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Abstract

We will discuss the basic theory of Riemann surfaces and prove the equivalence
between the categories of compact Riemann surfaces, irreducible, non-singular
algebraic curves over C and function fields in one variable over C as field of constants.
We will state and prove Belyi’s theorem and define dessin d’enfants as a consequence
of this theorem. We will end with a short discussion on the action of the absolute
Galois group Gal(Q̄/Q) on these dessins.
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1 Introduction

The history of Riemann surfaces dates back to 1851, when Bernhard Riemann introduced
them in his PhD dissertation, ”Grundlagen fur eine allgemeine Theorie der Functionen
einer veranderlichen complexen Grosse”. In this dissertation, Riemann laid down the
geometric foundations for the theory of functions in one variable. Riemann’s original
intention was to use Riemann surfaces to study ”multi-valued” functions, such as the
complex logarithm and the complex n-th square root function.

Riemann surfaces appear in the study of many mathematical fields. For example, they
appear in the field of algebraic topology, differential geometry (the study of minimal
surfaces) and algebraic geometry (Riemann-Roch theorem). Nowadays, the theory of
Riemann surfaces reaches into fields such as differential equations and number theory,
amongst others.

Dessin d’enfants are a type of graph embedded in an oriented surface which are used to
study Riemann surfaces and provide invariants for the action of the absolute Galois
group. Dessin d’enfants date back to 1856, when they were used by William Hamilton in
his work Icosian Calculus. The German mathematician Felix Klein used a relatively
modern version of dessin d’enfants to construct an 11-fold cover of the Riemann sphere
by itself with monodromy group PSL(2, 5). The next 100 years saw very little
development regarding the theory of dessin d’enfants until Alexander Grothendieck
rediscovered them in 1984 in his famous work Esquisse d’un Programme (see [12] for an
English translation) and gave them their current name. In Esquisse d’un Programme,
Grothendieck gives a sketch of an exploration of the connection between algebraic curves
defined over Q̄ and what he calls dessin d’enfants. In Grothendieck’s own words:

”This discovery, which is technically so simple, made a very strong impression on me,
and it represents a decisive turning point in the course of my reflections, a shift in particular
of my center of interest in mathematics, which suddenly found itself strongly focused. I
do not believe that a mathematical fact has ever struck my quite so strongly as this one,
nor had a comparable psychological impact. This is surely because of the very familiar,
non-technical nature of the objects considered, of which any child’s drawing scrawled on
a bit of paper (at least if the drawing is made without lifting the pencil) gives a perfect
explicit example. To such a dessin, we find associated subtle arithmetic invariants, which
are completely turned topsy-turvy as soon as we add one more stroke.”

The general outline of this thesis is as follows. We start in Chapter 2 by giving a very
short explanation about the theory of coverings between topological spaces. Chapter 3
will be dedicated to Riemann surfaces. We will give the basic definitions/theorems about
Riemann surfaces before moving on to describing the relation between compact Riemann
surfaces, function fields in one variable over C as field of constants and irreducible,
non-singular algebraic curves over C. In Chapter 4 we find a short discussion of the
Riemann-Hurwitz theorem, which links the genera of two Riemann surfaces, when one is
a covering of the other. We end this thesis with Chapter 5, which discusses Belyi’s
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theorem and dessin d’enfants. We give a proof of Belyi’s theorem, which connect compact
Riemann surfaces (and their corresponding algebraic curves) to the dessins of
Grothendieck. The last part of Chapter 5 will be devoted to a short discussion on this
connection.

Before we start however, I would like to extend my gratitude to my supervisor Prof. Dr.
Frans Oort bringing this topic to my attention and his guidance in writing this thesis.
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2 Preliminaries

This chapter will be used to introduce some very basic notions about coverings of
topological spaces.

2.1 Coverings

Definition 2.1. Let T1 and T2 be two path connected topological spaces, and let
f : T1 → T2 be a continuous mapping. We call f an unramified topological covering map
if for every t2 ∈ T2 there is a neighbourhood V of t2 such that f−1(V ) = tUi, where the
sets Ui are pairwise disjoint and the restriction f |Ui : Ui → V is a homeomorphism.

The connected components of the preimage f−1(N) are called the sheets of the covering
over N . The preimage f−1(t2) is called the fiber over t2. The cardinality of f−1(t2) is
called the degree of the covering and is denoted by deg f . If deg f = n, then the
topological covering f is called n−sheeted, and if n <∞, it is called finite-sheeted.

Proposition 2.2. The degree of a finite topological covering map f is independent of t2.

Proof. Define a function g : T2 → N by g(t2) = |f−1(t2)|. For every t2 ∈ T2, we have
some neighborhood N of t2 such that f−1(N) consists of k connected components, each
of which are mapped homeomorphically (i.e. injectively) on N . For any n ∈ N , we have
|f−1(n)| = k, since there is exactly 1 preimage of N in each connected component of
f−1(N). Hence f is locally constant, which means that g is locally constant. Note that
locally constant functions are continuous. The image of g is contained in N, where N is
equipped with the discrete topology. Our final step is noting that any continuous function
from a connected space to a discrete space is constant, hence g is constant.

Definition 2.3. Two unramified topological coverings f1 : T1 → T3 and f2 : T2 → T3 are
isomorphic if there exists a homeomorphism u : T1 → T2 such that the following diagram
is commutative:

T1

f1   

u // T2

f2~~
T3

Example 2.4. Let n ∈ N and let both T1 and T2 be the unit circle S1. For a point in S1,
take as the coordinate the angle α measured mod2π. Then the mapping

f : α 7→ nα mod 2π

is an example of an unramified topological covering of degree n.
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Figure 1: The unramified covering f : α 7→ 8α mod 2π.

Note that instead of describing points in S1 by their angle, we might as well describe
them using the complex numbers z such that |z| = 1.

Example 2.5. Let T1 = {(r, α1) | 0 ≤ r1 < r < r2} and T2 = {(r, α1) | 0 ≤ rn1 < r < rn2 }
be two annuli with n ∈ N and α1 the angle of the point. Furthermore, let r1, r2 ∈ R>0

with r1 < r2. The function

f1 : (r, α1) 7→ (rn, nα1)

is an unramified topological covering of T2 by T1. Here nα1 is taken mod2π. In complex
coordinates the map f1 takes the form

f1 : z 7→ zn

When r1 = 0, the annulus becomes an open disk punctured at the center. Adding the
point with r = 0 to T1 and T2 gives us a ramified topological covering of an open disk by
another open disk. The mapping remains continuous with the property that all point of
T2 except one have the same number preimages (namely, n). The point in the center of
T2 is the only point that fails to have n preimages since its only preimage is the center of
T1. We will call this preimage a critical point or ramification point of multiplicity n.

The center of T2 is called a critical value or branched point. The set of critical points of
f1 are all the points in T1 where f1 is not a topological covering of degree n of T2. Let us
denote the set of critical values of f1 with B. Then we say that f1 is a covering of T2 by
T1 unramified outside of B.
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3 Riemann surfaces

The main point of this chapter, and one of the most important theorems of this entire
thesis, is to prove the equivalence between compact Riemann surfaces, function fields in
one variable over C as field of constants and irreducible, non-singular algebraic curves
over C, where we will describe this relation as a functor.

By field of constants we mean (in context of this thesis) the following. We take a field L
containing K = C such that the transcendence degree of L over K is 1 and such that L is
of finite type over K. We can then take K ⊂ K ′ ⊂ L such that K ′ ∼=K K(t) (this is
precisely what it means for L to have transcendence degree 1 over K) and [L : K ′] <∞.
We then call K the field of constants in L.

With this definition done, we can begin with our discussion on Riemann surfaces.

Definition 3.1. A topological surface T is a Hausdorff space together with a collection of
homeomorphisms ϕi : Ui → ϕ(Ui) (which are called charts) from open subsets Ui ⊂ T to
open subsets ϕi(Ui) ⊂ C with the property that:

1. The union ∪iUi covers T ;

2. If Uj ∩ Uj 6= ∅, then the transition function

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj)

is a homeomorphism.

A collection of charts as described above is called an atlas.

Definition 3.2. A Riemann surface S is a connected topological surface T with the
property that the transition functions of the atlas are holomorphic mappings between
open subsets of C.

Let us give some examples of Riemann surfaces.

Example 3.3. Each connected open subset W ⊂ C carries the structure of a Riemann
surface, with an atlas consisting of the single coordinate map (W, id).

Example 3.4. Consider the space P1(C) and the two open subsets V1 := P1(C)\{∞} = C
and V2 := P1(C) \ {0} = (C \ {0}) ∪ {∞}. We define coordinate maps ϕi : Vi → C by

ϕ1 = idC ϕ2 =

{
1
z if z 6=∞
0 if z =∞

These maps are compatible, since the composition ϕ1 ◦ ϕ−1
2 = 1/z is certainly a biholo-

morphic function on V1 ∩ V2 = C \ {0}, and hence form an atlas on P1(C). The resulting
Riemann surface is called the Riemann sphere.
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Definition 3.5. Let S be a Riemann surface. A meromorphic function on S is an holo-
morphic map S → P1(C), different from the constant map ∞. LetM(S) denote the set of
all meromorphic functions on S. We will often refer toM(S) as the function field of S, or
as the field of meromorphic functions of S.

It is not difficult to compute M(S) if S = P1(C).

Proposition 3.6. If S = P1(C), then M(S) = C(z), the field of rational functions in one
variable.

Proof. Let g be a meromorphic function on P1(C) and suppose that g(∞) 6=∞ (if this is
not the case, then we take 1/g instead). The set of poles of g is discrete and P1 is
compact, hence there can only be finitely many poles. Call these poles p1, ..., pn. For each
of these poles pi we write (locally):

g(z) =

ri∑
k=1

λk,i
(z − pi)k

+ hi(z)

Note that this is just the Laurent expansion of g around pi, i.e., hi is holomorphic at pi,
ri is the order of the pole pi and λk,i is the k-th coefficient in the Laurent expansion of g
around pi. Observe that the function g1 = g −

∑n
i=1

∑ri
k=1 λk,i/(z − pi)k is meromorphic

on P1(C), and does not have any poles. Hence g1 restricts to a bounded holomorphic
function on C and is therefore constant by Liouville’s Theorem 1. Hence g is a rational
function.

Definition 3.7. A morphism between two Riemann surfaces S1 and S2 is a continuous
mapping f : S1 → S2 such that ϕ2 ◦ f ◦ ϕ−1

1 is a holomorphic function for every choice of
coordinate maps ϕ1 in S1 and ϕ2 in S2 for which the composition is defined. The set of
morphisms from S1 to S2 will be denoted by Mor(S1, S2).

The following theorem is very useful in the sense that it describes locally what a
morphism between Riemann surfaces looks like, both in branch points and non-branch
points. It also allows us to define the degree of a morphism.

Theorem 3.8. Let f : S1 → S2 denote a non-constant morphism of compact Riemann
surfaces.

1. Define Σ = Σf ⊂ S2 as the set of branch points of f . Then the restriction

f∗ : S∗1 = S1 \ f−1(Σ)→ S2 \ Σ = S∗2

is a covering as in Definition 2.1.

1Liouville’s Theorem states that a bounded complex-valued function, which is holomorphic over the
whole complex plane, is constant.
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2. Let b ∈ S2 and let f−1(b) = {ai}. Let Nb be a neighbourhood of b, isomorphic to
a disc, containing no branch points of f besides possibly b. Then f−1(Nb) = tOi,
where each Oi is an open subset of S1 isomorphic to a disc. Furthermore, if ai ∈ Oi,
then the restriction of f to Oi is of the form z 7→ zmi, where mi = mai(f). If
N∗b = Nb \ {b}, then f−1(N∗b ) = tO∗i , where O∗i = Oi \ {a} is isomorphic to the
punctured disc D∗ := D \ {0}.

3. The number
∑
{a∈S1|f(a)=b}ma(f) is independent of the choice b ∈ S2.

Proof. Let f : S1 → S2 and Σ be as defined in the theorem. Removing the branch values
in S2 and their preimages in S1 gives a holomorphic mapping

f∗ : S∗1 := S1 \ f−1(Σ)→ S∗2 := S2 \ Σ

which is a local homeomorphism. Our claim is that, in fact, the mapping f∗ is a covering
map. To prove this, let b be an arbitrary point in S∗2 and set f−1(b) = {a1, . . . , ad}. Let
Nb be a neighbourhood of b and let O1, . . . , Od be neighbourhoods of a1, . . . , ad such that
f |Oi : Oi → Nb is a homeomorphism.

Our claim is that Nb can be taken small enough so that we have f−1(Nb) = O1 t ... tOd.
If this were not the case, we could take a sequence of points bn ∈ V with limit b such that
each fiber f−1(bn) has a point a′n /∈ ∪Oj . Let a ∈ S1 be a limit point of this sequence. By
the continuity of f we have f(a) = b, and so a is one of the points aj ∈ f−1(b). But then,
for n large enough, we have a′n ∈ Oj , which is a contradiction and thus we can take N
small enough such that f−1(Nb) = O1 t ... tOd.

Again, let b ∈ S2 be arbitrary and let Nb be a neighbourhood of b isomorphic to the unit
disc. We assume that all points in N∗b = Nb \ {b} are regular values of f . If the
decomposition of the inverse image of Nb as disjoint union of its connected components is

f−1(Nb) = O1 ∪ ... ∪Or
then the decomposition of the inverse image of V ∗ is given by

f−1(N∗b ) = O∗1 ∪ ... ∪O∗r
with O∗i = Oi \ {f−1(b)}. Note that each restriction f∗|Oi : O∗i → V ∗ ' D∗ is again a
covering map. Observe that this covering is isomorphic to the covering map given by

D∗ 3 z 7→ zmi ∈ D∗

for some mi ∈ N. To be precise, there is a commutative diagram

O∗i

ϕi
��

f∗ // N∗

ψ
��

D∗ g
// D∗
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where D∗ = D \ {0}, the vertical arrow are analytic isomorphisms and g maps z to zmi .

We then have that O∗i = Oi \ {ai} for a certain ai ∈ f−1(b). We now apply Riemann’s
removable singularity theorem to conclude that ϕi (resp. ψ) can be extended to an
isomorphism which sends ai (resp. b) to the centre of D. Therefore, near ai the map f is
of the form z 7→ zmi , i.e. there are coordinate charts (Oi, ϕi) of ai and (Nb, ψ) of b such
that the local expression of f is z 7→ zmi . This shows that mi is the order of f at ai. We
also have that Oi contains exactly mi of the d preimages of every unbranched value in N .
In particular, this implies that

∑
mi = d.

Definition 3.9. Let f : S1 → S2 be a non-constant morphism of compact Riemann
surfaces and let s2 ∈ S2 be an arbitrary point. Then

deg(f) =
∑

{a∈S1|f(a)=b}

ma(f)

is called the degree of f .

Because of Theorem 3.8, in the theory of Riemann surfaces the term covering is often
used to refer to an arbitrary non-constant morphism between compact Riemann surfaces
f : S1 → S2, whether it is unramified or ramified.

3.1 Compact Riemann surfaces and function fields in one variable over
C

We wish to move on into the main subject of this section, examining the relation between
compact Riemann surfaces, function fields in one variable over C, and irreducible
algebraic curves, also over C. We start with compact Riemann surfaces and function
fields in one variable over C, as field of constants. We will begin with a few theorems and
lemma’s, which will be used in the proof of theorem 3.16, either directly or indirectly.
Theorem 3.16 will describe the equivalence between compact Riemann surfaces and
function fields in one variable over C as field of constants, as a functor.

Theorem 3.10. Let P1 and P2 be two points on a compact Riemann surface S. Then
there exists a meromorphic function g ∈M(S) such that g(P1) = 0 and g(P2) =∞.

Proof. See [2], Corollary 2.12, p. 102 and Proposition 2.16, p. 106.

This theorem is called the seperation property of the field of meromorphic functions.
Note that this theorem might not look so spectacular but the result is highly non-trivial
if we take into account that S does not admit non-constant holomorphic functions.

The following lemma describes the weak versions of two well known theorems in the field
of algebraic geometry, namely, Bezout’s theorem and Hilbert’s Nullstellensatz. We will
only state the weaker forms of these theorems, since that is all we will need.
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Lemma 3.11. Let K be an algebraically closed field and F (X,Y ), G(X,Y ) ∈ K[X,Y ].
The following statements are then true:

1. (Weak form of Bezout’s theorem) Suppose F and G are relatively prime. Then the
curves F (x, y) = 0 and G(x, y) = 0 intersect at finitely many points. These points
also have coordinates in K.

2. (Weak form of Nullstellensatz) Suppose F is irreducible and G vanishes in all points
on the curve F (x, y) = 0. Then F divides G.

Proof. See [2], Lemma 1.84, p. 67-68.

The next result is actually part of a bigger theorem. We will give the complete theorem
and its proof later on in this chapter (see Theorem 3.21). For now, we only need the
notation of this theorem.

Theorem 3.12. Let K be an algebraically closed field and F (X,Y ) ∈ K[X,Y ] be an
irreducible polynomial given by

F (X,Y ) = p0(X)Y n + p1(X)Y n−1 + . . .+ pn(X)

or, equivalently

F (X,Y ) = q0(Y )Xm + q1(Y )Xm−1 + . . .+ qm(Y )

If n ≥ 1, we define SXF as

SXF = {(x, y) ∈ C2 | F (x, y) = 0, FY (x, y) 6= 0, p0(x) 6= 0}

and likewise, if m ≥ 1 we define SYF as

SYF = {(x, y) ∈ C2 | F (x, y) = 0, FX(x, y) 6= 0, q0(y) 6= 0}.

Then:

1. There exists a unique compact and connected Riemann surface SF containing both
SXF and SYF .

The primary use for this smaller result is for its notation found in Theorem 3.14. Before
we move on to Theorem 3.14 however, we give an important result regarding the function
field M(S) of a Riemann surface S.

Theorem 3.13. Let S be a Riemann surface and let M(S) be its field of meromorphic
functions. Then M(S) is a finitely generated field over C with transcendence degree 1. By
this, we mean that M(S) ∼= C(f, h), where f and h are indeterminates over C and satisfy
the relation F (f, h) = 0, with F a polynomial in two variables.

Proof. See [3], Theorem 1.3.8, p. 11 and [4], Corollary, p. 250.
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Theorem 3.14. Let S be a Riemann surface and let M(S) = C(f, h). Let F ∈ C[X,Y ]
be an irreducible polynomial satisfying the relation F (f, h) = 0. Using the notation of
Theorem 3.12 we have that

Φ : S → SF

Φ(P ) 7→ (f(P ), h(P ))

defines an isomorphism.

Proof. We start by showing that Φ is well-defined. We begin by noting that F and FY
have only finitely many zeros in common (Lemma 3.11), which implies that the projection
mapping

x : SXF → x(SXF ) ⊂ P1(C)

fills P1(C) except for finitely many values {a1, . . . , ar,∞}. Set M = {a1, ..., ar,∞} and
S0 = S \ f−1(M). We have the following commutative diagram:

S0

f $$

Φ // SXF

x
��

P1(C) \M

We note that if f(p) = a ∈ P1(C) \ {a1, ..., ar,∞}, then the value of h(p) is one of the n
distinct roots of F (a, Y ), hence Φ(p) is well-defined for every p ∈ S0. Now, in order to
extend Φ to the whole S we only need to show that Φ : S0 → SXF is a covering map. But
this is just a consequence of the result that x and f are so. Indeed, by Theorem 3.8, if
f−1(Va) = tUi and x−1(Va) = tWj , then Φ−1(Wj) is a disjoint number of the open sets
Ui.

All that is left is to show that Φ has degree 1. Suppose this were not the case; then, the
fibres of all but finitely many points P = (a, b) ∈ SXF contain two or more points P1 and
P2. Let g ∈M(S) be a random meromorphic function. Note that M(S) is generated by
f and h, which means that g can be expressed as a rational function in f and h, say

g =

∑
aijf

ihj∑
bijf ihj

for suitable coefficients aij and bij , hence

g(P1) =

∑
aija

ibj∑
bijaibj

= g(P2)

This means that for any pairs of these kind of points any meromorphic function attains
the same value at P1 and P2. This means that no meromorphic function can have a zero
at P1 and a pole at P2 (or vice versa ofcourse), contradicting Theorem 3.10.
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Corollary 3.15. Let (F ) denote the ideal of C[X,Y ] generated by F . Then:

1. The correspondence determined by X 7→ f, Y 7→ h defines a C-isomorphism from the
quotient field of C[X,Y ]/(F ) to M(S).

2. The correspondence determined by X 7→ x, Y 7→ y defines a C-isomorphism from the
quotient field of C[X,Y ]/(F ) to M(SF ). In particular, M(SF ) = C(x,y)

Proof. 1. Since F (f, h) = 0 ∈M(S), the mapping X 7→ f and Y 7→ h defines a
homomorphism of C-algebras

ρ : C[X,Y ]/(F )→M(S)

We have to show is that its kernel is the ideal (F ). If G(X,Y ) ∈ ker(ρ), then
G(f, h) = 0 ∈M(S), which means that G(X,Y ) vanishes identically on the curve
F (x, y) = 0, which by Lemma 3.11 means that G ∈ (F ).

2. By Theorem 3.14, this is the same as (1).

With this corollary out of the way, we can finally move forward with describing the
relationship between Riemann surfaces and function fields in one variable over C as field
of constants. We claim that the rule that associates to each Riemann surface S its
function field M(S) and to each morphism of Riemann surfaces f : S1 → S2 the
C-algebra homomorphism f∗ :M(S2)→M(S1) defined by f∗(ϕ) = ϕ ◦ f is a
(contravariant) functor to the category of function fields. This functor is actually an
equivalence of categories.

Theorem 3.16. The functor described above establishes an equivalence between the cate-
gories of compact Riemann surfaces and function fields in one variable over C as field of
constants.

Proof. It is enough to prove the following two statements:

1. If f, h ∈ Mor(S1, S2) satisfy f∗ = h∗, then f = h.

2. If ϕ :M2 →M1 is a C-algebra homomorphism between M2 and M1, then there
are Riemann surfaces S1, S2 with f ∈ Mor(S1, S2) such that the following diagram
is a commutative diagram:

M(S2)
OO

��

f∗ //M(S1)
OO

��
M2

ϕ //M1

here the vertical arrows represent field isomorphisms over C.
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1. Take f, h ∈ Mor(S1, S2) together with s ∈ S1 such that f(s) = P and h(s) = Q with
P 6= Q. Theorem 3.10 states there exists ϕ ∈M(S2) such that ϕ(P ) 6= ϕ(Q).
Therefore, (f∗ϕ)(x) = ϕ(f(x)) 6= ϕ(h(x)) = (h∗ϕ)(x).

2. Let ϕ :M2 →M1 be a C-algebra homomorphism of fields. Let fi, hi be generators
of Mi such that hi is algebraic over C(hi). Pick irreducible polynomials F (X,Y )
and G(X,Y ) with the condition F (f1, h1) = 0 = G(f2, h2). We have the following
commutative diagram:

M(SG)

α2

��

ϕ̃ //M(SF )

α1

��
M2

ϕ //M1

where each αi is an isomorphism given by sending the coordinates functions x,y of
the Riemann surface SF (resp. SG) to the generators f1, h1 (resp. f2, h2) of M1

(resp M2) (note that this is an isomorphism by Corollary 3.15). Furthermore, we
have ϕ̃ = α−1

i ϕα2.

Let α−1
1 ϕ(x2) = R1(x,y) ∈M(SF ) and α−1

1 ϕ(y2) = R2(x,y) ∈M(SF ) where R1

and R2 are rational functions. Note that we have

0 = G(f2, h2) ∈M(SG)

and therefore

0 = α−1
1 ϕ(G(f2, h2))

= G(α−1
1 ϕ(f2), α−1

1 ϕ(h2))

= G(R1(x,y), R2(x,y)) ∈M(SF )

By Theorem 3.14, we know that the function

f(x, y) = (R1(x, y), R2(x, y))

defines a morphism f between the Riemann surfaces SF and SG. The last part of
the proof consists of the claim that f∗ = ϕ̃. Note that f∗ and ϕ̃ agree on the
generators x,y of M(S2), i.e., we have the following:

f∗(x) = R1(x,y) = α−1
1 ϕ(x2) = α−1

1 ϕ(α2(x)) = ϕ̃(x)

which proves our claim.
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3.2 Compact Riemann surfaces and irreducible, non-singular, algebraic
curves over C

We end this chapter with a discussion on the theory of compact Riemann surfaces and
irreducible, non-singular algebraic curves over C. We begin by stating this relation as a
functor, before moving on to describing the process from which we get a compact
Riemann surface out of an irreducible, non-singular algebraic curve over C. We end this
section with an example of this construction.

Any morphism between irreducible, non-singular algebraic curves is given by a regular
algebraic mapping (i.e., the quotient of a polynomial mapping, such that the denominator
doesn’t vanish). These algebraic mappings are holomorphic if we view them as analytic
mappings, which allows us to conclude that the mapping which assigns to every
irreducible, non-singular algebraic curve its corresponding compact Riemann surface is a
functor.

The next two theorems will allow us to conclude that the above functor establishes an
equivalence between the category of compact Riemann surfaces and the category of
irreducible, non-singular algebraic curves of C.

Theorem 3.17. Every compact Riemann surface can be represented irreducible, non-
singular, algebraic curve over C.

Proof. See [9], Theorem 5.8.4, p. 243.

Recall that by Theorem 3.14, if two non-constant meromorphic functions f1, f2 on a
Riemann surface S satisfy the identity

G(f1, f2) = 0

with G(X,Y ) ∈ C[X,Y ], then they define a morphism f = (f1, f2) : S → SG. The
converse implication is also true, i.e., any non-constant morphism f : S → SG is
determined by a pair of meromorphic functions (f1, f2) which are obtained by
post-composition of f with the coordinate functions on SG. Now suppose that S = SF ,
then, by Theorem 3.13, M(S) = C(x,y) and so we write

f1 = R1(x,y) =
P1(x,y)

Q1(x,y)
f2 = R2(x,y) =

P2(x,y)

Q2(x,y)

with Pi, Qi ∈ C[X,Y ] and Qi /∈ (G), because otherwise the denominator would vanish
identically. This leads to the following theorem:

Theorem 3.18. Defining a morphism f between Riemann surfaces is equivalent to
specifying a pair of rational functions f = (R1, R2), with

Ri(X,Y ) =
Pi(X,Y )

Qi(X,Y )
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with Pi, Qi ∈ C[X,Y ] and Qi /∈ (F ) (i.e., Qi is not in the ideal generated by F ), such that

Qn1Q
m
2 G(R1, R2) = HF

where n = degX G. Furthermore, m = degY G and H ∈ C[X,Y ].

Proof. See [2], Proposition 3.5, p. 177.

Note that Theorem 3.17 and Theorem 3.18 allows us to conclude that the functor which
assigns to each irreducible, non-singular algebraic curve over C its corresponding compact
Riemann surface is full, faithful and essentially surjective, and thus this functor describes
an equivalence of categories.

We will move on to the next part of this section, which is showing how to construct a
compact Riemann surface out of an irreducible, algebraic curve over C. The next few
lemmas will be helpful in proving this statement.

Lemma 3.19. Let S2 be a compact Riemann surface, Σ ⊂ S2 a finite subset, S∗2 = S2 \Σ.
Let f∗ : S∗1 → S∗2 be an unramified holomorphic covering of finite degree. Then there
exists a unique compact Riemann surface S1 ⊃ S∗1 which extends f∗ to a unique morphism
f : S1 → S2. Furthermore, S1 \ S∗1 is a finite set.

Proof. See [2], Lemma 1.80, pp. 63− 64.

Proposition 3.20. Let S1 and S2 be compact Riemann surfaces and let B1 ⊂ S1 and
B2 ⊂ S2 be a finite subsets. Assume that S∗1 = S1 \ B1 and S∗2 = S2 \ B2 are isomorphic.
Then S1 and S2 are isomorphic too.

Proof. See [2], Proposition 1.81, pp. 64− 65.

The next theorem proves the existence of a compact Riemann surface corresponding to
an irreducible, non-singular algebraic curve over C (see [2], Theorem 1.86, pp. 68− 69.

Theorem 3.21. Let

F (X,Y ) = p0(X)Y n + p1(X)Y n−1 + . . .+ pn(X)

or, equivalently

F (X,Y ) = q0(Y )Xm + q1(Y )Xm−1 + . . .+ qm(Y )

be an irreducible, non-singular algebraic curve over C. If n ≥ 1, define

SXF = {(x, y) ∈ C2 | F (x, y) = 0, FY (x, y) 6= 0, p0(x) 6= 0}.

Similarly, if m ≥ 1, define

SYF = {(x, y) ∈ C2 | F (x, y) = 0, FX(x, y) 6= 0, q0(y) 6= 0}.

Then:
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1. SFX and SFY are connected Riemann surfaces.

2. There exists a unique compact and connected surface S = SF containing both SFX
and SFY .

3. The coordinate functions x and y can be extended to meromorphic functions on S.

4. The branching points of x (resp. y) lie in the finite set S \ SXF (resp. S \ SYF ).

Proof. Note that the Implicit Function Theorem allows us to solve for y in terms of x,
thus making the holomorphic structure on SXF clear. Now note that x : SXF → x(SXF ) ⊂ C
is a covering map of degree n The polynomials F and FY have only finitely many zeros in
common (because of Lemma 3.11). This implies that x(SXF ) = P1(C) \ {a1, . . . , ar,∞},
i.e. x(SXF ) fills P1(C) except for finitely many values. For the sake of notation, we let
B = {a1, . . . , ar,∞}. Let W be a connected component of SXF . The restriction
x : W → P1(C) \B is a covering map of degree d ≤ n. By Lemma 3.19, there is an unique
morphism of compact Riemann surfaces extending the map x. We would like to see that
W = SXF , which would imply that SXF is already connected. Consider the symmetric
functions

s1(x) =
∑

yi(x), s2(x) =
∑

yi(x)yj(x), . . . sd(x) =
∏

yi(x)

where the points (x, y1(x), ..., (x, yd(x)) ∈ SXF are the preimages of x ∈ P1(C) \B via the
function x. Note that y1(x), ..., yd(x) are roots of F (x, Y ) when considered as a
polynomial in one variable. Each of the functions yi is a holomorphic function defined on
a certain open set of P1(C), but the functions si(x) are well-defined holomorphic
functions on the whole P1(C) \B. On the other hand, we see that near ak the roots yk(x)
are bounded in terms of the coefficients of the polynomial F (x, Y ) ∈ C[Y ] (see [2],
Lemma 1.88). Similarly, the functions 1/yk(x) also remain bounded near ∞. Therefore,
each function si(x) extends to a meromorphic function defined on the whole P1(C), and
therefore it can be identified to a rational function si(x) ∈ C(x).

Consider the polynomial

G(X,Y ) = s(X)(Y d − s1(X)Y d−1 + s2(X)Y d−2 − ...± sd(X))

where s(X) is the least common multiple of the denominators of the rational functions
si(X). For any point P ∈W we write P = (x, yj(x)) for some j ∈ {1, ..., d}. We have the
following,

G(P ) = s(x)(ydj (x)− s1(x)yd−1
j (x) + ...± sd(x))

= s(x)
d∏
i=1

(yj(x)− yi(x))

= 0.
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This allows us to conclude G(X,Y ) vanishes identically on W (as does also the
irreducible polynomial F (X,Y )). By Lemma 3.11, the polynomial G is a multiple of F ,
and so degY (G) ≥ degY (F ). It follows that d = n. Per construction of G ∈ C[X,Y ], the
coefficients of G are coprime, and hence F = G. In particular, this means that W = SXF .
The proof of the statement regarding SYF is similar. Since SXF and SYF coincide apart from
finitely many points, Lemma 3.20 implies that they have a common compactification
SF .

We will end this chapter with an example of this construction.

Example 3.22. Let g(x) =
∏2g+1
i=1 (x − ak) for a collection {ak}2g+1

k=1 of 2g + 1 distinct
complex numbers. We form the smooth affine plane curve C1 by the equation y2 = g(x).
Let U = {(x, y) ∈ C1 | x 6= 0}, note that U is an open subset of C1. Next, let k(z) =
z2g+2g(1/z) and note that k(z) has distinct roots, since g does. Similarly as we did earlier,
we form the smooth affine plane curve C2 by the equation w2 = k(z). Let V = {(z, w) ∈
C2 | z 6= 0}, then V is an open subset of C2.

We define an isomorphism φ : U → V by

φ(x, y) = (z, w) = (1/x, y/xg+1).

Let Z be the surface that is obtained by glueing C1 and C2 together along U and V via
φ. We claim that Z is a compact Riemann surface. Indeed, Z is compact, since it is the
union of the two sets

{(x, y) ∈ U | ||x|| ≤ 1} and {(z, w) ∈ V | ||z|| ≤ 1}

which are both compact. Furthermore, one easily checks that Z is Hausdorff and hence,
Z is a Riemann surface.

Remark 3.23. A compact Riemann surface constructed as in Example 3.22 is called an
hyperelliptic Riemann surface if g > 1. If g = 1 the surface is called elliptic and if g = 0,
the surface is called rational.

With this example we conclude our chapter on Riemann surfaces.
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4 Riemann-Hurwitz formula

This short chapter is dedicated to proving the Riemann-Hurwitz formula. We will give a
short proof of this very important theorem, which links the Euler characteristics (or Euler
number) and genus of two Riemann surfaces, when one Riemann surface is a covering of
the other (ramified or unramified). The proof given is based on the work done in [5]. We
will begin by defining the Euler characteristic and genus of a Riemann surface S before
moving on to the Riemann-Hurwitz theorem.

Definition 4.1. Let f : S1 → S2 be a non-constant morphism of compact Riemann
surfaces. The multiplicity of f at p, denoted by mp(f), is the unique integer m such that
there are local coordinates near p and f(p) with the property that f locally looks like the
map z 7→ zmp .

Remark 4.2. Note that this is just a reformulation of the final part of the proof of
Theorem 3.8.

Definition 4.3. Let S be a compact Riemann surface. A triangulation of S consists of
finitely many triangles Wi (for i = 1, . . . , n), with

∪ni=1Wi = S.

By a triangle we mean a closed subset of S homeomorphic to a plane triangle ∆, i.e. a
compact subset of C, bounded by three distinct straight lines. For each i, we have a
homeomorphism

ϕi : ∆i →Wi.

We call the images of the vertices and edges of ∆i vertices and edges of Wi. Lastly, we
require that any two triangles Wi,Wj are either disjoint, intersect at a single vertex or
intersect at a common edge.

Definition 4.4. Let S be a compact Riemann surface. Suppose that a triangulation with
v vertices, e edges and t triangles of S is given. The Euler number of S (with respect to
this triangulation) is the integer χ(S) = v − e+ t.

Note that we have not touched upon the subject of whether every compact Riemann
surface S actually possesses a triangulation as described above. The answer to this
question is affirmative, but the proof of this statement is far from trivial, and as such, we
will not give it. Interested readers however, may consult [6], p. 60. We also did not
mention if the Euler characteristic of a Riemann surface S depends on the triangulation
chosen, a proof of the statement that it does not can be found in [5], p.51, Proposition
4.15.
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Definition 4.5. The genus of a Riemann surface S, denoted by g(S), is defined by the
relation

χ(S) = 2− 2g(S).

Intuitively, the genus of a Riemann surface S can be thought of as the number of handles
on the surface. With these definitions out of the way, we can state and prove the
Riemann-Hurwitz theorem. The proof we give here is found in [5].

Theorem 4.6. Riemann-Hurwitz theorem. Let f : S1 → S2 be a non-constant mor-
phism between compact Riemann surfaces. Then

2g(S1) = deg(f)(2g(S2)− 2) +
∑
p∈S1

(mp(f)− 1)

Proof. Since S1 is compact, the set of ramification points is finite, so that the sum is
finite. Take a triangulation of S2, such that each branch point of f is a vertex.
Furthermore, assume that there are v vertices, e edges and t triangles. Lift this
triangulation to S1 via the map f , and assume that there are v′ vertices, e′ edges and t′

triangles in S1. Note that every ramification point of f is a vertex on S1.

Since there are no ramification points over the non-vertex points of any triangle, each
triangle of S2 lifts to deg(f) triangles in S1 and so t′ = deg(f)(t). Similarly, we find
e′ = deg(f)e. Now fix a vertex q ∈ S2. The number of preimages of q in S1 is simply
|f−1(q)|, which can be rewritten as

|f−1(q)| =
∑

p∈f−1(q)

1

= deg(f) +
∑

p∈f−1(q)

(1−mp(f)).

Therefore, the total number of preimages of vertices of S2, which is the same as the
number v′ of vertices of S1, is given by

v′ =
∑

vertex q of S2

[deg(f) +
∑

p∈f−1(q)

(1−mp(f))]

= deg(f)v −
∑

vertex q of S2

∑
p∈f−1(q)

(mp(f)− 1)

= deg(f)v −
∑

vertex p of S1

(mp(f)− 1).

And so
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2g(S1)− 2 = −χ(S1)

= −v′ − e′ − t′

= −deg(f)v +
∑

vertex p of S1

(mp(f)− 1) + deg(f)e− deg(f)t

= −deg(f)e(S2) +
∑

vertex p of S1

(mp(f)− 1)

= deg(f)(2g(S2)− 2) +
∑
p∈S1

(mp(f)− 1),

the last equality holds because every ramification point of f is a vertex of S1.

This proves the Riemann-Hurwitz theorem, which concludes this short chapter.
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5 Belyi’s Theorem and dessin d’enfants

A large part of the theory of dessins d’enfants could have been developed in the 19th
century. However, the instrumental theorem that provides the basis for this theory was
established only in 1979 by the Russian mathematician Belyi. This section is dedicated to
formulating and proving this fundamental theorem.

When we say that a compact Riemann surface S is defined over Q̄ the corresponding
irreducible, non-singular algebraic curve is defined over Q̄.

Theorem 5.1. A compact Riemann surface S can be defined over Q̄ if and only if there
exists a covering f : S → P1(C) unramified outside of {0, 1,∞}.

The Belyi theorem has two parts, which traditionally are labelled the difficult part (the
only if part) and the obvious part (the if part). Paradoxically enough, it is the difficult
part which is not at all difficult, while the obvious part is not obvious at all. We begin
our proof of the Belyi theorem with the only if part. The proof we will give is found in
[1], and is a collection of easy to follow steps.

Theorem 5.2. If a Riemann surface S is defined over the field Q̄ of algebraic numbers,
then there exists a covering f : S → P1(C) unramified outside of {0, 1,∞}.

Proof. The proof of this theorem consists of three easy to follow steps.

Step 1. Consider an arbitrary non-constant meromorphic function g : S → P1(C) defined
over Q̄. For example, if S is represented as an irreducible, non-singular algebraic curve
over C, we could take g to be the projection onto one of the coordinates. Since we took g
to be arbitrary, some critical values of g are rational, other critical values will be
irrational (although still algebraic). Let us ignore the rational critical values temporarily
and focus our attention on the algebraic irrational critical values. Let M0 denote the set
of all irrational critical values of g, joined by their algebraic conjugates. Let N = |M0|.

Step 2. The polynomial P0 that annihilates M0 (i.e. the (only) roots of P0 are given by
all the elements M0) is defined over Q (because all elements of M0 are algebraic) with
degree N . The critical values of P0 are the values of P0 at the roots of its derivative.
Note that since P0 is a polynomial of degree N , its derivative has degree N − 1 and hence
has a maximum of N − 1 critical values. Let M1 denote the set of all these critical values.
Note that M1 already contains all the conjugates of its elements, which implies that its
annihilating polynomial P1 is also defined over Q with degree P1 ≤ N − 1. We can
continue with this process, obtaining a set M2 containing all the critical values of P1,
consisting of at most N − 2 values, which gives rise to a new annihilating polynomial P2

and so on. Since N is finite, this entire process is finite, which means we can create a
composition of polynomials

PN−1 ◦ . . . ◦ P1 ◦ P0
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which sends all the critical values of g to the rationals. Note that this statement also
holds for all rational critical values which we ignored at the start, since every polynomial
Pm is defined over Q.

Step 3. The final step of the ”difficult part” is to send all the critical values (which are
now rational by the previous step) to 0, 1 or ∞. Using an affine transformation we place
them all (except ∞) inside the segment [0, 1]. Then we apply the following polynomial

pm,n(x) =
(m+ n)m+n

mmnn
xm(1− x)n.

This map has the property that it sends 0 to 0, it sends 1 to 0, it sends ∞ to ∞ and the
interval [0, 1] is mapped onto the interval [0, 1]. It also sends the number m/(m+ n) to 1,
and all other rational values that remain to be changed to some other rational number.
Therefore, this mapping decreases the number of rational numbers under consideration.
To be more precise, suppose that the critical values are x1, . . . , xk with x1 = 0, x2 = 1,
x3 =∞ and that 0 < xi < 1 for all remaining i. Then writing xk = q/(q + r) for some q, r
and applying the polynomial pq,r diminishes k by one. We can keep applying these
mappings as often as is necessary until all remaining critical values have become 0, 1 or
∞, which is exactly what we wanted.

With the ”only if” part of the proof done we can now move on to the more difficult ”if”
part. The proof of this part given here is based on a preprint by Bernhard Köck. Before
we start with this proof however, we give the general outline of the proof. The notion of a
moduli field allows an elegant way to split the if-direction of Belyi’s theorem into two
claims. We will use the relative moduli field of a finite morphism t : V → P1

C, which, by
definition, is given by the subfield CU(V,t) of C fixed by the subgroup U(V, t) of all
automorphisms σ of C such that there is an isomorphism between the curve V σ and V
compatible with the covering t (see Definition 5.8). Then we will prove the following
assertions, which will imply the if-direction in Belyi’s theorem.

Let V be a smooth projective curve, and let t : V → P1
C be a finite morphism. Then

1. If the critical values of t lie in {0, 1,∞}, then the moduli field of t is a number field.

2. Both V and t are defined over a finite extension of the moduli field of t.

In what follows, by a curve over a field K we mean a smooth projective geometrically
connected variety of dimension 1 over K. A variety over K is an integral seperated
scheme V together with a morphism p : V → Spec(K) of finite type.

Notation 5.3. Let K be a field and p : V → Spec(K) be a variety. For any σ ∈ Aut(K),
let V σ/K be the variety consisting of the scheme V and the structure morphism Spec(σ)◦p :
V → Spec(K)

For those who are not familiar with the theory of variety and schemes, the following might
be helpful to understand the notation for V σ/K. A curve V/K is really just the same as
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a finitely generated field L of transcendence degree 1 over K such that K is algebraically
closed in L. It is important to remember that he embedding of K into L belongs to the
notion of a curve. If we change this embedding by an automorphism σ of K we get a new
curve which corresponds to the curve V σ/K. The next remark might also help.

Remark 5.4. Let K be a field and let σ ∈ Aut(K). Let V be a subvariety of PnK
given by the homogenous polynomials f1, . . . fm ∈ K[X0, . . . , Xn]. We denote the induced
automorphism of K[X0, . . . , Xn] by σ again. Then V σ/K is given by the collection of
polynomials σ−1(f1), . . . , σ−1(fm) ∈ K[X0, . . . , Xn].

Proof. See [10], Remark 1.2.

From this point on, we assume that K is an algebraically closed field of characteristic 0.

Definition 5.5. The moduli field of a variety V/K is defined as the field M(V ) := KU(V )

fixed by the subgroup

U(V ) := {σ ∈ Aut(K) | V σ/K is isomorphic to V/K}

of Aut(K).

The following lemma is a central argument in the proof of the if-part of Belyi’s theorem.

Lemma 5.6. Let R be a subfield of K. Any automorphism of R can be extended to an
automorphism of K. Let KAut(K/R) denote the set of elements in K which are fixed under
all automorphisms in Aut(K/R). Then

KAut(K/R) = R.

Proof. For the second statement we can directly observe that R ⊆ KAut(K/R), as this
is simply a tautology. Another way of stating the other inclusion is saying that for any
x ∈ K \R, there is a σ ∈ Aut(K/R) such that σ(x) 6= x. When x is transcendent over D,
we could use the mapping which sends x to −x. This mapping is then a R-automorphism
of R(x) that does not fix x. This automorphism can then be extended to an automorphism
of K, by the first part of this lemma. When x is algebraic over R, we must use a different
approach. We pick an element y ∈ K \ {x} which is R-conjugate to x. We then map x to
y in order to obtain a R-embedding of R(x) into the normal closure L of R(x) over R. We
can extend this embedding to a R-automorphism of L which in turn can be extended to
the desired R-automorphism σ of K, by the first part of this lemma.

We denote the index of a subfield R in a field K by [K : R].

Lemma 5.7. For a field K, consider a subgroup U of Aut(K) and let W be a subgroup
of U of finite index. Then, the field extension KW /KU is finite. Furthermore, if W is a
normal subgroup of U , then [KW : KU ] ≤ [U : W ].
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Proof. It is a well known fact that there exists a normal subgroup N of U of finite index
that is contained in W . We then have a canonical homomorphism U/N → Aut(KN/KU ).
The field that is fixed under the image of this homomorphism is KU . Thus KN/KU is a
finite Galois extension and hence we obtain:

[KN : KU ] = ord(Aut(KN/KU )) ≤ ord(U/N) = [U : N ].

Again, let K be an algebraically closed field of characteristic 0, and let t : V → P1
K be a

morphism from a curve V/K to the projective line P1(K). As is logical, we denote the
degree of t by deg(t). Any point Q ∈ P1(K) which has less than deg(t) preimages under t
is called a critical value of t.

Definition 5.8. The moduli field of a morphism t is the field M(V, t) := KU(V,t) which is
fixed by the subgroup U(V, t) of U(V ) consisting of all automorphisms σ ∈ Aut(K) such
that there exists an isomorphism fσ : V σ → V of varieties over K such that the following
diagram commutes:

V σ

tσ

��

fσ // V

t
��

(P1(K))σ
Proj(σ) // P1(K)

here Proj(σ) is the automorphism of the scheme P1
K = Proj(K[T0, T1]) induced by the

extension of the automorphism of the autmorphism σ ∈ Aut(K) to K[T0, T1].

Theorem 5.9. The curve V/K and the morphism t are both defined over a finite extension
of M(V, t). If t is a Galois covering (that is, if the corresponding extension of function
fields is Galois), then V/K and t are defined over M(V, t).

Proof. We start by choosing a rational point Q of P1
K which is not a critical value of t, we

then choose a point P in the fibre t−1(Q). Using the Riemann-Roch theorem (see
Theorem 1.6, p. 362 in [7]) applied to the divisor D := (g(V ) + 1)[P ], we see that there
exists a meromorphic function z ∈ L(X) \K such that P is the only pole of z. Then we
have L(X) = K(t, z) where t is considered as a meromorphic function on V . Indeed, the
field extension L(V )/K(t, z) is a subextension of both L(V )/K(t) and L(V )/K(z), hence
the corresponding morphism of curves is both unramified and totally ramified at P . We
assume that we have chosen z in such a way that the pole order m := −ordP (z) ∈ N is
minimal. We then have

V := {x ∈ L(X) | ordP (x) ≥ −m} = C ⊕ Cz;

since, for any x1, x2 ∈ V with ordP (xi) = −m (with i = 1, 2), there is a constant α ∈ K
with −ordP (x1 − αx2) < m, and then x1 − αx2 is a constant function, as m was minimal.
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By the choice of Q (i.e., Q was not a critical value of t), the meromorphic function t−Q
on V is a local parameter on V in P ; in terms on Riemann surfaces this means that t−Q
gives a chart of V (C) in a neighbourhood of P such that P gets mapped to 0. There is a
unique function z′ ∈ V such that the leading coefficient and the constant coefficient in the
Laurent expansion with respect to the local parameter t−Q are equal to 1 and 0,
respectively. We may assume that z = z′. We now claim that the minimal polynomial of
z over K(t) has coefficients in k(t) where k is a finite extension of M(V, t) (if t is a Galois
covering then k = M(V, t)). From this it follows that the field extension K(V )/K(t) is
defined over k. By the correspondence between curves and function fields, the theorem is
then proved.

Remark 5.10. We still need to prove the claim that the minimal polynomial of z over
K(t) has coefficients in k(t) where k is a finite extension of M(v, t) we made above. Let
U(V, t, P ) be the subgroup of U(V, t) consisting of all σ ∈ Aut(K) such that there is an
isomorphism fσ : V σ → V of curves over K such that the diagram

V σ

tσ

��

fσ // V

t
��

(P1(K))σ
Proj(σ) // P1(K)

commutes and such that fσ(P σ) = P . Here, P σ denotes the point on V σ/C corresponding
to P . The isomorphism fσ is unique since Aut(t) acts freely on the fibre t−1(Q). Therefore,
mapping σ to the automorphism of the function field L(V ) induced by fσ yields an action
of U(V, t, P ) on L(V ) by K-semilinear field automorphism which fix t ∈ L(V ). Since the
subgroup U(V, t, P ) of U(V, t) is stabilizer of [P ] under the action (σ, [P ]) 7→ [fσ(P σ)] of
U(V, t) on t−1(Q)/Aut(t), we can conclude that U(V, t, P ) has finite index in U(V, t). In
fact, if t is a Galois covering we have U(V, t, P ) = U(V, t) since then t−1(Q)/Aut(t) only
has one element. The meromorphic function z ∈ L(V ) and also the minimal polynomial
of z over L(t) are invariant under the action of U(V, t, P ) since the image of z under
σ ∈ U(V, t, P ) has the same three defining properties as z. Lemma 5.7 then implies our
claim.

Proposition 5.11. Let D be a discrete set of points of P1(C), and let d ∈ N be a natural
number greater than 1. Then, there are at most finitely many isomorphism classes of pairs
(V, t) where V/C is a curve and t : V → P1(C) is a finite morphism of varieties over C of
degree d such that all its critical values lie in D.

Two pairs (V1, t1) and (V2, t2) as mentioned in the above proposition are called
isomorphic, iff there is an isomorphism f : V1 → V2 of varieties over C with t2 ◦ f = t1.

Proof. We pass from a finite morphism t : V → P1
C to the continuous map t(C) : V (C)→

P1(C) between the corresponding Riemann surfaces and restrict t(C) to the preimage of
the punctured sphere P1(C) \ D). This gives us a map from the set of isomorphism
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classes of pairs as above to the set H of homeomorphism classes of unramified topo-
logical coverings of P1(C) \ D of degree d. We claim that this map is injective. Let
(V1, t1) and (V2, t2) be two pairs as defined above together with the homeomorphism
g : V1(C) \ t−1

1 (D) → V2(C) \ t−1
2 (D) with the property that t2(C) ◦ g = t1(C) on

X1(C) \ t−1
1 (D). Then g is biholomorphic, since ti(C)|Vi(C)\t−1

i (D) is locally biholomor-

phic for i = 1, 2. By an elementary fact in Complex Analysis (see [8], Theorem 8.5), the
map g can be extended to a biholomorphic map h : V1(C)→ V2(C) with t2(C) ◦h = t1(C);
We then apply the fact that any biholomorphic map between complex curves is algebraic
(see [4], section IV.11) to get an isomorphism f : V1 → V2 of varieties over C with t2◦f = t1;
i.e., the pairs (V1, t1) and (V2, t2) are isomorphic. Thus, it is enough to show that the set
H is finite. Any unramified topological covering of P1(C) \D is a quotient of the universal
covering p by a subgroup of Aut(p) ∼= π1(P1(C) \D), and hence we are reduced to show-
ing that there are at most finitely many subgroups of index d of the fundamental group
π1(P1(C) \D). This follows from the fact that π1(P1(C) \D) is finitely generated and that
a finitely generated group has only finitely many subgroups of a given finite index (see [11],
Theorem 7.2.9, p. 105).

Proposition 5.12. Let V/C be a curve together with a finite morphism t : V → P1(C).
Let R be a subfield of C such that the critical values of t are R-rational. Then the moduli
field of t is contained in a finite extension of R.

Proof. For any σ ∈ Aut(C/R), it holds that the critical values of Proj(σ) ◦ tσ : V σ →
P1(C) lie in D too, and the degree of t(σ) is the same as the degree of t. By Proposition
5.11, we see that the orbit of the isomorphism class of the pair (V, t) under the action of
Aut(C/R) is finite and hence, the stabilizer is of finite index in Aut(C/R). Furthermore, it
is contained in U(V, t). Now, Lemma 5.6 and Lemma 5.7 combined imply that the moduli
field M(V, t) = CU(V,t) is contained in a finite extension of CAut(C/R) = R.

We now have all the tools we need to prove the if direction of Belyi’s theorem.

Theorem 5.13. A Riemann surface S can be defined over the field Q̄ of algebraic numbers
if there exists a covering f : S → P1(C) unramified outside {0, 1,∞}.

Proof. Assume we have a covering f with the above properties. By Proposition 5.12 we
know that the moduli field M(S, f) is a number field. Now, Theorem 5.9 we know that S
is also defined over a number field (which could be bigger). This proofs the if direction of
the Belyi theorem.

This concludes our discussion on the proof of Belyi’s theorem.
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6 Dessin d’enfants

Grothendieck was sufficiently impressed with Belyi’s result. A translation of his own
words, as found in [12], p. 255, reads

”This result seems to have remained more or less unobserved. Yet it appears to me to
have considerable importance. To me, its essential message is that there is a profound
identity between the combinators of finite maps on the one hand, and the geometry of
algebraic curves defined over number fields on the other. This deep result, together with
the algebraic-geometric interpretation of maps, opens the door onto a new, unexplored
world - within reach of all, who pass by without seeing.”

Indeed, Belyi’s theorem is what motivated Grothendieck to define the theory of dessin
d’enfants (see [12], p. 255). The goal of this section is to describe what dessins d’enfants
are and to discuss the bijection between the set of isomorphism classes of dessins and the
set of isomorphism classes of algebraic curves defined over Q̄. We end this section with a
short note on the application of dessins.

Definition 6.1. A morphism β : S → P1(C) whose critical values lie in {0, 1,∞} is called
a Belyi morphism. We call β a pre-clean Belyi morphism if all the ramification orders over
1 are less than or equal to 2, and clean if they are all exactly equal to 2.

The following is an immediate corollary to Belyi’s theorem.

Corollary 6.2. A compact Riemann surface S can be defined over Q̄ if and only if there
exists a clean Belyi morphism β : S → P1(C).

Proof. Note that if β1 : S → P1(C) is a Belyi morphism, then β2 = 4β1(1− β1) is a clean
Belyi morphism.

If S is a compact Riemann surface and β is a (clean) Belyi morphism defined on S, then
we call (S, β) a (clean) Belyi pair.

As mentioned in the introduction, in his famous work, Esquisse d’un Programme,
Grothendieck gives an idea of an exploration a possible connection between algebraic
curves (defined over Q̄) and dessin d’enfants, which intuitively correspond to scribbles on
topological surfaces. A precise definition is given below.

Definition 6.3. A hypermap is a map whose vertices are colored black and white under
the condition that each edge connects two vertices of different colors.

Consider a Belyi pair (S, β) and take the segment [0, 1] ⊂ P1(C). Color the point 0 in
black (•) and the point 1 in white (◦) and take the pre-image H = β−1([0, 1]) ⊂ S. Then,
H is a hypermap drawn on S. The black and white vertices of H are the preimages of 0
and 1 with their valencies equal to the multiplicities of the corresponding critical points.
Furthermore, each face of H contains exactly one pole, i.e., a preimage of ∞. The valency
of the corresponding face is equal to the multiplicity of the pole.

26



Definition 6.4. A dessin d’enfant D is a hypermap considered as a representation of a
particular Belyi pair (S, β).

Let us consider an example before moving on.

Example 6.5.

Figure 2: The dessin d’enfant with corresponding Belyi function f(x) = −(x − 1)3(x −
9)/64x, embedded in the complex projective plane.

An extensive explanation how to derive the Belyi corresponding to this dessin, can be
found in [1], pp. 107− 108. Before we can state the main theorem for this section, we
need to define when two dessins are isomorphic. This is done in the next definition.

Definition 6.6. Two dessins (S1, D1) and (S2, D2) are called isomorphic if there exists a
non-constant morphism f : S1 → S2 such that f(D1) = D2. We will use the terminology
abstract dessin to describe an isomorphism class of dessins.

We now have everything we need to define the Grothendieck correspondence. This is
done in the next theorem.

Theorem 6.7. Grothendieck correspondence. There is a bijection between the set of
abstract clean dessins and the set of isomorphism classes of clean Belyi pairs.

Proof. See [13], Theorem I.5, page 54 or [2], Chapter 4.2 for an extensive discussion.

Dessins d’enfants are particularly interesting because of the way the absolute Galois
group Gal(Q̄/Q) acts on them. Since Gal(Q̄/Q) acts on the elements of Q̄, it acts on the
coefficients of polynomials defined over Q̄, and therefore also on irreducible, non-singular
algebraic curves defined over Q̄, corresponding to maps to P1(C), ramified only over the
points {0, 1,∞}. Grothendieck noted that this action, as described above, which is also
well-defined on dessins, is actually faithful. This means that theoretically, we could gain
an understanding of Gal(Q̄/Q) by understanding how Gal(Q̄/Q) acts on dessins.

With this final note, we conclude this thesis.
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7 Summary

In this thesis we discussed the basic theory of (compact) Riemann surfaces. Throughout
this thesis we made much use of perhaps the most well-known Riemann surface, the
Riemann sphere (which we denoted by P1(C)). We then discussed at length the
equivalence of the categories of compact Riemann surfaces, function fields in one variable
over C and irreducible, non-singular algebraic curves, also over C. We ended this chapter
with an explicit construction of a compact Riemann surface through the equation
y2 =

∏2g+1
i=1 (x− ak) for some distinct collection of complex numbers {ak}2g+1

k=1 . The next
short chapter was dedicated to giving a short and easy to understand proof of the
Riemann-Hurwitz theorem.

The final chapter was primarily devoted to proving the beautiful Belyi theorem, which
states that a compact Riemann surface S can be defined over the field of algebraic
numbers Q̄ if and only if there exists a morphism f : S → P1(C), ramified only over the
points {0, 1,∞}. This important theorem motivated Grothendieck to define his dessin
d’enfants. Grothendieck noted that the action of the absolute Galois group Gal(Q̄/Q) on
these dessins was faithful, and proposed it as a tool to study Gal(Q̄/Q).
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