
Transforming Displacement Grammars into RCG

Format

Kasper Luchsinger

August 20, 2012

1

I would like to take a moment to thank my professor, Michael Moortgat, for
helping me to understand and fix my many mistakes, and for giving some of my
more crazy theories a chance which made this whole experience much more fun.
I would also like to thank my parents Ria and Frits and my girlfriend Helen, for
all their love and support, and for being so very patient with me.

2

1 Beyond CFG

To deal with the syntax of natural and artificial languages, the theory of formal
languages was developed by Chomsky and others in the 1950s [1]. Chomsky pro-
posed using Context-Free Grammars could be used for describing the structure
of sentences and words in languages. CFGs can be used to analyse and explain
the forming of many different types of sentence patterns. Unfortunately, not
all natural and artificial language phenomena can be explained by context-free
grammars. The following problems fall outside of the scope of Context-Free
Grammars [2]:

• Three or more counting dependencies: {anbncn|n > 0}
• Crossing dependencies: The copy language - {ww|w ∈ {a, b}+} , MIX3 -
{w ∈ {a, b, c}+| |w|a = |w|b = |w|c}

These problems (and many others) are caused by the discontinuities, which
also occur in natural language. Range Concatenation Grammars were first
developed by Boullier [5] to help deal with such problems. More restrictive
variations have also been developed, including Simple Range Concatenation
Grammars, Linear Context Free Rewriting Systems and Multiple Context-Free
Grammars. These three systems have been shown to be equivalent [2]. Also
developed to deal with these natural language phenomena are Tree Adjoining
Grammars, which have been shown equivalent to the class of well-nested 2-
SRCGs (and therefore well-nested 2-MCFGs) [2]. This is significant because
it means that, among other things, TAGs could be used to analyze as much
as 99.89% of the natural language recorded into some of the major treebanks
[3]. Another system that can succesfully handle many natural language phe-
nomena is the Calculus of Displacement (D) [6]. As in every formalism, the
key elements expressed by the Calculus of Displacement are the dependencies
between lexical items. This would suggest it should be possible to compare
its expressive power to that of the other formalisms. A fraction of this system
(First-order Displacement Calculus) has already been shown to be equivalent to
TAGs [7]. However, it has not yet been determined what level of expressivity
the calculus as a whole has, in relation to any of the other systems. It is the
goal of this paper to develop a method of transforming D-grammars into RCGs
that are as restricted as possible, thereby approaching the SRCG format. In
this manner we will prove displacement grammars to be strongly equivalent to
RCGs with these restrictions. We will first handle displacement grammars with
only a single separator. But we will show that this method can be used to
succesfully transform displacement grammars with any number of separators.

3

The language hierarchy of different grammar formalisms [2], where the position
of D is uncertain.

2 Displacement Grammars

2.1 Definition

A D-grammar G is a tuple (Σ, δ, S) where:
- Σ is a finite set of words
- δ is a relation that matches types to words in Σ
- S is the distinguished type (the start type). Note that S can be a complex

type.

The calculus of Displacement is a logic of concatenation and intercalation. The
types of the displacement calculus D classify strings over a vocabulary including
a distinguished placeholder 1, also called the separator. The sort i ∈ N of a
(discontinuous) string is the number of separators it contains, punctuating it
into i+1 continuous substrings. The types of D are sorted into types Fi of sort

4

i as follows:

Fj := Fi\Fi+j (1)

Fj := Fi+j/Fi (2)

Fi+j := Fi • Fj (3)

F0 := I (4)

Fj := Fi+1 ↓k Fi+j , 1 ≤ k ≤ i+ 1 (5)

Fj := Fi+j ↑k Fj , 1 ≤ k ≤ i+ 1 (6)

Fj := Fi+1 �k Fj , 1 ≤ k ≤ i+ 1 (7)

F1 := J (8)

If G is a displacement grammar, A,B and C will denote types in G. a will denote
a terminal symbol. For now, we will only discuss discontinuities with a single
separator. Therefore, we will abbreviate ↓1 as ↓, ↑1 as ↑ and �1 as �. However,
the transformation described in this paper would work for discontinuities with
any number of separators.

2.2 Derivations in D

For derivations we will use the labelled natural deduction rules [8]. γ and α are
used to represent strings of arbitrary length, where a string γ : A indicates the
type A can be assigned to the string γ. γ : A�I means the string γ can be split
into a pair of strings (γ1, γ2) : A for some type A. + is used for concatenation.
a and b are used to represent terminal symbols, where (a1, a2) : A is a pair of
terminal symbols such that a1 + 1 + a2 : A. The rules are as follows::

∆ : C
I

∆(I) : C

J
1 : J

.

.
γ : B

.

.

α : B\C
E\

γ + α : C

.

.

γ : B/C

.

.
α : C

E/
γ + α : B

5

.

.
γ : B • C

a1: B a2: C
.
.

∆(a1 + a2) : D
E•

∆(γ) : D

.

.
α : B ↓ C

.

.

(γ1, γ2) : B
E ↓

γ1 + α+ γ2 : C

.

.
α : C

.

.

(γ1, γ2) : B ↑ C
E ↑

γ1 + α+ γ2 : B

.

.
γ : C �B

(c1,c2) : C b : B
.
.

∆(c1 + b+ c2) : D
E�

∆(γ) : D

b : B
.
.

a+ γ : C
I\

γ : B\C

c : C
.
.

γ + c : B
I/

γ : B/C

.

.
α : B

.

.
γ : C

I•
α+ γ : B • C

6

(b1, b2) : B
.
.

b1 + α+ b2 : C
I ↓

α : B ↓ C

c : C
.
.

α1 + c+ α2 : B
I ↑

(α1, α2) : B ↑ C

.

.

(α1, α2) : C

.

.
γ : B

I�
α1 + γ + α2 : C �B

Let G = (Σ, δ, S) be a D-grammar. We define the string language of G as
LS(G) = {w|w = a1...an : S} where a1...an ⊂ Σ∗.

We will now present a few examples of labelled natural deduction proofs. In our
first example, we present a toy grammar that generates the sentence someone
is needed in two ways, in order to show how ambiguity can occur. is needed is
treated as a single constituent for simplicity.
Toy Grammar:
someone : S/(N\S)
is-needed : (S/(N\S))\S
Two ways of proving someone+ is-needed : S:

(1)

someone : S/(N\S) is-needed : (S/(N\S))\S
E\

someone+ is-needed : S

(2)

someone : S/(N\S)

1
p : N

2
q : N\S

E\
p+ q : S

I/2
p : S/(N\S) is-needed : (S/(N\S))\S

E\
p+ is-needed : S

I\1
is-needed : N\S

E/
someone+ is-needed : S

7

In our next example, the toy grammar generates the language MIX3 = {w ∈
{a, b, c}+||w|a = |w|b = |w|c}. In other words the language of words consisting
of a’s, b’s and c’s, with exactly the same amount of each letter. It is a language
with interesting properties that has been studied by Kanazawa and Salvati,
among others [9].
Toy grammar:
a : (S ↑ I) ↓ A ; A
b : (A ↑ I) ↓ B
c : (B ↑ I) ↓ S
Proof that abbcac ∈MIX3:

8

b
:

(A
↑
I
)
↓
B

c
:

(B
↑
I
)
↓
S

a
:

(S
↑
I
)
↓
A

a
:
A

I
a

+
I

:
A

I
↑

(a
,ε

)
:

(A
↑
I
)

b
:

(A
↑
I
)
↓
B

E
↓

a
+
b

:
B

I
a

+
b

+
I

:
B

I
↑

(a
+
b,
ε)

:
(B
↑
I
)
E
↓

a
+
b

+
c

:
S

I
a

+
b

+
I

+
c

:
A

I
↑

(a
+
b,
c)

:
(A
↑
I
)
E
↓

a
+
b

+
a

+
c

:
A

I
a

+
b

+
I

+
a

+
c

:
A

I
↑

(a
+
b,
a

+
c)

:
(A
↑
I
)
E
↓

a
+
b

+
b

+
a

+
c

:
B

I
a

+
b

+
b

+
I

+
a

+
c

:
B

I
↑

(a
+
b

+
b,
a

+
c)

:
(B
↑
I
)

c
:

(B
↑
I
)
↓
S

E
↓

a
+
b

+
b

+
c

+
a

+
c

:
S

9

3 Range Concatenation Grammars

We borrow our definition of Range Concatenation Grammars from Kallmeyer
[2], as well as a few important facts about PRCGs.

3.1 Definition

1) A Positive Range Concatenation Grammar (PRCG) is a tupleG = (N,T, V, S, P)
where:
N is a finite set of predicate names with an arity function dim : N → N
T and V are disjoint finite sets of terminals and variables
S ∈ N is the start predicate, a predicate of arity 1. P is a finite set of clauses
of the form:
A0(x01, ..., x0a0)→ ε
or
A(α1, ..., αdim(A))→ A1(X

(1)
1 , ..., X

(1)
dim(A1)

) · · ·Am(X
(m)
1 , ..., X

(m)
dim(Am))

for m ≥ 0 where A,A1, ..., Am ∈ N,X(i)
j ∈ V for 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Ai)

and αi ∈ (T ∪ V)* for 1 ≤ i ≤ dim(A), and
2) A PRCG G = (N,T, V, P, S) is a k-RCG if for all A ∈ N, dim(A) ≤ k. We
also call dim(A) the block-degree of A. Predicates of block-degree k will contain
k-1 gaps, giving it a gap-degree of k-1.

A PRCG G is:
• non-combinatorial if for each clause c ∈ P, all the arguments in the right-hand
side of c are single variables.
• bottum-up linear if for every clause c ∈ P, no variable appears more than once
in the left-hand side of c.
• top-down linear if for every clause c ∈ P, no variable appears more than once
in the right-hand side of c.
• linear if it is top-down and bottom-up linear.
• bottom-up erasing if for every clause c ∈ P, each variable occuring in the
right-hand side of c occurs also in its left-hand side.
• top-down erasing if for every clause c ∈ P, each variable occuring in the left-
hand side of c occurs also in its right-hand side.
• non-erasing if it is top-down and bottum-up non-erasing.
• simple if it is non-combinatorial, linear, and non-erasing.

Our transformation will result in a linear, non-erasing, but combinatorial RCG.
This means it can be transformed into a non-combinatorial RCG which would
meet all the requirements of a simple RCG, except for top-down linearity [5].
We will suggest a possible alternative to this later. Because we allow combinato-
rial clauses, we do not stricly enforce resource sensitivity, unlike in D. However,
our transformation method ensures that all operations applied to the input in
our target RCG, could have been applied in our source grammar. This means
the target grammar is resource sensitive, even though combinatorial RCGs are

10

not. They are now resource sensitive for the same reason that Displacement
grammars are resource sensitive: adding an item is only allowed if an item of
higher arity has just been removed.

3.2 Range and string language

The range language of an A ∈ N with dim(A) = k for some w T ∗ is:

R(A,w) = {p|p is a k-dimensional range vector, and A(p)
∗⇒G,w ε}.

The string language of an A ∈ N with dim(A) = k for some w ∈ T ∗ is:
L(A,w) = {p(w)|p ∈ R(A,w)}.

The string language of a PRCG G is:
L(G) = {w ∈ T ∗|〈〈0, |w|〉〉 ∈ R(S,w)}.

3.3 Derivations for PRCGs

Derivations and proofs for a PRCG G = (N,T, V, P, S) will be done using deriva-
tion trees of the form:

A(X1,...,Xn)

B(Y1,...,Ym) C(Z1,...,Zl)

Where:
{A,B,C} ⊆ N
{X1, ..., Xn, Y1, ..., Ym, Z1, ..., Zl} ⊂ (V ∪ T)∗

{A(X1, ..., Xn)→ B(Y1, ..., Ym), C(Z1, ..., Zl)} ⊆ P

We will now present a few examples of derivations for PRCGs. To do this
we present a toy grammar generating someone is-needed which, as we shall
see, will also generate the sentence in two distinct ways (the same ambiguity is
present):

A(someone)→ ε

B(is-needed)→ ε

S(XY)→ A(X), C(Y)

C(X)→ S(pX)

S(XY)→ A(X), B(Y)

S(XY)→ N(X), C(Y)

A(X)→ S(Xq)

C(q)→ ε

N(p)→ ε

11

One way to derive someone is-needed in G is:
S(someone is-needed)

A(someone)

ε

B(is-needed)

ε

Another way would be:

S(someone is-needed)

A(someone)

ε

C(is-needed)

S(p is-needed)

A(p)

S(p q)

N(p)

ε

C(q)

ε

B(is-needed)

ε

4 Transforming D into PRCG

In this section, we will present the function that transforms a set of lexical
items of a displacement grammar (also called source grammar or GS from now
on) into a set of linear non-erasing combinatory and non-combinatory PRCG
clauses. We apply the transformation to all types and (subtypes of)* subtypes
assigned to the lexical items in GS , while adding what we call base-clauses that
represent axioma’s. The equivalence of GS and GT is obvious from the fact that
each clause performs the same operations as the application of some deduction
rule in D, making any derivation of some word w in the string language of GT
strongly equivalent with the derivation for w in GS .

We will use two functions to transform the set of types assigned to the lexi-
cal items of a source grammar GS , into a set of SRCG-clauses for our target
grammar GT . d e will be the input function corresponding to elimination rules,
and b c the output function corresponding with the introduction rules. Both
functions are recursive. dAe will represent applying the input function to some
type A which can be complex or atomic. Aatomic will be used to indicate that

12

A is an atomic type. TA is a single predicate name used to easily keep track
of the fact that some (sub)type A from GS was used to acquire it. [a] and [b]
will be used as single terminal symbols such that TA([a])→ ε and TB([b])→ ε.
([a1], [a2]) will be a pair of terminal symbols such that TA([a1]#[a2])→ ε where
is a terminal symbol used as a separator (much like 1 in D). These symbols
are used for convenience and easy reading, but not required to maintain strong
equivalence. The two functions will take a type assigned to a lexical item in
GS , and return a set of clauses. Our transformation is completed by applying
the correct functions to each type in GS .

a : t //// TA(...)→ (...)

Graphical representation of the input and output functions. α : A means α is a
string assigned a type A in GS, and TA(...)→ (...) is an RCG-clause for GT .

D(GS) //// RCG(GT)

Graphical representation of the transformation, where GS is an arbitrary dis-
placement grammar: a collection of lexical items with their assigned types. GT
is the target RCG: a set of clauses.

4.1 Base clauses

When transforming a displacement grammar GS into a RCG GT , the first step
is to include a corresponding base clause that produces each item in the lexicon,
like the axioms in labelled natural deduction:
a : A ⇒ TA(a)→ ε
Informally, we could say the base clauses will serve as the lexicon for GT , and
the support clauses will serve as the natural deduction rules that would be used
in a derivation in D. As such, each support clause will represent a valid rule
that can be applied whenever the conditions for it are met (ie whenever an ap-
propriate type is present in the input).

4.2 Support clauses

Next, we include support clauses that correspond to rules used in natural deduc-
tion. We will include two types of support clauses, depending on what the nat-
ural deduction proof for GS would look like. We use elimination clauses when,
in the corresponding labelled natural deduction proof, we would use elimination
rules. We use introduction clauses when we would use introduction rules. When
adding a hypothetical item, terms like [a/b] will refer to a unique terminal sym-
bol used to represent a hypothetical item of type A/B. We will use the notation
dAe to mean applying the transformation to type A.

13

Elimination clauses: The elimination clauses are as follows:
case 1 dA\Be = dBe ∪ bAc ∪ {TB(XY)→ TA(X), TA\B(Y)}
Corresponding natural deduction rule:

.

.
γ : B

.

.

α : B\C
E\

γ + α : C

case 2 dA/Be = dAe ∪ bBc ∪ {TA(XY)→ TA/B(X), TB(Y)}
Corresponding natural deduction rule:

.

.

γ : B/C

.

.
α : C

E/
γ + α : B

case 3 dA • Be This is somewhat of a special case. Recall the corresponding
natural deduction rule:

.

.
γ : B • C

a1: B a2: C
.
.

∆(a1 + a2) : D
E•

∆(γ) : D

What’s different about this case is the type D. How do we find D? In other
words, how do we know when to ’split’ the type in two. The answer is: as soon
as possible. Any product can be eliminated as soon as it is the main connec-
tive. If δ(c, A • B) for some item c ∈ Σ, we can do this with the following set
of clauses: {S(XY Z) → TA•B(Y), S(X[a][b]Z)} ∪ {TA([a]) → ε} ∪ {TB([b]) →
ε} ∪ {TA•B(c) → ε} where S is the distinguished type. Otherwise, we want to
split each hypothetical item [a • b] as soon as it is added by a clause. We can
do this by scanning for types A •B that will occur, and creating clauses to split
them up straight away. To sum it up, here is an informal description of what
needs to be done:

If δ(c, A •B) and c ∈ Σ then dA •Be = {S(XY Z)→ TA•B(Y), S(X[a][b]Z)} ∪
{TA([a])→ ε} ∪ {TB([b])→ ε} ∪ {TA•B(c)→ ε} ∪ dAe ∪ dBe
Otherwise dA•Be = {TA([a])→ ε}∪{TB([b])→ ε}∪{TA•B(c)→ ε}∪dAe∪dBe
We also need to split the type, as soon as possible. We can do this by adding
a clause TC(XY Z) → TC(X[a][b]Z), TA•B(Y) whenever there is some clause
TB(...)→ TC(...[a•b]...), and adding a clause TS(XY Z)→ TS(X[a][b]Z), TA•B(Y)
if (a,A•B) ∈ δ. This will be done by the function pcheck, which takes a pair of
types as input (a type on the input side, and a current goal type), and outputs
clauses that deal specifically with this problem.

case 4 dA ↓ Be = dBe ∪ bAc ∪ {TB(XY Z)→ TA↓B(Y), TA(X#Z)}
Corresponding natural deduction rule:

14

.

.
α : B ↓ C

.

.

(γ1, γ2) : B
E ↓

γ1 + α+ γ2 : C

case 5 dA ↑ Be = dAe ∪ bBc ∪ {TA(XY Z)→ TA↑B(X#Z), TB(Y)}
Corresponding natural deduction rule:

.

.
α : C

.

.

(γ1, γ2) : B ↑ C
E ↑

γ1 + α+ γ2 : B

case 6 dC � Be This case is much like case 3. Remember the corresponding
Natural Deduction rule:

.

.
γ : C �B

(c1,c2) : C b : B
.
.

∆(c1 + b+ c2) : D
E�

∆(γ) : D

Just like in case 3, we want to split this type as soon as possible. The approach
is simillar to that of case 3:
If δ(c, A�B) and c ∈ Σ then dA�Be= {S(XY Z)→ TA�B(Y), S(X[a1][b][a2]Z)}∪
{TA([a1]#[a2])→ ε} ∪ {TB([b])→ ε} ∪ {TA�B(c)→ ε} ∪ dAe ∪ dBe
Otherwise dA � Be = {TA([a1]#[a2]) → ε} ∪ {TB([b]) → ε} ∪ {TA�B(c) →
ε} ∪ dAe ∪ dBe
We also need to split the type. We can do this by adding a clause TC(XY Z)→
TC(X[a1][b][a2]Z), TA�B(Y) whenever there is some clause TB(...)→ TC(...[a�
b]...), and adding a clause TS(XY Z) → TS(X[a1][b][a2]Z), TA�B(Y) if (a,A �
B) ∈ δ. This will be done by the function pcheck, which takes a pair of types
as input (a type on the input side, and a current goal type) and outputs clauses
that deal specifically with this problem.

Introduction clauses: The introduction clauses are as follows:
case 1 bA\Bc = bBc ∪ dAe ∪ {TA\B(X)→ TB([a]X)} ∪ {TA([a])→ ε}
Corresponding natural deduction rule:

b : B
.
.

a+ γ : C
I\

γ : B\C

case 2 bA/Bc = bAc ∪ dBe ∪ {TA/B(X)→ TA(X[b])} ∪ {TB([b])→ ε}
Corresponding natural deduction rule:

c : C
.
.

γ + c : B
I/

γ : B/C

15

case 3 bA •Bc = bAc ∪ bBc ∪ {TA•B → TA(X), TB(Y)}
Corresponding natural deduction rule:

.

.
α : B

.

.
γ : C

I•
α+ γ : B • C

case 4 bA ↓ Bc = dAe∪bBc∪{TA↓B(X)→ TB([a1]X[a2])}∪{TA([a1]#[a2])→
ε}
Corresponding natural deduction rule:

(b1, b2) : B
.
.

b1 + α+ b2 : C
I ↓

α : B ↓ C

case 5 bA ↑ Bc = dBe ∪ bAc ∪ {TA↑B(X#Y)→ TA(X[b]Z)} ∪ {TB([b])→ ε}
Corresponding natural deduction rule:

c : C
.
.

α1 + c+ α2 : B
I ↑

(α1, α2) : B ↑ C

case 6 bA�Bc = bAc ∪ bBc ∪ {TA�B(XY Z)→ TA(X#Z), TB(Y)}
Corresponding natural deduction rule:

.

.

(α1, α2) : C

.

.
γ : B

I�
α1 + γ + α2 : C �B

Types with J :
If there are types containing J , we add the axiom rule:
TJ(#)→ ε
This rule is simply the equivalent of the rule 1: J in natural deduction. We are
essentially acting as if 1: J was in the displacement grammars lexicon, which it
might as well have been.
Types with I:
When adding a hypothetical item of type I, we could add a [i] to the string,
and later make appropriate clauses that deal with it, for example:
TA(X[i])→ TA(X)
However, we will instead make use of the fact that A • I = A for any type A,
and α+ ε = α for any string α. Therefore instead of using a hypothetical item
[i] for I, we will simply use ε for simplicity.

16

4.3 Hypothetical items

When items need to be added that are not in the lexicon, we add a hypothetical
item (for example [n] for a hypothetical item with type N). The same rules that
apply in D for the types of these items, should apply to our PRCG GT so that
it generates the same strings and remains strongly equivalent. Therefore, after
our initial transformation of each lexical item, we treat each added hypothet-
ical item as if it were an item in the lexicon (or, one could say we add this
to a virtual lexicon and apply the transformation to the virtual lexicon). We
then apply the normal transformation procedure to these items, which means
we might then add more hypothetical items, and so on. Important to note here
is that the total amount of hypothetical items that will have to be dealt with in
this manner will always be finite, since with each new clause the number of total
connectives that would be left in the natural deduction proof would be reduced
by one (remember each clause corresponds to one step in a natural deduction
proof).

We are now ready to give a formal definition of the transformation function.
GS = (Σ, δ, S)
GT = (N,T, V, TS , P) where:
P =

⋃
(a,A)∈δ

{TA(a)→ ε} ∪ dAe ∪ pcheck(A,S)

dAatomice = ∅
dA\Be = dBe ∪ bAc ∪ {TB(XY)→ TA(X), TA\B(Y)}
dA/Be = dAe ∪ bBc ∪ {TA(XY)→ TA/B(X), TB(Y)}
dA•Be = {S(XY Z)→ TA•B(Y), S(X[a][b]Z)|c ∈ Σ∧ δ(c, A•B)}∪{TA([a])→
ε} ∪ {TB([b])→ ε} ∪ dAe ∪ dBe
dA ↓ Be = dBe ∪ bAc ∪ {TB(XY Z)→ TA↓B(Y), TA(X#Z)}
dA ↑ Be = dAe ∪ bBc ∪ {TA(XY Z)→ TA↑B(X#Z), TB(Y)}
dA � Be = {S(XY Z) → TA�B(Y), S(X[a1][b][a2]Z)|c ∈ Σ ∧ δ(c, A � B)} ∪
{TA([a1]#[a2])→ ε} ∪ {TB([b])→ ε} ∪ dAe ∪ dBe
bAatomicc = ∅
bA\Bc = bBc ∪ dAe ∪ {TA\B(X)→ TB([a]X)} ∪ {TA([a])→ ε}
bA/Bc = bAc ∪ dBe ∪ {TA/B(X)→ TA(X[b])} ∪ {TB([b])→ ε}
bA •Bc = bAc ∪ bBc ∪ {TA•B → TA(X), TB(Y)}
bA ↓ Bc = dAe ∪ bBc ∪ {TA↓B(X)→ TB([a1]X[a2])} ∪ {TA([a1]#[a2])→ ε}
bA ↑ Bc = dBe ∪ bAc ∪ {TA↑B(X#Y)→ TA(X[b]Z)} ∪ {TB([b])→ ε}
bA�Bc = bAc ∪ bBc ∪ {TA�B(XY Z)→ TA(X#Z), TB(Y)}

V = {X,Y, Z}
T = {a|∃a(δ(a,A)) ∨ ({TA(X)→ ε} ⊆ P ∧ {a} ⊆ {X})}
N = {TA|({TA(X0...Xn)→ ...} ⊆ P) ∧ ({X0...Xn} ⊂ (T ∪ V)∗)}

17

pcheck(A/B,C) = pcheck(A,B)

pcheck(A\B,C) = pcheck(B,A)

pcheck(A •B,C) = pcheck(A,C) ∪ pcheck(B,C) ∪ TC(XY Z)→ TA•B(Y), TC(X[a][b]Z)

pcheck(A ↓ B,C) = pcheck(B,A)

pcheck(A ↑ B,C) = pcheck(A,B)

pcheck(A�B,C) = pcheck(A,C) ∪ pcheck(B,C) ∪ TC(XY Z)→ TC(X[a1][b][a2]Y), TA�B(Y)

pcheck(Aatomic, C) = ∅

a pair of types A and C // // set of clauses

Graphical representation of the function pcheck, that deals with the (discontin-
uous) product units in (all the subtypes of)* some type A, using C to keep track
of what the goal type would be.

4.4 Multiple separators

So far, we have been working with displacement grammars containing up to
one separator. However, the transformation could work with any number of
separators. All we would need to do is assign a number to each of the added
gaps, linking them to a perticular separator:
dA ↓n Be = dBe ∪ bAc ∪ {TB(XY Z)→ TA↓nB(Y), TA(X#nZ)}
This can be applied to each of the rules above. However, since it does not seem
common in natural language to have multiple separators, it is not a main focus
of this paper.

4.5 Examples

What follows is a few examples of how the transformation works.

First, we present an example of three counting dependencies, this is a TAL
[2].
{anbncn|n > 0}
Lexicon:

b : J\B
b : J\(A ↓ B)

c : B\C
a : A/C

Distinguished type : A� I

18

Transforming the 4 items in lexicon and the distinguished type yields the fol-
lowing clauses:

TJ\B(b)→ ε

TB(XY)→ TJ(X), TJ\B(Y)

TJ\(A↓B)(b)→ ε

TA↓B(XY)→ TJ(X), TJ\(A↓B)(Y)

TB(XY Z)→ TA↓B(Y), TA(X#Z)

TB\C(c)→ ε

TC(XY)→ TB(X), TB\C(Y)

TA/C(a)→ ε

TA(XY)→ TA/C(X), TC(T)

TJ(#)→ ε

T ′A(XY)→ TA(X#Y)

Next, we present an example using the copy-language. This is another example
of a language that can be generated by a TAG, however it does have cross-serial
dependencies:
{ww|w ∈ {a, b}+}
Lexicon:

a : J\(A\S)

a : J\(S ↓ (A\S))

a : A

b : J\(B\S)

b : J\(S ↓ (B\S))

b : BDistinguished type : S � I

19

Transforming this grammar yields the following clauses:

TJ\(A\S)(a)→ ε

TA\S(XY)→ TJ(X), TJ\(A\S)(Y)

TS(XY)→ TA(X), TA\S(Y)

TJ\(S↓(A\S))(a)→ ε

TS↓(A\S)(XY)→ TJ(X), TJ\(S↓(A\S))

TA\S(XY Z)→ TS↓(A\S)(Y), TS(X#Z)

TA(a)→ ε

TJ\(B\S)(b)→ ε

TB\S(XY)→ TJ(X), TJ\(B\S)(Y)

TS(XY)→ TB(X), TB\S(Y)

TJ\(S↓(B\S))(b)→ ε

TS↓(B\S)(XY)→ TJ(X), TJ\(S↓(B\S))

TB\S(XY Z)→ TS↓(B\S)(Y), TS(X#Z)

TB(b)→ ε

TJ(#)→ ε

T ′S(XY)→ TS(X#Y)

Next, we will transform MIX3. This language has interesting properties (free
word order). This language is not a TAG [9].
MIX3 = {w ∈ {a, b, c}+| |w|a = |w|b = |w|c}
Lexicon:

a : A

a : (S ↑ I) ↓ A
b : (A ↑ I) ↓ B
c : (B ↑ I) ↓ S

Distinguished type : S

20

Transforming this grammar yields the following clauses:

TA(a)→ ε

T(S↑I)↓A(a)→ ε

TA(XY Z)→ T(S↑I)↓A(Y), TS↑I(X#Z)

TS↑I(X#Z)→ TS(XεZ)

T(A↑I)↓B(b)→ ε

TB(XY Z)→ T(A↑I)↓B(Y), TA↑I(X#Z)

TA↑I(X#Z)→ TA(XεZ)

T(B↑I)↓S(c)→ ε

TS(XY Z)→ T(B↑I)↓S(Y), TB↑I(X#Z)

TB↑I(X#Z)→ TB(XεZ)

Next, we present an example that shows how ambiguity is preserved after the
transformation using our toy grammar for someone is-needed.
Lexicon:
someone : S/(N\S)
is− needed : (S/(N\S))\S
Distinguished type: S (sort 0)
Transforming this grammar yields the following clauses:

TS/(N\S)(someone)→ ε

TS(XY)→ TS/(N\S)(X), TN\S(Y)

TN\S(X)→ TS([n]X)

T(S/(N\S))\S(is-needed)→ ε

TS(XY)→ TS/(N\S)(X), T(S/(N\S))\S(Y)

TS(XY)→ TN (X), TN\S(Y)

TS/(N\S)(X)→ TS(X[n\s])
TN\S([n\s])→ ε

TN ([n])→ ε

One way to derive someone is-needed in G is:

TS(someone is-needed)

TS/(N\S)(someone)

ε

T(S/(N\S))\S(is-needed)

ε

Another way would be:

21

TS(someone is-needed)

TS/(N\S)(someone)

ε

TN\S(is-needed)

TS([n] is-needed)

TS/(N\S)([n])

TS([n] [n\s])

TN ([n])

ε

TN\S([n\s])

ε

T(S/(N\S))\S(is-needed)

ε

5 Conclusions

We have shown that displacement grammars can be transformed into Range
Concatenation Grammars, using the transformation described in this paper.
The target RCG (GT) requires combinatory clauses. However, each clause
mimics the actions of a natural deduction rules as used in ordinary displace-
ment grammars. This means resource sensitivity has been preserved. This
means that either these grammars could be transformed into SRCGs somehow,
or that there is some sort of ”middle ground” where combinatory clauses are
allowed, and yet the grammar as a whole remains resource sensitive. We also
believe the translation proposed here can be made even more direct by trans-
forming the input and output side of a statement at the initial state in each
natural deduction rule, into the first and second block of the left side of an
RCG clause. The input and output at the final state of the natural deduction
rule could then be transformed into the first and second block of the right side of
the RCG clause. In this manner, a 2-RCG very close to a simple 2-RCG could
be used for GT . The only difference would be that we would need to allow cer-
tain combinatory clauses (only those that add the separator symbol #). This
further supports the idea that resource sensitivity could be maintained while
still allowing combinatory clauses.

References

[1] Chomsky, Noam, Three models for the description of language. Information
Theory, IRE Trans. on Information Theory 2 (1956), p113-124.

22

[2] Kallmeyer, Laura, Parsing Beyond Context-Free Grammars. Cognitive Tech-
nologies 1st edition (2010).

[3] Kuhlmann, Marco, Dependency Structures and Lexicalized Grammars: An
Algebraic Approach. Springer (1998).

[4] Morrill, Glyn & Valentin, Oriol, On Calculus of Displacement TAG+10,
Proceedings of TAG+Related Formalisms 2010, University of Yale (2010).

[5] Boullier, Pierre, Proposal for a Natural Language Processing Syntactic Back-
bone. Rapport de recherche n 3442, (1998). ISSN 0249-6399.

[6] Morrill, Glyn & Valentin, Oriol & Fadda, Mario, The Displacement Calculus.
Journal of Logic, Language and Information, Volume 20 Issue 1, January
2011. Pages 1-48.

[7] Wijnholds, Gijs, Investigations into Categorial Grammar: Symmetric
Pregroup Grammar and Displacement Calculus. Bachelor Thesis 2011,
University of Utrecht.
http://igitur-archive.library.uu.nl/student-theses/2011-0809-
200850/UUindex.html

[8] Morrill, Glyn & Merenciano, Josep-Maria, Generalising Discontinuity.
T.A.L., volume 37, n 2, p.119-143.

[9] Kanazawa, Makoto & Salvati, Sylvain, MIX is not a tree-adjoining language.
Proceedings of the 50th Annual Meeting of the Assiociation for Computa-
tional Linguistics.

23

