣∣∣∣ − 1
]

=
√
π 2−a Γ(a − b + 1)

(
1

Γ(a/2)Γ((1 + a − 2b)/2)
+

1
Γ((1 + a)/2)Γ(a/2 − b)

)
b 2F1

[
a, b + 1

a − (b + 1) + 2

∣∣∣∣∣∣ − 1
]

=
√
π 2−a Γ(a − b + 1)

(
1

Γ(a/2)Γ((1 + a − 2b)/2)
−

1
Γ((1 + a)/2)Γ(a/2 − b)

)
�
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3.2.3 The µ-series of Fourier terms

3.15 Lemma: For 2s < Z≤0 the following defines a function on the set {p(z)κθ : Re(z) , 0}

µ̃(s, k, n)(z, θ) := zin
(

y
z

)s
2F1

[
s − in, s − k

2
2s

∣∣∣∣∣∣ 1 − z̄
z

]
eikθ, z ∈ H, Re(z) , 0.

This function satisfies:

i. ω µ̃(s, k, n)(z, θ) = s(1 − s)µ̃(s, k, n),

ii. the boundary condition for I = R∗ as introduced in (53),

iii. the normalisation conditions limz→1 y−sµR(s, k, n) = 1 and limz→−1 y−sµR(s, k, n) = 1

Proof: We have µ̃(s, k, n)(z) = Φs,k,nW1(s−in, s− k
2 , 2s) (1− z̄

z ). The function M̃(a, b, c)(ξ) :=W1(a, b, a + b + 1 − c)(1 − ξ)
is a function defined on T \ {−1}. Hence µ̃(s, k, n) is a well-defined function on the set

H \ iR>0 =
{
q1/2(−τ)−1/2i : q > 0, τ ∈ T − {1,−1}

}
.

The change of variables η = 1 − ξ on the Hypergeometric differential operator (67) shows that
DHG(a, b, c)(ξ) = DHG(a, b, a + b + 1 − c)(η), hence M̃ satisfies DHG(a, b, c)M̃ = 0. According to
Proposition 3.9 we have that ωµ̃(s, k, n)(p(z)κθ) = s(1 − s)µ̃(s, k, n)(p(z)κθ) for Re(z) , 0. This proves
the i part of the proposition.

Now for part ii. We extend the function µ̃(s, k, n)(z, 0) to a function µ̂(s, k, n)(z, 0) on C \ (R ∪ iR)
as follows:

µ̂(s, k, n)(z, 0) =

{
µ̃(s, k, n)(z, 0), if Im(z) > 0,
µ̃(s, k, n)(−z, 0), if Im(z) < 0.

Then on C \ iR we have

y−sµ̂(s, k, n)(z, 0) = zin−s
2F1

[
s − in, s − k

2
2s

∣∣∣∣∣∣ 1 − z̄
z

]
,

which is a real-analytic function. Hence µ̃(s, k, n)(z, 0) satisfies the boundary condition for I = R∗.
The normalisation condition in iii follows from the fact that

2F1

[
s − in, s − k

2
2s

∣∣∣∣∣∣ 0
]

= 1.

�

The following proposition shows that the restriction of µ̃(z, θ) to HRe>0 (respectively HRe<0) may
be extended to functions on G µR (respectively µL) that lie in Es,k.

3.16 Proposition: The following functions

µL(s, k, n) := Γ(2s)Γ(1 − s − in)ik
(

eπn

Γ(s+ k
2 )Γ(1−in− k

2 )
ω1(s, k, n) + eiπs

Γ(s− k
2 )Γ(1−in+

k
2 )
ω3(s, k, n)

)
µR(s, k, n) := Γ(2s)Γ(1 − s − in)i−k

(
eiπs

Γ(s+ k
2 )Γ(1−in− k

2 )
ω1(s, k, n) + eπn

Γ(s− k
2 )Γ(1−in+

k
2 )
ω3(s, k, n)

)
satisfy:

µL(s, k, n)(z, θ) = eπnµ̃(s, k, n)(z, θ), for Re(z) < 0, µR(s, k, n)(z, θ) = µ̃(s, k, n)(z, θ), for Re(z) > 0.
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Proof: The following Kummer-relations as given in [Luk75, 6.5 (5)] give Ma and Mb in terms of W1
and W̃2

M(a, b, c) = Γ[a + b + 1 − c]
(

Γ[1 − c]
Γ[b + 1 − c]Γ[a + 1 − c]

W1(a, b, c) +
Γ[c − 1]
Γ[a]Γ[b]

eiπ(c−1)W2(a, b, c)
)
, on {ξ : Im(ξ) < 0}

M(a, b, c) = Γ[a + b + 1 − c]
(

Γ[1 − c]
Γ[b + 1 − c]Γ[a + 1 − c]

W1(a, b, c) +
Γ[c − 1]
Γ[a]Γ[b]

eiπ(1−c)W2(a, b, c)
)

eiπa, on {ξ : Im(ξ) > 0}

The following Kummer-relation, as given in [Luk75, 6.5 (3)], denotes the linear dependency be-
tween W1, W̃2 and W5

W5(a, b, c) = Γ(a − b + 1)
(

Γ(1−c)
Γ(1−b)Γ(a−c+1) W1(a, b, c) +

Γ(a−b+1)
Γ(a)Γ(c−b) W̃2(a, b, c)

)
If we solve the above equation for W2 and plug the result in the above equations for Ma, Mb the
Lemma will follow after applying the definitions for Fourier terms in terms of the hypergeometric
functions. �

Proof of Proposition 3.2 Suppose 2s < Z≤0. The functions µR and µL are in Es,k since the ωi are.
The functions µR and µL satisfy the stated properties in 3.2 for I = R>0 respectively I = R<0, since µ̃
does and these properties are local.

If 2s < Z then according to Lemma 3.1 the functions µR
s and µR

1−s are linearly independent and
hence span the 2-dimensional space Ws,k,n. Uniqueness follows.

3.17 Lemma: If 2s < Z<0 then µR(s, k, n) and µL(s, k, n) are linearly independent, except in the cases:

i. 2s ≡ k mod 2 and s < | k2 |, that is if there exist l ∈ Z such that ElµR/L(s, k, n) = 0,

ii. n = 0 and s ∈ Z

Proof: Following the proof of Lemma 3.12 the µR(s, k, n) and µL(s, k, n) are linearly independent
if their Wronskians are non-zero. The Wronskian µR(s, k, n) and µL(s, k, n) may be computed using
Lemma 3.16 and the Wronskians of W1 and W3. �

3.3 Concluding remarks

In this thesis we have proven that automorphic form φ ∈ As,k(Γ, χ) has a Fourier decomposition with
respect to a hyperbolic γ ∈ Γ:

φ± =
∑

n

anω
±(s, k, n)

where φ = φ+ + φ− and φ± are (anti-)symmetric functions with respect to the reflection in the axis of
γ.

We also used the symmetry group of A to study the space of Fourier terms.
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