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Abstract

Vote manipulation is an important topic in social choice theory.
Usually, voters are assumed to have perfect knowledge of the prefer-
ences of all the other voters involved in a vote, and they manipulate
using this knowledge. In this thesis we consider a different manipu-
lation scenario, in which voters do not have such perfect knowledge.
We will write and demonstrate a computer program in which the con-
cepts from social choice theory are implemented, including our own
extension which deals with manipulation under partial knowledge.



1 Introduction

1.1 Social choice theory

Social choice theory is the scientific field that deals with the description
and analysis of the way that the preferences of individual members of a
group are aggregated into a decision of the group as a whole. The field is
also called voting theory, a revealing name that suggests a connection with
politics. Indeed, an important field of political science, called democratic
theory, is based on the premise that the resolution of a matter of social
policy, group choice, or collective action should be based on the preferences
of the individuals in the society, group, or collective. How to make such a
resolution based on the preferences of individuals, is an import issue in the
design of democratic elections. Voting theory deals with issues such as this
one, and it does so in a very precise, mathematical way, using logic as its
formal instrument.

1.2 Vote manipulation

One difficulty in designing rules for the preference aggregation in a vote, is the
fact that voters can sometimes achieve a preferred election result by casting
a ballot that misrepresents their actual preferences. Voting theory has been
concerned with finding properties of voting rules that make it impossible for
voters to manipulate the vote. This led to the surprising result that, for an
important class of voting rules, manipulability is avoidable only if the vote
is a dictatorship.

1.3 Manipulation and knowledge

In the formal study of manipulation done by voting theory so far, manip-
ulators have always been assumed to have complete knowledge, that is, all
the knowledge they need to make perfect decisions in their manipulation.
In reality, however, voters often have incomplete or partial knowledge. In
this thesis, we will extend the field of voting theory with a new concept
called profile knowledge, which will be our key element in reasoning about
and implementing manipulation under partial knowledge.

1.4 Haskell

For our implementation of concepts from voting theory, we will use the pro-
gramming language Haskell. This language has a number of distinctive



properties that make it suitable for our purpose.

First of all, it is a functional programming language, which means that
the statements of the language are functions. These functions can be seen
as little factories, which take an input, manipulate the input in a way defined
by the programmer and then produce an output.

Second, Haskell is a strongly typed language. This means that both the
input and the output of a function have to be of a specified type. If a function
is given a parameter of the wrong type, it will not produce an output, and
instead give back an error. For example, we could have a function plus
that takes two integers (that is, numbers without decimals, like 1, 2, 3 and
so forth) and computes the sum of those integers. In Haskell, this function
would look like:

plus :: Int -> Int -> Int
plus x y =x +y

Before we move on, let’s take a brief walk through both lines of the func-
tion, starting with the second line, which is the function definition. It consists
of three parts: the function name, which is plus, the function parameters,
which are x and y, and the function expression, which is x + y. In factory
terms, the parameters serve as inputs for the function and the expression
defines what to do with the input, in order to generate a certain output (in
technical terms: how to evaluate the function). Note that, in this function
definition, we have not captured all the constraints that we wanted to put on
our function yet: there is no information in the definition about the fact that
we want the function to take two integers, and compute a new integer. This
is where the first line of our code comes in. In natural language, it says that
the function called plus, which takes two arguments, can have only integers
as arguments, and must give back an integer result.

Now that we have a basic idea of how functions and types in Haskell work,
we can move on to a third property of the language: its function evaluation is
lazy, which is the opposite of strict evaluation. Let’s explore the difference
between these two types of evaluation by looking at an example. Suppose we
have a function called generateNaturals, which has no parameters and just
creates a list of all natural numbers, starting from 0. You can already guess
that this function, once called, will never stop evaluating, since there are
infinitely many natural numbers. Now let’s look at another function, called
head, which takes a list and returns the first element of that list. Suppose we
want to use the result of generateNaturals as a parameter in the function



head. We can do this by simply taking the function generateNaturals, and
passing it on to head as its parameter. What will happen if we call head now?
If Haskell were a strictly evaluating language, the obvious would happen: the
function generateNaturals would have to be evaluated completely before
its result could be passed down to head, and so the final result would never
be evaluated. In the real, lazy Haskell, though, this is not the case (a fact
that comes as a surprise to many who are faced with it for the first time).
Instead, only that part of the result of the function generateNaturals that
1s needed by the higher function head, is evaluated. Because of this property,
it is possible to work with infinite objects in Haskell as if they are finite, a
feature that is useful for programmers who are working with concepts from
logic.

1.5 Literate programming

The focus of this thesis will be on implementing the concepts from voting
theory that we introduce. Because of this focus on implementation, the the-
sis will have the form of a literate program, that is, a computer program
embedded in plain text. This way, all the code we develop can be explicitely
presented to the reader, yet we do not expect the reader to fully under-
stand every line of it. Instead, each chunk of code will be explained to the
reader in natural language, which will also be the case for every logical and
mathematical definition we present.

1.6 Relevance

The two main questions of Artificial Intelligence are: what is the nature of
intelligence, and how can we model it? One way of looking at intelligence, is
by studying intelligent behavior. Group behavior, especially in the context of
knowledge that the individuals of a group possess, is such a type of behavior
that is of interest to Articial Intelligence. Implementing models for this kind
of behavior, like we do in this thesis, can help us gain a deeper insight into
the overall nature of intelligence.

1.7 Structure

In section [2| we introduce the field of social choice theory and add the first
lines of code to our implementation. Next, we discuss vote manipulation in
section [3] and profile knowledge in section [l In section [5] we put the pieces
of code that we have written together. We then demonstrate and test the



full program in section [6] Finally, we conclude the thesis in section [7], where
we also give ideas for further research.

2 Basic concepts from social choice theory

Let’s start with a simple example. Suppose we have a company that wants to
hire a new employee. The company has received ten applications for the job
and now has to choose which applicant to hire. Suppose now that not one,
but three department heads have to make this decision together. Needless
to say, the different department heads disagree on the ranking of the ten,
and what is needed is some procedure for passing from the preferences of the
individual heads to a collective resolution.

2.1 Voters and alternatives

In the example given above, we can identify the key players in voting theory:
the voters, the department heads in this case, and a number of alternatives
to vote on, represented by the applicants. Formally, the voters are denoted as
N = {iy,...,4,}, where |[N| > 2, which means that the set of voters N needs
to contain at least 2 members. An obvious restriction, since any reasonable
vote with one voter would be a dictatorship. For the set of alternatives
that voters can choose from, denoted as X = {x1, x5, x3...}, there is also an
obvious constraint, i.e. that the set cannot be empty. In formal language,
this is expressed by: |N| > 0 or N # (), where () is the empty set.

Let’s move on to the representation of the objects that we just introduced
in a Haskell program. It is important that a representation of an object
captures all the necessary information about that object. But who knows
what kind of information about our object we are going to need in the future?
For now, we will keep it simple by just making sure that we can distinguish
one object from another. If we want to add information to the objects later
on, we can always create a data structure in which the old information about
the objects is mapped onto some new information. We will simply number
our objects to make them distinguishable from one another, and since this
is the only information we need, we let our objects be represented by their
numbers. In Haskell, we implement this by creating so called type synonyms
for our objects. Such type synonyms are extra names that we give to data
types in our program (in the case of our objects, to the integer type, written
as Int), with the general purpose of improving the readability of the program
code. Let’s illustrate this with an example. Suppose we have some function
of type Int -> ... , where we actually want the integer to represent a voter.



The idea of type synonyms now allows us to create a new type, called Voter,
which we can use as a synonym for the type Int. This makes it possible
for us to change the type Int -> ... of our function into Voter -> ... |
without making any changes to the functionality of the program.

We write the first lines of our program now.

module VotingTheory where

import Data.List
import Data.Function

To this, we add type synonyms for our first objects.

type Voter = Int
type Alternative = Int

2.2 Ballots

In a vote, each individual in N is endowed with, and is asked to express, a
preference over the alternatives in X. Such a preference is called a ballot.
We call a certain ballot over a set of alternatives X an X-ballot. There are
several ways to look at ballots, one of which is assumed by us and has the
following properties:

e A ballot is a linear ordering of the set of alternatives X.

e We cannot compare preferences across voters. For example, our model
cannot express that voter 1 likes x more than voter 2 likes y.

e There is no notion of preference intensity: we cannot model that, for
example, voter 1’s preference of x is more intense than voter 2’s pref-
erence of z.

e We assume that every voter has the cognitive capacity to rank any two
alternatives.

Let’s look at what it means for a ballot to be a linear ordering of X.
Suppose X = {A, B,C} and we have a ballot D = (B, C, A). The fact that
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the elements of D are surrounded by the symbols ( and ), means that the
elements are ordered in some way (as opposed to the elements in X, which
are unordered). We can also observe that D contains all the elements of X
and vica versa. This covers the “ordering” part of the term “linear ordering”:
all the elements from a set are ordered in some way. Now, let’s look at the
“linear” part, which is the way in which the elements of the set are ordered.
This way of ordering is determined by a so called binary relation between the
elements in the set, which relates any two elements of the set to each other
in some way. Suppose we have a binary relation R on a set A. If we have
two elements x and y from A, we denote the R-relation between z and y as
xRy. Now let’s look at linear orderings again. The binary relations R that
result in a linear ordering all have some specific properties:

transitivity For all w,v,u € A: if wRv and vRu, then wRu.
completeness For all w,v € A: either wRv or vRw.
antisymmetry For all w,v € A: if wRv and vRw, then w = v.

In the context of ballots, we let x Ry mean: “x is preferred over y”. Since
we have defined the preference relation to be a linear ordering, we can now
say certain things about ballots. For example, the property of completeness
enforces that for any pair of alternatives (x,y), either x is preferred over v,
or y is preferred over x.

In Haskell, we will let ballots be represented by lists of alternatives. We
do this by giving a type synonym declaration for ballots.

type Ballot = [Alternative]

The brackets in the definition, surrounding the word Alternative, indi-
cate that we are talking about a list of alternatives. In general, [a] denotes
a list of type a.

We also add two functions that manipulate ballots in a certain way. The
first is a function that takes a list of integers as its input, and returns this
input under the synonym Ballot only if it passes two validity checks: the
ballot should be nonempty (the constraint we gave to the ballot type earlier)
and should not contain duplicate values (this, because a linear order is based
from a set, and sets do not contain duplicate values). A function like this
looks like something we could call a constructor function, except that our
function does not actually construct a new type. Instead, it just labels correct
input with a different name (the type synonym).
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toBallot :: [Int] -> Ballot
toBallot 1 = let sl = nub 1
in if length sl > 0 && sl ==
then 1
else error "Invalid ballot"

We present some examples of how to use this function:

*VotingTheory> toBallot [1,2,3]
[1,2,3] Passes the test

*VotingTheory> toBallot [1,2,3,3]
**x Exception: Invalid ballot Does not pass the test

*VotingTheory> toBallot []
**x*x Exception: Invalid ballot Does not pass the test

The second function we give, filters a number of alternatives from a ballot,
without changing the preference order of the alternatives. We will use this
function later on.

filterFromBallot :: [Alternative] -> Ballot -> Ballot
filterFromBallot a b = toBallot $ filter ((flip elem) a) b

Some examples of usage
*VotingTheory> filterFromBallot [3,4,1] [1,2,3,4]
[1,3,4]

*VotingTheory> filterFromBallot [] [1,2,3,4]
***x Exception: Invalid ballot

*xVotingTheory> filterFromBallot [5] [1,2,3,4]
**x*x Exception: Invalid ballot




Let L(X) denote the set of all possible ballots over X. For example:
over X = {1,2,3}, these are: (1,2,3), (2,1,3), (3,2,1), (2,3,1), (3,1,2) and
(1,3,2). Basically, computing L(X) means generating all possible ways in
which you can arrange the elements of X in an order, where every element
of X occurs precisely once in the order. We also say that L(X) gives all the
permutations of the set X.

The size of L(X) can be easily calculated, because it is a function of X.
This function is the so called factorial function. We say that the number
of permutations on a set of size n is n factorial, also written as n!, which is
equal tonx(n—1)*(n—2)*...x 1. For example: 4! equals 4 %32 x 1 equals
24.

Because we work a lot with ballot permutations in voting theory, we
implement the factorial function here.

fac :: Int -> Int
fac n = foldr (x) 1 [1..n]

2.3 Profiles

A profile R = {Ry,...,R,} € L(X)" is an n-tuple of ballots, where R; is
the ballot supplied by voter i. Here, L(X ) is the set of all possible profiles
with N voters and a set of alternatives X. R € L(X)", means that R is one
of these possible profiles.

There are several ways for us to represent profiles in our Haskell program.
Which of these to choose, depends, as before, on the information about the
objects that we want to capture. We consider two possibilities of how to
represent profiles:

voter oriented As a list of tuples that map voters onto the ballots they
support.

ballot oriented As a list of tuples that map ballots onto the number of
voters that support them.

In this thesis, we will actually use both representations, because they both
have their specific advantages: the ballot oriented representation takes up less
space, while the voter oriented representation contains more information.
Note that, in both profile representation types, we did not keep strictly to
the formal definition of a profile (in which the n-tuple contains only ballots,
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and no information about the voters). For us, it is more convenient to have
one data structure in which we capture all the information we need about
voters and their ballot choices.

We will proceed by implementing these representations.

type Profile = [(Voter,Ballot)] -- Voter oriented
type Profile’ = [(Ballot,Int)] -- Ballot oriented

Next, we add a constructor function for the voter oriented profile type.
This function may seem complicated, but basically, all it does is checking
whether the profile contains two or more voters (a constraint we gave earlier),
contains no duplicate voters and maps all voters onto valid ballots.

toProfile :: [(Int,[Int])] -> Profile
toProfile p =
let a = map fst p
a’ = nub a
b = nub $ map (length.snd) p
c = nub $ map (sort.snd) p
in if length a’ > 1 && a == a’
&&% length b == 1
&&% length c == 1
then p
else error "Invalid profile"

Some examples:
*xVotingTheory> toProfile [(1,[1,2]),(2,[2,1]1),(3,[1,2])]
[(1,[1,21),(2,[2,11),(8,[1,2])]

*xVotingTheory> toProfile [(1,[1,2])]
*x% Exception: Invalid profile

*xVotingTheory> toProfile [(1,[1,2]),(2,[2,1]1),(3,[1,2,3])]
*%* Exception: Invalid profile
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We also add a filter function for the voter oriented profile type. This
function merely applies the ballot filter function to all ballots in the profile.

filterFromProfile :: [Alternative] -> Profile -> Profile
filterFromProfile a p =
toProfile $ map (\(i,b) -> (i,filterFromBallot a b)) p

*xVotingTheory> filterFromProfile [1,2] [(1,[1,2,3]1),(2,[2,1,3])]
[(1,01,2]),(2,[2,1])]

We proceed by giving a function that converts the voter oriented rep-
resentation to the ballot oriented representation. Note that conversion the
other way around is impossible, since the voter oriented representation con-
tains more information (to wit, which voter supports which ballot) than the
ballot oriented respresentation.

toProfile’ :: Profile -> Profile’
toProfile’ p =
let ballots = map (\b -> (head b,length b)) $ group
$ sort
$ map snd p
perms = permutations $ snd $ head p
in map (\b -> case lookup b ballots of
(Just n) -> (b,n)
Nothing -> (b,0)
) perms

We have actually added a small twist to the ballot oriented representa-
tion: we let it map all ballot permutations of the set of alternatives X to
the number of voters that support them, because this will be useful later
on. For example, we could have the following function call, which takes the
voter oriented profile {(1, (1,2, 3)), (2, (1,3,2))} and converts it to its ballot
oriented counterpart:

*VotingTheory> toProfile’ [(1,[1,2,3]),(2,[1,3,2])]

12



This would evaluate to:

[([1,2,3]1,1),([2,1,3],0),([3,2,1]1,0),([2,3,1],0),
(£3,1,2],0),([1,3,2],1)]

In our function input, we have a voter oriented profile of size 2, where
only the two ballots (1,2,3) and (1,3,2) occur. Yet, in the result, we have
a ballot oriented profile of size 6, in which all permutations of {1, 2,3} occur
(remember that the number of permutations obtained from a set of size n is
n!, so in our case, this is 3! equals 3 % 2 * 1, which indeed equals 6). As we
can see in the function result, the two ballots from the function input each
are supported by 1 voter, while the other ballots are supported by 0 voters.

Finally, we add a filter function for the ballot oriented profile type. This
filter function is a bit more complex than the previous one, since filtering
a number of alternatives from two different ballots, can result in the same
ballot. In fact, this filter function reduces an input of size n!, where n is the
size of the set of alternatives on which the ballots in the input are based, to
an output of size (n — m)!, where m = n — x and z is the size of the set of
alternatives to filter.

filterFromProfile’ :: [Alternative] -> Profile’ -> Profile’
filterFromProfile’ a p’ =
map (\g -> ((fst.head) g,sum $ map snd g))

$ groupBy ((==) ‘on‘ fst) $ sort

$ map (\(b,n) -> (filterFromBallot a b,n)) p’

An example:

*VotingTheory> filterFromProfile’ [2,1]
((f1,2,31,1,(2,1,3],0),([3,2,1]1,0),([2,3,1],0),
(£3,1,21,0),([1,3,2],1)]

[([1,2],2),([2,1],0)]

13



2.4 Preference aggregation

We move on to another aspect of voting: the mechanisms of preference aggre-
gation. There are several preference aggregation mechanisms, one of which,
the social choice function (SCF), we will treat in more detail.

SCF’s are functions F : L(X )Y — 2¥\{0} that map profiles onto nonempty
sets of alternatives. Let’s look at the different parts of the definition. The
L(X)N part before the arrow is the input of the SCF function, which is a
profile. Then we have the part on the other side of the arrow. 2% denotes
the so called powerset of X, which is the set containing all subsets of X. For
example: 2823} equals {0, {1}, {2}, {3}, {1,2},{1,3},{2,3},{1,2,3}}. Note
that this set contains the empty set (), which, of course, should not be in the
set of possible preference aggregation results, since we don’t want to end up
with no winner at all. This is where the \{(}} part in our definition comes
in, to ensure that the function result can, indeed, not be the empty set.

A well-known example of an SCF is the Borda rule, proposed by the
French engineer and political scientist Jean-Charles de Borda (1733-1799).
In this rule, an alternative receives | X |— 1 points from every voter who ranks
her first, | X | — 2 points from every voter who ranks her second, and so forth.
This means that if we have the three ballots (1,2,3), (2,3,1) and (3,1,2),
each of the alternatives receives three points. A problem arises here: the
result {1,2,3} is a tie!

Let’s define a Haskell type synonym with which we can express ties, again
using lists to represent sets.

type UnresolvedResult = [Alternative]

With this new structure defined, we are ready to give a type synonym for
SCF’s.

type SCF = Profile’ -> UnresolvedResult

At this point, we are still stuck with ties. Luckely for us, there is a
solution to this problem: the so called tie breaking rule (TBR). In the case
of our Borda rule tie, we could make a rule that simply takes the first element
from the list of alternatives that is the result of the preference aggregation.

In Haskell, TBR’s can be given the following type:
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type TBR = UnresolvedResult -> Result
type Result = Alternative

Implementing our simple tie breaking rule is now very easy.

simpleTBR :: TBR
simpleTBR = head

*VotingTheory> simpleTBR [1,2,3]
1

Let’s turn to the implementation of some well-known voting rules in
Haskell. We start with the Borda rule that we have already discussed.

bordaRule :: SCF
bordaRule p =
let points = transpose $ map (\(b,n) -> sort
$ zip b (map (*n) (reverse [0..(length b - 1)1))) p
count = map (\ps@((a,_):_) ->
(((sum. (map snd)) ps),a)) points
in map snd $ last $ (groupBy ((==) ‘on‘ fst)) $ sort count

*VotingTheory> bordaRule (toProfile’ [(1,[1,2,3]1),(2,[1,3,21)])
[1]

*xVotingTheory> bordaRule (toProfile’ [(1,[1,2,3]),(2,[2,1,3]1)])
[1,2]

*VotingTheory> bordaRule (toProfile’ [(1,[1,2,3]),(2,[2,3,1]),
(3,03,1,21)1)

[1,2,3]
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Next, we turn to a particularly undemocratic “rule”: the dictator rule.
We can implement this rule in several ways. One way would be to randomly
pick a voter from the profile and let that voter’s most preferred alternative,
be the election winner. In our actual implementation, we let the winning
alternative be the alternative that is most preferred by the first voter in the
list that respresents the profile.

dictatorRule :: SCF
dictatorRule p = [(head.fst.head) p]

*VotingTheory> dictatorRule (toProfile’ [(1,[1,2,3]),(2,[3,2,11)])
[1]

Note that this rule, though it is very simple, does capture the essence
of a dictatorship: in the election results, the preference of only one voter is
reflected. Also worth noting, is that this rule never results in a tie.

A third important voting rule is the so called majority or plurality rule.
This rule takes the favourite alternative of every voter, and then simply
counts which alternative has, or which alternatives have, been ranked first
the most.

majorityRule :: SCF
majorityRule p =
let ballots = concatMap (\(b,n) -> map snd

$ zip [0..n-1] $ cycle [bl) p

top = group $ sort
$ concatMap (\1 -> if length 1 <= 1
then []
else [head 1]) ballots
win = sortBy (compare ‘on‘ fst)

$ zip (map length top) (map head top)
in map snd $ last $ groupBy ((==) ‘on‘ fst) win

*xVotingTheory> majorityRule (toProfile’ [(1,[1,2]),(2,[1,2]),
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(2,[2,1)1)
[1]
*VotingTheory> majorityRule (toProfile’ [(1,[1,2]),(2,[2,11)])

[1,2]

Let’s now define a function that puts an SCF and a TBR together, and
returns the final result directly.

vote :: SCF -> TBR -> Profile’ -> Result
vote swf tbr = tbr.swf

*VotingTheory> vote bordaRule simpleTBR
(toProfile’ [(1,[1,2,3]),(2,(2,3,11),(2,[3,1,21)])

This function captures the process of a simple vote that always ends with
a tie break.

We can make the process more interesting by considering votes with mul-
tiple rounds. Such votes allow the voters to break the tie themselves, possibly
by means of manipulation.

3 Voting strategies and manipulation

In the study of manipulation of voting systems, there are two rather distinct
approaches:

1. One begins with an explicitly given aggregation procedure and attempts
to find the ways in which a voter can secure a more favorable election
outcome by changing his or her ballot.

2. One starts with an explicit notion of what it means for a voter to
prefer one outcome to another and attempts to find all the aggregation
procedures (of a certain kind) that are manipulable in this sense.
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Generally, the first approach is felt to be much easier than the second
approach. We gave an example of a result from the second approach in the
beginning of this thesis (that for an important class of voting rules, only
dictatorships are unmanipulable), but it is the first approach that we will
take on in the rest of this thesis.

3.1 Choosing a ballot to manipulate with

First, we have to define what we mean by manipulation.

Definition 1 When we say that a certain voter i, involved in a vote v,
manipulates v, this means that i changes her ballot in order to achieve an
optimal election outcome, while the ballots of the other voters remain fixed.

The concept of group manipulation, also called coalitional manipulability,
is beyond the scope of this thesis.

Before we define what an “optimal election outcome” is, let’s look at
what it means for one election outcome to be fawvorable over another for a
voter. Suppose we have a voter ¢ who supports some ballot B, and we have
two voting results r; and . We define that ry is a better result for ¢ than
ro if and only if the set r; weakly dominates the set ro, which means that
everything in ry is at least as good as everything in 7o, and something in 7,
is better than something in 5. At the level of alternatives, it is trivial that
for two alternatives A and B, A is better for voter ¢ than B if ¢ prefers A
over B.

We can now define a general payoff function for voting results, that is, a
function which gives a score to a result, where a result with a higher score
is more favorable for a voter than a result with a lower score. We will need
such a payoff function if we want to reason about manipulation, because the
success of an act of manipulation depends on the results given back by such
a function.

Definition 2 Suppose we have a vote v, in which a manipulator m is in-
volved. Let R be the set of voting results that can possibly be the outcome of
v if m takes on any ballot. The payoft for i of a voting result r € R, then, is
the number of voting results from R that are weakly dominated by 7.

We can also define the optimal result now, as the result with the highest
payoff.

Let’s implement our new definitions as Haskell functions. In doing so, we
will make some small changes to our payoff function: instead of giving it a list
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of voting results (containing one or more optimal results) as its input, we give
it a list of tuples that map ballots onto voting results. For example: suppose
we have a voter i, a set of alternatives X = {1,2, 3}, a ballot (1,2,3) and a
set of voting results R = {ry,r2,73,...}. The input of our payoff function will
then look like: {(b1,r1), (b2, r2), (b2,71), ...}, where by, bo, b3, ... are X-ballots
that voter ¢ can choose for her manipulation, mapped onto the voting result
that choosing this ballot leads to.

Using this input format will be expedient later on, where the manipulator
will need to cast a new ballot and has to calculate which ballot yields the
highest payoft. For this reason, we also let the output of our function be one
of the ballots that, in the input, was mapped onto an optimal voting result,
and we will call our function “bestBallot” instead of “payoft”.

We start with a smaller auxiliary function, which checks whether one
alternative is at least as good as another, with respect to a certain ballot. It
does so by simply checking which alternative is ranked equally high or higher
in the list that represents the ballot. Therefore, the result of the function is
of type Bool, which can take on the value True or False.

isAtLeastAsGood :: Alternative -> Ballot ->
Alternative -> Bool
isAtLeastAsGood al b a2 =
let index1 (\(Just d) -> d) $ elemIndex al b
index?2 (\(Just d) -> d) $ elemIndex a2 b
in indexl <= index2

*VotingTheory> isAtLeastAsGood 1 [1,2,3] 2
True

*VotingTheory> isAtLeastAsGood 1 [1,2,3] 1
True

*VotingTheory> isAtLeastAsGood 2 [1,2,3] 1
False

The second function checks whether an alternative is stricly better than
another one, again with respect to a certain ballot. This function checks
which alternative is ranked strictly higher in the list that represents the
ballot.
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isBetter :: Alternative -> Ballot -> Alternative -> Bool
isBetter al b a2 =
let indexl = (\(Just d) -> d) $ elemIndex al b
index?2 (\(Just d) -> d) $ elemIndex a2 b
in indexl < index2

*VotingTheory> isBetter 1 [1,2,3] 2
True

*VotingTheory> isBetter 1 [1,2,3] 1
False

*VotingTheory> isBetter 2 [1,2,3] 1
False

The next function implements the concept of weak domination, by apply-
ing isAtLeastAsGood and isBetter to all possible pairs (a;,as) of alterna-
tives, where a; is from one voting result and ay from another (if this is hard
to understand, look back at the definition of weak domination).

weaklyDominates :: UnresolvedResult ->
UnresolvedResult -> Ballot -> Bool
weaklyDominates sl s2 b =
let atLeastAsGood = all (\e ->
all (isAtLeastAsGood e b) s2) si
better = any (\e -> any (isBetter e b) s2) sl
in atLeastAsGood && better

*xVotingTheory> weaklyDominates [1] [1,2] [1,2,3]
True

*VotingTheory> weaklyDominates [1] [1] [1,2,3]
False

*VotingTheory> weaklyDominates [1,3] [2] [1,2,3]
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False

We add an auxiliary function now, which pairs elements from a list, be-
cause we need this in our bestBallot function.

generalPair :: [a] -> [(a,a)]
generalPair xs = pair’ xs (length xs)
where

pair’ xs 0 = []
pair’ (x : xs) n =
map (\y -> (x,y)) xs ++ pair’ (xs ++ [x]) (n - 1)

*VotingTheory> generalPair [1,2,3]
[(1,2),(1,3),(2,3),(2,1),(3,1),(3,2)]

Finally, the function that calculates the optimal ballot for a manipula-
tor. This function first pairs all the voting results from the input using
generalPair, then feeds them to the weak domination function, counts how
many other voting results are weakly dominated by each voting result and
then declares the voting result that dominates most other results, winner.
We can also see this as a tournament: each player (voting result) has to
compete against all other players in a game (the very simple game of who
weakly dominates who). The player who has won most games at the end,
wins.
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bestBallot :: [(Ballot,UnresolvedResult)] ->

Ballot -> Ballot

bestBallot br b =
let pairs = generalPair $ map snd br
dominations = concatMap (\(s1,s2) ->

if weaklyDominates sl s2 b

then [s1]
else []) pairs
result = if dominations /= []
then snd $ last
$ sortBy (compare ‘on‘ fst)

$ map (\ds -> (length ds,head ds))

$ group $ sort dominations
else snd $ head $ br
in (\(Just e) -> e) $ lookup result

$ map (\(x,y) -> (y,x)) br

*xVotingTheory> bestBallot [([1,2],[2]),([2,1],[1]1)] [2,1]
[1,2] (Because [2] weakly dominates [1])

*VotingTheory> bestBallot [([1,2],[2]),([2,1],[11)] [1,2]
[2,1] (Because [1] weakly dominates [2])

3.2 Yet another profile representation

With vote manipulation, we need to keep account of the difference between
a voter’s actual preference order and the ballot she supports (which may be

an intended misrepresentation of her actual preference order).

type ActualPreferenceOrder = Ballot

A ballot can now either be a truth ful or an untruth ful preference order.
We define a data structure in which we can capture the difference between
truthful and untruthful preference orders. We will call this data structure an

extended profile.
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type Profile’’ = [((Voter,ActualPreferenceOrder) ,Ballot)]

An example:

[C(1, [1,2]),01,2]),((2,[2,1]), [1,2])]

To this, we add a constructor function for the new type.

toProfile’’ :: Profile -> Profile’’

toProfile’’ p = zip p $ map snd p

*VotingTheory> toProfile’’ [(1,[1,2,3]),(2,[3,2,1]1)]
(((1,[1,2,31),01,2,31),((2,[3,2,11),[3,2,1])]

Next comes a function that takes an extended profile and extracts a voter

oriented profile from it, in which the ballots assigned to the voters are the
ballots that the voters use in their manipulation.

toManipulableProfile’’ :: Profile’’ -> Profile
toManipulableProfile’’ p’’ =

let unzippedProfile = unzip p’’

p = map fst $ fst unzippedProfile
in zip p (snd unzippedProfile)

*VotingTheory> toManipulableProfile’’
[C(1,01,21),02,11),((2,[1,2]),[2,11)]

[(1,[2,11),(2,[2,1])]
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We also add a function that extracts a voter oriented profile containing
the voters’ actual ballots.

toActualProfile :: Profile’’ -> Profile
toActualProfile = fst.unzip

*VotingTheory> toManipulableProfile’’
0C(1,[1,21),02,1]), (2, [1,2]),[2,1])]

[(1,01,2]),(2,[1,2])]

We proceed by adding a function that replaces the voters’ old manipula-
tion ballots with a set of new ones.

updateProfile’’ :: Profile’’ -> NewBallots -> Profile’’
updateProfile’’ p = zip $ map fst p

type NewBallots = [Ballot]

*VotingTheory> updateProfile’’
01, [1,21),01,21),((2,[1,2]),[1,2])] [[2,1],[2,1]]

[, [1,2D),[2,1]),((2,[1,2]), [2,1])]

Finally, we add a filter function for the extended profile type.

filterFromProfile’’ :: [Alternative] -> Profile’’
-> Profile’’
filterFromProfile’’ a p’’ =
map (\((i,b),b’) ->
((i,filterFromBallot a b),filterFromBallot a b’)) p’’
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*xVotingTheory> filterFromProfile’’ [1,2]
[((1,01,2,31),101,3,2]),((2,[3,2,11),[3,1,2])]

(((1,01,21),01,21),((2,[2,11),[1,2])]

3.3 Vote simulation

Now that we have made the necessary preperations, we can start looking at
the game of manipulation itself. Indeed, it can be seen as a game, not only
intuitively, but also as a concept borrowed from game theory (from which we
also borrowed the concept of weak domination). In this context, an election
can be though of as a game in which a strategy for a player (voter) is a choice
of ballot, and the outcome of the game the set of winners in the election.

We already have a function bestBallot for determining the strategy
(choice of ballot to manipulate with) of a manipulator. All we need now,
is a way to calculate the possible voting results that we want to give to
the bestBallot function as its input. Since voting results are calculated by
means of voting rules and voting rules take a profile as their input, a voter
needs to know the profile, so that she can simulate the vote with that profile
and all possible ballots, to see which ballot is optimal for her. We make a
fundamental assumption here that we will use throughout the rest of this
thesis, but that will make things harder for us now: the voters do not know
what the profile looks like! Of course, this does not mean that they know
nothing. For example, every voter does know her own share in the profile
(we assume that every voter has the cognitive capacity to know this). Also,
we assume that each voter ¢ € N participating in a vote v, where X is the
set of alternatives to vote on, knows how many voters there are in v (in other
words: what the size of N, |N|, is), and that those voters know that the real
profile is a member of the set of all profiles where NV is the set of voters and
X the set of alternatives.

Now that we have moved our focus from vote manipulation to the knowl-
edge of voters, it is time to branch out to the field of dynamic-epistemic logic,
where we are most likely to find the tools necessary for modelling what our
voters know.
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4 Dynamic-epistemic logic in voting theory

The system of epistemic logic is based on the question: what is information?
We use one of its main approaches here by modelling uncertainty instead
of information. For instance, an individual might not know whether it is
raining outside or not (she is uncertain about that). Therefore, if we ask her
if it’s raining outside, she will answer that she considers it possible that it’s
raining. If we ask her if it’s not raining outside, she will tell us that she also
considers that a possibility. Of course, individuals can be uncertain about
more than just two things, and the uncertainty of many individuals can be
expressed in one model. From now one, we will call the possibilities in a
model worlds. A model has to have at least one world: the real world, which
has a unique status because it is the only one of its kind. In other words: all
worlds, expect the real world, are unreal. An individual (in our case, voter)
might not be able to distuingish the real world from possibly many other
unreal worlds.

Dynamic logic is the branch of logic that is concerned with modelling
action. In the context of knowledge, information can cause changes in
uncertainty in an epistemic model. In other words: worlds that at first
seemed plausible to an individual, can be recognized as being unreal after an
information update. The language of dynamic-epistemic logic can be used to
model these actions that involve information.

Let’s explore the concepts of dynamic-epistemic logic and see how we can
use them for our purpose of modelling the knowledge of voters about their
profile.

4.1 Semantics

Models M for the dynamic-epistemic language are triples (tuples contain-
ing three elements) (W,{—; | i € I},V) where W is a set of worlds,
the —; are binary accessibility (uncertainty) relations between worlds, and
V:W — P— {TRUE,FALSE}, where P is the set of all propositions in
the dynamic-epistemic language, is a valuation function that takes a propisi-
tion p € P from a world w € W and assigns a truth value to it. In the rest of
the thesis, we will mostly use pointed models, which are tuples (M, s), where
M is a model and s is the real world in that model.

Let’s look at an example of a model. The model for the example at the
beginning of this section would be as follows: ({v = {r},w = {-r}}, {v —;
w,w —; v,V = v, w —; wh{V(v,r) = TRUE;V(w,r) = FALSE}), where
v and w are worlds, the proposition r means “it is raining outside” and
“V(v,r) = TRUE” means: the proposition r at world v is true (likewise,
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“V(w,r) = FALSE” means: the proposition r at world w is false, and so
the proposition —r (it is not raining outside) is true here).

Let’s now look at the relations between the worlds. First, we have the two
relations v —; w and w —; v. Together, they basically say that individual ¢
is uncertain about which of the worlds v and w is the real one. The relations
v —; v and w —; w, saying that ¢ cannot distiguish worlds from themselves,
are given explicitely here, but could actually be left out, because the relations
in our model are actually of a special kind, in which it is enforced that all
worlds are connected to themselves: they are so called equivalence relations,
satisfying the following three conditions (one of which, transitivity, we have
already seen before) for a binary relation R (the relation of uncertainty in
our case) of a set of worlds W:

reflexivity For all w € W: wRw.
symmetry For all w,v € W: if wRv then vRw.

transitivity For all w,v,u € W: if wRv and vRu, then wRu.

Here, reflexivity is the property that enforces all worlds to be connected
to themselves by the relation.

One can think of these relations as partitioning the total set of worlds into
a number of disjoint, maximal “zones” of worlds connected by the relation.

How can we use the notion of uncertainty in the context of vote manip-
ulation? What we need, is to know what knowledge the voters of a vote v
have about the profile of v, because we want them to be able to simulate
a vote using their knowledge of the profile in order to calculate an optimal
manipulation strategy. For this purpose, we can use the modelling of un-
certainty done in epistemic logic to express the knowledge that voters have
about their profile (which was our "missing link” in the previous section).
This is exactly the concept of profile knowledge that we mentioned earlier in
the thesis.

Definition 3 The profile knowledge of a wvoter i is the uncertainty of i re-
garding what the profile looks like.

4.2 Representation

For the purpose of representing profile knowledge in our program, we consider
a simple example of a profile P with two voters, 1 and 2, and also two
alternatives, A and B. Suppose you are voter 1. From your point of view, you
cannot distinguish between the following two worlds: the world in which voter
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2 has the ballot (A, B) and the world in which voter 2 has the ballot (B, A).
In this simple case, voter 1 actually has the highest degree of uncertainty
that is possible: she knows nothing about the preferences of any other voter.
Therefore, all possible profiles have to be captured in our implementation.
But how do we do this?

One approach is to let the worlds in our model contain propositions about
which voter has which ballot (similar to the kind of information that our
voter oriented profile representation holds). If we did this, however, and we
started experimenting with bigger examples, we would soon realize that in
this approach, we model a great deal of knowledge that we actually do not
need (and because of that, our models get astronomically large). Does it
matter whether a certain voter ¢ or another voter j has the preference order
B? No, because the identities of the voters are not at all involved in the
process of preference aggregation! In fact, all we need to know, is how many
voters support a certain ballot. This is where the ballot oriented profile
representation we defined earlier comes in.

We move to the representation of a dynamic-epistemic pointed model
for voting theory in Haskell. We know that pointed models contain four
elements: a set of possible worlds, a set of relations, a valuation function and
a real world. Thus, representing a pointed model means representing these
four objects. Yet, we do not have to adhere strictly to the formal definition
of a pointed model, since this definition is designed for dynamic-epistemic
models in general, while for us, it suffices (and may even be beneficial) to
work with a slightly specialized model.

The worlds in our model, for instance, actually need to contain only one
proposition (to wit, a list of how many voters support each ballot). For this
reason, we might as well define a world as being represented entirely by that
list. This allows us to actually discard the third member in the model triple
we discussed, V' (the valuation function), since each world is represented by
its only, true proposition.

We are left with the relations between our worlds. Since these relations
are equivalence relations, we can partition our set of possible worlds and use
these partitions for our representation. In order to achieve this, we could use
a list to map each voter to the list of worlds that, from her point of view,
could be the real world. If we look back at section |3, though, we discover
that we can simplify our solution even further. Remember the definition
of manipulation: it says specifically that only one voter changes her ballot,
while the ballots of the other voters stay fixed. Since we let our voters use
their knowledge only for the act of manipulation, we have to keep track of
the knowledge of just one voter: the manipulator.

We can use this fact to make our implementation of epistemic-dynamic
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models very compact, by defining them as tuples, consisting of a list of worlds,
which are the worlds considered possible by the manipulator, and the real
world.

4.3 Implementation

We define a Haskell type synonym for the worlds in our models.

type World = Profile’

Next, we define a type synonym for our models.

type Model = ([World],RealWorld)
type RealWorld = World

We can now define a function that calculates the worlds that are ini-
tially considered possible by the manipulator. These are actually all possible
worlds, except those in which the manipulator’s own ballot is supported by
zero voters.

First, we give a type synonym for the set of all possible ballot permuta-
tions, which we will use in our function that creates all possible worlds.

type BallotPermutations = [Ballot]

We proceed by giving the function that generates all possible worlds for
a model. Because these worlds are actually profiles, we can also say that this
function generates all legal permutations of a profile.
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possibleWorlds :: Int -> BallotPermutations -> [World]
possibleWorlds ag perms =
map (zip perms) $ gen (length perms) ag

genmn = [xs | xs <- gen’ mn [],
sum xs == n]
gen’ 1 n acc = [[xs] | xs <- [0..(n - sum acc)]]
gen’ mn acc = [(x : xs) | x <= [0..(n - sum acc)],
xs <- gen’ (m - 1) n (x : acc)]

*VotingTheory> possibleWorlds 3 (permutations [1,2])

(CC[1,2]1,0),([2,1]1,3)],
[C01,2],1),([2,1],2)],
[([1,2],2),([2,1],D],
[([1,2],3),([2,1],0)]]

Let’s analyze this function by looking at its type. The function takes two
inputs (an integer that represents the number of agents for the model, and a
list of ballots that contains all permutations of a given ballot) and returns a
list of worlds for the model. The inputs tell the function what kind of worlds
(remember that worlds are actually possible profiles) it has to produce.

We can best illustrate how this function works by looking at the result of
an example evaluation.

*VotingTheory> possibleWorlds 2 (permutations [1,2])

[[([1,2],0),([2,1],2)],
[(01,2],1), (02,11, D],
[([1,2],2),([2,1],0)1]

Here, the function has produced a list of three profiles: one in which both
voters support the ballot (2,1), one in which both ballots are supported by
one voter, and one in which both voters support the ballot (1,2). For {1,2}-
ballots and N = {1,2}, these are all possible ballot oriented profiles, and
thus all possible worlds in our model.
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Let’s move on now and define a function that converts a profile to the list
of worlds initially considered possible by the manipulator.

profileToWorlds :: Profile’ -> [World]
profileToWorlds p =
possibleWorlds nAgents perms
where
b = (fst.head) p
perms = permutations $ sort b
nAgents = sum $ map snd p

*Votin, eory> profileToWorlds (toProfile , L1, , (2, L2,
VotingTheory> profileToWorlds (toProfile’ [(1,[1,2]),(2,[2,11)])

(C([1,2]1,0),([2,1],2)],
[C([1,2],0),(02,1],D],
[(01,2],2),([2,1]1,0)]]

To this, we add a function that, from the list of all possible worlds, deletes
those worlds in which a given ballot is supported by zero voters.

ruleQutWorlds :: [World] -> Ballot -> [World]
ruleQutWorlds ws b = concatMap (\1 ->

let popularity = (\(Just e) -> e) $ lookup b 1
in if popularity == O then [] else [1]) ws

*VotingTheory> ruleOutWorlds
(0(01,2],0),([2,1],2)],
[Cl1,2],1),([2,1],D1,
[C[1,2]1,2),([2,1],0)]]
[1,2]

(0C01,21,10),002,11,D1,
((f1,2],2),([2,1],0)]]
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We also add a filter function for lists of worlds.

filterFromWorlds :: [Alternative] -> [World] -> [World]
filterFromWorlds a ws =
nub $ map (filterFromProfile’ a) ws

*VotingTheory> filterFromWorlds [1,2]
([C01,2]1,0),(02,1]1,2)],
[C([1,2],10),(02,1],D],
[([1,2],2),([2,1],0)]]

[CC[1,2]1,0),([2,1],2)],
[(01,2],1),(02,1],D1,
[([1,2],2),([2,1],0)]]

Finally, we give a function that converts a profile to a full dynamic-
epistemic model.

toModel :: Profile -> Manipulator -> Model
toModel p m =
let p’ = toProfile’ p
worlds = ruleOutWorlds (profileToWorlds p’)
((\(Just e) -> e) $ lookup m p)
realWorld = p’
in (worlds,realWorld)

*VotingTheory> toModel [(1,[1,2]),(2,[2,1])] 1
([0C01,21,1),(02,1],D17,

[([1,2]1,2),([2,1],001],
[C01,2],1),([2,1],DD)
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5 Putting the pieces together

In the previous sections we implemented some of the basic concepts from
voting theory. We also explored and implemented the concept of vote ma-
nipulation and extended the field of voting theory with the notion of profile
knowledge. What we are left with now, is integrating these parts.

We have the function toModel that creates a dynamic-epistemic model
from a profile. Remember that, two sections earlier (in section , we actually
needed this function for simulating a vote, in order for a manipulator to
calculate her best move.

We can now define a function that takes a possible world and simulates a
vote using this world as the profile in that vote. The only question is: what
should this function return? We can answer this question by remembering
that we actually want to model vote manipulation. Therefore, the output of
the simulation should tell the manipulator what choice of ballot results in
what outcome of the vote (note that this is exactly the input of the function
bestBallot from section []). Thus, we let the function take a world (from
the set of worlds considered possible by the manipulator before her change of
ballot) and return a list that maps a choice of ballot onto the voting results
that this choice leads to.

5.1 Implementing vote simulation

First, though, we define a function that calculates the profiles resulting from
a change of ballot by the manipulator in the old profile.

simulationWorlds :: World -> Ballot -> [World]
simulationWorlds w b =
let perms = map fst w
popularity = (\(Just e) -> e) $ lookup b w
index = (\(Just i) -> i) $ elemIndex b (map fst w)
splitWorld = splitAt (index + 1) (map snd w)
newWorld = (init $ fst splitWorld)
++ [popularity - 1] ++ (snd splitWorld)
in (map (zip perms) $ map (\i -> take i newWorld
++ [(!!) newWorld i + 1]
++ drop (i + 1) newWorld)
[0..((length newWorld) - 1)])
++ [zip perms newWorld]
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Let’s demonstrate the functionality of this function with an example.

*VotingTheory> simulationWorlds [([1,2],1),([2,1],1)] [1,2]

(0C01,2],10),(02,1],D1,
[([1,2]1,0),([2,1],2)],
[C[1,2],0),([2,1],1)]]

As can be seen in the example, the function takes two arguments: a ballot
oriented profile (which functions as a world in our dynamic-epistemic models)
and a ballot, which is the ballot that the manipulator uses in her manipula-
tion. The result of the function evaluation, is a list of three worlds, each of
which is the result of a change (or no change) of ballot by the manipulator.
In the first world, nothing changed, because the manipulator kept the same
ballot. In the second world, the manipulator changed her ballot from (1, 2)
to (2,1). Then we have the third world, which is actually a special one, be-
cause it is the result of an extra possibility for the manipulator that we have
added. It is the possibility of no-show. This means that the manipulator can
also choose to cast no ballot at all. Of course, doing so does not mean that
the manipulator is not participating in the vote anymore - she just expresses
her participation by choosing to cast no ballot.

Now we can define the function that actually performs the simulation.

simulate :: World -> Ballot -> SCF ->
[(Ballot,UnresolvedResult)]
simulate w b rule =
let perms = map fst w
simWorlds = simulationWorlds w b
showWorlds = init simWorlds
noShowWorld = last simWorlds
in (zip perms $ map rule $ showWorlds)
++ [([],rule noShowWorld)]

This function takes three parameters: a world (or, as we may also say,
profile), a ballot, to wit the ballot that is supported by the manipulator, and
a voting rule. It then runs our previous function simulationWorlds on the
world in the input. After that, we have a number of worlds, a ballot and a
voting rule. Each of our new worlds represents a specific ballot change by the
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manipulator. This fact is reflected in the output of our function, which is a
list of tuples that map a ballot (chosen by the manipulator in the new world)
onto a voting result. This voting result, onto which a ballot X is mapped,
is exactly the result of simulating a vote with the given voting rule and the
profile in which the manipulator supports ballot X. For every ballot change,
such a result is calculated.

For clarity, we give one example.

*xVotingTheory> simulate [([1,2],1),([2,1],1)] [1,2] bordaRule

(C([1,2],[1,21),
([2,11,[2]),
(1, [2D]

The empty list in the third tuple in the output represents the act of
no-show.

5.2 Knowledge and profile update functions

Let’s move on to the dynamic part of our epistemic model: updating a ma-
nipulator’s knowledge with new information. This information is the result
of a preference aggregation, which took a profile as its input. The manipu-
lator can use this result to calculate which profiles (or in knowledge terms:
worlds) might have led to the result.

We give a knowledge update function that deletes those worlds from the
list of worlds in a model, which could not have led to the given voting result.

updateWorlds :: [World] -> UnresolvedResult ->
SCF -> [World]
updateWorlds worlds result rule =
concatMap (\p’ -> if rule p’ == result
then [p’]
else []) worlds

*VotingTheory> updateWorlds
(0C01,21,1),(02,1]1,1)1],
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[([1,2]1,0),([2,1]1,2)],
[([1,2],0),([2,1],1)]] [2] bordaRule

[CC[1,2]1,0),([2,1],2)],
((f1,21,0),(02,1],1)1]

We also give a function that uses the previous function for updating an
entire model.

modelUpdate :: Model -> UnresolvedResult -> SCF -> Model
modelUpdate (worlds,realWorld) result rule =

let updateWs = updateWorlds worlds result rule

in (updateWs,realWorld)

Remember that a model is represented by a tuple, which contains a list
of worlds and the real world. The function modelUpdate merely runs the
function updateWorlds on the list worlds in the model, copies the real world
and put the worlds and the real worlds together in a new tuple.

We are now ready to define a function that performs the actual manipu-
lation, using simulate to try all possible ballot changes and bestBallot to
calculate which ballot change is optimal in most worlds.

manipulate :: [World] -> Ballot -> SCF -> Ballot
manipulate ws b r =
let candidateBallots = map (\w ->
bestBallot (simulate w b r) b) ws
in snd $ last $ sortBy (compare ‘on‘ fst) $ map (\ds ->
(length ds,head ds)) $ group $ sort candidateBallots

*VotingTheory> manipulate
(C0C01,2],1),([2,1],D],
[([1,2],0),([2,1],2)],
[(([1,2]1,0),([2,1],1)]1] [1,2] bordaRule

[1,2]
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Finally, we give a profile update function in which the manipulation is
performed (using the function manipulate) and a new profile is returned,
which represents the situation after the manipulation.

profileUpdate :: Model -> Profile’’
-> Voter -> SCF —> Profile’’
profileUpdate (worlds,realWorld) p’’ manipulator rule =
let actualProfile = toActualProfile p’’
updateBallots = map (\(i,b) ->
if i == manipulator
then manipulate worlds b rule
else b) actualProfile
in concatMap (\p@((v,a),b) ->
if b == []
then []
else [p]) $ updateProfile’’ p’’ updateBallots

*VotingTheory> profileUpdate
([toProfile’ [(1,[1,2,3]),(2,[2,3,1]1),(3,[3,1,2])]]

b

toProfile’ [(1,[1,2,31),(2,[2,3,11),(3,[3,1,2])]
) Model

(toProfile’’ [(1,[1,2,3]1),(2,[2,3,1]1),(3,[3,1,2]1)]) Profile’’
1 Voter (manipulator)
bordaRule Voting rule

[((1,01,2,31),[2,1,3]),
((2: [2:3:1]): [2,3:1]),
(@3,03,1,21),[3,1,2])]

5.3 Main functions

Now that we can update both profile knowledge models and profiles them-
selves, we are ready to incorporate this functionality in complete voting sys-
tems. We will present two systems in the form of simple user interfaces,
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which will allow us to walk through a voting process step by step and receive
information about what is happening in the process, at the same time.

The first process that we are going to implement, is one in which all voters
cast their ballots at the same time. We will call this system a private voting
system, because no voter can see what ballot choices the other voters make.
Therefore, the only source of information for the manipulator, are interim
scores in the voting process, presented to the voters when the voting result
is a tie.

Let’s first define a function that checks whether an unresolved result is a
tie or not.

singleton :: UnresolvedResult -> Bool
singleton r = length r ==

*VotingTheory> singleton [1,2,3]
False

*VotingTheory> singleton [1]

True

We add a function that returns the winning alternative, when the result
is not a tie.

toResult :: UnresolvedResult -> Result
toResult = head

*VotingTheory> toResult [1,2,3]
1

We also give a (very simple) type synonym for our manipulator.

type Manipulator = Voter
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What follows, is the first user interface function that we described above.
Examples of this function will be given in section [0l The function has two
parts: a non-recursive part that functions as a wrapper (which can be roughly
described as the introduction part to the function), and a recursive part that
contains the rest of the functionality.

First we give the wrapper.

main :: Profile -> SCF -> Manipulator -> I0Q)
main prm =
if not § elem m $ map fst p
then error "Invalid manipulator."
else do putStr ("\nLet’s start our private vote with " ++
"profile: " ++ show p ++ ".\n\n(Press q to " ++
"quit. Press any other button to continue).\n\n")
1 <- getline
case 1 of
"q" -> putStr "\nHave a nice day.\n\n"
_ —> let model = toModel p m
result = r (toProfile’ p)
in process (toProfile’’ p) r model
result m 1

We add the recursive function that implements the rest of the voting
system.
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process :: Profile’’ -> SCF -> Model -> UnresolvedResult
-> Manipulator -> Int -> I0Q)
process pr mr’ von =
do putStr ("There has been an election. The outcome is: "
++ show r’ ++ ".\n\n")
if singleton r’
then putStr ("The outcome was not a tie. Therefore "
++ show (toResult r’)
++ " is the election winner.\n\n")
else do putStr ("The outcome was a tie. We go to " ++
"round " ++ show (n + 1) ++ " of the " ++
"election and let the voters vote " ++
"again.\n\n(Press q to quit. Press " ++
"any other button to continue).\n\n")
1 <- getline
case 1 of
"q" -> putStr "\nHave a nice day.\n\n"
_ —> let p’ = filterFromProfile’’ r’ p
m’ = (\(ws,rw) —>
(filterFromWorlds r’ ws,rw))
$ modelUpdate m r’ r
manip = concatMap (\((v’,b),_) ->
if v’ ==v
then [(v’,Db)]
else [1) p’
p’’ = profileUpdate m’ p’ v r
result = r (toProfile’
(toManipulableProfile’’ p’’))
p’’’ = if length p’’ /= length p’
then p’’ ++ [(head manip,
snd $ head manip)]

else p’’
in do putStr ("The profile has " ++
"changed to: " ++ show
(toManipulableProfile’’ p’’)
++ " An\n")
1 <- getline
case 1 of

"q" -> putStr
"\nHave a nice day.\n\n"
_ —> process p’’’ r m’
40 result v (n + 1)




Next, we implement what we will call a public voting system, in which the
voters cast their ballots one by one (according to a given voting order) and
where they can observe each others actions. In this system, the manipulator
cannot infer profile knowledge from interim scores. Instead, she has to use the
direct knowledge obtained by her observation of the other voters. Examples
of how to use this function are also given in section [6]

We start by giving a type synonym for a data structure that holds the
profile knowledge of those voters who haven’t voted yet. Because this struc-
ture is updated after each ballot cast by a certain voter ¢, it holds exactly
the knowledge possessed by the voters that follow 7 in the voting order.

type ProfileConstraints = Profile’

Our next function is the function that does the updating of the structure
described above.

updateConstraints :: ProfileConstraints —-> Ballot
-> ProfileConstraints
updateConstraints pc b =
map (\e@(b’,n) -> if b == b’
then (b’,n+1)
else e) pc

We proceed by giving a function that uses the constraint structure to
filter out those worlds that cannot be the real world anymore.

applyConstraints :: [World] -> ProfileConstraints -> [World]
applyConstraints ws pc =
let unzippedWorlds = map unzip ws
constraints = map (<=) $ map snd pc
in concatMap (\(bs,ns) -> let eqs = zip constraints ns
possibleWorld = and
$ map (\(f,x) -> f x) egs
in if possibleWorld
then [zip bs ns]
else []) unzippedWorlds
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We give the type synonym for a structure that holds the order in which
the voters participating in the vote will cast their ballots.

type VotingOrder = [Voter]

Finally, we give the second user interface function that implements a
public vote. This function has three parts: a wrapper part, a part in which
the voters cast their ballots one by one and a part in which model and profile
updates are done. The last two parts a mutually recursive, which means
that part 2 is followed by part 3, which is followed by part 2, which is again
followed by part 3, and so forth.

First we give part 1: the wrapper function.

main’ :: Profile -> VotingOrder -> SCF -> Manipulator
-> 100
main’ p or m =
if sort (map fst p) /= sort o || not (elem m o)
then error "Invalid voting order or manipulator."
else do putStr ("\nLet’s start our public vote with " ++
"profile: " ++ show p ++
" An\n(Press q to quit. Press any " ++
"other button to continue).\n\n")
1 <- getline
case 1 of
"q" -> putStr "\nHave a nice day.\n\n"
_ —> let model = toModel p m
perms = permutations $ sort
$ snd $ head p
in voteInOrder (toProfile’’ p)
(zip perms (cycle [0])) o o
r model (r (toProfile’ p)) m 1

We add part 2, in which the voters do their public voting.
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voteInOrder :: Profile’’ -> ProfileConstraints —>
VotingOrder -> VotingOrder -> SCF -> Model —>
UnresolvedResult -> Manipulator -> Int -> I0Q)
voteInOrder p’’ ¢ [J] orm r’ v n = process’ p’’ or m
(r $§ toProfile’ $ toManipulableProfile’’ p’’) v n
voteInOrder p’’ ¢ (x : xs) o r (worlds,rw) r’ v n =
let updateBallot = (\(Just e) -> e) $ lookup x
$ toManipulableProfile’’ p’’
c’ = updateConstraints c updateBallot
updatedWorlds = if elem v xs then applyConstraints
worlds c’ else worlds
in voteInOrder p’’ ¢’ xs o r (updatedWorlds,rw) r’ v n

Last but not least: part 3 of the function.
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process’ :: Profile’’ -> VotingOrder -> SCF -> Model ->
UnresolvedResult -> Manipulator -> Int -> I0()
process’ pormr’ van =
do putStr ("There has been an election. The outcome is:
++ show r’ ++ ".\n\n")
if singleton r’
then putStr ("The outcome was not a tie. Therefore "
++ show (toResult r’)
++ " is the election winner.\n\n")
else do putStr ("The outcome was a tie. We go to " ++
" round " ++ show (n + 1) ++ " of the " ++
"election and let the voters vote again"
++ " \n\n(Press q to quit. Press any " ++
"other button to continue).\n\n")
1 <- getLine
case 1 of
"q" -> putStr "\nHave a nice day.\n\n"
_ => let p’ = filterFromProfile’’ r’ p
m’ = (\(ws,rw) -> (filterFromWorlds
r’ Wws,rw)) m
manip = concatMap (\((v’,b),_) ->
if v’ ==v
then [(v’,b)]
else [1) p’
p’’ = profileUpdate m’ p’ v r
result = r (toProfile’
(toManipulableProfile’’ p’’))
p’’’ = if length p’’ /= length p’
then p’’ ++ [(head manip,
snd $ head manip)]

else p’’
perms = permutations $ sort $
snd $ head $

toManipulableProfile’’ p’’’
in do putStr ("The profile has " ++

"changed to: " ++ show
(toManipulableProfile’’ p’’)
++ " An\n")
1 <- getline
case 1 of
"q" -> putStr ("\nHave " ++
44 "a nice day.\n\n")
_ —> voteInOrder p’’’ (zip

perms (cycle [0])) o o
r m’ result v (n + 1)




6 Program correctness

In section 5] we finished our Haskell program with two user interface functions
that implement private and public voting systems. What we need to do next,
is show that these functions actually work as they are supposed to. We will
do this by performing several tests on our functions.

Let’s start with a very simple test for our private vote function main, with
the profile {(1, (1,2)),(2,(1,2))}, voter 1 as the manipulator and the borda
rule for preference aggregation. Running the function with these parameters
should result in a vote with just one round, since, according to the Borda
rule, alternative 1 receives two points and thereby defeats alternative 2, which
receives zero points.

Evaluating the function gives the following output:

*Votin eory > main , L1, , (2,11, ordaRule
VotingTheory in [(1,[1,2]),(2,[1,2])] bordaRule 1

Let’s start our private vote with profile:

[(1,01,21),(2,01,2D].
(Press gq to quit. Press any other button to continue).
There has been an election. The outcome is: [1].

The outcome was not a tie.
Therefore 1 is the election winner.

With this simple input, the function clearly works.

Let’s move on to a second test that is a little trickier. Instead of letting our
two voters cast the same ballot, we now give them different ones. The profile
changes to {(1,(1,2)),(2,(2,1))}. Again, we let voter 1 be the manipulator
and use the borda rule for preference aggregation.

We evaluate the function again:

*xVotingTheory> main [(1,[1,2]),(2,[2,1])] bordaRule 1

Let’s start our private vote with profile:

[(1,01,2D),(2,[2,1D)].

(Press q to quit. Press any other button to continue).
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There has been an election. The outcome is: [1,2].

The outcome was a tie.
We go to round 2 of the election and let the voters vote
again.

(Press q to quit. Press any other button to continue).
The profile has changed to: [(1,[1,2]),(2,[2,1])].
There has been an election. The outcome is: [1,2].

The outcome was a tie.
We go to round 3 of the election and let the voters vote
again.

(Press q to quit. Press any other button to continue).

The profile has changed to: [(1,[1,2]),(2,[2,1])].

The three dots at the end were added to emphasize that the function
has entered a loop. Is this behavior correct? If we take a closer look at
the calculations made in the function, we conclude that the output is indeed
correct.

First, we can easily see that applying the borda rule to the input profile
results in a tie, since both alternatives receive one point.

Second, by using the definitions we gave in section [3 we can also see that
it is optimal for the manipulator not to change her ballot in the course of the
voting process. Remember that, for a voter 7, the optimal result is the result
with the highest payoff, where the payoff of a voting result X for ¢, who
supports ballot B, is the number of possible voting results that are weakly
dominated by X. Therefore, in our case, the final result {1,2} should weakly
dominate the result that we would have had if the manipulator changed her
ballot, wich would be {2}. And it does, because everything in {1,2} is at
least as good as everything in {2}, and something in {1,2} is better than
something in {2} (namely, 1 is better than 2).

A logical next step in our testing procedure would be to run the examples
given above on our other user interface function, the one for public votes,
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and experiment with different voting orders. We will not do this, though,
because the results look very much like those of the private vote function, as
do the arguments for showing that the function behaves correctly.

Instead, we move on to a more interesting scenario, with the profile:
{(1,(1,2,3)),(2,(2,3,1)),(3,(3,1,2))}. This is actually an example we al-
ready discussed in subsection [2.4, Again, we let voter 1 be the manipulator
and use the borda rule for preference aggregation.

Running the private vote function gives:

*VotingTheory> main [(1,[1,2,3]),(2,[2,3,1]),(3,[3,1,2])]
bordaRule 1

Let’s start our private vote with profile:
[(1’ [1’2’3]), (2> [2’3:1]): (3’ [3’1)2])] M

(Press q to quit. Press any other button to continue).
There has been an election. The outcome is: [1,2,3].

The outcome was a tie.
We go to round 2 of the election and let the voters vote
again.

(Press gq to quit. Press any other button to continue).

The profile has changed to:
0(1,[2,1,31),(2,02,3,11),(3,[3,1,2])].

There has been an election. The outcome is: [2].

The outcome was not a tie.
Therefore 2 is the election winner.

Finally, some real live manipulation action! Let’s take a look at why it is
correct.

Voter 1 chose (2, 1, 3) for her manipulation, but she could also have chosen
(2,3,1), (3,2,1), (3,1,2) or (1,3,2). Also, she could have chosen to keep to
her actual preference order by continuing on with the ballot (1,2,3), or to
make a no-show move (that is: cast no ballot this round). Out of all this
possibilities, is (2, 1, 3) really the optimal manipulation ballot?

47



Before we can answer this question, we need to know what ballot choice
would have resulted in what voting outcome. The following table tells us
that:

Ballot Profile Result
(2,1,3) | {(1,(2,1,3)),(2,(2,3,1)),(3,(3,1,2))} | {2}
(2,3,1) | {(1,(2,3,1)),(2,(2,3,1)),(3,(3,1,2))} | {2,3}
(3:2,1) | {(1,(3,2,1)),(2,(2,3,1)),(3,(3,1,2))} | {3}
(3,1,2) [ {(1,(3,1,2)),(2,(2,3,1)),(3,(3,1,2))} | {3}
(1,3,2) | {(1,(1,3,2)),(2,(2,3,1)),(3,(3,1,2))} | {3}
(1,2,3) | {(1,(1,2,3)),(2,(2,3,1)),(3,(3,1,2))} | {1,2,3}
no-show | {(2,(2,3,1)),(3,(3,1,2))} {3}

According to the table, there are four different possible voting results:
{2}, {2,3}, {3} and {1,2,3}. The payoffs for each result, with respect to
the manipulator’s actual preference order (1,2,3), are displayed in a second
table:

Result | Weakly dominates | Payoff
{2} {2,3} and {3} 2
{23} | {3} 1
{3} 0
{1,2,3} | {3} 1

From this table, it is clear that the result {2} has the highest payoff. If
we look back at the other table, we see that {2} was the outcome resulting
only from the ballot choice (2,1,3), which is exactly the ballot that the
manipulator chose in our example. This shows, again, that our program
works correcly.

The thing we haven’t looked at yet, is the correctness of the knowledge
aspects of our program. This is where our function for public voting comes
in.

Suppose we do a public vote, again with the profile {(1, (1,2, 3)), (2, (2,3, 1
)),(3,(3,1,2))} and the borda rule for preference aggregation. If we let the
voting order be (1,2, 3), we can choose the manipulator to be either voter 1,
2 or 3. As we will see, how we rank the manipulator in the voting order has a
profound effect on the manipulator’s success in making a good decision. This
is correct behavior, since the decision depends heavily on how much profile
knowledge the manipulator has, which, in turn, depends on the ranking of
the manipulator in the voting order.

Let’s start by letting voter 1 be the manipulator. We now have a voting
order, in which the manipulator casts her ballot first. This means that the

48



manipulator has minimal profile knowledge to base her choice of ballot on,
and therefore, her decision should be poor.
We check this by executing the function:

*VotingTheory> main’ [(1,[1,2,3]),(2,[2,3,1]1),(3,[3,1,2])]
[1,2,3] bordaRule 1

Let’s start our public vote with profile:
[(1’ [1:2’3])} (2} [2’3’1])3 (3’ [3’1’2])] M

(Press q to quit. Press any other button to continue).
There has been an election. The outcome is: [1,2,3].

The outcome was a tie.

We go to round 2 of the election and let the voters vote
again.

(Press q to quit. Press any other button to continue).

The profile has changed to:
0(1,[1,2,31),(2,[2,3,11),(3,[3,1,21)].

There has been an election. The outcome is: [1,2,3].

The outcome was a tie.

We go to round 3 of the election and let the voters vote
again.

(Press gq to quit. Press any other button to continue).

The profile has changed to:
0(1,01,2,31),(2,102,3,11),(3,[3,1,2])].

As we predicted, the manipulator makes a bad choice by casting a non-
optimal ballot with payoff 1.
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Next, we let voter 2 be the manipulator. Her ballot choice for manip-
ulation should be better (or at least as good) now, since she can infer a
substantial piece of profile knowledge from the choice made by voter 1.

Let’s check this by executing our function:

*VotingTheory> main’ [(1,[1,2,3]),(2,[2,3,1]),(3,[3,1,2])]
[1,2,3] bordaRule 2

Let’s start our public vote with profile:
[(1,01,2,3]),(2,[2,3,1]),(3,[3,1,2])].

(Press q to quit. Press any other button to continue).
There has been an election. The outcome is: [1,2,3].

The outcome was a tie.

We go to round 2 of the election and let the voters vote
again.

(Press q to quit. Press any other button to continue).

The profile has changed to:
0(1,01,2,31),(2,02,1,31),(3,[3,1,2])].

There has been an election. The outcome is: [1].

The outcome was not a tie.
Therefore 1 is the election winner.

A somewhat surprising thing happens here: the manipulator swaps the
last two alternatives in her preference order. Is this a good manipulation?
Let’s check this by setting up two tables like the ones we gave earlier.
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The result is shocking: the manipulator chose a ballot that led to the

least favorable outcome! How is this possible?

The answer to this question lies in the manipulator’s profile knowledge.
Apparently, the manipulator considered exactly those worlds possible that
led him to this poor decision. We can show that the success of the manipu-
lator actually depends on both the ranking of the manipulator in the voting
order and the ranking of the other voters. For instance, if we run the vot-
ing process with the same profile, but with voter 3 as the manipulator and
(1,3,2) or (2,3, 1) as the voting order, the manipulator does perform a good
manipulation! We leave it up to the reader to check this for him or herself.

Last but not least, we execute our public vote function another time,
again with the voting order (1, 2, 3), but now with voter 3 as the manipulator.
Voter 3 should be able to make the optimal manipulation decision, since she
is last in the voting order and therefore, when her turn to vote has come,

knows exactly what the profile looks like.

Executing the function

*VotingTheory> main’
[1,2,3] bordaRule 3

gives:

Let’s start our public vote with profile:
0(1,01,2,31),(2,102,3,11),(3,[3,1,2])].

Ballot Profile Result
(2,1,3) | {(1,(1,2,3)),(2,(2,1,3)),(3,(3,1,2))} | {1}
(1,2,3) 1{{1,{1,2,3)),(2,(1,2,3)),(3,(3,1,2))} | {1}
(1,3,2) | {(1,(1,2,3)),(2,(1,3,2)),(3,(3,1,2))} | {1}
<37 172> {(1’<172’3>>’<27 <37 172>>7<3 <37172>>} {173}
(3,2,1) | {(1,(1,2,3)),(2,(3,2,1)),(3,(3,1,2))} | {3}
(2,3,1) | {(1,(1,2,3)),(2,(2,3,1)),(3,(3,1,2))} | {1,2,3}
no-show | {(1,(1,2,3)),(3,(3,1,2))} {1}

Result | Weakly dominates | Payoft

{1} 0

{1,3} {1} 1

{3} {1,3} and {1} 2

{123} [ {1} 1

[(1,[1,2,31),(2,[2,3,11),(3,[3,1,2])]

(Press q to quit. Press any other button to continue).

There has been an election. The outcome is:

o1

[1,2,3].




The outcome was a tie.
We go to round 2 of the election and let the voters vote
again.

(Press q to quit. Press any other button to continue).

The profile has changed to:
[(1’[1:2’3]),(2)[2’3’1])’(3’[1’3’2])]'

There has been an election. The outcome is: [1].

The outcome was not a tie.
Therefore 1 is the election winner.

Using the first set of tables we gave, we can conclude that the result of
the function is, indeed, the optimal result.

We could proceed now by doing some more tests (with other voting rules,
for example), but they would essentially be no more than variations on the
examples we already gave. We leave it up to the reader to do further exper-
imentation with the program.

7 Conclusion

In this thesis we introduced the reader to the most important concepts from
voting theory and implemented these concepts in a Haskell program. We
extended the field of voting theory with the notion of profile knowledge and
implemented this notion using concepts from dynamic-epistemic logic and
game theory. In doing so, we struggled with the size of our dynamic-epistemic
models. We discovered that we could use a specialized profile representation,
the ballot oriented profile, to keep the size of our knowledge models within
bounds. We presented two main vote simulation functions, on which we
performed several tests. From the results of these tests we concluded that
our program works correctly. After having made this conclusion, we can say
that our approach to the simulation of vote manipulation under partial order
was a good one.
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Implications for the scientific field of Artificial Intelligence

One of the characteristic aspects of human intelligence, is that we do not
need perfect knowledge of things to reason about them. In this thesis, we
presented a model which captures this kind of reasoning, and we showed that
it works. Since Artificial Intelligence is concerned with modelling (aspects of)
human intelligence, our model is important to the field. This thesis may serve
as an inspiration and reference for other research that deals with reasoning
under partial knowledge, especially in the field of Agent Technology, which
is an important subdomain of Artificial Intelligence.

Ideas for further research

The program we developed in this thesis can model only a very limited num-
ber of voting scenarios. We could extend the program in several ways.

More social choice functions In this thesis we implemented only three
social choice functions: the borda rule, the dictator rule and the plu-
rality rule. Yet, there are a great deal of other social choice functions
we could implement.

Other kinds of voting rules Social choice functions are not the only kind
of voting rules used in voting theory. For example, we could also have
a type of voting rule which maps profiles not onto a nonempty set of
winning alternatives, but on a “collective ballot” (this type of voting
rule is actually called a social wellfare function).

Other kinds of ballots In this thesis, ballots were presented as linear or-
ders over a set of alternatives. In voting theory, however, other types
of ballots (weak ordered sets, for example) are also used.

Coorporation amongst voters We could imagine voting scenarios in which
voters do not operate alone, but form parties. Having one manipulative
party of n voters, would then mean having n manipulators, which may
require a whole new modelling approach.

Inclusion of false beliefs In our thesis, we assumed that everything the

manipulator beliefs, is true. Allowing our manipulator to have false
beliefs could be a possible extention of the program.
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