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Abstract

Improving the predictive accuracy of rule-based classifiers, specifically the Clark
Niblett 2 algorithm, can be done by using an argumentation-based approach.
Previous research on this topic focuses on using expert feedback to improve
the predictive accuracy. This research has concentrated on providing a working
algorithm and limits itself to a few domains which require expert feedback. In
combination with writing this thesis an application has been built which makes
the practical use of argumentation-based classification a possibility. Experi-
ments are included to show the validity of the techniques in the application and
to research the viability of the use of argumentation-based classifiers in a num-
ber of other domains. The results show that the argumentation-based approach
is solid, but possible future research into using ordered rule-based classifiers as
opposed to unordered ones can provide greater benefits. The application and
experiments strengthen the validity of argumentation-based classification and
enhance its practical usage.
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Chapter 1

Introduction

Classification is the task of assigning objects to one of several predefined cat-
egories (Tan et al. [2006]) and is regarded as a subtopic of machine learning.
Classification problems occur in many different domains, with the respective
solutions having equally diverse applications.

Classification uses knowledge contained in previous cases to make a predic-
tion for a new case, similar to other machine learning methods. It is a supervised
learning method, as it works on labeled data to produce a prediction for a known
variable. There are several methods of classification, among others support vec-
tor machines, decision trees, rule-based classifiers and neural networks.

Both support vector machines and neural networks have shown great promise
in recent years, but suffer from the fact that they are black box methods, which
makes it rather difficult to check the correctness of a prediction. Decision trees
and rule-based classifiers both provide a clear and deliberate structure which is
used to classify new cases. This structure (a tree or set of rules) can be checked
by experts with domain knowledge to verify the consistency and validity.

Although an expert can check the validity of the structure, influencing said
structure is a different matter. For the comments of an expert to have any
influence an adjustment mechanism is needed. Mozina et al. [2007] provides
such a mechanism for a rule-based classification system. The rule-based classifier
used is an adjusted version of the Clark Niblett 2 algorithm (Clark and Niblett
[1989] and Clark and Boswell [1991]).

These adjustments are done in the form of arguments, which allow the expert
to differentiate the properties of a specific case. An expert can annotate a case
by choosing which properties of the case form positive arguments and which
form negative arguments. Positive arguments indicate a good reason for the
given solution class according to the expert, while negative arguments indicate
properties that are considered contrary to the reasons an expert would use to
classify the case with the given solution class.

The real world application of argumentation to classification has only been
studied in a small number of experiments (Mozina et al. [2007] and Mozina et al.
[2005]). These papers have looked at the applicability of argumentation-based
learning in hindsight, as the results on existing datasets were compared to those
of other algorithms. This research was done with a limited number of datasets
within a small sample of domains.

The goal of this thesis is to build a usable system for a real life application



of argumentation based learning. To achieve this an internship at a company
in Barcelona, CogniCor Technologies, was arranged. CogniCor Technologies is
active in the automated complaint resolution business. For their solution they
needed a classification system that is capable of being influenced by feedback
from experts.

During the internship at CogniCor such a system, based on the argument-
based Clark Niblett 2 algorithm from Mozina et al. [2005], was implemented.
This implementation takes the form of an application that has a website and a
web service as interfaces. The web service allows the other CogniCor systems
to access the classification system with the minimum amount of interaction
needed. The system uses a slightly adjusted version of the algorithm and im-
plements several other versions and variants of the Clark Niblett 2 algorithm
for comparison purposes.

The algorithms implemented are the LID algorithm (Lazy Induction of De-
scription), a type of case based reasoning classifier, and several variants of the
CN2 algorithm (Clark Niblett 2). The variants used are the original CN2 al-
gorithm from Clark and Niblett [1989] and an updated version from Clark and
Boswell [1991], both producing a sorted ruleset, and the unsorted version of
CN2 algorithm introduced in Clark and Boswell [1991] and the argument-based
version described in Mozina et al. [2005], both creating unordered rulesets.

After the internship ended the application was used to test the performance
of the classification system on several datasets. These results were examined in
detail and compared to those of Mozina et al. [2005] and Mozina et al. [2007].
Some of the datasets from the experiments in those papers were used, with
the addition of several new datasets. To compare the performance of the new
datasets the results have been compared with the performance of the relevant
non-argument based versions of the algorithms. This comparison was done both
on predictive accuracy and runtime. Predictive accuracy tests how well a new
(previously unknown) case is classified, with the runtime being a reflection of
how fast the algorithm does this.

The algorithm and experimental results presented in Mozina et al. [2005]
already prove that classification performance (defined as the predictive accu-
racy) can be improved by the use of arguments. This thesis aims to extend the
knowledge on this subject by building an application usable in practice and sup-
plementing the experimental results with comparative experiments on datasets
from other domains. Thus it looks at whether the classification performance
of the CN2 algorithm can be improved by including argument-based expert
feedback.



Chapter 2

Theory and literature

The implementation of the classification system rests on previous research done
by various sources. Therefore an examination of the existing work on this topic
is necessary and enhances the understanding of the choices made in the imple-
mentation and experimentation.

The main sources for the implementation of the rule-based classifier are
the work of Clark (Clark and Niblett [1989] and Clark and Boswell [1991]) and
Mozina et al. [2005 and 2007]. These last publications concern the Clark Niblett
2 algorithm and its variations.

This chapter starts with a definition of classification, followed by an expo-
sition on the classification methods used in this thesis. Case based reasoning
and rule-based classifiers will be described in more detail, including the specific
implementations used in the application built for this thesis.

2.1 Classification

Classification is defined by Tan et al. [2006] as the task of assigning objects
to one of several predefined categories. There are a number of algorithms and
methods for classification, divided into a couple of categories. These categories
include support vector machines, tree-based methods and rule-based methods.
This list is not exhaustive, but for the sake of briefness this thesis refrains from
giving that full list and the explanation of all those methods.

Support vector machines are one of the black box methods mentioned in
the introduction. A support vector machine represents all cases as points in
multidimensional space and then searches for boundaries in the same multidi-
mensional space that divide all cases into their respective solution classes as well
as possible.

Tree-based classifiers generate a choice tree, which is a tree consisting of
choice nodes (i.e., male or female?) with the appropriate attribute on the case
that is being classified used to make a decision. This process continues until a
leaf node is found, which gives the prediction the classifier makes for that case.

A rule-based classifier is similar, although it uses simple rules in a list to
generate a prediction. A distinction can be made between unordered and or-
dered rule-based classifiers. In an ordered classifier the rules are looked up in
order and the first rule that matches is used to make a prediction. An unordered



classifier tries to match all rules and makes a prediction based on all rules that
match.

Given the research done during and after the internship the most interesting
and relevant method of classification are the rule-based classifiers, specifically
the Clark Niblett 2 algorithm and its variants. For a complete understanding
of the research done and design decisions made in building the classification
system, a proper understanding of these classification methods is useful.

2.1.1 Defining classification

A formal definition of classification is given in Tan et al. [2006] as follows: ”Clas-
sification is the task of learning a target function f that maps each attribute set
x to one of the predefined class labels y.” This definition makes clear that the
basis for the classification decision are the attributes of a case. The attributes
are the only information from the case used for classification.

Broadly speaking the classification methods can be divided into two cate-
gories, those with a separate phase for building a mechanism for classification
and those without. Rule-based classifiers are a good example of the first cat-
egory, as the method consists of two phases. First a ruleset is built based on
the previous cases known to the system. Afterwards new cases are classified
based on this ruleset. Support vector machines use a similar technique, where a
model of points in multidimensional space is build that encompasses the decision
boundaries used in the classification phase.

Classification systems of the other category use all available knowledge from
the previous cases at the moment of classification to make a prediction. These
methods are used less often as they are slow and often lack several of the features
found in other classifiers, such as an explicit model that can be checked by a
domain expert.

2.1.2 Classification methods and techniques

As mentioned earlier there are a large number of algorithms and methods used
in classification. Providing a full list of these is not a concern of this thesis,
thus only the most relevant methods will be named and discussed. The rule-
based classification methods, specifically the Clark Niblett 2 algorithm, are the
main topic of this research. Another method implemented in the classification
system that was developed during the internship is case-based reasoning, which
is a relatively simple method to explain, although the speed with which decisions
are made is slow compared to more modern and comprehensive methods. This
method was implemented as a baseline method, as it is easy to explain and use
while still providing good results.

There are several modern machine learning techniques of which the inner
workings are hard to explain and which do not necessarily have any correspon-
dence to the real world logic inherent in the domain in which they are used.
These methods include support vector machines and neural networks. This
thesis focuses on the usefulness of arguments provided by a domain expert to
enhance classification accuracy, therefore these methods are not used in this re-
search. As these are not mentioned anywhere else in this thesis they will not be
discussed any further. More information on these methods can be found in Tan
et al. [2006] or other introductory works on machine learning or data mining.



All classification methods require a so called 'case base’, a set of previous
cases of which the correct prediction (or solution class) is known. The case base
is used, directly or indirectly, to predict the solution class of a new case. The
cases in the case base should ideally contain all necessary information and have
a correct solution class. In practice however, it is possible that certain values
are missing and that some of the solution classes for cases in the case base are
wrong. This is called noisy data and some classification methods work better
on noisy data than others. The effect of noisy data are shown in Mozina et al.
[2007], as is the ability of the Clark Niblett 2 algorithm to deal with this type
of data.

When talking about classification (and machine learning in general) the cases
used to train the model and make a prediction are called the training cases,
whilst the case that is to be classified is called the test case. This terminology
is also used in cross validation, a technique discussed later in this thesis. This
terminology is kept when discussing the usage of the system in a real life envi-
ronment in which prediction is the goal. Here the cases for which the solution
is already known are part of the case base and thus seen as the training cases,
while the incoming case, for which a prediction has to be made, is the test case.

2.1.3 Example

To give insight into the methods used in this paper an example is used. This
is an example from Mozina et al. [2007] and concerns credit approval. A bank
needs to decide whether or not someone should be allowed a loan. To do this
the bank uses a number of properties of the person requesting the credit. The
example contains some logical properties and a completely irrelevant one. The
usefulness of this will be proven later on. The example case base can be found
in table 2.1.

Name PaysRegularly Rich HairColor CreditApproved
Mrs. Brown no yes blond yes
Mr. Grey no no grey no
Miss White yes no blond yes

Table 2.1: Case base used for the examples in this thesis, taken from Mozina
et al. [2007], concerning credit approval.

2.2 Case Based Reasoning

Case based reasoning (CBR) is a classification technique without an explicit
model. All knowledge of previous cases is used to generate a prediction at the
moment a new case must be classified. It is a relatively simple technique and
provides a good baseline to measure the performance of the other classification
methods against.

The technique originates in the work of Schank [1983], with the terminology
stemming from Aamodt and Plaza [1994]. A recent in depth discussion of the
technique can be found in Riesbeck and Schank [2013].



2.2.1 Technique

Case based reasoning works by comparing the properties of a test case to the
cases in the case base. When a new case comes in the algorithm starts looking
at the different properties of the case. A comparison is made with previous
cases to check the similarities between cases. In the end the algorithm ends up
with a subset of cases in the case base which have a high similarity with the
new case. These cases are then used to make a prediction about the solution
class of the current case.

Take for example a new person coming to the bank for a loan. Miss Orange
pays her bills regularly, is not rich and has brown hair. Considering the example
case base from table 2.1, should the classifier predict that she should receive
credit or not? The fact that she has brown hair cannot help the classifier, as
there are no previous cases with that hair colour. Thus the classifier will look at
the other properties. She is not rich, but this does not provide a clear prediction
as we have two poor people in the case base, with one receiving credit and the
other not. Finally the fact that she pays regularly is studied. Only one other
person in the case base does this, Mrs. Brown. Thus on this property only
on other case exists, whose credit was approved. A CBR classifier would thus
predict that Miss Orange should receive credit, because of the similarity between
her case and that of Mrs. Brown (both pay their bills regularly).

The advantage of this method is twofold. The simplicity of the algorithm
makes it easy to see why a certain prediction is reached as the similarity between
the test case and the cases in the case base can be clearly shown. It thus allows
for a clear base line when comparing the performance of other algorithms. The
biggest disadvantage is speed, because the algorithm iterates over all properties
and cases in the case base at least once, but often multiple times. Therefore
it is a slow algorithm and often not useful in a practical situation where a fast
response is needed or would be preferable.

When calculating the similarity between the test case and cases in the case
base a measure indicating this similarity is needed. This measure is referred to
as the similitude term. The technique used for determining the similitude score
can be varied, with corresponding differences in results. Most often a measure
will be used that prefers the most lopsided class distributions, i.e., those class
distributions which have the highest percentage of a single solution class. It is
possible to use systems that focus on large numbers as well, although this is
done less often.

2.2.2 Implementations

It is possible to build a CBR classifier in several different ways. One of the
more efficient (and often used) is the implementation described in Armengol
and Plaza [2001], which is the so called LID-algorithm, which stands for Lazy
Induction of Descriptions. Current research into the LID algorithm can be found
in Armengol and Garcia-Cerdatia [2010].

The algorithm introduced in Armengol and Plaza [2001] is one of the first
to make use of a similarity comparison between a test case and the case base
for case based learning. The paper refers to this similarity comparison as the
similitude term. For the LID algorithm an adapted version of the Lépez de
Méntaras (RLM) distance is used for this comparison.



For each property the algorithm looks at the subset of training cases which
have the same value for the attribute as the test case. These subsets are then as-
signed a value based on their distinctiveness. This distinctiveness encompasses
the proportion of those cases belonging to a single solution class. These distinc-
tiveness values are compared and the most distinctive selector (attribute and
value combination) is chosen.

The chosen selector is then used on the case base to select a subset of the
training cases which have the same value for the attribute as the selector (and
the test case), these cases are said to be subsumed by the selector. The algorithm
then continues by looking at all properties again (except the ones already used
to subsume a part of the case base) and calculating the distinctiveness values
on the new subset of the case base.

The algorithm continues until a stopping condition is met. There are several
stopping conditions possible, of which three are used in the algorithm imple-
mented later on. The first is when the selected subset of the case base contains
cases with only one class. In this case the class that should be predicted for
the test case is clear and further specification of the selector does not give any
advantages.

Another stopping conditions is when none of the selectors which are tested
subsume any cases. If this happens the algorithm would not be able to make a
prediction after the next selection and therefore stops.

The last stopping condition is when there are no more properties to add to
the selector. This happens when there are training cases which are identical to
the test case. Because of the first stopping condition however, this only occurs
when there are at least two training cases identical to the test case and these
must have different solution classes. This does mean that there is either a wrong
prediction in the case base or the information contained in the attributes is not
sufficient to classify a case.

In the latter two stopping conditions the algorithm terminates whilst the
current selector subsumes a set of the training cases in which at least two solution
classes occur. There are several possibilities for determining the prediction for
the test case, but the most often used one is also the simplest, majority voting.
In this case the algorithm predicts the class most often occurring in the set of
subsumed cases. In case of a tie the solution class that most often occurs within
the complete case base is chosen.

To find the best selector to use a score is assigned to each possible selector,
the earlier mentioned similitude term. In the case of the LID algorithm this is
the RLM distance. The RLM distance is calculated as the similarity between
the correct partition and the current partition. The correct partition is the
partition in which all the cases with the majority class are subsumed and none
other. Thus a higher RLM distance indicates that a partition (selection of cases)
is more lopsided and thus more confident when used as a prediction criterion.

Formally, given two partitions P; and P, of the cases base B, where P; is the
current partition to calculate the similitude for and P. is the correct partition,
the RLM distance is computed as follows:

RLM(P;,P,) =2 —

where
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The terms I(P;) and I(P,) denote the information contained in the current
partition and the correct partition respectively.

The LID algorithm used the stopping conditions described under section
2.2.1 virtually unaltered, leaving the algorithm itself relatively simple. The
following pseudocode describes the algorithm used:

Algorithm 2.1 LID algorithm

function LID(Sp,p,D,C)

if stopping—-condition (Sg)
then return class(Sp)

else
fa= select-leaf(p,Sp,C)
D’ = add-path(w(root(p), fa), D)
S¢ = discriminatory-set(D,Sp)
LI1D(Spr,p, D', C)

end

The select-leaf procedure determines the best attribute to add to the selector
at this point in the algorithm. It uses the RLM distance to compute similitude
terms for each of the attributes that have not yet been used for the current
selector. The add-path procedure adds this new attribute-value combination to
the current selector. The discriminatory set finds the part of the case base that
is subsumed by the new selector.

The stopping-condition is used to check if any of the stopping conditions
mentioned before hold at this point in the program. If this is the case a result
needs to be returned. The class(Sp) is the majority class of the cases currently
subsumed by the selector.

Given all this information an example is in order. Miss Orange, our previous
example, is used again. When the algorithm starts all cases in the case base are
subsumed. A score is assigned to each attribute-value combination of the Miss
Orange case. The fact that her hair is brown gives zero other cases with this
attribute-value combination. This selector is thus not evaluated any further.
The second possible selector, PaysRegularly, gives us a better score than the
third, Rich. PaysRegularly gives us 1 subsumed case, which means that the set
of subsumed case has a perfect score (all cases have the same solution class),
while Rich gives us 2 subsumed cases, with a 1 to 1 split on the correct predic-
tion. Thus the LID algorithm would use the PaysRegularly property to predict
that Miss Orange should receive credit.
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In a more complex example image Mrs. Blue, who does not pay regularly,
is not rich and has white hair. Both PaysRegularly and Rich would provide us
with two subsumed cases (with different solution classes). The algorithm would
choose one of the two at random (as both get the same RLM distance) and
then continue with that subset of cases. In the next step the other of the two
attributes would be used to select Mr. Grey as the most similar case, resulting
in the LID algorithm predicting that Miss Blue should not receive credit.

2.3 Clark Niblett 2 and variants

The Clark Niblett 2 algorithm (hereafter referred to as CN2) is a rule-based
classifier that is capable of creating both ordered (Clark and Niblett [1989]) and
unordered rulesets(Clark and Boswell [1991]). It has been used by Mozina et al.
[2005] to demonstrate the possibility of using argumentation in the classification
process.

CN2 is a rule induction algorithm designed for the efficient induction of
simple and comprehensible production rules in domains where noise might be
present. This is also the case for most environments where argument-based
classification is likely to be used, as the necessity of using an argument-based
system is generally determined by the ambiguity or noisiness of the data. Thus
CN2 is well suited for this type of environment.

There are two main versions of the CN2 algorithm. The version from Clark
and Niblett [1989], in which the CN2 algorithm was introduced, produces an
ordered list of rules. This results in rules consisting of few attribute-value com-
binations which makes it easier for a human to understand those rules. The
disadvantage in this approach is that to understand a classification not only is
the rule used to classify the case necessary for understanding the system, but
also all of the rules above the current one. These rules have not fired, thus the
negation of all of these rules holds true. Without this information the rules
often seem counterintuitive and oversimplified.

To address this shortcoming Clark and Boswell [1991] introduced a CN2
variant which produces unordered rulesets. With this rule generation method
longer rules are produced, as more information needs to be contained in the
rule to properly select a subset of the case base. Given that only the firing rules
are necessary, in general the set of rules used to make a prediction are more
understandable for the expert than the ordered rulesets. Using unordered rules
means that it is possible for multiple rules to fire when given a case. Thus a
mechanism is needed to deal with this when it occurs.

2.3.1 Technique

The original algorithm was designed with three main goals mind: a) accurate
classification; b) simple rules; and c¢) efficient rule generation. The ID3 algorithm
of Quinlan [1986] and the AR algorithm of Michalski [1969] have served as an
inspiration and parts of both algorithms are used for the CN2 algorithm. The
algorithm produces an ordered ruleset, with the process of generating this ruleset
described below. Further on a look will be taken at unordered rulesets and the
process to create these.

11



To understand the technique behind the Clark Niblett 2 algorithm a few
definitions are in order. In the previous section the selection of one or more cases
based on an attribute-value combination was introduced. Such a combination
is called a condition. A condition consists of an attribute and an equality on a
value. Other algorithms sometimes use greater than and other relations between
attribute and value, but for the CN2 algorithm only equalities are used. A
conjunction of conditions is called a complex or selector and is used to subsume
(select only those cases conforming to it) cases from the case base. As a complex
is a conjunction of conditions the empty complex subsumes all cases. Extending
a complex with a new condition is referred to as specialisation, a technique used
to find candidate complexes.

Putting the above into an example makes for a clearer explanation. Given
the example introduced in table 2.1 the aim is to generate a complex that
only contains Mrs. Brown. Starting with the empty complex, which covers all
three cases, possible specialisations are all attribute-value combinations in the
case base. The condition (PaysRegularly = no) is used to specialise the
complex, which now only subsumes Mrs. Brown and Mr. Grey. Specialising the
complex again, with the condition (Rich = yes), results in a complex that only
subsumes Mrs. Brown. The final complex is (PaysRegularly = noNRich =
ves).

The CN2 algorithm works in an iterative fashion, each iteration searching
for a complex covering a large number of examples of a single class C' and few of
other classes. An evaluation function is used to determine if the found complex
is both predictive and reliable.

Having found a good complex, all covered examples are removed from the
case base for the rest of the ruleset generation and the complex is added to
the ruleset in the form ’if complex then predict class C’. The removal of all
cases only applies to the ordered rulesets, the process for unordered rulesets is
slightly different and is explained later on. This process iterates until no more
good complexes can be found or the case base is empty. The system searches for
complexes (selectors) in a general to specific search, as the evaluation functions
value bigger sample sizes higher then smaller, if the class distribution in both
is the same.

The difference with the process for CBR is that not only the best complex
is used but the algorithm keeps track of a number of best complexes. Each of
these complexes is crossbred with all potential selectors. Using this approach
means that complexes that would be valuable but consist of multiple selectors
can still be used as a potential complex. The CBR algorithm would miss these
combinations, as it directly chooses the best selector according to its evaluation
function. The CN2 algorithm keeps track of these best candidates in a size-
limited set or star S of best complexes found so far.

Besides the current star, which only contains complexes with the same num-
ber of conditions (determined by the current iteration), the algorithm also keeps
track of the single best solution up to that point. This tracking is separate from
the star and used to select the best complex when the algorithm for finding the
best complex terminates.

In the algorithm two evaluation functions are used. A function is used to
evaluate the quality of a complex, both for inclusion in the star and to determine
if it is better than the current best complex. In Clark and Niblett [1989] the
information-theoretic entropy measure is used, while Clark and Boswell [1991]
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uses the Laplace expected error estimate. Both functions and their difference
will be explained in the next section.

The second evaluation function concerns the significance of the found com-
plex. The significance of a complex expresses the likelihood with which the
complex could exist by chance. Thus a high significance signifies that the com-
plex locates a regularity unlikely to have occurred by chance and that it reflects
a genuine correlation between the attribute-value combination and the solu-
tion class. The algorithm of Clark and Niblett [1989] uses the likelihood ratio
statistic to test significance.

Because of differences between the quality evaluation function used in the
publications the role of significance testing is slightly different in the separate
versions of the algorithm. In the original algorithm significance testing is used to
select more general rules. The second version (of Clark and Boswell [1991]) uses
a quality measuring function that is already predisposed towards more general
rules. Therefore significance testing has more influence on the stopping point
of the improved version than it has on the complexes selected.

The type of rules produced in the CN2 algorithm is slightly different from
that in the UCN2 version. As the rules of the first are ordered, it is important
to store their ordering. For the second this point is moot of course. However,
the unordered rules store not the majority class for the found rule but the class
distribution found. Doing this allows the prediction process to produce more
accurate results and to keep track of the accuracy of the generated rule.

2.3.2 Implementations

The paper from Clark and Boswell [1991] introduces several changes to the
original CN2 algorithm, resulting in several different possible implementations
of the algorithm. The pseudocode for generating the ordered rulesets is the
same, but the quality evaluation function is different. The paper also introduces
a slightly different version of the algorithm for generating unordered rulesets,
for which a different generation procedure is needed. The pseudocode given
in Clark and Niblett [1989] for generating the ordered ruleset can be found in
algorithm 2.2.

The pseudocode in algorithm 2.2 is written to explain the inner working of
the algorithm. Most readers will immediately spot several improvements that
should be implemented when this code is actually used, such as first ordering
the complexes and then comparing only the best of the new star with the best
complex. The details on the actual implementation of the algorithm in the
application will be left to chapter 3.

As mentioned in the technique section on CN2 we see several user supplied
parameters and functions that influence the efficiency of the algorithm, each of
which will be discussed below. We have the evaluation function for the quality
of complexes, the statistical significance function for complexes, the star size to
keep between iterations and the minimum statistical significance. All these will
be discussed for the original CN2, afterwards we will focus on the differences
with the other versions of the algorithm.

The evaluation of quality function for complexes determines which measure
is used to determine the best complexes in the current iteration. In the original
CN2 algorithm this is the information-theoretic entropy measure, given by the
formula:
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Algorithm 2.2 CN2 algorithm

function CN2 (E)
rule_list = empty list;

repeat
best_cpx = find_best_complex (E);
if (best_cpx != nil)
E’ = all examples covered by best_cpx;
remove from E all cases in E’;
C = most common class in E’;
add "if best_cpx then class = C" to rule_list;
until (best_cpx == nil || E == empty)

return rule_list;

function find_best_complex (E)
star = new set containing only the empty complex;
best_cpx = nil;

selectors = set of all possible selectors;
while (star != empty set)
new_star = {x ANy | x € star, y € selectors};

remove all complexes from new_star that are
in star (complex € star) or
are null (i.e. big = e A big = vy);
for (complex in newStar)
if (statistical_sig(complex) > user_def_min &&
quality (complex) > quality (best_cpx));
best_cpx = complex
order new_star (in desc order of quality);
keep best n complexes from new_star;
star = new_star;
return best_cpx;

14



Entropy = — Z pilogs(pi)

7

With p; indicating the part of the case subsumed by the complex belonging
to that class and thus a lower entropy is indicative of a higher quality of the
complex. Note that this function does not solely focus on the best class distri-
bution at the moment but takes into account the possibilities when specialising
the complex.

Take the following two distributions, P = (0.7, 0.1, 0.1, 0.1) and Q = (0.7,
0.3, 0, 0). The above function will prefer the second to the first, while there is
no difference in actual usage. One could even argue that the first is indicative
of noise in the data, while the second is not specialised enough. The reasoning
behind choosing this evaluation function can be seen when we specialise the
complex to exclude all cases of the first class, resulting in the new distributions
P = (0, 0.33, 0.33, 0.33) and Q = (0, 1, 0, 0). The reasoning for making the
second class distribution preferred can now be clearly seen.

The second evaluation function involves significance testing. According to
Clark and Niblett [1989]: ”By [significance] we refer to a complex that locates
a regularity unlikely to have occurred by chance, and thus reflects a genuine
correlation between attribute values and classes.” The choice of function and
the user defined minimum are closely related, as the choice of minimum depends
on the function used.

In the original CN2 function the chosen function is the likelihood ratio statis-
tic, which is given with the following formula:

n
Significance = 2 Z filog(fi/e:)
i=1

With F being the observer frequency distribution of the cases subsumed by
a complex and E being the expected frequency based on random sampling on
the whole case base. A higher significance is indicative of a lower chance of
the complex being a random occurrence, thus necessitating a minimum to be
defined by the user.

This choice of minimum is somewhat difficult as there are no clear guidelines.
The probability of a certain pattern occurring also differs based on the number
of cases in the case base (thus duplicating every case in the case base means
that the minimum significance needs to be adjusted; it needs to be raised to
produce an identical ruleset).

The final parameter to the algorithm is the star size. This is the number of
complexes kept between iterations. A bigger star size leads to a higher number
of potential complexes, thus taking more time to compute. It can also lead to a
higher accuracy as it allows the algorithm to find complexes of which supersets
are not that good but the complex itself is highly specialised and of good quality.
Clark and Niblett [1989] state that in general a star size of 15 is sufficient. Taking
a star size lower than this threshold results in most instances of the algorithm
losing accuracy, whilst a higher star size does not benefit results, but raises the
runtime.

15



Augmented Clark Niblett 2

In the augmented version of the algorithm, proposed in Clark and Boswell [1991],
slight changes to the algorithm have been made. These include using a different
version of the function for determining the quality of complexes. This changes
the role of significance testing, although it is kept in the algorithm.

The original function used, information-theoretic entropy measure, has a
problem that occurs in more algorithms (such as AQ15 and ID3). The problem
is that these quality measures have a perfect score on a complex that is highly
specialised, covering just one case. This behaviour is unwanted, as it leads to
highly specific rules covering few cases. These cases could be an effect of noise
in the data, thus leading to an accidental rule which has no resemblance to the
logic in the real world application.

The way in which this problem is mitigated (but not solved) in the original
CN2 is by using a significance testing method, as described above. An example
given in Clark and Boswell [1991] to illustrate the fact that this problem remains
is the following;:

Consider a domain with two equally likely classes, C7 and C5. Also consider
three possible rules Ry, R and R3 with the following class distributions:

Ry covers 1000 examples of class C; and 1 of Cs [1000,1]
Ry covers 5 examples of class C7 and 0 of Cy [5,0]

R3 covers 1 example of class C7 and 0 of Cy [1,0]

We would want the algorithm to prefer R; as the accuracy on new data is
likely to be best, given that the other two rules only cover a very small part
of the case base. However, a 99% significance test would eliminate R3 but not
R, thus the algorithm would prefer Ro. We could raise the significance level
further, but we can also think of a new example rule (say Ry5) which is just
above this threshold but has the same problem.

Generally speaking, we state that the measure used (information-theoretic
entropy measure) and others like it have a downward bias; they prefer rules that
are more specific, as they are often (slightly) more accurate.

We can use a different quality measure to circumvent this problem, specif-
ically one that prefers more general rules. The measure used by Clark and
Boswell [1991] is the Laplace expected error estimate. This quality measure is
described by the following function:

ne+1

Laplace Accuracy = ————
P Y Niot + k

where

k is the number of classes in the domain

n. is the number of examples in the predicted class ¢ covered by the rule
Ngor 1S the total number of examples covered by the rule

The predicted class when generating and evaluating the rules is simply the
class which contains the majority of the covered cases. This means that the role
of significance testing changes. In the original algorithm significance testing
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prunes out the more specialised rules, leading to less complexity in the rule
list at the expense of a slight reduction in accuracy. This behaviour changes
when the Laplace expected error estimate is used as the quality measure, as more
general rules are already preferred. Thus raising the significance threshold alters
the point at which the algorithm stops searching for further rules. This means
that significance testing becomes solely a stopping criterion in this version of
the algorithm.

Unordered Clark Niblett 2

The goal of the UCN2 algorithm is to produce, instead of ordered, unordered
rules. This necessitates some changes to the algorithm itself. The research in
Clark and Boswell [1991] has indicated that using the Laplace expected error
estimate improves the algorithm. This version of the algorithm already takes
those changes into account.

The changes to the algorithm focus on the control procedure, whilst the
actual search procedure stays very similar (with the exception of the quality
measure). For a full overview both parts of the algorithm are produced in
algorithm 2.3.

The adjustment to the quality function concerns a change in the class that
is used as the predicted class in the Laplace measurement. In ACN2 this is
the majority, but in UCN2 this should be the class for which we are generating
rules.

Concerning the control procedure there are several changes. First of all
the search for the rules is now done separately for each class. There is also a
change in the cases removed from the case base. In the ordered algorithm all
cases covered are removed, including the cases that would be wrongly predicted
by the rule. The unordered algorithm only removes those cases for which the
solution class was predicted correctly, so the other cases still influence the rules
found further on.

The rules produced by the algorithm should not just save the majority class
of the applicable cases. As the rules are unordered it is possible that multiple
rules fire when a new case is tested. To deal with this the class distribution of
all applicable cases is noted when creating the rule.

When a new case enters the system, all rules that are applicable fire. For
each rule the class distribution is returned. These class distributions are then
summed and from that total the majority class is taken as the class to predict
for the new case. Thus more general rules carry a bigger weight when predicting
the solution class for a new case than specialised ones.

2.4 Argument Based Clark Niblett 2

The argument-based version of the Clark Niblett 2 algorithm is based on the
unordered version. The original algorithm is taken from Mozina et al. [2005],
with Zabkar et al. [2006] and Mozina et al. [2007] providing adjustments and
further experiments. In essence the algorithm should function exactly the same
on cases that have not been argumented, whilst using the arguments on cases
that have been annotated to improve its prediction accuracy. To do this several
changes to the algorithm need to be made.

17



Algorithm 2.3 UCN2 algorithm

function UCN2 (examples, classes)

rule_set = empty set;

for each class in classes
rules = UCN2_one_class (examples, class)
rule_set = rule_set + rules;

return rule_set;

function UCN2_one_class (examples, class)

rules = empty set;
repeat
best_complex = find_best_complex (examples, class);
if (best_complex != null)
rules = rules + "if best_complex then class";
remove all examples covered with the predicted
class;
until (best_cond == null)

return rules;

function find_best_complex (examples, class)
star = new set containing only the empty complex;

best_cpx = nil;

selectors = set of all possible selectors;
while (star != empty set)
new_star = {x ANy | x € star, y € selectors};

remove all complexes from new_star that are
in star (complex € star) or
are null (i.e. big = e A big = vy);
for (complex in newStar)
if (statistical_sig(complex) > user_def_min &&
quality (complex) > quality(best_cpx));
best_cpx = complex
order new_star (in desc order of quality);
keep best n complexes from new_star;
star = new_star;
return best_cpx;
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To adjust the algorithm into taking argumented cases into account the def-
inition of covering as used in the other versions needs to be adjusted as well.
This guarantees that arguments are used and not just ignored when another
rule would already classify that particular case.

Having experts provide feedback on a system can be useful in general, as
the connection between the model produced and the real world situation can
be checked. How we use this feedback to improve the model is not immediately
obvious. One possible line of thinking would be to have the experts make
adjustments to the model until they are satisfied with it. Unfortunately this
turns out not to be very useful, as a primary reason to use a classification system
is that it can be rather difficult for a human operator to keep track of all possible
situations and their associated predictions.

If the experts need to produce their knowledge into rules or a model that
is then used as the basis of a classification system another problem rears its
head. In this case the major problem is that humans in general have difficulty
in properly generalising their knowledge.

To avoid the above two problems when soliciting feedback from experts on a
classification system Mozina et al. [2007] have devised a method in which experts
are asked to provide feedback on one specific case at a time. This circumvents
the generalisation problem by only asking for a specific situation. Secondly the
feedback from the expert is then incorporated into the system in such a way
that the algorithm has the possibility to generate rules that contradict or ignore
this information if necessary.

The feedback experts provide on a case is given in the form of arguments.
An expert is presented with a complete case, encompassing the case, its decision
and all relevant information and attribute-value combinations. The expert then
analyses the case and provides arguments on the specific attributes. These
arguments can be positive or negative. An expert can also leave an attribute
unannotated. Arguments are used here to enhance the prediction accuracy of a
classifier, as suggested in Modgil et al. [2013].

A positive argument indicates that, according to the expert’s knowledge,
this attribute-value combination is a good reason for deciding the case has the
current solution class. It is possible for an expert to provide multiple positive
arguments, effectively indicating that one or more of these reasons could be used
to predict the specific solution class. Positive arguments can be seen as having
a ”"because” relation with respect to the case and the solution class.

Negative arguments are the exact opposite of positive arguments. When
an expert annotates an attribute with the information that it is a negative
argument the expert indicates that this attribute-value combinations should
not be used to predict the current solution class. Effectively the expert says
that the information given is contradictory or at least completely irrelevant to
the solution class. Thus negative arguments can be seen as having a ”despite”
relation with respect to the case and the solution class.

Some arguments may not be either according to the expert. These attributes
could provide information in making a decision, but the expert does not imme-
diately see the connection or does not think the connection is strong enough.

The case base from table 2.1 is used to provide an example. An expert is
asked to annotate a case, specifically that of Miss White. Miss White pays
her bills regularly, is not rich and has blond hair. She has received credit,
which is considered the correct solution class. When annotating this case
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PaysRegularly = yes can be annotated with a positive argument, as it is
information that would justify providing credit to Miss White. The attribute-
value combination Rich = no can be annotated with a negative argument, as
the fact that Miss White is not rich should not be a reason for providing her
with credit. The last attribute, HairColor = blond can be left unannotated,
as it has no bearing on the decision to provide Miss White with credit. On the
other hand an expert could annotate this attribute with a negative argument as
it should not be used as a reason for providing credit. This ambiguity can make
annotating cases somewhat difficult, although most experts would classify the
last attribute as a negative argument.

When an expert has annotated cases the algorithm is run again, which pro-
vides the expert with a new set of cases to annotate. If the annotations are
correct and there is some improvement to be made to the predications made
by the current model a new iteration should provide a better fitting model and
improved predictive accuracy.

Of course the algorithm also needs to decide which cases an expert should
annotate. Having the expert annotate all cases in the case base would suffice,
although this is highly unpractical and inefficient. In the current version of the
algorithm a number of cross validation runs is done, with the results being used
to find the cases that are predicted wrong most often by the algorithm. These
cases are presumed to be a weak point in the model and thus the expert is asked
to annotate these.

Thus, when executing ABCN2 there are three parameters above and beyond
those used in UCN2 (star size and minimum significance). First of all there are
the settings for the cross validations to find cases to annotate. The number of
k-fold cross validations and the size of k can be set. Finally a user can set the
amount of cases to annotate per run of the algorithm. In general we will use
five 5-fold cross validations to decide which single case is performing the worst.
This case is then given to an expert to annotate.

2.4.1 Technique

As described above ABCN2 needs to deal with annotated cases separately from
non-annotated cases, while still producing rules in the same manner as UCN2.
To cope with this several changes are necessary. First of all the definition of
covering should be adjusted to take into account annotated cases and what to
do with them. Secondly the procedure for generating rules should be adjusted
to look at argumented cases first.

The first adaption, extending the definition of covering, makes sure that ar-
gumented cases are only covered when their arguments have been used properly
as well. Remember from the section on the CN2 algorithm that a complex or se-
lector is a set of attribute-value combinations. The complex covers or subsumes
a case when the case has the same value as the complex for each attribute-value
combination in the complex. Thus a case is covered when all of the information
described in the complex matches the case.

When we look at argumented cases it is clear that some adjustments need
to be made. First of all a complex is used as the set of conditions for a rule
to fire. In describing what a negative argument entails we have stated that a
negative argument is an attribute-value combination that is information-wise
contradictory to the solution class. Thus it is logical that none of the negative
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arguments can be used in a complex to subsume the case that has such a negative
argument.

Besides negative arguments we also have positive arguments, which are a
good reason, according to the expert, for assigning the case its solution class.
Given that a case can have multiple positive arguments we should require at
least one of the positive arguments to be present in the complex which is to
subsume said case.

To formally define the above two conditions we extend the original concept
of covering to that of AB-covering. We define AB-covering as a combination of
the following requirements:

1. All the conditions in the complex are true for the case under consideration
(same as in CN2).

2. The complex is consistent with (contains) at least one positive argument
of the case.

3. The complex is not consistent with any of the negative arguments of the
case.

The adjustment made to the covering mechanism helps in classifying the
case an expert has annotated, but it does not influence the overall outcome
significantly. To this purpose we also adjust the mechanism for finding the
rules. When looking for rules applicable to a solution class we will start by
considering the argumented cases one by one. For each argumented case we
need to find a rule covering that case first, before moving on. Based on the
rules we find we already remove positively covered cases from the case base,
keeping in mind that we use AB-covering.

With this last adjustment we make sure that annotating cases has enough
influence on the process to adjust the rules generated by the algorithm. The
quality scores of complexes are not adjusted, thus annotated cases do not weigh
heavier in evaluation than their non-annotated counterparts.

2.4.2 Implementation

With the above adjustments to the technique in mind we can now produce a new
algorithm in pseudocode that brings this algorithm in practice. The algorithm is
similar to that of UCN2 [Clark and Boswell, 1991]. Only the last two procedures
need to be adjusted, the UCN2 procedure can be kept the same. The pseudocode
in algorithm 2.4 is taken from Mozina et al. [2007].

At the end of the per class procedure we see a call to the same procedure
from the UCN2 algorithm to find rules for the remaining cases. We use the
code from the UCN2 section above, with one modification. When we talk about
covering we replace this with AB-covering. Thus to cover an annotated case the
complex has to comply with the restrictions on positive and negative arguments.

From the code we can see that the algorithm focusses on annotated cases
first. After iterating over these cases and finding rules that classify them cor-
rectly the old UCN2 algorithm is used to find appropriate rules for the remaining
cases. Thus considerable value is given to the expert’s opinion, because the rules
that comply with that opinion are generated first and afterwards the algorithms
creates rules to classify the other cases.
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Algorithm 2.4 ABCN2 algorithm

function ABCN2 (examples, classes)

rule_set = empty set;

for each class in classes
rules = UCN2_one_class (examples, class)
rule_set = rule_set + rules;

return rule_set;

function ABCN2_one_class (examples, class)
rules = empty set;
arg_cases = list of annotated cases;
for each case in arg_cases
evaluate all positive arguments in case
with the quality evaluation function;
sort arg_cases by their best arguments;

while (arg_cases != empty)
ael = arg_cases|[0];
rule = ab_find best_rule (examples, ael, class)

add rule to rules;

remove all AB-covered cases from arg_cases;
for each rule in rules

remove all AB-covered cases from examples ;
non_arg_rules = UCN2_one_class (examples, class);
add non_arg_rules to rules;
return rules;

function ABCN2_find_ best_complex (examples, arg_case class)
star = new set containing all positive arguments of
arg_case as complexes;
best_cpx = best complex in star;

selectors = set of all selectors from arg_case;
arg_reasons = set of all positive arguments of arg_case;
while (star != empty set)

new_star = {x ANy | x € star, y € selectors};

remove all complexes from new_star that are
consistent with negative arguments of arg_case;
for (complex in newStar)
if (statistical_sig(complex) > user_def_min &&
quality (complex) > quality (best_cpx));
best_cpx = complex
order new_star (in desc order of quality);
ab_new_star = all complexes from new_star containing
only selectors from arg_reasons;
keep best n complexes from new_star;
keep best n complexes from ab_new_star;
star = new_star + ab_new_star;
return best_cpx;
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The time complexity of finding rules covering the annotated cases is signifi-
cantly less than that for non-annotated rules. As we can see above, by focussing
on one case at a time we only have one value per attribute to consider. Com-
bining this with the fact that at least one positive argument has to be in the
complex means that a great number of potential complexes are never checked,
which saves time. Therefore we do not have to check if a complex covers at least
one case as it always covers the annotated case.

Finally we see a slight adjustment in the algorithm compared to the descrip-
tion above. Besides the normal star of best complexes found up until that point
the algorithm also keeps track of a star of complexes containing only positive
arguments. This is done to make sure that a potential combination of positive
arguments is always checked, ensuring that the viability of the expert’s opinion
is taken into account.
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Chapter 3

Architecture

As mentioned in the introduction a part of the thesis research was an internship
at CogniCor Technologies. During the internship an application was built that
implemented a classification system based on the algorithms mentioned in chap-
ter 2. In this chapter the architecture used to implement the system, including
the choice of language and framework, is discussed.

The application was built as a part of a larger system which is concerned
with automated complaint resolution. Currently calling a help desk can be
an arduous experience which often frustrates customers. The idea behind the
CogniCor product is to largely dispense with the human element in complaint
resolution, thereby making the complaint process easier and more customer
friendly. At the same time it is an opportunity for companies to reduce their
expenses in this department by doing away with most of the manual work.

The full suite of software works by having the users fill their complaint into
an online form. This form is then parsed by a natural language processor that
was built specifically for the domain and the language in use. The information
gained from the complaint is combined with information already available within
the company for that customer, such as the type of contract, remaining duration
and monthly billing details. Relevant parts of the data are then sent to the
classification application, which uses the classification system to decide what the
best solution is for the given case. Afterwards the outcome is communicated to
the customer in natural language by way of natural language generation software
developed for this purpose. Thus the CogniCor classification application should
be able to produce the correct solution class as often as possible when used on
the data that normally enters the system.

When discussing the architecture of the system several aspects need to be
highlighted. First, the choice of programming language and web development
framework will be shortly discussed. The setup of the system in terms of the data
structures follows, after which the implementation of the different algorithms
will be discussed. Then an overview of the unrelated parts of the application
that were implemented, such as a user verification system, is given. The chapter
finishes with set of screenshots to provide the reader with a clearer picture of
the user experience of the application.
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3.1 Ruby

At the start of the internship several programming languages and technologies
were already in use at CogniCor, amongst others Java and Python. During the
explorational phase in which the goals and requirements of the project were
discussed several possible choices of programming language and web framework
were compared. Python and Django were a possibility, whilst Java and Spring
were considered too heavy duty given the current status of the company and
the software. During the discussions the possibility of using Ruby on Rails was
mentioned.

Ruby is a programming language which focusses on ease of use for the pro-
grammer. One of the cornerstones of Ruby programming is the mantra ”by
convention, not by configuration”. In practice this means that whilst things can
often be done in several ways the language is built with one particular way in
mind. This means that the Ruby community sees this way as the right way.
At the same time this makes programming in Ruby, when adhering to these
conventions easy and hassle-free.

The syntax is similar to Python, with some changes to make the language
more readable and more intuitive to write. The concepts used in designing Ruby
are taken from a number of other programming languages such as Smalltalk,
Perl, Ada, Lisp and many others [Matsumoto, 2014].

According to the Ruby language website: ”Ruby is a dynamic, open source
programming language with a focus on simplicity and productivity. It has an
elegant syntax that is natural to read and easy to write.” The idea behind Ruby
is to create a language which has the simplicity and power of Python while
being completely object-oriented. Several other concepts also have their place
in Ruby language, although a full discussion of its merits and hinderances would
be out of place here.

3.1.1 Ruby on Rails

Ruby on Rails is the web development framework for use with Ruby. Its function
is similar to other web development frameworks such as Django and Spring. The
idea behind all these frameworks is to make it easier for the developer to create
web based applications. Thus many things are preordained as these would be
required to run a web service anyway.

Given the choice for Ruby as a programming language the choice for Ruby on
Rails is the only logical one, considering the broad support and general maturity
of the framework.

The architecture of Ruby on Rails is based on the model-view-controller
(MVC) paradigm. Thus the code implementing the classification algorithms
is all implemented within the models created within the framework. The con-
trollers are only responsible for getting the correct information from the users to
the models and from the models to the views. The views themselves are created
twice, firstly for the website and secondly for the web service, which makes use
of JSON (Javascript Serialized Object Notation) for communicating with other
parts of the system.

Within the CogniCor classification app the controllers are mostly concerned
with permissions and providing reasonable defaults to the user. For the purposes
of this thesis this is uninteresting code, and thus will not be described any
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further. We will shortly return to them in discussing the access system (user
login and API keys).

The views are an important part of any website, as this concerns the actual
webpages viewed by the user. As mentioned the views in the CogniCor classi-
fication app exist in two varieties. The normal webpages are created to allow
users to access the system. Administrators are able to change more settings and
create new classifiers, cross validation runs and rulesets. Users of the system can
only access results and generate new rulesets. Experts are only allowed access
to a page containing the cases to annotate.

The second type of views are JSON views, which are used to return infor-
mation to automated systems. Only a subset of all pages is reachable via the
JSON interface, as creating new classifiers and importing data should always
be done with the website interface. The JSON views contain solely the neces-
sary information returned from each request, with messages being kept to their
minimum size.

The models of the Ruby on Rails app contain the actual code needed to
run the classification system. As there is rather a lot of code concerning the
classification model the decision was made to split this into multiple files. To
keep all code organised logically the code for all models is divided into the
following files:

classifier.rb
Contains all methods which are general for all types of classifiers. Differ-
entiates between CBR and other classifiers.

submodules of the classifier model

cbr.rb
All code to execute classification with the CBR algorithm.

database.rb
The methods for retrieving and storing information in the database,
separated from the other files as these methods are agnostic to the
purpose for which they are used.

import.rb
Code to parse and import existing case bases. The already existing
information can be imported into the application in a CSV format.
This module contains all code to parse and check these inputs.

cn2_ruleset.rb

Methods to generate rulesets for all Clark Niblett varieties and classify
new cases with these rulesets. Also includes code to find new cases to
annotate, which invokes the cross_validation_run model to execute cross
validations to this purpose. The code to handle annotations (creating,
modifying and removing them) also resides in this file. As the ABCN2
ruleset generation code is in this file as well, this file also handles the use
of annotated cases in generating rulesets.

cross_validation_run.rb
Contains code to create and execute a cross validation run. Generates a
number of cross validation folds based on the settings when a new run is
created.
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cross_validation_fold.rb
Cross validation folds pertain to a specific division of the case base into
training and testing data. The cases that are in each part are registered,
so results can be checked later on. Each of the cases in the testing set will
be entered into the database as a cross validation case.

cross_validation_case.rb
Only governs the storage of the results for each testing case in a cross
validation fold. The information stored is used to determine which cases
performed worst and should be annotated for ABCN2.

field.rb
Each classifier works on a case base, with the case having predefined at-
tributes. To use these attributes correctly their type is input when an
existing case base is imported and stored as a field object.

This gives a short overview of the architecture of the application. The way
in which the algorithms are implemented is described below in the appropriate
sections. For a copy of the code the author can be contacted.

3.2 Data structures and database usage

When building an application the design of the data structures is important,
especially for something as data-dependent as a classification application. Ruby
on Rails provides the programmer with an easy to use way to define and use
persistent data structures, which are stored in the database. For this application
this standard way of creating persistent structures was not sufficient, so some
manual interaction with the database was necessary.

3.2.1 Database

The database engine used for the application is MySQL. This choice was made
because of the integration with Ruby on Rails and open source nature of the
engine. SQLite, which is the standard database engine in use for Ruby on Rails,
was ruled out as its possibilities regarding indexes are insufficient.

Given the nature of the Ruby on Rails framework it should require little
effort to switch to a different database engine as long as the migration of the
data is done properly. Given the manual procedures implemented to deal with
the cases in the case bases this is unfortunately not the case for the classification
app. A migration to PostgreSQL should not be too difficult, although at least
some work is necessary to check the syntax of the manual queries.

The indexes available within MySQL are essential to the application, as these
help speed up the selection mechanisms in the rule-generation and classification
methods. The time-complexity of the various algorithms is mostly dependent
on database passes to check whether cases are subsumed. By using indexes on
the appropriate attributes the time needed has been significantly reduced.

3.2.2 Data structures

There are a number of models within the classification application that need
persistent storage. Most of the peripheral models, which are relevant to the
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application but not the classification system itself use the standard mechanism
provided by Ruby on Rails. As these parts are both relatively standard and do
not influence the research described in this thesis we will refrain from describing
these in more detail.

The data structures used to store the cases in the case bases and those used
to store the rules and cross validation runs are more interesting as these provide
the underpinnings on which the algorithms run. Each newly created classifier is
stored in a general table for all classifiers, including the name, date of creation
and several default settings.

When a new classifier is created several tables are made specifically for that
classifier. A table which is going to be used to store all cases in the case base,
a table to store the rules produced by the Clark Niblett algorithm and variants
and two extra tables to use for cross validation.

The table used to store the cases is constructed based on the attributes of
the cases. Every attribute is given a type (i.e., string, boolean, integer) which
is used to define the type of the database column used to store the information.
The treatment of the different types is similar in the algorithms later on, as all
attributes are treated as nominal. Every case is assigned an id automatically
by the system, which is used to keep track of references to that case in the
cross_validation_case table.

The rules table constructed for each classifier has the same columns as the
case base table, as each rule can contain attribute-value combinations for a
number of attributes. Rules are part of a ruleset that is generated, thus a
column is added indicating which ruleset the rule belongs to. Columns are
added for the ordering and the predicted class (in case of ordered rules) and
for the class distribution (in case of unordered rules) as well. Finally columns
for confidence (accuracy on the training set) and significance are added, which
allow for better analysis of the rules produced.

The tables that are used for cross validation are identical to the case base
table. Two tables are used, one to store all cases at the moment a cross valida-
tion run is started and one to store the current training set. The first table is
used so the addition of cases to the case base during the running of the cross
validation does not influence the results. The second is used to simplify ruleset
generation, as it becomes unnecessary to keep track of all cases in the training
set if those are all stored in a separate table.

3.3 Algorithms

Aside from the data structures used to store all information relating to the clas-
sifiers in a persistent manner, the implementation of the algorithms themselves
is of interest with regard to this thesis. Below we discuss the implementation of
the various algorithms and the optimisations used to produce faster results.
The mechanism for classifying cases can be divided into two parts, produc-
tion of rules (not applicable for CBR) and classification of new cases. For all
CN2 classifiers the code to produce rules and the code to classify cases are both
the responsibility of the rulesets. When a new ruleset is created the algorithm
that creates the rules is run from the new object with rules being added to the
ruleset when they are found. The code classifies a new case based on those rules
and thus belongs in the model for the ruleset as well. For the CBR classifier the
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classification mechanism is encapsulated as part of the classifier model.

All methods related to the classification algorithms take an argument which
is the name of the case base table. This is done so cross validation runs can use
the same methods whilst temporarily retrieving the information from their own
specialised tables.

3.3.1 Case Based Reasoning

The implementation used is based on the work of Armengol and Plaza [2001],
as described in section 2.2.2. The actual code differs little from the pseudocode
reproduced there. As the algorithm described in the paper is recursive the
actual implementation has been made this way as well. The RLM calculations
are handled in a separate method which is optimised to cache partial results as
to speed up the computation time.

All three stopping conditions mentioned in section 2.2.2 are implemented,
with two of those in a separate method. The case where there are no more
attributes to use in classifying a case is hardcoded into the algorithm as it
would end up in an endless loop without this check. The other two conditions
are implemented in a method called stopping.condition? which checks if
one or more of the stopping conditions hold. The question mark at the end
of the method name is a Ruby convention indicating a boolean return value.
Extra stopping conditions can be added or existing ones changed in this method
without affecting the rest of the implementation.

Comparison between possible selectors is done based on the RLM distance.
The separate method call which calculates this value is useful as it allows chang-
ing this metric without affecting the rest of the algorithm. For efficient compu-
tation of the RLM distance the indexes created on the case base table described
in section 3.2 are necessary. These indexes maintain a O(1) lookup time for
cases based on their values. Thus retrieval of cases based on the value of their
attributes is done relatively fast.

When the LID algorithm finishes some extra information is computed and
returned to the caller. Thus the user of the system can see which attributes were
used in what order to select the solution class. The possible solution classes and
their respective confidences are shown as well.

3.3.2 Clark Niblett 2 & Augmented Clark Niblett 2

The Clark Niblett 2 algorithm and its variants are implemented in a separate
model, cn2_ruleset. There are a number of class methods on the model which
are used to generate the cases to annotate, which is of interest later on when
discussing the argument-based variant of the algorithm.

The code to generate a ruleset has been split into multiple methods, similar
to how this is done in the pseudocode from section 2.3.2. The only difference
between the standard CN2 algorithm and its augmented variant is the calcula-
tion used to define the quality of a complex. To this end an if-then-else
construct is used to determine which calculations should be used based on the
properties of the ruleset.

Within the calculating methods calls are made to retrieve the information
from the database. The database methods contain caching mechanisms to deal
with similar requests. This allows the algorithm to run much faster. The indexes
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defined on the columns in the table are still necessary, as new calls would take
orders of magnitude more time without those.

Crossbreeding the star (best n complexes) with the potential selectors is done
in a method which immediately filters out entries that should not be considered.
To simplify this process a hash is used, a data structure with a key-value pair
notation. When crossbreeding is done with an attribute that is already in the
complex the data structure does not grow, because of the fact that a hash only
stores unique keys. Thus the complex has either not changed at all or would
have two attribute-value pairs for the same attribute. In both cases the new
complex can be immediately discarded.

All further details concerning the implementation are identical to the pseu-
docode produced in Clark and Niblett [1989] and Clark and Boswell [1991] or
concern standard solution. These will not be discussed in any further detail,
although the source code of the application should provide ample opportunity
for the reader to dissect the way in which these were implemented.

3.3.3 Unordered Clark Niblett 2 & Argument Based Clark
Niblett 2

The construction of the unordered CN2 algorithm is done in a manner similar to
that of the ordered ruleset. Because of the many subtle differences between both
algorithms the algorithm has been implemented in a separate set of methods.

When the call to generate a new ruleset is done a distinction is made between
the argument-based version of the algorithm and its unordered brother. In case
of the argument-based version a call is made to process all annotated case. After
this is done the algorithm continues with a call to the unsorted version of the
algorithm. By making the distinction between the two types of rule-generation
algorithms it is still possible to generate an unordered ruleset when several cases
have already been annotated. In that case the annotations on the cases are not
taken into account.

The implementation of the algorithm to generate the unordered algorithm
is very similar to the pseudocode from section 2.3.2. As opposed to the CBR
implementation the stopping conditions are hardcoded into the algorithm as
they are an integral part of the design of the classification method.

The calls to the methods are repetitive in that after each iteration they
are called again if there are unclassified cases remaining in the training data.
Because removing parts of the table containing the case is not an option the
calls to these functions include a list of ids which contain the unclassified cases.
Retrieval of only these cases is relatively fast because of the caching and indexing
on ids in the database table and the database retrieval functions.

The predicted class is stored differently for unordered rules than it is for or-
dered rules. The first needs a full class distribution when classifying a new case,
while the second only needs a majority class as mentioned in section 2.3.2. To
this purpose when generating a UCN2 or ABCN2 ruleset the class distribution
is serialized and stored in the database. A confidence measure is still inserted,
which indicates the part of the class distribution that belongs to the majority
class. This information can be inferred from the stored distribution as well but
storing this in a separate field allows for an easier overview when looking at all
rulesets generated.
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3.4 Other parts of the system

Several other parts of the system are worthy of note, although they do not tan-
gibly relate to the research. Their implementation is of interest for anyone with
interest in software engineering, however. The system used to implement access
for users is shortly discussed as is the role based authorisation system. We fol-
low this with a short overview of the specific changes necessary to accommodate
the use of the application as a web service, which includes introducing an API
key verification mechanism and a JSON interface.

3.4.1 User login

Implementing a user login system is often a problem point in developing a web
application. Ruby on Rails makes this problem easier by providing plugins
(something done by most web development frameworks). For user management
the most often used plugin within the Ruby on Rails environment is Devise,
which has a highly configurable user system.

For the classification application that was built as part of this thesis Devise
was implemented with a subset of its available functionality. Given that users
needed to be created by the CogniCor administrators there would be no use for
giving visitors the ability to sign up for an account themselves or allow them to
login with OAuth.

Some small changes were made to the standard implementation based on the
specifics needed in the application. The username is the main authentication
token, thus allowing the creation of users without an email address, although
this removes the possibility of password retrieval via an email message. Another
addition was the API key authentication token which is used to make authenti-
cation of automated systems possible. This choice is discussed further in section
3.4.2.

User roles

Once a user system is in place an access control system is required as well. As
mentioned earlier three main types of users will use the system a) administrators;
b) users; and c¢) experts. The automated components of the CogniCor ecosystem
have the same rights as normal users and can thus be given the same role.

Ruby on Rails provides several plugins for access permission as well, in this
case CanCan was chosen. This is a simple system in which user roles are pro-
vided with certain named rights. These rights will be checked in the controller
based on a separate model that defines which actions are available to each user
group.

Administrators have full access to all parts of the application. Users have
access to most actions, although most objects cannot be removed/deleted by
them. Their access to cross validation runs is limited to viewing only and cannot
change anything with regard to users except their own. The experts are only
allowed access to the overview of classifiers and the cases that need annotations
for each classifier. Initiating a new run to generate cases to annotated is reserved
for users and administrators.
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3.4.2 Webservice architecture

To use the system in its intended role other systems within the CogniCor ecosys-
tem should be able to interact with it. To this purpose parts of the application
were made accessible as a web service. To keep the access system intact a
valid API key is necessary. These API keys are generated for each user when
the account is created. API keys can be reset with the click of a button so
unauthorised access can be stopped immediately.

Using an API key that is sent as part of the request for a certain action
has advantages compared to a login system. The connection system between
the systems is transient and thus a login would not persist between requests.
Providing login credentials and initiating a new session for each request is un-
gainly and would demand more computing power than necessary. With an API
key, which is appended at the end of the request URL sent, these problems are
avoided.

The communication with the parts of the web service that are available to the
other system is done via JSON, both incoming and outgoing. Certain requests,
such as a request for the home page, provide the system with an overview of
possible actions. This is not very useful for the system itself but can be a great
help to a programmer implementing the communication in another system.

3.5 Screenshots
To give a clearer picture of the application several screenshots are included.
These screenshots provide some insight in the user experience when using the
application.

The screenshot in figure 3.1 shows the login screen presented to the user

when first visiting the site. A new user is not allowed to create an account
himself, an administrator has to create the account for a new user.

CLASSIFICATION Sign i

Welcome to the Cognicor
Classification App

Name

Password

Figure 3.1: Screenshot of the login screen.
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When a user has logged in an overview of all classifiers is given. Clicking
on a classifier leads to a page containing an overview of the classifier with all
possible actions and general information. A screenshot of this is shown in figure
3.2. The information shown is the most basic information for the classifier; the
name of the classifier, the current default classification engine and the attributes
of the classifier with their type.

CLASSIFICATION

Classifier
Name Ames

Default Case based reasoning
classification engine

Fields Build type String
Central air String
Fireplaces String
Garage Bool
Land contour String
Lot area String
Lot shape String
Overal qual String
Paved drive String
Solution class String

Total rooms abv ground String

Classification and cross validation

ABCN2
Cases to annotate Find cases to annotate ABCN2 Settings
Case base
Add a case to the case base Import case base
Classifier

| T

Figure 3.2: Screenshot of classifier page, showing all options and general infor-
mation.

To create a new cross validation run a user goes to the page shown in figure
3.3. Here a user can select which classification engine is used for the cross
validation, how many folds the cross validation run should have, the name of
the run and which fields should be used to predict the solution class. This last
option allows a user to see whether the omission or addition of a certain field
leads to an increase or decrease in classification accuracy.

The result of a cross validation run are shown in figure 3.4. The settings
used to create the run are shown, together with the results of each of the folds.
The average of those results is shown, together with the time taken to execute
the cross validation run.

When the argument-based CN2 algorithm is used it is necessary to find cases
to annotate. Figure 3.5 shows the screen used to start looking for annotatable
cases. The process of executing the cross validations necessary for finding the
annotatable cases starts when the form is submitted.

This process results in one or more annotatable cases. These cases are shown
to the user in the screen depicted in figure 3.6. To annotate a case the user would
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CLASSIFICATION

Classifier Ames

Classifier type | Case based reasoning

ar

Name | 5014-08-24 21:41:59

Number of folds  4g

Fields used for the & Build type
cross validation &f Central air
o Fireplaces
& Garage
# Land contour
# Lot area
Lot shape
o Overal qual
o Paved drive
Solution class
& Total rooms abv ground

Create Cross validation run

Home Sign out

Figure 3.3: Screenshot of the creation of a cross validation run.

click on the case he wanted to annotate. He is then presented with the screen
shown in figure 3.7. Here a user can adjust the solution class (if necessary) and
provide for each attribute whether it is a positive or a negative argument. An
attribute can also be left as neither. If a user tries to annotate an attribute as
both positive and negative an error will be raised, as shown in figure 3.8.

Classifying a new case is normally done through the web service, as this is
done by automated system. For completeness an interface was created for the
manual entry of new cases to classify. This interface can be seen in figure 3.9.
When the form is filled out and submitted a result is returned. A screenshot of
the result page is shown in figure 3.10.

All styling of the application is done with the Twitter Bootstrap theme,
providing a simple and clear user interface. The usage of a standard theme
reduced the time spent coding the visual parts of the application. For a more
detailed look at the application access can be requested from the author. The
source code is available on request as well.
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Average accuracy

Total runtime

Result per fold

Name

Classifier

Type

Number of folds
Maximum star size

Minimum
significance

Fields used

Figure 3.4: Screenshot of the results

0.821
24 minutes

Accuracy Training set size Test set size Rule set size Duration

1 0.809 2637 293 38 2 minutes
2 0.816 2637 293 42 3 minutes
3 0.833 2637 293 38 2 minutes
4 0.843 2637 293 42 2 minutes
5 0.802 2637 293 42 3 minutes
6 0.846 2637 293 38 2 minutes
7 0.819 2637 293 37 2 minutes
8 0.853 2637 293 40 2 minutes
9 0.816 2637 293 39 2 minutes
10 0.775 2637 293 41 2 minutes

2014-05-21 11:39:07
Ames

Augmented Clark Niblett 2
10

15

5.0

Build type (data type: string)

Central air (data type: string)

Fireplaces (data type: string)

Garage (data type: bool)

Land contour (data type: string)

Lot area (data type: string)

Lot shape (data type: string)

QOveral qual (data type: string)

Paved drive (data type: string)

Total rooms abv ground (data type: string)

lete

of a cross validation run.

Number of cross validations | 5

Number of folds per cross validation | 5

Number of cases to annotate | ¢

Home Sign out

Figure 3.5: Screenshot of the page to find annotatable cases.
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CLASSIFICATION

Argument id Case id Solution class
21 H High

Argument id Case id Solution class

1 1024 High
2 339 High
3 110 High
4 661 Low
5 370 High
6 1652 Low
7 1866  High
8 1892 High
9 418 Low
10 689  Low
11 2735  High
12 24 Low
13 2747 High
14 1174 High
15 123 Low
16 6 High
17 1563 High
18 794 Low
19 951 Low
20 1132 Low

Home Sign out

Figure 3.6: Screenshot of overview of cases to annotate.

CLASSIFICATION
+ - Property Value
Id 1024
Solution class High &
() Build type 1Fam
[ Central air Y
@ [ Fireplaces High
&0 Garage true
() Land contour Lvi
& [ Lotarea High
@ [ Lot shape Reg
™ Overal qual Low
# [ Paved drive Y

™ Total rooms abv ground Low

& Annotation completed?

==

Home Sign out

Figure 3.7: Screenshot of page for annotating a specific case.
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CLASSIFICATION

Providing a field as both a positive and as a negative argument is not allowed. There are problems with the fields: paved_drive.

Annotate ca
+ - Property Value
Id 661
Solution class Low &
™ [ Build type 1Fam
# Central air Y
# Fireplaces High
& Garage true
(] Land contour Lvi
Lot area High
(J Lot shape Reg
& () Overal qual Low
@ Paved drive Y

@ Total rooms abv ground High
& Annotation completed?

o oo

Figure 3.8: Screenshot of the error message displayed when an attribute is
selected as both a positive and a negative argument.

CLASSIFICATION

Submit a new

Classification engine and ruleset to use for classification

Classification engine | 2014-08-24 21:17:24 - Unordered Clark Niblett 2

a
v

Parameters

Build type | §Fam
Central air vy
Fireplaces | | oy

Garage | vps

@

Land contour |
Lotarea | pign
Lot shape  Rag
Overal qual High
Paved drive v

Total rooms abv | gy
ground

Classify case

Figure 3.9: Screenshot of the entry of a new case to classify.
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Unerdered Clark Niblett

High 0.983
Low 0.017

Rule

Build type is 1fam

and Central airis Y
and Fireplaces is Low
and Land contour is Lvl
and Overal qual is High
and Paved drive is Y

and Total rooms abv ground is High

Central air is Y

and Lot area is High
and Lot shape is Reg
and Overal qual is High
and Paved drive is Y

and Total rooms abv ground is High

Build type
Central air
Fireplaces
Garage

Land contour
Lot area

Lot shape
Overal qual
Paved drive
Total rooms abv
ground

Figure 3.10:

2

Prediction Accuracy
High 28 0.903
Low 3

High 205 0.995
Low 1

Screenshot of the result when classifying a case.
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Chapter 4

Experiments

To test the performance of the implemented algorithms extensive experiments
with a range of datasets have been performed. All datasets have been tested in
combination with all algorithms, with the exception of the Mushroom dataset.
Some of the datasets were taken from the UCI machine learning repository
[University of California, Irvine, 2014] and others come from the datasets pro-
vided by Greene [2003] on the website accompanying the 7th edition of the
book. Where possible both the repository from the dataset was obtained and
the original source of the data will be provided.

Unfortunately the data from CogniCor could not be used to test the system
for two reasons. The data itself was not allowed to leave the CogniCor servers
and could thus not be used after the end of the internship. Secondly, which
compounded the first problem, the complete system was not operative at the
finish of the internship. Thus no testing was done with experts before the
internship ended. Given that the complaints were in Spanish with the author
having a poor grasp of this language, it was not possible to do testing with this
dataset without the help of an expert.

To simulate the opinion of domain experts datasets have been sought that
allow a layman to stand in for the expert when annotating cases. For all datasets
presented here this proved reasonably straight-forward, one main exception be-
ing the Mushrooms dataset from the UCI repository. Both for this reason and
the astonishing performance of the UCN2 algorithm no testing has been done
with the argument-based algorithms for this dataset.

We will start by introducing the data preparation techniques used to convert
the data into an acceptable format. Then we will briefly discuss each dataset,
its origin and application. A short overview of all datasets is provided for com-
parative purposes. We finish the chapter with a description of the experiments
performed. The results for the experiments can be found in the next chapter.

4.1 Data preparation techniques

To get the datasets compliant with the structure necessary to use the imple-
mented algorithms, several changes had to be made. The algorithms assume
that all values are nominal in nature and treat them this way, thus a discreti-
sation step is necessary. In the papers of Clark and Boswell [1991] and Mozina
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et al. [2007] this discretisation is included, but it is suggested as an automated
process. For the system that was built during the internship this was deemed an
unnecessary feature and not implemented. For the experiments that followed
the discretisation was done by hand. In case of ordinal values the attributes
were used in a nominal fashion.

Discretising continuous data has been discussed in literature extensively. In
the case of the datasets used in the experiments a relatively simple method
of discretising the data was used. This method is called equal frequency bins
and a formal description is given in Dougherty et al. [1995]. The cases were
ordered based on that particular attribute and boundaries were determined
that provided the same amount of cases in each category. These categories were
then labelled and used as nominal data values when running the algorithms.

Given the nature of the attributes the number of nominal categories to divide
the data in has also been varied. In several instances a clear division was
immediately apparent, whilst in some others several possibilities were tried.
The specifics of these choices are documented with the respective datasets.

The prototypical nature of the application makes that the parser of the
CSV files can be considered quite tricky. Thus it was necessary to convert the
data into the exact format that was expected by the application. The steps
necessary (string and special character escaping, defining fields, etc.) are not
very interesting nor relevant for the experiments and will thus be omitted.

A final preparatory step was to omit some attributes of the datasets. The
Ames housing dataset, as an example, contains 82 attributes. Running the
algorithms on the full dataset would take too much time, thus some of the
attributes had to be omitted. In other case the choice to drop one or more
attributes was based on the problems expected when annotating this attribute
or the knowledge that there is no apparent correlation with the solution class.

4.2 Datasets

Seven datasets were used in the experiments to test the usability of the al-
gorithms. Each of these datasets is discussed briefly, including any particular
choices with regard to discretisation. The size of the datasets, as well as the
number of attributes can all be found in the overview in table 4.1.

Name # attributes # attributes (after prep) Number of cases

Auction 11 7 1225
PC 10 10 6259
Ames 11 11 2930
Credit 11 11 13444
Housing 12 12 546
F181 9 8 601
F182 15 15 210

Table 4.1: Overview of datasets used for experimentation.
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4.2.1 Auction

The auction dataset comes from the research in Rezende [2008]. Tt pertains to
data about auction of iPods on eBay.

An overview of the attributes of the dataset can be found in table 4.2. In
the table the name of the attribute, the type of data and the possible values
or minimum and maximum are given. This information is followed by a col-
umn indicating whether some form of conversion or editing was done before the
dataset was used in the experiments. The final column shows the new possible
values if the attribute was converted or edited. When an attribute was omitted
it will be stated in this column as well, with the reason for this decision given.

In discretising the attributes a different number of categories has been cho-
sen. This is done to give meaningful boundaries to the categories.

4.2.2 PC

This dataset, taken from Stengos and Zacharias [2006], concerns the sales price
of personal computers between January 1993 and November 1995. Several prop-
erties of the sold PCs are included. The data was originally collected for a tem-
poral analysis but can also be used to test the algorithms implemented in this
thesis. The temporal component is kept, but no special attention is given to it.
Thus it shows up in some rules, where appropriate.

Discretisation for this dataset was taken somewhat further than that of the
auction dataset, as only two categories have been used when discretisation was
applied, high and low.

4.2.3 Ames

The Ames dataset concerns the sales price of houses in Ames, Iowa, in the United
States. The data was provided by the Iowa Assessor’s Office and was first used
in De Cock [2011]. The number of attributes available is too much to handle for
the algorithms, thus a slimmed down version has to be used. Previous analyses
of the dataset have provided a good indication of which properties have a good
correlation with the sales price and are provided in a separate, slimmed down,
dataset. This adjusted dataset was used as the basis for the experiments. The
attributes present in the dataset and their adjustments can be found in table
4.4.

As can be seen in the table the same mechanism was used for the Ames
dataset as for the PC dataset, attributes which needed discretisation were di-
vided into two categories of approximately the same size. Many of the attributes
could be kept as is, given their nominal nature. The number of fireplaces has
been replaced by a boolean indicating whether one or more fireplace are available
to provide a clearer distinction between the two groups.

4.2.4 Credit

The source of this dataset is Greene [2003], where the data can be found in table
7.3. The attributes of the dataset and the adjustments made can be found in
table 4.5.
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Three of the attributes in the original table have been left out of the dataset.
These properties concern the ratio between earning and spending, average spend-
ing and the log of the average spending. All three are difficult to discretise and
more useful for linear regression than for classification purposes.

The discretisation within this dataset was done based on the intuitiveness of
the new values for the expert annotating the cases. Thus age has been converted
into brackets that make sense for a human and a cutoff point for dependents is
given (3 or more).

4.2.5 Housing

The housing dataset (from Windsor, Ontario, Canada) comes from Anglin and
Gencay [1996] which tests the effectivity of using semiparametric estimation
functions. The data is similar to both the Ames housing data and the Boston
housing data.

The nature of the attributes made discretisation unnecessary in most cases.
Only the sale price in dollars (the class to predict) and the lot size had to be
discretised before they could be used in the application.

4.2.6 F181

F181 and F182 are datasets from Greene [2003], named after the example in
which they were used. This dataset on extramarital affairs come from Fair
[1978] originally.

For the F181 dataset few adjustments were needed. The occupation attribute
was removed as it would be difficult to annotate and the number of affairs (used
as the solution class) was discretised into two categories, those who had an affair
and those who did not.

4.2.7 F182

The F182 dataset comes from Greene [2003], with the original data being pub-
lished in Greene and Hensher [1997]. The dataset contains information about
the choice of transport used in 210 cases. In the dataset as found on the website
accompanying Greene [2003] the choices have been split and thus it contains 840
entries. Before using this dataset every four rows were combined into one, with
each row corresponding to a journey undertaken. To get meaningful attributes
the time for each journey was calculated (in the original dataset this is split into
terminal waiting and in vehicle time). The same was done for the total cost of
the journeys. A combined measure (cost multiplied by time) was introduced
to directly compare methods of transport (with the assumption that both are
appreciated equally).

To use these attributes in annotations a meaningful concept for a human
operator has to be created. In this case the choice was made to use the relative
ranking between the modes of transport. Thus for each of the three attributes
described above their relative rank was calculated and entered into the dataset.

The chosen type of transport, travel party size and income were taken di-
rectly from the original dataset, as they do not differ for any of the four entries
for each journey. The income was discretised into three categories; high, medium
and low with the boundaries determined to create equal frequency bins.
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4.3 Executed experiments

To test the predictive accuracy of the algorithms the datasets were used in
a series of experiments. Both the comparative performance of the types of
algorithm (CBR, CN2 and its variants) and the performance gains of adding
annotations (in case of ABCN2) were tested.

Determining the predictive accuracy of the algorithms was done by using
10-fold cross validations. As described earlier this mechanism is used by the
ABCN?2 algorithm to determine which cases need to be annotated. The standard
setting in that case is to use five 5-fold cross validations. Using 10-fold cross
validations provides the algorithms with larger training sets and thus slightly
improved accuracy compared to a lower number of folds. It slows down the
procedure however, which is not a major concern for a one-off event such as
these experiments.

The experiments consist of doing cross validations on each dataset with all of
the none-annotated algorithms to see their relative performance. After that the
annotation mechanism was used to determine which case needed annotations.
Then a new series of cross validations was done to see the performance gains
of these annotations. This process was repeated until each dataset had 20
annotations.

The runtimes for each of the cross validations were noted as well, with the
purpose of comparing runtimes and seeing whether the remark made by Mozina
et al. [2007] was confirmed, that adding arguments improved (i.e., reduced) the
runtime of the rule-generation process.
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Name Type Values Edit?  New values
The unique eBay Nominal Yes Removed, not
code relevant
The number of Ratio 1-20 Yes High (> 9),
bidders Medium
(6 <2 <8), Low
(2 <z <5),One
(1)
The final price Ratio  1-270 Yes High (> 150),
Medium
(100 < = < 150),
Low (< 100)
The seller’s Ratio 0.0 - 100.0 Yes Extreme (100%),
positive feedback High (99-99.9%),
percentage Medium
(98-98.9%), Low
(0-98%)
The seller’s Ratio -3 - 158452 Yes Removed, difficult
feedback score to provide feedback
on
A code for the Nominal Black, Blue, No
reported colour of Gold, Grey,
the iPod being sold Green, Pink,
Silver,
SilverWhite,
White,
Custom,
None, Other
The reported Ordinal Used, No
condition Refurbished,
New, None,
Unknown
The datetime of Ratio Yes Removed, not
the final bid relevant
Reported memory,  Ordinal 1, 2,4,5,6, No
in Gb 15, 20, 30,
40
A code for state of  Nominal Non- No
the item operational
or serious
defect,
Cosmetic
defects,
Good
condition
The auction Ratio  0.01 - 250.00  Yes Removed, difficult

reserve price

to provide feedback
on

Table 4.2: Attributes of the Auction dataset
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Name Type Values Edit?  New values

Price in dollars Ratio 949 - 5399 Yes High (> 2144),
Low (< 2144)

Clock speed in Ratio  25-100 Yes High (> 50), Low

MHz (< 50)

Size of hard drive Ratio 80 - 2100 Yes High (> 340), Low

in MB (< 340)

Size of RAM Ratio  2-32 Yes High (> 8), Low

memory in MB (£8)

Size of screen in Ratio 14 - 17 Yes High (> 14), Low

inches (< 14)

Whether a Nominal Yes, No No

CD-ROM drive is

present

Whether a Nominal Yes, No No

multimedia kit is

present

Whether the PC is  Nominal Yes, No No

from a well known

manufacturer

The number of Ratio 39 - 339 Yes High (> 246), Low

price listings for (< 246)

the current month

The month in Nominal January No

which the price
was noted

1993 -

November

1995

Table 4.3: Attributes of the PC dataset
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Name Type  Values Edit?  New values
Price of the house ~ Ratio 12789 - Yes High (> 160000),
in dollars 755000 Low (< 160000)
Lot area in square  Ratio 1300 - Yes High (> 9437),
feet 215245 Low (< 9437)
Overall Quality Ordinal 1 - 10 Yes High (> 6), Low
(< 6)

Central air Nominal Yes, No No
conditioning
Paved driveway Nominal Yes, No No
Fireplaces Ratio 0-4 Yes Yes, No
Building Type Nominal 1Fam, No

2FmCon,

Duplx,

TwnhsE,

TwnhsI
Lot shape Ordinal Regular, No

Irregularl,

Irregular2,

Irregular3
Total Rooms Ratio 2-15 Yes High (> 6), Low
Above Ground (£6)
Garage Nominal Yes, No No
Land Contour Nominal Level, No

Banked,
Hillside,

Depression

Table 4.4: Attributes of the Ames dataset
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Name Type Values Edit?  New values

Accepted Nominal Yes, No No

Defaulted Nominal Yes, No Yes Removed
(irrelevant)

Age Ratio 18,0 - 88,67  Yes 0-25,25-35, 35 -
45, 45+

Number of Ratio 0-9 Yes 0, 1, 2, 3 or more

dependents

Months living at Ratio  0-576 Yes Short (< 30), Long

current address (> 30)

Number of major Ratio 0-22 Yes Yes, No

derogatory reports

Number of minor Ratio 0-11 Yes Yes, No

derogatory reports

Owner of home Nominal Yes, No No

Mounthly income Ratio 50 - 8333,25  Yes High (> 2167),
Low (< 2167)

Self-employed Nominal Yes, No No

Yearly income per ~ Ratio  362,5 - Yes High (> 19000),

person in 150000 Low(< 19000)

household

Table 4.5: Attributes of the Credit dataset
Name Type  Values Edit?  New values
Sale price in dollars  Ratio 25000 - Yes High (> 62000),
1900000 Low (< 62000)

Lot size in square Ratio 1650 - 16200  Yes High (> 4600),

feet Low (< 4600)

Number of bed Ratio 1-6 No

rooms

Number of bath Ratio 1-4 No

rooms

Number of storeys  Ratio 1-4 No

Driveway attached = Nominal Yes, No No

Recreational room  Nominal Yes, No No

available

Basement available  Nominal Yes, No No

Gas heating Nominal Yes, No No

available

Air conditioning Nominal Yes, No No

available

Number of garages Ratio 0-3 No

Desirable location Nominal Yes, No No

Table 4.6: Attributes of the Housing dataset
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Name Type  Values Edit?  New values
Sex Nominal Male, Female No
Age Ordinal Under 20, 20 - 30, No
30 - 40, 40 - 50, 50
- 60, 60 and over
Years Ordinal Under 3 months, 3  No
married - 6 months, 6
months - 1 year, 1 -
2 years, 2 - 5 years,
5 - 8 years, 8 - 11
years, 124 years
Children Nominal Yes, No No
Religious Ordinal Atheistic, Not at
all, Slightly,
Somewhat, Very,
No
Education Ordinal Grade school, High  No
school, Some
college, Some
graduate, College
graduate, Masters,
PhD MD or other
advanced
Occupation Nominal 1 -7 Yes Removed, use of
occupation in
annotations
unclear
Rating of Ordinal Very unhappy, No
marriage Unhappy, Average,
Happier than
average, Very
happy
Number of Ratio 0-12 Yes No affairs, Affair(s)
affairs

Table 4.7: Attributes of the F181 dataset
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Name Type Values

Mode of transport chosen = Nominal Air, Train, Bus, Car

Income Ratio Low (< 22), Medium
(22 < z < 38), High
(> 38)

Travel party size Ratio 1-6

Time bus (ranked) Ordinal 1-4

Time car (ranked) Ordinal 1-4

Time train (ranked) Ordinal 1-4

Time plane (ranked) Ordinal 1-4

Cost bus (ranked) Ordinal 1-4

Cost car (ranked) Ordinal 1-4

Cost train (ranked) Ordinal 1-4

Cost plane (ranked) Ordinal 1-4

Time x cost bus (ranked)  Ordinal 1-4

Time x cost car (ranked)  Ordinal 1-4

Time x cost train Ordinal 1-4

(ranked)

Time x cost plane Ordinal 1-4

(ranked)

Table 4.8: Attributes of the F182 dataset. The ranked attributes describe have
each value between 1 and 4 occurring exactly once, thus those qualify as ordinal.
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Chapter 5

Results

The setup of the experiments has been described in section 4.3, while the results
of running those experiments will be described below. The experiments deliv-
ered two types of results, data on predictive accuracy and on runtimes. The
predictive accuracy can be used to show whether the use of argument-based
classification techniques actually improves the performance of those classifiers
when used. The runtimes are of less importance but help to verify a hypoth-
esis mentioned in Mozina et al. [2007], that adding annotations to a case base
decreases the time necessary for generating rulesets.

All datasets described in section 4.2 have produced results for all experi-
ments described in section 4.3. These results concern predictive accuracy and
runtimes for the different algorithms that do not use annotations and results
with ABCN2 while increasing the number of arguments progressively. Thus
case-based reasoning, the original Clark Niblett 2 algorithm, the augmented
CN2 algorithm (both producing ordered rules) and the unsorted CN2 algorithm
and argument-based version (both unsorted) can be compared on performance
and runtimes.

Cases to annotate were found based on the procedure described in section
2.4.1. After annotating a case the classifier was run through a set of five cross
validations. This procedure was repeated until 20 cases were annotated in each
classifier. When reporting the results not all 20 steps will be reported. Only the
situations with 1 to 5 arguments and 10, 15 and 20 arguments will be discussed.

5.1 Predictive accuracy

The predictive accuracy of the classifier is the average of five 10-fold cross vali-
dations. As explained each case base has been used in a series of experiments.
First a look will be taken at the data produced by these experiments. Then a
comparison between the different types of classifiers will be made, followed by
a look at the effect of adding arguments to the argument based Clark Niblett 2
classifier.
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5.1.1 Raw data

Table 5.1 shows the performance of the different algorithms on all case bases in
the experiments. Looking at the raw data several trends are immediately clear.
First of all case based reasoning, our baseline method, performs exceptionally
well. In all but one dataset it performs best of the five main types of classi-
fier. Given that the CBR classifier does not have an explicit model but rather
evaluates all cases when a new evaluation has to be made this is not wholly un-
expected but still surprising. Part of the explanation is that the other methods,
when generating rules, eliminate information from the dataset. This data is su-
perfluous according to the algorithms, but it is an information loss nonetheless.
The CBR classifier does not have this problem, potentially resulting in better
predictive accuracy.

A second observation on the raw data is that the augmented Clark Niblett
2 classifier (ACN2) almost always outperforms the original Clark Niblett 2 al-
gorithm. This indicates that the changes made to the algorithm have been
beneficial for its predictive accuracy. Given that these improvements have also
been taken into account when creating the ABCN2 classifier this leads to the
conclusion that some potential problems have already been removed.

5.1.2 Comparison between classifier types

Figure 5.1 contains a comparison between the four main types of non-annotated
classifiers and the end result of using the argument-based classifier (with 20
annotated cases). This is part of the data given in table 5.1, provided in this
way to give a clear insight into the comparison between classifier types.

H CBR | CN2 L ACN2 B UCN2 B ABCN2 with 20 args

100%

75%

50%

25%

0%

Auction PC Ames Credit Housing F181 F182

Figure 5.1: Overview of the accuracies for the different classifier types for all
datasets. Taken as the average accuracy of five 10—fold cross validations.

Note that UCN2 and ABCN2 without any arguments are the same, thus

producing identical results. Here the exceptional performance of the CBR clas-
sifier can be clearly seen. Only the Ames dataset has a rule-based classifier
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(ACN2) that outperforms the CBR algorithm, with two argument-based classi-
fiers outperforming CBR, on the Ames and F182 datasets.

In general the CN2 classifier performs worst, with the ACN2 classifier out-
performing it on all but one dataset. Both make use of ordered rulesets, whilst
the UCN2 classifier uses unordered rules. In most cases this seems to result in
a worse performance compared to the ACN2 classifier. Only the F182 dataset
improves in terms of classification accuracy when using unordered rules instead
of ordered ones.

The F181 dataset seems to have some strange properties, as it is the only
case where the original CN2 algorithm outperforms its augmented version. The
difference between the ordered and unordered algorithms is also especially large
for this dataset. No direct reason for these strange results can be found, although
it is possible that the domain to which the data pertains lends itself unusually
well to ordered rulesets.

5.1.3 Adding annotations

The effects of adding annotations to the datasets can be seen in figure 5.2 (which
uses the data from table 5.1). In most cases annotating cases leads to a higher
predictive accuracy. Several datasets defy this trend, with the PC actually
worsening and both Credit and F182a datasets staying at the same level. The
Housing dataset also provides interesting data, as it only starts improving after
the addition of five annotations.

Auction PC Ames Credit — Housing — F181 F182

100%

75%
- 0
50% /_/

25%

0% * . . . . . . . \
UCN2 1arg 2 arg 3arg 4 arg 5 arg 10 arg 15 arg 20 arg

Figure 5.2: Overview of the accuracies when adding arguments for all datasets.
Taken as the average accuracy of five 10—fold cross validations.

From studying the data it becomes apparent that the ABCN2 algorithm is
not universally profitable. In some applications, a few of those we have used, no
improvement seems to be made. The reasons for this can be found in a number
of different directions. First of all the quality of the annotations could be worse
on these domains than in others as no official experts have been used, thus
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limiting the usefulness of the annotations to the understanding of the domain
knowledge by the author of this thesis. This might have resulted in incorrect or
incomplete annotations, thus misguiding the algorithm in its search for proper
rules.

Secondly some of the domains might not lend themselves to this type of
annotations or the use of unsorted rules in general. This can be more clearly
seen in figure 5.1, where the difference between ABCN2 without arguments
(same as UCN2) and ABCN2 with 20 arguments shows no improvement for
some domains.

In a number of cases the sorted rulesets outperform the unsorted rulesets.
This might point at better applicability of these types of rulesets for those
specific domains. It does not diminish the problem stated earlier on, that sorted
rules can be much harder to check for experts and that it is more difficult to
explain a decision taken based on these sorted rules.

Positive results occur in the Ames and F182 datasets. In the Ames dataset
the argument-based version (given enough arguments) outperforms even the
CBR method. The same applies for the F182 dataset, which is the one dataset
where the unsorted classifiers outperform the ordered ones.

5.2 Runtimes

The runtime of an experiment is the average duration of five 10-fold cross val-
idations. Each dataset has been used in a series of experiments. First a look
will be taken at the data produced by these experiments, with a comparison
between the different types of classifier following. Then a look will be taken at
the effect of adding arguments to the argument based Clark Niblett 2 classifier.

The runtime data comes from the same experiments as the predictive accu-
racy data, with the average of five cross validation runs being taken.

5.2.1 Raw data

The raw data regarding the runtimes can be found in table 5.2. In looking at the
data it is important to realise that a comparison between CBR and the other
methods is not completely fair. The CN2 algorithm and its variants produce a
ruleset for each fold, which is the most costly part of the whole process. This
seems to give the impression that the CBR algorithm could produce decisions
quicker than some CN2 variants. In practice this is not the case, as ruleset
generation (the slowest part of these experiments) does not need to be done
when a new case comes in but rather at fixed time intervals. Thus it is better
to look at a comparison between the different CN2 variants for each dataset,
though for completeness we have included CBR.

The changes made to the original CN2 algorithm, resulting in the ACN2
algorithm, have a negative side as well. This can be clearly seen in the data, as
ACN2 takes on average 60% more time to complete a cross validation. Using the
unsorted CN2 variants takes even longer, although there are some exceptions
(PC, Credit).

A general trend can also be seen in the use of arguments, with more anno-
tations resulting in a reduced runtime. This will be discussed in more depth in
subsection 5.2.3.
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5.2.2 Comparison between classifier types

Figure 5.3 shows the average runtimes for the different types of classifier. The
data for this chart is taken from table 5.2. The trend visible in the raw data
concerning increasing runtimes between the classifiers in the order in which they
were introduced can be seen here as well. There is a caveat though, in that this
increase in runtime is always within the same order of magnitude, thus proving
not that problematic as this process will be done relatively rarely in practice.

B CBR B CN2 . ACN2 B UCN2 B ABCN2 with 20 args

10000
1000

100

Auction PC Ames Credit Housing F181 F182

Figure 5.3: Overview of the runtimes for the different classifier types for all
datasets. Taken as the average runtime of five 10—fold cross validations.

Interesting to note is that using a CBR classifier is considerably slower than
using a rule-based classifier in practice. As mentioned the CBR data is reflective
of the time taken when classifying all cases in the cases base. For the rule-based
classifiers this is not the case, with the time in table 5.2 reflecting the generation
of 10 new rulesets and classification of all cases in the case base.

The chart shows that the argument-based classifier is in all cases faster than
the unordered CN2 algorithm. This shows that there are practical benefits to
using a rule-based classifier, even if this does not improve predictive accuracy
(although it should never reduce it).

It is interesting to see that both ACN2 (producing ordered rules) and UCN2
(producing unordered rules) have a similar runtime. CN2 is significantly faster
than AC2, but often worse in terms of accuracy.

5.2.3 Adding arguments

The effects of adding arguments on the runtime of the cross validations can be
seen in figure 5.4, which displays the data from table 5.2 in a different form.
The trend within the different datasets is a reduction of the running time when
annotations are added to a case base.

In some of the datasets this trend is somewhat stronger than in others, but
in all cases the trend does exist. This can be seen more clearly in figure 5.3 with
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Auction PC Ames Credit — Housing — F181 F182

10.000

1.000

100

UCN2 1arg 2arg 3arg 4 arg 5arg 10 arg 15 arg 20 arg

Figure 5.4: Overview of the runtimes when adding arguments for all datasets.
Taken as the average runtime of five 10—fold cross validations.

a comparison of UCN2 and ABCN2 with 20 arguments.

The increase or decrease of the predictive accuracy and of the runtime can be
found in table 5.3. No strong conclusion can be drawn from the data, although
there seems to be a reasonable correlation between good performance of certain
datasets on both statistics.

One oddity in this table is the PC dataset. As seen in the predictive ac-
curacy data this dataset performed particularly badly, resulting in a decreased
predictive accuracy when adding annotations. With regard to a reduction in the
runtime necessary for the experiments it shows the strongest reduction however,
although only with a small margin.

Dataset Change in predictive accuracy ~Change in runtime
Auction 40,4% -66,9%
PC -7,3% -74,4%
Ames 15,6% -73,0%
Credit 6,9% -15,2%
Housing 7,9% -35,9%
F181 45,2% -48.,6%
F182 16,7% -62,2%

Table 5.3: Percent wise changes to predictive accuracy and runtimes as an effect
of adding 20 annotations. Data from tables 5.1 and 5.2 was used to compile this
table.

The benefits described above with regard to the reduced runtimes are not
as encouraging as they might seem. The reduction in runtime only occurs
during the rule generation process, while the classification process is unaffected.
The runtime of the classification process is dependent on the number of rules
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produced, not on the availability of annotations.

It is also important to note that with the experimental setup described in
chapter 4 the argument-based algorithm takes much more time to setup up than
the unannotated versions. This setup will probably be used in practice as well,
as the benefits in terms of predictive accuracy should be achieved before putting
the system into production. The extra time taken is necessary as a number of
cross validations has to be run after each annotation. Thus the time taken to
produce a classifier with 20 annotated cases is much higher than that described
for the individual runs in table 5.2, because a set of 5 cross validations has to
be executed 20 times, with the annotations added in between.
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Chapter 6

Conclusion

This thesis has tried to answer the question whether argument-based classifica-
tion works in practice. To this purpose a system was built to do classification
with several rule-based classification techniques and case-based reasoning as a
baseline. This system will be used to help classification of complaints made at
telecommunications companies in the future. The techniques and algorithms
used have been developed by other authors, but are used with some minor im-
provements, mainly concerned with speed. The program itself is built in the
most general way possible, thus allowing for future use in other applications.

Extensive testing has been done with several datasets from divergent do-
mains. The results are generally encouraging. For some of the datasets tested
adding annotations did not improve classification accuracy and in one case even
reduced it. In most cases the results were positive, with the use of annotations
resulting in enhanced classification accuracy.

On most datasets the unannotated classification was done with a higher ac-
curacy by the ACN2 algorithm (using ordered rules) than it was by the UCN2
algorithm (using unordered rules). This would suggest that the ordered rulesets
can be a better starting point for an accurate classifier. Unfortunately intro-
ducing annotations into the ordered classifier is much more difficult than for the
unordered classifier. One of the problems is the question at which point in the
process the annotated cases are used to generate a new rule. In the unordered
classifier this is done first, but this does not influence whether unrelated rules
discovered later in the process should fire or not. In the case of the ordered
classifier starting out with rules based on the annotated cases could provide
problems, because the first rule that fires determines classification.

A second problem is providing insight into the decisions made by the system.
This is easier for unordered classifiers as only the firing rules are necessary for
the explanation. For ordered rules all rules not firing above the one firing
should be provided as well, making it much tougher to correctly understand
the inherent structure for an expert. Some intelligent visualisation tools could
provide improvement in this area. A potential line of future research would be
the development of an argumentation-based classifier that uses ordered rulesets,
thus providing a good alternative for domains where this classifier outperforms
the unordered one.

Aside from the improved accuracy the use of annotations resulted in a re-
duction of the time necessary for the generation of rulesets. Given that this is
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a task that does not occur as often as classification but is still done frequently
this shows a positive side to using argument-based classification methods. The
use of annotations provides the algorithm with an initial direction in searching
for rules, thus allowing the algorithm to ignore a part of the search space ini-
tially. This benefit mainly involves cases that are difficult to classify (as those
are selected for annotation) but still has a significant impact on the overall
performance of the classification methods.

It has to be noted that this benefit is negated in practice because of the
time and computational complexity involved to get to the point where 20 cases
are annotated. For each annotation several cross validations are necessary to
calculate which case should be annotated, which is a task taking a significant
amount of computing power and time.

Case based reasoning as introduced in chapter 2 has already been deemed
reasonably unfit for use in practice. The results described above underscore this,
providing evidence that proper use of argumentation- and rule-based systems
results in similar predictive accuracies but vastly improved classification times.

These improved classification times are necessary for the application devel-
oped. The system should provide realtime feedback, as a user making a com-
plaint is waiting for an answer. The CBR classifier does not provide this, with
classification taken minutes to hours if a large case base is involved.

The algorithms used for classification make use of nominal attributes only,
necessitating preprocessing to discretise other types of attributes. Including a
mechanism for dealing with this automatically will improve the usefulness of
these systems, although it could result in significantly higher runtimes.

The feasibility of using experts to provide improvements to classification
systems has been strengthened by the research conducted. While only domains
were used in which a layman could provide the annotations the algorithm to
process these annotations is sound and makes use of the annotations to increase
the classification accuracy. Research into using this system with actual experts
in a specialistic domain needs to be conducted to validate this, but given the
validity of the argument this seems straightforward.
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