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For the purpose of this thesis project, we address the problem of accurately and efficiently identifying 

de-novo mutations in the human germline. More precisely, how can we detect de-novo point mutations 

on the sex chromosome   in a robust yet sensible manner? What are the challenges that arise from the 

quality of the available data for this chromosome? What is the pattern of de-novo events on this 

chromosome, compared to the rest of our genome?  

The challenge of devising a discovery method for such events comes from their rarity relative to the 

error rates of the underlying technology involved in DNA reading. We discuss the relevance of this 

research in the light of our increasing understanding of evolution and our genetic code’s structure and 

function, as well as its practical applications of finding genetic disease risk factors. 

We present the field’s currently most used analysis methods and technologies, and describe each step 

that influences the design and/or performance of the model we implement. We present a 

straightforward yet efficient general model of de-novo mutations discovery and then show how the 

model needs to be adapted in order to correctly capture the particularities of the   chromosome. 

Furthermore we illustrate what information can be explained by our model and where we still need to 

apply domain knowledge to correct the output. 

Finally, we show how the model is integrated in the complex and modular analysis pipeline used in the 

community. Furthermore, we create additional tools that enable this integration and/or profile our 

model’s behaviour under different conditions.  
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1. Introduction 
The DNA code is a basic element describing any living organism morphologically as well as functionally. 

Research of variation in this code within and across species is continuously adding to our knowledge of 

its structure and functional implications on the carrier, from a bottom-up perspective. Heritability in this 

context refers to the extent by which DNA explains a living organism. 

Under the hypothesis that human traits are genetically tractable, the study of heritability revolves 

around mapping genetic variation to observable and/or measurable human traits. The incremental 

chemical and biological set of processes, by which such heritable components manifest on the complex 

organism level, are collectively defined as a biological pathway. One specific example is the class of DNA 

sequences that are directly translated to proteins. The chemical reactions that these proteins undergo 

further define or influence functions of the organism or traits that are observable and interpretable by 

humans. These traits, assumed to be influenced by variation in the genetic code, are called phenotypes. 

They may be pathological, if they are proven to be related to disease, or non-pathological. 

Considering the enormous size of our genetic code, the complex low-level interactions within it as well 

as the complex and stratified mechanisms that transform our DNA code into observable and meaningful 

outcomes, the variation space is prohibitively large for an exhaustive, analytical understanding of its 

underlying structure and function.  

Diseases have been found to have a heritable component and they affect millions of people around the 

globe. It is therefore important to investigate variation that can be shown to be associated and/or causal 

to disease. By causing a disease, diagnosed as such clinically, on the basis of observed phenotypes, this 

type of genetic variation causes large (qualitative or quantitative) changes in subsequent biological 

pathways. By definition then, it is easier to single out the set of individuals carrying a disease as well as 

variation in their DNA w.r.t. other, healthy individuals that do not present the disease causing 

phenotypes. 

1.1 Genome Structure 

Symbolically, DNA can be represented as an arbitrary string or sequence, of four literals           

called bases. The human genome has an estimated average length of       bases. Adenine ( ), 

Thymine ( ), Cytosine ( ) and Guanine ( ) are the four nitrogen containing molecules called 

nucleobases (or simply bases). Due to their chemical properties, each base in the sequence forms base-

pair hydrogen bonds  with a corresponding base to form the chemically and geometrically stable 

structure of a double stranded helix (i.e.: DNA sequence) as depicted in Figure1, that is further folded for 

compactness.  
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Figure 1: DNA Structure. (a) "unfolded" view of a double-stranded DNA molecule, showing the two chains of 

nucleotides, connected in the center by a series of hydrogen bonds between nitrogenous bases. (b) a 
schematic illustration showing the arrangement of the two strands in the double-helix configuration. The 
"backbone" on the outside is the sugar-phosphate chain, and the nitrogenous bases form the bridges across 

the middle. ©Welcometrust 

The only stable base-pairs that can form are     and    , therefore a double stranded DNA 

sequence is completely described by (either) one of the two base strings corresponding to one strand. 

The two strands are identifiable only through the structural sugar-phosphate (see Figure 1) backbone, 

that determines the unique (and opposite) direction along which either one of the strands can be read, 

when processed in our bodies. As such, the strand that is being processed at some point in time is 

regarded as the forward strand and its complement as the reverse strand.  

1.1.1 Chromosome 

A chromosome is a structured subsequence of the DNA. Human genomic chromosomes are duplicate (as 

opposed to simpler life-forms in which they are unduplicated), more precisely they contain two double 

stranded DNA sequences called chromatids that are geometrically joined in a region called the 

centromere. The human DNA contains 23 such chromosomal pairs. Out of these, 22 are called 

autosomal and the two respective chromatids are homologous, in the sense that they encode 

information about the same processes. The 23’rd chromosomal pair contains the sex chromosomes. The 

two chromosomes/chromatids, although paired, are no longer homologous and they determine an 

individual’s sex. Females have an    pair of chromosomes and males have an    pair, at this position, 

where   and   are the arbitrarily chosen names for these chromosomes. The 22 autosomal 
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chromosome pairs are identified by their ordinal number (1, 2, …, 22) where the order was established 

according to their observed length (1 is the longest).  

1.1.2 Gene 

A gene is a structured element consisting of the contiguous DNA sequence necessary to generate a 

product of functional importance, a protein. Genes lie within chromosomes but vary greatly in size and 

content[1], ranging from a few hundred base-pair long genes to aprox. 2Mb (mega base-pair) long 

genes. Some structural patterns can be observed however, as depicted in Figure 2. 

 

Figure 2: The generic structure of a gene and the process through which the information it encodes is transformed into a final 
product, a protein. The Promoter is a short specific sequence of DNA that lies before a gene, on the strand, and regulates 
how often the gene is read and processed. Whenever a gene is processed, a corresponding contiguous sequence of single 
stranded nucleotide chain is created, called RNA.  Introns are contiguous sequences of DNA/RNA, in-between exons, that 
indicate to the molecules that process the gene where to cut. Exons are the actual “coding” part of a gene, as each 3 
consecutive bases in an exon correspond to an amino-acid and the sequence of amino-acids resulting from a gene’s exons 
further defines the protein. 

The coding part of the genome represents the set of all exons, as a clear correspondence can be made 

between the sequence of base-pairs read and the produced outcome, the chemical content of a protein. 

This amounts to 2% of the size of the genome. The rest of 98% is covered by noncoding DNA whose 

functionality falls under various degrees of understanding. There are noncoding parts of genes such as 

introns and promoters. Furthermore there are other structural elements such as pseudogenes[2],[3], 

which are genes that become inactive because they are no longer translated to proteins, regions that 

control the expression of actual genes (how often a gene is read so that the corresponding protein is 

created)[4], highly repetitive regions that serve as structural elements (telomers)[5], etc.  

Given that information is encoded twice in organisms with duplicated chromosomes (once on each 

chromosome of a chromosomal pair), a homolog version of each gene is found on the other 

chromosome. Each of these two versions is called an allele. If the two corresponding alleles are identical 

then the individual is said to be homozygous for that allele, otherwise he is said to be heterozygous for 
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the two alleles found. We note that the term allele refers specifically and exclusively to this relation of 

spatial pairing, on two different chromatids of a homologous DNA sequence. Intuitively defined for 

genes, an allele can however refer to any DNA sequence length, down to single base-pair positions, and 

it is used to distinguish between variants at some position. 

Depending on the relationship between the two, possibly different alleles at a specific location on a 

chromosomal pair, the functional effect of one always “dominates” that of the other. Thus, between any 

two different alleles that can be found at a position, one is said to be dominant and the other recessive 

(or silent). Furthermore, the number of homologous base-pairs for each position determines the ploidy 

at that position. All the positions on the 22 autosomal chromosomal pairs are said to be diploid and their 

genotype is a combination of two alleles. The two sex chromosomes are haploid for males, as the 

genotype is completely defined by only one allele, whereas still diploid for females as they have two 

homologous   chromosomes. 

1.2 Inheritance 

Each organism grows and develops through repeated cell divisions from a single initial cell called zygote. 

In the case of humans and all other sexually procreating organisms, the zygote is the result of the 

merger between two special types of cells, one from each of the parents, called gametes (or germline 

cells, or reproductive cells). The gametes carry the genetic code that is inherited from each respective 

parent. During fertilization, when the zygote is created the gametes’ genetic code is combined, creating 

the DNA molecule of the child (Figure 3). 

The transmission of genes from parent to offspring is governed by the principles of inheritance 

formulated by Gregor Mendel before such detailed knowledge of the genome existed. His methodical 

experiments on breeding different pea species have allowed him to formulate the three principles of 

Mendelian inheritance as well as paving the way for the statistical analyses that are at the core of 

modern genetics[6],[7],[8].  The first principle is the principle of uniformity, which states that the 

offspring of two parents that differ in a trait should all have the same appearance. This means that two 

parents that are homozygous of different alleles, at some position, will pass on to the offspring one of 

their respective alleles and the children cannot be anything else than heterozygous on those two alleles. 

Between any two alleles however, a relation of dominance can be determined, as described earlier, thus 

all children will have the same appearance, the result of the dominant allele (Figure 3).  
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Figure 3:  Illustration of inheritance and the first Mendelian principle – uniformity. The Parental generation contains 2 copies 
(in this case identical) of some gene; a gamete contains only one copy of the parental gene and the offspring (F1 generation) 
contains the union of the two gametes. Capital letters mark dominant genes, while non-capital letters mark recessive genes, 
therefore the offspring will manifest the effects that gene “D” produces. 

The second Mendellian principle is that of segregation, which describes how pairs of gene variants, or 

alleles, are separated into reproductive cells. During the division process (meiosis) that creates the 

gametes, the chromosomal pairs are broken, each gamete cell holding the copy of only one 

chromosome from each of the     23 chromosomal pairs. This principle states that equal number of 

gametes are created, that hold either version of a parent’s chromosome. In turn this implies that an 

offspring has equal chances of inheriting either one of the two (possibly different) alleles that a parent 

holds (see Figure 4).  

 

Figure 4: Illustration of the second Mendelian principle – segregation. Whenever gametes are created, they have an equal 
probability (   ) of holding either one of the two copies of a gene that the parent carries. 

 

The principle of independent assortment finally states that each chromosomal pair of our DNA separates 

independently during meiosis. This means that alleles at some position segregate into gametes 

independently of alleles at other positions thus contributing to genetic diversity. 
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1.3 Evolution 

In the study of evolution three constituting factors can be identified: mutation as a generating engine of 

variation, selection as a regulatory force and genetic drift as a measure of higher level factors that 

influence a species’ evolving genetic code. Selection and genetic drift are also called evolutionary forces, 

as they exert influence over the genetic variation introduced by mutation processes. 

1.3.1 Mutation 

Mutation is a phenomenon that may happen naturally down to the single base-pair level of our DNA. 

Whenever a cell divides, in any living organism, its DNA code must be replicated so that each of the two 

resulting cells has an identical copy. This process is performed by a set of chemical molecules called 

polymerase enzymes that must perform a series of tasks sequentially. These molecules must unfold the 

DNA, each of the double stranded chains must be separated by breaking the base-pair connection then 

each single strand chain is read and copied by creating new base-pair connections. Since the base-pair 

connections that can form are unique, each strand of the DNA chain can act as a template for creating 

its complementary strand and achieving the stable structure.  From one double stranded DNA sequence 

two, ideally identical ones, are thus obtained. These copying mechanisms may produce errors however, 

when handling the base nucleotides (either when reading the template chain or when adding the 

complementary bases) and the two resulting double stranded sequences may not be identical to the 

original one, at a number of positions each of them constituting a mutation. Depending on which step in 

the replication routine produces the error, different types of mutations may be produced. The three 

basic structural mutation types are insertion (of one or more nucleotide base-pairs) in the DNA chain, 

deletions (of one or more base-pairs) and substitutions, each of them generating a number of functional 

effects depending on the local genetic context in which they happen[9],[10],[11].  Deletions and 

insertions are collectively called indels. Their aggregation, among other reasons, is also because, as 

opposed to substitutions they may, and often do have lengths different than one.  

1.3.2 Natural Selection 

The process of selection, as the name suggests, influences what genetic variation is maintained in a 

population and transmitted throughout generations through reproduction. Given that mutations 

happen through bio-chemical processes and there is no intrinsic symbolic meaning behind them, 

selection then acts as a filter (on a very large timescale). The workings of natural selection is closely 

related to the notion of fitness, which measures an organism’s ability to better adapt and respond to the 

environment that it lives in, which in turn increases its chances of contributing with more offspring to 

next generations. In consequence, a fit individual’s alleles will be present in more individuals of the next 

generation thus increasing the respective allele frequencies within the population (positive selection), 

whereas a less fit individual’s alleles will decrease in frequency in subsequent generations 

(negative/purifying selection). Attempts to generate a distribution of fitness effects that mutations have 

on organisms[9],[12] have revealed that the majority of them have different degrees of negative effects, 

some influence fitness measurements so insignificantly that they are regarded as neutral and only a very 

few result in an increase of fitness for the carrier. In this context, selection acts more as a long-term 
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stability ensuring mechanism of a species’ DNA. Furthermore, the stronger the effect an allele produces, 

the stronger the selection for/against it will be.  Given that selection for different alleles is dependent on 

the fitness of the carrier, which is in turn strongly correlated to the environment that the carrier lives in 

(from climate conditions to other species present), the criteria that determine an individual’s fitness 

may change over longer periods of time[13],[14]. Alleles that were not previously selected against may 

in time become subject to purifying selection, while other alleles will increase in frequency, in the 

population[15]. Variants of natural selection have been identified, such as balancing selection in which 

two or more alleles are kept at high frequencies in the population, disruptive selection where more 

alleles are again found at close frequencies but the homozygous genotype for either one results in 

higher fitness than the heterozygous genotype, etc. A complex example of positive as well as balancing 

selection is offered by genes related to the immune system. We intuitively expect that these regions 

would be under strong selective pressure, as their functions directly relate to an individual’s healthiness, 

thus fitness. As different pathogen factors emerge or spread through different populations, alleles that 

are able to reliably identify them in an organism are positively selected for. On the other hand, different 

levels of a protein were found to influence our body’s response to a pathogen[16],[17]; namely high 

levels were found to reduce magnitude of the inflammatory symptoms, while low levels of the same 

protein favour the elimination of pathogens from our body. The DNA sequence that regulates the 

expression of the gene producing the respective protein contains alleles that are under balancing 

selection, as both the described effects are essential to our immune system. 

1.3.3 Genetic drift 

While natural selection filters out alleles from a species’ gene pool, according to the effects that they 

have on the carrier’s fitness, the Mendelian principles of inheritance clearly suggest that reproduction is 

a matter of random sampling (respecting the defined rules) from the parents’ genotypes. This process 

also has an effect on the gene pool of a specific population, which is captured by the notion of genetic 

drift. 

Genetic drift acts as another natural force of regulating genetic variation of a species within a 

population. More specifically, it models how allele frequencies, at a generic position in our genome, 

change over generations due to the random sampling in the mating process. The underlying assumption 

is that the model of random sampling is correct, in the sense that an individual is not able to 

know/discern what allele (at some site of interrest) his/her partner has and base their mating option on 

this, a very reasonable assumption in practice.   As opposed to natural selection, genetic drift cannot be 

directly related to criteria such as fitness. We consider a specific generation of a population of size   

that is bi-allelic for some gene with allele frequency   for one of the alleles ( ) and     for the other 

allele ( ). The allele frequency for allele A within the next generation of our population can then be 

modelled as randomly sampled from the Binomial distribution       , where   is the total number of 

alleles in the population,       considering diploid individuals. The use of the binomial distribution 

is intuitively justified as follows: by the assumption of random mating (with respect to the genetic code) 

and equal probability of mating for each individual and furthermore assuming equal number of 

individuals of either sex and equal distribution of genotypes within each sex, this is reduced to randomly 

sampling, with replacement of two individuals as parents and build the offspring genotype as a 
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combination of their alleles. Using the principles of Mendellian inheritance, namely the principle of 

segregation (stating that each genotype allele has equal probability of being transmitted to the child), 

we can further reduce this process by building the offspring genotype by randomly selecting, with 

replacement, 2 alleles from all the alleles of the population. Some properties of genetic drift can then be 

inferred from the properties of the underlying binomial distribution. Hence, the larger the population 

size, the smaller the variance will be from one generation to the next one thus the longer it will take for 

one of the alleles to reach 0 frequency and become extinct. Similarly, if the initial population allele 

frequency is close to 0.5, it will also take a larger number of generations for genetic drift alone to 

eliminate either one of the two alleles. It has been shown however, that even in the absence of natural 

selection (neutral selection), one allele is expected to reach fixation (allele frequency 1) in the 

population and expectations of this time, in number of generations, are given. For initial allele 

frequencies of 0.5 the time-to-fixation for one of the alleles was found to be        generations, 

where N is the population size[18]. This is a very large time-scale considering Earth’s population, which 

would indicate that genetic drift’s marginal effect is quite small. However, the whole population of Earth 

does not satisfy the assumptions of the model and must thus be applied to subgroups of populations 

and it becomes very important as effective population size gets smaller. An important contribution of 

genetic drift can be observed in populations where the gene pool is the result of founder effect[19],[20]. 

In these situations a small group, such as a religious group or colonists, of a larger population gets 

isolated and is only able to mate within the group. Allele frequencies within the group may then differ 

significantly from those within the original population and, through genetic drift, initially rare (with 

respect to the whole population) and sometimes deleterious alleles will increase in frequency or fix 

within the group. This was found to increase the incidence of rare disorders; for example the Bardet-

Biedl syndrome has a prevalence of 1 in 17500 in Newfoundland population, a genetically isolated 

population, which is one order of magnitude higher than the incidence in the more admixed populations 

of Northern Europe. 

1.4 Importance of de-novo mutations 

Discriminating on when in an organism’s lifespan and/or which type of cell a mutation occurs in, we 

distinguish between two different classes, namely germline and somatic mutations. Any mutations that 

arise in the reproductive cells or the produced gametes of an individual’s parents are called germline 

mutations and they are present in every cell of the offspring, as he develops. Mutations that happen in 

subsequent offspring cell divisions are called somatic and they are found in various degrees of spread 

through the organism (from specific tissues to organs, etc.) depending on when and where in the 

individual’s development they happen. Somatic mutations may influence an organism’s fitness 

substantially, such as mutations related to cancer[21]. Germline mutations however, are the only 

candidates for transmission to further offspring throughout generations. 

For the purpose of this project we focus on germline de-novo mutations (DNMs), in particular to their 

accurate discovery. We mainly treat single nucleotide variant (SNV) DNMs, although the extension to de-

novo indels is quite straightforward. Single nucleotide DNMs are, in this context, mutations that form in 

the DNA replication process that is required when the gametes of both parents are created. The haploid 
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DNA molecules that come from each of the parents are joined to create the diploid DNA molecule of the 

offspring. A DNM can then be observed by looking at the genotypes of a mother-father-child trio at a 

position of interest. If the observed trio genotypes combination violates the Mendellian principles of 

inheritance then a mutation (or two) are present in the child. Given two symbolic alleles         at a 

site in our genome, a straightforward example of a mother-father-child genotype combination 

containing a Mendellian violation is            and a combination resulting in two Mendellian 

violations is         , as neither of the child’s alleles is found in the parents. Two de-novo events 

at the same site in an offspring are extremely unlikely however, as we will see. We note that the 

combination          also contains a Mendellian violation. One of the child’s   alleles is 

inherited from the father however, the other allele must come from the mother and she does not have 

any   alleles. 

1.4.1 Mutation rates and distributions 

All genetic variation within our genome arose as a DNM (at least once) that was then transmitted to 

further generations. It is therefore essential to our understanding of evolution as well as disease 

heritability, to understand the rates at which such mutations happen and certain biases that are 

involved. Rates of mutation were derived through two types of methods. Initial estimates were obtained 

through an indirect approach that would extrapolate a mutation rate by looking at known differences in 

the genome of two relatively close species (such as humans and chimpanzees[22]) for which knowledge 

about the time of separation from a common ancestor exists. Subsequent studies followed a more 

direct approach of finding DNMs in known genes thus obtaining local estimates from the human 

genome directly that were extrapolated to the whole genome[23],[24]. With technology making it 

possible to sequence the whole human genome, more recent studies have obtained these genome wide 

mutation rate estimates directly, by sequencing the whole genome of one, or many, trio families. The 

derived mutation rates seem to converge around the value           mutations per base-pair per 

generation[23]. 

Comparisons of the germline mutation rates between males and females revealed that the male 
germline is more susceptible to mutation, the main hypothesis being that the male germline cells 
undergo more divisions during an individual’s life-time[25], thus offering more chances for mutation. As 
a direct consequence, it was found that the larger proportion of DNMs in an offspring come from the 
father, although the actual proportion is subject to large variance. Furthermore, a clear correlation 
between father’s age at conception and number of de-novo mutations in offspring was observed 
however, the exact mathematical relation/magnitude is still subject to debate/improvement[23],[10]. 
  
Further profiling of DNM events have also yielded a non-random spatial distribution along the human 

genome. Thus, regions of the genome that are dense in   and/or   bases,    – rich regions, show a 

higher mutation rate due to chemical instability, highly repetitive regions are also more error-prone, 

etc.. An enrichment of DNMs was also noted in coding regions partly explained by their high    content, 

but also by other factors such as transcription associated mutations. 

As genetic variation in our genome is continuously indexed, as a result of large projects that sequence 

groups of up to thousands of people correlations between variants/alleles is found; namely, it can be 
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observed that the presence of an allele   at some position in our genome is correlated (to various 

degrees) with the presence of some other allele   at another position. These observations are 

quantified by the notion of linkage disequilibrium (LD). By making use of such patterns of LD around a 

respective position, it can be inferred whether an observed DNM originates from the paternal or the 

maternal germline.  

1.4.2 Role of de-novo mutations in disease 

Beyond their relevance to our understanding of evolution, DNMs were also found as good candidates 

for disease-causing variation[26],[27]. When attempting to explain the heritability of a disease, two 

general models are typically employed.  

The “Mendellian disorder” model assumes that a disease’s genetic causes are monogenic, in that they 

lie within the coding regions/exons of one gene, simple, in that the exonic variation produces visible 

effects in the generated protein and the ramifications of this can be further studied up to (ideally) the 

phenotype level, and rare, in the sense that variation in such highly functional regions is usually very 

deleterious thus these causal alleles will not typically propagate in the population. Also Mendellian 

diseases show very extreme phenotypes, often including various degrees of mental retardation and/or 

physical malformations. DNMs have been found to contribute in explaining the heritability of this class 

of disease with relevant examples such as Schinzel-Giedion syndrome[28], Bohring-Opitz syndrome[29], 

Kabuki syndrome[30] or KBG syndrome[31]. 

The “complex trait” model, by contrast, assumes that a disease’s heritability is polygenic, in that causal 

variation is spread heterogeneously across the genome, complex, as causal variation may be found in 

regions for which function is known even less than for coding regions, and common, in that disease 

causing variation may segregate at higher frequencies within the population. Typically, many loci spread 

across the genome (up to hundreds of thousands[32]) are found to have small contributions through 

their causal alleles to the overall heritability of the disease. The same arguments make this model 

suitable for the study of some quantifiable human traits in general, such as height, and not only 

diseases. An underlying assumption of this model is the “common disease, common variant” assumption 

which would make DNMs counter-intuitive candidates for such analyses, as a DNM is unlikely (although 

not impossible) to result in an allele that already has high frequency in the population. DNMs have been 

found to contribute to the heritability of some common disease though[33], sometimes with larger 

effects than the other, common variants involved. They are sometimes considered a “trigger” variation 

for other underlying common variants[34],[35]. 
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2. Materials and Methods 
2.1 Sequencing 

Sequencing is the complex and sequential process by which the DNA molecule of an organism is 

represented as a contiguous sequence of its nucleobases.  Initial Sanger sequencing techniques, also 

termed “first generation” sequencing, date back to the 1970s[36],[37]. Similar to modern techniques, 

they are based on cutting the contiguous DNA molecule of 3 billion nucleotides into smaller manageable 

subsequences, called reads. These are individually sequenced by mimicking the DNA replication process 

that happens naturally each time a cell divides. Instead of adding normal complementary nucleotides to 

the template strand however, slightly modified nucleotides are added that, through chemical reactions, 

emit fluorescent light of different frequencies. Identification is then performed through simple spectrum 

discrimination of electrophoretic measurements between bases thus enabling their read-out, as well as 

a level of confidence for each outputted base. The method has been continuously researched and 

improved, reaching a very high empirical performance        [38],[39]. The use of this technology is 

very expensive and therefore rather impractical for genome-wide sequencing of individuals, or cohorts 

of individuals, which is desired for building statistical power for association studies.    

2.2 Next Generation Sequencing 

Improvements in most chemical and technical steps of the sequencing process, as well as major increase 

in post-sequencing processing power, methods and data storage have resulted in a number of related 

technologies collectively termed “Next Generation Sequencing” methods. These methods produce very 

large amounts of data, at a high throughput, and at significantly reduced costs. Instead of directly 

producing a sequence, they output a variable number of reads that cover a desired position, each with a 

corresponding confidence measure, and the actual sequence is derived by consensus in subsequent 

analysis.   

All NGS technologies follow the basic workflow depicted in Figure 5. This involves cutting the DNA 

molecule into manageable size fragments, attaching elements that allow us to manipulate individual 

fragments, one or more “amplification” steps where we multiply the available DNA and the base reading 

process. Different NGS platforms implement these steps slightly differently[39],[40]. This creates a 

spectrum of technologies, each with specific advantages and limitations. Given different error modes for 

each NGS platform, the challenge remains to robustly integrate their sequencing output, for 

downstream analyses. We present the NGS workflow integrated in our analysis, as performed on an 

Illuminae platform, currently the most used technology.  
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Figure 5: Overview of a Next Generation Sequencing process. An initial DNA molecule is first cut into short sequences, called 
reads, by the use of primers, in a special fluid. Sequencing adapters, also primers, are then added to the solution and they 
couple to both ends of each read. The PCR amplification step makes many copies of each read until a certain read 
concentration is obtained in the fluid. The reads can then be “read out” by the sequencer.  

The sequencing process starts with library and template preparation. The DNA molecule to be 

sequenced is cut into small size reads. The Illumina platforms we used currently support a maximum 

reliable read length of      bases. This is much smaller than the reads supported by Sanger sequencing 

methods, because of the slightly different electrophoretic calling methodology, but is also a source for 

the significantly higher throughput rate.  

2.2.1 DNA Amplification 

The emulsion PCR (Polymerase Chain Reaction) process is then performed on the joint set of reads. ePCR 

is a cyclic process that repeatedly makes “copies” of the fed set of reads generating exponentially 

increasing amounts of data. This step is generally performed in order to get a sufficient amount of DNA 

to sequence. Neither amplification nor the subsequent sequencing are deterministic. As a certain 

concentration of DNA reads is achieved and a number of other needed molecules are added the 

reaction (i.e.: PCR and/or sequencing) starts. The DNA of interest is put in a solution along with DNA 

primers, nucleotides, and polymerase. Within each cycle, the DNA reads are heated to a temperature of 

up to 98 degrees. This breaks the hydrogen bonds between base-pairs, effectively separating the two 

DNA strands. The single stranded reads are then bordered by small, typically       base long, a-priori 

designed and synthetically created DNA sequences called primers. Additional primers are freely 

available in the solution/gel in which the reaction takes place. When the temperature is brought down, 

the single stranded primers attached to the reads form bonds with the complementary primer sequence 

available in the solution and mutant DNA polymerases (mimicking the structure and function of 

molecules in our cells) then bind to them and use the single stranded DNA reads that they are coupled 

to, to create the complementary strand (Figure 6). Primers are needed whenever we wish to artificially 

build a double stranded DNA sequence from a template because polymerases can only extend an 

existing DNA chain and not start one from zero.  

 



- 16 - 
 

 

Figure 6: One solid-phase PCR amplification step, as performed on an Illumina machine. The blue and red sequences are 
primers. As a read is attached, the free primer at one end forms hydrogen bonds with its complement, freely available on the 
board. An enzyme can then attach to this end and use the single stranded read as template for creating its complementary 
strand thus obtaining a double stranded read. Hydrogen bonds break again through heating up and the process is repeated 
several times until (ideally) identical clusters of the same read are created. 

The PCR cycles determine an exponential increase in available reads and are repeated until the expected 

value of reads covering any genomic position reaches the desired average coverage. During each ePCR 

cycle, there is an equal probability that any read chosen for amplification comes from either one of the 

two chromosomes, covering those positions, of a diploid organism. This then leads to a binomial 

distribution of reads (w.r.t. originating chromosome) at each individual position in the sequenced 

genome. This implies that, on average, the two alleles present at any site are equally represented in our 

sequencing data, enabling us to make correct calls of the underlying genotype. However, for each site 

there is a probability, proportional to the coverage at that site, that one or both of the alleles are under-

represented or not captured at all. The impact of this distribution is greater for heterozygous positions 

since they require adequate coverage of both alleles. 

2.2.2 DNA Sequencing 

With a library of reads built as described above, the actual sequencing process is applied. One 

sequencing run as a whole is similar to one individual cycle of the amplification (see Figure 7). The 

building of the complementary strand however, is in turn cyclic so as to allow read-outs of the basses. 

The big dataset of reads is organized into clusters and more runs of the sequencing machine can be 

performed as needed. After the reads have been separated into single stranded DNA chains and primers 

were added, the sequencing cycles begin. During each cycle, dye-augmented (i.e.: each type of base has 

a distinct colour) single basses are added to sequencing solution and polymerases add the 

corresponding base to each read, the base complementary to the next position of the template single 

stranded read. After each adding step, all the “unassigned” dye-augmented bases are taken out of the 

substance and light is emitted in the gel by two lasers. Total reflection inside the gel creates a stationary 

wave that is then measured and the just-added bases are predicted with a corresponding level of 
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confidence/probability of success. The dye on the just-read bases is eliminated and the cycle is repeated 

until the reads are completely built and read. Variants of this process exist where, for example, during 

one cycle only one type of base can be added to each/all reads (          ). The such obtained reads 

can then be used to reconstruct the sequenced individual’s contiguous DNA string, during alignment.  

Alternatively, the method of cutting the initial DNA molecule into reads can be modified to produce 

paired-end reads, as opposed to single, independent ones. Paired reads are obtained by designing 

primers that cut the DNA in such a way that one cut produces two reads, for which we know that they 

are separated by a fixed and relatively constant nucleobase distance. For example a paired end read can 

be two 70-base reads, spaced such that there are aprox. 250 basses between them. These 250 “hidden” 

basses are not captured, neither amplified nor read. Having paired reads can improve downstream 

alignment for certain parts of the genome[41]. If one of the two ends falls within a region where 

alignment is hard (such as repetitive regions, indels, etc.) and its pair does not, we can use the confident 

alignment of one, to infer the other.  

 

Figure 7 : Two consecutive cycles of a sequencing process using reversible terminators, as performed on an Illumina machine. 
The reads to be “read out” are primed at both ends and an enzyme attaches; then free floating nucleobases of all 4 types are 
added to the solution, each labeled with a different dye color (up). The enzyme couples the right base to each read, then the 
remaining free bases are removed and the just added bases are read (middle). Finally, the dye on the added basses is 
removed and the cycle can be repeated (bottom).  
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The massive read output of a sequencing machine is stored in the .fastq format. Each read is stored as 

the ASCII sequence of bases that were called. Furthermore, a homolog sequence of quality scores 

corresponding to each base in the read is stored, represented by ASCII characters, that correspond to 

integer values. The quality representation used is Phred[42] scaled likelihoods of the probabilities 

                         outputted by the sequencing machine:  

             
                                      

A Phred quality of 10 then corresponds to a probability of 10% that the base-call produced by the 

sequencer is in fact wrong, etc. Fastq is the standard format for the output of most sequencing 

technologies and it offers a singular data representation format for subsequent analyses, although the 

quality values from different sequencers cannot be fully integrated yet. 

2.3 Genome Analysis ToolKit – GATK 

The Genome Analysis ToolKit (GATK) is a java based framework developed to enable and ease the 

manipulation and processing of genetic data. Developed and maintained by a group within the Broad 

Institute[43], the framework is continuously extended currently offering the means to easily run entire 

analysis pipelines, from raw sequencer output to final results. The framework as well as most of its tools 

is open-source and external contributors can participate in extending it. 

One of the essential features GATK provides is its data access patterns, allowing developers to focus on 

processing of the information. Given the massive sequencing and/or alignment data (about 200Gb for 

an individual 12x coverage genome), it becomes clear that processing has to be done without loading an 

entire file into memory. The other defining design element is the map-reduce processing framework. 

Given that input is loaded sequentially, the processing must in turn be modular. Namely the processing 

is applied to each symbolic element that the traversal engine loads and all intermediate results are 

pooled together to compute the desired output  

Two main types of formats are used to store genetic data, both relying on annotations. The .bam format 

is used to store raw alignment data, as described above and it contains genomic position wise, base-

wise and/or read-wise annotations. The .vcf format is used to store variants computed from the 

alignment and containing higher end, variant annotations.  
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2.3.1 Walkers 

A walker is a means of traversing genetic information by “walking” along one of its dimensions. For each 

of the positions along this dimension, the walker will load all relevant information from the data “tracks” 

passed to the engine. Such tracks can comprise of sequencing data (e.g. bam files), a reference 

sequence, a list of variants, etc. The GATK provides two basic types of walkers: 

 ReadWalker traverses files by loading into memory each read plus all contextual information 

available for it. Such information includes the base sequence representing it along with all the 

base quality estimates, reference position(s) it aligns to, mapping quality, etc. the “map” 

function is called for each such loaded read where the developer can define the desired 

processing and compute a local result. The “reduce” method is subsequently called for the same 

read, with the result produced by the map method, where the developer can define how to 

integrate the local result in the final output of the walker.  

 LocusWalker traverses the whole reference genome position by position. For each genomic 

position it loads data such as reference base at that position, reference bases in an adjustable 

window around the current position, all reads containing bases aligned at this position along all 

their read-specific data, etc.  

Depending on the processing being done, additional files can be passed such as files containing 

information about the individuals being processed (sex, family structure, case/control status, etc.). GATK 

automatically incorporates and correlates this information and makes it available in the same map-

reduce paradigm (i.e.: assigns sex of individual automatically), or makes it globally available. 

2.4 Alignment 

Using Next Generation Sequencing technologies we can sequence reads that collectively cover the 

whole human (or other organism) genome, but during this process we lose all information regarding 

where in the genome they originate from. Reconstructing the DNA molecule that was sequenced can be 

done by two approaches. One is de novo assembly, that attempts to reconstruct the complete 

contiguous DNA sequence based exclusively on the reads obtained, typically by exploiting overlaps 

between reads covering close regions. For humans, as well as for a few other organisms (i.e.: mouse, 

zebra-fish), a reference sequence for the DNA molecule was pre-built and the task is reduced to aligning 

the reads to this reference sequence. 

The human reference sequence was developed and is continuously maintained by the Genome 

Reference Consortium. The reference sequence was produced by a more complex methodology that 

combines de-novo assembly of approximately 13 individuals with comparative genetics, namely studying 

the content and resemblance of closely related species that are assumed to have separated relatively 

recently, on an evolutionary timescale. 

Many efficient algorithms have been developed that can tackle the task of aligning up to millions of 

       reads to a       reference sequence. Some algorithms are designed to align reads from more 

NGS platforms, such as Mosaik[44], while others are tailored to perform specifically well for specific 
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technologies. As the most widely used platform, many algorithms exist for aligning Illumina sequenced 

reads, such as MAQ[45], SOAP[46], ELAND, Bowtie[47], BWA, etc. and approaches vary from hash-table 

based to tree-based methods. In our analysis pipeline we use BWA[48] which relies on the Burrow-

Weeler method of indexing a string, in our case the reference genome, and performing a tree-search for 

each read to be aligned. The algorithm is further optimised for specific data patterns in the 

reads/reference data. For example, a higher number of mismatches can be allowed around sites where 

indels are known to be present, so that they are captured correctly, and the use of paired-end reads can 

be employed to increase performance in highly repetitive regions. A phred-scaled quality measure is 

produced for each read as the likelihood of the respective read being miss-aligned. 

All information computed up until this point is stored in Sequence Alignment/Map (SAM) format files or 

their binary version, i.e.: BAM files. They encapsulate read level information such as the sample 

(/individual) it originates from, the group of reads it was sequenced together with, the position in the 

reference sequenced where it was aligned, mapping quality, etc., as well as the original base call quality 

for each individual base.  

2.4.1 Base Quality Score Recalibration  

Due to discrepancies observed between the base quality assignments at some of the intermediate steps 

and empirical error rates, recalibration of these scores needs to be performed. An empirical observation 

is that alignment around known indels is of lower quality. Failure to correctly align a deletion for 

example, by inserting an appropriate number of gaps in the aligned read, results in a higher number of 

mismatches (thus lower quality), but also in false evidence of variation at the respective site. 

Realignment is typically performed for sites around genomic positions where indels are known to occur 

in the population 

Another important calibration step is the Base Quality Score Recalibration (BQSR)[43]. Given the aligned 

reads, we can empirically approximate a sequencer error rate by contrasting alignment matches and 

mismatches. A mismatch may originate from a sequencer error or it may be indicative of a variant allele 

present at that site. Knowing that current genetic databases include most of the variants present in any 

human genome, other sites where mismatches occur can be considered highly unlikely to have true 

underlying variants. Empirical error rates are estimated for initially assigned quality values with respect 

to known covariates for each base: 

 Read group it belongs to – reads sequenced together show common error models due to 

shared chemical environment  

 Assigned quality score – recalibration notwithstanding, a strong correlation is obvious between 

assigned and empirical quality scores 

 Machine cycle producing the base – different runs of the sequencing machine show slightly 

different error models 

 Dinucleotide (current base + previous base) – different chemistries between two adjacent bases 

generate different error probabilities 
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Plotting such computed error estimations against the sequencer reported quality scores, we observe 

systematic differences that should be corrected for (Figure 8a). Furthermore, observing the histogram of 

reported quality scores (Figure 9a), we note that there is little discrimination power between high 

quality bases. As it turns out from downstream analyses, the class of high quality basses is the most 

relevant in subsequent investigations, therefore, higher discrimination power on these naturally results 

in higher sensitivity for the respective analyses.  

 

Figure 8 : Plots Empirically estimated error rates vs. sequencing machine reported error scores of base quality scores. (left): 
before BQSR; (right): after BQSR   

The recalibration is then performed by estimating a model that best describes the empirically estimated 

error rates.  

 

 

Figure 9 : Plots of the distribution of base quality scores. (a): before BQSR; (b): after BQSR. 

(a) (b) 

(a) (b) 
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The BaseRecalibrator locus walker is used to traverse the bam file that we wish to recalibrate; it 

computes the described features for all bases at each locus and summarizes the results in a report file. A 

second locus walker, PrintReads, is subsequently used on the same (or different) input bam file. This 

walker reads the report, computes the correction coefficients needed to recalibrate the base qualities 

on the fly and updates all quality values for all bases. Bases qualities are effectively recalibrated by using 

coefficients that estimate: 

 The global difference between reported quality scores and empirical ones 

 A quality bin specific shift 

 A machine cycle and dinucleotide effect specific shift 

After recalibration, the quality scores are much closer to the empirical observed values, as depicted in 

Figure 8b. Also, we notice much higher discrimination power, in the form of a higher spread of basses 

across the high quality bins of the spectrum (Figure 9b). BQSR thus allows for a statistically more robust 

usage of the alignment data in subsequent analyses. 

2.5 Variant calling 

All heritability studies attempt to explain genetic influence on observable phenotypes by investigating 

systematic genetic variation. Being able to confidently identify, or call, the alleles present at any site of 

interest in the genome is therefore essential. 

In our analysis pipeline we use UnifiedGenotyper (UG), a LocusWalker that processes each genomic 

location and outputs the most likely genotype at that position, along with likelihoods for all other 

genotypes considered possible as well as other qualitative information relevant for subsequent analysis. 

The UnifiedGenotyper is able to make full use of the available information when a group of individuals, 

in our case all the GoNL dataset, is being genotyped simultaneously at some position of interest. The UG 

then considers the alignment data for all found individuals jointly and derives the alleles present at that 

site, along with their respective allele frequencies, by using an Expectation-Maximisation (EM) 

algorithm[49]. The EM algorithm maximizes the joint likelihood of a set of parameters and a set of 

hidden, unobserved, data values, given a limited set of observed values. In our context, the observed 

values are the alignment data for each individual at the site of interest, the hidden values are the 

number of reference alleles of each individual (i.e.: the number of alternative alleles is straightforward 

given known ploidy) and the set of parameters of interest is the allele frequency spectrum at the 

respective site which in turn defines the set of present alleles. 

The algorithm first computes the genotype for each individual in a maximum likelihood manner given 

the available alignment data: 

                   

where   is the genotype and   is the available data, i.e.: the set of basses aligned to this position. The 

genotypes   considered by the likelihood computation are all the possible genotypes consisting of 
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alleles identified by the EM algorithm. Each of these genotypes is considered equally likely, thus the 

     prior is assigned the likelihood value of 1. Evidence provided by each aligned read is considered to 

independently contribute, thus the likelihood function becomes: 

                  

 

 

where   is the base aligned to the current position, from each overlapping read and      is the allele 

representation of the underlying diploid genotype. The likelihood function can then be further expanded 

as: 
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The per-base error probability is derived from the recalibrated phred scaled quality score stored in the 

input alignment (.bam) file. The likelihood for each possible allelic combination at a site is computed 

and, following a normalization step, posteriors for each genotype are derived. The selected genotype is 

thus outputted, along with phred scaled likelihoods for all other possible genotypes. Considering a 

biallelic site the three possible genotypes are         (homozygous on the reference allele),     

(heterozygous) or         (homozygous on the alternative allele). For a genotype called as     an 

example of phred-scaled likelihoods (PLs) is        . These likelihoods indicate that     is the called 

genotype (the most likely genotype’s PL value is forced to  ) and that there is a probability of      that 

the genotype is actually a         and a probability of      that it is actually a        . The 

lowest of the PLs corresponding to not-called possible genotypes is denoted as the quality of the variant 

and filtering is typically performed on this value to select variants above a desired confidence threshold. 

The genotyper might conclude that either one, or both alleles of an individual cannot be confidently 

called, because of missing or highly inconsistent alignment data. The outputted genotype can therefore 

contain one or both alleles set to        . If at least one allele is called as a        , no PLs, or 

variant quality, can be produced. 

The UG supports calling individuals assuming haploid genotype as well (as it is the case for the   

chromosome in males), but the ploidy must be invariable across all samples that are called 

simultaneously. Since our dataset contains both males and females, the   chromosome is initially called 

as diploid (for all individuals) and adjusted further on in the pipeline.  
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Generated output is stored in a Variant Calling Format file (.vcf), which allows for standardized yet 

versatile generic representation of genetic variants. Along with position (in the form of chromosome and 

chromosomal-index), called genotype and PLs, other annotations can be outputted as needed for 

subsequent analyses. Typically subsequent filters are applied to the raw variant calls and information as 

to whether each variant passed is added. Some commonly used variant annotations, that are also useful 

for our analysis, are: 

 Reference allele – the allele from the human reference genome, at this site 

 Alternative allele – non-reference allele(s) found in at least one individual in the samples being 

called jointly 

 Phred-scaled likelihoods (PLs) – as described above 

 Genotype quality (GQ) – as described above 

 Depth of coverage (DP) – total number of reads that overlap this position (for each individual) 

 Allele depth (AD) – number of reads overlapping the position, that contain one/each specific 

allele 

One line in a .vcf file corresponds to one genomic position. Each individual present in the analysis 

dataset represents a column and information describing each individual’s variant at that position can be 

found on each line, allowing for missing data. 

For practical reasons (i.e.: the     input order of magnitude) sites where all individuals are called as 

homozygous reference are typically not included in the output. For sites where at least one individual 

was found to have a non-reference allele (i.e.: variant sites), genotypes are produced for all individuals 

that are called together. 

2.5.1 Variant Quality Score Recalibration 

The choice for the variant quality threshold made in calling determines a trade-off between sensitivity 

and specificity. Typically we want to produce a highly sensitive set of variants from the available 

alignment data, that we then filter. Variant Quality Score Recalibrator (VQSR)[43] builds a model to 

increase discrimination power between true underlying variants and sequencing artefacts, using 

features that are not directly considered when the initial call is made. The features used can be 

computed after the initial variant calls were made and added to the VCF file as annotations. Their 

description is beyond the purpose of this project. VQSR builds a Gaussian Mixture model that estimates 

the covariance between the computed features and the probability that the called variant is a true 

variant. A set of variants known to be true must be supplied for training, typically from public databases. 

The variants from our dataset are then projected on to the model and a confidence threshold is selected 

to separate the data into low and high confidence. Typically only high confidence sites will be considered 

for subsequent, downstream, analyses. 
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2.6 Genome of The Netherlands  

The Genome of the Netherlands (GoNL) is a large sequencing project, in which 250 parent-offspring 

families across the Netherlands were sequenced. Through this representative sample of families, the 

project aimed at characterizing the genetic structure of people living in the Netherlands. The 

intermediate average depth of coverage used,     , allowed for robust systematic detection of       

million single nucleotide variants (SNPs), as well as other types of genetic variation: short insertions 

and/or deletions, structural variants, etc. The large dataset, coupled with good sequencing coverage 

allowed for robust detection of variants that are rare within the population, i.e.: occur in less than    of 

the individuals, along with common genetic variation. This in turn enabled the fine-scaled 

characterisation of genetic structure across the country, supporting a demographic model, migrations, 

admixture with neighbouring populations, etc..  

The familial structure of the dataset makes it an ideal candidate for the development and testing of 

computational methods for identifying and, further on, characterizing de-novo events. The 250 GoNL 

families have the following familial structure: 

 231 single offspring trios 

 8 dizygotic twin quartets 

 11 monozygotic twin quartets 

 

2.6.1 The   chromosome 

Applying the above described variant calling pipeline resulted in a VCF file containing 834,651 sites 

genotyped for each of the 767 individuals. The size of the reference sequence against which 

chromosome   reads are aligned is 155,270,560 (~155Mbp). 

Given that the PCR amplification step produces reads originating from the sequence of a diploid 

chromosome following a binomial distribution, with an average coverage of 12x per autosomal, diploid, 

site, we expect a lower average coverage of 6x in males, as the    chromosome is not paired for them. 

Secondly, it has been shown that regions towards both ends of the   chromosome do in fact pair, in an 

autosomal/homologous manner with corresponding regions at both ends of the   

chromosome[50],[51]. These two regions are called pseudo-autosomal and the   (and/or  ) 

chromosome is diploid for men as well, within their boundaries. They are thought to have arisen 

through local recombination of the two different sex chromosomes and to serve a function in meiosis.  

The alignment data, on which the genotype calling and any subsequent analysis is done, within the 

pseudo-autosomal regions is completely unreliable. Ideally, one reference sequence corresponds to 

each of these pseudo-autosomal regions (as for any other autosomal region) and PCR resulting amplified 

reads, from the corresponding   and   regions, are aligned against it. For practical reasons however,   

and   chromosomes are treated independently as a whole and aligned against their own respective 
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reference sequence. We thus have no control over where each of the reads covering these regions ends 

up, therefore producing an unpredictable and unreliable distribution and subsequent calling.  

The two pseudo-autosomal regions span the two ends of the chromosome, below base-pair 2,699,520 

and above base-pair 154,931,044 respectively. They are therefore roughly 2.6Mbp long and 340Kbp long 

respectively, cumulatively accounting for less than 2% of the   chromosome. 

2.7 PhaseByTransmission 

Because NGS technologies produce error rates much higher than the estimated probability of a de-novo 

mutation (DNM) event, accurate calibration of evidence supporting a DNM must be contrasted with 

evidence supporting Mendelian inheritance of a child’s alleles. A miscalled genotype in either parents or 

in the offspring leads to a false negative or false positive DNM call.  

Currently used variant callers such as UG (see above) make use of available individual sequencing data 

as well as, optionally, multiple individuals sequencing data, to estimate genotype likelihoods for each 

possible genotype at some specific site. They incorporate and minimize the uncertainty from NGS 

alignment data. This leaves much room for further improvement in the case of DNMs however, as the 

UG produces a number of 4.5M Mendelian violations within the 269 offspring of the GoNL dataset. 

Considering an expected number of mutations of 63.2 per individual from previous estimation 

endeavours, the expected number of Mendelian violations (MVs) is then much smaller,        . To this 

end we implemented the PhaseByTransmission. 

2.7.1 Pedigree information 

The UG computed likelihoods (i.e.:       ) are independent per sample and no prior is used when 

deriving the posterior probability of a genotype. By incorporating transmission priors, derived from 

available information about the familial relationship between samples we are able to aggregate the 

available evidence in a more statistically robust manner.  

As opposed to computing an individual’s genotype in a likelihood based manner, we compute a trio’s 

genotype combination (i.e.: mother – father – child). Considering the bi-allelic case that PBT currently 

supports, there are 27 possible trio genotype combinations. Out of these, 15 are consistent with 

Mendelian inheritance patterns, 10 imply one Mendelian violation (i.e.: one DNM), and 2 imply 2 

Mendelian violations (see Table 1). By taking into account each individual’s sequencing data through UG 

computed genotype likelihoods, a prior de-novo mutation rate and allele frequency in the population, 

the most likely trio genotype is computed, in a likelihood based manner. 
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 mother father child #DNMs transmission prior 

1 AA AA AA 0 1 

2 AA AA AB 1 1,00E-07 

3 AA AA BB 2 1,00E-14 

4 AA AB AA 0 0.75 

5 AA AB AB 0 0.75 

6 AA AB BB 1 1,00E-07 

7 AA BB AA 1 1,00E-07 

8 AA BB AB 0 1 

9 AA BB BB 1 1,00E-07 

10 AB AA AA 0 0.75 

11 AB AA AB 0 0.75 

12 AB AA BB 1 1,00E-07 

13 AB AB AA 0 0.25 

14 AB AB AB 0 0.5 

15 AB AB BB 0 0.25 

16 AB BB AA 1 1,00E-07 

17 AB BB AB 0 0.75 

18 AB BB BB 0 0.75 

19 BB AA AA 1 1,00E-07 

20 BB AA AB 0 1 

21 BB AA BB 1 1,00E-07 

22 BB AB AA 1 1,00E-07 

23 BB AB AB 0 0.75 

24 BB AB BB 0 0.75 

25 BB BB AA 2 1,00E-14 

26 BB BB AB 1 1,00E-07 

27 BB BB BB 0 1 
Table 1: All the 27 possible autosomal trio-genotype combinations. Contains the symbolic genotype of the three individuals 
(where A and B denote possible alleles), the number of de-novo mutations that the combination contains and the 

corresponding transmission prior for each combination (where      is the per base probability of a DNM as estimated in 
literature) 

2.7.2 The Model 

In order to compute the posteriors for trio genotype combinations PhaseByTransmission takes as input, 

the genotype likelihoods of all individuals, as computed by the UG (see above). If multiple trios are used 

at the same time for calling, the allele frequency for each site can be estimated and, subsequently, the 

allele frequency prior for each possible genotype,    
 : 
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where   and   are the allele frequencies of the 2 present alleles at the respective site, i.e.:      , as 

estimated from the set of samples provided. This prior encapsulates the expected Hardy-Weinberg 

equilibrium, which is in turn consistent with the genetic drift model described in Introduction. The allele 

frequency prior is then simply the probability of an individual having a combination of the two possible 

alleles identified for the respective site, under a random sampling with replacement model, where each 

allele’s probability is its estimated allele frequency. We compute the allele frequency prior for each 

parent, as they are assumed to be unrelated (i.e.: independently sampled from the population). This 

prior cannot be applied to the offspring genotype, as its alleles are completely determined by its 

parents’ alleles through Mendel’s laws of inheritance. The offspring are not used in the computation of 

the allele frequencies, for the same reason. 

We then define the likelihood of the data   given a trio genotype combination as follows: 

                          
               

               

where       and    are the genotypes of the mother, father and child respectively,        is the 

genotype likelihood for each individual as computed by UG,    
   and      

   are the allele frequency 

priors computed for the mother and the father’s genotypes respectively and    is the transmission prior 

as computed in Table 1. The trio genotype likelihood is computed for each of the 27 possible 

configurations and the posterior probability is then obtained by a normalization step: 

      
    

    
   

      
    

    
  

       
    

    
    

   

 

where     corresponds to the ordinal number for one of the 27 trio genotype combinations. Finally, the 

most likely combination is outputted along with a phred scaled quality score of the transmission 

posterior(TP): 

                        
    

    
      

where   indicates the most likely configuration. 

2.7.3 Extending for the   chromosome 

The described model is correctly defined for the diploid regions of the genome, i.e.: the autosomal 

chromosomes. We note that for the sex chromosomes, females are diploid, having an    pair of 

chromosomes, whereas males are haploid, having an    pair of non-homologous chromosomes and the 

inheritance pattern differs both for male and female offspring. Female offspring inherit one   

chromosome from each parent and, as the father has only one, the paternal inheritance is deterministic. 

This reduces the number of possible trio genotype combinations to 18, out of which 8 are consistent 

with Mendelian inheritance patterns, 8 are indicative of one DNM, and 2 are indicative of two DNMs, as 

listed in Table 2. 
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 mother father child #DNMs transmission prior 

1 AA A AA 0 1 

2 AA A AB 1 1,00E-07 

3 AA A BB 2 1,00E-14 

4 AA B AA 1 1,00E-07 

5 AA B AB 0 1 

6 AA B BB 1 1,00E-07 

7 AB A AA 0 0.5 

8 AB A AB 0 0.5 

9 AB A BB 1 1,00E-07 

10 AB B AA 1 1,00E-07 

11 AB B AB 0 0.5 

12 AB B BB 0 0.5 

13 BB A AA 1 1,00E-07 

14 BB A AB 0 1 

15 BB A BB 1 1,00E-07 

16 BB B AA 2 1,00E-14 

17 BB B AB 1 1,00E-07 

18 BB B BB 0 1 
Table 2: All the 18 possible  -linked trio-genotype combinations for a female offspring. Contains the symbolic genotype of 
the three individuals (where A and B denote possible alleles), the number of de-novo mutations that the combination 

contains and the corresponding transmission prior for each combination (where      is the per base probability of a DNM as 
estimated in literature) 

Male offspring inherit the   chromosome from the father and one   chromosome, only from the 

mother. This implies a number of 12 possible trio genotype combinations, 8 of which are consistent with 

Mendelian inheritance and 4 of which correspond to one DNM, as listed in Table 3. 

 mother father child #DNMs transmission prior 

1 AA A A 0 1 

2 AA A B 1 1,00E-07 

3 AA B A 0 1 

4 AA B B 1 1,00E-07 

5 AB A A 0 0.5 

6 AB A B 0 0.5 

7 AB B A 0 0.5 

8 AB B B 0 0.5 

9 BB A A 1 1,00E-07 

10 BB A B 0 1 

11 BB B A 1 1,00E-07 

12 BB B B 0 1 
Table 3: All the 12 possible  -linked trio-genotype combinations for a male offspring. Contains the symbolic genotype of the 
three individuals (where A and B denote possible alleles), the number of de-novo mutations that the combination contains 

and the corresponding transmission prior for each combination (where      is the per base probability of a DNM as 
estimated in literature) 
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We note that since male offspring do not inherit any          genetic code from the father, only 6 of 

the trio combinations listed in table# are uniquely informative w.r.t. DNM discovery (i.e.: father’s 

genotype on the   chromosome is not informative) and we could therefore use only the mother-child 

combination to detect DNMs in this case. Father’s genotype contribution to the likelihood function of a 

trio combination however (             
   ), can only increase discrimination power by increasing the 

likelihood of the best mother-child combination and decreasing the likelihood of some of the other 

mother – child combinations. Considering the lower sensitivity we notice in detecting male offspring 

DNMs (see results) we decide to consider the whole trio combination as opposed to mother-child pair, 

for          male offspring cases. Furthermore, since PBT can also be used as a “genotype score 

recalibration” method, by taking into account familial relationships, considering the father’s genotype in 

this case offers more sensible results. 

The second modification needed is that of the allele frequency prior, for the haploid genotype of the 

father: 

   
   

                 
                   

  

where   and   are again the estimated allele frequencies from the offered population of samples 

(excluding the offspring) and   is a haploid genotype.   

2.7.4 Further extensions 

Considering the properties of the sequencing data available and/or the nature of de-novo mutations, a 

number of further PBT extensions can be implemented, that would extend PBT’s scope or detection 

power respectively. 

Firstly, multi-allelic sites have been found in the population of GoNL as well as other large population 

sequencing projects (100 Genomes Project). The extension for this case would imply an increase in the 

number of possible trio genotype combinations, for which the defined likelihood function has to be 

evaluated. The number of possible diploid genotypes for   alleles is 

   
 

 
    

      

 
 

i.e.:   homozygous genotypes and   
 
  unique heterozygous genotypes. The number of possible trio 

genotype combinations to be evaluated is then 

 
      

 
 

 

 

where the bi-allelic case corresponds to 27 unique genotype combinations. PBT thus has polynomial 

time complexity w.r.t. number of alleles, i.e.:      .  
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Another considered modification is allowing for more complex family pedigrees horizontally and/or 

vertically. More specifically, as available familial information was used to estimate the joint probability 

distribution of a mother – father – child trio, additional familial information can be used to estimate the 

joint probability distribution of larger pedigrees; i.e.: including grandparents, uncles, siblings, etc. We 

note however that generalizing the above derived PBT complexity we obtain: 

          
      

 
 

 

         

pedigree combinations to evaluate, where   is the number of alleles and   is the size of pedigree 

considered. The exponential time complexity, w.r.t. pedigree size, makes the problem intractable for 

arbitrary sized pedigrees, all the more so considering the dimensionality of genetic data in terms of 

variant sites(i.e.: millions) and population size. By good use of domain knowledge however, some larger, 

fixed size pedigrees may be considered, or, alternatively, pruning of the pedigree combination search 

space may be applied. Siblings for example are good first candidates for pedigree extension and are 

more informative of one another’s genotype, considering Mendelian rules of inheritance. 

2.7.5 Machine Learning post-filtering  

An initial run of PBT on the GoNL dataset produced a number of        putative DNMs, still much 

higher than the         expected number of DNMs. A number of sites were prioritized for validation 

(i.e.: accurate sequencing at much higher depth such that the new result can be considered underlying 

truth) and a training set of       observations was produced, containing true positive DNM hits and 

false positive DNM hits. 

This set was used to train a random forest model that would discriminate between true positives and 

false positives, thus fine-filtering the initial results. The model uses 22 features that were considered as 

possibly informative, including depths of coverage of individuals, various quality scores computed along 

the analysis pipeline, allele frequency, etc.. The trained model retained 12 of these features as 

informative and produced a test classification accuracy of      . Running the model on the initially 

found        DNM hits, a set of        high confidence hits was produced, for use in subsequent 

analysis. 

2.8 HaploidWriter Walker 

All of the GoNL data, including the   chromosome, was called using the diploid model described in the 

Variant Calling section. This is obviously not correct for the haploid   chromosome of male individuals in 

the dataset. While PBT can be implemented to use the appropriate information from a diploid called X 

chromosome, in addition to the adjusted inheritance pattern, incorrectly diploid genotyped samples still 

reduce PBT power significantly, mainly because of the wrongly computed PLs associated with each 

genotype. 

The optimal solution would be to re-genotype the whole dataset using the haploid model of UG for the 

males. This is however practically cumbersome, as males and females would have to be called 



- 32 - 
 

separately (i.e.: because the ploidy property must be identical for all samples pooled together for 

calling), and then merged together. Furthermore, the two data formats (i.e.: bam and vcf) are 

standalone and, typically, the genotyping is performed as an initial processing step when a new dataset 

is built. Genotype data for individuals at variant sites is typically all one needs for most downstream 

analyses. Given the variation, the rest of the genome can be simply read from the reference genome. 

The raw alignment data of all the individuals in the GoNL dataset for one chromosome would roughly be 

       whereas a vcf file containing all variation in the dataset for one chromosome is aprox.      

large. This order of magnitude reduction in data size makes the use of vcf files preffered. Thus, it is not 

uncommon that datasets we wish to use are found in vcf format and the underlying alignment data is 

not available, thus not allowing us to re-genotype individuals. A method of inferring the haploid 

genotype from an initially called diploid genotype is then a useful tool for a pipeline analysing a haploid 

chromosome (      ). 

To this end we implemented HaploidWriter, A RodWalker that takes as input some vcf file and a file 

specifying genomic intervals in the form of chromosome position and index start-end values, as well as a 

ped-file specifying familial relationships between vcf samples and/or sex. The walker traverses the 

genotypes of all individuals at every genomic positions. For genotypes of individuals that are males (as 

specified by sex), or for which the walker can infer that are males (from familial relationships), and that 

fall within the genomic positions specified by input, the walker transforms the respective genotypes to 

haploid (if they were initially called as diploid). The transformation is applied to the annotations needed 

by the PBT, namely genotype alleles and phred-scaled likelihoods, but it can straightforwardly be 

extended to new annotations, as they are found relevant for other analyses.  

We use the case where two alleles are present in the population at a genomic position, although 

HaploidWriter can be applied to multi-allelic sites as well. For bi-allelic sites, the genotype is a 

combination of the two possible alleles and the likelihoods correspond to the three possible allelic 

combinations, in a fixed order:                          . A haploid genotype contains by 

definition only one allele, therefore it can only be homozygous, for some allele. If the initially called 

diploid genotype is homozygous for either one of the two alleles, then the haploid genotype is also 

homozygous for that allele. If the initial diploid genotype is heterozygous, the allele of the haploid 

genotype is determined by comparing the likelihoods of the diploid genotype. The smaller of the two 

homozygous alleles will be the allele assigned to the haploid genotype. For example an initially called 

genotype    , where   is the reference allele, with            will become an   haploid genotype. 

This is correct because the PL encode the amount of evidence, that was found in the alignment data, 

that supports each possible genotype. In the given example, the called genotype was    , but the 

genotyper found that there is more evidence (or better quality) for the reference allele than for the 

alternative one, thus, knowing a-priori than the genotype cannot contain both alleles, we assign the 

reference one. Typically however, haploid genotypes that for which evidence of two (or more) alleles is 

found, are an indication of very bad quality data (i.e.: systematic alignment errors due to repetitive 

regions or indels, etc.). 

The PLs are modified in a straightforward manner as follows; the inverse phred transformation is applied 

to obtain the probabilities of each original genotype 
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where    is each of the three possible genotypes and      is the corresponding likelihood. The 

probability of the initially called genotype will be the only one set to 1 after the transformation (due to 

the forced 0 PL value) and is recomputed 

                 
            

 

The probabilities corresponding to homozygous genotypes only are kept (i.e.: in the bi-allelic case only 

the first and third), they are re-normalized to sum to 1 and the phred transformation is applied. For the 

above given example the haploid genotype would be     , with        . 

We expect the implementation to provide a good estimation, for all intended practical usages, of the 

correct haploid genotype and PLs of an initially called diploid genotype, but we also expect systematic 

differences when compared to the PLs computed by the haploid method of genotype calling of the UG. 

Intuitively, this stems from the likelihood based approach used by the UG. Namely, observing the same 

evidence   (i.e.: read containing this base) weights more to the final likelihood under an expected 

haploid genotype than under an expected diploid genotype: 

                 
 

 
         

 

 
 

and 

         
          

   
 

 
         

                                

whereas 

                   
           

   
 

 
          

     

                                                                                      

 

This difference would account for a systematic underestimation of the PLs from our HaploidWriter, 

w.r.t. UG. A less direct influence also comes from the Expectation Maximisation algorithm of UG that 

estimates the allele frequency spectrum at each position, prior to deriving the final genotype 

likelihoods. As the allele frequency is marginalized over each ploid (individual chromosome), having a 

lower number of chromosomes produces a different estimation. 
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2.9 DeNovoMutationPowerCaller 
2.9.1 Motivation 

With the implemented PhaseByTransmission model in place, the following analysis pipeline can be used: 

We apply PBT to trio-based sequencing data and obtain a set of likely DNM candidate sites. The filtering 

method described eliminates some of the false positive hits producing a subset of high confidence hits. 

These are further confirmed through deep sequencing validation and the ones found to be true DNMs 

are used in subsequent analysis. We further wish to assess the detection power of PBT, namely how 

likely is PBT to detect a de-novo mutation at some locus in the genome, if one were present. Applying 

this to the whole genome we obtain a map of accessible versus inaccessible regions with respect to PBT 

de-novo detection. This is used as an indication as to what regions can be confidently assessed and what 

regions cannot, as we would be unlikely to detect any DNMs in that region. We are primarily interested 

in identifying and characterizing the regions where PBT has very low detection power (i.e.: what we are 

likely to miss). 

To this end we build the DeNovoMutationPowerCaller (DNMPC) that outputs the probability of PBT 

detecting a DNM at any locus in the genome based on features of the sequencing data available for that 

region. We note that DNMPC provides information PBT’s detection ability at a locus, under the 

assumption that one is present, and it gives no indication as to whether a mutation is actually present. 

Multiple factors are likely to influence discovery power, including the sequencing depth of cover in each 

of the trio members, the quality of the mapping at the site, the genomic region’s susceptibility to 

mutation, etc. It is not trivial to know which of these factors are most relevant for detection power, nor 

how they influence it. We therefore train a classification model to evaluate their joint discriminatory 

power in separating callable and uncallable regions. In order to build such a model we need a dataset 

comprising of sequencing data at sites that cover both detected and undetected DNMs. By definition, 

we cannot know apriori where false negative sites lie in the real sequencing data. Thus, an artificial 

dataset of “simulated” de-novo mutations is built from the GoNL sequencing data, so as to enable us to 

properly train a classification model. 

2.9.2 Simulation data 

A set consisting of 100,000 simulated de-novo mutations was created. Firstly, the positions to insert an 

artificial DNM were sampled uniformly and uniquely across the whole reference genome. Sites that are 

known to be polymorphic were filtered out. Then each position was attributed to one GoNL family 

randomly, also following a uniform distribution (across available families). Finally, a mutation was 

artificially inserted in the child data by changing one of the genotype alleles such that the respective trio 

genotypes combination would result in a Mendellian violation. So as to be able to train a realistic model 

on the artificially created dataset, the mutations are inserted in such a way as to preserve the error rates 

and the error profiles as much as possible. To this end the modifications are made at the lowest level 

possible in the analysis pipeline, namely at individual read’s level. The set of reads covering the target 

position in the child are selected and modified such that they should intuitively result in a different 

genotype call. For each read, the base aligned to the desired position is flipped to another “mutated” 
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base with 0.5 probability to simulate the binomial sampling of two different alleles in a diploid context. 

The inserted mutated base for each position is selected randomly from the 3 possible alternatives so as 

to not introduce additional biases. Some reads covering the targeted locus may have misalignments for 

that position, namely bases other than the reference allele that are however insufficient evidence to 

suggest polymorphism; they typically come from errors in the sequencing technology. These bases are 

not altered to preserve local error profiles. On this modified trio sequencing data we run the 

UnifiedGenotyper to obtain new genotype calls. Subsequently we apply PBT to check for DNMs, as well 

as the random forest filtering step, for better sensitivity. Excluding the filtered DNMs and other 

exceptional cases resulting from the random sampling, such as positions outside the accessible genome, 

etc., we obtain a total set of 84819 data points, which we consider to be true underlying DNMs, that we 

can use for training and testing the model.  For each such data point, a set of features is computed from 

the sequencing data.  

2.9.3 Model  description 

The model that we build is to be implemented into the GATK platform and it should be practical, with 

respect to time resources, to run it on a whole genome, i.e.: input size in the order of    . The resulting 

model should then have a simple allocation rule. Moreover, online computation of the features, at each 

locus, should be performed in, preferably, constant time.  

A subset of features from our dataset, that are trivially computable within a GATK walker, was selected: 

 father’s depth of coverage – father_dp 

 mother’s depth of coverage – mother_dp 

 child’s depth of coverage – child_dp  

 mapping quality – MQ   

 GC content within a 200 base-pair window, on the reference sequence, centred on the 

evaluated position – GC-content 

  the sequence of 3 consecutive base-pairs, on the reference sequence, centred on the evaluated 

position – Triplet  

 We may interrogate the GATK walker’s traversal engine for the depth of coverage of any sample in the 

supplied alignment input files at any currently processed locus. Thus, the coverage of each individual 

family member (father_dp, mother_dp and child_dp) may easily be used.  

Mapping quality (MQ) is computed as the average of the mapping qualities for all the reads that cover 

the locus(for the three individuals) and is thus computable in constant time, i.e.:             where 

      is the average depth of coverage across the genome that GoNL was sequenced at(i.e.: 12). We 

note that in creating the simulated mutations, we basically introduced a misalignment in aprox. half of 

the child’s reads without correcting the mapping quality scores. This makes the Mapping Quality that we 

compute a slight overestimation. Considering that each DNM contains an equal expected number of 

modified reads(AvgDP/2), we consider this bias a, small, constant “global” shift of the true MQ values, 

that cannot influence discrimination power however. Mapping quality and the depths of coverage are 
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natural choices for features as they relate directly to the confidence in genotyping a position, based on 

which we call DNMs.  

GC-Content is computed as the percentage of basses that are either a   or a   in a window that spans 

100 positions left and right respectively, of the current locus. This was also shown to influence the 

occurrence of mutations. GC-content is computed on the reference genome, in constant time.  

Triplet represents the window of two bases immediately adjacent to the current locus, also on the 

reference genome. Chemistry between a base and its immediate neighbours was found significant in 

processes operating on the DNA molecule, therefore it can be informative for our model as well. 

Running PBT and the subsequent random forest filtering on the built dataset, we find that 76% of the 

artificially created DNMs were detected as such, while the remainder of 24% of sites, although 

containing data suggestive of a mutation, were not recognized by PBT. These two sets represent the two 

target classes consisting of true positives (TP) and false negatives (FN) respectively. We first note the 

prior class distribution of 76% to 24% (TP to FN). This is an indication of good PBT performance; by the 

uniform sampling method this implies that a DNM call can be made at 76% of the sites that one may 

occur (i.e.: across the genome). This high calling rate on true DNMs makes the task of discriminating the 

non-callable ones harder.  

2.9.4 Selection of the model and training 

A default model of assigning the majority class to all points already results in a classification 

performance of 76%. However, we are primarily interested in obtaining a good performance on the false 

negatives. To this end, we perform a number of simulations, in R, training simple classification models in 

order to select the best one, with respect to accuracy as well as simple allocation rule. The data is split 

into two sets, for training and testing, comprising of 80% and 20% of the data-points respectively. The 

models considered are: 

 K-nearest neighbours (knn) 

 Linear regression 

 Logistic regression 

 Shrinkage discriminant analysis (sda) 

Initial training of the models shows the following performances on the test-set, where performance is 
                        

            
: 

 Knn – 86% 

 Linear regression – 37%  

 Logistic regression – 52% 

 Sda – 93% 

The very good overall performance of the shrinkage discriminant model is misleading for our goals. The 

sda method estimates allocation priors based on the class distribution of the points in the training set. 
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This leads to very different within-class performances, namely to a performance of 16% on the false 

negatives (FN). Given that we are interested in obtaining similar within-class performances (FN and TP 

respectively), this is not satisfactory. Dropping the sda-estimated priors, the method behaves similarly to 

a linear regression model, with an overall performance of 42%. 

In order to obtain a good performance of the knn model, we employed a local grid search for the model-

parameters. The model obtaining the overall 86% performance (with almost identical within-class 

performances) uses a “neighbour set” of 20 random data points from the sets of FNs and TPs 

respectively and the allocation rule predicts a class by the majority vote of 15 closest neighbours. 

Considering the input size (    ) and the size of the neighbour set needed for good performance (i.e.: 

40 neighbours) we considered the model sub-optimal with respect to implementation. Furthermore, 

bootstrapping revealed, as expected, that the model is not sufficiently stable, by obtaining an average 

performance of 82% with a variance of 10, over 40 bootstrapping runs. 

The      overall performance of the linear regression model is the best obtained performance of 

several tried models including subsets of features as well as feature interactions. In addition to the low 

performance observed, a proper allocation rule has to be devised for proper usage (i.e.: the linear 

models regress the features provided to the discrete output space of 0 – FN and 1 – TP ). We observed 

that approximating that prediction by approximating the regression output to the nearest class label 

(i.e.: 0 or 1) is not feasible. By computing the empirical averages of the model’s output on the FN and TP 

points respectively, when run on the training set, we computed the “empirical” labels, for FNs and TPs 

respectively, to be 0.57 and 0.91 respectively. The performance on the test set was thus computed by 

rounding to the derived “empirical” label values. From several bootstrapping runs however, we found 

these average values to have high variance and we thus considered this model to be unreliable. 

The logistic regression also showed poor performance (   %) however, the allocation rule is straight 

forward, as the output is the probability of a data point belonging to one of the two classes (i.e.: TPs). 

Furthermore, the computation of this probability is done in constant time once the model has been 

trained. We therefore decided to use logistic regression for subsequent simulations.   

To further inspect the low performance of the logistic regression model, we plotted the within class 

histograms for all the selected features (Figure 10). We notice that there is little information with 

respect to discrimination power in any of them. This is mainly because of the disproportionate class 

distribution which makes the true positives dominate the false negatives across the spectrum. Plotting 

the within class distributions (i.e.: normalizing the histograms) we observe that discrimination power of 

each individual feature is increased significantly. In order to enforce this property in the training process, 

the training set was selected such that the two classes are equally represented (FN and TP). We selected 

80% of the TP data points and included them in the training set. To these we added an equally large set 

of FNs obtained by sampling with replacement from a subset of all FNs, representing 80% of the FN data 

points available. 
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Figure 10 : plots of the histograms of each of the considered features. Color blue marks the class of true positives (TPs) and 
color red marks the class of false negatives (FNs). (a) : child’s depth of coverage. (b) : father’s depth of coverage. (c) : 
mother’s depth of coverage. (d) : GC-content. (e) : mapping quality. (f) : Triplet  
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Figure 11 : plots of the densities of each of the considered features (i.e.: normalized histograms). Color blue marks the class 
of true positives (TPs) and color red marks the class of false negatives (FNs). (a) : child’s depth of coverage. (b) : father’s 
depth of coverage. (c) : mother’s depth of coverage. (d) : GC-content. (e) : mapping quality. (f) : Triplet 
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We re-trained the logistic regression model on the training set described above and obtained an overall 

performance of     on the test set, with a performance of     on the FNs and a performance of     

on the TPs. The model also showed good stability across 40 bootstrapping runs, so we selected it for 

implementation within the GATK. 

The empirically found optimal logistic regression model uses only the three individuals’ depths of 

coverage as covariates (father_dp, mother_dp and child_dp) and the GC-content. The mapping quality 

(MQ) and Triplet features were found to be insufficiently informative overall (Figure 11e and Figure 11 f) 

and were dropped. Furthermore, the GC-content, which is a feature of the reference sequence and not 

of the sequenced DNA, was found to have the largest regression coefficient.  

Finally, we performed a test of the trained logistic regression model on real data. Namely, we computed 

the four selected features’ values for a set of         real de-novo mutations from the GoNL dataset 

and built a new test set. The observed performance on this set was    , thus concordant with the 

simulated DNMs. 
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3. Results and Discussion 
3.1 PhaseByTransmission 

To evaluate the performance and the improvement in discovery power of PBT on the X chromosome, we 

ran and compared the ploidy-aware version of PBT against the original version of PBT which assumes a 

ploidy of 2 at every site. We denote the original PBT as PBTO (pbt-original) and the ploidy-aware version 

as PBTX for the purposes of our discussion. The original version is run as a benchmark for evaluating the 

ploidy-aware version.  

Because the original PBT assumes diploidy in all samples (including males), inheritance model is not 

correct for chromosome  , which results in an incorrect transmission prior for trio combinations that do 

not contain a DNM. This results in wrongly computed and represented genotype likelihoods (PLs), which 

are used to compute the joint trio-genotype likelihood. As the haploid genotypes contain only one allele, 

they can only be homozygous (either on the reference or the variant allele), so heterozygous likelihoods 

are meaningless and simply an artefact of the initial genotype calling performed on this chromosome. 

This notwithstanding, we expect PBTO to also detect part of some class of the true DNMs. Specifically, 

PBTO should have some power in correctly calling genotype combinations where the parents are both 

        and the child is         (in case it is a boy) or     (in case it is a girl): 

                                           

                                          

Although the inheritance pattern is wrong, it correctly identifies one DNM for each of these specific 

cases and the modelling errors would only manifest in an underestimation of the transmission posterior 

(TP). 

3.1.1 Initial Runs 

As input for all our runs we have a VCF file containing all variation found on the   chromosome. The file 

was created by running the UnifiedGenotyper on the BAM files of all individuals in the GoNL dataset. 

We expect an overall higher level of noise for the   chromosome, compared to autosomal 

chromosomes, mainly because all males are haploid. As we showed in Methods, this results in a lower 

average coverage for males. For females, the   chromosome can be treated as any autosomal 

chromosome. For males, we first expect a lower average coverage, thus reducing the statistical 

robustness of detecting variants and implicitly DNMs.  

PBTO is run on the initial VCF file. In order to run PBTX, the initial, diploid called VCF file is parsed using 

HaploidWriter and the genotypes for all male individuals found are made haploid (w.r.t. genotype and 

phred scaled likelihoods). Two sets of parameters were tried for each PBT version respectively. First run 

uses a DNM prior of     . We use a DNM prior four orders of magnitude bigger than the empirically 

estimated one, of      , so as to have high sensitivity in detecting true DNMs at the expense of more 
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false positive hits. Many of the false positive hits can be afterwards filtered according to known error 

modes. The second run uses the same mutation prior plus the allele frequency prior computed with the 

allele dosage method. Allele frequency priors are computed, at each position, from the parents’ called 

genotypes (and respective PLs). Because GATK did not yet fully support haploid genotypes/positions, the 

allele frequency used in PBTX is estimated based only on the mothers’ genotypes, whereas the allele 

frequency used by PBTO considers all parents.  

3.1.2 Processing Results 

Initial results are summarized in Table 4. We first note a very big discrepancy in raw numbers of DNM 

calls. Eliminating all the pseudo-autosomal hits, for the reasons described above, we obtain an initial 

number of        DNM candidates identified by PBTO and        identified by PBTX. The larger 

proportion of both these numbers were expected to be false positive, because of the permissive prior 

used. 

The significantly higher number of DNM hits that PBTX finds (i.e.:              ) suggest a higher 

detection power, but also contains significantly more noise. The additional noise originates by an 

implicit filtering that PBTO performs, while PBTX does not. Namely, by treating the  -chromosome in an 

autosomal manner, PBTO considers 3 phred scaled likelihood values (PLs corresponding to the 3 possible 

genotypes of a biallelic site), for all trio individuals. This allows the method to “correct” the initially 

called genotypes in the case of very poor quality data. For example, for a trio genotype combination 

containing one DNM where one individual’s PLs are          (initially called        , with a      

probability of being    , etc.), using a DNM prior of     , PBTO finds it more likely that the individual 

was missgenotyped and is in fact a    , thus eliminating the DNM. This implicit filtering is severly 

impaired for PBTX because males are haploid and, typically, PL values are higher; i.e.: diploid PLs 

         become haploid PLs      . 

The second data cleaning criteria we apply is discarding hits that did not pass VQSR. As described in 

methods, the Variant Quality Score Recalibration evaluates the probability that a site where some 

variant is called is truly variant, or whether it is more likely to be the result of sequencing/alignment 

errors. The DNM hits outside the pseudo-autosomal regions that also pass VQSR are the basis of 

comparison for evaluating the improvement that PBTX brings. 

Running both PBTO and PBTX with the allele frequency prior produces initial call sets that are larger by 

30% and 10% respectively. Considering the property that the AF prior encodes(i.e.: the Hardy-Weinberg 

equilibrium), as well as the properties of the sequencing technology, we observe that using this prior 

increases calling sensitivity after data cleaning is performed as well.  
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no AF prior with AF prior 

PBT version PBTO PBTX PBTO PBTX 

all 17418 102938 22448 112675 

non pseudo-autosomal 16449 51076 20639 56599 

VQSR - PASS 14450 40024 17498 42878 
Table 4: Raw results of running the two PBT versions with and without the allele frequency prior. Results after each data 
cleaning step are shown 

3.1.3 The Allele Frequency prior 

As the data shows, using the AF prior increases sensitivity of the resulting DNM hits at the expense of an 

easy to eliminate noise. The reason lies in the nature of the sequencing process and is backed up by 

previous PBT DNM calling endeavours. Namely, we have better likelihood of finding DNMs at sites that 

were previously monomorphic (or very close to monomorphic), as opposed to sites known to be 

polymorphic, which is in turn explained by the binomial distribution of reads from each of the two 

chromatids at some position. If a site is known to harbour a polymorphism in the population, there is a 

probability, proportional to the allele frequencies at that site, that an individual has one or two of either 

alleles. Considering the average coverage of 12, of GoNL data, and the genome size, it is expected that, 

by chance, there will be individuals with     positions where one of the alleles is severely under-

represented or simply not captured at all, thus resulting in incorrect genotyping. The rate of false 

positives is thus increased by not having sufficient power to detect the child’s “mutant” allele in one of 

the parents. In order for the probability of this happening to become insignificant (i.e.: drop below     ) 

we would require a coverage of at least 36 overlapping read per locus.  The AF prior thus increases 

discrimination power by increasing the posterior probability of trio-genotype combinations where 

parents are         at monomorphic sites, as opposed to trio-genotype combinations where parents 

are         at polymorphic sites. As expected, we observed that PBTX assigns higher transmission 

posterior values for mutations detected in monomorphic sites when using the AF prior (Figure 12).   
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Figure 12: The PBT assigned transmission posterior distribution with and without using the AF prior. The sets used for ploting 
are the sets after the initial data cleaning. (a): TP distribution over the set of hits found obly by PBTX. (b): TP distribution over 
the set of hits found by both PBTX and PBTO. 

3.1.4 Comparison of Results 

Further in our comparison we looked at DNMs that were called by both methods and sets of DNMs that 

were called exclusively by PBTO and PBTX respectively. We will refer to the results obtained from the 

two runs using the AF prior for clarity and because the performance is better in all stages, but a direct 

comparison can be made from Table 5.  

Using the AF prior in running both PBTO and PBTX we obtain a set of 459 mutations, throughout all 

families, that were called by both versions, with the remainder of each set being called only by either 

method separately. We filter these sets, by systematic error modes found so as to obtain better quality 

candidate sets. The first filter we apply to these sets is that of restricting possible DNMs to combinations 

where both parents were called as        . We further filter out homozygous genotypes (all parents 

and boys offspring) that contain any amount of evidence of the other allele in their allele depth (AD) 

field. Lastly, we filter out positions that have an alternative allele count (AC) larger than one across the 

whole population used for calling, the one corresponding to the mutant allele present in the child of the 

respective DNM combination. 

Because we anticipated different recognition power between male and female offspring, due mainly to 

coverage-driven quality differences, we split the mutations by sex. We indeed notice a consistently 

higher number of mutations found in girl offspring, by contrast to boy offspring. The sequential results 

after applying each filter are illustrated in table5. 

(a) (b) 
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The homozygous reference parents filter enforces the AF-prior reasoning described above. We note that 

the set of        hits is only sensibly adjusted while the set       of mutations found exclusively by 

PBTX is reduced by 96% to a remainder of 2093 candidates and the set         of mutations found 

exclusively by PBTO is left with only 2 candidates. This shows that PBTX remains at least as sensitive as 

PBTO. The 2,093 candidates found only by PBTX need to be further assessed for quality in order to 

assess whether PBTX is more sensitive or less specific than PBTO.  

Evidence of the other allele in a homozygous genotype, even if not sufficient to make UG call the 

position as    , is typically an indication that the other allele is in fact present, but the binomial reads 

amplification did not amplify the two alleles equally at this position or, in the case of haploid genotypes, 

very bad quality data in terms of alignment. Lastly, we are more confident in mutations found at 

previously monomorphic sites, because of the sequencing technology pipeline and the coverage-driven 

power limitation, namely the same error mode that one of the two present alleles may not be captured. 

Sites with higher than 1 alternative allele count, are also indicative of regions with systematic mapping 

problems. 

We consider the resulting sets high confidence DNM candidates and we note that using PBTX roughly 

doubles the numbers of such mutations, compared to using the initial, PBTO version. We note that, 

despite having substantially larger detection power both for male-offspring mutations as well as well as 

for female-offspring, a significant difference in number of found mutations remains, likely due to 

covariates not captured by PBT.  

We also note that after we filter for what is most likely to be noise, there are no mutations found by 

PBTO that are not found by PBTX. 

 

 

 

 

 

 

no AF prior with AF prior 

subset Common onlyX onlyOld Common onlyX onlyOld 

initial 89 39935 14361 459 42419 17039 

Hom_Ref parents 44 1140 0 428 2093 2 

offspring sex m f m f m f m f m  f m  f 

initial 21 23 207 933 0 0 134 294 708 1385 0 2 

"clean" ADs 12 14 58 308 0 0 54 231 152 404 0 1 

AC = 1 3 9 19 169 0 0 23 204 40 222 0 0 

Table 5 :  The sets of DNM hits after each consecutive filtering step.   
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3.1.5 Explaining Results 

The improved performance PBTX shows, w.r.t. PBTO can be found in features of the calls produced by 

the two versions. The use of a haploid model makes PBTX assign higher transmission posteriors to the 

mutations found by both methods, as depicted in Figure 13a. The same observation stands, although the 

distribution suggests a smaller difference, if we consider all the mutations that each method finds 

(Figure 13b). 

 

Figure 13 : Transmission posterior density plots. (a): TPs assigned by either method to the set of commonly found hits. (b): 
TPs assigned by either method on the set of all mutations found by each respective method. 

Coverage of each individual in the trio influences directly the initial genotype quality thus detection 

power. Figure 14, Figure 15 and Figure 16 show the depth of coverage distribution by individual, within 

the highly likely candidate sets. We plotted separately for boy and girl offspring to get insight into 

whether there are systematic reasons for the big discrepancy in number of mutations. Furthermore, the 

plot of (mutant) allele count density gives an intuition of the behaviour of the AF prior. We further 

distinguished between mutations found by both methods, and mutations found only by PBTX (there 

were no high confidence mutations found only by PBTO). 

(a) 

(b) 
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Figure 14 : Offspring depth of coverage density, within the high confidence sets. (a): for male offspring. (b): for female 
offspring. 

 

Figure 15 : Mother depth of coverage density, within the high confidence sets. (a): for male offspring. (b): for female 
offspring. 

(a) 

(b) 

(a) 

(b) 



- 48 - 
 

 

Figure 16 : Father depth of coverage density, within the high confidence sets. (a): for male offspring. (b): for female offspring. 

We first note that all the feature distributions for the set of common found DNMs, by PBTX and PBTO, 

which are directly correlated to detection performance, have a higher mean, and in some cases smaller 

variance (i.e.: father coverage for boy offspring DNMs) than the mutations found only by PBTX. This is to 

be expected, as the PBTO decision boundary allows us to capture a set of well captured, i.e.: by 

sequencing, mutations. By properly adjusting the model in PBTX, we allow for better discrimination 

across a larger spread of the sequencing data output spectrum. 

The main difference observable between boy and girl candidate mutations is the lower coverage of the 

offspring. This is expected, as the males are haploid, but it does create lower quality genotype calls for 

males. A correlated source of lower data quality/detection power in boys w.r.t. girls can be observed by 

plotting the allele count distribution of the candidate hits (i.e.: on the sets obtained        applying the 

AC=1 filter) as depicted in Figure 17. 

(a) 

(b) 
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Figure 17 : Allele count density plots for the high confidence sets of mutation, before applying the AC filter. (a): for male 
offspring. (b): for female offspring 

We note that this filter reduces the set of mutations found in boys          and the set of mutations 

found in girls           only. We argue that lower coverage in males (fathers and male-children) 

corroborated with alignment mismatches and/or hard to align regions of the genome, can impair the 

correct assessment of the alternative AC at some site. Namely, low coverage increases the significance 

of, erroneous, evidence of the alternative allele resulting in some false         haploid genotype 

calls. This in turn increases the alternative allele AC and reduces power for PBT. The difference in DNM 

calling quality between boys and girls can also be observed, in Figure18. 

(a) 

(b) 
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Figure 18:  (a) Distribution of the transmission posteriors, as assigned by PBTX to the mutations found by both PBTO and 
PBTX. (b) Distribution of the assigned transmission posteriors, to the mutations found by PBTX only. 

3.1.6 Validation sets 

In order to confirm found mutations as well as to evaluate PBT performance under different data 

characteristics, a set of candidate mutations were selected for validation. Validation will be performed 

on an Illumina MiSeq machine at a much higher coverage (i.e.: at least 60 overlapping reads per locus) 

using paired-end reads of 250bp, so as to bypass all the low coverage error modes and decrease 

alignment problems. 

To this end we selected validation sets from the high confidence sets produced by our analysis. Further 

restricting the output of the, final, AC filter (see Table 5) by the assigned transmission posterior we 

obtain the following high confidence validation sets: 

 23 DNMs in boy-offspring found by both methods 

 23 DNMs in boy-offspring found by PBTX only 

 164 DNMs in girl-offspring found by both methods 

 107 DNMs in girl-offspring found by PBTX only 

(a) 

(b) 
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These are sets for which we expect a high validation rate. For boys, hits with a TP above 10 were 

selected and for girls hits with a TP above 20 were selected. We chose a higher TP threshold for girl hits 

because the quality of the calls is higher in this case, as well as because we can afford being more 

stringent due to higher number of hits. 

Furthermore, some sets homologous to the high confidence ones were generated, for which we have no 

prior expectation as to how many mutations will validate, but that will help us profile PBT behaviour 

better. The idea is to build lower confidence sets, that in feature space would be situated around the 

discrimination border of PBT. They are then built as follows: all initial data cleaning (non-pseudo-

autosomal, VQSR) is applied as well as parents’         filter. Hits not passing either one of these 

filters are too unlikely to be validated. The condition regarding evidence of the alternative allele in 

        genotypes is relaxed to allow up to 3 reads containing the alternative allele at that site. This 

is done because little alternative allele evidence can also be due to simple misalignments. Furthermore, 

the AC condition is also relaxed to allow mutations at sites where less than 10 alternative alleles have 

been observed in the population. This accounts to miss-genotyping in other samples, at the position of 

interest(i.e.: artificially inflated alternative AC) or, excluding miss-genotyped individuals, it would be 

equivalent to evaluating the power of detecting DNMs that arise at sites where the minor allele 

frequency is up to 2.5%-5%, as opposed to the stringent filtering of just monomorphic sites. After 

excluding the hits selected as high confidence, we obtain the following lower confidence validation sets: 

 34 DNMs in boy-offspring found by both methods 

 101 DNMs in boy-offspring found by PBTX only 

 132 DNMs in girl-offspring found by both methods 

 329 DNMs in girl-offspring found by PBTX only 

 

3.1.7 Complete Genomics Data 

The parents from 20 random families out of the 250 GoNL families have been sequenced a second time, 

using Complete Genomics at a coverage of 45x. This enables high quality genotyping that can be 

compared against DNM calls. The Complete Genomics dataset contains genome-wide calls for these 20 

parents. Given that only the parents of the respective families are sequenced at this quality, we cannot 

use it to validate all genotypes of a putative DNM (from one of these families) but we can find false 

positives at sites that are polymorphic in the CG data. By validating parents’ genotypes found in PBTX 

hits in the GoNL dataset, against the parents’ genotypes produced by the Complete Genomics data, we 

would only need to further validate the offspring genotype. Given the error modes presented and the 

adequate filtering for them respectively, we consider validation of parents’ genotypes to be a strong 

indicator of a true underlying mutation.  

A number of 2892 PBTX hits were found in all of the families for which Complete Genomics data is 

available. Considering only the “highly likely” sets of mutations produced by PBTX of 63 boy-offspring 

and 426 girl-offspring mutations respectively, 23 boy-offspring and 31 girl-offspring mutation sites were 

found also in Complete Genomics data. For all these 54 mutations, the Complete Genomics data was in 
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concordance with PBTX output, namely, all the parents were         in both datasets. Until 

validation can be performed on the initially selected sets, we consider these results promising 

3.1.8 More sensitive initial calls  

After filtering done by PBT, namely families with thins and families where only one of the parents is 

available are dropped, our running input dataset contains 231 families. Out of these, 102 families are of 

boy-offspring and 129 families have girl-offspring.  

Considering previously estimated mutation rates, we expect an average number of 60 de-novo 

mutations in individual’s genome. Under the simple assumption of an uniform distribution of mutations 

across the genome, and the length of our genome and of   Chromosome respectively, we expect an 

average number of 3 mutations per individual, on the   chromosome. 

               
          

       
       

Given that the   chromosome is haploid in males, the number of expected DNMs in boy-offspring is 

then    . Consequently, we expect a number of approximately 387 true mutations in all of the 129 girl-

offspring and a number of 153 true mutations in all of the 101 boy-offspring. The set of 426 “highly 

likely” mutations found in girls suggests good sensitivity, whereas the 63 mutations found in boys 

indicate insufficient detection power. Somewhat smaller detection power is expected because of lower 

quality data in male individuals due to coverage. 

We investigated whether additional power can be gained by calling males as haploid using UG rather 

than adjusting their genotypes and PL values using HaploidWriter (HW). To this end all   chromosome 

sites were called again, using the haploid model of UG and only the males as calling set. Wherever a 

variant was thus found in the male population, the rest of the dataset (i.e.: all the females in all 250 

families) was genotyped at that position as well and the two outputs were merged into one VCF file. We 

ran PBTX on this VCF using the same      mutation prior as well as the    prior and compared results 

with the previous PBTX run that used the same parameters. After identical filtering steps (see above), 

we obtain a set of 96 “highly likely” DNM hits in boy-offspring, that include all the 63 such hits found by 

the previous run of PBTX, thus roughly a 50% increase in sensitivity. 

Further investigating the 33 promising mutation hits that were not previously detected by PBTX, we 

discover that these sites were not found at all as variants by the initial diploid model UG genotyper. The 

HaploidWriter is used to adjust haploid genotypes that were initially called as diploid and make them 

suitable for downstream analysis, such as PBTX. Using the haploid model to do the original genotyping 

proves, as expected, more powerful in detecting haploid variants in both lower alignment data quality 

and lower allele frequencies (in this case singletons).  

The 96 DNM hits in boys are still at a mere 62% of the expected value of 153. We conclude that in order 

to further increase sensitivity, we require higher coverage. We note however, that the estimation of the 

expected value of mutation in boys, on the   chromosome, is an upper bound. The actual expected 
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value is lower, if we take into account the fact that most germline mutations come from the parental 

germline. 

Given that boys do not inherit any genetic code from the father’s   chromosome, the expected number 

of  -linked mutations will be less than half of those in girls. The actual proportion of germline mutations 

inherited from the father is not yet defined within a reasonable confidence interval, so we will not 

attempt to correct for it, for the purpose of this project.  

3.1.9 Father Age Effect 

It was proven in literature, that a statistically significant association exists between the number of 

offspring mutations and father’s age at conception, along with estimations of the magnitude of this 

effect. While attempting to reproduce the magnitude of this effect is beyond the purpose of this project, 

finding a significant association in our results adds robustness. 

To this end, we fit a simple linear regression model, where the target variable is the number of 

mutations found in the female offspring families that were used by PBTX. We use father’s age as 

describing variable and average coverage over the whole trio as a covariate, known to influence 

detection. Figure19 illustrates the curve defined by father’s age coefficient of the resulting model. 
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Figure 19 : Father’s age effect on germline mutation rate, within the set of high confidence mutations. Each dot represents a 
female offspring trio. The line is the linear regression approximation when the average trio coverage parameter is fixed to 0. 

While the resulting model explains quite little of the variation in number of mutations, the association 

with father’s age was found to be significant, with a   value of 0.001 although it explains only       of 

the variation in number of mutations. Training the same model on the set of male offspring mutations, 

we find no statistically significant association. This is expected, as boys do not inherit anything from the 

father, on the   chromosome.    

3.2 HaploidWriter 

Running PhaseByTransmission when alignment data is not available requires the extra step of 

transforming initially called diploid genotypes to haploid. We evaluate the performance of our 

HaploidWriter, in order to assess the whether this step influences PBT performance and/or power. To 

this end we selected one random trio from the GoNL dataset, comprised of father, mother and a male 

offspring.  

We used UG to call all positions on the   chromosome, for all three individuals, using the available 

alignment data. We ran HaploidWriter on the resulting vcf file to transform all diploid genotypes of the 

father and the child to the haploid version. The trio alignment data was again used to call all individuals 
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using the haploid model of UG.  We compared phred scaled likelihoods of the father and child’s 

genotypes as produced by haploid UG and HaploidWriter separately, using haploid UG as truth values. 

Whether the two tools produced the same genotype, in terms of alleles, can be inferred directly from 

the PLs, but no such differences were found. We selected bi-allelic sites only, for simplicity and 

compared the PL value corresponding to the genotype that was     called (i.e.: the PL of the called 

genotype is 0). Over the aprox        haploid genotypes found, we observed very high correlation 

(Figure 20) and an average difference in PL values of 6.5, with a variance of 28. Given the phred quality 

transformation, a difference of 6.5 corresponds to less than one order of magnitude. The variance 

corresponds to    orders of magnitude in probability space and could influence the outcome of analysis 

performed.  

 

Figure 20 : Haploid assigned PL values versus haploid-UG assigned PL values for the whole   chromosome of all male 
individuals (father and son) in an arbitrary GoNL family. 

By observing the distribution of genotype PL values, on the whole   chromosome of the same 

individuals, and the binned mean of differences between the two methods’ assignments (Figure 21), we 

note that the vast majority of PL values assigned are below 1000(i.e.: probability of misgenotype 
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       ). Larger values are extreme data cases (extreme points in sequencing coverage), or artificially 

inflated due, for example to systematic misalignments, resulting in false high coverage and consequently 

falsely confident calls. These points are likely to be excluded from analyses through various filters (i.e.: 

VQSR). For the PL values below 1000, we observe that the quality of the HaploidWriter transformation 

decreases as the likelihood value increases. For likelihoods      the average error is 2 (i.e.:        in 

probability space), thus insignificant. For the last bin,            , the average error increases to 

20. We argue that, for all practical purposes, a deviation of the probability of error within two orders of 

magnitude from a true error probability in the order of        is also neglectable. 

 

Figure 21 : (a): distribution of PL values as assigned by UG; considered “true” underlying PL distribution. (b): mean absolute 
difference between HW assigned PLs and UG assigned PLs. The UG assigned PL axis is binned using a 10 units per bin 

We tested the influence of HaploidWriter on an analysis by looking at the final set of high confidence 

mutations found in boys (as described in previous section’s                             ). We thus 

have 60 DNM hits which were called using both haploid UG and HaploidWriter separately. We 

considered all the male genotypes, of the offspring and of the fathers. Comparing the assigned PL values 

(Figure 22), we note an average absolute error of 23 units (i.e.: HaploidWriter w.r.t. UG). The difference 

(a) (b) 
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in PBTX assigned transmission posterior for the respective DNM hits was by contrast only 0.45 (i.e.: error 

of         ). The average PL transformation error of 23 is higher than the expected    , as computed 

from the averages in the corresponding bins, mainly because of the very small number of genotypes 

used, 120, compared to the         that were found in the whole   comparison. 

 

Figure 22 : HW assigned PL values versus UG assigned PL values from the high confidence set of 60 DNM hits found in male 
offspring. Both offspring and father PL assignments are plotted 
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3.3 De-NovoMutationPowerCaller 

In order to test the usability of our developed tool, we ran the DNMPC, using the trained logistic 

regression model, on the sequencing data of a number of available trios from the GoNL dataset. 

Outputting the regression value for each genomic location is impractical considering the input size (   ), 

whereas outputting the class label (i.e.: 0 or 1), by thresholding the regression value, does not offer 

sufficient sensitivity in results. We therefore employ a simple binning of the regression output, namely 

10 uniformly distributed bins (i.e.:                          ). This enables us to select genomic 

locations down to the desired level of confidence, w.r.t. DNM discovery power. Furthermore, we expect 

that DNM detection power varies relatively smoothly across the genome. Thus by storing intervals of 

adjacent positions that fall in the same bin, we expect a significant reduction in the size of the output. 

We selected, for further analysis, the results on chromosome 1 of an arbitrary GoNL trio. Given that am 

individual chromosome is a relatively well defined structural unit of our DNA and that it theoretically 

respects all the statistical properties that are valid for the whole of our genome, we consider 

chromosome 1 (i.e.: the largest) to be a good, scaled, representation, for the purpose of this analysis, of 

the whole genome. 

Chromosome 1 has a reference sequence of 248,956,422 base-pairs, i.e.:     . The DNMPC , using the 

described binning, produced a sequence of             intervals of the different confidence levels 

corresponding to DNM discovery power. This reduces the representation of chr.1 by one order of 

magnitude. Using the bin values to make a prediction, we observe a class distribution similar to the one 

observed in the simulated data set with 78% true positives and 22% false negatives respectively. 

Analyzing the distribution of the produced intervals however, we observe an average interval length of 

18 base-pairs, with a variance of 7. Considering the median interval length of 7 base-pairs and the 

maximum interval length of 1094 base-pairs, we infer that the mapping of the genetic code to DNMPC 

confidence bins produced is very jittered.  

3.3.1 Adjusting the bins 

The expected pattern of bins that the DNMPC would produce, consists of some large, high confidence 

intervals (i.e.: corresponding to non GC-rich regions), with a noisy region of intervals in between them. 

The overall very noisy intervals produced by the initial run indicate that the original, straightforward, 

binning should be improved. We therefore inspect the distribution of the data points into bins, as 

produced by our model on a representative test set (i.e.: that conserves the false negative to true 

positive ratio) from our simulated data points. Figure 23 shows the allocation performance within each 

bin (a) and the distribution of correctly assigned data points across the bins (b). We notice the large per-

bin performance discrepancy (Figure 23a) between the lower 5 bins (corresponding to a false negative 

classification) and the upper 5 bins (corresponding to a true positive classification). This is due to the 

uneven class distribution; i.e.: the      TPs that are misclassified reduce the performance of the lower 

bins much more than the      FNs that are misclassified. From the information in these plots, the 

following bins were defined: 
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        : evaluates to a FN; lowest DNM discovery power; highest performance bin in identifying 

genomic regions with high false negative rates 

          : evaluates to a FN; low DNM discovery power; the greater proportion of the FNs 

evaluate to this bin (i.e.: if we are interested in eliminating most of the genomic regions where 

we are likely to not discover DNMs, this bin should be considered) as seen in Figure 23b 

          : lowest performing bin that is evaluated as a false negative; although evaluates to a 

FN, many TPs evaluate to this bin 

          : evaluates to a TP; suggests good DNM detection power 

          : evaluates to a TP; highest confidence bin; performance       

Running the DNMPC again, on the chromosome 1 sequencing data of the same family, we obtain 

           intervals, one third of the initial number of intervals. Furthermore, the average interval 

length is 102 base-pairs, with a variance of 30, and the largest interval is         base pairs long, with 

more than 400 intervals of length       . This is much closer to our expectation of some long, high 

confidence, intervals with smaller, varying confidence intervals in between. Considering the very high 

bin performance of all the bins that evaluate to true positive (Figure 23a), the          and         bins 

can be further merged together, thus obtaining longer high confidence intervals. 

 

 

Figure 23: (a) Performance of each bin as initially defined (10 uniform bins in the       interval) Performance is computed as:  
#correctly classified points that evaluate to this bin/#points that evaluate to this bin.  (b) Distribution of correctly classified 
points over bins. There are 2 effective distributions in the plot: one for bins 1 through 5 for false negatives and one for bins 6 
through 10 for true positives. For each bin we computed: #correctly classified points that evaluate to the bin/ #points 
belonging to the class that the bin evaluates to 
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4. Conclusions 
In this thesis we have successfully modified the existing autosomal PhaseByTransmission (PBT) model, to 

correctly identify de-novo mutations that arise on the   chromosome. The analysis is comprised of a 

lengthy, modular pipeline, where data uncertainty from the underlying technology (i.e.: sequencing), as 

well as from intermediate computational steps (i.e.: alignment) is accumulated and propagated. We 

therefore presented a comprehensive PBT model that correctly encapsulates all of the available 

information, from sequencing data to Mendelian inheritance patterns, population wide information (i.e.: 

allelic frequency) and prior domain knowledge about the de-novo events under consideration. 

Combined, they create the framework for statistically robust findings. Furthermore, PBT is a 

straightforward model that introduces minimum amount of computational overhead, which is vital in 

the context of very large amounts of data such as genomic data. PBT can be straightforwardly further 

extended with respect to scope (i.e.: multi-allelic sites) and/or detection power (i.e.: consider larger 

pedigrees). These extensions however, generate a polynomial (i.e.: quadratic) and/or exponential time 

complexity increase respectively, thus further analysis is necessary in order to make the best decision.  

We further showed how the statistical model cannot fully account for all the variation or error modes 

present in the data and how post-filtering, using domain knowledge about common error modes, can be 

just as important in obtaining a final set of sensible and robust results. We tested the results against 

proven characteristics (i.e.: father age effect) and showed that they hold. 

The choice of what point in the analysis pipeline one designs a tool for is crucial to efficiency and we 

illustrated that we can design a discovery tool such as PBT at the highest level (i.e.: VCF file level) while 

demonstrating good results. Furthermore, we showed how to make PBT accessible to use for other 

parties, by providing the additional tools needed (i.e.: HaploidWriter) that correctly transform the 

commonly available data into sensible PBT input. We furthermore evaluated the precision of our 

HaploidWriter transformation and showed its limitation/effect on final PBT sensitivity, by contrasting it 

with a more robust pipeline that can only be applied however, when lower level data is available (i.e.: 

alignment data). 

Finally, we presented a tool, the De-NovoMutationPowerCaller, that attempts to profile PBT 

performance across different genomic regions, with different properties. We presented the setbacks of 

such an endeavour, due to the lack of proper, real, training data, and presented a robust way of 

generating synthetic data to train our model. We identified which features influence PBT de-novo 

discovery and built a simple and fast model that can profile the entire genome w.r.t. de-novo mutations 

discovery, by distinguishing between different confidence tranches. We further showed how to optimize 

these tranches so as to reduce dimensionality of the output, with minimal loss in precision.  
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