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Abstract

Holographic Fermions: From Black Branes Towards Cold Atoms

by Pim BORMAN

In this thesis we will show how to construct spectral functions from a gravitational model,
treating it classically such that no string corrections are involved. The particular model
we will study is a black brane in a (4 + 1)-dimensional AdS background. Both the charged
and uncharged cases which will be covered, corresponding to the presence and absence
of a chemical potential, respectively. The ultimate goal is to accurately describe a cold
atom gas using holography. This is still something that is left for the future. We did

however find some signatures of non-Fermi liquids and multiple Fermi surfaces.



Contents

[Abstractl
[Contents|
(1__Introduction|
2_The Chiral Fermion|
2.1  The Bulk Description| . . . . . .. . .. ... oo
[2.1.1  The Background Metric|. . . . . .. ... ... ... ... ...
[2.1.2  The Dirac Equation in the Bulk] . . . ... ... ... . ......
[2.1.3  Building the Fermion Action in the Bulk{. . . . . .. ... ... ..
2.2 The Boundary Description|. . . . . . . ... ... ... ... ... .....
[2.2.1  The Boundary Action of the Chiral Fermion|. . . . . . . . ... ..
[2.2.2  Solving the Dirac Equation for & . . . . . ... ... ... .. ...
2.3 The Spectral Function| . . . . . . . . .. ... o
3__The Dirac Fermion|
8.1 _The Massless Dirac Fermionl . . . . . . . . . . . ... ... ... ... ...
B.1.1 Derivation of the Effective Action| . . . ... ... ... ......
[3.1.2  The Spectral Function of a Massless Dirac Fermion|. . . . . . . ..
3.2 The Massive Dirac Fermion] . . . . . . . ... ... ... ... ... ...,
[3.3  FEigenvalues of the Green’s Function| . . . . . ... ... ... ... ....
8.4 CP 1T Symmetries| . . . . . . . ...
Parity] . . . . . . . .
Mimereversall . . . . . . . . . o
|Charge conjugation|. . . . . . . . . ... ... ........
............................
4.1  The Background of a Charged Black Brane] . . . . . . ... ... .. ..
E27UNMES .« . o o o e e e e
421 Natural Unitsl . . . . . . oo oo oo
|1l2l2 :il [Jllil{il ---------------------------------
4.3 The Spectral Function| . . . . . . ... . ... o oo
[5 Properties of the Dirac Fermion

12
16
17
17
19
22

25
25
25
28
31
32
35
37
37
38
38

41
42
45
45
46
48

51



Contents

[5.2 A Closer Look at the Equationof &4 . . . . . ... ... ... ... .. ...

[5.3  Signatures of Fermi surfaces|

6 Conclus: D onl

(Bibliography|

[Acknowledgements|

o4
56

59

61

63



Chapter 1

Introduction

In this thesis we study the application of Anti-de Sitter/Conformal Field Theory
(AdS/CFT) to condensed matter. The AdS/CFT correspondence was first proposed by
Juan Maldacena in 1997 [I]. The claim of AdS/CFT is that in certain cases a gravity
theory in the a (d + 1)-dimensional space, referred to as the bulk, is equivalent to a
conformal field theory on the d-dimensional boundary of that space. Most realizations
relate a particular supersymmetric conformal field theory to some kind of superstring
theory, the most famous example being the equivalence between type 1IB string theory
on AdSs x S° and N = 4 supersymmetric Yang-Mills theory [2]. The approach taken
by Maldacena and his followers is known as the top-down approach and it is very much

rooted in string theory.

We will take a different approach, known as the bottom-up approach. It is more
phenomenological and it is the easiest way to try and relate a gravity theory to the
Green’s function of a condensed-matter system. Some excellent reviews of the subject
are [3],[4],[5]. The reason why we look at asymptotic AdS spacetimes is that this space
has a boundary that looks locally like Minkowski space, where quantum field theories
live [6]. We assume that we work in the so-called large-N and large ‘t Hooft coupling
limit, which means that the supergravity partition function can be approximated by a

classical Einstein-Hilbert action with additional fields.

In the bottom-up approach we just define a classical gravity action and see what kind
of quantum field theory comes out, that is we use a mapping Sgravity — Sqft to find
Sqfs- This procedure is described in [7],[8] and references therein. The resulting field
theory will be a-priori strongly coupled. This strong coupling is what it is all about: in
condensed matter there are some major problems with strongly coupled materials such
as high-temperature superconductors and other strange metals. Perturbation theory

breaks down and one of the ideas is that holography could describe these phenomena by

5
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mapping it onto a weakly coupled theory in a curved background. One of the inherent
properties of holography is conformal scale invariance, therefore the condensed-matter
system that we will describe must have the same scale invariance. An example of a
strongly coupled system are ultracold fermionic atoms at unitarity. This is the reason why
we focus on an ultracold atom gas near a Feshbach resonance [9]. At zero temperature
and zero chemical potential the correlation length goes to infinity rendering the system
scale invariant. Even when the system is not exactly critical, meaning that there is a
temperature 1" > 0 and a nonzero density in the form of a chemical potential p > 0, the
duality is still assumed to hold. The phase diagram is shown in figure .

T
\ QCR J/
' ;- superfluid
.~/ phase transition
T,
\ ’
\\ ’/
N7 M
0
QCP

FIGURE 1.1: This is an illustration of the phase diagram. The temperature is denoted
by T and the chemical potential by p. The quantum critical point is at u =T = 0. It
should be possible to detect traces of the quantum phase transition at small enough
temperatures in the quantum critical region.

The objective of this thesis is to derive a model that contains the necessary elements
of such a system, namely it must contain massive Dirac fermions, that have a nonzero
temperature and a chemical potential. Furthermore, since atoms are nonrelativistic,
we want to take the nonrelativistic limit of the Green’s function. This suppresses the
antiparticle degrees of freedom in the model and leaves us with a model that could possible
describe ultracold fermionic atoms, like SLi for example. Concretely, the nonrelativistic

dispersion relation will follow from

2k2

hw+p = + X(w, k) .

2m

The self-energy of the system X (w, k) is determined by the coupling of the fermion to
the conformal field theory in the bulk.

In addition to the nonrelativistic limit, we will also study the emergence of (multiple)
Fermi surfaces in the presence of a chemical potential. These have been found earlier in a

3-dimensional spacetime [10]. These Fermi surfaces will turn out to describe a non-Fermi
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liquid instead of a Landau Fermi liquid. This is understandable because Landau Fermi
liquids are renormalized to a free Fermi gas with almost no interactions while non-Fermi
liquids are believed to be strongly coupled. Examples are high-T¢ superconducting

cuprates and metals close to a quantum critical point [11].

We are interested in calculating the spectral function p(w, k) of the field theory on the

boundary. It is defined in terms of the retarded Green’s function as
1
p(w? k) = ;Im (TI' [GR(W, k)]) :

Our approach is different from most bottom-up models because we add a kinetic term to
the action by hand. This way the Green’s function can be interpreted as a single-particle

propagator, obeying the sum rule [7]

/OO dwp(w, k) =1 .

—00

The structure of this thesis is as follows: in Chapter 2 we introduce the gravitational
setup leading to the spectral function of a massless chiral fermion. Our particular setup
will be an asymptotic Lifshitz space, of which AdS is a special case, with a black brane in
it. A black brane is a black hole with a planar geometry. In Chapter 3 we expand this to
a massive Dirac fermion. Of this system we will study the CPT symmetries. In Chapter
4 we add a chemical potential by charging the black brane. Finally in Chapter 5 we look

at the nonrelativistic limit and investigate some signatures of multiple Fermi surfaces.






Chapter 2

The Chiral Fermion

In this chapter the spectral function of a chiral fermion will be derived. We start with the
bulk theory, by first finding the gravitational setup that feeds the right metric and then
couple this metric to the fermions in the fermion action. We neglect the backreaction of

the fermions on the metric.

2.1 The Bulk Description

2.1.1 The Background Metric

First we review how anti-de Sitter spacetime is obtained from Einsteins equations, and
after that we will generalize this to a Lifshitz spacetime.

The starting point is the Einstein-Hilbert action,

1
N 167TGd+1

/ A4z —g(R —2A) , (2.1)

SEH

where d is the number of spacetime dimensions on the boundary and G441 is Newtons
constant in d + 1 dimensions. Later on we will focus on d = 4, but we describe the
holographic setup for general d. The covariant measure is d*t'z,/=g, where g = det (g ),

with g, the components of the metric. The stress-energy tensor is defined by

2 0Sm
T, =————— . 2.2
K /_g 59“'/ ( )

The matter action Sy is given by

SM = /dd-HJ}\/—gﬁM s (2.3)
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with L,; the Lagrangian density of the matter fields, specified later. Varying the
background action Syq = Spp + Sy with respect to g*” gives us the well-known Einsteins

equations,
1 1
Ruy — §Rgluy -+ §Ag/ﬂ, = 87TGd+1T#Z, . (24)

The sign of A, the matter fields in £3; and the imposed symmetries specify the metric.
A good illustration of this approach is the Reissner-Nordstrém black hole in d + 1 =4
dimensions. It is a spherically symmetric solution in Minkowski space, i.e. A =0, and
Ly = —%F w P only contains the electric field. F),, is called the electromagnetic field
tensor and is defined in terms of the electromagnetic potential by F),, = d,A, — 0, A,.

The Einstein’s equations read
1 1 o 1 of
R/,Ll/ - §Rg,w + iAg;w = 877Gd+1 FMan - ZgHVFa/BF : (2'5)

Since we only consider an electric field in the r-direction we can put F; = Q/r? and

A; = 0. Here @ is the charge of the black hole. The solution reads:

1 2G4 M G4Q?
dr? +r2dQ3 , Vi(r)=1- Caal 16 )

2 _ 2 2
dSRN = _V (T)dt + VQ(T) r T2

(2.6)
Another example is pure AdS spacetime in d + 1 dimensions, corresponding to the case
where A < 0 and £3; = 0 . The metric reads
2 2 2
2 e F T
dSAdS = _ﬁdt -+ ﬁdr —+ ﬁdx§71 s (27)
where ¢ is the AdS-radius. When we transform to another coordinate frame where

22 = (*/r?, the metric takes the form
€2
ds? e = = (—dt? +dz* + daj_,) - (2.8)

Here we see clearly that the space consists of slices at constant r (z) and that with
increasing r (decreasing z) the slices grow with a factor Z—;. This is graphically depicted
in figure . A special feature of AdS spacetime that is not present in Minkowski or
dS spacetime is that light can reach the » = oo limit in finite time. This means that
there is a notion of a boundary of AdS spacetime which has the topology of Minkowski
spacetime. This is important since the field theory we will be considering lives on this

boundary. The line element dsids is invariant under the isotropic scalings

t—= M, oz — Az, T — A (2.9)
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These scalings will correspond to relativistic scalings on the boundary. It can sometimes
be useful to consider more general scalings, called Lifshitz scalings, since condensed-matter

systems are often nonrelativistic. These anisotropic scalings read
t—= M, i — Az, = A (2.10)

In this thesis mainly the z = 1 case is discussed, but for clarity and future work, we will
describe the setup for general z. The metric of pure Lifshitz space time reads

2z 2 2

2 r o L7 o T

dSAdS = _gTzdt + ﬁdr =+ ﬁdxd71 . (211)

What we want to find is a black brane solution that is an asymptotically Lifshitz spacetime

instead of a Minkowski spacetime, and that has a planar symmetry. First we will consider

the uncharged black brane and later, in chapter [4, we will consider the charged case.

This means we want to find a setup of which the following metric is the solution:

7,2

V2 2z 62
d82 = —ﬂdtQ + 7742(17’2 + £2

2 2.12
g2z V2 (T) dxdfl ( )

Here the function V(r) is called the emblackening factor that should be zero at the black
brane horizon and equal to one on the boundary. From now on we will set £ = 1. It can
always be put back by analyzing the dimensions, something that we will do in section

H It turns out that the following setup solves the problem [12]:

1

Lo — ——
M T 32rG s

(a“w% + eA1¢F1WFf”) L A= —(d4+z-1)d+z-2). (2.13)
The matter field ¢ is a dilaton and Fy,, is antisymmetric, just as the electromagnetic
tensor. It should be stressed that these fields are only used to give the right metric g, .
They will not couple to the fermion and will not have any direct influence on the spectral
functions. Possible divergences on the boundary are therefore not problematic. This
means that F} should not be interpreted as the electromagnetic field strength tensor, it

just has the same form. The solutions of the equations of motion of these matter fields

are
1
M =2(z—1)(d+ 2z — 1)ﬁr2(1*d>, Fip = fridt==2) (2.14)
where A\ = — % and f is a free constant. Einstein’s equations now give the metric

(2.12)) with emblackening factor

(2.15)
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Indeed we see that V(ry) =0 and V(r — oo) — 1.
Like a black hole, a black brane has a Hawking temperature that is given by
10(v?)

T= 5" e, i (2.16)

This expression is obtained from Wick-rotating to imaginary time such that the time-
coordinate is periodic and then demanding the absence of a conical singularity.[3] For
our metric the temperature reduces to

d+z—-1 ,

T

Temperature, T

|

FIGURE 2.1: The black brane radiates such that the Hawking temperature on the
horizon is equal to the temperature on the boundary. Adapted from a presentation by
David Tong.

Black Hole

Because Lifshitz spacetime has a boundary, this boundary can be in thermal equilibrium
with the bulk. This way the Hawking temperature of the black brane will be the same
as the temperature of the system on the boundary. This is illustrated in figure .

It should be noted that the fields ¢ and F} could in principle diverge on the boundary,
the metric however does not. The fermions we will be considering are only coupled to
the metric and we ignore their influence on the metric, the backreaction. Therefore we
do not need to worry about these divergences. They will not influence the boundary
theory of the fermions. Furthermore, in the z = 1 case the fields decouple such that

Ly = 0 and we end up with Einstein’s equations in vacuum.

2.1.2 The Dirac Equation in the Bulk

Now that we obtained the background metric we will be working with, namely, asymp-
totically Lifshitz spacetime with a planar Schwarzschild black brane, it is time to add
fermions to the bulk. The fermions are described by the Dirac action that is (d + 1)-
dimensional and in a curved background. To describe this we need (d 4 1)-dimensional

gamma matrices and the spin connection to make the Lagrangian covariant. First we
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will introduce the gamma matrices in a flat background and after that generalize it to a
curved background.

The Dirac equation reads
(@—M)¥ =0, (2.18)

where @ = I'%0,. We use the underline @ to indicate that the coordinate is in a flat
background, furthermore I'* denote the gamma matrices in the (d + 1)-dimensional
bulk whereas v¢ denote the gamma matrices on the d-dimensional boundary. From the
context it should be clear which indices we sum over when using the Einstein summation
convention; for example in I'*9, we have a € {r,t,i} whereas for 49, we have a € {t,i}.
The matrices v form a d-dimensional representation of the Clifford algebra, which means

they obey the anticommutation relation

(¥4, 4% = 221y (2.19)

and have dimension N = 2L5). This also means that the spinor V¥ has 9l components.

The I'’s obey the same anticommutation relation and have dimension N = 9l ). This
(d + 1)-dimensional representation is constructed in the following way. First we have
to distinguish between the cases where d is even or odd. It turns out that every even-
dimensional representation is reducible, which means that we can define an analog of the
usual 7°, denoted by v¢*L, that splits the Dirac spinor into two chiral components. This
is not possible for an odd-dimensional representation.

When d is odd, the dimension of the I'’s is twice the dimension of the +’s. In the chiral

representation we have explicitly:

14 0 0 0 . i v
rr— [ L2 rt= (" =T V) e=( ). (220
0 —14 0 A2 0 At U_
2
Here the Dirac spinor ¥ in the bulk is split in its two chiral components. When restricted
to the boundary these chiral components become Dirac spinors. This procedure is
followed by McGreevy et al. in [4] because they look at d = 2 + 1.

We however are interested in the case where d is even. Then the dimension of the I'’s is

the same as the dimension of the 4’s. Explicitly they read:

TC=q@l Ti=nl Ti=ni @, (2.21)
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Here W is a Dirac spinor and it cannot be split into chiral components in the bulk.

Therefore on the boundary it is possible to do this:

\IJ+ 1 d 0 1 d
@R:<o):z(%dﬂ+7“)@’ ‘PL:(@ >:2(ﬂ2d/2—7“)‘1’- (222

For reference we state the explicit expressions of the gamma matrices in the Weyl

representation in d = 4:

1, 0 0 -1 ; 0 o
AAEL — . At= , Y= A ’ (2.23)
0 —]lg ]lg 0 o’ 0

Where o are the Pauli matrices. We will describe the holographic procedure for even d
in the next section, and after that use the above expressions to get concrete results for
the d = 4 case. For odd d the procedure is a bit different since the Dirac fermion on the
boundary cannot be split into chiral components.

Now that we have found the arbitrary dimensional representations of the gamma matrices
in flat spacetime, it is time to generalize it to curved spacetime. This means setting
n% — g". The greek indices indicate we work in a curved spacetime. The gamma

matrices change accordingly: v¢ — ~* and I'® — I'* such that the anticommutation

relation (2.19) changes to be
{9 =2¢"1y . (2.24)

These changes are accommodated by so-called vielbeins ef;. These are objects that define

a locally flat coordinate frame at every spacetime point. They are defined as
Nab = €4 Juv - (2.25)

We need them since we want to work with the flat gamma matrices instead of the curved
ones. The vielbeins relate them to each other by v* = ef+%. Contractions such as the
one in the Dirac equation ([2.18) transform as

T2, — T"0, = T2, . (2.26)

To make the Dirac Lagrangian covariant we also need to introduce a covariant derivative.
For a tensor field this would just be the Levi-Civita connection. However, for a spinor
field we have to add an extra term that acts on flat spacetime indices a, b etcetera, and
on the spinor indices of W. This term is called the spin connection and is denoted by

wuab- On a generalized tensor that has both curved and flat spacetime indices, such as
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the vielbein e%, the covariant derivative acts as

Dyef = Ouef +w,t ey +T7,e5 (2.27)

wto

The metric compatibility condition D,,g,, = 0 of the Levi-Civita connection is equivalent

to Due% = 0. This gives us the following expression for wq:
Wyab = €vaOpey + eygegfzu . (2.28)

The Christoffel symbols can in principle be expressed in terms of the vielbeins via

equation ([2.25).

To see how the covariant derivative acts on a spinor ¥ we remember that under an

infinitesimal Lorentz transformation, ¥ transforms as
1 ab
U— (14 ZQ@(x)Sf v, (2.29)

Here, 5% = 1[I'¢, T%], and Q4(z) depends on z since the Lorentz transformations are only
defined locally through the vielbeins. This is why 9, ¥ does not transform covariantly.
The covariant derivative becomes
1 ab
D, =(0,+ Zwu@S— v (2.30)

More details about the spin connection can be found in [I3]. The covariant Dirac equation

becomes:
(T%ehD, — M) ¥ =0 . (2.31)

We will now give explicit expressions for the vielbeins of the black brane metric (2.12)):

1 o1

r?V’ Tty

=rV, e

| o

i
The covariant derivative takes the form

1 1
Dy =, Di=08— grVo,(r"V)I'I", Dy =0;+ jrVI'T: . (2.33)

In this background we will construct the fermion action in the bulk.
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2.1.3 Building the Fermion Action in the Bulk

With all the ingredients of the previous section we can now write down the action for a

Dirac fermion in the bulk:
_ 1 1<
Spl¥] = igf/derlx\/—g\Il <2B - 5Jz) - M) v . (2.34)

Here gy is a coupling constant and the 4 is put in front by convention. The r coordinate
ranges between the horizon of the black brane r;, and the boundary rg that we will
later take to infinity. The variation of the action results in the equation of motion plus
boundary terms at rj, and rg due to partial integration. The induced metric h,, on a
constant r-slice is defined by /—g = \/Th\/g? . And the I'" matrix can be used to split
¥ into its chiral components on the boundary, see equation . Using these facts we

can write the variation as

rT=Trp °

§Sp = E.OM. + z%f /ddm\/—h (ULoVR + 0VRY, — URpdWL, — 6V UR) 120
(2.35)

Because th\rzrh = 0, the boundary terms at the horizon vanish. To make the boundary
terms at the boundary vanish we need to add a counterterm. Note that because the
Dirac equation is first order, we can impose a Dirichlet boundary condition at rg; either
0Wp =0 or 0¥y = 0. We cannot impose both since the Dirac equation relates both

components to each other. We add the following term to the action:

Sy = :I:ig?f ddZL‘\/ —h (\TJL\I/R + \TJR\I/L) , (2.36)

r=rg

where we choose the + sign if §Wg = 0 and the — sign if §¥; = 0. Mixed boundary
conditions are also possible, but these violate Lorentz symmetry on the boundary [14].

‘We now have
0(Sp+Sy) =0. (2.37)

From now on we will consider the case where W = 0 on the boundary. As long as the
variation is zero we can add more terms, in particular we can add a kinetic term to the

UV boundary:
Suv :iZ/ A%V =h\/grm U r PV R | (2.38)
r=ro

where Z is an arbitrary constant. We will see later that this kinetic term describes the

free dynamics of the fermion on the boundary while the other part of the action describes
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the interactions. This term has to be added to make the spectral functions obey the
ARPES sum-rule [7]. We stress again that ¥ describes a chiral fermion on the boundary.
Would we have chosen d to be odd, it would describe a Dirac fermion. Furthermore, the
fermion on the boundary is massless, the bulk mass M becomes just a parameter in the
interaction. The three terms above constitute the full action of the chiral fermion we are

describing,
Stui = Sp + So + Syv . (2.39)

In the next section we restrict the fermions to the boundary and obtain a Green’s function

for them.

2.2 The Boundary Description

Before we do this, there is another point we have to pay attention to; we want to find
the retarded Green’s function, which in general is complex. It turns out that when we
keep both terms in Sy the propagator is real. The solution is to drop one of the terms.

The following expression corresponds to the retarded Green’s function:
Sy = z’gf/ d%zv/~h (VR¥L), 6Tr=0, (2.40)
r=rg

Sy = —igf/ d%zv—h (\TJL\IJR) , 0¥, =0. (2.41)
r=ro

An extra factor of 2 is included for consistency.

2.2.1 The Boundary Action of the Chiral Fermion

Y
As stated before, the Dirac equation relates the chiral components ¥ = ( 0+> and

0
Uy = (‘II ) to each other in the following way:

U_ = —igl, . (2.42)

In d =4, £ is a 2 x 2 matrix that can be determined by solving the Dirac equation. This
will be explained in the next subsection. The above expression is used to integrate out

¥, on the boundary when we choose 0¥ = 0 and ¥ on the boundary when we choose
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0¥y, = 0. The Fourier-transformed spinors on each r-slice are defined as

d
Ui (r,z) —/(;f))d\pi(r, k)etPur” (2.43)

In the 6Wr = 0 case we end up with the following effective action Sy, [V ] for the chiral

fermion ¥ on the boundary:

dp
Sran[¥4] = /
rerg (27)4

\/jh\/g?‘ﬂy [gf\/gvg(ka) - Zagegpﬂ] \Ij+ 9 (244')

Here we used the fact that the spin-connection vanishes on the boundary as can be show
explicitly by using the expressions in equation (2.33)). Furthermore 0% = (13, ) with &
the Pauli matrices. Note that the the summation indices p and a are only over {t,i}.

When we now do a rescaling of the fields by

U, U,z 20Dy (2.45)
the action takes the form
dk i z—1= 9f 24172
Spul4] = = | g [0 = Vi ta ket i Vo vy (246)

The effective action for ¥, now contains a self-energy term related to the solution of the
Dirac equation in the bulk. The term between the square brackets is the inverse Green’s

function we are interested in:
G;il (w, k) =— <w — V(ro)rg_lﬁ -k 4+ gffrg'FlVQ(ro)f) . (2.47)

This is the Green’s function of the elementary chiral field ¥ . The challenge is to find an
expression for the self-energy £. Before we turn to this, it is useful to see what happens
when we take the limit o — oo.

As ry — oo the emblackening factor V' (rg) — 1. The second term in is divergent

for z > 1. After renormalization it becomes [7] :

1

——& k[t (2.48)
A

Here ) is a renormalization parameter which we choose to be A = 1. For the third term

we use the fact that for large rg, £ ~ r, 2M - which means that T%M & — constant. To

make the whole term finite on the boundary we must take a double scaling limit

g?fréﬂLz—QM — constant . (2.49)

g — 00, gr — 0, g
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The third term in equation (2.47)) can then be written as

Y(w, k) = —g lim 72Me(rg,w k) . (2.50)

T0—00

Using these renormalizations the Green’s function becomes finite on the boundary and

takes the form
Gp'(w k) = — [w—7 - kk|"' - S(w,k)] . (2.51)

All we need to do now is invert this expression and solve the Dirac equation to find
&(r,w, k) and hence X(w, k).

2.2.2 Solving the Dirac Equation for &

Solving the equation for £ is the main point of this thesis. Especially in the presence of
a chemical potential this turns out to be quite difficult and we have to use numerical
techniques to find solutions. We will use d = 4 dimensions such that ¥ is a 4-component
spinor and ¢ is a 2 x 2 matrix. When we choose k = (0,0, k3) the matrix £ will be
diagonal because the 4 x 4 matrices that appear in the Dirac equation are build from the

diagonal 2 x 2 blocks 15 and o3:

U= <§0+ 5()) v, (2.52)

where &4 (r,w, k3) and &_(r,w, k3) are the functions we have to determine. Because of

rotational invariance it is possible to rotate the solution back to general k such that for
LG u
large rg, { oc o#k,. The components of ¥ = (\Il+> are given by U, = (di) In terms
_ +
of these we have
= ) — _ = ) —— . 2.53
§+ Zu ) § ? ( )

To solve the Dirac equation we assume a plane wave ansatz on a constant r-slice

() = e w(r) . (2.54)
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For the covariant derivative I = I'%} D,, we use the expressions in equations (2.32) and
(2.33]). The Dirac equation can now be expressed as

(I — M) U(z)
(I — M) "W (r)

1
= [I‘ﬂrV@T + Ti(r#V)~t ((% - 2rV8r(TZV)FtFT>

1 1 »
+IE= <8¢ + 2TVF1FT> - M ]14] T (r)  (2.55)
T

1 ; w 1
= [r29vo, + 2 (T — T2 ) + o1
[ Vo, + " T + 5

o (r7V )r*!
1 r ik-x
—|—§F7V(d — 1) — M1y| ™ "¥(r) ,

Where in the third line a sum over 7 is understood. Define

~ w
k=(—-w,k 0= — 2.56
(oK), G=-=S, (2.56)

Tk =Tk —Tt—"

*W, pz(’)") = T‘Z_lar(TZV) + (d — ].)V . (257)
Furthermore let ® be defined by
_1 Tdfljz(f:)
U(r)=e 2 VO D(r) . (2.58)
The Dirac equation then simplifies to
<FTTV@« + %F k- M]14) o(r)=0, (2.59)

(r(rV(?r - M) 0 ) <¢+> +il -k (¢+) =0. (2.60)
0 —r(rVo, + M) ¢ -

i>_

L)

AM)uy = i(& = k3)u—, A(=M)i- =i(w+ k)4 ,
AM)dy =i(@+k3)d_, A(-M)d_

v S

U

This gives us the following equations for the components of ¢4 = (

i( — k3)dy . (2.62)

Here A(M) = r(rV — M). The ratio of any of the components of ® is equal to the ratio
of the components of ¥. Using this and equation (2.53) we obtain a differential equation
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for £+ (Tu W, k3)

P2VLE, = ir?Vo,— (2.63)
U+
= A(=M)u_ — Mru_ — u—_(A(M)uJF +rMuy) (2.64)
U4 U4
= — (@ +ks) — (@ — k)& —2MrE, . (2.65)

The same can be done for £ and the result can be written as
Vo Ex + 2Mréy = —0 F ks + (—0 + k3)€2 (2.66)

where we note that w depends on r through @ = —=%;;. This is a first order nonlinear
differential equation in 7, which means we need to specify one boundary condition. We
choose infalling boundary conditions corresponding with particles falling into the black

brane. It follows that we need [15]

§x(rn,w k) =i for w#0. (2.67)

Equation (2.66)) has some symmetries we can exploit. When k3 — —ks:

€t (r,w, —k3) = & (r,w, ks3) (2.68)
when (w, k3) = (—w, k3):
§x(r, —w, —k3) = —&3(r,w, k3) (2.69)
when M — —M:
Ex(r,—M,w, k) = =X (r, M, w, —k3) . (2.70)

These symmetries can be used to simplify the (numerical) calculations. We will for
example only solve the differential equation for £, and use equation to get £_. It
turns out to be very difficult to find analytic solutions for &, which is why we will mainly
solve the differential equation numerically. Some more details on how to do this are given

in section in the context of a charged black brane. Only in some special cases we can
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find an analytic solution. For example when 7' = 0 and z = 1 we find for r > 1 [16]

0
§= (% ¢ ) (2.71)
1_ _
= (27")2MM6”(M+;)\/M2 - k%ZM 1(—w]lg +0%ks3) . (2.72)
2

This expression can be rotated back for general k.

2.3 The Spectral Function

To calculate the spectral function we expand the self-energy ¥ (w, k) as ¥ = —Xglo+X303.

This can later be rotated to obtain
Y =X,0" ot= (10" . (2.73)
With the help of symmetry (2.68]) the matrix £ can be written as

E(w, k3) = <€+(w,k3) 0 ) _ <§i(w,k3)+§i(w7k3) 0 ) |

0 E4(w, —k3) 0 £ (w, k) — €4 (w, k3)
(2.74)

where the symmetric part is £ (w, k3) = %[@r (w, k) + &4 (w, —ks3)] and the antisymmetric

part is €4 (w, k3) = 3[¢4(w, k)) — &4+ (w, —ks3)]. This way we can identify

So(w, ks) = —g lim rgH [~ (ro,w, ks)] , (2.75)
V3w, k3) = —g  lim g™ €4 (ro, w, k3)] - (2.76)

The inverse Green’s function (2.47) now has the form
Gp'(w, k) = — [wly — & k[ — 5,0%] . (2.77)

With the help of the identity a,a,0"5" = a,at12, we find

(w — 20)]12 + (‘k‘zilki =+ EZ)O'Z
(w—30)? — (|k[*~1h; + %)%

Gr(w, k) = — (2.78)
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The spectral function becomes

plw, k) = %Im (Tr [Gr(w, k)]) (2.79)

1 w — ZO
T (w — 20)2 — (’k’z—lkz + 21)2

The spectral function is plotted in figure (2.3 for some parameter values. The linear
behavior at large w and k& when z = 1 signifies relativistic scaling. This is only the
spectral function of the massless chiral fermion W, . It has been shown [7] that the

spectral function satisfies the sum rule

o0
/ dwp(w, k) =1 (2.80)
—00

for —z/2 < M < z/2. For this reason we usually take —1/2 < M < 1/2. Figure ({2.2))
shows an illustration of the holographic description. In the next chapter we will extend
this description to a massive Dirac fermion since in condensed matter that is what we

are interested in.

Th r o

FIGURE 2.2: Tllustration of the holographic description. Equation describes
the chiral (+) single-particle propagator on the boundary. The fermions interact with
each other which is described by W_ traveling into the bulk, feeling classically the
gravitational effects by coupling to the conformal field theory, and coming out again,
forming the self-energy of the single fermions. The figure is extracted from [16].
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0.5
p(wak:i)

0.5 0.5

plw,ks) plw,ks)

(C) M=1/4, 2=2 (D) M =—1/4, =2

FIGURE 2.3: Plots of the spectral function of the chiral fermion ¥ for different
M and z. The relativistic behaviour for z = 1 is clearly visible at large w, k3. For
negative M the spectral function is sharply peaked while for positive M it is more broad.
For all plots we used T'=1 and g = 1. The qualitative behaviour is independent of g.



Chapter 3
The Dirac Fermion

In this chapter the Dirac fermion is introduced. In the first section the massless case is
described and in the second section the fermion is given a mass. After that the Green’s
function is split into its eigenvalues describing a spin-1/2 particle or antiparticle. In the

last section we investigate the how the system behaves under C, P and T transformations.

3.1 The Massless Dirac Fermion

3.1.1 Derivation of the Effective Action

The way to obtain a Dirac fermion on the boundary is to add another fermion to the
bulk. This will result in two chiral fermions on the boundary with opposite chirality that
can be combined in a single Dirac spinor. This procedure will be explained below. We
add a second fermion ¥y to the bulk action as follows

SD[\IIQ] = igf/dd+1x\/qu72 <;B — 1% — M2> \I/Q s (3.1)

2
Sa[Wo] = —igf/ d%zv/=h (U2r¥s) | (3.2)
=70
SUv[\I/Q] = iZ/ ddx\/ —h\/grr\I/QLw\I/QL . (3.3)
=70

For the second fermion we choose the boundary condition dWs;, = 0 and not §Wor =0
like before. This means we must take the — sign in equation to cancel the boundary
terms. To obtain the retarded Green’s function we dropped one term in Sp[VUs], as
explained before in equation .

25
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In d = 4 the Dirac equation relates W9 ;. and Wy _ by the 2 x 2 matrix &
Uyq =i Wy . (3.4)

Note that this is slightly different from the definition of ;. Using this relation W9 4 can
be integrated out. In momentum space we obtain the following effective action of the

second chiral fermion on the boundary

d4p _ a
Spun[¥o,-] = / @nY —h /G Y 952V g8 " — Zatelipu) W, . (3.5)
r=ro

This should be added to the effective action of the first chiral fermion, given in equation
(2.44]). The Dirac fermion ¥ we will be describing is defined by

_ (Y
W_'<wl>' (3.6)

The combined effective action is given by

4
S put[¥] = / ~ (;’;ﬂ\/g*w [VTTE — Zelintp,] W | (3.7)

where we used

0 gpe&! 0 o
= d P = . 3.8
3 (gm ‘ ) and y <a v o ) (3.8)

After rescaling ¥ the same way as ¥y 4 in equation (2.45) we obtain

dk - iy 1
Sun[¥] = / o [VOW—V(TO)TS IVZki+Z7"oHV2(7”0)4 v (39)
=70

We now take two double scaling limits and do it in such a way that we obtain one

coupling constant g in front of the self-energy

9f1 14z—2M; _ 9f2 1+z+2M,
70 AL

ro —» 00 9= — constant . (3.10)

gr1, g9f2 — 0

The action now reads

d'k P
Sran[¥) = / (271)4\? [Yw = kil = S(w, k)| ¥, (3.11)
r=rg
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where we renormalized the second term and defined the self-energy as

0 iy o —2Map p—1
S(w, k) = —g e ) (3.12)
hmro—mo To RS 0
The inverse Green’s function can be identified as
Gél(w,k) =" (Yw — vk k" - S(w, k) . (3.13)

We will now expand the matrix £ in gamma matrices. Because we chose the mass of the
second fermion to be equal to — M, we can use equation (2.70) to write & Yo, My, w, k) =
—&o(r, — My, w, —k). When restricting to the k3 direction and using symmetry ([2.68)) we

obtain

¢ = ( 0 —&o(r, —Ms,w, —k3)> (3.14)
51(7", Mlvka?)) 0
0 0 —&oq(w, —k3) 0
_ 0 0 0 —52_;,_(0.), kg) 7 (3‘15)
§14(w, k3) 0 0 0
0 €14 (w, —k3)0 0 0

where the dependence on M7, My, r is implied. The symmetric parts &1, 25 in k3 and
antisymmetric parts 14, 24 in k3 are defined as in equation (2.74]). In terms of these we

get
0 §o5G" + £245°
§(w, k3) = . . (3.16)
§i50" +&1a0 0
0 5
_ Sud”) (3.17)
flMO'M 0
where & o0 = &5 and & 3 = 4. Expanded in gamma matrices this gives
1 " 1 5 5
§(w, k3) = 5 (&1 + &2)7" + 5 (€1 — €200 - (3.18)
The corresponding self-energy terms are defined by
Yip = —g lim rE2Mig, (kW) . (3.19)

r0—>00

The inverse Green’s function now takes the form

— 7 z— 1 1
Gl (w,k) =" 7w =2kl = 5 (D + 22) 7 = 5 (B = T2) 77| - (3:20)
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3.1.2 The Spectral Function of a Massless Dirac Fermion

The differential equation for & is the same as for £ as given in equation (2.66)) but
with a different sign in front of Ms. Therefore if M7 = — My the self-energy terms are

equal,
M1 = —MQ — 21“ = Zgu s (321)

and the 4° term cancels. In general however this term is present and we will see later
that it breaks for example parity. Using the following formula we can invert equation
(13-20))

[V (a7 = b’ + 1%y — diyiy®)] T = (3.22)

1B [a(A+ B) +¢(B — A)Y° — [bi(A+ B) +di(B — Ay
—[e(A+ B) —a(B = A)|y*y° + [di(A + B) = bi(B = A)ly'2° 17",
with A= (a+c)?—(b;j—d;)? and B = (a—c)*— (b; — d;)* .

As a result the Green’s function can be written as

1 _w - 21 W — 22
Grlk.w)=— = 0 ol 3.23
licw) = - 3 |27 + 25, (3.23)
71-0)—210 W—ZQO 5
2| 4 B |’
I e T 1) S 2
2 A B R
1 -ki‘k‘z_l +X, kil kP 5o | i oos
5 I 3 7
with
A=—(ki k" +21,)% + (w—21,)?,
— z—1 2 2
B = —(k‘l|k| —|—221) +(w—220) .
This can be written a bit more transparently in 2 x 2 matrix form
(w=31,0) T2+ (ki[k|* ' +51 3)o? 0
_ | @-Zr0?—(kilkFT 4202
Grk,w) = 1,0 ' 1 (053 0) Lo (ke K|~ L3 1) (3.24)

(w—32,0)2— (ks [k|* ' +32,:)2

Due to the absence of a boundary mass term there is no mixing between the chiral

components. The spectral function is just the sum of the two, normalized with an
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additional factor of %,

1 w—21p0
21 | (w — B1,0)2 — (kslks|""" + D13)2

p(w, k) = —

4 w — 22,0
(W — 290)2 — (ks|ks|* ™! + D,3)2

(3.25)

In figure (3.1) the spectral function of ¥ is plotted. These plots look very much the same
as those in figure (2.3). This is because we take the trace over all components and there
are no off-diagonal terms in Gr(w, k) that mix the chiral components. In figure (3.2)) the

spectral functions of the four individual eigenvalues of Gr(w, k) are plotted.

p(wak3)

(A) My =1/4, My =1/4 (B) My =1/6, My = —1/3

FIGURE 3.1: Plots of the spectral function (3.25) of the Dirac fermion W for different M,
and Ms. The following parameters are used: z =1, g =1 and T = 1. The heights are
taken differently just for esthetic reasons. The plots can still be compared qualitatively.
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plw,ks) plaks)

plw,ks) plaks)

(¢) third component (D) fourth component

FIGURE 3.2: Plotted are the spectral functions of the four individual eigenvalues of
Gr(w,ks). The following parameters are used: M; = My =1/4, 2z =1, g = 1 and
T = 1. The normalized sum of figures (a)-(d) results in figure (3.1aj).
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3.2 The Massive Dirac Fermion

Now it is time to give the boundary fermion a mass m. This is done by introducing yet

another term to the bulk action,
Spu¥] = —iZ / dtzv/—hUmU . (3.26)
r=rQ
It can be added because the variation is zero

§Sm ~ WY _6W1y + §(W] )Wy, — W] Wy — (W] )Wy (3.27)
=0. (3.28)

After rescaling ¥ as described before and m as m — mr~—* the rg — oo limit gives

. d*p
Sm|¥] = —z/ @) v'mV . (3.29)
The inverse Green’s function reads

_ : _ 1 1 )
GRl(w,k) =" |1 — vk k| - 5 (B1p + Bop) Y — B (S1 — Sap) ¥y — imly

(3.30)

Because 1° is off-diagonal, the mass term mixes the chiral components. The following

formula is used to invert this expression. Here we only consider the ks direction.

-1

Gr(w,k) = ['70((170 — b3y 4+ y%° — d3y34° — imly)] (3.31)

= o+ 1+ B 4 ) — 20bd 1,
+ {c(a® = @ + b2 + d2 — m?) — 2absds}’
+{b3(—a® — & + b3 — d3 + m?) + 2acds}y7°
+ {d3(—a® — ¢® — b3 + d5 — m?) + 2acbz }v°7°
+{—im(—a® + A+ b2 — &2 +m*)}H°
+ {—im(2chy — 2ad3)}¥*4° |

where A= (a—ds3)?—(bs—c)>—m? and B = (a+ds)*— (bs+c)* —m?

The components are defined as follows

1 1
a=w-— 5(21,0 +X20) , c= —5(21,0 —320) ,

1 _ 1
by = 5(21,3 + %o3) + |k ks, dz = 5(21,3 —3a3) .
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The corresponding spectral function p(w, k3) = £Im (Tr [Gg(w, ks)]) is plotted in figure
. We see that the mass term m opens a gap between the upper, conductance band
and the lower, valence band. This motivates the interpretation of m as a mass of the
Dirac fermion. The spectral function still looks highly symmetric, but this is because we
sum over the spin up and down components when taking the trace. In the next section

we will look at the eigenvalues.

(A) M1:1/3, M2:1/4 (B) M1:1/3, M2:71/4

FIGURE 3.3: Plots of the spectral function (3.31]) of the Dirac fermion ¥ for different
My and Ms. Clearly there is a gap between the upper and lower band. This is caused
by the mass term m. The following parameters are used: z =1, m = 2, g = 1 and
T=1.

3.3 Eigenvalues of the Green’s Function

The eigenvalues and corresponding eigenvectors of the Green’s function are given in
tables and . It can be checked that when m = 0 the eigenvalues are equal to the
diagonal components of equation . In the M} = — M5 case the chiral components
are equal to each other and the 7° terms vanish. This means that the eigenvalues become

degenerate: e; = e3 and ey = eq4.

eigenvalue eigenvector

er = — VO ) — (b — e+ /B — 2 D), 0, m, 0)
_a*d:s*\/m

€2 = A U2:(i(b3_0_ (b3—c)2+m2),0,m,0)
e3 = — Hdaty (§,+c)2+m2 vg= (0, i(—bg—c++/(bs+c)2+m?), 0, m)
e = _atdz— (ga+c)2+m2 vi=(0, i(~bs—c— /(s +)2+m2), 0, m)

TABLE 3.1: The eigenvalues and eigenvectors of the Green’s function 1D are shown.

The spin is determined by acting with the spin operator S3 on an eigenvector. The

spectral functions of the eigenvalues are shown in figure (3.4). These plots show clearly
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eigenvalue | spin | particle
e1 up particle
€2 up anti-particle
es down | particle
e4 down | anti-particle

TABLE 3.2: The spin state and particle/antiparticle nature of the four eigenvalues of
the Green’s function are shown. Spin up and down correspond with eigenvalues
+1 and —1 of S3. It is a particle when it describes the conductance band and it is an
antiparticle when it describes the valence band.

that parity is broken when M7 # —M>. In the next section we investigate more thoroughly
the CPT symmetries.
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p(w,kS) P(‘U,ks)

p(a)akf’:) p(wak?’)

(¢) third component (D) fourth component

FIGURE 3.4: Plotted are the spectral functions of the four individual eigenvalues of
Gr(w, ks). Parity is seen to be broken because the transformation ks — —ks is not a
symmetry of the system anymore. See the paragraph about parity in section [3.4] for
calculational details. The following parameters are used: M; = 1/3, My = —1/4, m = 2,
z=1,9g=1and T = 1. The normalized sum of figures (a)-(d) results in figure .
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3.4 CP T Symmetries

The single particle Hamiltonian H of the system is related to the inverse Green’s function
by Gg'(w,k) = H — wly. It reads

H =~%an® — b3y® + y%° — d3y395 —im1y] , (3.32)

where @ = a — w. For reference we state in table (3.3) how the coefficients of the

Hamiltonian transform under k3 and w inversion.

k3—>—k'3 W — —w

b3—>—b3 b3—>b§

d3—)—d3 d3—>d§

a, a0 — a,a | a,a — —a*, —a*
c—c c— —c*

TABLE 3.3: Symmetries of the coefficients of the Hamiltonian H.

In this section we will study Charge conjugation, Parity, and Time reversal symmetries
in the M; = —Msy and M; # —M> cases. To understand how these symmetries act on
spinors we start with the free Dirac field, whose Hamiltonian is invariant under all these
symmetries. This procedure is described in [I7]. Below we will state the results in our
representation and signature. The free one particle Dirac Hamiltonian in position space

is
Hp =~%(—iy'0; +im) . (3.33)

First look at the positive frequency solutions of the Dirac equation. The wavefunction

has the form ¥(z,t) = u(p)e~"P* where p, = (—FE, p1, p2, p3) such that p> = —m? and
(@ —m)u(p)e P* =0 . (3.34)

It follows that u(p)e™"P% is an eigenstate of Hp with eigenvalue Ey > 0. We have

s VDo &°
u(p) = , 3.35
() (m Z,£s> (3.35)

where £° is a basis of the two component spin vector with two degrees of freedom s = 1,2

1
and normalized by £°1¢5 = 1. It is conventional to choose the basis &' = < ) and

0
£ = ( > , corresponding to spin up and down respectively.
1
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The negative frequency solutions are of the form W(z) = v(p)e’”®. These are also

eigenstates of Hp with eigenvalue —Fy < 0 and

s Vp-an®
w5 (p) = , 3.36
v (m <—ms>> 0

with 7° a basis of the spin vector, normalized by 7°'n® = 1.
The field operator ¥ can now be expanded in creation and annihilation operators that
obey the Fermi-Dirac anticommutation relations:

U(x) = [a u®(p)e” 7T 4 bl'["’jvs(p)eip'm . (3.37)

[ e

If the spin is directed along an arbitrary axis n then n- & £ = £. The flipped spinor is

given by £7° = —io?¢* because

(n-0)(—io¢") = —(—io’¢") . (3.38)

Notice that £~(7%) = —¢£5. We associate ap

state s and by, with the annihilation of its antiparticle, a positron with flipped spin —s.

with the annihilation of an electron in spin

So we have

s Vp-o &
v = , 3.39
v (m <—z’5—8>) 59

The spin direction n can be specified by two angles 6 and ¢. It turns out that we can

¢l = ( 'COS(H/Q) ) 7 € = (—ei¢sin(9/2)> '
' sin(6/2) cos(6/2)

The flipped spinor €% is given by (£71,£72) = (€2, —¢'). For completeness we state the

write

form of the flipped annihilation operators:
ap® = (ap, —all)) annihilates u *(p) ,

-5 _ (12 1 e —
bp® = (b, —bp) annihilates v %(p) .

Now we are ready to see how the C, P, and T symmetries act. These are implemented in

the same way as Lorentz transformations:

L U(Az) | (3.40)
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Here U(A) is a unitary operator acting on states, and Ay /2 is the spinor representation
of A.

Parity Parity implies inverting the spatial momentum while keeping the spin direction
fixed. The unitary parity operator P acts on operators as Paj,P = n,a’, and Pb,P =
b2 . Here n, and 7, are possible phases that can be chosen to be n, = —n, = 1.

Plugging this into equation (3.37) gives
Py(t,x)P = Py(t, —x) , Pip(w, k)P = P(w, —k) ,

Pyi(t,z)P =i (t, —2)P | Pyl (w, k)P = T (w, —k)P |

where P = i74°. This depends on the representation of the Clifford algebra that is used.
The free Dirac Hamiltonian Hp commutes implying that the spectrum is invariant under

parity. The spin operator in the z-direction is also invariant.
PHp(w,—k)P" = H(w, k) .

pPsipt = g3

The Hamiltonian of the M; # —M> system does not commute because the +° terms get
a minus sign. This means that parity is indeed broken, as can be seen in figure (3.4]).

The Hamiltonian of the M; = — My system does commute.

Time reversal Time reversal is an antiunitary process. Therefore it can be imple-

mented by an antiunitary operator 7 acting on states and on complex numbers as

[T,a] = a*. Time reversal flips the spin and reverts momentum, so 'Taf,'Tfl =a_} and
be,T_l =b_,. It follows that
Tw(tv x)Til = T"‘b(—ﬂ .Z') 9 Tw(wv k>7-71 = Tw(w7 _k) )
Tt )T =9l (—ta) T, Tl )T =9 (w, -k)TT,
where T' = —i7%92. The free Dirac Hamiltonian commutes so that the free theory is

invariant under time reversal. The spin operator in the z-direction gets a minus sign,
THB(wv _k)TT = HD(W, k) )

T(S*)Th=-5°.

The complex conjugation is due to the fact that 7 anticommutes with complex numbers.

The Hamiltonian for the M; # —Ms system is not Hermitian but we can write it as
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H = Hy +iHy with Hy o Hermitian. The Hermitian part is invariant under time reversal

and the antihermitian part gets a minus sign:
T[Hy(w, —k) + i Ho(w, —k)]*"TT = Hy(w, k) — i Ho(w, k) = H' (w, k) . (3.41)

The same holds for the M; = — M, system.

Charge conjugation Charge conjugation interchanges particles and antiparticles
while keeping the same spin orientation. It can be implemented by a unitary operator
C acting on states. It acts on annihilation operators by conjugation, Caj,C = bj, and

CbiC = aj,. The spinors u®(p) and v*(p) obey the following relations:
u®(p) = =iy’ [ ()] v (p) = —iv' Y [u(p)) -

Using these we can write

Cw(ta x)C = CW(@ 1’) ) Cw(wa k)c = C¢*(_w> _k) )
Cy(t,z)C = CyY*(t,x) , CY(w, k)C = CY* (—w, —k) ,
where C = —iy'y34Y. The free Dirac Hamiltonian and the spin operator are invariant

under charge conjugation,
C[_Hg(_wa _k)]CT = HD(("}? k) )

Cl(—s*)T)cT = 5% .

The minus sign comes from commuting spinor components when evaluating the expression
CytHpycC.

In the M7 = — M5 case we have
Cl-HT (—w,—k)|CT = H'(w, k) .

Just as for parity the Hamiltonian for the My # —M> case is not invariant because the

7° terms acquire a minus sign. This is seen in the plots by comparing figure (3.4al) with
figure (3.4c|) and figure (3.4b|) with figure (3.4d)).

CP/CPT Under the combined CP transformation we get for the M; # —M> case:

CP[-HT (—w,—(—=k))PTCT = H' (w, k) .
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It therefore leaves the Hermitian parts invariant. The combined CPT transformation

leaves the whole Hamiltonian invariant:
CPT[-H'(—w, —k))|TTPTCT = H(w, k) .

From the above it is clear that the 7% terms in the action break parity symmetry. Since
this symmetry is present in ultracold atom systems we must assume M; = —Ms and
thus restrict the parameter space of the bulk system. In the following chapter we will

only focus on this case.






Chapter 4

The Dirac Fermion with a

Chemical Potential

In this chapter we introduce a chemical potential 1 to the boundary system. This gives
the massive Dirac fermions a nonzero density, which is a physical requirement when
describing ultracold atom systems. This has also been done by Watse Sybesma in his
master’s thesis [I8]. The (relativistic) dispersion relation for the non-interacting system

reads
wHpu=vVk*+m?. (4.1)

This means that we have to change the bulk in such a way that w — w + p for the free
theory. The self-energy ¥ (w, k, ;1) may depend in some nontrivial way on p. Furthermore,
a chemical potential breaks particle - antiparticle symmetry. This is seen from the
fact that number of particles minus the number of antiparticles is constant. This way
the chemical potential of the particles is equal to minus the chemical potential of the
antiparticles.

It turns out that the way to implement the chemical potential is to charge the black
brane with a charge ()g. This is done by solving the Einsteins equations in the presence
of an electric gauge potential A,. Since we are not interested in magnetic fields we
take A; = 0. To make the fermion Lagrangian gauge invariant we change the covariant

derivative by

Dy — Dy —iqpAy (4.2)

41
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where gy is a coupling constant. This process is called minimal coupling. On the boundary

this results in a change
w—= w4 lim ¢grldi(r) =w+p, (4.3)
r—r00

where 4 is the chemical potential. In the next section the new gravitational background
will be described. This will replace the background specified in section although

the form will be very much the same. Only the emblackening factor V' will change.

4.1 The Background of a Charged Black Brane

The metric of the charged black brane has the same form as before

VQ(T)TQZ 9 02 9 r2
— dt + 7ﬁzd’l“ +ﬁ

ds® =
i ZE V2(r)

dx?i—l ) (44)

with the difference that V' will now depend on Qp, giving rise to two event horizons, just
as the Reissner-Norstrom black hole in section 2.1]

The setup is described in [I12]. Here we will give a summary of the results. To charge
the black brane we have to add a U(1) charge by means of an extra field F5,, =
OuA2,y — 0, Az, where Ay ; = 0. The background action reads

1

Sy =
b8 T 167G

2
/ dttay/—g (R —2A — %(8@)2 — % > e*i¢Fi7uyFi“”> . (4.5)
i=1
Here it looks like there are two U(1) gauge fields but, as we saw before, the Fy ,, is
completely determined. The constant of motion associated with A} is related to ¢ in
such a way that it provides asymptotically Lifshitz spacetime. This is the reason why the
charge does not appear in the emblackening factor V. As we will see below, the constant
of motion associated with A5 does appear in V.
When we vary the action with respect g,,, ¢, and A;, we obtain the following four

equations of motion

2A

1
— F? 4.
d—1 ” (4.6)

Ry = 2(d—1)""

2
1 1 .
guu - 58u¢8u¢ - 5 Z e)\lqs [H,uaﬂfy -
=1
1
gMVD,uDy(ﬁ_ZZQ)\ie)\i(ﬁFZZ:O,, (47)
=1

Dy (MF") =0, (4.8)
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where we used in the first line

2A

1
T;U'M == O = RMV - iRgMV + Aguy - R/“’ - ﬁguy . (49)

The covariant derivative D), contains the affine connection with the Christoffel symbols.
Apart from the specific metric in equation , we assume that Ay; = As; = 0 and
that the fields only depend on 7.

The difference between the rr and ¢t components of equation gives the following

solution for ¢
e = arVHd-DE—D (4.10)

Here « is an integration constant, interpreted as the strength of the scalar field ¢. Next,

equation (4.8)) gives us
Figt = pir™ %9, (4.11)

68

where p; are integration constants. Since 57 - =0, we have two conserved currents
T,

1

v 167TGd+1

J V—geMPEH (4.12)

These give rise to two charges

Q= d 1y 0 _ Vi_1pil® !
! ¢d-1 Ji 167TGd+1

(4.13)

where V;_1 is a dimensionless volume factor. When p; is fixed, the corresponding charge
is also fixed. Now, the Einsteins equations together with the equation of motion for ¢

eventually give

ANV2(d—1)(z—1) =
2
> pirm 2T AR E) g2 ) [(d — DN —V2(d - 1)(z - 1)] . (4.14)
=1

This equation is solved by

[ d—1 [ z—1 z—1
A = —4/2—— Ay = 4/2—— 2 - _gAMp2-2) 2 4.1
1 Z—l’ 2 d_la P1 « d+ 2 — ( 5)

(d42—1)(d+2—2)
202

is that po is still a free integration constant whereas p; is fixed in terms of the scalar

The cosmological constant is A = — . The important thing to note here

field strength a. po can be interpreted as the charge density of the black brane. It is
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convenient to replace a by
fP=2d+z2-1)(z - ) EaM . (4.16)
This way the solutions read

1= frive2, (4.17)
A2

1 X1
2| p2des (4.18)

/ —
Azi = P2 2(d+ 2z —1)(z — 1)

The fact that A7, diverges for r — oo is not worrisome since it is the Az, field that will
be coupled to the fermions later. The divergence will not appear in the boundary action.

The second field can be integrated such that it is zero at the horizon, Az ¢(rp) =0,

A2

2z 2 A 1 3—d— 3—d—=z

e 1
2T d - Dz - 1)

Using equations (4.13)) and (4.3) we can write the chemical potential and the electromag-

netic potential as

)

167.”?2*61*2 - f2£2(d+z71) pYy
= 4.2
A v e L L v s sy ) IR e
1 g3 d+z—3
Aoy = — 1 - (= 4.21
2t qf [ ( r ) :| ’ ( )

where r, = 7p€. The emblackening factor is found from the Einstein equations and reads

2 . T\ 4121 623f2 bY) 022p—2(d+2-2)
v (”_1_(7) t e [2(d+z—1)(z—1)] 2(d+z—3)(z—1)
_ P\ H (16m)? f202d+2-1) 5
- <7) TV . 3)@d-1) |2tz 1)z 1)] (4.22)

% Q%G(2i+1€2(27d),’;72(d+272) ’

where r = £7 and r,;, = 7. The quantity 7, can be expressed in terms of rj by requiring
V(rp) = 0. In the next section we will identify the correct units such that the electric
potential, the emblackening factor, and the chemical potential simplify and depend on

clear physical quantities that can easily be translated in SI units.
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4.2 Units

4.2.1 Natural Units

The background action is written in natural units, meaning [h] = [¢] = 1. This way
can we express the dimensions of all quantities in terms of the length scale ¢, that has

dimension meter,

2

= ! d+1 1 2 1 Aid pv
EE% T 167Ga /u\/jg (R —2A — Q(G#Cb) 1 Ze F; W F; . (4.23)

1 — m? ] i=1
ml—d ~
The dimensions of p;, Q;, and f are found using equations (4.11)), (4.10]), and (4.13])
respectively:

[pi] =m’>1 Q) =m™ [f]=m!T (4.24)

From equation 1’ it follows that the coupling constant ¢ has dimension [q¢] = m'.
The dimension of the chemical potential is energy, which in natural units becomes

[] = m~1. With the above we can identify the dimensions in equation (4.20) as follows:
A2

JM, (4.25)

f2£2(d+z—1)
2d+ 2 - 1)(z -1

1 1

. qu—l IGWF?L_d_Z
~—~ \V_/Vd_l(dJrZ*?))

—1 m—1

~ 1—d
Q2 Ga1?
i i

m

where we defined the dimensionless charges gy = fq; and Q2 = Q>. The dimensions of

the emblackening factor are given by

A2

f2£2(d+z—1) )] pxy (4'26)

2d+2z—1)(z—1

- T \ 271 (167)
K?Q_l_< ) +mﬁpu+z—@u—n

7
1

1 1
% Q% Ggﬂﬁ(kd) F20d+z-2)
~ ——

1
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Now we can perform a rescaling of gy and Q- such that the above two equations simplify

drastically. The dimensionless rescaled charges ¢y and Qg are defined by

A2
fr=gp | 2D (4.27)
F=as 2(d+z—-1)(z—1) d+z—-3 '
. 3 f2£2(d+2_1) 2ATQl 167 d
= (CFTRY 4.28
@=L e Vi 2[d+z-3)d—1) (4:28)
With this the chemical potential and emblackening factor simplify to
1. & _—(d+2-3)
p=5arQary , (4.29)
7 d+z—1 N
V2(r)=1- (%m) + Q3 A=) (4.30)

where 7&H>—1 = _ZJFZ -1 (1 + Q2 pa(2=d= Z)>. The covariant derivative in the fermion action

changes by
d+z—-3
Y _(lr
D, = D, =& w[l (T) ] (4.31)

When we restore £ in equation (2.16]) we see that 7" has dimension [T] = m™:

Fitt ov? 177 9 _—2(dt2-2)
= e = g1t [+ 2= 1) — A+ 2 - 3)03r, | IE—CE )

This is of course still in natural units [A] = [¢] = [kg] = 1. In the next part the above

quantities will be expressed in SI units.

4.2.2 SI Units

Now let us comment on Poisson’s law in d + 1 dimensions and in SI units. It is valid in

any dimension and has the form

Pel

2 ST 2
\Y ¢grav = 477Gd+1pmass 5 \Y ¢EM = - .
€0,d+1

(4.33)

Here ¢gray and ¢py are the gravitational and electromagnetic potentials respectively.

The dimensions are as follows

[Perav] =T Kg™' [Em] =T C7' [pmass] = Kg m? (4.34)
[pa] =Cm? [V} =m?. (4.35)
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From this we can deduce the dimensions of Ggil and €g 441,
[GSL 1] = mT2s™4T7 [egg41] = m?4C2TL . (4.36)

The fields A; ;, are interpreted as electromagnetic potentials, of which only Az ,, is physical.

This motivates us to write the full background action in SI units as

3
SI d+1 L 2
She = 1o TonaT /d zv/—g < —2A ( 0,9 > (4.37)

2
1 ST, v
/dd“x =53 MRS S

i=1

dpo,as1c

Here the factors of ¢ are determined by requiring [SSI] = [h] = Js and using the

dimensions of the integrands,

[Rl=[A]=m2 [¢]=1 [Fo,]=JsC'm™2. (4.38)

The action we started with was written in natural units [i] = [¢] = 1:

1

Sy = ————
P8 T 167G a1

/ddﬂxf (R 2A——( 0u9) —72 ’\’¢F1WF“”> . (4.39)

From this we deduce

3 SI
c 1 167G
SR =Spy = e = —— iFSI =F . 4.40
bg/ g thil Gd+1 ot 110,441 iUV (24 ( )
The correct form of the covariant derivative is now D; — SIASI, and the chemical

potential is p = cq?IAfl(oo). Since we will use % as our unit of energy, we can rescale

qJScI such that

4
st [Crodi e (4.41)
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Using this we obtain the following expressions for the various quantities we need when

building the fermion model:

fm d+z—1 A9 (9
V2 — 1 _ (?> + Q%'I"Q(Q d ) , (442)
he ~ . a4,
S = 7@2(1107"2 d-z (4.44)
he 7% A2 — -
- 9 _—2(d+2—2)
_ @ﬁ [(d+z—1)—(d+z—3)Q2rh ( : (4.45)

SI
Dy — Dt—Z%

1— (;) 3d1 . (4.46)

The free parameters of the bulk theory are ¢y, Qg and 7. Now that it is clear how the
rescalings work and how to switch to SI units, it is safe to work in natural units again,

and derive the self-energy on the boundary.

4.3 The Spectral Function

The derivation of the spectral function is the same as in the previous chapter, with only
two differences; the emblackening factor is replaced by equation and the covariant
derivative in equations and is replaced by equation . Since we focus
on the M| = —My = M case, it follows from equation that & (r,w, ks, M) =
&o(ryw, ks, —Ms) = £(r,w, k3, M). This means that the self-energy is fully determined by
the differential equation for &, like in equation . However, because the covariant
derivative is changed, this differential equation is also changed. The derivation is exactly

the same and the result reads

VO es +2Mréy = —0 F kg + (—0 £ k3)é2 (4.47)

wHp [l - (r/rh)?’_d_z]
r#=1V '

Later in section [5.2| we will analyze this equation in more detail. Because the covariant

where W= —

derivative also appears in the kinetic term that we add by hand, the free part of the

Green’s function will change by w — w + p. The Green’s function, that is the analog of
equation (3.31)) with no 4° terms, reads

(@ + 1= Zo)Ta + (K7 ki + Si)y'y° — iy

Gr(w, k) = —
A S (R B

, (4.48)
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with the self-energy given by

EO =g lim T2M€+(w7 k3) + 54_(&), _k3) , 23 =—g lim T2M€+(w, kg) B £+(w7 _k3) .

r—00 2 r—00 2

This Green’s function has two distinct two-fold degenerate eigenvalues corresponding to

spin up and down particles Gg , and spin up and down antiparticles Gg _:

1
Gpre(w, k) =— . (4.49)
(W+p—30) F \/(’k!'z_lki + %)+ m?
Taking the trace of G yields the spectral function
1 - %
p(w, k) = —~Im [ et Ul (4.50)
™ (w+u—20)2— (‘k’ ki+2i)2—m2

The model that we have built now has a kinetic term, a finite temperature, a mass
and a chemical potential. They are all ingredients of an ultracold atom system. In
figure some plots are shown of the spectral function. It is clear that the chemical
potential breaks particle hole symmetry. It shifts bands, and has a nontrivial effect in

the self-energy. In the next chapter we will elaborate more on this.

plw,k3)

-3 0
k3

()

(A) Regular plot

(B) Density plot

FIGURE 4.1: Plotted is the spectral function of the massive dirac fermion, including
a chemical potential. It is clear that the bands get shifted down and particle-hole
symmetry gets broken. Furthermore there seems to happen something at w = 0. We
will comment on this in section [5.3] The following parameters are used: M =T = 0,
mm=m=z=g=1and p=+2






Chapter 5

Properties of the Dirac Fermion

In this chapter we discuss the nonrelativistic limit of the Green’s function (4.49)). After
that we will analyze the differential equation for £, in more detail and comment on the
possible existence of multiple Fermi surfaces. In this chapter we will restrict ourselves to

the z = 1 case.

5.1 The Nonrelativistic Limit

Before we take the nonrelativistic limit, it is useful to write the Green’s function in SI
units:

1
(hw + pST — %Eo) == \/(hcki + %Ziﬁ + m2ct

GHo(w k) = — (5.1)

Here the self-energy X, is dimensionless because in the definitions under equation (|4.48|)
g is dimensionless and r is replaced by 7. The differential equation (4.47)) for &, is given
by

PPV Ol + 2M7Es = —0 F Lk + (—0 + lh3)E2 | (5.2)

N ¢ hw 4 pS[1 = (7 /)30
where ©=——

he Femly ’

and M is a dimensionless constant. The nonrelativistic regime is characterized by

helk;| < me? .

51
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The square root can be expanded as

R2 (ki + $5:)*

5 +0(1/%) . (5.3)

he
\/(hck‘i + 721-)2 +m2ct = mc® +

Here we used that Y3 is defined to be antisymmetric in k3, implying that for small enough

ks, 23 ~ k3. This results in the following nonrelativistic Green’s function:

1
GBS, k) = — . 5.4
re (@ K) hw + St — 553 £ me? F h2(k; + €715;)2/(2m) (5:4)

NR,SI

The nonrelativistic chemical potential u and nonrelativistic self-energy V% are

defined by

hZ? n hk; 2t
20me me

h
pNBSt = ST — ?CRe [ZO(O, O,MSI)] , SV =55 —Re[S0(0,0)] +

With these definitions the Green’s functions of the upper and lower band can be written

as
G (w10 = - i ’ ©3)
hw + MNR,SI _ TmL _ %ENR(w,k)
1

h + pNR 4 2RE | BeyNRSI( ) — 2ime2 — 25 (5 — ReX(0,0))

Now, since the nonrelativistic self-energy is defined such that Re [ZN R0, O)] =0, the
bands are shifted down. At pN® = 0, the maximum of p(w,0) will be at w = 0. In figure

(5.1) the relativistic and nonrelativistic spectral functions are compared. Note that this

21.2
approximation is only valid for Aw ~ 2:{ ~ MR <« mc?. Tt must be noted that the shift

NR,SI

we make to go from 15 to p is in a sense arbitrary. A possible way to do this right
would be to identify the Fermi surface and subtract this energy.

One of the difficulties here is that mc? is not present in the self-energy whereas p! is
present in both the self-energy and the kinetic part. When we do the rescaling that is
suggested above, we get the quantity uN®ST + me? in the self-energy. For an ultracold
6Li atom gas we have me? ~ 1079J and Juw ~ kT ~ 10729.J. As a result we see that p!
in equation is 20 orders of magnitude greater than Aw. This makes it very difficult

to solve the differential equation.
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0.2 0.2

PR (w,ks) plw,ks)

(c) Difference between relativistic and nonrelativistic spectral
functions

FIGURE 5.1: In the two figures on top, the spectral functions for the nonrelativistic
case and the relativistic case are plotted. The bottom figure shows the
absolute difference between the two: Ap = pN® — p. We see that for |ks3| < 0.1 the
approximation is valid and that it deviates for larger k3. For large k3 and w we even
see that pNF becomes negative. The following parameters were used: M = 1/4, T = 0,
m=2 " =0,andr, =2=¢g=1.
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5.2 A Closer Look at the Equation of &,

In this section we will elaborate more on how to solve the differential equation for &, .
For simplicity we restrict the parameter space to d =4, 2 =1 and r; = 1. In addition

we look at zero temperature. In normal units we obtain
Vi=l-3r4+2r75%  u=+v24, T=0. (5.6)
The differential equation reads

Vo s +2Mréy = —(@ + k) — (@ — k3)&5, @ =-— (5.7)

lim & (14¢) =i . (5.8)

The difficulty is that V(1) = 0, which is the reason why we introduced the €. In practice
we take a small value of €, solve the differential equation and check if the value was
indeed small enough such that the solution converges nicely in the limit ¢ — 0. This
has to be done for every (w, k3). The same has to be done in the limit » — oco; we must
choose the cutoff value o, large enough such that 72/ ¢, (w, k3, 7s) is indeed close to

the exact limit. Figure (5.2]) gives an illustration of this method.

S EEEEN . Real 1, Real
K Imaginary Imaginary

A s
R -. v .
= S 0.03i S0, Trrrrrmmromrommroressmsessssssssssseed 0.061
™ 0_\/ -0.04 k \/ -0.12

€ 1 Feo 102 e 1 Feo 102

r—1 r-1
(A) w=10"3,e=10"8 (B) w=10"3,e=10"2

FIGURE 5.2: Plotted is r*M¢(w, k3, 7) as a function of r. In the left plot the value of €
is small enough to make the solution converge near the horizon. In the right plot the
value of € is too large and the solution does not converge near the horizon. This leads
to a wrong value at the boundary r.,. In addition to the parameters defined at the
beginning of this paragraph, we used M =0, m =1,k =1, = /2, roo = 10'°.

It turns out that for small w we also need small values for €. For large w the solution
already converges for larger values for e. This explains the apparent discontinuity at
w = 0 in figure where we took € = 107°. This behavior does not depend on k3 and
1. The most straightforward way to solve this problem is to just choose a smaller value
for e. However this slows the numerical calculation down too much. A way around this

is to Taylor expand the coefficients of the differential equation around the horizon. We
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then get another differential equation that is solvable much faster, but only valid for
around r = 1, while we need the the value at » = ro,. This is achieved by using the value
of the first solution at some r = 1 + ¢5 with € < €2 < 1 as the boundary condition of
the second, not Taylor expanded equation. Of course we should check that the solution
is independent of € and €. It turns out that solving these two differential equations is
faster than solving the original one with a very small value for e.

The Taylor expanded differential equation whose solution is denoted by & reads

&+ \/§(i\~4_1)£+ N (12(7’w— 1)2 +36(:w— n 6(rlu— 1)> (1 - 51)

k -
(=)o o

We expanded up to order (r — 1)°. Expanding further turns out to make little to no

difference. The equation can be put in a nicer form by making transformation
e“*=(r—-1), suchthat r—1 & z— —c0.
It reads

Of Mg _(9pu 0, B 2Y_ M () @
&ﬁ§++\/§§+_<l2e +36+6>(1+§+) 2\@(1 §+). (5.10)

We use the value at €5 as the boundary condition of the full solution,

§r(e2) = & (e2) -

The result of this procedure is shown in figure (5.3) for some generic values of the

parameters.
Real Real
Imaginary Imaginary
i P <
% i e 0.791 % R ORI e Es SR 0.74i
2 0.23 =
Ny V2 "0~ NN 0002
€ w e |1 oo 1020 € w e |1 Too 10%
r—1 r-1
(A) e=10"2% and w = 107%° (B) € =107 and w = 107*°

FIGURE 5.3: Plotted is 72M¢(w, k3, ) as a function of r and for different values of w
and e. In addition to the parameters mentioned at the beginning of this paragraph, we
used M =0, m=1, kg =0.3, t = /2, 700 = 10' and e, = 10~°. From the plots it is
clear that the solutions are indeed convergent on both sides, and that around e; the
Taylor expanded solution near the horizon matches the full solution.
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From the above figure it is clear that for w < r — 1 < €3 the solution exhibits oscillatory
behavior and for ¢ < r — 1 <« w convergent behavior. This is the reason why we need
€ € w, to give the solution enough space to converge. This can also be explained from
equation . Note that we can neglect the 7w/36 term because w < p. Now, in the
region w < r — 1 < ez we have we™™ < u, so we can also neglect this term. The solution
to this equation turns out to be periodic in = log(r — 1), and does not converge near
the horizon. The convergence comes from the {5e™* term, that only becomes dominant
in the e € r — 1 < w regime.

The conclusion is that we have to be careful when working with small w because the
€ prescription has to be adjusted accordingly. As a rule of thumb we can take € to be

about four orders of magnitude smaller than w.

5.3 Signatures of Fermi surfaces

In this section we will elaborate on the properties of the spectral functions at small w.
When we zoom figure in on (4.1)) a bit more we see two large peaks where the upper band
crosses w = 0, see figure . This is indicative of a Fermi surface. In fact, the same
has been found by Liu, McGreevy and Vegh [4] in d = 2 4+ 1 dimensions and without
a kinetic term and a mass term added to the action. Most of the properties that are

discussed in this section are also found in their model.

105 -~ w =101
;R w = -10"10

pw,k3)

plw, k3, )

1007 |
1.14627 ky: 1.14631
ks

(B) Logarithmic plot of the right peak.

(A) Full spectral function

FIGURE 5.4: Plotted is the spectral function of the massive dirac fermion, including a
chemical potential. The following parameters are used: M =T =0,z=r, =m=g=1
and p = /2. In the left figure two peaks are clearly visible at w = 0 and k = +kp. In
the right figure two profiles of the peak with constant w are given. From this we deduce
that kp = 1.14629(5).

Figure gives a close-up view of the peak. An estimate of kr is made by approaching
w = 0 from above and below and see where the peaks meet. This peak suggests a Fermi
surface with Fermi momentum kp. The nature of the Fermi surface is characterized by
the scaling of p(w, kr) as a function of w. This is plotted figure .
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Numerical data Numerical data
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FIGURE 5.5: Plotted is the spectral function as a function of small w around &k ~ kp.
For |w| > 1077 the solution behaves as a power law to which the red/dashed curve is
fitted. For |w| < 1077 we see that the solution deviates from the power law because k is
not ezactly equal to kr. The parameters have the same values as in the previous figure.

The solution behaves as a power law for 1077 < |w| < 1073, but for |w| < 1077 it deviates
from it. This is because we are not exactly at the Fermi momentum. A more precise
measurement of the Fermi momentum would extend the power law to smaller w.

The red/dashed line is the fitted power law and it reads:
1 .
plw, kp, p) ~ T with o =0.47(5) . (5.11)
w

So the exponent is the same for either sign of w. It must be stressed that o depends on
the parameters we choose. When we take for example m = 2, we find o = 0.38(3). Now,
for a conventional Landau Ferm liquid we must have o > 1, such that there are indeed
quasiparticles present. What we find now is a system that has a sharply defined Fermi
surface, but no Landau quasiparticles. Such a system is called a non-Fermi liquid and
has also been found in d + 1 dimensions [4].

The last thing that we will look at is the dependency of the spectral function on pu. It
turns out that when we increase p, more Fermi surfaces start to appear. Figure (5.6a)
shows the spectral function as a function of 1 and k3 at a fixed small value of w. Figure
(5.6bf) shows the spectral function as a function of w and k3 at a fixed u. What we see is
that for larger values of y more bands appear. Where these bands cross the w = 0 axis,

Fermi surfaces appear.

When we take ;o = v/2, only one band is fully visible. the multiple band structure is only
visible for higher values of p.

This could possibly be a model for molecular states, but further study is needed to really
justify such an interpretation. The scalings of the various Fermi surfaces are likely to be
different and depend on the parameters of the theory. This is something that should be
researched more before a clear condensed matter interpretation can be given to these

results.
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FIGURE 5.6: In the left figure the spectral function is plotted at fixed w with variable
ks and p. In the left figure p is fixed while k3 and w are varied. From the left figure it
is clear that more Fermi surfaces arise with increasing p, which translates to multiple
dispersion bands in the right figure.



Chapter 6

Conclusion and Discussion

The objective of this thesis was to introduce a novel approach to condensed-matter
physics by using holographic techniques. We looked at different setups with always
keeping ultracold atoms in the back of our mind. The recipe that we used gave us a way

to relate a classical gravity action to a single-particle Green’s function.

In chapter 2 we started with the simplest model, that of a chiral fermion. The background
we used is a (d + 1)-dimensional asymptotically Lifshitz space with a black brane in the
center. This background is obtained from solving Einstein’s equations in the presence
of some matter fields. The sole purpose of these fields is to produce the desired metric.
After this we added a fermion field ¥ to the bulk, coupling it to the curved background
by the covariant derivative. We neglected the backreaction of the fermion field on the
metric itself. This is why the auxiliary fields that we introduced to produce the right
metric do not show up in the equation of motion of W. It would be interesting to see
what happens when one does take backreaction into account, the equations will be much

more difficult though.

After this we used the Dirac equation to integrate out the W_ chiral component of ¥
and restricted the other one, W, to the boundary. We also added a kinetic term to the
action by hand. This is to get a single-particle spectral function that obeys the sum rule.
The result is a spectral function of the chiral fermion consisting of a kinetic free particle

part and a self-energy term.

In chapter 3 we coupled a second fermion field to the curved background and repeated
the procedure of chapter 2. We got two chiral fermions on the boundary and combined
them into a single Dirac spinor. Because the Dirac fermion is still massless, we added a
mass term to the action by hand. The masses M7 and My of the two fermion fields in

the bulk are just parameters of the self-energy on the boundary. We found that when
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My # — My, parity and charge conjugation symmetries are violated. When M7 = — M,
these symmetries do hold. Since parity symmetry is present in ultracold atom systems,

we restricted ourselves to the latter case.

In chapter 4 we went one step further and added a chemical potential to the system by
replacing the uncharged black brane by a charged black brane. This is done by adding a
U(1) gauge field to the matter action in chapter 2. The difference with the other matter
fields is that this gauge field does couple to the fermion fields by means of an extra
term in the covariant derivative. We saw that this term takes the form of a chemical
potential on the boundary. We had to carefully analyze the dimensions of all the terms
and perform some rescalings, which resulted in equations —. As expected the

chemical potential breaks particle-antiparticle symmetry.

In chapter 5 we first looked at the nonrelativistic limit of the Green’s function derived
in chapter 4. The difficulty here was that the chemical potential u appears in both
the kinetic and self-energy terms while the mass m does not appear in the self-energy.
This means that when we shift u with a factor of mc?, we get a huge difference in
orders of magnitude in the differential equation for £&. We did however verify that for
he|k| < mc? the nonrelativistic approximation holds, and we found an expression for
the nonrelativistic self-energy. It would be interesting to investigate this further and find

some way to apply it to a real physical system such as ultracold %Li atoms.

Finally we looked at signatures of Fermi surfaces. What we found were two sharp peaks
in the spectral function at w = 0. This is an indication of a Fermi surface, but not
of a regular Landau Fermi surface because the scaling is different, see equation .
The systems that have this property are called non-Fermi liquids and they are strongly
coupled. Furthermore we saw in figure that with increasing p there appear multiple
bands and multiple Fermi surfaces. This confirms earlier results in d = 3 dimensions [4].
These multiple bands could possibly be interpreted as the states of a molecule. This is

however very sketchy and further research is needed to confirm this claim.

In addition to this it would be interesting to know more about the influence of all the
parameters in the theory. For example in figure we see that the position of the
outermost Fermi surface shifts with increasing u, so kp(u) is a function of p. Because the
width also changes, the scaling will be different too. This means that the coefficient « in
equation depends on the position of the Fermi surface: a(kp). In future research

it would be interesting to study this behavior more.

Another thing one could look at is the equation of state. The number density n(k, u)
can be calculated by n(k, ) = [* dwp(k,w). Integrating this over k gives N (y); the

equation of state of the system.
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