
UTRECHT UNIVERSITY

Using Information Extraction and

Evolutionary Algorithms to Improve

Matchmaking on the Labor Market

by

Koen Rodenburg

Supervision

Rogier van Eijk, Utrecht University

Harold Kasperink, NCIM-Groep

Master’s Thesis

30 ECTS

Cognitive Artificial Intelligence

Faculty of Humanities

August 2014

UTRECHT UNIVERSITY

Cognitive Artificial Intelligence

Abstract

by Koen Rodenburg

This thesis identifies a significant lack of attention to using unprocessed documents as

input for automated matchmakers on the labor market. To address this lack of attention,

a job matching application is proposed that uses unprocessed Curriculum Vitae (CVs)

and job descriptions as input, avoiding the great restrictions that many other approaches

described in the literature pose on the data. This is achieved by parsing the documents

using Information Extraction techniques. Afterwards, an Evolutionary Algorithm is

used to optimize the weight (relative importance) of finding a match on each extracted

field.

The obtained results show that there is a significant difference in performance be-

tween the application described in this thesis and statistical full-content matching. This

indicates that the identified lack of attention to unprocessed CVs and job descriptions

is unjust, as this approach still has unexplored potential. An interesting suggestion for

future work is to combine the Information Extraction component from this thesis with

the rule and ontology based approaches currently popular in the literature. This way,

the latter approaches can elevate the previously imposed restrictions on the input data,

and accept unprocessed CVs and job descriptions.

Acknowledgements

I would like to thank NCIM-Groep for giving me the opportunity to be with the

company for ten months, first in the context of a preparatory internship, and then

to build a job matching application, conduct an experiment, and write this thesis. I

am grateful to the company’s employees, who have made my stay a very enjoyable one.

Specifically, I want to thank COO/CTO Harold Kasperink for being my supervisor from

the end of NCIM-Groep. Although a very busy man, he always managed to make time

for me when I needed it most.

From the end of Utrecht University, I am grateful to dr. Rogier van Eijk for super-

vising my thesis. He has given me valuable advice from a scientific point of view, which

helped me shape this thesis into what it is now. I would also like to thank dr. ir. Jan

Broersen, who has supervised my internship, but had to step down in order to fully

focus on his project on Responsible Intelligent Systems1.

Finally, I want to extend my gratitude to all of those, mainly friends and family,

whom I have lectured about (and may have bothered with) my project, its progress,

and the hurdles I encountered. I have gained valuable insights by discussing my thesis,

sometimes already by simply trying to explain where I got stuck.

1REINS - http://www.projects.science.uu.nl/reins/

ii

http://www.projects.science.uu.nl/reins/

Artificial Intelligence is the attempt to get real machines

to behave like the ones in the movies.

Russell Beale

Professor of Human-Computer Interaction

Univeristy of Birmingham

Contents

Abstract i

Acknowledgements ii

Contents iv

1 Introduction 1

1.1 Problem context . 2

1.2 Status quaestionis . 4

1.3 Current research . 7

1.4 Hypothesis . 9

1.5 Outline . 10

2 Methods 11

2.1 Information Extraction . 12

2.1.1 Pattern matching . 14

2.1.2 Tokenization . 15

2.1.3 Named Entity Detection . 16

2.1.4 Ontologies . 17

2.1.5 Post-processing . 17

2.2 Evolutionary Algorithms . 18

2.2.1 Fundamentals . 18

2.2.2 Representation . 20

2.2.3 Fitness . 20

2.2.4 Genetic operators . 21

2.2.5 Selection . 22

2.2.6 Generations . 23

2.3 Conclusion . 23

3 Application 25

3.1 Data storage . 26

3.2 Document parsers . 27

3.2.1 Pattern matching . 27

3.2.2 Tokenization and Named Entiy Detection 29

3.2.3 Ontologies . 29

3.2.4 Post-processing . 30

iv

Contents v

3.3 Matcher . 30

3.4 Parameter optimizer . 32

3.5 Web crawler . 35

3.6 Web application . 36

3.7 Conclusion . 36

4 Experimental Setup 37

4.1 Data sets . 38

4.2 Conditions . 38

4.2.1 Condition 0: Manual baseline . 39

4.2.2 Condition 1: Statistical full-content search 39

4.2.3 Condition 2: Artificial Intelligence 41

4.3 Comparison . 42

5 Results 44

5.1 Condition 0: Manual baseline . 45

5.2 Condition 1: Statistical full-content search 45

5.3 Condition 2: Artificial Intelligence . 47

5.4 Comparison . 48

6 Discussion 50

6.1 Implications . 50

6.2 Limitations . 51

6.3 Recommendations . 52

6.3.1 Extensions . 52

6.3.2 Future work . 53

7 Conclusion 54

Bibliography 56

Chapter 1

Introduction

If you think it’s expensive to hire a

professional to do the job, wait until

you hire an amateur.

Paul Neal ‘Red’ Adair

Founder of Red Adair Co., Inc.

At a certain point in life, people will be faced with the challenge of finding a job.

The ideal job needs to fit one’s skills, level of education and vocational interests, among

other factors, and must also be fulfilling and challenging at the same time. Similarly,

companies continuously face the challenge of selecting the best available candidate for

any vacant job. In order to achieve a successful match between a candidate and a job,

there must be agreement between supplied and demanded characteristics, which include

skills, level of education, and previous experience.

Existing research in the field of automated matchmaking on the job market has

almost exclusively focused on matching between manually structured candidate and

job profiles [1]. Usually, these studies require profiles to be available in a relational

database, inserted through a web form with separate fields for every aspect of a CV

or vacancy. In reality, these structured profiles are often not available, and it is very

impractical to acquire structured profiles directly from the source or to convert plain

text to structured data manually. This gap between research and practice leads to

software applications that only cover a subset of the available candidates, or it results

in the decision to revert to manual matchmaking. The lack of attention to plain text

CVs and job descriptions is significant, since it prevents automation of a tedious and

error-prone task that is currently carried out manually. Filling this matchmaking void

with a working program would increase efficiency in the recruitment process [2] and may

even improve the financial performance of companies using the system [3].

1

Introduction 2

In this Master’s Thesis, which concludes my education in Cognitive Artificial In-

telligence at Utrecht University, I will address the under-examination of matchmaking

between unstructured CVs and vacancies. I will propose and build a software appli-

cation that uses Artificial Intelligence techniques to automate parts of the process of

selecting suitable candidates for available jobs, using unprocessed CVs and unprocessed

vacancies as input. The research will be conducted in combination with an internship

at NCIM-Groep1, giving me access to an environment where the application is to be

deployed, including resources such as CVs and job descriptions, and interaction with

potential users of the application.

The rest of this chapter is structured as follows. It starts with defining the problem

context into more detail. Then, the current standing of the literature concerning this

particular issue will be examined. Having a solid understanding of the problem and

the approaches that have been taken previously, I will propose an application that

attempts to fill the identified void in automated matchmaking on the job market and a

corresponding research question, therewith determining the scope of the current research.

1.1 Problem context

Mobility and flexibility on the labor market, respectively the percentage of the workforce

that changes jobs and the percentage of the workforce that is on a temporary contract

during a certain period, have been on the rise in The Netherlands, especially since the

turn of the century [4, 5]. This is in accordance with a policy adopted over 40 years

ago by the 34 Western nations that form the Organisation for Economic Cooperation

and Development (OECD), which entails the promotion of mobility and flexibility in

the labor market [6]. The advent of widespread access to the Internet has played a

significant role in this development, as it has been shown that workers with more, faster

and easier access to job advertisements and to the ability to apply to a job are more

likely to change occupations than those who do not have access to the virtually unlimited

web of data that is the Internet [7].

Since the onset of the worldwide financial and economic crisis in 2008, unemployment

rates went through the roof throughout the European Union [8] and the United States

of America [9]. As a result the labor market saw, and continues to see, a large influx of

people searching for a suitable occupation. At the same time, as of 2013 in the European

Union there is still a deficit of 5.9 million jobs, or 1.6%, versus the last full quarter of

2008 before the financial crisis broke out [10].

1http://www.ncim-groep.nl

http://www.ncim-groep.nl

Introduction 3

Over the past few decades, the Internet has come to play a larger and larger role

in job recruitment. As of 2008, 32% of hires in large, high-profile United States-based

firms can be attributed to the Internet, of which about two-thirds comprises applications

through the corporate website. In contrast, the number of hires that can be traced back

to print media has dropped to a mere 3%. The largest sources with a combined 38% of

all hires are internal transfers and promotions, and the remaining 27% can be attributed

to referrals through employees, alumni and vendors [11]. In 2013, the largest German IT

companies posted nearly all of their vacancies on their corporate websites, around 80%

of their vacancies on on-line job boards such as Monster.de, and just over 37% of job

openings were also posted on Social Media. Actual hires can be traced back to on-line

job boards in 43% of the cases, while 21% is attributable to the corporate website and

another 11% to Social Media [12]. In other words, three quarters of actual hires originate

from an on-line source, making the Internet decidedly the largest source of successful

applications.

As a result of a higher percentage of the workforce changing jobs each year, un-

employment rates going up, and vacancies spreading faster and further through the

Internet, the number of applicants per vacancy has risen [13, 14], and the process of

selecting suitable candidates for vacant jobs has hence become more difficult during the

past decades. When faced with a lot of applicants per vacant position, the number of

applicants considered, or the extent of the search, increases. Consequently, recruiters

have been proven to spend less time per applicant in such situations, decreasing the

intensity of the search, which leads to less informed hiring decisions [15]. Conversely,

it has been shown that in the current fast-moving, competitive labor market, compa-

nies that closely align their recruiting and selection policies with their corporate goals

can positively influence their financial position [2], and that companies that are able to

quickly make job offers have an advantage over companies that are not, since oppor-

tunities to hire qualified applicants are not squandered due to lengthy response times

[3]. Thus, selecting suitable candidates for vacancies has in recent times become more

difficult, but also more important for companies.

NCIM-Groep is a company based in Leidschendam, The Netherlands, that special-

izes in seconding2 highly educated IT professionals, predominantly in the defense and

security, energy and utilities, telecommunications, transportation and media, and tech-

nical automation sectors. Since the company’s primary business model is seconding

employees, freelancers, and new applicants, it is a crucial task for NCIM-Groep to select

suitable candidates for available jobs and assignments. Currently, the Sales and Hu-

man Resources (HR) department at NCIM-Groep performs the matchmaking process

2“The temporary transfer of an official or worker to another position or employment”
(Oxford Dictionaries [16])

Introduction 4

completely manually, similar to the manner in which many other companies operate [3].

Based on the requested hard and soft skills, a candidate that fulfils the requirements is

sought in a vast and ever expanding collection of available candidates, represented by

a hard copy of their Curriculum Vitae (CV). With this in mind, it is clear how NCIM-

Groep and many companies like it would benefit from the creation of an application

that partially automates this repetitive and error-prone process by suggesting possible

matches between a candidate and an available job. Not only would efficiency be en-

hanced, leaving more time for Sales and Human Resources staff to spend on candidates

qualified for the job rather than sifting through many irrelevant CVs [3]; it was also

shown that investment in HR automation can lead to a significant return of investment

through improved financial performance [2].

1.2 Status quaestionis

There are two dimensions along which the compatibility between a candidate and a

job can be determined. The first and foremost is person-job (P-J) fit; measuring to

what extent an individual possesses the qualities, skills and experience required for

carrying out the tasks associated with the job [17]. The second dimension is person-

environment (P-E) fit, including sub-dimensions such as person-organization fit, person-

group or person-team fit, and person-vocation fit; respectively attempting to measure

an individual’s fit relative to the policies of the company, prospective colleagues, and his

or her vocational interests [18]. While P-J fit is the primary dimension, a better P-E

fit can improve the performances of both the newly hired employee and the members of

the team or department he or she started working in [1].

In recent literature, there exists a widespread belief that a good P-J fit often depends

on underlying aspects that are generally hard to formalize and measure [1, 17, 19, i.a.],

corroborating the accounts given by the Sales and Human Resources staff at NCIM-

Groep. It is therefore difficult to pinpoint exactly which aspects of a person’s CV

determine whether he or she is compatible with the available job, apart from obvious

factors such as a requirement that a candidate has a university-level education. Quanti-

fying P-E fit is even more difficult, as it requires an extensive analysis of both the person

and the environment [20], where further problems arise, including normalizing the sub-

jective answers people give about their qualities and needs [21]. The several issues the

measurement of P-E fit faces, make it nearly impossible to perform in a relatively short

period of time or on a relatively large scale.

Introduction 5

Although the use of on-line job portals for recruiting new employees has exponentially

grown over the past few decades [11, 12], their true potential is still extremely underex-

ploited. The majority of companies use on-line job boards exclusively in a similar way

to traditional print media: to publish their job offerings. Only 44% of the companies

that are active on these job portals also use them to actively search for candidates [22].

For those looking for a job and the companies that take the time to actively search for

future employees, it is not a trivial task to find a dream job or a perfect candidate,

respectively. In fact, the Boolean search capabilities that most on-line job portals offer

are often inadequate for finding an ideal match [1, 22, 23], as they for instance do not

take inflections into account (e.g. ‘programmer’ is not returned in a search for ‘program-

ming’). With the notable exception of location, which appears to currently be the single

most important factor in on-line job selection, no prioritization can be observed for at-

tributes or search options – they are all given the same importance by the job boards

[24, 25]. Given the previously mentioned subtleties in matchmaking between potential

employees and vacant jobs, it is clear that the current searching and matching capabili-

ties of on-line job boards lead to suboptimal results and missed opportunities in terms

of a good candidate or job being seized up by a competitor. The described limitations

may be an explanation for the fact that on-line job boards are in practice mainly used

to make a crude pre-selection of candidates based on standard queries, which define only

concrete requirements such as a desired level of education [1].

Up until the turn of the century, both scientific and general interest in information

systems in Human Resources Management was very low, and available systems were al-

most exclusively employed for administrative tasks, with only 21% of companies entering

more data than just contact information in their applicant tracking systems [22]. Since

then, the specific challenge of matching job searchers and vacant jobs has experienced

mild scientific interest [1, 14, 26–28, i.a.]. All attempts readily available in the literature

are exclusively aimed at finding matches with a good P-J fit, by determining in various

manners the similarity between an available candidate’s CV and a job description of a

vacant job, rather than focusing on the much more volatile P-E fit. While CVs and

job descriptions can be somewhat vague or even incomplete, they can still be deemed

relatively reliable and are thus suitable for matching. Since it is likely that any discrep-

ancies with reality will be revealed during a potential job interview, and will even put

the candidate in a negative light, people have an incentive to provide rich and reasonably

accurate information on their CVs [29]. Conversely, it is nearly impossible to describe,

let alone formalize, one’s personal characteristics that influence P-E fit, such as work

ethics or humor (though admittedly, formalizing humor is an active field of research

[30]). This makes it nearly impossible to automate matching along this dimension, and

explains the apparent absence of scientific work in this area.

Introduction 6

Roughly speaking, two approaches can be distinguished in relation to matching people

to jobs in the Human Resources domain. The first approach is statistical text-based

similarity search, which is closest to the modus operandi of big corporate players such as

Google, Inc. Here, matchmaking is performed by solely determining the degree of textual

similarity between candidates’ CVs and available job descriptions. This is done by using

the full content of a CV as input for a search through all available job descriptions, or

vice versa [31]. This approach will be designated as statistical full-content search for the

rest of this thesis. The strength of textual-similarity based techniques is that they are

very flexible in the sense that they are able to easily discover non-exact matches and are

not domain dependent. A downside to this first approach is that precision3 and recall4

are inferior compared to the second approach [32].

The second approach, which is more recent and more prominent than the first ap-

proach, is the logic and semantics-based similarity approach. This approach makes use

of ontologies of the domain in order to derive semantic relationships between concepts

in the document. This is done to abstract from irrelevant linguistic factors such as

formulation and synonyms. Then, an attempt is made to find a job description with a

semantic structure analogous to that of a certain CV [14, 26, 28]. This approach has

much higher precision and recall than the first approach, but the resulting inflexibility

is a steep trade-off. The use of an ontology firmly restricts an application to a single

domain, and creating an ontology for a new domain is a complex and time consuming

task [32]. A matchmaking attempt in the on-line dating domain [33], which is closely

related to the human resources domain in that it comprises matching a set of qualities to

a set of requirements, formalizes the relationships between fields from the request doc-

ument (comparable with a job description) to the available profiles (comparable with

CVs) in a very specific way. This enforces an additional inflexibility in terms of domain

specificity and the addition or removal of certain fields. More importantly, defining these

exact relationships and their relative importance for the Human Resources domain is

considered to be infeasible in recent literature, as mentioned earlier [1, 17, 19, i.a.].

The vast majority of current human resources applications that attempt to find op-

timal matches between candidates and vacant jobs require the data to be presented in

a neatly structured database [14, 26, 28, 32, 33]. In most cases, the researchers have

developed a user interface, such as a web application, in which candidates are requested

to fill out a form, asking about contact information, work history, enjoyed education,

and other pieces of information usually present on a Curriculum Vitae [1]. By others,

3Measure of exactness: The number of relevant results divided by the total number of results.
4Measure of completeness: The number of relevant retrieved results divided by the total number of

existing relevant results.

Introduction 7

this ideal situation is judged currently unrealistic [27], while some even call it “an escape

for constraining real data into an available technique, [rather] than a real solution” [33].

1.3 Current research

It is virtually impossible to formalize personal characteristics, such as work ethics and

humor, that determine whether there is a Person-Environment fit [1, 18]. This in contrast

to characteristics that determine Person-Job fit, including level of education and previous

experience. While the latter characteristics can easily be listed on one’s CV, it is very

difficult to describe someone’s work ethics beyond hollow phrases like “I am a team

player who is also great at working alone” and “I do not have a 9-to-5 mentality”. As

a result, information about relevant personal characteristics is not readily available in a

job application. Recruiters generally invite potential candidates based on P-J fit, using

information from their CVs, and try to determine the P-E fit during the subsequent

job interview [1, 17]. Due to the aforementioned difficulties and in line with previous

research, this thesis will exclusively focus on matching along the P-J fit dimension, and

leave the judgment of P-E fit to the recruiter.

Another practice adopted by the vast majority of previous attempts is working under

the assumption that the information from CVs and job descriptions is available in a

structured database [14, 26, 28, 32, 33]. In reality, CVs and job descriptions are not

inherently structured, but rather only available in free-form text or sometimes, if supplied

by the applicant, semi-structured using tables. In most previous research, candidates

were required to fill out standardized forms with information from their CV [1, 33]. In

practice, only 12% of applications for the typical job are received through standardized

web-based forms [22]. Forcing candidates to retype their CV every single time they

apply for a job is an additional hurdle in the application process, which may lead to good

candidates applying elsewhere instead. This approach has therefore been criticized as

being unrealistic and not a real solution to the problem [27, 33]. The envisioned software

application is to be used by recruiters, and it is not realistic to require them to spend an

extensive amount of time on mind-numbing data entry for every single candidate. That

way, the application would further reduce the efficiency of the matchmaking process

rather than improve the efficiency. A final alternative is to require applicants to provide

a unique identifier of their account on an on-line job board, the information of which

can then be imported by the application. Complicating factors here are the existence

of a myriad of on-line job boards, every one of them slightly different from the others,

and the fact that many people do not have a profile on any such website. One of

Introduction 8

the largest and most well-known job boards, LinkedIn5, has a market penetration of

only 32% in the United States, with most other countries having significantly smaller

fractions of the population active on this board [34, 35]. Given the previous, it is clear

that there currently exists no practical alternative to entering unprocessed CVs and job

descriptions in their original unstructured or semi-structured form.

The proposed application will, conform to the aforementioned observations, be a

matchmaking application using unprocessed CVs and job descriptions, matching them

along the P-J dimension. Since pure content-based search has shown disappointing

results, leading to the attention shift to ontology-based approaches [32], I propose to

divide the matchmaking process into two stages. During the first stage, the document is

to be parsed by the application. Using techniques from Information Extraction, a sub-

field of Natural Language Processing, the contents of the document will be divided into

an array of fields, including name, location, education, and work experience. This is the

stage that helps the application to be able to work with unstructured input documents

such as raw CVs, voiding the need for manual pre-processing. The second stage is the

actual matchmaking stage. During this stage, each of the fields extracted from a CV

will be paired up with the corresponding extracted field of a job description. A search

query will determine the degree of similarity between the two documents, based on the

field-by-field similarities. Since the literature deems it infeasible to determine the relative

importance of these fields beforehand [1, 17, 19], an Evolutionary Algorithm will be used

to optimize the relative weights of the field pairs. The Evolutionary Algorithm will use

previously generated matches, scored by a human expert, for its fitness function. The

mentioned methods and techniques will be discussed into more detail in Chapter 2, and

a detailed description of the architecture of the application will follow in Chapter 3.

Since NCIM-Groep, my internship provider, seconds IT-professionals, the data that

will be provided to me for testing purposes will be in the IT domain. While this ef-

fectively constrains my research to this domain, the overall structure of CVs remains

the same across domains, and it will therefore be relatively easy to generalize to other

domains. Where domain specific elements are introduced, they will be made replace-

able by elements specific for another domain, or a general element for matching across

multiple domains.

The scope of the current research is confined by the aforementioned decisions, and

can be captured by the following research question, which will be central to the rest of

this thesis:

5http://www.linkedin.com

http://www.linkedin.com

Introduction 9

Can matching between unprocessed CVs and job descriptions using statistical

full content search be improved upon, by structuring these documents into

fields using Information Extraction, and optimizing the relative weights of

these fields using an Evolutionary Algorithm?

1.4 Hypothesis

Given the comprehensive advantages that automated matchmaking on the job market

has for companies [2, 3], the low adoption rate of Human Resources systems that perform

such tasks [1, 22] is striking. While this may be partly attributable to businesses failing to

commercialize such products, recent literature describing promising, but nowhere near

perfect results [1, 14, 26–28] supports the conclusion that the capabilities of current

systems are simply inadequate.

Early attempts to automated job matching were based on statistical methods [31].

While promising initial results were shown, recall and precision of these statistical full-

content search systems remained at a suboptimal level [32]. Even though corporate

mogul Google, Inc. continues to outperform current rule-based systems in all sorts of

domains with its statistical approach [36, 37], current research into job matching has

ventured into the logic and ontology based realm. This shift of attention has led to

improving results [32], but at the same time has imposed great restrictions on the input

data [14, 26, 28, 33].

The low adoption rate of applications that perform matchmaking on the job market

may partly be caused by the relatively low success rates and, more importantly, the

mentioned restrictions that are imposed. The proposed system tries to improve on the

early statistical approaches, partly using the philosophy of the current approaches, but

avoiding many of the restrictions that are inherent to that philosophy. More concretely,

the current research tries to automatically structure the data, as structured data can

be seen as an important factor in the relatively good results of the current rule and

ontology based approaches.

The hypothesis for this thesis is that the current approach yields better results than

the early statistical full-content search attempts to solve this problem. This approach will

use the same paradigm of matching structured profiles as successfully applied in other

recent approaches to the problem, as opposed to unstructured profiles. At the same time,

it avoids many of the restrictions posed by most other approaches to matchmaking on

the job market currently prominent in the literature, most importantly the requirement

that data needs to be structured manually before being entered into the application.

Introduction 10

The optimization of the weights of the different fields from the structured profiles using

user-scored examples eliminates the problem of not being able to determine the optimal

weights beforehand.

1.5 Outline

This chapter has identified a significant lack of attention in the domain of automated

matchmaking on the labor market, given the potential improvement of efficiency and

financial performance. More exactly, using unprocessed CVs and vacancies as input to

job matchmaking applications has been neglected in recent years due to disappointing

early results. In this thesis, I propose an alternative approach to job matching that

uses unprocessed CVs and vacancies as input. The proposed architecture will be imple-

mented in order to answer the research question and assess the validity of the hypothesis

posed in the previous section. The performance of the application will be compared to

both human performance and performance of the statistical full content search method,

the latter of which has previously yielded slightly disappointing results, leading to the

abandonment of the approach that uses unprocessed documents as input.

In Chapter 2, relevant methods and techniques from the field of Artificial Intelligence

will be set forth, and the architecture that combines these techniques into an application

will be laid out in Chapter 3. The experimental setup of the current research will be

described in Chapter 4. Chapter 5 presents the results yielded by the experiment. A

discussion of these results, the employed methods and its position in the field will be

presented in Chapter 6, and this thesis will be concluded in Chapter 7.

Chapter 2

Methods

We are drowning in information,

but starving for wisdom.

Edward Osborne Wilson

American biologist and author

Chapter 2 describes the methods and techniques that will be used to build the pro-

posed matchmaking application. Since the matching process is divided in two phases,

this chapter is comprised of two parts. The first section explicates Information Extrac-

tion, a method from the domain of Natural Language Processing. The second section

focuses on Evolutionary Algorithms, which are an optimization method.

Information Extraction focuses on identifying relevant pieces of information and their

interrelationships in a text. A famous test bed for this technique is the detection of the

central event in a short newspaper article, including key people and organizations. The

current purpose of Information Extraction is to extract candidate profiles from CVs and

job profiles from job descriptions, including name, role, and relevant skills. That way,

the profiles can be stored in a standardized and structured way, paving the way for the

actual matchmaking step. In essence, Information Extraction is the practice of cleverly

combining other Natural Language Processing techniques, including pattern matching,

tokenization, and Named Entity Detection, in such a way that the relevant pieces of text

are identified. These techniques are described in the first half of this chapter.

The second phase of matchmaking starts with two databases of structured candidate

and job profiles, respectively, and consists of finding the right job for the right candidate.

This is done by executing a complex search query, with sub-queries for each field in a

candidate profile paired up with the field in a job profile. As described in Chapter 1, it

is impossible to accurately determine which of the field-pairs are more important and

11

Methods 12

which are less important [1, 17, 19]. An Evolutionary Algorithm will therefore be used

as an optimization technique for the relative importance of the field-pairs. Since Evolu-

tionary Algorithms are thus a main component of the second part of the matchmaking

application, the second half of this chapter will describe them in detail.

This chapter will give, as described, a thorough overview of the relevant methods and

techniques from the field of Artificial Intelligence. Chapter 3 will subsequently describe

in further detail how these methods and techniques will work together to achieve the

ultimate goal; matchmaking between CVs and job descriptions.

2.1 Information Extraction

Information Extraction (IE) is an application of Natural Language Processing, a part

of the broader process of Text Mining, and focuses on distilling information including

names, dates and locations from naturally occurring text. As Jurafsky and Martin

put it, the “process of Information Extraction ... turns the unstructured information

embedded in texts into structured data. More concretely, Information Extraction is

an effective way to populate the contents of a relational database.” [38, p.759] This

is exactly the purpose of the first phase of the current matchmaking process. Unless

denoted otherwise, the Information Extraction techniques described in this section are

adapted from one of the leading textbooks on Natural Language Processing [38].

Given the relatively narrow domain of matchmaking on the labor market, relevant

documents correspond to fairly common, stereotypical situations: profiles of candidates

and jobs. These abstract situations can be captured in a script, which is a prototypical

representation of the sequences of events, participants and roles in a situation [39, 40].

Scripts can be represented as a template consisting of a fixed set of slots that for each

new text need to be filled with the appropriate values from that text. Maintaining the

parallel with relational databases, a template can be seen as consisting of the column

headers of the table. For each new document, a new row is inserted, of which the cells

need to be filled with appropriate pieces of text from the document. As an example, a

simplified version of one of the scripts used in the current application is given in Table

2.1.

Table 2.1: Simplified version of the candidate script used in the application.

CANDIDATE Name Donald Duck
Roles Coin cleaner,

Factory worker,
Driver

Location Ducktown

Methods 13

The explicit representation of scripts or templates imposes strong expectations about

the contents of the text, which can facilitate the assignment of entities into roles and

relationships, and help draw inferences about implicit aspects of the text. For instance,

when filling the template in Table 2.1, an application should expect to find job titles

and names of people and cities in the text at hand, which helps disambiguation where

multiple meanings are plausible. Once the elements of interest have been identified, they

may be directly transported to the template or go through an additional processing step

first. This additional processing can for instance consist of standardizing dates and times

or amounts, or the comparison of the identified elements with gazetteers or other types

of ontologies, as will be described later.

Statistical sequence labeling approaches to template filling are surprisingly effective

[41, 42]. These approaches use statistical classifiers (often Hidden Markov Models) that

determine the probability that a certain piece of text fits in a cell in the template, based

on its textual and contextual similarity to previously identified slot-fillers. However, the

constrained nature of the tasks at hand is a great factor in the impressive results. The

documents used for these approaches were all small, relevant and homogeneous. They

always contained fillers for the slots of interest, which were also limited in number, and

the document size left little room for distracting elements [38]. Situations where dealing

with considerably more complex documents is required, such as the problem currently

at hand, need an approach more grounded in the structure of the text and language

[38, 43].

The structure of a document often gives a first indication of the relations between

different pieces of the text. CVs and job descriptions inherently provide a lot of structural

information, as most of these documents consist of small pieces of text, usually laid out

in tables or short paragraphs denoted by specific headings. This makes the process of

Information Extraction both easier and more complex. Structural information can be

extremely useful in determining which parts of a text belong together, and what they

are about. However, most IE methods determine the function and relevance of pieces

of text by looking at the context. In tables and other similar structures, most of the

context and even functional words have been stripped out. This leaves only bare nouns

and fragments of phrases, which makes it harder to recognize the function and relevance

of this piece of text.

Extracting semantic notions such as the aforementioned names and locations from

natural language is a non-trivial task. In order to achieve results nonetheless, Infor-

mation Extraction solutions are often clever combinations of more elementary methods

commonly applied in Natural Language Processing. To the extent they are used in

the application created for this thesis, these methods are introduced in the following

Methods 14

sections. The first method discussed is the relatively rigid, but nevertheless effective,

Pattern Matching. Next, Tokenization is the preparatory step for more advanced meth-

ods including Named Entity Detection and the use of ontologies. How these techniques

are fused into a full-fledged Information Extraction system will be explicated in Chap-

ter 3, where the architecture of the application and the combination of methods are

described.

2.1.1 Pattern matching

Most CVs and job descriptions have a table at the outset of the document, containing

basic information such as the candidate’s name, date of birth and residence, or the

title, contact details and location of the job. The availability of this information in a

semi-structured fashion can be exploited by detecting the table headers using pattern

matching. In case of a horizontally oriented table, with its headings in the first column,

the cells in the same row as a certain heading can, with high confidence, be taken as

the value corresponding to that heading. Indeed, if the first column of a table in a CV

contains cells with terms like ‘Name’ and ‘Location’, the cells adjacent to those cells

most likely contain the name and location of the candidate.

Pattern matching is a technique aimed at finding an exact pattern in a string of text.

In computer science, these patterns are usually defined as Regular Expressions, a lan-

guage used for specifying search strings. Regular Expressions were designed and proven

equivalent to Finite State Automata (FSA) by Kleene [44], and inspired by the Turing

machine [45] and the McCulloch-Pitts Neuron [46]. Formally, Regular Expressions are

a means to characterize sets of strings in an algebraic notation, and they are used to

recognize any string from the defined set in a corpus, the search space. In other words,

Regular Expressions can be seen as a search string, where sets of keywords or key phrases

can be compounded into a single query. The building blocks of Regular Expressions are

standard alphanumeric characters that are to be recognized, and special characters to

perform operations on the alphanumeric characters. These operations include negation

(ˆ), disjunction ([AB] or A|B) and repetition (+ or ∗). Additionally, there are special

sequences that help identify special positions in the text, such as word boundaries (any

position between a letter and a non-letter, \b), digits (0-9, \d) or ‘word-characters’

(mostly letters, \w). Table 2.2 gives several examples of Regular Expressions. More

specific examples of Regular Expressions as they are used in the application described

in this thesis will be given in section 3.2.1.

Methods 15

Table 2.2: Regular Expression examples.

Regular Expression Results
abaa abaa, aabaa, babaa, abaaa, abaab, aabaaa, babaab, . . .
\b abaa \b abaa, -abaa-, . . .
abaa|b abaa, b, . . .
aba(a|b) abaa, abab, . . .
aba∗ aba, abaa, abaaa, abaaaa, . . .
(aba)∗ aba, abaaba, abaabaaba, . . .

2.1.2 Tokenization

Tokenization is the task of segmenting running text into tokens; words or sometimes

groups of closely related words. In English, and other languages using the Latin alpha-

bet, this is a simple task at first glance, since words are separated by a special character:

the whitespace character. Other languages, such as Chinese and Japanese, do not have a

specific character to denote word separations, making tokenization more difficult. How-

ever, the whitespace character separator is not a sufficient tokenizer for English either, as

this would separate the words ‘San Francisco’, while they arguably form a single token,

as they have no meaning separately. Similarly, from the perspective of tokenization,

punctuation could be seen as forming word boundaries, were it not for special cases

such as hyphens (‘the 28-year-old woman’), abbreviations (‘i.e.’), dates (‘01/01/2014’),

numbers (‘123,456.78’), and websites (‘http://www.google.com’). Finally, depending on

the intended use of the tokenized text, a tokenizer may be required to resolve clitics and

contractions such as “we’re” in English or “j’ai” in French.

Tokenization is used as the first processing step in many Natural Language Processing

applications, as most techniques that are more advanced require the input text to be

tokenized. For that reason, tokenization plays an important role as first step for pieces

of running text in the current application. Albeit not always the case, tabular text

often consists of single words or very short phrases, making it ineligible for tokenization.

However, the previously described Regular Expressions (Section 2.1.1) already cover

most of the relevant information that is presented in a tabular way.

Contemporary implementations of tokenizers are rule-based and language specific, of-

ten supplemented by a dictionary containing multi-word expressions that should not be

separated, such as the aforementioned ‘San Francisco’ and ‘Natural Language Process-

ing’. Often, these dictionaries are partially constructed using Named Entity Detection

(described in Section 2.1.3) because most entries in such dictionaries are in fact named

entities. At the same time, Named Entitiy Detection requires tokenized text as input.

Tokenization and Named Entity Detection thus have a very close relationship.

Methods 16

2.1.3 Named Entity Detection

The term named entity can be applied to anything that can be referred to with a

proper name. Examples of this are people, organizations, and geographical entities

such as countries, cities, streets and other named locations. Also commonly designated

as named entities are temporal expressions such as dates and times, and numerical

expressions such as amounts of money. As is often the case in natural language, named

entities can be ambiguous. When ‘Washington’ is mentioned in a text, this can refer

to a myriad of things; one of the Founding Fathers of the United States, the capital of

the United States, a metonymy for the U.S. government, the U.S. state, or one of many

streets, hospitals and other places named after the aforementioned.

Named Entity Detection is the task of detecting these named entities in a text and

identify the category of named entities they belong in. Hereby, disambiguation needs

to be performed often, such as for the aforementioned named entity ‘Washington’. The

context of named entities is crucial in the disambiguation process, as the words around

named entities often give important clues about the category of that named entity. For

instance, if a text contains the phrase “I talked to Washington”, it becomes immediately

clear that this “Washington” cannot be a state, town or other geographical entity, but

rather that it is most likely a person.

The problem faced in Named Entity Detection (NED), also known as Named Entity

Recognition, is similar to that of Part Of Speech (POS) taggers. Where Named En-

tity Detectors assign (sequences of) words to several categories of named entities, POS

taggers assign words to their corresponding lexical classes. Since parts of speech and

categories of named entities form relatively small closed sets, POS tagging and NED

essentially boil down to classification problems. With this in mind, statistical classifiers

such as Hidden Markov Models (HMMs) are often applied to these problems. HMMs

(using the Viterbi algorithm) maximize the likelihood of words being of a certain class,

and the probability of certain tag sequences occurring together, and assign the word(s)

to the category with the highest probability. In order to train the HMMs, large anno-

tated training texts are necessary, not uncommonly consisting of up to 15,000 example

sentences. Tailoring these training sets to specific use cases is extremely labor intensive,

leading to efforts to extract annotated data from readily available sources [47].

In the current application, NED is used to extract several types of named entities. If

the name of the candidate has not been found using Regular Expressions as described in

Section 2.1.1, an attempt is made to find the candidate’s name using NED. This works

especially well for common names that are represented in the example sentences. Names

that are underrepresented in the example sentences, for instance foreign names, are less

Methods 17

likely to be detected. In a similar way, the names of cities and towns are detected to

determine the place of residency of the candidate, and the location of the job.

2.1.4 Ontologies

An ontology is an hierarchical representation of knowledge of a certain domain, denoting

relevant concepts in that domain and their interrelationships. Since the previously

mentioned methods are all based on either assumptions or probabilities, they are often

not able to reach an accuracy of 100%. In certain situations, it can be practical to use

ontologies as additional means of detecting certain entities or concepts related to the

subject of the ontology.

The most widely accepted ontologies to be used in Natural Language Processing in

general, and Named Entity Detection in particular, are gazetteers; geographical directo-

ries that alphabetically list the names of towns, regions, and landmarks that appear on

a map of a certain region. Lists of persons and organizations are deemed less effective,

since these would require a lot more maintenance because of their more volatile nature.

Additionally, long lists containing more than the most well-known named entities only

slow the detection process down, but do not significantly increase the performance [48].

Once a suitable ontology has been selected or created, its application is fairly straight-

forward. When concerning Named Entities, the gazetteer or ontology can be used before

or after the Named Entity Detector. When applied first, the speed of the system can be

decreased depending on the size of the ontology, since all terms need to be searched for

in the text. Since only exact matches are found by utilizing the ontology, Named Entity

Detection will afterwards be employed to detect false negatives. When the ontology is

applied last, the detected Named Entities are compared to those defined by the ontology,

increasing accuracy by removing any false positives and thus confirming true positives.

Depending on the type of problem, a suitable order of the two methods is determined.

Ontologies are used by the current application in the form of gazetteers to find place

names, in addition to those found by Named Entity Detection. Furthermore, they are

used to detect names of programming languages and other software applications, as well

as educational institutions. How this is achieved exactly will be described in Section

3.2.3.

2.1.5 Post-processing

After the completion of Information Extraction, the values assigned to certain fields

require post-processing. Hereby, two techniques from Natural Language Processing are

Methods 18

utilized. The simplest of the two is stop word removal, which is the practice of removing

words from a text that are not central to the topic. These words are usually the most

common words, which appear in many texts without being indicative of its subject,

and therefore are not instrumental to the searching process. Examples of stop words

are ‘the’, ‘and’, ‘of’, and ‘with’. Removing stop words from the sentence “Peter is a

software dseveloper with experience” might, depending on the exact implementation,

yield “Peter software developer experience”.

A somewhat more complex technique is stemming. This technique reduces inflected

or derived words to their stem, in such a way that the meaning of the word is not sig-

nificantly destroyed. An example of stemming is reducing the words ‘programming’ and

‘programmer’ to the stem ‘program’. The most elementary stemmers work using a look-

up table, of which the size would need to be gigantic for use in a real-life application,

whereas more sophisticated stemmers use a compound of rules to reach the correct stem,

including the default removal of the ‘-ed’, ’-ing’, and ‘-ly’ suffixes. The de-facto stan-

dard for English stemming is the Porter stemming algorithm [49], whereas the Snowball

stemming framework, which is also devised by Porter [50], is most commonly used for

implementations of stemming in other languages.

2.2 Evolutionary Algorithms

The second part of this chapter describes Evolutionary Algorithms, which are a central

part of the second phase of the matchmaking application: the actual matching step.

Matchmaking occurs by executing a complex search query on the database of jobs, with

sub-queries for each field in a candidate profile. The exact structure of these queries

will be shown in Section 3.3. As described, the relative importance of the fields, and the

corresponding sub-queries, cannot be determined beforehand. Evolutionary Algorithms

are therefore used in the application to optimize the relative importance parameters for

the search query, using manually scored matches.

2.2.1 Fundamentals

Evolutionary Algorithms are population-based stochastic metaheuristic optimization al-

gorithms based on the Darwinian principles of evolution [51]. In his famous work On

The Origin Of Species [52], Darwin laid out his theory of natural selection and survival

of the fittest, which forms the basis of contemporary evolutionary biology. In a popula-

tion of stable size, and faced with limited resources such as food or space, a struggle for

life ensues. Due to variation within the population, some individuals are better adapted

Methods 19

to their surroundings than others; they are fitter. Given their heightened ability to

negotiate the environment, the fitter individuals have a higher chance of reproducing.

The varying traits are hereditary through DNA, meaning that the advantageous traits

will likely persist over generations, while disadvantageous traits exhibited by less fit in-

dividuals will slowly die out. Sexual reproduction combines relatively fit parents to form

potentially fitter offspring with DNA, and thus traits, from both parents. Occasional

mutations in the DNA help maintain variation in the gene pool by introducing new

genes.

The principles of evolution as described here form the inspiration for Evolutionary

Algorithms. A fixed-size population of candidate solutions (individuals) is maintained

for many generations. Within each generation, candidate solutions compete with each

other for limited resources; a finite number of positions in the subsequent generation.

New candidate solutions are generated by sexual reproduction. Two parent solutions,

selected randomly, but usually with a bias for a higher fitness, recombine their genes

to form offspring solutions. The now enlarged population is trimmed down to the fixed

size, based on the relative performance of each candidate solution [53]. Hereby, there

is a bias towards the best performing individual, while often some suboptimal solutions

are carried over as well, to preserve a heterogeneous population. Additionally, variance

in the population is promoted by a mutation operator, which randomly alters genes

between generations.

Evolutionary Algorithms offer a lot of freedom, leaving it up to the user to choose how

candidate solutions are represented, and which genetic operators are implemented and

in what way exactly. There is no need for examples labeled with their ideal output, as

only relative performance is taken into account by Evolutionary Algorithms, expressed

as an individual’s fitness. Offspring solutions are generated by recycling parts of parent

solutions and the search space is expanded by random mutations. No restrictions are

posed on the means of determining the fitness of a candidate solution, allowing for

indirect evaluation by an external algorithm [53].

Additionally, there is a vast number of internal parameters that can be adjusted,

such as the size of the population, the number of offspring, and probabilities of being

selected as parent or surviving to the next generation [51, 53]. Almost all of these options

are important to the functioning of the algorithm, with the means of representation and

fitness determination arguably being the most crucial ones [54]. Careful consideration of

the available options is thus necessary to implement an effective Evolutionary Algorithm.

According to Holland’s Schema Theorem [55], schemata1 that contribute more than

averagely to the overall fitness increase exponentially in subsequent generations. Once

1Templates identifying subsets of candidate solutions with similarities at certain positions

Methods 20

the Evolutionary Algorithm has ran through a sufficient number of generations, the

candidate solutions with the highest fitness can be said to be probably approximately

correct [56], a term that stems from computational learning theory [57]. Computational

learning theory assumes that a solution that is consistent with a large set of examples

is a solution that, with a high probability, is approximately correct. This is based on

the hypothesis that a candidate solution that is seriously wrong will almost certainly be

proven faulty already after a small amount of evaluations [54].

2.2.2 Representation

In Evolutionary Algorithms, the representation of individuals, their ’DNA’, is one of the

most crucial aspects [54], as it needs to be able to represent all possible solutions to the

problem. The most elementary representation is a string of bits, but other alphabets

such as letters, integers or even real-valued numbers can be used.

Depending on the type of problem, additional constraints can be applicable to the

individuals. In the classical example of the Travelling Salesman Problem (TSP), the

task is to optimize the route of a salesman travelling through several cities. The goal

is to find the shortest route starting and finishing in the same city, while visiting every

other city exactly one time. Thus, candidate solutions for the TSP are represented as

arrays of names of cities that can contain every city exactly once, except for the starting

point.

2.2.3 Fitness

As mentioned, the fitness of a candidate solution represents its performance on the task

at hand. The architecture of Evolutionary Algorithm leaves a lot of freedom regarding

the implementation of the fitness function, the only constraints being that the output is

numerical, and consistent over multiple evaluations of the same individual. Unlike many

other methods, including Artificial Neural Networks, Evolutionary Algorithms therefore

do not require examples labeled with the corresponding ideal output. This paves the

way for external evaluations, where not the actual parameters determine the fitness, but

the performance of an algorithm executed with those parameters.

Fitness functions range from elementary operations, such as addition or multiplication

of integer genes, to very complex external functions executed with the values of the

individual’s genes as parameters. The outcome of the fitness function can be defined

as a reward or a punishment; in the former case a higher fitness score is better and

in the latter case a lower fitness score is better. For the TSP, the fitness function is a

Methods 21

cumulative punishment, as its goal is to minimize the total distance travelled, which is

equal to the sum of distances.

2.2.4 Genetic operators

Genetic operators are the means of creating candidate solutions that differ from the cur-

rently available candidate solutions. Due to the fact that fit individuals have a higher

probability of being selected as parents, offspring candidate solutions likely express ad-

vantageous traits inherited from their parents, possibly leading to combinations that

perform even better.

The most basic genetic operator is mutation. It takes a single parent and, depend-

ing on the implementation of the individual, randomly alters an elementary part of the

genome. In bit string representations, mutation can entail randomly flipping a bit. In

letter, integer or real values, mutation generally consists of replacing a value at a random

position with a random other accepted value. In the case of the TSP, this is impossible

since this would always result in an invalid solution. Mutation is therefore often imple-

mented for the TSP as swapping two random cities. As this example indicates, careful

consideration of the genetic operators in relation to the representation is necessary to

avoid the creation of invalid solutions.

The other genetic operator is crossover, the recombination operator. Here, two par-

ents are selected to mate, resulting in offspring with combined traits of both parents.

There are several types of the crossover operator, the effectiveness of each of them

depending on the representation of the individuals. One-point crossover most closely

resembles biological recombination, as it divides the parents’ genomes in two halves and

swaps the halves on one side. Two-point and N-point crossover work in a similar fash-

ion, with multiple places where the genomes are sliced. These forms of crossover are

especially useful when adjacent genes are in some way related to each other. In cases

where adjacent genes are independent of each other, uniform crossover may be a more

appropriate operator. This method treats each gene individually, swapping the genes

from the two parents at that position with a certain probability.

More complex restrictions on the representation of individuals require more complex

crossover operators, as the standard crossover operations result in invalid sequences.

Examples of more complex crossover operators are order crossover, partially mapped

crossover, position crossover and maximal preservative crossover. These forms of crossover

are suitable for recombination of individuals where, for instance, each gene can only ap-

pear once, such as in the TSP.

Methods 22

Depending on the desired ratio between exploitation, sticking with the best solution

so far, and exploration, trying out new solutions, genetic operators can be applied on

their own or in combination. Concretely, this means that an exploratory implementation

of an Evolutionary Algorithm can choose to generate the entire new population through

crossover, after which the mutation operator is applied to all offspring individuals. This

leads to an offspring generation that differs relatively much from the parent generation,

focusing on the exploration aspect of the search for the optimal solution. Alternatively,

letting individuals participate only in either crossover or mutation lies the emphasis

more on exploitation, decreasing the probability of destroying high quality schemata and

thus focusing on exploitation. Many Evolutionary Algorithms implement a combination

of exploration and exploitation, decreasing the probability of crossover and mutation

occurring as the generations progress.

2.2.5 Selection

Once parents have been selected by means of their fitness and genetic operators have

been applied to create offspring, the size of the population has greatly increased. In

order to implement the principle of limited resources, a selection algorithm will each

generation trim the population down to its original size. As stipulated by the theory of

survival of the fittest, the relatively unfit individuals have a smaller chance of making

the cut.

The harshest selection method is truncation selection, whereby simply the fittest

N (N being the original population size) individuals are carried over and the rest is

discarded. To maintain the heterogeneity of the population, more moderate algorithms

have been devised. In tournament selection, random small fixed-size subsets of the

population are taken, of which the individual with the highest fitness is carried over to

the next generation. This is repeated until the next generation’s population is full. A

third algorithm is fitness proportionate selection, also known as roulette wheel selection,

where the probability of an individual i being selected is equal to its normalized fitness

(Equation 2.1).

fi
∑N

j=1
fj

(2.1)

An adjustment that can be made to any selection operator is elitist selection, where

the highest-scoring individuals of the parent generation are carried over as-is, and the

rest of the individuals are selected by means of one of the other described selection

operators.

Methods 23

2.2.6 Generations

Calculating the fitness, applying genetic operators and trimming down the population

using selection are processes that are repeated every generation that the algorithm runs.

In order to reach optimal results, this compound of operations needs to be repeated many

times. Depending on the complexity of the problem, the number of generations needed

before the algorithm converges on an optimum can vary from several dozens to hundreds

or even thousands of generations. The feasibility of such vast numbers of generations

primarily depends on the size of the population and the implementation of the fitness

function. With the processing power of modern computers, evolving a relatively small

population with a relatively simple fitness function over a thousand generations falls

perfectly within the range of possibilities. However, if calculating the fitness of a single

individual is more complex, and takes for instance one second, calculating 100 fitnesses

over 1000 generations takes 100.000 seconds, or almost 30 hours.

There are several possible methods for specifying the stop condition of the Evolution-

ary Algorithm. The first and most obvious option is limiting the number of generations

to a fixed amount. The individual that has the best fitness at that point is taken as the

final solution. Another option is to determine a target fitness, and to let the algorithm

run until the best individual reaches that target fitness. Choosing the second option can

be dangerous, since it is not always certain that the target fitness will ever be reached.

To avoid this problem, a combination of the two is sometimes made; the algorithm runs

until it reaches a target fitness, unless a predetermined maximum number of generations

is reached. The final option is to not limit the maximum number of generations, or the

desired fitness, but to let the algorithm run until no improvement is seen over a number

of generations.

2.3 Conclusion

Chapter 2 has described the two main methods that will be used in the proposed ap-

plication for matchmaking on the labor market; Information Extraction and Evolution-

ary Algorithms. Information Extraction is a sub-field of Natural Language Processing,

and focuses on identifying relevant words and phrases in a text, by using lower-order

techniques such as pattern matching, Named Entity Detection and applying ontologies.

Evolutionary Algorithms come from the field of Computational Intelligence and are

population-based stochastic optimization algorithms based on the principles of natural

evolution as first identified by Charles Darwin [52].

Methods 24

With these techniques in mind, the next chapter will describe how the proposed

application is built. All components of the application will be described, including how

they cooperate in selecting suitable matches between candidates and jobs.

Chapter 3

Application

Any sufficiently advanced bug is

indistinguishable from a feature.

Rich Kulawiec

This chapter contains a detailed description of the architecture of the application,

including the roles of the different techniques as laid out in Chapter 2, their position in

the software application, and exactly how they cooperate towards reaching the ultimate

goal: suggesting matches between CVs and job descriptions.

Due to the various tasks that need to be performed by the application, it consists

of several subroutines. From an Artificial Intelligence point of view, the two main

components are the document parsers, which use Information Extraction (as described in

Section 2.1), and the parameter optimizer, which consists of an Evolutionary Algorithm

(see Section 2.2). Other important components are the data storage and matcher, and

included as auxiliary components are a web crawler and a web application that functions

as a user interface.

Figure 3.1 gives a schematic overview of the architecture of the application, highlight-

ing the positions and interrelationships of the different components. The main horizontal

axis represents the actual matchmaking process: A CV is taken from the data storage,

a query is constructed by the matcher and executed on the stored job profiles, resulting

in a number of suggested matches. The two smaller vertical axes depict the information

extraction steps that fill the relational databases with the appropriate pieces of text

from the CVs and job descriptions. Finally, the circular path is the feedback loop that

provides the parameters that determine the relative importance of the different fields in

the match query. This feedback loop is carried out by an Evolutionary Algorithm that

learns over time through suggested matches that are scored by the user.

25

Application 26

Figure 3.1: Schematic overview of the architecture of the application.

3.1 Data storage

The data storage forms the core of the matchmaking application, since this is the place

where crawled and parsed CVs and job descriptions are stored, until they are picked

up to be matched to each other. It also stores the matches that result from the query

created by the matcher, as well as the scores assigned to them by the user. These scores

can then be used by the Evolutionary Algorithm from the feedback loop to optimize the

search parameters. The data storage as used in the application is represented in Figure

3.2.

Figure 3.2: Data storage as used in the application.

Although at first glance the obvious choice for the data storage in the application

is a traditional Relational DataBase Management System (RDBMS) such as MySQL,

Big Data search solution ElasticSearch1 is elected as the data storage in this thesis.

ElasticSearch is based on search library Apache Lucene2, and offers storage capabilities

that are functionally equivalent to an RDBMS. ElasticSearch is especially apt at dealing

with large quantities of data. On large data sets, ElasticSearch outperforms RDBMSs

at data retrieval and analysis, including pattern discovery and search. The sequential

1http://www.elasticsearch.org
2http://lucene.apache.org/core

http://www.elasticsearch.org
http://lucene.apache.org/core

Application 27

nature of these processes in traditional systems results in unrealistically long processing

times [58], whereas ElasticSearch takes a more distributed approach, which yields a

faster system. An additional advantage of ElasticSearch is that it offers a wide range

of processing capabilities, including an advanced query language, right out of the box.

While this is not especially relevant in terms of data storage, it makes building the

matcher (as presented in Section 3.3) a lot less complex.

The data storage consists of four indices, which are ElasticSearch’s equivalent to

tables; one for candidate profiles, one for job profiles, one for generated matches, and

one for the Evolutionary Algorithm’s population. Candidate profiles consist of the fields

ID, name, date of birth, location, education, roles, programming languages, software,

and full content of the CV. Job profiles contain fields for the ID, job title, location,

keywords, and the full content of the job description. Matches contain fields for the

names and IDs of the candidate and job that have been suggested as a good pairing, the

similarity score from the match algorithm, and the score assigned by the user. Finally,

the population, which will be described into more detail later in this chapter, contains

numerical weights for each of the fields in a candidate profile, plus the calculated fitness

for that individual.

3.2 Document parsers

Although internally complex components, the role of the document parsers, one for

CVs and one for job descriptions, in the application is relatively simple. As previously

mentioned, and depicted in Figure 3.3, their role is to extract the relevant pieces of

content from CVs and job descriptions in order to store candidate and job profiles in a

relational fashion.

The document parsers are written in the programming language Java, and use content

analysis toolkit Apache Tika3 to extract the contents from the uploaded documents,

including Microsoft Word (.doc), Adobe Portable Document Format (.pdf), and plain

text (.txt) files, in the form of XHTML. Subsequently, HTML Document Object Model

(DOM) parser JSoup4 is employed to traverse the XHTML.

3.2.1 Pattern matching

As described in Section 2.1.1, pattern matching is used to extract information from

tables that are usually found at the top of CVs and job descriptions. First, it needs to

3http://tika.apache.org
4http://www.jsoup.org

http://tika.apache.org
http://www.jsoup.org

Application 28

(a) CV parser (b) Job parser

Figure 3.3: Architectural view of the CV parser and Job parser.

be determined whether certain keywords are present in a table. These keywords include

name, date of birth and location, as this is the information that is most often presented

in a tabular fashion at the top of a CV. If it has been established that some of the selected

keywords are present in a table, the orientation of the table needs to be determined, as it

can be oriented horizontally or vertically. If all keywords occur in the same column, the

table and its key-value pairs are oriented horizontally, whereas when all keywords occur

in the same row, the table and its key-value pairs are oriented vertically. In case of a

horizontally oriented table, the cell to the right of the cell containing the name keyword

is assumed to contain the candidate’s name, the cell to the right of the cell containing

the location keyword is assumed to contain the location of the candidate, etcetera. In

case of a vertically oriented table, the cells below the cells containing the keywords are

taken to contain the corresponding value.

Table 3.1: Examples of horizontal and vertical tables.

(a) Horizontal table

Name Donald Duck

Residence Ducktown

(b) Vertical table

Name Residence

Donald Duck Ducktown

Below, the Regular Expression to detect keywords associated with candidates’ names

in CVs is displayed. [] and | indicate disjunction, ? indicates optionality, \s indicates

a space character, and ∗ denotes ’zero or more’. The entire Regular Expression thus

searches for a string optionally starting with either ‘voor’, ‘roep’, ‘volledige’ or ‘achter’,

all optionally starting with a capital. After that, an optional space follows, and then

either ‘naam’ or ‘namen’, optionally with a capital. This entire string may be followed

by zero or more spaces, colons, semicolons, commas or periods.

Application 29

([V v]oor|[Rr]oep|[V v]olledige|[Aa]chter)? \s? [Nn]a(am|men) (\s| : |; |, |.)∗ (3.1)

3.2.2 Tokenization and Named Entiy Detection

Pieces of text that are not structured into tables, and text in tables wherein no keywords

can be recognized, need to be tokenized in order to apply any further processing methods.

For this purpose, Apache OpenNLP5 with training models6 in the Dutch language are

used.

After completion of the tokenizer, the same Natural Language Processing software

package is used for Named Entity Detection in the tokenized text. Particularly, the

types of named entities that is searched for are names of persons, names of places, and

dates. In cases where the pattern matching approach has not been able to isolate the

candidate’s name, residence or date of birth, the detected names, locations and dates

are used to fill these slots. Thereby, it is taken into consideration that the values should

be plausible; a date that is less than twenty years ago, or more than seventy years ago,

is not likely to be a candidate’s date of birth.

3.2.3 Ontologies

As laid out in Section 2.1.4, ontologies can be used as an additional means of detecting

concepts related to the subject of an ontology. They can either serve as extra check

after pattern matching or named entity detection, to detect false positives, or to find

results when the other two methods fail, to detect false negatives. In the former case,

the detected pieces of text are compared to entities in the ontology. In the latter case,

the entire text is compared to the ontology in order to find the words in the text that

also occur in the ontology.

The most widely accepted ontologies used in Natural Language Processing are gazet-

teers, or lists of geographical entities. Here, a gazetteer is used to check detected loca-

tions, and if none were detected, to find suitable locations in the text. Ontologies are also

used to detect keywords specific to the IT domain: programming language and software

applications, since those are important characteristics on the CV of an IT professional.

5http://opennlp.apache.org
6http://opennlp.sourceforge.net/models-1.5/

http://opennlp.apache.org
http://opennlp.sourceforge.net/models-1.5/

Application 30

Since it is deemed infeasible to maintain most large ontologies manually [47], DBPedia

Spotlight7 is used as means for detecting entities from an ontology in the text. This appli-

cation uses DBPedia8, structured information extracted automatically from Wikipedia9,

as its main ontology. Due to the massively collaborative nature of Wikipedia, one can

expect this ontology to be relatively up-to-date, especially on well-known and popular

subjects. Since programming languages and software applications are standard cate-

gories on Wikipedia and thus in DBPedia, it is a trivial task to extract entities from

those categories from text using DBPedia Spotlight.

3.2.4 Post-processing

After all the information has been extracted, some of the fields require post-processing.

Examples of such fields include fields that contain dates and fields that contain relatively

long texts.

In natural language, there is a myriad ways of denoting a certain date, some of which

require disambiguation. For instance, the date ‘June 5th, 2014’ can also be referred to as

‘the 5th of June 2014’, ‘06/05/14’ in the United States, or ‘05-06-14’ in most other parts

of the world. For post-processing dates, natural language date parser Natty10 is used.

This is a small application that accepts dates in any of the aforementioned formats,

and many more, and parses those dates into an abstract, object-oriented representation.

Afterwards, one can specify a format wherein the parsed date should be output.

For textual fields, it can be useful to apply stemming and stop-word removal. As

described in Section 2.1.5, stemming is the practice of removing inflections, leaving only

the bare stem of the words: ‘programmer’ and ‘programming’ are both stripped to

‘program’ and will thus lead to a match. Stop-word removal is, as indicated by the

name, the process of stripping the text of all irrelevant stop-words, mostly functional

words, such as ‘the’, ‘this’, and ‘for’. Both techniques are built-in in ElasticSearch, and

they are used with the default parameters as provided by the search library.

3.3 Matcher

The matcher is the component where, from a functional point of view, the magic of

the application happens; this is the component that finds relevant job descriptions for

7https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki
8http://dbpedia.org
9http://www.wikipedia.org

10http://natty.joestelmach.com/

https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki
http://dbpedia.org
http://www.wikipedia.org
http://natty.joestelmach.com/

Application 31

available candidates and presents them as suggested matches. However, because the

other components of the application carry out so many supporting tasks, all that is left

to do for the matcher is combine all of the information into a search query and execute

this query on the database of job profiles. This process is represented in Figure 3.4.

Figure 3.4: Architectural view of the matcher.

The starting point for the matcher is the database of candidate profiles. First, can-

didates for which matches need to be suggested are selected. The search query is subse-

quently built using the content of the candidate profile and the weight values provided

by the parameter optimizer (for the latter, see Section 3.4). The search query is schemat-

ically represented in Figure 3.5.

Figure 3.5: Schematic representation of the search query.

The top left square in Figure 3.5 represents the main query: the compatibility of

the candidate with jobs. The main query is disjunctively divided in eight sub-queries,

represented by the eight squares below it. In this case, a disjunction is preferred over

a conjunction, because if a field is absent in the candidate profile or if the term is not

present in the job profile, then this does not necessarily mean that the candidate and

job as a whole are incompatible. Each of the sub-queries takes the content of one of

the fields in the candidate profile, and searches the corresponding field of the current

job profile to determine the measure of similarity. The labels w0 through w7 are the

weights assigned to the different fields from the candidate profile and their corresponding

sub-query by the parameter optimizer. The overall measure of compatibility between a

candidate and a job is the sum of measures of similarity from each sub-query multiplied

by their corresponding weights. Potential matches are then ordered by compatibility

score, whereby the highest scoring candidate-job matches are suggested first.

Application 32

3.4 Parameter optimizer

Optimizing the search parameters, the weights of the different fields and their corre-

sponding sub-queries as laid out in the previous section, is an important task in the

application. Without this subroutine, it is unclear which of the fields are more impor-

tant and which are less important for determining the agreement between candidates

and jobs. The parameter optimizer can be seen as a learning agent; an Artificial In-

telligence technique will form the learning element, while the matcher from Section 3.3

forms the performance element used to assess the quality of potential solutions [54].

There are two leading sub-fields in Artificial Intelligence; symbolic AI and sub-

symbolic AI. Symbolic AI, also dubbed Good Old-Fashioned AI (GOFAI), encodes

aspects of intelligence in the form of symbols and rules, using logic and reasoning to

make inferences; all notions that are central to the field of Artificial Intelligence [54].

The symbols are representations themselves, such as words, which stand for concepts in

the real world, or have a straightforward mapping to a set of words, making them inter-

pretable for humans. Sub-symbolic AI, on the other hand, often encodes knowledge in

a for human beings less meaningful way; in sets of numerical patterns [51]. As a result,

sub-symbolic AI algorithms often work as a black box, with no way for a human to trace

the system’s steps and find out why or how the system came to the given output. Both

areas have their respective merits and their faults, and excel at solving different types

of problems.

In the literature it is deemed infeasible to accurately determine a priori what the

optimal distribution of weights should look like. Although intuitions can be somewhat

helpful within a certain domain (for IT professionals, it is important to have computer

and programming skills, but for construction workers, these skills are irrelevant), they

are not sufficient to weigh all fields and determine their relative importance [1, 17,

19]. Therefore, it is impossible to provide the AI component with facts and rules that

allow it to deduce potential solutions. This problem thus does not seem to have the

characteristics that make GOFAI a suitable approach to solving it.

Many prominent sub-symbolic AI techniques are of the Computational Intelligence

(CI) kind; probabilistic methods based on biological processes, such as Artificial Neural

Networks (ANNs) and Evolutionary Algorithms. Other CI approaches include swarm

intelligence and artificial immune systems. ANNs are networks of vastly interconnected

nodes, inspired by the human brain [51]. These models are especially apt at pattern

recognition tasks, solving classification problems; assigning inputs to one of a finite set

of classes. These networks are trained by an updating algorithm, most commonly back-

propagation, that calculates the error between the actual output and the desired output.

Application 33

Using this error, the internal parameters are adjusted in such a way that when a similar

input is encountered later on, the output will be more like the desired output. When

using an ANN as the parameter optimizer, direct feedback about the performance of the

network cannot be given, since there is no ideal output to compare the actual output

to. Therefore, it is impossible to determine which part of the solution is responsible for

settling on an incorrect output.

The task currently at hand is not one of classification, but of optimizing numerical

parameters, something Evolutionary Algorithms (EAs) are well-suited for [51]. Based

on the Darwinian principles of survival of the fittest, candidate solutions compete for a

limited number of positions in the subsequent generations, where better solutions have a

higher chance of being carried over. The crucial advantage that Evolutionary Algorithms

have over Artificial Neural Networks is that a candidate solution does not need to be

compared to some optimal outcome. Rather, EAs only take relative performance into

account, posing no restrictions on the means of measuring the performance, which allows

for indirect evaluation by an external algorithm [53]. While in the task at hand it is

impossible to assess the quality of a parameter distribution, it is possible to determine

whether this particular distribution yields the right matches, as manually judged by a

human expert.

From the previous, it has become clear that an Evolutionary Algorithm is the most

suitable technique to implement the parameter optimizer. In the current application

this EA is implemented in the Java programming language. This optimization step

constitutes the feedback loop in the system architecture, schematically depicted in Figure

3.6.

Figure 3.6: Architectural view of the parameter optimzer.

Application 34

The horizontal axis in the figure is once again the matcher, from which the param-

eter optimizer cannot be seen independently. In the square labeled ’Results’, matches

are stored and suggested to the user, who then gets the opportunity to evaluate the

correctness of the match by awarding a score to the match, ranging from a 5 for a very

good match to a 1 for an unsuitable match.

The feedback from the user in the form of scored matches is used by the Evolutionary

Algorithm to optimize the search parameters, in order to achieve results that are more in

line with the user’s evaluations. As explained in Section 2.2, Evolutionary Algorithms

are population-based stochastic optimization engines. In the current application, the

Evolutionary Algorithm’s population consists of individuals that are vectors of real-

valued weight factors. In other words, and individual is an array of real-valued weights

w0 . . . w7, as used in the search query in Figure 3.5. The population will evolve over a

number of generations, during which the fitness of the individuals is determined by their

performance on the scored matches. At any point in time, the matcher can request the

currently most optimal individual and use these parameters to generate new matches.

Genetic operators that are used to generate new candidate solutions, or individuals,

during evolution are mutation and uniform crossover. Mutation is the operator that

ensures variety in the gene pool of the population; in other words, it ensures that new

weight values are introduced, which can possibly be beneficial in terms of achieving

more optimal solutions. Maintaining variety in the gene pool is necessary for evolution

because otherwise, the algorithm would quickly converge to a population filled with

clones of a single relatively well performing individual, after which no improvement will

occur. During each generation, several individuals are selected for mutation. Of the

selected individuals, two genes are randomly reinitialized. This is a relatively drastic

mutation, but given the vast size of the search space, an emphasis on exploring many

different solutions is necessary.

Crossover is the recombination operator, that combines two parents that are selected

with a bias towards more optimal solutions. This way, partial solutions that are relatively

fit are propagated over generations, and possibly combined with other relatively fit

partial solutions to form even better overall solutions. In this case, the uniform crossover

operator is used, since adjacent weights are independent of each other. Two parent

individuals are selected, and for each field the weights are swapped between parents

with a probability of 50%. This means that the two offspring individuals contain around

half of the weights from one parent and the rest from the other parent.

The most complex aspect of this implementation of the Evolutionary Algorithm is

the fitness function. As mentioned, the fitness of individuals is determined by their per-

formance on scored matches, since a direct evaluation is impossible. This is effectuated

Application 35

by executing the search query from the matcher, and comparing the top results from

this query with the top results indicated by the scores assigned by the user. This com-

parison is done by calculating the Mean Absolute Error (MAE) of the outcome of the

query in relation to the user-scored matches. The MAE is a means of measuring how

close predictions are to the actual outcome. The Mean Absolute Error is, as the name

indicates, the mean of the absolute errors. It is calculated by dividing the sum of the

absolute distances (|eij |) between the predicted positions (fij) and the actual positions

(yij) by the number of predictions (m), and represented in Formula 3.2. Since the MAE

is also used to evaluate the performance of the application in the experiment that will

be conducted in light of this thesis, it will be discussed into further detail, including an

example calculation, in Section 4.2.2.

MAEi =
1

m

m
∑

j=1

|eij | =
1

m

m
∑

j=1

|fij − yij | (3.2)

During each generation, the population needs to be trimmed down after offspring

individuals have been generated. As a method of selection, this application uses eli-

tist selection, carrying over the five individuals with the highest fitness, in combination

with fitness proportionate selection. Both methods have been explained in Section 2.2.5.

Proportionate selection ensures that more fit solutions have a higher probability of sur-

viving, but also that less fit solution have a chance of being carried over to the next

generation. This is again a means to emphasize exploration of the search space, by not

only sticking with solutions that have already been proven to be relatively good.

3.5 Web crawler

The auxiliary component represented in the overall architecture in Figure 3.1 is the

web crawler, singularly depicted in Figure 3.7. This crawler, built primarily in the

programming language Python, scrapes job descriptions from several job portals and

staffing websites generally used by NCIM-Groep.

Figure 3.7: Architectural view of the web crawler.

The functionality of the web crawler is relatively simple. It monitors the RSS-feeds,

or similar content listings, of relevant websites. After a fixed interval of time, the crawler

Application 36

determines whether new job descriptions of available jobs have been published. For each

of the newly found job description, the relevant part of the page, excluding among other

things the website header, is sent to the job parser, and the resulting job profile is added

to the data storage.

3.6 Web application

Even though not represented in the architecture of the application as depicted in Figure

3.1, there is one other auxiliary component: a web application. This web application, es-

sentially a graphical user interface (GUI) for the entire software application, enables the

user to view and manipulate candidate profiles and job profiles. Additionally, suggested

matches can be shown, after which the user is encouraged to assign a quality score to

that match. This is important because the application will function optimally when new

scores keep being added to suggested matches, so that the Evolutionary Algorithm can

remain adjusting the search parameters to the user’s preference.

3.7 Conclusion

Chapter 3 has described all the subroutines that are used to find suitable matches

between CVs and job descriptions. This includes the data storage embedded in Elas-

ticSearch, the document parsers that use Information Extraction, the matcher that

implements the search query, and the parameter optimizer implemented as an Evolu-

tionary Algorithm. This chapter has also given an architectural view of the application,

highlighting the position and role of the various subroutines in the application.

Having created an automated matcher for the human resources domain, an exper-

iment will be conducted to determine whether this application outperforms statistical

full content search. The experiment that will be conducted is outlined in Chapter 4,

after which the results are presented in Chapter 5.

Chapter 4

Experimental Setup

It’s not an experiment if you know

it’s going to work.

Jeffrey Preston ”Jeff” Bezos

Founder of Amazon.com

In order to address the research question as posed in the Introduction, an experiment

will be conducted that is designed to test the hypothesis as outlined in section 1.4. This

chapter describes the experimental setup in detail, ensuring the reproducibility of the

results that will be obtained. For the reader’s convenience, the research question is

repeated below:

Can matching between unprocessed CVs and job descriptions using statistical

full content search be improved upon, by structuring these documents into

fields using Information Extraction, and optimizing the relative weights of

these fields using an Evolutionary Algorithm?

To recapitulate, the hypothesis for this experiment is that the proposed method can

indeed improve upon the performance by statistical full-content job search. Unlike rule-

and ontology-based systems as described in section 1.2 however, which have also shown

better results than the statistical full-content search approach, the current method will

not impose strong restrictions on the input documents. As a result, if the hypothesis

turns out to be correct, the application devised in this thesis has much more practical

usability than the methods that do impose these restrictions.

37

Experimental Setup 38

4.1 Data sets

The data that will be used in the experiment will be representative sets of real-life CVs

and job descriptions, as they are available to the Human Resourcing staff at NCIM-

Groep. The documents will be selected from current requests for personnel, and from

applicants and available employees of NCIM-Groep. These documents are usually Mi-

crosoft Word, Adobe Portable Document Format (PDF) or plain text files. The data sets

will be entered into the different conditions of the experiment, as described in subsequent

sections, in their original form, without any manual pre-processing such as mentioned

in section 1.2 and used in many similar experiments.

For this experiment, the web crawler (Section 3.5) will be restricted to crawling a

single one of the websites it is built for. The website IT-Staffing1 was selected to form

the source for the job descriptions in the experimental data set. This selection was

made based on the fact that this website offers relatively rich information about current

vacancies. The rationalization behind this selection criterion is that one cannot expect

an application to extract information and suggest suitable matches when very little

information is available, in the same way that it is implausible to expect this from a

human expert matcher.

The size of the data sets will be kept relatively small, due to the fact that potential

combinations need to be judged by a human expert in Condition 0 (see Section 4.2.1).

The data set of job descriptions will be limited at 50, whereas 10 CVs will be randomly

selected. This results in 500 potential combinations that need to be assessed by the

expert, which is a very time-consuming task. Given the current circumstances, these

sizes for the data sets are both small enough to remain feasible to score by the expert,

and sufficiently large to yield informative results.

4.2 Conditions

The experiment that will be conducted has three conditions. The baseline condition,

condition 0, will consist of manually ordering potential matches by a human expert.

Since a gold standard of good and bad matches between candidates and jobs does not

exist, the manual order from this condition will be taken as the actual ordering of rele-

vance, that the automated systems try to replicate. Condition 1 is the condition wherein

the matchmaking is performed by statistical full-content search. In condition 2, the Ar-

tificial Intelligence application as laid out in Chapter 3 will perform the matchmaking

between available CVs and job descriptions.

1http://www.it-staffing.nl

Experimental Setup 39

4.2.1 Condition 0: Manual baseline

Condition 0 functions as a baseline condition, to create the gold standard that automated

matchers should try to replicate. In this stage of the experiment a human expert, a

member of the Human Resources staff at NCIM-Groep, manually orders a predetermined

set of m job descriptions for each individual from a set of n CVs. More concretely, for

each CV, a top five is made of the most suitable job descriptions. This is an important

step in the experiment, as these shortlists per candidate are used to evaluate the accuracy

reached in the other two conditions. Additionally, they are used in the Evolutionary

Algorithm in Condition 2.

Having created these shortlists, the potential matches will be scored according to their

position in the top 5 of the relevant candidate. The highest candidate-job combinations

will get a score of 5, the second-highest a score of 4, and so forth. Matches that are not

present on the shortlist of the relevant candidate receive a score of 0.

4.2.2 Condition 1: Statistical full-content search

The first experimental condition is the statistical full-content search condition. This

will be executed in ElasticSearch, which is the search library that also forms the data

storage and the basis for the Artificial Intelligence approach as used in Condition 2 and

described in Chapter 3. The approach in Condition 1 is very simple, as the unprocessed

full content of a CV is taken as search query, and the unprocessed full contents of the

available job descriptions form the search space. This means that the job descriptions

with the highest overall textual similarity to the CV will surface as suggested matches.

The search will be executed for each candidate, resulting in n shortlists of job descrip-

tions, ordered by their presumed relevance to the corresponding CV. As this is the same

format as has been manually created in Condition 0, the performance of the statistical

full-content search can now, separately for each candidate, be compared to the standard

that has been set by the human expert.

As a measure of comparison, the Mean Absolute Error will be used, which is a

means of measuring how close predictions are to the actual outcomes. The error e of

any candidate-job combination ij will be defined as the difference in score between the

standard created in Condition 0 (actual outcome yij) and the results found in Condition

1 (predicted outcome fij). The Mean Absolute Error (MAE) for candidate i will then

be the mean of the absolute errors of all candidate-job combinations ij associated with

candidate i. The calculation of the MAEs is captured by Formula 4.1, where m is the

number of job descriptions in the data set:

Experimental Setup 40

MAEi =
1

m

m
∑

j=1

|eij | =
1

m

m
∑

j=1

|fij − yij | (4.1)

Using the MAE to determine the correctness of a certain outcome is, in this case, more

righteous than simply using a Boolean right or wrong measure (counting the number of

correct predictions). This is emphasized in the example given in table 4.1. The second

column gives the correct order of the letters (in the current experiment: jobs), while the

third and fourth column give possible outcomes of a matchmaking attempt.

Table 4.1: Mean Absolute Error example:
Two possible orderings compared to the actual order.

Position Actual order Outcome 1 Outcome 2

1 A B E
2 B C D
3 C D C
4 D E B
5 E A A

Outcome 1 has reached the correct order, with the exception that A is a miss. In

terms of a Boolean decision of right or wrong, this outcome has the lowest possible score

of 0, since none of the letters are in the correct position. The absolute error, on the

other hand, of A is 5 − 1 = 4, since it is four rows away from its actual position. The

absolute error for each other letter is 1, since their predicted positions are one off from

their actual positions. This results in a MAE of:

MAEOutcome1 =
4 + 1 + 1 + 1 + 1

5
=

8

5
= 1.6 (4.2)

Outcome 2 has completely reversed the correct order, but for putting C in the correct

position, resulting in 1 correct prediction, it still gets a Boolean right or wrong score

of 1. In terms of calculating the MAE for Outcome 2, however, the absolute errors for

both A (|5−1|) and D (|1−5|) are 4. The absolute errors for B (—4−2|) and D (|2−4|)
are 2, and C is in the correct position. The MAE is thus:

MAEOutcome2 =
4 + 2 + 0 + 2 + 4

5
=

12

5
= 2.4 (4.3)

In terms of Boolean score, counting the correct predictions, Outcome 2 is better since

it gets one letter in the correct position as opposed to none in Outcome 1. However, the

Mean Absolute Error of Outcome 2 is much higher than that of Outcome 1, indicating

that it is a worse solution in terms of ordering. As the latter conclusion is the intended

Experimental Setup 41

one, since Outcome 1 is closer to the intended outcome, the Mean Absolute Error is in

this situation the superior comparison method.

In the current experimental setup it is possible that jobs from the top five generated

by the automated matcher do not appear in the top five as created by a human exert

in Condition 0. Therefore, if such a situation occurs, the error for that particular job

will be fixed at a value of 8. The error in these situations is fixed because otherwise,

a job put at the fifth position by the automated matcher that does not appear in the

gold standard top five would have an error of just 1. The number 8 results in a large

penalization of gold standard top five jobs not showing up in the automated matcher

top five, whereas a wrong position within the top five receives a smaller penalty.

The final outcome of Condition 1, the statistical full-content search condition, will

thus be a list of n MAEs, as the Mean Absolute Error of matched jobs will be calculated

for each CV in the data set individually. This list of MAEs will be compared with the

list of MAEs produced by Condition 2, in order to test whether there is a significant

difference and thus to answer the research question.

4.2.3 Condition 2: Artificial Intelligence

In Condition 2, the method of cross-validation will be used to create a top 5 of jobs for

each CV in the data set. Afterwards, the Mean Absolute Error with respect to Condition

0 will be calculated in the same fashion as it was in Condition 1.

Cross-validation is a validation technique used in situations where a predictive model

is trained on known data (the training set), after which it is tested or validated on novel

or first seen data (the test set). The technique is used to assess the generalizability of

the model to new, unseen data. In cross-validation, the data set of labeled examples is

repetitively partitioned in a training set and a test set in a way that notorious problems

such as overfitting2 are avoided. These problems arise when choosing a fixed training

set and test set, which used to be the accepted method. Cross-validation dynamically

rotates examples from the training set to the test set and back, diminishing the chance

of overfitting. Thus, cross-validation gives the most accurate idea of how the trained

model would perform on independent data.

The power of cross-validation lies in repetition. Every iteration, the complete set of

labeled examples is partitioned in a different way, resulting in any data point being part

of the training set and of the test set at least once. During such an iteration, the model

is trained with the currently selected training data, after which the test set will be used

2Training and testing the model on the same data, resulting in a model that has adapted so much to
the training set that it is not generalizable to new data outside of this set.

Experimental Setup 42

to asses the performance of the model during that iteration. The generalizability is thus

tested by determining the performance on an example that is not part of the training

set. While other numbers can be chosen, k-fold cross-validation (k iterations) will be

used here with k = n = 10. This is because of the relatively small set of examples, as

it maximizes the size of the training set during each iteration. As a result of this choice

for k, every CV will form the test set of size one exactly one time, which is why this

method is also known as leave-one-out cross-validation.

During every iteration of the n-fold cross-validation, the Evolutionary Algorithm will

optimize the search parameters using the training data selected for that iteration. A

population with 50 individuals will be initialized, after it will evolve over 50 generations.

These numbers are chosen in relation to the fact that a single fitness evaluation costs

several seconds. As a result, this entire experimental condition will last an estimated

10 · 50 · 50· ∼ 4s ≈ 100, 000s ≈ 30h. The remaining candidate will be used for testing,

which once again entails drafting a top 5 of suggested matches for that candidate. The

positions of the jobs in the top five for each candidate will be compared to the position

of the job in the top five for that candidate from Condition 0, again using the Mean

Absolute Error as described in Equation 4.1. Similar to Condition 1, the result of

Condition 2 is a list of n MAEs.

4.3 Comparison

The hypothesis about this experiment, as presented in Section 1.4 of this thesis, is that

the devised and created application as used in Condition 2 is a better matchmaker in

the Human Resourcing domain than the statistical full-content search approach as used

in Condition 1. In order to choose a method of comparison, normality of the results

need to be tested. The Shapiro-Wilk Test [59] will be used to determine if the results

from both conditions are normally distributed.

If the results are confirmed to be normally distributed, a t-test can be employed

to detect a significant difference. Since significantly lower Mean Absolute Errors are

expected in Condition 2 than in Condition 1, a one-tailed unpaired t-test will then be

used to analyze the results. In relation to the small sample sizes, a significance level of

α = 0.1 will be chosen, indicating that there is a 10% chance of a Type 1 error.

The null hypothesis for the t-test is that there is no significant difference between

the observed MAEs in the two conditions. The alternative hypothesis, which is in

accordance with the expectations about the experiment from Section 1.4, is that the

MAEs in Condition 2 are significantly lower than the MAEs in Condition 1.

Experimental Setup 43

H0 : µ1 = µ2

H1 : µ1 > µ2

(4.4)

If the null hypothesis is rejected, a significant difference between the results from

both conditions is found. If this is the case, the experiment can be deemed a success,

since the Artificial Intelligence matcher proposed in this thesis has then outperformed

the statistical full-content search approach. If however the null hypothesis should be

retained, it must be concluded that there is no significant difference between the per-

formances of the statistical full-content search matcher and the Artificial Intelligence

matcher, at least under the circumstances as described in this thesis.

Chapter 5

Results

However beautiful the strategy,

you should occasionally look at

the results.

Sir Winston Churchill

British Prime Minister,

1940-45 and 1951-55

A software application using Artificial Intelligence techniques and methods has been

proposed and built in this thesis in order to improve on statistical full-content search

during matchmaking on the job market. The methods and techniques that are embedded

in this application are laid out in Chapter 2, after which the architecture that combines

these methods into a working application has been presented in Chapter 3. To test the

performance of the devised application, an experiment has been conducted, as described

in Chapter 4. This chapter presents the results obtained from this experiment.

The first section describes the results from Condition 0, the manual baseline condi-

tion. In this condition, a human expert job matcher creates the gold standard to which

the two experimental conditions will be compared. The top five of one CV will be given

as an illustration of the process, and the same CV will be used throughout this chapter

as an example. In Section 5.2, the results of Condition 1, the statistical full-content

search condition, are presented. The top fives for candidates are generated, and will be

compared to the expert top fives as created in Condition 0. This will be done by calcu-

lating the Mean Absolute Error of the top fives generated by the matcher. In Section

5.3, the results of the Artificial Intelligence condition, Condition 2, will be presented.

Again, top fives will be generated, and their results will be assessed by calculating their

Mean Absolute Errors.

44

Results 45

After completing all three conditions, the results from Condition 1 and 2 will need

to be compared in order to determine whether a significant difference exists. First,

normality will be tested using the Shapiro-Wilk Test. If normal distribution of the

results is confirmed, a t-test can be utilized to determine if there is a significant difference

between the outcomes of the two conditions.

5.1 Condition 0: Manual baseline

For the experiment, a data set of 10 CVs and 50 job descriptions has been selected.

For each CV separately, an expert has ordered the job descriptions by relevance to the

candidate described by the CV. For each of the CVs, this has yielded a top five of jobs

that are most compatible with the candidate and his or her education and skills. An

example of such a top five is shown in Table 5.1, where jobs are designated by their ID

number, and the candidate is anonymized as ’Candidate 1’.

Table 5.1: The baseline top five of jobs for Candidate 1 as created by a human expert
job matcher.

Candidate 1 Expert top five

1 27
2 37
3 47
4 43
5 12

5.2 Condition 1: Statistical full-content search

In Condition 1, the matchmaking process is executed by the statistical full-content search

matcher. This matcher uses the complete text of the CV as a search query to be run on

the database of job descriptions. Job descriptions with the highest textual similarities

to the current CV will be among the top results. For each CV, a shortlist of five most

similar job descriptions are returned by this matcher. The top five for Candidate 1 as

generated by the statistical full-content search approach is shown in Table 5.2.

For the other nine candidates, top fives have been created in the exact same manner.

With top fives for every candidate generated by the automated statistical full-content

search matcher, the performance of this automated matcher can be assessed by compar-

ing these top fives with the expert top fives that have been created in Condition 0. As

shown in Table 5.3, the absolute errors of the jobs in the top five of Candidate 1 are

Results 46

Table 5.2: The top five for Candidate 1 as created by the statistical full-content search
matcher.

Candidate 1 Full-content search top five

1 24
2 34
3 37
4 33
5 25

calculated. If one of the jobs in the automated matcher’s top five does not appear in

the expert’s top five, the absolute error is taken to be 8.

Table 5.3: Calculation of the absolute errors of the top five generated by the statistical
full-content search matcher for Candidate 1

Candidate 1 Full-content search top five Expert top five Absolute error

1 24 27 not present = 8
2 34 37 not present = 8
3 37 47 |3− 2| = 1
4 33 43 not present = 8
5 25 12 not present = 8

Having calculated the absolute errors for each job matched to Candidate 1 in the

same fashion, the MAE is found by simply taking the mean of these numbers, as shown

in Equation 5.1. Here, m is the number of predictions, in this experiment always 5, and

|eij | is the absolute error of prediction j for candidate i.

MAEi =
1

m

m
∑

j=1

|eij | =

m
∑

j=1

|eij |

5
(5.1)

The Mean Absolute Error for Candidate 1 is thus:

MAE1 =
8 + 8 + 1 + 8 + 8

5
=

33

5
= 6.6 (5.2)

In a similar fashion, MAEs have been calculated for the automatically generated top

fives for all ten candidates. The final result of Condition 1, the list of MAEs, is presented

in Table 5.4.

Table 5.4: The results of Condition 1: Mean Absolute Errors of job top fives created
by the statistical full-content matcher.

Candidate i 1 2 3 4 5 6 7 8 9 10

MAEi 6.6 6.6 5.0 5.6 6.4 8.0 4.6 8.0 5.0 6.6

Results 47

5.3 Condition 2: Artificial Intelligence

In Condition 2, the application employing Artificial Intelligence that has been outlined in

previous chapters of this thesis is responsible for the matchmaking between candidates

and jobs. The application first processes the CVs and vacancies in order to extract

candidate and job profiles that are stored in a relational fashion. In the second step,

the application builds a complex query comprised of the values of the extracted fields,

using optimized weight parameters that denote the relative importance of a match on

that field. In Table 5.5, the top five as generated by the Artificial Intelligence matcher

for Candidate 1 is shown.

Table 5.5: The top five for Candidate 1 as created by the Artificial Intelligence
matcher.

Candidate 1 Artificial Intelligence top five

1 50
2 27
3 34
4 22
5 37

Similar to Condition 1, top fives for the other nine candidates are generated as well,

following the same procedure. With these top fives, the performance of the Artificial

Intelligence matcher can also be assessed by calculating the Mean Absolute Errors of the

generated top fives, by comparing them to the top fives as created in Condition 0. The

absolute errors of the jobs matched to Candidate 1 are calculated in Table 5.6. Once

again, if a job from the automated matcher’s top five does not appear in the expert’s

top five, the absolute error is taken to be 8.

Table 5.6: Calculation of the absolute errors of the top five generated by the Artificial
Intelligence matcher for Candidate 1

Candidate 1 Artificial Intelligence top five Expert top five Absolute error

1 50 27 not present = 8
2 27 37 |2− 1| = 1
3 34 47 not present = 8
4 22 43 not present = 8
5 37 12 |5− 2| = 3

The Mean Absolute Error of the top five for each candidate can be subsequently

calculated using the formula in Equation 5.1. For Candidate 1, this becomes:

MAE1 =
8 + 1 + 8 + 8 + 2

5
=

28

5
= 5.6 (5.3)

Results 48

MAEs have been calculated for the other candidates as well, using the same method-

ology. This yields a list of MAEs, one for each candidate, which is the final result of

Condition 2 and presented in Table 5.7.

Table 5.7: The results of Condition 1: Mean Absolute Errors of job top fives created
by the Artificial Intelligence matcher.

Candidate i 1 2 3 4 5 6 7 8 9 10

MAEi 5.6 7.0 4.6 5.6 5.6 6.0 5.0 6.6 4.6 5.6

5.4 Comparison

To answer the research question posed in Section 1.3, it is necessary to determine if

there exists a significant difference between the MAE values found in Condition 1 and

the values found in Condition 2. For illustration, the results from both conditions are

lined up side by side in Table 5.8.

Table 5.8: The results of Condition 1: Mean Absolute Errors of job top fives created
by the Artificial Intelligence matcher.

Candidate i 1 2 3 4 5 6 7 8 9 10

Condition 1: MAEi 6.6 6.6 5.0 5.6 6.4 8.0 4.6 8.0 5.0 6.6
Condition 2: MAEi 5.6 7.0 4.6 5.6 5.6 6.0 5.0 6.6 4.6 5.6

For most candidates, Condition 2 has reached a MAE that is lower than or equal

to the MAE reached in Condition 1. Candidates 2 and 7 are the exceptions to this

observation. To determine whether the data from both samples is normally distributed,

and can thus be compared using a t-test, the Shapiro-Wilk Test [59] is utilized. The

results of this test are outlined in Table 5.9.

Table 5.9: The Shapiro-Wilk Test indicates that the results of both conditions are
normally distributed.

(a) Condition 1

Mean (µ) 6.240
Standard deviation (σ) 1.192

Sample size (n) 10
W-value 0.910

Threshold 0.781(α = 0.01)
Normally distributed Yes

(b) Condition 2

Mean (µ) 5.620
Standard deviation (σ) 0.780

Sample size (n) 10
W-value 0.924

Threshold 0.781(α = 0.01)
Normally distributed Yes

Now that it has been determined that the results of both conditions are normally

distributed, the question is whether the results from Condition 2 are significantly lower

than the results from Condition 1. To that end, a one-tailed unpaired t-test is used.

The t-value is calculated as follows:

Results 49

t =
µ1 − µ2

√

var1
n1

+ var2
n2

=
µ1 − µ2

√

σ2

1

n1
+

σ2

2

n2

(5.4)

Filling in the appropriate values in Formula 5.4 yields:

t =
6.240− 5.620

√

1.1922

10
+ 0.7802

10

=
0.620√

0.142 + 0.061
= 1.376 (5.5)

The alpha level for this t-test has been set at α = 0.1. The degrees of freedom is equal

to the sum of sample sizes minus two: df = 10+10−2 = 18. The corresponding threshold

t-value is tthreshold = 1.330. Since t exceeds tthreshold, there is sufficient evidence to

reject the null hypothesis H0 : µ1 = µ1 at the α = 0.1 significance level. Instead, the

alternative hypothesis H1 : µ1 > µ2 is accepted, indicating that the Mean Absolute

Errors of Condition 2 are significantly smaller than those of Condition 1.

Chapter 6

Discussion

There are no facts, only

interpretations.

Friedrich Nietzsche

German philosopher

In this chapter, a discussion of the results of the experiment executed in light of

this thesis will be presented. First, the implications of the results will be discussed.

Afterwards, the limitations of the devised application and the experiment will be touched

upon. Finally, recommendations for future work will be given.

6.1 Implications

The results presented in Chapter 5 indicate that there exists a significant difference

between the performance of the early statistical full-content search approach to match-

making on the job market, and the Artificial Intelligence approach as proposed in this

thesis. More precisely, it has been shown that the application employing Artificial Intel-

ligence techniques reaches significantly lower error rates than the statistical full-content

search method. This means that it has been proven that the application described in

this thesis reaches better results than the old statistical full-content method, the latter

of which has been abandoned in the literature because of disappointing early results.

These findings are in accordance with the hypothesis that was laid out in Section 1.4,

indicating that this study can be deemed a success.

Although not measurable, the experiment has yielded an additional interesting re-

sult. Conform the expectations composed at the onset of this thesis, optimal solutions

50

Discussion 51

generated by the Evolutionary Algorithm generally assign lower relative importance pa-

rameters to fields that can beforehand be qualified as less important in the matching

process. These fields include the ‘name’ field and, to a lesser extent, the ‘date of birth’

field. Higher relative importance, on the other hand, is assigned to fields that seem more

important. These fields including ‘role’ and ‘programming languages’.

At this point, it is impossible to tell whether the current approach would perform

better than the rule and ontology based approach, but it does outperform the classical

statistical full-content search approach. The relatively small improvement of the appli-

cation laid out in this thesis over the classical approach indicate that the former may

not, in fact, yield better results than the rule and ontology based method. However,

although it is not reflected in the results, the lack of great restrictions on the input data

is an important improvement as well. Additionally, there is quite some room for refine-

ment of the devised application, set forth in Sections 6.2 and 6.3, which may improve

the performance of this approach relative to the rule and ontology based approach.

6.2 Limitations

While proven to perform significantly better than statistical full-content search, the

current approach did not yield overwhelmingly good results. This section looks at the

limitations of the application as devised by this thesis, and the experiment that was

conducted with it.

A limitation nearly always present in experiments that require examples to be labeled

or scored manually, is that too little data is used. It is a possibility that the CVs and

jobs in the used data set together are not completely representative for the average CV

and job description within the domain. Related to this is the fact that only scored top

fives are used, and not rankings of all jobs for each candidate. It is possible that the

application would yield better results if full rankings would be provided, since positive

developments would be rewarded not only if they result in suitable jobs entering the top

five, but already if those would move to any position closer to the top.

A similar problem is that since running the optimization takes relatively much time,

the size of the population and the number of generations had to be limited. The search

space of this problem, however, is very large; seven parameters need to be optimized,

all of which can take any real value between zero and ten. Usually, larger search spaces

take larger populations and more generations to reach an optimal solution. To diminish

this problem, parameters are limited to having only three decimals, since any more than

that is unlikely to influence the result.

Discussion 52

While better than simply counting the number of correct jobs, the Mean Absolute

Error may be improved as a measure of determining performance. Since it is more

crucial that the top job is returned by the application than the fifth most suitable job,

it would be more appropriate if the error was calculated proportionately to the position,

where mistakes at higher positions have a higher weight factor than mistakes at lower

positions.

The information extraction step of the application as described, identifies seven spe-

cific characteristics of the candidate as listed on his or her CV. Although these are the

most important features of the candidates, there is still more information available in

most CVs. For instance, from the start and end dates of previous occupations can be

deduced how much experience a candidate has in executing the tasks associated to spe-

cific roles or skills. A similar reasoning can be held for the fact that not all relevant

information is extracted from job descriptions. It is therefore possible that important

bits of information that include the reason why some candidates or jobs are preferred

over others are still missing from the created candidate and job profiles, making the

subsequent matching process more difficult than it should be.

In comparison to most other research concerning matchmaking on the labor market,

the problem presented in this thesis is more difficult. Not only does it focus on using

unprocessed CVs and job descriptions as input, it is also restricted to the domain of IT

professionals and jobs. While a term such as ‘software development’ is a distinguishing

term among terms taken from all professions, it is present on the CV of nearly every

IT professional. It is therefore plausible that the experiment would have yielded more

outspoken results if CVs and job descriptions from multiple domains had been included.

6.3 Recommendations

The process of writing this thesis and conducting the experiment described in it has lead

to several recommendations for future work. These recommendations can be divided in

two categories. First, recommendations about extensions of the current application are

discussed. Afterwards, recommendations for the advancement of the field in relation to

the current findings are suggested.

6.3.1 Extensions

Part of what makes the rule and ontology based approach good at matching candidate

profiles to job profiles is the fact that it abstracts from linguistic factors such as formu-

lation and choice of words. To mimic the latter, a sensible extension of the application

Discussion 53

devised in this thesis would be to resolve synonyms. Support for this functionality is

offered by ElasticSearch, as it is able to replace all words denoting the same concept

by a single one of those words (although the originals are returned as search results).

A list of words and all their synonyms needs to be available for this functionality, and

while such lists are available for general purposes, profession-specific lists probably do

not exist.

Another potential improvement is in modifying the matcher. At this point, search for

matches is unidirectional; candidate profiles are transformed into a search query, which is

executed on job profiles. However, implementing bidirectional search might yield better

results. In the current application, jobs are selected that are most in accordance with

the skills candidates exhibit on their CV, but the suitability of the candidate for the job,

in relation to other candidates, is not taken into account. Combining the results from

two queries, one selecting jobs for candidates, and another selecting candidates for jobs,

might give more realistic results.

6.3.2 Future work

For the advancement of the field of automated matchmaking on the job market, the next

step is to compare the application devised in this thesis to current rule and ontology

based matchers as described in the literature. Although it is likely that the rule and

ontology based approach outperforms the Artificial Intelligence approach, it needs to be

determined how much the performance of the devised application needs to improve to

be able to compete with leading approaches. After all, the ease of using unprocessed

documents as opposed to manually crafting candidate and job profiles may outweigh a

small loss of precision in the matchmaking process.

An alternative, and potentially even better, next step would be to combine the best

of two worlds. Maintain the rule and ontology based approach for matching candidate

profiles and job profiles, but at the same time use information extraction in a manner as

described in this thesis to create these profiles. Not only would such an approach retain

all the benefits of using rules and ontologies in searching for matches, but it would also

void the need to impose the aforementioned restrictions on the input data. If such an

approach would prove to be viable, that would mean a great leap forward for the field,

as restricting the input data can be seen as one of the most important reasons for the

low adoption rates of applications that perform matchmaking on the labor market.

Chapter 7

Conclusion

A conclusion is simply the place

where one got tired of thinking.

Martin Henry Fisher

American physician and author

This thesis has identified a profound lack of attention in scientific literature to using

unprocessed CVs and job descriptions as input for applications that perform matchmak-

ing on the labor market. After disappointing early results from statistical full-content

matchers using unprocessed input, attention has shifted to rule and ontology based

matching, requiring input documents to be preprocessed and entered into relational

databases. This poses great restrictions on the input data, and has been characterized

as being an escape rather than a real solution. In order to address this lack of attention,

the purpose of this thesis has been to devise and build an matchmaking application

that improves on the early statistical full-content approach, all the while refraining from

imposing great restrictions on the input data.

In order to improve matchmaking between unprocessed CVs and job descriptions,

matchmaking has been divided into two stages. During the first stage, Information Ex-

traction methods are applied in order to identify relevant information in the documents,

and store that information in a relational fashion in a database. The second stage is the

matchmaking stage, wherein a complex search query is executed, with the fields of a can-

didate profile as constituents, and the database of job descriptions as search space. The

different parts of the query are weighted, in order to make similarity on some fields more

important for determining the quality of candidate-job combinations. These weights are

optimized by an Evolutionary Algorithm, based on previously generated matches that

receive quality scores from a user.

54

Conclusion 55

The research question that was posed in order to scientifically examine the problem

at hand is the following:

Can matching between unprocessed CVs and job descriptions using statistical

full content search be improved upon, by structuring these documents into

fields using Information Extraction, and optimizing the relative weights of

these fields using an Evolutionary Algorithm?

As has been made abundantly clear, a significant improvement was found over statis-

tical full-content matching using the application described in this thesis, which structures

documents into fields using Information Extraction, and utilizes an Evolutionary Algo-

rithm to optimize the relative weights. The answer to the research question is thus that

matchmaking can indeed be improved by the proposed combination of techniques, as

proven by the results obtained in this thesis.

An interesting suggestion for the future of the field is to attempt to conjoin the best

of two approaches. First, the promising stage of Information Extraction to fill relational

databases is taken from the approach described in this thesis. Next, matchmaking is

executed by the rule and ontology based approaches as prominent in the literature, which

require data to be preprocessed and stored in a relational database.

The results collected in light of this thesis indicate that the lack of attention to using

unprocessed documents for matchmaking on the job market is unjust. The current

experiment has shown that there are alternatives to imposing great restrictions on the

input data, that yield promising results. This suggests that the shift of attention may

have come too early or too easily, and warrants reconsidering the direction the field as

a whole will venture into next.

Bibliography

[1] J. Malinowski, T. Keim, O. Wendt, and T. Weitzel. Matching people and jobs: A

bilateral recommendation approach. In Proceedings of the 39th Hawaii International

Conference on System Sciences, 2006.

[2] M. A. Huselid. The impact of human resource managment on turnover, productivity

and corporate financial performance. Academy of Management Journal, 38(3):635–

672, 1995.

[3] P. Buckley, K. Minette, D. Joy, and J. Michaels. The use of an automated employ-

ment recruiting and screening system for temporary professional employees: A case

study. Human Resource Management, 43(2&3):233–241, 2004.

[4] A. H. Borghans. Mobiliteit op de Nederlandse arbeidsmarkt. 1996. ISBN 90-5321-

183-7.

[5] R. W. Euwals and R. A. L. De Groot. Flexibilisering over generaties. Economisch

Statistische Berichten, 97(4629):109, 2012.

[6] M. M. Brodsky. Labor market flexibility: a changing international perspective.

Monthly labor review, pages 53–60, 1994.

[7] Betsey Stevenson. The internet and job search. Technical report, National Bureau

of Economic Research, 2008.

[8] Eurostat (European Commission). Unemployment rate by sex and age

groups, March 2014. URL http://appsso.eurostat.ec.europa.eu/nui/show.

do?dataset=une_rt_a&lang=en.

[9] Bureau of Labor Statistics (United States Department of Labor). Unemployment

rate, March 2014. URL http://data.bls.gov/timeseries/LNS14000000.

[10] International Labour Organisation (United Nations). Snapshot of the labour

market in the european union - 2013, March 2014. URL http://www.ilo.org/

global/about-the-ilo/media-centre/issue-briefs/WCMS_209596/lang--nl/

index.htm.

56

http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=une_rt_a&lang=en
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=une_rt_a&lang=en
http://data.bls.gov/timeseries/LNS14000000
http://www.ilo.org/global/about-the-ilo/media-centre/issue-briefs/WCMS_209596/lang--nl/index.htm
http://www.ilo.org/global/about-the-ilo/media-centre/issue-briefs/WCMS_209596/lang--nl/index.htm
http://www.ilo.org/global/about-the-ilo/media-centre/issue-briefs/WCMS_209596/lang--nl/index.htm

Bibliography 57

[11] G. Crispin. Careerxroads 8th annual source of hire study: What happened in 2008

and what it means for 2009, March 2014. URL http://www.careerxroads.com/

news/SourcesOfHire09.pdf.

[12] T. Weitzel, A. Eckhardt, S. Laumer, A. Von Stetten, C. Maier, and C. Wein-

ert. Recruiting trends 2014. Centre of Human Resources Information Systems

(CHRIS), Otto-Friedrich Universität Bamberg, Goethe Universität Frankfurt am

Main, 2014. URL https://www.uni-bamberg.de/fileadmin/uni/fakultaeten/

wiai_lehrstuehle/isdl/RecruitingTrends_2014.pdf.

[13] D. H. Autor. Wiring the labor market. Journal of Economic Perspectives, pages

25–40, 2001.

[14] C. Bizer, R. Heese, M. Mochol, R. Oldakowski, R. Tolksdorf, and R. Eckstein. The

impact of semantic web technologies on job recruitment processes. In Wirtschaftsin-

formatik 2005, pages 1367–1381. Springer, 2005.

[15] J. M. Barron and J. Bishop. Extensive search, intensive search, and hiring costs:

new evidence on employer hiring activity. Economic Inquiry, 23(3):363–382, 1985.

[16] Oxford dictionaries, April 2014. http://www.oxforddictionaries.com/

definition/english/secondment.

[17] S. E. Jackson. The consequences of diversity in multidisciplinary work teams. In

M. A. West, editor, Handbook of work group psychology, pages 53–75. John Wiley

& Sons, Sussex, 1996.

[18] A. L. Kristof. Person-organization fit: An integrative review of its conceptualiza-

tions, measurement, and implications. Personnel psychology, 49(1):1–49, 1996.

[19] M. A. West. Effective Teamwork. BPS Books, Leicester, UK, 1994.

[20] J. Rounds, R. Dawis, and L. Lofquist. Measurement of person-environment fit and

prediction of satisfaction in the theory of work adjustment. Journal of Vocational

Behavior, 31:297–318, 1987.

[21] J. Edwards, R. Caplan, and R. Van Harrison. Person-environment fit theory: Con-

ceptual foundations, empirical evidence, and directions for future research. In

C. Cooper, editor, Theories of organizational stress. Oxford University Press, 1998.

[22] F. Färber, T. Weitzel, and T. Keim. An automated recommendation approach to

selection in personnel recruitment. In AMCIS, pages 302–313. Citeseer, 2003.

[23] A. Drigas, S. Kouremenos, S. Vrettos, J. Vrettaros, and D. Kouremenos. An expert

system for job matching of the unemployed. Expert Systems with Applications, 26

(2):217–224, 2004.

http://www.careerxroads.com/news/SourcesOfHire09.pdf
http://www.careerxroads.com/news/SourcesOfHire09.pdf
https://www.uni-bamberg.de/fileadmin/uni/fakultaeten/wiai_lehrstuehle/isdl/RecruitingTrends_2014.pdf
https://www.uni-bamberg.de/fileadmin/uni/fakultaeten/wiai_lehrstuehle/isdl/RecruitingTrends_2014.pdf
http://www.oxforddictionaries.com/definition/english/secondment
http://www.oxforddictionaries.com/definition/english/secondment

Bibliography 58

[24] B. J. Jansen, K. J. Jansen, and A. Spink. Using the web to look for work: im-

plications for online job seeking and recruiting. Internet Research, 15(1):49–66,

2005.

[25] E. Herder and P. Kärger. Competence matching tool-explanations and implemen-

tation. Technical report, Open Universiteit, 2010. http://hdl.handle.net/1820/

2282.

[26] S. Colucci, T. Di Noia, E. Di Sciascio, F. M. Donini, M. Mongiello, and M. Mottola.

A formal approach to ontology-based semantic match of skills descriptions. Journal

of Universal Computer Science, 9(12):1437–1454, 2003.

[27] G. Maniu and I. Maniu. A human resource ontology for recruitment process. Review

of General Management, (2):12–18, 2009.

[28] M. Fazel-Zarandi and M. S. Fox. Semantic matchmaking for job recruitment: an

ontology-based hybrid approach. In Proceedings of the 3rd International Workshop

on Service Matchmaking and Resource Retrieval in the Semantic Web at the 8th

International Semantic Web Conference, Washington DC, USA, 2010.

[29] L. Pizzato, T. Rej, J. Akehurst, I. Koprinska, K. Yacef, and J. Kay. Recommending

people to people: the nature of reciprocal recommenders with a case study in online

dating. User Modeling and User-Adapted Interaction, 23(5):447–488, 2013.

[30] O. Stock, C. Strapparava, and A. Nijholt, editors. The April Fools’ Day Workshop

on Computational Humour. ITC-IRST, 2002.

[31] D. Veit, J. P. Müller, M. Schneider, and B. Fiehn. Matchmaking for autonomous

agents in electronic marketplaces. In Proceedings of the fifth international conference

on Autonomous agents, pages 65–66. ACM, 2001.

[32] D. Bianchini, V. De Antonellis, and M. Melchiori. Flexible semantic-based service

matchmaking and discovery. World Wide Web Journal, 11(2):227–251, 2008.

[33] A. Cali, D. Calvanese, S. Colucci, T.o Di Noia, and F. Donini. A logic-based

approach for matching user profiles. In Knowledge-Based Intelligent Information

and Engineering Systems, pages 187–195. Springer, 2004.

[34] Deep Nishar. 200 million members! LinkedIn Official Blog, April 2014. http://

blog.linkedin.com/2013/01/09/linkedin-200-million/.

[35] Linkedin statistics. Socialbakers, April 2014. http://www.socialbakers.com/

linkedin-statistics/.

http://hdl.handle.net/1820/2282
http://hdl.handle.net/1820/2282
http://blog.linkedin.com/2013/01/09/linkedin-200-million/
http://blog.linkedin.com/2013/01/09/linkedin-200-million/
http://www.socialbakers.com/linkedin-statistics/
http://www.socialbakers.com/linkedin-statistics/

Bibliography 59

[36] R. Cilibrasi and P. Vitanyi. The google similarity distance. IEEE Transactions on

Knowledge and Data Engineering, 19(3):370–383, 2007.

[37] H. Choi and H. Varian. Predicting the present with google trends. Economic Record,

88(s1):2–9, 2012.

[38] D. Jurafsky and J. Martin. Speech And Language Processing - An introduction to

Natual Language Processing, Computational Linguistics, and Speech Recognition.

Pearson Education, Upper Saddle River, NJ, second edition, 2009.

[39] R. Schank and R. Abelson. Scripts, Plans, Goals, and Understanding: An In-

quiry Into Human Knowledge Structures (Artificial Intelligence Series). Erlbaum,

Hillsdale, NJ, 1977.

[40] R. Abelson. Psychological status of the script concept. American Psychologist, 36

(7):715–729, July 1981.

[41] D. Roth and W. Yih. Probabilistic reasoning for entity & relation recognition.

In Proceedings of the 19th international conference on Computational linguistics-

Volume 1, pages 1–7. Association for Computational Linguistics, 2002.

[42] L. Peshkin and A. Pfeffer. Bayesian information extraction network. IJCAI, 2003.

[43] J. Hobbs, D. Appelt, J. Bear, D. Israel, M. Kameyama, M. Stickel, and M. Tyson.

FASTUS: A cascaded finite-state transducer for extracting information from

natural-language text. Finite-State Language Processing, 1997.

[44] S. Kleene. Representation of events in nerve nets and finite automata. Rand

Corporation, 1951.

[45] A. Turing. On computable numbers, with an application to the entscheidungsprob-

lem. In Proceedings of the London Mathematical Society, volume 42, pages 230–265,

1936. Correction in volume 43, pages 544-546.

[46] W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous

activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[47] J. Nothman, N. Ringland, W. Radford, T. Murphy, and J. Curran. Learning mul-

tilingual named entity recognition from wikipedia. Artificial Intelligence, 194:151–

175, 2013.

[48] A. Mikheev, M. Moens, and C. Grover. Named entity recognition without

gazetteers. In Proceedings of the ninth conference on European chapter of the As-

sociation for Computational Linguistics, pages 1–8. Association for Computational

Linguistics, 1999.

Bibliography 60

[49] M. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[50] M. Porter. Snowball: A language for stemming algorithms. http://snowball.

tartarus.org/texts/introduction.html, 2001.

[51] A. Engelbrecht. Computational Intelligence: An Introduction. John Wiley & Sons,

Hoboken, NJ, USA, 2007.

[52] C. Darwin. On the Origin of Species by Means of Natural Selection, or Preservation

of Favoured Races in the Struggle for Life. John Murray, London, 1859.

[53] T. Bäck and H. Schwefel. An overview of evolutionary algorithms for parameter

optimization. Evolutionary Computation, 1(1), 1993.

[54] S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,

Upper Saddle River, NJ, USA, second edition, 2003.

[55] J. Holland. Adaptation in natural and artificial systems: An introductory analy-

sis with applications to biology, control, and artificial intelligence. University of

Michigan Press, 1975.

[56] K. Burjorjee. The fundamental learning problem that genetic algorithms

with uniform crossover solve efficiently and repeatedly as evolution proceeds.

ArXiv:1307.3824 [cs.NE], 2013.

[57] M. Kearns and U. Vazirani. An Introduction To Computational Learning Theory.

MIT Press, Cambridge, MA, USA, 1994.

[58] A. Jacobs. The pathologies of big data. Communications of the ACM, 52(8), August

2009.

[59] S. Shapiro and M. Wilk. Analysis of variance test for normality (complete samples).

Biometrika, pages 591–611, 1965.

http://snowball.tartarus.org/texts/introduction.html
http://snowball.tartarus.org/texts/introduction.html

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Problem context
	1.2 Status quaestionis
	1.3 Current research
	1.4 Hypothesis
	1.5 Outline

	2 Methods
	2.1 Information Extraction
	2.1.1 Pattern matching
	2.1.2 Tokenization
	2.1.3 Named Entity Detection
	2.1.4 Ontologies
	2.1.5 Post-processing

	2.2 Evolutionary Algorithms
	2.2.1 Fundamentals
	2.2.2 Representation
	2.2.3 Fitness
	2.2.4 Genetic operators
	2.2.5 Selection
	2.2.6 Generations

	2.3 Conclusion

	3 Application
	3.1 Data storage
	3.2 Document parsers
	3.2.1 Pattern matching
	3.2.2 Tokenization and Named Entiy Detection
	3.2.3 Ontologies
	3.2.4 Post-processing

	3.3 Matcher
	3.4 Parameter optimizer
	3.5 Web crawler
	3.6 Web application
	3.7 Conclusion

	4 Experimental Setup
	4.1 Data sets
	4.2 Conditions
	4.2.1 Condition 0: Manual baseline
	4.2.2 Condition 1: Statistical full-content search
	4.2.3 Condition 2: Artificial Intelligence

	4.3 Comparison

	5 Results
	5.1 Condition 0: Manual baseline
	5.2 Condition 1: Statistical full-content search
	5.3 Condition 2: Artificial Intelligence
	5.4 Comparison

	6 Discussion
	6.1 Implications
	6.2 Limitations
	6.3 Recommendations
	6.3.1 Extensions
	6.3.2 Future work

	7 Conclusion
	Bibliography

