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appreciate this thesis for presenting two different approaches to developing fast
graph algorithms.
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Chapter 1

Introduction

Graphs are a powerful mathematical data model that emphasizes the relationships
within the data. We do not mean the graphical representation of functions, but
graph theory, where a graph consists of a set of vertices, or nodes, connected
by edges. The vertices in a graph could represent the users of a social network
application so that the edges are the friendship connections between the users.
In another application the nodes are pages on a website and the edges are the
hyperlink references from one page to another. As these graphs can be large, the
computations manipulating them should be efficient.

This thesis introduces a specific type of graph in Chapter 2 that restricts
the order in which tasks can be executed by their processors. For this problem,
the tasks are the vertices and the edges denote the precedence relations between
nodes. Such a graph is directed ; an edge from the first task to a second task
means that the first precedes and should be executed before the second, not the
other way around. This is unlike the friendship relations in the social, undirected
graph, where an edge from one person to the other means that both are friends
with each other. We study a specific problem, matching, on undirected graphs in
Chapter 3. Matching is about forming pairs of connected nodes in a graph, and
we consider algorithms that quickly compute them.

Many graphs undergo changes; they are dynamic. In the social graph, new
users sign up and friendships are made or broken. For the web graph, entire
websites can be launched or taken off the internet and many links are modified
each day. We embrace the dynamism of graphs and research algorithms that
can incorporate changes effectively. The power of such algorithms is that they
exploit the fact that changes generally occur gradually. We can reuse most of the
information that we have already obtained on the graph before it faced changes.
As graphs become bigger, the need for such dynamic algorithms grows larger as
well, because recomputing the solution to a problem turns inefficient.

1.1 Progressive Planning

This research has been motivated by the company Progressive Planning, which
has developed organizational methods for planning and managing projects. Pro-
gressive Planning is a small and young company started in Utrecht, The Nether-
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lands, in 2009 with the goal of reinventing project management worldwide. Its
main difference from conventional approaches to project management is that the
people doing the actual work for the projects, also do the planning. In the Pro-
gressive Planning web application, all contributors to a project describe their
own work, including the relationships to work of others and the estimates for the
workload. The application computes a schedule for the work of all contributors.
This bottom-up approach has two advantages in particular. First, it creates own-
ership, responsibility, and accountability in the project contributors. Second, the
data is entered and updated by the people who know that data the best: the
people doing the actual work. This means that the schedule and other statistics
are as accurate and up-to-date as possible.

In the Progressive Planning web application, people can subscribe and create
different roles in which they can structure and plan their work. Roles have a set
availability which can be seen as a working speed rate; for example, one person
could be a software engineer 30 hours per week and a student 10 hours a week,
and plan his work and academic projects in the respective roles.

In a role, a person can create deliverables which represent the products of
work, not work itself. Deliverables in turn, contain activities, on which the user
can estimate the amount of time required to perform each activity. Activities
within a deliverable should be done in a sequential order, specified by the user.
A deliverable is finished as soon as all its activities are done.

Deliverables can be used to make a product breakdown by indicating parent-
child relationships between the deliverables. In this way, a top deliverable can be
divided into subdeliverables in a tree structure. This entails that a single deliv-
erable can have several child deliverables, but only one parent deliverable. Team
work is structured by creating parent-child relationships between deliverables of
different people. Activities within a deliverable can only be started after all of its
child deliverables are finished. In addition to the constraint of sequential order of
execution on activities, they can also be dependent on other deliverables. Such
a dependency entails that the activity cannot be started before the deliverable it
depends on is completed.

Summarizing, there are three types of precedence constraints, which are all of
the form finish-to-start: the first activity in a deliverable can start after its deliv-
erable’s child deliverables are finished; a subsequent activity within a deliverable
can start only after its preceding activity is finished; and every activity has to
wait for all the deliverables it is dependent on. As such, a single activity can have
several precedence constraints, so it can only start after the last is relieved.

The user can also set various time constraints on roles, deliverables, and ac-
tivities. Firstly, a role can have a start or end time, or both. This means that
the role is only available for doing activities after the start time or before the
end time. Secondly, an activity can have a fixed start time at which it will be
done by its role. Such activities can be seen as calendar items; for example, the
activity ‘attend the conference’ could be scheduled at a fixed start time. Thirdly,
deliverables can have a deadline, which is a time before which they should be
finished.

The challenge is that Progressive Planning should provide the users with time
schedules of their activities and deliverables for their different roles. We refer to
the start and end times of all activities and deliverables in the system as the global
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schedule, or simply the schedule. It should definitely be feasible, or consistent:
activities should take their estimated time, be scheduled one at a time on their
role, not exceed the role’s availability, and start only after their predecessors have
completed. We allow preemption, which is the interrupting of a scheduled activity
to continue processing where it was left off at a later time, allowing other jobs to
be scheduled in between. Moreover, the schedule should minimize the completion
times of all activities and deliverables, favoring those with earlier deadline or
higher risk. Most importantly, the schedule should be computed rapidly. It is,
however, not clearly defined how to strike a balance between these criteria.

1.1.1 Example

Figure 1.1 depicts an example of the product breakdown of building a house in
Progressive Planning. There are four people in the roles of owner, contractor,
gardener, and architect. They partake in the project “House”, which is divided
up in three subdeliverables: building, garden, and design. Each deliverable in
turn contains one or more activities.

Figure 1.1: Product breakdown of a project of a house consisting of four deliverables,
created in Progressive Planning. Each deliverable contains one or more activities, de-
pendencies are depicted by the yellow arrows and the gray lines denote that “House”
has three child-deliverables.

The roles need to spend a certain amount of hours to complete each activity,
as depicted in Table 1.1. Given this information, the amount of time it takes
between the start and completion of an activity is determined by the availability
of its role. Suppose that the architect, the contractor and the owner can work
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40 hours per week and the gardener can work 20 hours per week. In that case,
the time between the start and end time of each activity is given by the duration
column in Table 1.1.

Table 1.1: The amount of work, role and duration of each activity in the project of
Figure 1.1.

Activity Work Role Duration
(1) Design the house and garden 40 hours Architect 1 week
(2) Lay the foundation 40 hours Contractor 1 week
(3) Mason the walls 40 hours Contractor 1 week
(4) Build the roof 40 hours Contractor 1 week
(5) Create the garden 40 hours Gardener 2 weeks
(6) Furnish 20 hours Owner 1/2 week

The precedence constraints in this project are implicit in Figure 1.1. The activ-
ity “Furnish” cannot start before the building, garden and design are completed.
The activities “Lay the foundation” and “Create the garden” are dependent on
the design to finish first. Lastly, the activity “Mason the walls” can start only
after “Lay the foundation” and is in turn succeeded by “Build the roof”. Unless
otherwise specified, the schedule always plans the remaining work to start right
now. Using this information, a possible schedule is presented in Figure 1.2.

Figure 1.2: Gantt chart of a possible schedule for the activities, referenced by their
number, in the project of Figure 1.1. Vertically, a calendar is given for each role in the
project, where time is plotted horizontally.

time (weeks)

Architect

Contractor

Gardener

Owner

0 1 2 3 4

(1)

(2) (3) (4)

(5)

(6)

In Figure 1.2, the activity “Design the house and garden” is scheduled for the
architect to start with right away. Therefore it will be finished a week from now,
meaning that the design has finished. Only at this point, it is possible to start the
activities for the building and the garden. They can be done in parallel, because
the gardener and the contractor are independent. Lastly, “Furnish” is planned to
start right after the building has finished.

Note that the order of execution of the activities in this example is entirely
determined by the precedence constraints. Therefore, it is easy to confirm that
this schedule is the fastest way to finish the project. However, it is not the only
possible schedule, because we could delay the furnishing until week 5, for example.
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1.2 Overview

The precedence graph of the tasks in Progressive Planning which motivated this
thesis, is large and dynamic. Therefore, our focus is on fast practical algorithms
for creating a task schedule, finding the longest chain of tasks and maintaining
certain properties and values on the graph. Some of these problems, we try to
solve dynamically. This will be the topic of Chapter 2.

Matching is a technique that is widely used in graph partitioning, the splitting
of a graph in smaller components. As such, it can be used to divide the people,
deliverables, and activities over the data servers in such a way that most infor-
mation requested by one user can be retrieved from a single server. In Chapter 3,
we develop a dynamic matching algorithm that is suited for parallel computing.
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Chapter 2

Scheduling

Scheduling theory is a branch of combinatorial optimization that can be used
to formalize the problem of Progressive Planning. It covers an extensive area
of research with many applications in business optimization and the allocation
of computer resources to computation tasks. In Section 2.1, we introduce the
notation commonly used in scheduling theory. This helps us in our attempts
to define the problem more formally. However, as we argue in Section 2.1.2,
focusing on optimization clouds the presence of the great uncertainty in the data.
For this and other reasons, we develop an algorithm in Section 2.2 based on simple
heuristics.

Section 2.3 discusses splitting up the precedence graph in connected compo-
nents. This can greatly reduce computation time, because it reduces the problem
size greatly. We present an easy approach to analyze the quality of the resulting
schedule by measuring the critical path in Section 2.4. Lastly, we discuss several
algorithms and approaches concerning the dynamism of the precedence graph in
Section 2.5.

2.1 Introduction to scheduling theory

Our problem can be formulated as a problem in scheduling theory, an area of
research which is concerned with mapping task jobs to time slots on machines.
Following Brucker [9] and Pinedo [25], the appropriate nomenclature and no-
tation is as follows. Deliverables and activities make up a set J of n jobs,
J = {j1, j2, . . . , jn}. Here job ji has a deterministic processing time pi, which
is the activity’s duration and zero if it is a deliverable. The precedence relations
are given by a directed acyclic graph G = (V,E), where V = J is the set of
vertices, and E a set of edges. An edge (j1, j2) ∈ E indicates that job j1 needs
to be done before j2 can start. The roles are modeled by a set M of m parallel
machines, or processors, M = {M1,M2, . . . ,Mm}.

In scheduling theory, it is uncommon that jobs can only be processed by a
specific processor, so there is no general notation. However, we could view the
processors as disjoint sets of jobs:

Mi ⊆ J, ∀i
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Mi ∩Mj = ∅, ∀i 6= j

m⋃
i=1

Mi = J.

Here, j ∈ Mi means that job j has to be processed by Mi. Because every job is
uniquely assigned to a role, we can scale its processing time by the availability of
its role. This gives the actual duration of a job’s execution, just as we did in the
example in Section 1.1.1.

Time constraints, on the other hand, are often modeled in scheduling theory.
Jobs corresponding to a deliverable with a deadline have a due date di before
which they should be completed. Fixed start time activities are more tricky; they
could, for example, be incorporated by putting a release date ri and a due date
di = ri + pi on such a job. In this way, the job only becomes available at its
fixed start time ri, and has to be scheduled immediately in order to make its
deadline. These release and due dates can also be used for roles with start or end
times. Jobs corresponding to a role with a start time, have a release date equal
to the start time of the role, not overriding their own release date if they have
one. Similarly, for a role with an end time, the jobs can be given the end time as
a due date.

We do not only need to meet the above constraints, as scheduling is also
an optimization problem. Consequently, we require some objective function f
to minimize. Assume that the resulting schedule is feasible, meaning that it
adheres to all the rules defined above. Also, let ci be the completion time of
job ji. In that case, it is sensible to have a function on these completion times,
f : (c1, c2, . . . , cn) 7→ R. Common measures in scheduling theory are the makespan
(Cmax = max{ci}) and sum of weighted completion times (

∑
wici), or a sum or

maximum of the lateness (Li = ci − di) or tardiness (Ti = max{0, Li}). Given
some objective function, the optimization problem is to minimize it over the set
of all feasible schedules.

2.1.1 Job-shop scheduling

Job-shop scheduling is a problem that resembles our case most closely, and is
covered thoroughly in the literature. In this problem, a job consists of one up
to m operations, or subjobs. Each operation has its own processing time and is
assigned to a specific processor, with no more than one operation per job on each
machine. The operations of a single job have to be executed in a certain order.
However, this order can be different for the operations of different jobs. There
are no other precedence constraints than these orders, so the precedence graph
consists of simple paths; each operation has at most one predecessor and at most
one successor. Job-shop scheduling can be seen as a production process where
each job has to go through several stages of production before it is finished.

The similarity between the job-shop problem and Progressive Planning is that
the operations are already assigned to their processors. However, because of the
structure of jobs and their operations in job-shop scheduling, the type of prece-
dence constraints is limited. In our case, there can be any precedence constraints
as long as there is no circular dependency. As such, we can argue that our problem
is in fact a generalization of job-shop scheduling.
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One reason why this is a helpful realization, is that Gonzalez and Sahni [17]
have proven that the decision version of the job-shop problem is NP-complete in
the strong sense. Here, the decision version is for some constant B: given an
instance of the job-shop scheduling problem, does there exist a feasible schedule
with Cmax ≤ B? This result is still valid even if there are only two processors
and preemption is allowed. Consequently, the job-shop optimization problem is
NP-hard and so is the scheduling problem for Progressive Planning if we try to
minimize the makespan. As a result, it is likely that there does not exist an algo-
rithm to solve this problem of which the running time is bounded polynomially
by the input size.1 Although we do not only want to minimize the makespan, it
can be safely assumed that the problem remains NP-hard if we try to minimize
other common objective functions.

A common approach to the job-shop problem is to formulate it as a (mixed)
integer linear program, as is described by Pinedo [25], who provides a branch-and-
bound technique to solve the program optimally. Two approximation algorithms
are given by Porto and Ribeiro. [26], who apply a Tabu search method to job-
shop scheduling, and Bierwirth and Mattfeld [6], who present a genetic algorithm
for the problem. Both claim to obtain efficient and good approximations to
specific instances of versions of the job-shop scheduling problem. However, these
methods all have in common that they require the generation of large sets of
feasible schedules, which has as a result that with increasing problem size, either
these algorithms do not scale well, or their solutions become less accurate. Not
surprisingly, the size of typical problem instances solved in the literature does not
exceed a hundred jobs.

2.1.2 Heuristic approach

The simplest heuristic applied in scheduling theory is list scheduling, which tries
to schedule jobs according to their order in some predefined list, as described
by Brucker [9]. In its most basic form, the list is just a random ordering of
the jobs. This order could be in conflict with the ordering of jobs enforced by
the precedence constraints, but can be overcome by treating the list order as a
type of priority: at any moment, schedule the available job that has the highest
order in the list. A job is available when all its predecessors have been completed
and it has been released. Depending on the order in the list, list scheduling is
a natural approach to scheduling in many environments: think of a cashier who
serves customers according to their order in the queue. However, as far as we
know, list scheduling has not been analyzed for job-shop scheduling, let alone our
generalization of it, probably because of this ambiguity in conflicting orders of
the list and precedence constraints.

Depending on the implementation, list scheduling has a running time ofO(n log n)
because of the sorting, which makes it incredibly attractive for the basis of a scal-
able algorithm. Also, taking the list as a random order would be naive; the trick

1That the decision version of Job-shop scheduling is NP-complete means that it is at least
as hard as all other problems in NP (the class of polynomial verifiable decision problems). It is
strongly NP-complete, because it remains NP-complete even if all the numerical input variables
are bounded by a polynomial in the input size. Job-shop scheduling as optimization problem
is strongly NP-hard, because a solution cannot be verified in polynomial time; it is at least as
hard as all problems in NP.
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of list scheduling is to find a good list. The best list is of course the one that
leads to an optimal schedule.

Scheduling theory is a branch of mathematical or business optimization that
is concerned with extremely controlled environments. Generally, all variables are
assumed to be known exactly, and in case some are not, their distributions are
known. Applications are in production environments, where the processing time
for each job on each machine can be measured precisely and stochastic events
such as the arrival of new jobs can easily be assumed to follow some distribution.
The environment of Progressive Planning is different; absolutely everything can,
and does change. The strength is that the method allows users to continuously
update their estimates of the structure and duration of the work. Moreover, it is
aimed for such general applications of project planning that no coherent objective
function on the schedule quality can be formulated. Therefore, formulating the
case of Progressive Planning as a scheduling problem as we have done in the pre-
vious sections, conceals these intrinsic problems. In the next sections, we loosen
the assumptions enforced by scheduling theory, while we realize that scheduling
theory does not provide for satisfiable and fast solution algorithms for our prob-
lem in any case. We will present our own scheduling algorithm that resembles list
scheduling, which has been implemented in the Progressive Planning application.
In Section 2.2.1, we develop the notion of decision moments, which formalizes
what is meant when we say that list scheduling schedules the highest ordered job
at any moment. In Section 2.2.2, we elaborate on the construction of the order
in the lists.

2.2 Scheduling for Progressive Planning

The number of activities and deliverables in Progressive Planning that can be
scheduled should be large, possibly in the order of millions. Also, note that
changes are frequent and that a single change could affect the entire schedule.
For example, consider the case that a user adds a new activity which has a
deadline for the same day. The schedule should probably move all other jobs of
that user forward in time to make place for this new activity, and consequently
all other jobs that are dependent on these moved jobs need to be rescheduled,
and so on. Theoretically, the entire schedule could be different. Summarizing,
we are scheduling on a large dynamic graph, and a change can already cost
O(n) operations. Take this together; if we can schedule the entire problem in
linear time, this would reduce the need for a fully dynamic algorithm (which in
the general case cannot do better than O(n)). This has led us to build on the
near-linear list scheduling and develop a method that we call highest-priority-first
scheduling.

2.2.1 Highest-priority-first scheduling

The main question throughout this chapter is: given a set of tasks and people,
when should everyone do which of their tasks? Because we do not know what
other work is coming our way, we start the work as soon as possible. Assume
that each job has a certain priority measure, meaning that it is preferable that we
start and finish a job with a higher priority over one with a lower priority. Then
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it makes sense that each person in each of their roles starts right away with the
available job with the highest priority. At the time that the first job finishes, we
need to make a new decision for that role on which job to schedule next. These
completion times are the decision moments at which the scheduler in Algorithm
2.1 decides which jobs a role should perform next. For the moment, we leave out
the possibility of preempting a job to complete it at a later time, which makes
Algorithm 2.1 aptly named the non-preemptive, highest-priority-first scheduler.

Algorithm 2.1 Non-preemptive, highest-priority-first scheduler

Output: A schedule {(s1, c1), (s2, c2), . . . , (sn, cn)} of starting times sj and
completion times cj of each job j ∈ {1, 2, . . . , n}.

1: while there are decision moments do
2: remove the minimum value t from decision moments
3: for each job j completed at time t do
4: set j’s successors as available if they have no uncompleted predecessors
5: for each idle role r with available jobs do
6: let j be the available job with highest priority on r
7: schedule j from sj := t to cj := t+ pj
8: add cj to decision moments

The scheduler roughly described in Algorithm 2.1 loops over a set of deci-
sion moments, which is initialized to only contain the point of time 0. In each
iteration, it takes the earliest moment in time from decision moments. In the
first iteration, this will be t = 0 and the scheduler will continue to loop over all
the roles. All roles are idle, because they have not been scheduled to perform
any tasks yet, and for each role it is determined which of its jobs are available
for processing. A job is available when all its predecessors have been completed,
which at t = 0 means that it does not have any predecessors. We pick the job j
with highest priority from this set of available jobs, and schedule it by setting its
starting time sj to the current time t and its completion time cj to its processing
time added to its starting time. All the completion times of the jobs scheduled
at t = 0 are added to decision moments.

The scheduler continues to the next earliest point in time t of decision moments.
Now, at least one job has finished, because adding its completion time to deci-
sion moments caused us to arrive at t. For all jobs that have been finished since
the previous decision moment, we check if their successors in the precedence graph
are now available. Now, all roles that have a job with a completion time greater
than t are still occupied. The other, idle roles need to consider their available
jobs again to schedule the one with the highest priority.

In this way, the scheduler continues moving forward in time until the set
decision moments is empty. When that happens, all the jobs have been scheduled,
because at the last decision moment, we checked every role for available jobs and
found none. The precedence graph is directed and acyclic, which means that if
we remove jobs that have been completed, at any point in time there either has
to be at least one job without predecessors, or the graph is empty and all jobs
have been scheduled.
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Example of the non-preemptive, highest priority first scheduler

The example given in Figure 2.1 shows how Algorithm 2.1 could run. It consists
of two roles, each with three jobs. As decision moments is initialized to contain
the time point 0, the first iteration over decision moments starts with t = 0. At
this point, for role r1 the jobs j1 and j2 are available. The algorithm picks j1,
because it has a higher priority w1 = 2 than job j2 with w2 = 1. Consequently,
j1 is scheduled from s1 = t = 0 to c1 = s1 + p1 = 2, and c1 is added to
decision moments. For role r2, only job j4 is available at this point, hence it
is picked and scheduled from s4 = 0 to c4 = 1.

Figure 2.1: Example of a scheduling instance consisting of six jobs on two roles, and
the output of Algorithm 2.1 for the instance. The precedence constraints are depicted
in graph form in (a). The other inputs: role, processing time, and priority for each job
are tabulated in (b). The output consisting of the start and completion time of each
job are given in (b) as well as (c).

(a) Precedence graph of the schedul-
ing instance; a → b means that a has
to be completed before b can start.

j1 j2

j3

j4

j5

j6

(b) Table containing for each job j its
role, processing time pj , priority wj , start
time sj , and completion time cj .

Job Role pj wj sj cj
j1 r1 2 2 0 2
j2 r1 1 1 2 3
j3 r1 1 2 3 4
j4 r2 1 1 0 1
j5 r2 2 1 1 3
j6 r2 1 1 4 5

(c) Gantt-chart of the schedule for roles r1
and r2; time is depicted horizontally.

t

r1

r2

0 2 4

j1 j2 j3

j4 j5 j6

In the next iteration, decision moments contains the time points 1 and 2, so
we get t = 1. Job j4 has finished by this time, and its successor, j5, does not have
any other predecessors, meaning that it is now set to be available. Looping over
the roles, we find that r1 is busy, but r2 is idle. For r2, only job j5 is available,
giving s5 = t = 1 and c5 = s5 + p5 = 3. The moment c5 = 3 is added to
decision moments.

Now, we have that decision moments = {2, 3}, resulting in t = 2. At this
point, job j1 finishes, but its successor, j3, still has an uncompleted predecessor,
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j2, so it does not become available yet. Consequently, for r1 the algorithm picks
j2, giving s2 = 2 and c2 = 3, whereas r2 is busy.

In the fourth iteration, decision moments = {3}, hence we must get t = 3.
Both job j2 and j5 finish at this moment, but only job j3 becomes available.
Role r1 schedules job j3, whereas role r2 is idle, but does not have any available
jobs. The fifth iteration gives t = 4, when j3 finishes, making j6 available for
processing. Role r1 is idle but has no available jobs, but r2 schedules j6.

In the last iteration, t = 5, but both roles are idle and have no available jobs.
As a result, the set of decision moments remains empty, causing Algorithm 2.1
to terminate; all jobs have been scheduled.

Preemption

Algorithm 2.1 can be extended by allowing jobs to be preempted, which means
that we can interrupt a job at a certain point in time to continue processing where
it had been left off at a later point in time. A job j that is preempted once has
two starting and stopping times as a result. Its schedule can be denoted by:

(sj,1, cj,1), (sj,2, cj,2),

where (sj,i, cj,i) is the ith interval during which it is continuously processed. There
is no cost or penalty when preempting, so it should hold that (cj,1−sj,1)+(cj,2−
sj,2) = pj . Moreover, note that a job can be preempted any number of times, but
its successors can only become available after the job has been entirely completed,
i.e., the sum of intervals on which the job has been scheduled equals its processing
time.

Incorporating preemption into the scheduler means that at every decision
moment, we can also look at all the non-idle roles and check if the job that
they have scheduled at that moment is still the available job with the highest
priority. If it is, then we do not need to do anything. Otherwise, we preempt
the currently scheduled job by changing its latest completion time to the current
point in time and subsequently we schedule the higher priority job in its entirety
from this moment until it is completed (while adding this new completion time
to decision moments).

Figure 2.2 gives an example of how preemption incorporated in Algorithm
2.1 works. At t = 0, roles r1 and r2 schedule j1 and j4 respectively, since they
are the only available jobs. At t = 2, however, j4 finishes, making j2 available.
Because j2 has a higher priority w2 = 2 than j1 with w1 = 1, we preempt j1 and
schedule j2 on r1. Only after j2 has finished, we can continue scheduling j1 for its
remaining processing time and when j1 has finished entirely, j3 is made available
for scheduling.

We remark that preemption provides a degree of flexibility to our approach
of scheduling that results in “better” schedules. For example in the instance of
Figure 2.2, preemption allows the high priority job j2 to be scheduled as soon as
possible. If we had wanted to do that without preemption, we would have had
to know in advance at t = 0 that j2 was going to be available at t = 2 and we
should have waited with scheduling j1 until t = 3. This also causes that j1 is
only finished at c1 = 6. Preemption allows us to complete j1 already by c1 = 4
without having to delay j2.
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Figure 2.2: Example of a scheduling instance on which we applied Algorithm 2.1 with
preemption. Job j1 is preempted at t = 2 to make place for j2, and continued processing
at t = 3.

(a) Precedence graph of the schedul-
ing instance.

j1

j2j3

j4

(b) Gantt-chart of the schedule for
roles r1 and r2.

t

r1

r2

0 2 4

j1 j2 j1

j4 j3

(c) Table containing for each job its role, processing time,
priority, and start and completion times for every scheduled
interval.

Job Role pj wj (sj,1, cj,1) (sj,2, cj,2)
j1 r1 3 1 (0,2) (3,4)
j2 r1 1 2 (2,3) -
j3 r2 1 1 (4,5) -
j4 r2 2 1 (0,2) -

Start and release dates

In Progressive Planning, jobs can have a release date, before which they cannot
be scheduled. Also roles can have a start date, which entails that all its jobs can
only start after a certain point in time. As mentioned before, these can both
be modeled with a release date rj on job j, where rj is the maximum of a job’s
release date and its role’s start date. To incorporate release dates into Algorithm
2.1, we add all the release dates to decision moments in the initialization and set
all jobs with release date greater than zero to unavailable. Then, at each decision
point in time, we check if there are jobs with a release date equal to this point in
time. For all such jobs, we make them available if their predecessors have been
completed.

Moreover, we should take care that the jobs remain unavailable before their
release dates. This conveys that in checking for a finished job’s successors, we
should incorporate a check on whether the current point in time is greater than
the successor’s release date.

Time complexity

Concerning the time complexity of Algorithm 2.1, Theorem 2.1 shows that it
is O(n log n + |E|) even if preemption and release dates are incorporated. This
means that for typical sparse precedence graphs, where |E| ∼ n, the scheduler
runs in O(n log n).

Theorem 2.1 (Scheduling time complexity). Algorithm 2.1 extended with pre-
emption and release dates has a running time of O(n log n+ |E|), where n is the
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number of jobs and |E| the number of edges in the precedence graph.

Proof. First consider Algorithm 2.1 on its own. At each decision moment, it
schedules at least one job, hence the number of outer iterations is at most n.
Consequently, the set decision moments has at most n insertions and n removals
of the minimum value. We do this by maintaining a priority queue of the decision
moments, which if implemented as a binary heap, can be done in O(n log n). A
binary heap is a data structure that keeps the data sorted by size, and as such
it handles insertions in O(log n), as well as removals of the maximum value in
O(log n), where n is the number of elements in the heap.

Line 4 of Algorithm 2.1 runs once for every job that is completed, which is
again n times as every job finishes only once. For every job it checks all its
successors, which over all finished jobs amounts up to a total of |E| operations,
because a check is done over every edge. At every check, the finished job needs
to remove itself from the set of predecessors of the specific successor and check
whether this set is empty, which can be done in O(1).

If we maintain a set of idle roles with available jobs, then throughout the al-
gorithm, there are at most n additions and n removals from this set. Accordingly,
in the entire algorithm, we visit n times an idle role with available jobs, each time
resulting in a new scheduled job. If for each role, we maintain a priority queue
of available jobs sorted by their priorities, then for role ri there are ni additions
and ni removals from this priority queue, where ni is the number of jobs that ri
has. In an efficient implementation this costs O(ni log ni), which for m roles boils
down to O(n log n). In conclusion, Algorithm 2.1 runs in O(n log n+ |E|) without
extensions.

It is clear that the introduction of release dates into Algorithm 2.1 does not
worsen its time complexity, seeing that it is a simple O(1) check per node to see
if it has been released yet. Also, the number of decision moments increases by at
most n, as that is the maximum number of release dates.

Incorporating preemption on the other hand, requires a closer analysis. What
triggers a preemption? It can only be that some job that was not previously
available has become available during the interval that the preempted job was
scheduled. This can either occur through a release date, or a job whose prede-
cessors are all completed. However, only n jobs become available at some point
during the algorithm, so the number of preemptions is bounded by n. Except
for the costs of rescheduling, which is O(1) per preemption, there are additional
costs incurred by the fact that in line 5 of Algorithm 2.1 we need to loop over
non-idle roles as well. Actually, we need to consider roles that are idle and have
available jobs, and non-idle roles that have jobs that became available in the
same iteration. As we just argued, these newly available jobs are the ones that
can trigger a preemption. Moreover, a set containing roles with newly available
jobs can be maintained in O(n) over the entire algorithm. Finding the available
job with the highest priority still costs O(log n), but is done more often because
of preemption. However, there are at most n preemptions, which means that the
time complexity of the entire algorithm is kept at O(n log n+ |E|).
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2.2.2 Propagation of the decision measure

The quality of the scheduler in Algorithm 2.1 is in the end determined by the
measure of priority for each job. By picking the right measure to decide which job
to schedule before which other jobs, it is possible to optimize any of the objective
functions mentioned in Section 2.1. As it is equivalent to solving the scheduling
problem to optimality, finding these optimal measures is NP-hard. Moreover,
we wish to take all possible criteria for the objective function into consideration,
which makes it hard to formulate an objective function. We dismiss this idea of
finding the optimum or an approximation of some objective function and instead
we focus on finding a decision measure that “makes sense”.

Consider the precedence graph G = (V,E) of the scheduling problem. As
mentioned before, G is directed, which means that for an edge (u, v) ∈ E, we say
that u precedes v (in our case this means that job u has to finish before v can
start). It would be paradoxical if (v, u) ∈ E as well, because then u precedes v and
v precedes u at the same time; therefore, G has to be acyclic. A definition useful
for formalizing this, is that of a path in a directed graph, which is a sequence of
vertices where for every two subsequent vertices u, v ∈ V there exists the edge
(u, v) ∈ E. Then in a directed graph, a cycle is a path of which the first and last
vertex are the same, see Figure 2.3. Unsurprisingly, a directed graph is acyclic if
it has no cycles.

Figure 2.3: Examples of a path and a path that is also a cycle on the same directed
graph. Red vertices and edges are part of the path.

(a) A path (b) A cycle

Suppose a certain job v ∈ V in the precedence graph has a high priority; it
should be finished as soon as possible. Before v can be scheduled, however, all its
direct and indirect predecessors need to be completed. These are all the vertices
that have a path in the directed graph to v. If we give all these predecessors
the same priority as v, then from t = 0 there will always be a job from this set
scheduled (assuming no release dates). Consequently, v can be expected to be
scheduled much sooner than without this propagation of priority.

We take three factors into account in Progressive Planning when deciding
which job to schedule. These are all in a different way dependent on a job’s
direct and indirect successors. The measure of priority of a job j is dependent on
its:

i) own deadline or a deadline of its direct successors. If one of its direct succes-
sors i has a deadline di, then the job’s deadline becomes dj = min{dj , di−pi},
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which means that the job should be completed in time for its successors to
be able to complete in time;

ii) number of roles that are dependent on j, because a job becomes more critical
when it is at the basis of much teamwork;

iii) amount of work that is dependent on j, because when a large project depends
on a job, it is more important.

For each job j, we take all these factors together and combine them in some
sensible way to obtain a general decision measure wj ∈ R. This measure can
subsequently be used as the priority in the scheduler in Algorithm 2.1 to decide
which job to schedule at every point in time.

In order to set a job’s decision measure we only consider its direct successors
rather than inspecting all of its direct and indirect successors. We can still carry
on the information of all successors of each job by having a job inspecting its
successors only when those successors have already updated their decision mea-
sures. We developed Algorithm 2.2, which takes care of this. It is similar to
the topological sorting algorithm attributed to Kahn [19], except that it does not
explicitly create a topological order. It does, in fact, visit the vertices in reverse
topological order, which ensures that a vertex is only visited after its successors
have been visited.

Algorithm 2.2 Propagation of the decision measure

Input: Directed acyclic graph G = (V,E) with vertex weights w(v) for v ∈ V
and the weight combining function f .
Output: The set of vertices with weights updated according to the weights of
their successors.

1: S := {u ∈ V : @ (u, v) ∈ E}
2: while S 6= ∅ do
3: pick a v ∈ S
4: S := S \ {v}
5: for each u ∈ V : (u, v) ∈ E do
6: w(u) := f

(
u, v
)

7: E := E \ {(u, v)}
8: if @ t ∈ V : (u, t) ∈ E then
9: S := S ∪ {u}

Algorithm 2.2 defines a set of sink nodes S, which consists of those vertices
that do not have outgoing edges. Iteratively, the algorithm pops a vertex v from
S and visits its direct predecessors, removing v as a successor. In this way, once
all the successors of a vertex have been visited, it has become a sink node and
is added to S. When visiting a predecessor u of vertex v, we add the decision
information of v to the weight of u in a specific way as captured by the function
f(u, v). The weight w(u) is a multidimensional variable that catches the deadline,
amount of work and dependent roles, and w(u) = f(u, v) adds the part of this
information from w(v) needed by u.

Theorem 2.2 states that we can propagate in linear time, as long as our func-
tion f runs in time independent of the problem size. This is intuitive, as the
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algorithm visits every edge once and every vertex at least once, but not more
times than it has outgoing edges. The variables used to create the decision mea-
sure for each vertex change continuously, so we propagate the decision measure
with Algorithm 2.2 every time before we schedule with Algorithm 2.1. Taking
these together, the entire scheduling procedure still runs in O(n log n+ |E|).

Theorem 2.2 (Topological sorting, Kahn [19]). If we assume that f(u, v) can be
executed in O(1), then Algorithm 2.2 has a running time of O(n+ |E|).

2.2.3 Numerical tests

Implementations of Algorithms 2.1 and 2.2 are now incorporated in the Progres-
sive Planning application. We generated data that follows the structure enforced
by Progressive Planning. We measured averages for all the variables, assumed
their distributions where necessary and created the data in the following steps.
For each role, we assumed a geometric distribution for the total number of deliv-
erables, where the geometric distribution is supported on {0, 1, 2, . . . }. For each
deliverable we created a number of activities by also sampling a geometric dis-
tribution. We took a uniform distribution for the number of sub deliverables per
deliverable, where the uniform distribution has a range from zero to two times
the mean. This way, we created (sub) deliverables as long as we did not reach the
total number of deliverables on the role. Only a small percentage of sub deliver-
ables is owned by other roles than their parent deliverable. Doing this for a total
number of roles, we obtain a collection of many deliverable trees filled with activ-
ities. At this stage, we randomly picked pairs of activities and deliverables and
created a dependency between them if this would not create a cycle. Lastly, we
sampled processing times, release dates, and deadlines from a continuous uniform
distribution, without regard of the feasibility of the time constraints.

Although the choices for distributions are quite arbitrary and careless, from
the running times of Algorithms 2.1 and 2.2 we can assume that what really mat-
ters are the number of vertices and edges. The number of edges in the precedence
graph is determined by the number of dependencies, which we have depended
on the measured average number of dependencies per activity. In this way, we
obtained an average of 1.2 outgoing edges per vertex.

Figure 2.4 depicts the running times of the implementations of the scheduling
and propagation algorithms. For both algorithms, we have fitted the logarithm of
the timings to the logarithm of the number of vertices, which gives the exponent
α when assuming that the running time is of O(nα). We obtained α = 1.03 for
scheduling and α = 1.19 for propagation. Both algorithms show a slightly larger
than linear order running time, which could be expected as we picked |E| ∼ n.
This gives O(n) running time for Algorithm 2.2 (propagation) and O(n log n) for
Algorithm 2.1 (scheduling). Therefore, it is also remarkable that scheduling shows
a lower increase in running time than propagation. However, this discrepancy is
likely due to imperfect implementation or measurement errors.

2.3 Connected components

In Progressive Planning, it is necessary to frequently update a user’s schedule.
The user can make changes and even if he does not, the passing of time requires
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Figure 2.4: Log-log plot of the time performance in seconds of implementations of
Algorithm 2.1 (scheduling) extended with release dates and preemption and Algorithm
2.2 (propagation). The timings are based on randomly created scheduling instances
consisting of different numbers of jobs / vertices. Linear fitting of the logarithms of
the scheduling timings (excluding the first data point) gives a slope of 1.03, and of the
propagation timings 1.19.
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that the schedule is updated as release dates and deadlines come closer. However,
the data is largely connected and the schedule of a single person depends on
the schedules of many other people. If we can determine precisely what data
influences or can influence which other data, we could reduce the scheduling
problem when we are required to give output for only a single or a few users.

One way to achieve this is to find the connected components in the graph that
contains all links of jobs influencing each other directly. The task dependencies
are given in the precedence graph, but influence stretches further than the links
in this graph. Two jobs that are in completely different projects and precedence
graphs can influence each other’s schedules because they have to be performed
by the same role which cannot work on both jobs simultaneously. In project
management, such links are called the resource dependencies.

Now, take the precedence graph and add to the graph the roles as vertices and
also add edges from each role to each of its jobs. Jobs and roles from different
connected components in this graph, see Definition 2.1, definitely do not influence
each other’s schedules.

Definition 2.1 (Connected component). A connected component on an undi-
rected graph G = (V,E) is a set C ⊆ V such that:

i) for each u, v ∈ C there exists a path from u to v;

ii) for each u ∈ C and v ∈ V \ C, we have that (u, v) /∈ E.

We present Algorithm 2.3, which gives a procedure for finding the connected
components in our case. It is based on a breadth-first search and hence runs in
linear time.
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Algorithm 2.3 Connected components

Input: Undirected graph G = (V,E), set of roles R = {r1, r2, . . . , rm}, and for
each job v ∈ V its corresponding role role(v)
Output: Sets C1, C2, . . . of connected components containing jobs and their
respective roles

1: V := V ∪ {r1, r2, . . . , rm}
2: E := E ∪ {(v, role(v)) : v ∈ V }
3: i := 1
4: while V 6= ∅ do
5: pick a v ∈ V
6: N := {v}
7: Ci := ∅
8: while N 6= ∅ do
9: V := V \N

10: Ci := Ci ∪N
11: N := {u ∈ V : ∃ (u,w) ∈ E such that w ∈ N}
12: i := i+ 1

Algorithm 2.3 starts with an undirected version of the precedence graph and
adds the resource dependencies. It picks a vertex from V , explores all direct
neighbors of v, and recursively finds all other vertices that are indirectly connected
to v. These form the first connected component C1 and the algorithm repeats
this procedure until all vertices are assigned to a connected component.

Now, whenever we need the schedule for only a specific role, we can look up
in which connected component it is and schedule all the jobs in that connected
component. Leaving out the cost of computing the connected components, this
can give a huge speedup in scheduling time for an individual user as connected
components can be quite small. Connected components are not the only way of
determining which jobs influence which others. However, it is a straightforward
way and we will describe in Section 2.5.2 how we maintain them efficiently when
new links are made.

2.4 Critical path and critical chain analysis

The critical path is a concept in scheduling theory that defines a lower bound
on the makespan (latest completion time) of a schedule. Brucker [9] defines the
critical path as the succession of jobs on a path in the precedence graph such
that the sum of their processing times is maximum. An example of such a critical
path is given in Figure 2.5. Regardless of which roles perform these jobs, it is
clear that the schedule cannot be completed before t = p1 + p3 + p5 = 5, as the
jobs on the critical path have to be processed subsequently. Therefore, the lower
bound on the schedule’s makespan as given by the critical path can be used to
assess how far the schedule optimizes the makespan. For example, if the schedule
of the instance in Figure 2.5 is completed at t = 5, then we know for sure that it
has an optimal makespan.

This notion of a single critical path for the entire problem instance is of limited
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Figure 2.5: Precedence graph of six jobs and a table of their processing times. The
critical path in this example is depicted in red and consists of the jobs j1, j3 and j5.

j1 j2

j3 j4

j5

j6

Job pj
j1 2
j2 1
j3 2
j4 3
j5 1
j6 2

use in Progressive Planning, because project managers would like to know the
critical path for their own projects. Therefore, we define the critical path of a
job to be the path through the precedence graph to the job such that the sum of
the processing times of the jobs along the path is maximum. As such, the critical
path of a job j gives a lower bound on its completion time cj .

2.4.1 Computation of the critical path

The critical path of a vertex is the longest path in the precedence graph where
the incoming edges of each vertex have a weight equal to the processing time
of that vertex. The critical paths to all vertices can be calculated at once in
linear time using the longest path algorithm of Evans and Minieka [14], which is
a modification of Dijkstra’s well-known shortest path algorithm [11].

This approach is followed in Algorithm 2.4, which visits the vertices in topo-
logical order. For each vertex v, it finds the length `(v) of the critical path to v
and the first predecessor in the critical path pred(v). We initialize pred(v) to be
null and `(v) to rv + pv, because a job is certainly not going to be finished before
it is released and processed. Surely, these are the correct values for the critical
paths of the vertices that do not have any predecessors. In fact, the algorithm
maintains the set S of unvisited vertices without incoming edges, for which we
have already found the critical path. In the outer loop of the algorithm, we visit
a vertex u from S, removing it from the set. Then it looks at each successor v of
u and checks if the critical path to v through u is longer than the current critical
path to v. This is possible to establish, because if the first predecessor of v in its
critical path is u, then the critical path to v is the same as to u, but extended
by v. If this is the case, the critical path values are updated to `(v) = `(u) + pv
and pred(v) = u. Finally, the algorithm removes the edge (u, v) and if this means
that v does not have any more predecessors, then we have found its critical path
and we can add it to S.

When Algorithm 2.4 terminates, the critical path to each vertex v is known in
the sense that `(v) is its length and the vertices in the path are in reverse order:
[v, pred(v), pred(pred(v)), pred(pred(pred(v))), . . . ]. As every vertex and every edge
is visited exactly once and all operations can be executed in O(1), the algorithm
runs in O(n+ |E|) time.
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Algorithm 2.4 Critical path to every vertex

Input: Directed acyclic graph G = (V,E), processing time pv for each v ∈ V
Output: The critical path length `(v) and first predecessor pred(v) in the critical
path for each v ∈ V

1: for all v ∈ V do
2: `(v) := rv + pv
3: pred(v) := null
4: S := {v ∈ V : @ (u, v) ∈ E}
5: while S 6= ∅ do
6: pick a u ∈ S
7: S := S \ {u}
8: for all v ∈ V : (u, v) ∈ E do
9: if `(u) + pv > `(v) then

10: `(v) := `(u) + pv
11: pred(v) := u
12: E := E \ {(u, v)}
13: if @ t ∈ V : (t, v) ∈ E then
14: S := S ∪ {v}

2.4.2 Critical chain

The critical path only gives a lower bound on when a job can be scheduled, as can
be seen in Figure 2.5. If in this example all the jobs have to be performed by the
same role, then j5 can only be completed by time t = p1 + p2 + p3 + p4 + p5 = 9.
This is caused by what the management “guru” Goldratt [16] calls the resource
constraints. The critical path only takes the precedence constraints in account
and does not include the time constraints caused by the fact that jobs of the same
role cannot be processed at the same time. Goldratt coined the term critical chain,
which is the set of jobs with the largest sum of processing times that have to be
executed in sequence in order for the project to finish. In our example, the critical
chain for j5 is composed of the jobs j1, j2, j3, j4 and j5 and has length 9.

Although the critical chain provides more useful information than the critical
path, it is not straightforward which jobs belong to it. A useful way to think of the
critical chain is that it is the set of those jobs that increase the optimal schedule’s
makespan by dt when the job’s processing time is increased by dt. As such, they
are critical in finishing the schedule on time. Since we have developed a heuristic
scheduling method, we also estimate the critical chain instead of determining it
exactly. We do this by adding edges between jobs that have the same role in
the order in which they are scheduled. In a way, this is a literal interpretation
of Goldratt arguing we should take into account the resource constraints. Now,
our critical chain is just the longest path through the graph as calculated by
Algorithm 2.4.

2.4.3 Critical path experiments

We have implemented Algorithm 2.4 for Progressive Planning and did measure-
ments on real-life data, for which the results are depicted in Figure 2.6. The figure
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plots the frequency of the approximation ratio of the jobs’ critical path lengths
to their completion times in a histogram. The plot has an interesting shape, with
most of the mass concentrated at the extremes: around 0 and 1. If a job’s ratio
of critical path length to completion time is exactly 1, then it is sure that the job
has been scheduled as early as possible. Otherwise, it could still be that the job
is scheduled as early as possible, but we only know its ratio to the lower bound
given by the critical path.

We make two main observations from Figure 2.6. First, most of the jobs are
either scheduled close to their earliest possible start time, or they are scheduled
exceptionally late compared to their critical path. The second observation is that
higher priority jobs seem to be scheduled better compared to their critical path
than lower priority jobs. A possible factor in explaining the high mass close to
zero in Figure 2.6, is that there are many loose activities in Progressive Planning
that are not part of a project and therefore have low priority. Mostly, these jobs
get scheduled at the end of a person’s schedule, whereas their critical path consists
only of their own processing time.

Figure 2.6: Histogram of the ratio of critical path length to the completion time of each
job. This ratio, `(v)/cv for each v ∈ V is counted and normalized for ten buckets on
the x-axis. Jobs are divided into two groups: those with a priority (decision measure)
higher than the median priority, and those with a lower priority. Data is taken from
about 2500 jobs from the Progressive Planning database.
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2.5 Dynamic Algorithms

Because changes are so frequent in the data of Progressive Planning, dynamic
algorithms can be beneficial in reducing the computing load. These are algorithms
that exploit the solution of the previous problem to compute a new solution when
changes have occurred, rather than recomputing the entire problem from scratch.
The first example of a dynamic algorithm is given in Section 2.5.1, which exploits
the fact that the precedence graph is directed and acyclic to determine whether
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it is still directed and acyclic when new edges are added. In the Sections 2.5.2,
2.5.3 and 2.5.4, we discuss dynamic approaches to the computation of connected
components, the decision measure, and the schedule, respectively.

2.5.1 Cycle checking

A cycle in the precedence graph would mean that a certain job a has to be finished
before b can start, but that also b has to finish before a. In order to prevent this
paradox, the user should not be able to make circular dependencies in the data.
Algorithm 2.5 gives an efficient procedure to check whether adding an edge creates
a cycle in the graph. The user enters changes one by one, so the algorithm checks
for the addition of a single edge only. The removal of an edge can never cause
the graph to become cyclic, so it is always permitted.

Algorithm 2.5 assumes that the graph G is acyclic before we try to add the
edge (u, v). Therefore it can be argued that it is a dynamic algorithm, because it
does not check for other parts of the graph unaffected by the addition of (u, v).
The algorithm finds the set S of all the direct and indirect successors of v through
a directed breadth-first search. If u is in that set, then the addition of (u, v) would
form a cycle, because u is a (indirect) successor of v and the edge (u, v) would
also make u a predecessor of v. The breadth-first search is done by iteratively
adding to S the unvisited successors N of the vertices already in S. If it appeared
that u /∈ S, then adding (u, v) to the graph does not create a cycle and is allowed.

The cycle checking algorithm runs in O(n + |E|), because in the worst case
every edge and vertex is visited once. Another method would be to maintain
a reachability matrix for the precedence graph, the so-called transitive closure.
From this matrix, we can infer in O(1) whether a certain vertex can be reached
from another vertex, and thus whether adding an edge between the vertices would
create a cycle. However, after adding the edge, the reachability matrix needs to
be updated. The fastest dynamic algorithm for this by Demetrescu and Italiano
[10] updates the matrix in O(n2), where recomputing the matrix from scratch is
O(n · |E|). Comparing our algorithm with that of Demetrescu and Italiano, if the
user adds an edge that creates a cycle, we handle it in O(n+ |E|) and Demetrescu
and Italiano in O(1). On the other hand, if the edge does not create a cycle and
is added to the graph, we still handle it in O(n + |E|) against the O(n2) using
the reachability matrix.

Algorithm 2.5 Cycle checking

Input: Directed acyclic graph G = (V,E) and a new edge (u, v).
Output: Boolean on whether adding (u, v) would create a cycle in G.

1: S := {a ∈ V : (v, a) ∈ E}
2: N := S
3: while N 6= ∅ do
4: if u ∈ S then
5: return False
6: N := {x ∈ V \ S : ∃ (x, y) ∈ E such that y ∈ N}
7: S := S ∪N
8: return True
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2.5.2 Connected components

Rather than recomputing the connected components every time we schedule, we
could maintain them dynamically while the connection graph used in Section 2.3
changes. It is very straightforward to do so: if an edge (u, v) is added to that
graph and u ∈ Ci and v ∈ Cj where i 6= j, then we merge the two connected
components into one. Otherwise, if an edge (u, v) is removed, we know that u
and v are in the same connected component Ci. We do a breadth-first search
from u and as soon as we find v, we know that Ci is still entirely connected. If
the breadth-first search terminates without finding v, then Ci has to split into
two parts. The vertices visited during the search constitute a new connected
component Cj and we update Ci by removing these vertices: Ci = Ci \ Cj .

Although these breadth-first searches when an edge is deleted are quite fast,
their running time is dependent on the size of the connected component. There-
fore, they are not as efficient as the O(1) operation for checking if two vertices
are in different components when an edge is added. Indeed, we found it to be
more effective to store the connected components, but only update them incre-
mentally; we merge two connected components as soon as an edge between them
is added, but we do not check or separate components when edges are removed.
This is because the resulting over-sized connected components do not interfere
with the schedule’s consistency, but they are more efficient to maintain. Also,
the chance of two connected components to come together after they have split
is considerable; a person often does more projects with the same people. Then
we have the “maintenance” script of Algorithm 2.3 which could recompute the
connected components in linear time whenever the application server is idle.

2.5.3 Propagation

Depending on how the scheduler runs dynamically, we would also need the deci-
sion measure of each job to be maintained dynamically; otherwise, we would have
to run the propagation algorithm every time we adjust the schedule. This is not
hard to do, but we first analyze the impact of dynamic propagation. Every time
the user updates a job’s processing time, predecessors, successors or deadline, we
would need to update the decision measure on that job and all its direct and
indirect predecessors accordingly.

Assume that each update requires an average of k vertices to be visited in
order to have their decision measure updated. In that case, the question whether
maintaining the priority value dynamically is efficient, depends on how many
changes occur to the data before it is needed again for scheduling. If the data is
rescheduled after every update, then indeed it would be more efficient to handle
the updates dynamically (as k is bounded by n). However, if there are on aver-
age more than n

k updates before we reschedule, we might as well run the static
Algorithm 2.2 right before we schedule.

2.5.4 Scheduling and robustness

The volatile environment of our scheduling problem raises the question of how
stable the resulting schedules are. It is not always preferable that there are
drastic changes in the scheduled order of jobs between two subsequent schedules.
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The nature of Progressive Planning, however, is that the schedule always changes,
because users update their spent and estimated processing times frequently. Even
without those updates, a schedule becomes irrelevant as time passes and release
dates and deadlines come closer, because if no time is clocked by the users, there
is no progress on the completion of the jobs. On the other hand, the power of
frequently renewing the schedule is that at any moment in time, there is always
the best and most relevant schedule available. This gives users a unique advantage
over traditional static schedules which force people to stick with plans that seemed
good at some point in the past. It is important to take these considerations into
account when discussing dynamic schedules.

In the literature, the term robustness is used to describe the volatility of a
schedule as it incorporates the changes occurring in the problem instance. How-
ever, robustness is not measured or even defined easily, as Pinedo [25] points out.
It measures the change in the objective function of the schedule as caused by, for
example, a delay in the processing time of a certain job. It can also incorporate
the change in completion times cj−c′j for each job j from cj in the original sched-
ule to c′j in the updated schedule. Nair et al. [22] assume known distributions for
the processing time of each job and present a thorough analysis on the robustness
of the total schedule length. They conclude that there is a trade-off between
robustness and optimality of a schedule. Robustness is also related to the critical
path, because a schedule with a makespan equal to the length of its critical path
or critical chain will surely be delayed when one of the jobs on the critical path
or chain takes more time than estimated, as explained in Section 2.4.

The naive solution to our dynamic scheduling problem is computing the entire
schedule from scratch every time that it is needed. Indeed, because of the difficult
trade-off between optimality and robustness, we have not yet implemented a more
efficient solution. The complete renewal of the schedule at every event of change,
means that we prioritize optimality entirely above robustness. Here, by optimality
we mean a schedule that follows the order dictated by the decision measure. In
this light, we discuss how robustness could in fact be the key to a more efficient
dynamic scheduling procedure.

It is difficult to maintain a schedule that is similar to the output of the sched-
uler in Algorithm 2.1, because a change in the data of a job means that the
decision measure of that job changes. This change in turn, is propagated to the
jobs available at the starting time of the schedule. Such a cascade of changes does
not necessarily propose a problem; if the order of jobs by their decision measure
does not change, the schedule can remain the same. On the other hand, if the
order does change, then the schedule could have to switch the execution of cer-
tain jobs. Consequently, we have to reschedule all the next jobs of the involved
roles, while taking dependencies to jobs of other roles into account as well. By
this mechanism, a small change in one job could lead to rescheduling many other
jobs. Also, it is hard to determine beforehand which jobs are going to be affected
by a change.

Confronted by these difficulties, an increased focus on robustness forms a good
excuse to adjust the schedule dynamically in a simpler way. The first, perhaps
radical in the view of traditional scheduling, way is to not modify the schedule at
all if the change is small and relatively far in the future. This would result in an
invalid schedule, which can be problematic depending on how it is used. In most
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cases, however, it is likely that more significant changes will occur, diminishing
the problem of the wrong schedule.

The second, more useful way is to reschedule only the jobs of the role on which
a change a occurred. We deal with the precedence constraints on jobs on other
roles as follows: if job j1 on another role precedes job j2 on the role that we are
rescheduling, we take r′2 = c1, where c1 is the completion time of j1 in the current
schedule and r′2 is the release date that we use for j2 in the new schedule to ensure
that it is scheduled after j1. Conversely, if j2 precedes j1, then we set the new
deadline of j2 to the start time of j1 in the current schedule. Perhaps, it is not
possible to satisfy all the new deadlines imposed in this way, but we can do our
best. In this way, we ensure complete robustness for the roles that did not incur
changes, but we can sacrifice the validity of the schedule as well as opportunities
to schedule jobs on other roles earlier. One advantage of rescheduling only for
one role is that it is a clear and logical way of drastically limiting the scope of
jobs to reschedule2.

The above two methods do not only trade optimality for robustness, but can
also invalidate the schedule. However, we can maintain a measure for how invalid
the schedule has become. For example, how many precedence constraints are not
satisfied and by how much time. If this measure passes a certain threshold, it
triggers a complete rescheduling.

Although we did not implement a dynamic scheduling algorithm, our highest-
priority-first scheduler is fast and therefore well suited for a dynamic environment.
Additionally, the scheduling is sped up further by splitting the precedence graph in
connected components. In the next chapter, we develop an approximate matching
algorithm that does exploit the dynamism of the graph.

2In practice, this has the second advantage that all this information is available for the user
in the web application, which means that the computation can be moved from the server to the
client.
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Chapter 3

Dynamic Matching

3.1 Introduction

On an undirected graph G = (V,E), a subset of edges M ⊆ E is called a matching
if no edges in M have vertices in common. In other words, an edge in M matches
a vertex in G to an adjacent vertex, such that no vertex is matched to more than
one other vertex. There are two common problems; the first is to construct a
matching with the highest number of matched vertices or edges, called a maximum
cardinality matching, and the second, to construct a matching with the largest
sum of edge weights. Note that the first is a special case of the second, namely
where all edge weights are set equal.

Figure 3.1: Example of a matching. Left is the graph G, in the middle the subset M
of red edges forms a matching on G. On the right, the subset of red edges is not a
matching, because the middle vertex is connected to two edges in the subset.

(a) Original graph (b) Matching (c) Not a matching

A simple practical example of the matching problem is a group of people
looking for a dating partner on an online dating service. The people are the
nodes in the graph and they have an edge to each potential partner, for example,
a man could have edges to all women in his same age category. Then, the dating
service should suggest a partner for everyone, but not more than one partner per
person; this makes the set of suggestions a matching. The dating service could
make as many suggestions as possible, which is a maximum cardinality matching.
Otherwise, if the weight of an edge represents the degree to which the two persons
are suited as partners, the dating service could suggest the overall highest quality
of partners, which is the maximum weighted matching.

A similar application of matching is finding the overall best combinations or
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organ donors and recipients in organ donation [28]. In scientific computing, how-
ever, matching is applied most often for graph coarsening. For example in graph
partitioning [2] [27], which in a simple form is dividing the vertices of a graph into
two sets of somewhat similar size while minimizing the edge cut, i.e., the sum of
weights of edges that connect vertices from the two parts. Graph partitioning is
an NP-hard problem, but matching is not. Therefore, in applications, the graph
is coarsened by contracting the pairs of nodes that are matched together. Such
a step reduces the number of nodes by ideally a half of the original number, and
is therefore repeated until the graph reduces to a certain size on which the graph
partitioning algorithm can run quickly. Lastly, the solution on the coarsened
graph can be projected onto the original graph. By matching edges with a high
weight and contracting the adjacent nodes, it is prevented that these nodes end
up in the different parts of the partition and subsequently that the high-weight
edge ends up in the edge cut.

In such applications, the graphs can be very large, which requires the match-
ing algorithms to have a small time complexity. Gabow has presented an algo-
rithm to optimally solve the maximum weighted matching problem in O(|V | ·
|E| + |V |2 log |V |) [15]. However, this time complexity is generally too high for
practical purposes, so recently, much attention has been devoted to linear-time
approximation algorithms and distributing those for parallel computation. Still,
there are few efforts to efficiently deal with dynamic matching problems, those
that require maintaining matchings on graphs that change gradually over time.
Specifically, no distributed procedures for such dynamic matching problems are
known to us today.

This chapter will first outline basic matching theory in Section 3.2.1. Then, in
Section 3.2.2, two sequential approximation algorithms for the maximum weighted
matching problem are presented in order to develop useful insights. Third, we
will describe the parallel algorithm that is based on similar heuristics in Section
3.2.3. It is at the basis of our approach to the dynamic problem, for which we
developed an efficient algorithm when limited to dynamic graphs on which edges
are only added and not removed or updated. This algorithm and its theoretical
basis are the topic of Section 3.3.

3.2 Static matching

3.2.1 Optimal matching

We have a graph G = (V,E) where V is the set of nodes or vertices and E
the set of edges. An edge e ∈ E represents a connection between two nodes in
V and can also be written as e = (a, b) with a, b ∈ V , meaning that vertices
a and b are connected by e. The edges are weighted, defined by the weight
function w : E → R+ such that w(e), e ∈ E or w(a, b), (a, b) ∈ E is the weight
of edge e = (a, b). For a set of edges M ⊆ E, their aggregate weight is given by
w(M) =

∑
e∈M w(e). We start by defining the concepts already mentioned in the

previous section.

Definition 3.1. Let M ⊆ E be a subset of edges of the graph G = (V,E). If for
each edge (a, b) ∈ M , we have that (a, x) ∈ M =⇒ x = b and (b, x) ∈ M =⇒
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x = a, then M does not contain edges with common vertices and we call M a
matching on G. Moreover,

i) if M is a matching on G with highest number of matched edges, |M |, then
M is a maximum cardinality matching on G;

ii) if M is a matching on G with highest aggregate weight, w(M), then M is a
maximum weighted matching on G, which we denote here with M∗;

iii) if M is a matching on G and adding any edge from E \M to M means that
M is no longer a matching, then M is a maximal matching.

Note that maximum-cardinality and maximum-weighted matchings are always
maximal matchings, but that a maximal matching does not need to be either as
the example in Figure 3.2 shows.

Figure 3.2: Examples of a maximum cardinality matching (left), a maximum weighted
matching (middle) and a maximal matching (right). Note that also the maximum
cardinality and maximum weighted matching are maximal matchings. The red edges
are in the matching.

(a) Maximum cardi-
nality matching

1
1

3
2

1

(b) Maximum
weighted matching

1
1

3
2

1

(c) Maximal match-
ing

1
1

3
2

1

An important concept in matching theory is that of alternating paths and
cycles, given in Definition 3.2.

Definition 3.2 (Alternating path and cycle). For a matching M on the graph
G = (V,E), we define that:

i) an alternating path of M is a simple path p on G, such that for any two
adjacent edges in p, one is in E \M and the other is in M .

ii) an alternating cycle of M is a simple cycle p on G, such that for any two
adjacent edges in p, one is in E \M and the other is in M .

The following result for maximum-cardinality matchings was first proved by
Berge [5]:

Theorem 3.1 (Maximum cardinality matching, Berge [5]). A matching M is a
maximum cardinality matching if and only if there exists no odd length alternating
path connecting a free vertex to another free vertex.

Although we do not present a full proof here, it is easy to understand why a
matching is not a maximum cardinality matching if there exists an odd length
alternating path connecting two free vertices, as follows. Suppose there is such
a path p, then it starts and ends with unmatched edges, which means that the
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number of unmatched edges in p is one more than the number of matched edges
in p. However, since M ′ = (M \ p) ∪ (p \M) is also a matching, and |M ′| =
|M |+1, we conclude thatM is not a maximum cardinality matching. For weighted
matchings, a similar result holds, but we need the notion of augmenting paths
and cycles:

Definition 3.3 (Augmenting path and cycle). On a graph G = (V,E), let the
augmented weight of a set p ⊆ E with respect to a matching M be: w(p \M) −
w(p ∩M). We distinguish paths and cycles:

i) Let p be an alternating path p of M for which an end vertex of p is either
free, or it is matched by an edge that is in p. If p has positive augmented
weight, then it is an augmenting path of M .

ii) An alternating cycle of M with positive augmented weight is an augmenting
cycle.

Note that the extra condition for augmenting paths that an end vertex of p
is either free, or it is matched by an edge that is in the path, ensures that the
path can be flipped. This means that the set (M \ p) ∪ (p \M) is also matching.
Augmenting cycles are always of odd length and are necessarily also flippable.

In the literature, the term augmenting path is sometimes also used for odd
length alternating paths connecting free vertices. Here, however, with augmenting
paths we refer to weighted matchings, where it is logical to consider those paths
and cycles that, when flipped, increase the weight of the matching.

Theorem 3.3 is the generalization of Theorem 3.1 to weighted matchings.
Gabow [15] uses this to give an efficient implementation of Edmond’s algorithm
[12] for finding maximum weighted matchings. The algorithm starts with an
empty matching and continues by iteratively flipping the maximum augmenting
path or cycle. Gabow proves that this procedure can be done in O(|V | · |E| +
|V |2 log |V |). However, neither author explicitly states or proves Theorem 3.3, so
we cannot present a reference.

In order to proof Theorem 3.3 ourselves, we need to compare a maximum
weighted matching with a matching without augmenting paths. For two match-
ings in general, Pettie and Sanders [24] mention that their symmetric difference
consists of disjoint alternating paths and cycles. We have formalized and proved
this statement in Lemma 3.2, which we can in turn use to proof Theorem 3.3.

Lemma 3.2 (Symmetric difference between matchings). Let M1 and M2 be two
matchings on the graph G. Then their symmetric difference defined by M14M2 =
(M1 \M2)∪ (M2 \M1), can be decomposed in a union of vertex-disjoint and edge-
disjoint alternating paths and cycles which are alternating both with respect to M1

and to M2.

Proof. Consider the subgraph H = M1 4M2. Every edge in H is also either in
M1, or in M2. Clearly, two adjacent edges in H cannot be both in M1, as it would
contradict that M1 is a matching. As a result, of two adjacent edges in H, one is
in M1 and the other is in M2. By the same logic, there can be no more than two
edges in H incident on the same vertex, so each edge is on a simple path or cycle
p ⊆ H that is vertex-disjoint, and thus edge-disjoint, of other paths and cycles in
H \ p. Therefore, these simple paths and cycles in H form alternating paths and
cycles that are alternating both with respect to M1 and to M2.
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Theorem 3.3 (Maximum weighted matching). A matching M is a maximum
weighted matching if and only if there exist no augmenting paths and no aug-
menting cycles.

Proof. It is easy to see that a maximum weighted matchingM∗ has no augmenting
paths or cycles, because if it had an augmenting path or cycle p, then the set
M ′ = (M∗ \ p) ∪ (p \M∗) is also a matching and has a higher weight than M∗.

Now, consider the symmetric difference between a maximum weighted match-
ing M∗ and a matching M that does not have any augmenting paths or cy-
cles. From Lemma 3.2 we know that M 4 M∗ consists of a set of k vertex-
disjoint and edge-disjoint alternating paths and cycles pi with respect to M . Let
pi, i = 1, 2, . . . , k, be these disjoint alternating paths and cycles. Then amongst
other properties, we have that:

M 4M∗ =

k⋃
i=1

pi,

pi ∩ pj = ∅, ∀i 6= j.

We can decompose the weight of the two matchings in that of their common
edges, and their edges on the alternating paths and cycles above:

w(M) = w(M ∩M∗) +

k∑
i=1

w(pi ∩M),

w(M∗) = w(M ∩M∗) +

k∑
i=1

w(pi ∩M∗).

Now, because these alternating paths and cycles are flippable and not augmenting
to either M or M∗, we get that their weights must be same:

w(pi ∩M) = w(pi ∩M∗), ∀i ∈ {1, 2, . . . , k},

showing that w(M) = w(M∗), which means M is also a maximum weighted
matching and which proves the theorem.

3.2.2 Approximate matching

The most basic algorithm for approximate matching is the Greedy-algorithm
in Algorithm 3.1 described by Avis in [3]. It is a 1

2 -approximation algorithm,
meaning that on any graph, the Greedy-algorithm will return a matching that is
at least half of the optimal value. It requires sorting the edges by weight, which
results in a time complexity of O(|E| log |E|). The Greedy-algorithm loops over
the remaining edges, and adds the edge of highest weight to the matching in each
iteration, while removing that edge and all adjacent edges from the graph in order
to prevent doubly matched vertices.

The Greedy-algorithm is not well suited for parallelization, because it requires
a global sort of all the edges. Preis [27] developed a more local algorithm to obtain
a similar matching, although not with the intention of parallel computation, but
for the resulting O(|E|) time complexity. It is based on the concept of a locally
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Algorithm 3.1 Greedy-Algorithm

Input: Undirected graph (G,E), with edge weights w
Output: Matching M

1: M := ∅
2: while E 6= ∅ do
3: (a, b) := argmax

(a,b)∈E
w(a, b)

4: M := M ∪ {(a, b)}
5: E := E \

{
(x, y) ∈ E : x ∈ {a, b}

}
heaviest edge, i.e., an edge (a, b) such that w(a, b) ≥ w(x, y) whenever we have x ∈
{a, b}. The algorithm of Preis is commonly referred to as the LocalMax-algorithm,
and is outlined in Algorithm 3.2. Again, the algorithm loops over all edges, this
time picking a locally heaviest edge to add to the matching and removing all
adjacent edges. Preis finds consecutive locally heaviest edges without visiting an
edge twice, resulting in linear running time. The LocalMax-algorithm also has a
1
2 -approximation quality, which is given in Theorem 3.4 below. Although Preis
[27] proves Theorem 3.4, a more simple proof would be identical to our proof of
the approximation quality of the Greedy algorithm, which we present in Theorem
3.6 in Section 3.3.2.

Algorithm 3.2 LocalMax-Algorithm, by Preis [27]

Input: Undirected graph (G,E), with edge weights w
Output: 1

2 -Approximation matching M

1: M := ∅
2: while E 6= ∅ do
3: (a, b) := some locally heaviest edge from E
4: M := M ∪ {(a, b)}
5: E := E \

{
(x, y) : x ∈ {a, b}

}

Theorem 3.4 (Preis [27]). The LocalMax-Algorithm 3.2 returns a matching MLM

that has at least 1
2 the summed edge weight of a maximum weighted matching M∗

3.2.3 Parallel approximate matching

The advantage of Preis’s LocalMax-algorithm is that it is much more local than
the Greedy-algorithm. Manne and Bisseling [20] built on the work of Preis [27]
and Hoepman [18] and developed a parallel distributed-memory algorithm that
determines the locally heaviest edges from the perspective of vertices. These ver-
tices need to know only information from their neighboring vertices to figure out
which are the locally heaviest edges; this limits the inter-processor communication
to neighboring vertices on different processors that are sharing information.

The distributed LocalMax-algorithm follows the Bulk Synchronous Parallel
(BSP) model described in detail by Bisseling [8]. The BSP model assumes a
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distributed memory and computation system connected by a communication net-
work. Computation supersteps are alternated with communication supersteps,
separated by a global barrier synchronization. In a computation superstep, each
processor can perform local computations with locally available data and mod-
ify them. After every processor has finished its own work, or after a certain
amount of time, there is a global synchronization and messages are passed be-
tween all processors. The global communication superstep is particularly helpful
for irregular communication patterns that come with most graph algorithms, as
communication needs to be called only one-sided.

Algorithm 3.3 outlines the distributed LocalMax-Algorithm, which is due to
Manne and Bisseling [20], but is described more precisely by Bisseling [7], whom
we follow here. We start with a distribution of the vertices over the processors:
each processor s of the p processors has a set Vs of local vertices such that:

p⋃
s=1

Vs = V,

Vs ∩ Vt = ∅, ∀s 6= t.

Also, the edges and edge weights are stored with the vertices on the processors.
The algorithm proceeds to define the set Adj(v), which are the vertices adjacent
to vertex v that are still available for matching. As input, the algorithm also
requires the set of halo vertices of each processor Hs defined by

Hs =
⋃
v∈Vs

Adj(v) \ Vs,

which are those vertices that reside on other processors, but have a direct edge
to a local vertex. The set Es, on the other hand, is the set of all the edges which
are directly connected to the vertices Vs on processor s:

Es = {(u, v) ∈ E : u ∈ Vs}.

The last input is the vertex distribution φ, where φ(v) = s, for v ∈ V means that
vertex v resides on processor s, i.e., v ∈ Vs.

The distributed matching algorithm initializes by setting the preferred match
pref(v) for each of the local vertices v ∈ Vs; this is simply the edge with the
highest weight. All the edges for which both vertices prefer each other are locally
heaviest edges and are added directly to the local matching Ms. However, this
can only be known if both vertices are local, so if pref(v) resides on a different
processor, a proposal is put for matching that edge in the remote processor. This
message is then buffered until the next global synchronization, when it is bundled
with the other messages to the same processor and sent and received in bulk.

Each vertex that gets matched, is added to the set Ds. We need to update
the unmatched vertices that had preferred to match with an already matched
vertex in Ds. In the computation superstep, this is done by updating the set
Adj(x) of neighbors x ∈ Adj(v) of the vertices v ∈ Ds; we remove v from Adj(x),
and update pref(x) to the vertex on the remaining adjacent edge with the high-
est weight. Again, we check if new pairs have preferred each other and can be
matched. However, if a matched vertex v ∈ Ds has neighbors on one or more
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Algorithm 3.3 Distributed LocalMax-Algorithm, by Manne and Bisseling [7]

Input: Vs, Es, Hs, vertex distribution φ
Output: Distributed matching Ms

1: for all v ∈ Vs do
2: pref(v) = null
3: Ds := ∅
4: Ms := ∅
5: for all v ∈ Vs do
6: Adj(v) := {w ∈ Vs ∪Hs|(v, w) ∈ Es}
7: pref(v) := argmax{w(u, v) : u ∈ Adj(v)}
8: if pref(v) ∈ Vs then
9: if pref(pref(v)) = v then

10: Ds := Ds ∪ {v, pref(v)}
11: Ms := Ms ∪ {(v, pref(v))}
12: else
13: put proposal(v, pref(v)) in P (φ(pref(v)))
14: repeat
15: Computation superstep, Algorithm 3.4
16: sync
17: Communication superstep, Algorithm 3.5
18: until there are no more messages

other processors, a message is sent to those processors that v is unavailable for
matching.

During synchronization, each processor receives a number of messages, which
are handled in the communication superstep. If the message is a proposal from
a remote vertex to match with a local vertex, this is done if the preference is
mutual, after which the remote processor is notified that the vertices have been
matched. When receiving such an acceptation, the other processor also adds this
edge to its local matching, and adds the local vertex to its set of matched vertices
in order to remove adjacent edges. Lastly, if the message is that a remote vertex
is unavailable for matching, we need to remove edges from local vertices to this
remote vertex. This updates the Adj(v) and pref(v) of local neighbors v ∈ Vs of
the remote vertex.

Algorithm 3.3 terminates after at most 1
2 |E| supersteps of computation and

communication when all matched edges connect vertices on different processors
and form a chain of decreasing edge weight. However, the assumption is that the
vertices are distributed in such a manner that in a computation superstep, each
processor can find many matches locally. The algorithm finds the same matching
as Algorithm 3.2, but then distributed over the processors. That is:

MLM =

p⋃
s=1

Ms,

where MLM is the LocalMax matching by Preis from Algorithm 3.2. How-
ever, this is only true if the LocalMax matching is unique, for which we need
unique edge weights. Unique edge weights also prevent deadlock in the dis-
tributed algorithm. For example, consider the case when three vertices a, b
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Algorithm 3.4 Distributed LocalMax-Algorithm, computation superstep

1: while Ds 6= ∅ do
2: pick v ∈ Ds

3: D := D \ {v}
4: for all x ∈ Adj(v) \ {pref(v)} : (x, pref(x)) /∈Ms do
5: if x ∈ Vs then
6: Adj(x) := Adj(x) \ {v}
7: pref(x) := argmax{w(x, y) : y ∈ Adj(x)}
8: if pref(x) ∈ Vs then
9: if pref(pref(x)) = x then

10: Ds := Ds ∪ {x, pref(x)}
11: Ms := Ms ∪ {(x, pref(x))}
12: else
13: put proposal(x, pref(x)) in P (φ(pref(x)))
14: else
15: put unavailable(v, x) in P (φ(x))

Algorithm 3.5 Distributed LocalMax-Algorithm, communication superstep

1: for all messages m received do
2: if m = proposal(x, y) then
3: if pref(y) = x then
4: Ds := Ds ∪ {y}
5: Ms := Ms ∪ {(x, y)}
6: put accepted(x, y) in P (φ(x))
7: else if m = accepted(x, y) then
8: Ds := Ds ∪ {y}
9: Ms := Ms ∪ {(x, y)}

10: else if m = unavailable(x, y) then
11: Adj(y) := Adj(y) \ {x}
12: pref(y) := argmax{w(y, z) : z ∈ Adj(y)}
13: if pref(y) ∈ Vs then
14: if pref(pref(y)) = y then
15: Ds := Ds ∪ {y, pref(y)}
16: Ms := Ms ∪ {(y, pref(y))}
17: else
18: put proposal(y, pref(y)) in P (φ(pref(y)))

and c with three edges connecting each other and w(a, b) = w(b, c) = w(a, c).
Then it could happen that pref(a) = b, pref(b) = c and pref(c) = a, and Al-
gorithm 3.3 consequently terminates without adding any of these edges. We
can ensure total ordering of the weights by using the vertex identification IDv

of vertex v, as done by Manne and Mjelde [21]. Assuming each vertex has a
unique and comparable ID, then consider the effective weight triplet defined by
w(a, b) =

(
w(a, b),max{IDa, IDb},min{IDa, IDb}

)
. Sorting this effective weight

triplet, first by the first element, then the second and then the third, gives a total
ordering of the edge weights. Also, each node can compute the effective weight
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of its adjacent edges locally.

3.3 Dynamic approximate maximum weighted
matching

In many applications, graphs are subject to discrete changes over time, such as
additions and deletions of edges or vertices. A dynamic graph algorithm should
update the solution to a given problem efficiently when such changes are applied
to the graph, as Eppstein et al. [13] define it. In the case of matching, only
changes to edges are relevant; adding a vertex without edges does not affect the
matching. If in a problem edges are only added and never removed, we speak of an
incremental graph problem or algorithm; otherwise, if edges are only removed, it
is a decremental problem. An update can be seen as a deletion and addition of the
same edge with different properties, so an algorithm that handles additions and
deletions can also be applied to updates and is called a fully dynamic algorithm.

Changes can be applied one by one, or as a set of changes at a time. We
consider sets of updates, as they are more general and more likely accompany
the large scale graphs considered in this chapter. Examples of such graphs are
the internet graph or a social network graph, which undergo a large number of
changes in each time step. The advantage of such bulk changes, is that they can
be distributed over a parallel computer system.

In the following section, we describe approaches to dynamic weighted matching
by Manne and Mjelde [21] and Anand et al. [1]. In Section 3.3.2, we present our
development of the Incremental LocalMax-algorithm that handles single edge
additions. We extend this algorithm in Section 3.3.3 to handle bulk additions in
parallel.

3.3.1 Other efforts

Recently, Neiman and Solomon [23] and Baswana et al. [4] have developed fully
dynamic algorithms for maintaining maximal matchings. These are the first ef-
forts that go beyond simply repeating a run of a static algorithm after changes
in the graph. These algorithms open the doors for further research on dynamic
matching, but are essentially trivial themselves; maintaining a maximal matching
is simply guaranteeing that every edge is either matched or adjacent to a matched
edge.

Manne and Mjelde [21] have developed a version of the LocalMax algorithm
that can be interpreted as a fully dynamic weighted matching algorithm. It was
developed as a self-stabilizing algorithm, which means that the algorithm will
produce the same result irrespective of the state it was initialized in. As such,
self-stabilization has as goal to provide fault tolerance in parallel computing. The
algorithm is given in Algorithm 3.6 and requires the edge weights to be unique,
for example by considering the effective weight triplet as presented in Section
3.2.3.

For a node v ∈ V , the algorithm maintains the variable mv which is the
preferred vertex to match for v. The variable hv = w(v,mv) is the weight of
the edge between the vertex v and its preferred vertex. In an inner loop of the
algorithm, the neighborhood N(v) of vertex v is determined to be those vertices
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u ∈ V neighboring v, for which the edge to v has a higher weight than the weight
hu of the preferred match of the neighbor. From N(v), we pick the vertex with
the highest weight on the corresponding edge and set it as the preferred match.
In Algorithm 3.6, we naively visit all nodes in one iteration of the while loop, but
Manne and Mjelde describe more efficient ways to decide which nodes to visit.

Algorithm 3.6 Self-stabilizing LocalMax-algorithm by Manne and Mjelde [21]

Input: Graph G = (V,E), arbitrary mv ∈ V and hv ∈ R+ for each v ∈ V
Output: Matching M

1: while there are changes do
2: for all v ∈ V do
3: N(v) = {u ∈ V : (u, v) ∈ E ∧ w(u, v) ≥ hu} ∪ null
4: Bestmatch(v) = argmaxu∈N(v)w(u, v)
5: if mv 6= Bestmatch(v) or hv 6= w(v,mv) then
6: mv = Bestmatch(v)
7: hv = w(v,mv)
8: M = {(u, v) ∈ E : mu = mv}

Figure 3.3 shows how the algorithm would execute; it is an example taken
and modified from Manne and Mjelde. We start in state (a), where vertices c
and b prefer each other. In the first iteration of the while loop and assuming
the for loop executes in the order a→ b→ c→ d, we start with vertex a, which
selects c as it is the neighbor with the highest weight and w(a, c) ≥ w(c,mc). It
continues with b, which keeps preferring c, because w(a, b) < w(a,ma). Vertex
c changes its preference to a, and vertex d has no edge which is higher than its
neighbors preference. Now, the algorithm is in state (b), where the edge (b, c) is
removed from the matching, but (a, c) has been added. In the next iteration of
the while loop, a does not change, but b changes its preference to d, because c is
now preferring a higher weight edge. Subsequently, c does not change it status,
but d now gets to prefer b. In the next iteration of the while loop, nothing
changes, so the algorithm terminates, leaving M = {(a, c), (b, d)}.

Although the algorithm could visit every edge many times, its concept is easy
to parallelize. Moreover, it has some inherent dynamism; whenever a new graph
G′ that is similar to G needs to be matched, the algorithm can take the previous
state, all values mv and hv for v ∈ G, as starting point. As a result, the algorithm
would converge to a result much faster than running it without initialized values
of mv and hv. However, as Algorithm 3.6 maintains a LocalMax matching, a
single change can affect the entire matching as the example in Figure 3.4 shows.

Dynamic 1
8 -approximation matching algorithm

To our best knowledge, Anand et al. [1] are the only authors who have presented
an efficient dynamic algorithm for maintaining a weighted matching. Their ap-
proach is derived from a dynamic maximal matching algorithm and based on the
observation that a maximal matching is a 1

2 -approximation for a maximum cardi-
nality matching. As such, it is also a 1

2 -approximation for a maximum weighted
matching where all weights are equal. They generalize this notion, by observing
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Figure 3.3: An example of the execution of Algorithm 3.6. In (a) the initial state is
displayed, where the arrows pointing out of the nodes indicate their preferred match.
When two nodes prefer each other, the edge connecting them is in the current matching
(red). In (b) and (c), the state after respectively one and two iterations of the while
loop are depicted.
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Figure 3.4: Cascading changes in a LocalMax matching. M is the LocalMax matching
as obtained on this graph by Algorithms 3.1, 3.2, 3.3 and 3.6. M ′ is the matching on
the same graph with the edge (f, g) added. The addition of (f, g) has as consequence
that every edge changes its status from matched to unmatched or vice versa.

a b c d e f g
M

1 2 3 4 5

a b c d e f g

M ′
1 2 3 4 5 6

that if α is the ratio between the maximum and minimum edge weight, a maximal
matching is a 1

2α -approximation.
Anand et al. partition the edges in a number of levels, where an edge is in

the set Ei of edges at level i if its weight is in the range [αi, αi+1). First, on each
level a maximal matching Mi is computed on the graph Gi = (V,Ei). However,
the union of these level-matchings Mi is not a matching on the graph G, as
vertices that have edges on multiple levels can be matched multiple times. The
authors greedily select edges from the level-matchings by starting with adding all
the matched edges at the highest level to the general matching M . Then, they
add those edges of the next highest level which are not adjacent to edges already
in M . Let level(e) denote the level of edge e, then the algorithm maintains the
following property:

Observation 1. In the algorithm of Anand et al. it holds that ∀e ∈
⋃
i

Mi, either

e ∈M or e is adjacent to an edge e′ ∈M such that level(e′) > level(e).

The authors prove that with α = 2 and as long as Observation 1 holds, the
resulting matching M is a 1

8 -approximation of the maximum weighted match-
ing. They maintain the property in Observation 1 as follows. The addition or
deletion of an edge can affect the maximal matching Mi at one level, which is
handled dynamically by the algorithm of Baswana et al. [4]. This results in a
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number of edges being removed from or added to Mi, or both. If an edge (u, v)
is removed from Mi and it was not in the general matching M , nothing happens.
Otherwise, if it was in M , then the vertices u and v are now free, i.e, they do
not have matched edges incident on them. These free vertices are handled with
the procedure HandleFree(u, lev) outlined in Algorithm 3.7, where u is the free
vertex and lev is its respective level. Also, the parameter Lmin denotes the lowest
level.

Algorithm 3.7 Recursive procedure for processing a vertex that has become free
at a certain level
procedure HandleFree(u, lev) :

1: for i from lev down to Lmin do
2: if there exists a v ∈ V such that (u, v) ∈Mi then
3: if @ v′ ∈ V : (v, v′) ∈M then
4: M = M ∪ {(u, v)}
5: else
6: find v′ ∈ V such that (v, v′) ∈M
7: if level(v, v′) < i then
8: M = (M \ {(v, v′)}) ∪ {(u, v)}
9: HandleFree(v′, level(v, v′))

The procedure HandleFree(u, lev) tries to find a match for the vertex u in
the set ∪iMi. In fact, it only needs to look at levels lower than lev, because
the fact that u was matched at lev means that there is no available edge at a
higher level from Observation 1. Moreover, the vertex u can have at most one
incident edge matched at each Mi, because else two edges at that level would be
incident on the same vertex and Mi would not be a matching. At a level i, let
(u, v) be this incident edge if it exists. Now, if v is not matched in M , we simply
add the edge (u, v) to the matching. Otherwise, if there exists some v′ such that
(v, v′) ∈ M , and level(v, v′) < i, then note that as i = level(u, v), Observation
1 is violated. Consequently, we remove (v, v′) from the matching and add (u, v)
instead. This results in v′ becoming free, which is in turn dealt with by calling
HandleFree(v′, level(v, v′)).

The procedure starts with checking for a neighbor at level lev and checks for
subsequent lower levels until it returns. Consequently, the available edge from the
highest possible level is added which gives the same result as the static greedy
procedure. The same procedure can be applied when an edge (u, v) is added to
the level-matching Mi. If u or v were already matched on a higher level, then we
do not add (u, v) to the matching as the property in Observation 1 is satisfied.
Otherwise, either vertex can be free or is matched with an edge on a lower level.
Let (u, u′) and (v, v′) be these adjacent edges, and if one or both exist, we remove
the edges (u, u′) and (v, v′) from M and call HandleFree(u′, level(u, u′)) and
HandleFree(v′, level(v, v′)).

The authors prove that an edge addition or deletion to E leads to O(log |V |)
(recursive) calls of HandleFree. Also, the maintaining of the maximal matching
Mi costs O(log |V |). Let

C =
maxe∈E w(e)

mine∈E w(e)
,
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be the ratio between the maximum and minimum edge weight on G, then logα C
is the number of levels. As at most all the levels are visited in each call, an edge
addition or deletion can be handled in O(log |V | logα C).

Although the algorithm is good first attempt at dynamic matching, its per-
formance bound of 1

8 times the optimal matching is quite low. One reason is that
using a maximal matching as an approximation for a maximum weighted match-
ing is rather naive. Moreover, an edge addition at the highest level could lead to
a cascade of changes throughout every level, which would frustrate parallelization
of the algorithm because local changes can have a global effect.

3.3.2 Incremental LocalMax-algorithm

Our approach is motivated by keeping changes as local as possible and is inspired
by the LocalMax algorithm. However, as explained in Figure 3.4, maintaining a
LocalMax matching could lead to a cascade of changes as the result of a single
edge addition. Here, we consider an incremental graph, so we only deal with edge
additions.

Define match(a) = null if a is a free vertex in the matching M and match(a) =
b if (a, b) ∈ M , and let w(x,null) = 0 for all x. We start off with a LocalMax
matching M on a graph G = (V,E) and handle the addition of an edge (a, b)
to E with Algorithm 3.8. When a and b are free, we can simply add (a, b) to
the matching. Otherwise, we only add (a, b) if its weight exceeds the weight of
the edge or pair of edges that have to be removed from M . In the case that one
or two edges are removed, we check for each if it is adjacent to edges that are
now free and add the one with highest weight to the matching. Consequently,
the addition of an edge to E leads to at most three edge additions and two edge
removals from M . We claim that Algorithm 3.8 maintains a 1

2 -approximation
over an arbitrary set of subsequent edge additions. In the rest of this section, we
develop the theory to prove this approximation ratio.

Algorithm 3.8 Incremental LocalMax-Algorithm

Input: (Incremental) LocalMax matching M , weighted graph G = (V,E), added
weighted edge (a, b)
Output: 1

2 -Approximation matching M

1: if w(a, b) ≥ w(a,match(a)) + w(b,match(b)) then
2: if a is matched and match(a) has free neighbors then
3: Let e ∈ E \M be the maximum-weight free edge incident on match(a)
4: M := M ∪ {e}
5: M := M \ {(a,match(a))}
6: if b is matched and match(b) has free neighbors then
7: Let e ∈ E \M be the maximum-weight free edge incident on match(b)
8: M := M ∪ {e}
9: M := M \ {(b,match(b))}

10: M := M ∪ {(a, b)}

Pettie and Sanders [24] base their analysis of the approximation quality on the
minimum length of an augmenting path or cycle of the approximation matching.
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We, on the other hand, try to bound the weight of an augmenting path or cycle.
If the weight in M of any augmenting path or cycle p is at least half the weight
of p, then M is in fact a 1

2 -approximation, see Theorem 3.5.

Theorem 3.5 ( 1
2 -approximation). Let M be a matching and M∗ a maximum

weighted matching on a graph G and assume that for every alternating path and
cycle p of M , it holds that w(p ∩M) ≥ 1

2w(p \M). Then w(M) ≥ 1
2w(M∗).

Proof. Following the proof of Theorem 3.3, consider the symmetric difference
between M and M∗: M 4M∗. It consists of a set of k vertex-disjoint and edge-
disjoint alternating paths and cycles pi, both with respect to M and to M∗, such
that pi \M = pi ∩M∗. Following Pettie and Sanders [24], we can decompose the
weight of the two matchings in that of their common edges, and their edges on
the alternating paths and cycles:

w(M) = w(M ∩M∗) +

k∑
i=1

w(pi ∩M),

w(M∗) = w(M ∩M∗) +

k∑
i=1

w(pi ∩M∗).

Subsequently, our contribution is that using the assumption on the bound of the
weight of any alternating path and cycles, we get that:

w(M) = w(M ∩M∗) +

k∑
i=1

w(pi ∩M),

≥ w(M ∩M∗) +

k∑
i=1

1

2
w(pi ∩M∗),

≥ 1

2

(
w(M ∩M∗) +

k∑
i=1

w(pi ∩M∗)
)

=
1

2
w(M∗),

proving, in fact, that M is a 1
2 -approximation of M∗.

Theorem 3.5 provides a helpful framework for proving the approximation qual-
ity of a matching. As an example, in Theorem 3.6 we provide a proof for the
Greedy matching in Algorithm 3.1, by using Theorem 3.5.

Theorem 3.6 (Greedy). Let M be the Greedy matching created by Algorithm 3.1
and M∗ a maximum weighted matching. Then w(M) ≥ 1

2w(M∗).

Proof. Let p be an alternating path or cycle with respect to M . Now, take an
unmatched edge a ∈ p\M ; it must have either one or two matched neighbors in p.
For at least one such neighbor b ∈ p∩M of a, we have that w(b) > w(a), because
else edge a would have been picked and matched by the Greedy algorithm before
b. So every unmatched edge in p is dominated by a neighboring matched edge in
p. However, it can happen that two unmatched edges are dominated by the same
matched edge. That is how we get to the factor 1

2 :

w(p ∩M) ≥ 1

2
w(p \M).
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Subsequently, it follows from Theorem 3.5 that M is indeed a 1
2 -approximation.

Let M be the incremental LocalMax matching maintained by Algorithm 3.8.
It is not true that w(p ∩M) ≥ 1

2w(p \M) for every alternating path or cycle
p with respect to M , see the counterexample in 3.5. Note that in this example,
still, the overall matching is a half-approximation. Therefore, we need to divide
the graph G into paths and cycles which are not necessarily alternating, but for
which we still have the property that M is a 1

2 -approximation on these paths and
cycles and that these paths and cycles cover G in total.

Figure 3.5: Counterexample to the alternating path assumption. The incremental Lo-
calMax matching M3 is built in two steps from M1 and M2 by adding the edges (b, c)
and (d, e). Comparing our matching with the maximum weighted matching M∗, we see
that p = M34M∗ = {(a, b), (b, c)} with w(M3 ∩ p) = 1 and w(M∗ ∩ p) = 2.9, such that
w(M3 ∩ p) < 1

2
w(M∗ ∩ p).

a b c d e

w(M1) = 3
1 2

a b c d e

w(M2) = 3
1 2.9 2

a b c d e

w(M3) = 3.1
1 2.9 2 2.1

a b c d e

w(M∗) = 5
1 2.9 2 2.1

For this reason, we prove in Theorem 3.7 that the incremental LocalMax
matching is a 1

2 -approximation on linear graphs, on which it is trivial that the
disconnected paths and cycles cover the entire graph.

Theorem 3.7 (Incremental LocalMax on linear graphs). Let G = (V,E) be a
linear graph, which means that each vertex has at most two incident edges. Let
edges be added to E such that G remains linear. Also, let M be the incremental
LocalMax matching maintained by Algorithm 3.8, which starts of with M being a
LocalMax matching on G and updates M under the addition of edges. Lastly, let
M∗ be a maximum weighted matching on G. Then w(M) ≥ 1

2w(M∗).

Proof. Note that the graph G is composed of disconnected simple paths and
cycles. We start with a graph G0 = (V,E0) with a LocalMax matching M0

and add edges until we arrive at G = (V,E). Let Gi = (V,Ei) be the graph
after i edges have been added and let Mi be the matching obtained by applying
Algorithm 3.8 to each edge addition. Assuming that for Mi−1 it holds that
w(Mi−1) ≥ 1

2w(M∗∩Ei−1), we will show that after the addition of a = Ei \Ei−1
to the graph, it holds that w(Mi) ≥ 1

2w(M∗ ∩ Ei). As we start with a matching
M0 satisfying w(M0) ≥ 1

2w(M∗ ∩ E0), this proves the theorem.
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At step i, take the addition of edge a such that Ei = Ei−1∪{a}. We distinguish
four possibilities on whether a is in Mi or M∗, or both, and show for each that
the inequality holds.

i) Not matched, a /∈ Mi and a /∈ M∗. In this case, we have that w(Mi) =
w(Mi−1) ≥ 1

2w(M∗ ∩ Ei−1) = 1
2w(M∗ ∩ Ei).

ii) Not matched, a /∈ Mi, but a ∈ M∗. The edge a must have one matched
neighbor b ∈Mi−1 with w(b) > w(a), or two matched neighbors b, c ∈Mi−1
with w(b) +w(c) > w(a). The edges b and c are not in M∗, but each may be
adjacent to another edge matched in M∗. Similar to the proof of Theorem
3.6 of the Greedy algorithm, this results in a tight inequality on Mi, i.e.,
w(Mi) ≥ 1

2w(M∗ ∩ Ei).

iii) Matched, a ∈ Mi, but a /∈ M∗. This is a trivial case: w(Mi) ≥ w(Mi−1) ≥
1
2w(M∗ ∩ Ei−1) = 1

2w(M∗ ∩ Ei).

iv) Matched, a ∈ Mi and a ∈ M∗. If Mi = Mi−1 + {a}, no edges have been
removed by Algorithm 3.8, so w(Mi) = w(Mi−1)+w(a) ≥ 1

2 (w(M∗∩Ei−1)+
w(a)) = 1

2w(M∗∩Ei). Otherwise, one or two edges have been removed from
Mi by Algorithm 3.8. This is the difficult case, which we treat in detail here.

If a has two previously matched neighbors b1, b2 ∈ Mi−1, then we can split
a in a1 and a2 such that w(a1) ≥ w(b1) and w(a2) ≥ w(b2). Otherwise, if a
has one previously matched neighbor b1 ∈ Mi−1, we take a1 = a such that
w(a1) ≥ w(b1). We define three cases on whether and how b1 is connected
to other edges, see Figure 3.6.

In case (a), b1 has no other neighbors. In Ei−1, the edge b1 had no neighbors,
so it can be removed from Mi−1 such that Mi−1 remains a 1

2 -approximation
with respect to M∗ ∩ Ei−1.

In case (b), b1 has neighbor c which is not adjacent to another matched
edge. Again, removing b1 from Mi−1 while adding c will maintain that
w(Mi−1) ≥ 1

2w(M∗ ∩ Ei−1). This is logical if we consider a scenario where
b1 has never been added to the graph. Note that also, c ∈Mi.

In case (c), b1 has a neighbor c that in turn has a matched neighbor d. The
important observation is that since c is not matched in Mi−1, its weight
satisfies w(c) < w(b1) + w(d). If also w(c) ≤ w(d), then c is already domi-
nated by d, and we can remove b1 from Mi−1 while maintaining w(Mi−1) ≥
1
2w(M∗ ∩ Ei−1), again by considering a scenario where b1 does not exist.
Otherwise, if w(d) < w(c) < w(b1) + w(d), then c ∈ M∗ by Theorem 3.3 on
the maximum weighted matching. Also, a1 ∈M∗, which on these four edges
gives:

w(Mi ∩ {a1, b1, c, d}) = w(a1) + w(d),

w(M∗ ∩ {a1, b1, c, d}) < w(a1) + w(b1) + w(d) ≤ 2w(a1) + w(d).

The edge d may be adjacent to another edge matched in M∗, resulting in a
tight inequality on Mi.

One of the three cases in Figure 3.6 is also applicable to a2 if there exists an
edge b2. It is not excluded that a is on a cycle, where it is possible that c is
adjacent to a in case (b), or that d = b2 in case (c).
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Figure 3.6: Three cases as illustration to point iv) of the proof of Theorem 3.7. The
edge a1 is the part of the added edge a such that w(a1) ≥ w(b1). Red edges are in the
matching Mi−1. A dashed line signifies that there may or may not be another adjacent,
unmatched edge.

(a)
a1 b1

(b)
a1 b1 c

(c)
a1 b1 c d

Conjecture 3.8 is the formulation of the 1
2 -approximation quality of the incre-

mental LocalMax algorithm. An approach to the proof could be made in a similar
fashion as Theorem 3.5. Consider a subset S ⊆ E of edges, which includes the
symmetric difference:

M 4M∗ ⊆ S,

and possibly some more edges. In the proof of Theorem 3.5, we had that S =
M 4 M∗ and S consisted exclusively of vertex-disjoint alternating paths and
cycles. With S containing the symmetric difference, we get that:

w(M) = w
(
(M ∩M∗) \ S

)
+ w(S ∩M),

w(M∗) = w
(
(M ∩M∗) \ S

)
+ w(S ∩M∗),

meaning that we prove the theory if we can find such a set S satisfying w(S∩M) ≥
1
2w(S ∩M∗), which in Theorem 3.5 we proved by showing that S consisted of
alternating paths and cycles which satisfied this bound. As the counter example
in Figure 3.5 and the proof of Theorem 3.7 show, we need to extend S in such a
way that it also contains the paths and cycles on which the alternating part of
the path or cycle is not bounded and show that indeed w(S ∩M) ≥ 1

2w(S ∩M∗).
We have not succeeded in finding such an S, but we also did not find an example
that disproves Conjecture 3.8.

Conjecture 3.8 (Incremental LocalMax). Let M be the incremental LocalMax
matching maintained by Algorithm 3.8 on the general graph G = (V,E) and let
M∗ be a maximum weighted matching. Then w(M) ≥ 1

2w(M∗).

Analyzing the running time of the incremental LocalMax algorithm, we note
that checking whether the added edge (a, b) satisfies w(a, b) ≥ w(a,match(a)) +
w(b,match(b)) can be done in O(1). So if w(a, b) is smaller, then the algorithm
terminates in O(1) as well. Also, if neither a or b were matched, the algorithm
takes O(1). Otherwise, checking whether match(a) has matched neighbors and
finding the respective maximum-weight edge, requires us to visit deg(v) vertices
and edges, where deg(v) is the degree of v = match(a), i.e., the number of edges
incident on v. In general graphs deg(v) is bounded by the number of vertices,

44



but in many practical applications, the maximum degree in a graph is relatively
small. This gives a running time of O(maxv∈V deg(v)) for processing the addition
of a single edge with Algorithm 3.8. In the next section, we will show that the
incremental LocalMax algorithm is well suited for parallelization.

3.3.3 Parallel incremental LocalMax

Building on the work of Manne and Bisseling [20], we developed a generalization
of the distributed LocalMax algorithm described in Section 3.2.3. Given a dis-
tributed matching Ms on processor s on a graph with vertices Vs and edges Es,
Algorithms 3.9, 3.10, 3.11, 3.12 and 3.13 compute a new matching on the graph
when a set of edges As is added to Es. It is a generalization of Algorithm 3.3
in the sense that if the initial matching is empty, Ms = ∅, and we give all edges
of the graph at once as input, As = Es, then Algorithm 3.9 runs in the same
way, resulting in the same matching. In this section, we will provide a detailed
description of the algorithm.

Algorithm 3.9 runs on p processors, each of which maintains its own piece of
the data. Similarly as in Algorithm 3.3, a processor s has a unique vertex set Vs
as input:

p⋃
s=1

Vs = V,

Vs ∩ Vt = ∅, ∀s 6= t.

Furthermore, Es is the set of edges on s, which contain all edges incident on at
least one vertex in Vs. New are the inputs Ms, a subset of Es of edges already
in the matching, and the set of added edges As. The definition of the set of halo
vertices Hs on processor s is updated to also include vertices connected by edges
in As:

Hs =
⋃
t 6=s

{v ∈ Vt : ∃ (u, v) ∈ Es ∪As}.

They are the vertices residing on other processors, that have a, possibly new, edge
to a vertex in Vs.

Similarly to the static parallel matching algorithm, Algorithm 3.9 is composed
of an initialization step, followed by alternating supersteps of computation and
communication. In the initialization, the edge set is updated, followed by setting
the preferred new match pref(v) of each vertex v to the default null. Subse-
quently, for the new edges that connect to a vertex on a different processor, we
communicate the weight of the local adjacent matched edge (or 0 if it does not
exist) to the remote processor, for which we will see the purpose. In the BSP
model, messages are buffered until a global barrier synchronization, which allows
all processors to communicate simultaneously. Because each processor needs the
weights of the matches of its halo vertices directly, we follow with such a sync
here.

The algorithm maintains the set Adj(v) for each vertex v, which contains the
new neighbors of v. In the procedure update pref(x) presented in Algorithm
3.12, we pick a vertex y from this set Adj(x), such that the new edge (x, y) ∈ As
would give the highest gain in the weight of the matching. This means that it
should not only meet the incremental LocalMax criterion in Algorithm 3.8 that
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the new edge should have a higher weight than the potential matched adjacent
edges, but it should also have the highest corresponding difference in weights
from all newly added edges adjacent to x. The gain for the addition of edge (x, y)
is w(x, y) ≥ w(x,match(x)) + w(y,match(y)). As the vertex y could reside on
another processor, it is here that we require the weight match(y) of the potential
match of y.

If the preferred new match of x resides on the same processor, and if the
preference is mutual, the procedure update pref(x) can create a new match. In
order to do so, it will have to break up the matches that may be incident on the
new edge. This is handled by the procedure break up(u, v) given in Algorithm
3.13, which takes care of the freed neighbors of the broken up edge. The two
vertices are subsequently added to the set Ds of recently matched vertices and
the matching is updated. Otherwise, if the preferred new match resides on another
processor, we put a proposal for matching in the remote processor.

The procedure break up(x, y) removes the edge (x, y) from the matching
and subsequently checks for free neighbors of y. Note that vertex x has just
been matched to some other vertex in favor of being matched to y. These free
neighbors are added to Adj(y), and for each of them we add y to their own set of
potential new matches. If a free neighbor z of y resides on the same processor,
this is done easily. Additionally, we update the preference of z directly to include
y, but we do not call update pref(z), because y has not yet updated its own
preference so we can save on some function calls this way. If z resides on another
processor, we put the message added(y, z) in the remote processor, which will do
the same once it is processed. Finally, we update the preference of y, which will
eventually decide if and how y should be matched. If y itself resides on another
processor, the message freed(x, y) will cause break up(x, y) to be executed on
the remote processor once it is received.

After initialization, the algorithm continues with a computation superstep
depicted in Algorithm 3.10. Here, it pops elements from the set Ds, which are
the vertices that have just been matched. For each vertex v ∈ Ds, it visits the
neighboring vertices that have a newly added edge to v in order to process the
fact that v is no longer available for matching. For such a vertex x, we remove
v from its adjacency list of newly added edges and updates its preference, unless
x belongs to another processor, in which case the message unavailable(v, x) will
cause it to be done on the remote processor.

After a global synchronization, the communication superstep handles all the
incoming messages as were explained before. Lastly, the proposal(x, y) message
means that the remote vertex x wants to match with y. If this preference is
mutual, we break up the possible local match to y, and add (x, y) to the matching.
A new message accepted(x, y) is sent to do the same on the remote processor for
x.

Correctness of the algorithm

It is difficult to prove that a parallel algorithm produces correct results, especially
when much different communication is involved. One method is to reduce it in
some way to a sequential algorithm and show that the sequential algorithm is
correct. In our case, we could try to reduce the parallel incremental LocalMax
algorithm to the sequential incremental LocalMax algorithm. However, the cor-
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Algorithm 3.9 Parallel Incremental LocalMax-Algorithm

Input: Distributed matching Ms, new edges As, vertices Vs, halo vertices Hs,
old edges Es, vertex distribution φ
Output: Updated distributed matching Ms

1: Es = Es ∪As
2: for all v ∈ Vs do
3: pref(v) = null
4: for all (u, v) ∈ As : u ∈ Vs, v ∈ Hs do
5: put w(u,match(u)) in P (φ(v))
6: sync
7: Ds = ∅
8: for all v ∈ Vs do
9: Adj(v) = {u ∈ Vs ∪Hs : (u, v) ∈ As}

10: update pref(v)
11: while there are messages do
12: Computation superstep, Algorithm 3.10
13: sync
14: Communication superstep, Algorithm 3.11

Algorithm 3.10 Computation superstep

1: while Ds 6= ∅ do
2: pick v ∈ Ds

3: D = D \ {v}
4: for all x ∈ Adj(v) \ {pref(v)} : (x, pref(x)) /∈Ms do
5: if x ∈ Vs then
6: Adj(x) = Adj(x) \ {v}
7: update pref(v)
8: else
9: put unavailable(v, x) in P (φ(x))

rectness of the incremental LocalMax is already under the scrutiny of Conjecture
3.8, so such a proof is not useful at this point.
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Algorithm 3.11 Communication superstep

1: for all messages m received do
2: if m = proposal(x, y) then
3: if pref(y) = x then
4: if match(y) 6= null then
5: break up(y,match(y))
6: Ds = Ds ∪ {y}
7: Ms = Ms ∪ {(x, y)}
8: put accepted(x, y) in P (φ(x))
9: else if m = accepted(x, y) then

10: if match(x) 6= null then
11: break up(x,match(x))
12: Ds = Ds ∪ {x}
13: Ms = Ms ∪ {(x, y)}
14: else if m = unavailable(x, y) then
15: Adj(y) = Adj(y) \ {x}
16: update pref(y)
17: else if m = added(x, y) then
18: match(x) = null
19: Adj(y) = Adj(y) ∪ {x}
20: update pref(y)
21: else if m = freed(x, y) then
22: break up(x, y)

Algorithm 3.12 update pref(x)

1: pref(x) = argmax{w(x, y)− w(x,match(x))− w(y,match(y)) : y ∈ Adj(x)}
2: if w(x, pref(x))− w(x,match(x))− w(pref(x),match(pref(x)) < 0 then
3: pref(x) = null
4: if pref(x) ∈ Vs then
5: if pref(pref(x)) = x then
6: if match(x) 6= null then
7: break up(x,match(x))
8: if match(pref(x)) 6= null then
9: break up(pref(x),match(pref(x)))

10: Ds = Ds ∪ {x, pref(x)}
11: Ms = Ms ∪ {(x, pref(x))}
12: else
13: put proposal(x, pref(x)) in P (φ(pref(x)))
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Algorithm 3.13 break up(x, y)

1: Ms = Ms \ {(x, y)}
2: if y ∈ Vs then
3: N =

{
z ∈ Vs ∪Hs : (y, z) ∈ Es ∧match(z) = null

}
4: Adj(y) = Adj(y) ∪N
5: for all z ∈ N do
6: if z ∈ Vs then
7: Adj(z) = Adj(z) ∪ {y}
8: pref(z) = argmax{w(u, z)− w(u,match(u)) : u ∈ Adj(z)}
9: else

10: put added(y, z) in P (φ(z))
11: update pref(y)
12: else
13: put freed(x, y) in P (φ(y))
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Chapter 4

Conclusion

Graphs are a fundamental component of many applications in scientific comput-
ing. They can be very large and undergo changes frequently, so it is important to
develop fast algorithms that deal with change effectively. In this thesis, we con-
sidered two dynamic problems in particular: scheduling on a precedence graph
and approximate matching.

4.1 Scheduling algorithms

The problem defined by Progressive Planning is NP-hard if we want to minimize
the makespan of the schedule. It is, however, unclear which objective function
we wish to minimize. For these reasons, we have developed a heuristic algorithm
to schedule the jobs that is based on list scheduling. This changes the question
of which function to minimize to which jobs to prioritize over which other jobs.
This priority is composed on the basis of three simple criteria: jobs with an earlier
deadline, jobs which are succeeded by a large amount of work in other jobs, and
jobs which are succeeded by work shared by many different people, are all more
important. The last two criteria require that we propagate the processing times
and people on the jobs through the precedence graph to each job’s predecessors,
which we do in linear running time. We do this for the deadline as well; if a job’s
successor has a deadline, then the job itself has a deadline equal to its successor’s
deadline minus its successor’s processing time. Consequently, we have all the
information gathered in a single priority measure for each job. We schedule by
picking the available job with the highest priority and process it whenever a role
is idle.

The quality of the resulting schedule is difficult to analyze, because we have
not defined a clear measure for the optimality of the schedule. Moreover, if we
had one, our problem size is too large to compute an optimal solution that we can
compare our schedule with. Lastly, our problem is composed of estimates rather
than deterministic data, which means that the optimal schedule could only be
known in retrospect when no more changes can occur. On the other hand, the
resulting schedule is based on simple heuristics that are easy to understand and
make sense of. In linear time, we have shown how to compute the critical path
to each job, which forms a lower bound on the completion time of a job.
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The scheduling algorithm is great in terms of computation speed and is shown
to scale well with larger problem sizes. We speed up the scheduling further by
limiting the problem size to the connected components in the undirected graph
composed of the precedence relations between jobs and their dependencies on their
roles. The schedules for the connected components are completely independent,
so scheduling only one is much easier. This speed is an advantage for the dynamic
problem that we face. The data changes, and as it does, we can quickly compute a
new schedule for the connected component where the change happened. Without
giving in on a schedule’s feasibility, we cannot do better than rescheduling the
entire connected component in the worst case.

On the other hand, we have implemented a dynamic algorithm for answering
queries on whether the graph is acyclic when a certain edge is added. Also, the
connected components are maintained dynamically in a lazy fashion. We do not
check whether a connected component has to be split after a certain change,
because this is unlikely to happen and we can save much effort if we do not check
this.

In conclusion, our scheduling algorithm is extremely fast and has the benefit
of easily incorporating all the constraints given by Progressive Planning. In the
light of scheduling theory, it is remarkable that there has not been any research
to this problem with jobs pre-assigned to their processors and general precedence
constraints. This case definitely deserves more attention, because of its appli-
cability in project management. It would be interesting to see which measures
can be (approximately) minimized in which ways. We could also compare our
scheduler on these measures. On the other hand, we do not consider it advan-
tageous to try to model the uncertainty in our problem mathematically, because
we update the schedule as soon as a change occurs and the environment for use
of Progressive Planning is uncertain in any case.

4.2 Matching algorithms

We have developed a simple and fast algorithm for maintaining a 1
2 -approximation

of a maximum weighted matching on general weighted graphs. It is based on the
Greedy and LocalMax algorithms of Avis [3] and Preis [27] for computing a 1

2 -
approximation matching statically. Also, our algorithm was motivated to keep
the exchange of information as local possible. On incremental graphs, Algorithm
3.8 adds a new edge to the matching only if removing adjacent matched edges
does not cost more in weight than the weight of the new edge. If it is added, we
check if the edges adjacent to the two edges that might have been removed, have
become free, and we add the ones with maximum weight. Although this requires
us to visit up to 2 maxv∈V deg(v) edges, it is likely much faster than maintaining
a LocalMax matching, where the addition of a single edge can change the entire
matching.

We have developed a theoretical framework based around Theorem 3.5, in
which we showed that if for a matching we can bound the weight of the matched
edges in an alternating path or cycle by the half of the weight of the edges not
matched, then the matching is a 1

2 -approximation. This theorem provides a
practical approach to proving the approximation quality of matchings; we pro-
vided an alternative proof of the 1

2 -approximation quality of a Greedy matching.
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Additionally, we proved that our incremental LocalMax algorithm maintains a 1
2 -

approximation on linear graphs. We easily extended our algorithm to also handle
edge removals from a graph.

Although our theoretical analysis is thorough, we could not prove that the
incremental LocalMax algorithm maintains a 1

2 -approximation on general incre-
mental graphs. We do, however, expect that it maintains a 1

2 -approximation.
Proving this approximation ratio should definitely be the topic of further research.
This would also pave the way for an efficient fully dynamic matching algorithm.
As interesting as the theoretical performance of incremental LocalMax, we would
like to see how useful the resulting matchings are in practical applications.

Our approach to incremental matching only uses information of the direct
neighbors of the updated edge and of their neighbors. This keeps the accessing of
information local, which is useful for parallel computation of the matching. We
generalized the parallel LocalMax algorithm by Manne and Bisseling [20] to be
able to handle a bunch of edge insertions at the same time dynamically. To our
knowledge, Algorithm 3.9 is the first parallel algorithm to maintain a matching
dynamically. Therefore, it is interesting to see where it can be employed in
practice and how it performs in these applications.
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