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4.5 A mapping from Ẑ[q] to Z[q]{n} . . . . . . . . . . . . . . . . . . . . . . . 26

5 Unique identification with values at the roots of unity 28
5.1 Injectivity of σT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Injectivity of γZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1



1 Introduction

The Habiro ring Ẑ[q] is named after Kazuo Habiro, a Japanese mathematician from
the Kyoto University. In his article ‘Cyclotomic Completions of Polynomial Rings’ he
describes the ring as follows [1]

The completion Ẑ[q] = lim
∞←n

Z[q]/((1−q)(1−q2) · · · (1−qn)) can be regarded

as a ‘ring of analytic functions’. This means that an element of Ẑ[q] vanishes
if it vanishes on a certain type of infinite set of roots of unity.

Unless you are an expert on mathematics, you will not directly understand what the
Habiro ring is. I would describe the Habiro ring as some kind of extension of Z[q],
the ring of polynomials with integer coefficients over a variable q. Z[q] only contains
elements of the form a0 + a1q+ ...+ anq

n, where n is finite. As we will see, the Habiro
ring contains certain infinite sums, of the form a0 + a1q + ..., with the condition that
this sum has a well defined value at the roots of unity. Certainly all elements of Z[q]
are elements of the Habiro ring, since finite sums can be extended to infinite sums by
adding infinitely many times 0. The Habiro ring appears to be the so called projective
limit of a system of quotient rings Z[q]/(Qn(q)).
Not much research has been done on the Habiro ring, but it shows up in a few parts
of ring theory, such as the study of F1-geometry, which is about the properties of the
so called ‘field with one element’. Yu.I. Manin and M. Marcolli contributed much
to the knowledge on the Habiro ring, researching this ‘field with one element’. Via
the so called Witten-Reshetikhin-Turaev invariants, researched by Habiro, there is a
surprising link with knot theory. Both topics are beyond the scope of this thesis.

1.1 Structure

We will start to say something about cyclotomic polynomials. They turn out to be
important for introducing the Habiro ring. Then we take a look at quotient rings of Z[q]
and (products of) cyclotomic polynomials, also introducing Z[q]/(Qn(q)). The next
section will be devoted to the introduction of the projective limit and the definition of
the Habiro ring via this projective limit. It will turn out that we can write each element
of the Habiro ring in a unique way as a certain infinite sum, called the Habiro expansion.
Finally we will show that an element of the Habiro ring is uniquely determined by its
values on (a certain group of) roots of unity.
In most of this thesis we will use integers, and therefore n ≥ 0 means n ∈ Z with
n ≥ 0, unless otherwise specified. We will also use the convention that 0 is not a
positive integer, which means that N = {1, 2, 3, ...}. The notation N0 will be used for
N ∪ {0}.
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2 Cyclotomic polynomials

2.1 Elementary properties

First I will present some elementary properties of so called cyclotomic polynomials.
We will need some of these properties in the next sections. Before we can define the
notion of a cyclotomic polynomial, we first need a few definitions and two lemmas.

Definition 2.1. Let n ∈ N and ζ ∈ C. If ζn = 1 we call ζ an nth root of unity. The
smallest d ∈ N such that ζd = 1 is called the order of ζ and denoted by ord(ζ). If
ord(ζ) = n, ζ is called a primitive nth root of unity.

Lemma 2.2. Let n, k ∈ N and ζ a nth root of unity. Then ord(ζ) | k if and only if
ζk = 1. We also have ord(ζ) | n.

Proof. If ord(ζ) | k, then obviously we have ζk = 1. Moreover, suppose that ζk = 1
and ord(ζ) - k. Then k = p ord(ζ) + q for some p ∈ N0 and 0 < q < ord(ζ). This
results in ζq = ζkζ−p ord(ζ) = 1, so ord(ζ) ≤ q. This is a contradiction and therefore:
ord(ζ) | k. We now also have ord(ζ) | n.

Lemma 2.3. Let n, k ∈ N and ζ a primitive nth root of unity. Then gcd(k, n) = 1 if
and only if ζk is a primitive nth root of unity.

Proof. Define d = ord(ζk), then ζkd = 1. Therefore, by Lemma 2.2 we have n =
ord(ζ) | kd. If gcd(k, n) = 1 we obviously have n | d. Since ζk is also an nth root
of unity (ζkn = 1) we have by the same lemma d | n. This results in d = n and ζk

is primitive. If gcd(k, n) 6= 1, then let g = gcd(k, n). Then ζ
kn
g = 1 and therefore

d = n
g < n, so ζk is not primitive.

We know that there are n unique nth roots of unity, namely e
2πi
n , e

4πi
n , . . . , e

2nπi
n . For

fixed n ∈ N we define ζk = e
2kπi
n for 1 ≤ k ≤ n. Since there are by definition φ(n)

numbers satisfying 0 ≤ k ≤ n− 1 with gcd(k, n) = 1 we obtain

Corollary 2.4. Let n ∈ N. Then there are φ(n) primitive nth roots of unity.

Now we are ready to define the notion of a cyclotomic polynomial.

Definition 2.5. Let n ∈ N. Then the nth cyclotomic polynomial Φn is defined as the
monic polynomial with only the primitive nth roots of unity as its roots, that is

Φn(q) =
∏

k:ord(ζk)=n

(q − ζk) (2.1)

By Corollary 2.4 we see that the nth cyclotomic polynomial has degree φ(n). From our
knowledge of Z/nZ, we see that if gcd(k, n) = 1 then gcd(n−k, n) = 1 for 1 ≤ k ≤ n−1.

Therefore (q − ζk)(q − ζn−k) = q2 + ζn − q(ζk + ζk) = q2 + 1 − 2Re(ζk)q. Since this
product is real we see that Φn(q) is monic and has real coefficients. We can in fact
prove that these coefficients are integers. To do this, we first need to prove the following
lemma.

Lemma 2.6. Let n ∈ N. Then

qn − 1 =
∏
d|n

Φd(q) (2.2)

3



Proof. The roots of qn − 1 are by definition exactly the nth roots of unity. Take one
root of qn− 1 and call it ζ. Let d = ord(ζ), then ζ is a primitive dth root of unity and
a root of Φd(q). Since d | n by Lemma 2.2, ζ is a root of the right hand side.
Furthermore, if we take one root of the right hand side and call it again ζ with d =
ord(ζ), then ζn = ζd

n
d = 1. Thus follows that ζ is a nth root of unity. Since both

polynomials are monic and have the same roots, they are equal.

Example 2.1. We can easily check Lemma 2.6 for n = 4. We have Φ1(q) = q −
1,Φ2(q) = q + 1 and Φ4(q) = (q + i)(q − i) = q2 + 1. Thus follows

Φ1(q)Φ2(q)Φ4(q) = (q − 1)(q + 1)(q2 + 1) = (q2 − 1)(q2 + 1) = q4 − 1 (2.3)

We will use the lemma to prove the next theorem.

Theorem 2.7. Let n ∈ N, then the nth cyclotomic polynomial has integer coefficients,
that is Φn ∈ Z[q]. If n = 1 the constant term of Φn is equal to -1, if n ≥ 2 the constant
term is equal to 1.

Proof. We will use induction on n. By definition we have Φ1(q) = q − 1 ∈ Z[q] and
Φ2(q) = q + 1 ∈ Z[q], so the theorem is true for n = 1, 2. Now fix n ≥ 3 and assume
that the theorem is satisfied for all k | n with k 6= n. Denote m = φ(n) < n then we
can express Φn(q) = qm + am−1q

m−1 + ...+ a1q + a0. By Lemma 2.6, we have

qn − 1 = Φn(q)
∏

d|n,d 6=n

Φd(q) (2.4)

Therefore we can write
∏
d|n,d 6=n Φd(q) = qn−m + bn−m−1q

n−m−1 + ...+ b1q + b0. This
polynomial is a finite product of elements of Z[q] and therefore also an element of Z[q],
so the coefficients are integers. If we expand Equation 2.4, we get

qn − 1 = qn + (am−1 + bn−m−1)qn−1 + ...+ (a1b0 + a0b1)q1 + a0b0 (2.5)

Since the constant term on the left side of Equation 2.5 is equal to -1, we should also
have a0b0 = −1. We know that b0 is equal to the product of the constant terms of
all Φd with d | n, d 6= n. By our induction hypothesis we have that the constant term
of Φd is equal to -1 if d = 1 and equal to 1 if d 6= 1. Since 1 6= n we have b0 = −1.
Therefore a0 = 1, and the last part of the theorem is proven. We also obtain from
Equation 2.5 a1b0 + a0b1 = 0, since the coefficient of q1 is equal to 0 on the left side
and b0 = −1. Thus a1 = a0b1 = −b1 ∈ Z. If we define bj = 0 for j > n−m, we can go
on similarly for a2, a3, ..., am. For 2 ≤ k ≤ m we obtain from Equation 2.5

akb0 + ak−1b1 + ...+ a1bk−1 + a0bk = 0 (2.6)

This is because k ≤ m < n. Since b0 = −1 and aj ∈ Z for 0 ≤ j ≤ k − 1, we obtain
ak = ak−1b1 + ...+a1bk−1 +a0bk ∈ Z. Thus all coefficients of Φn are integers. Therefore
the theorem is proven.

Lemma 2.6 also gives us another way to express the nth cyclotomic polynomial

Φn(q) =
qn − 1∏

d|n,d 6=n Φd(q)
(2.7)
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We will now discuss a final result of Lemma 2.6. Define for n ≥ 0 the polynomial Qn
by

Q0(q) = 1 (2.8)

Qn(q) =

n∏
j=1

(1− qj) = (−1)n
n∏
j=1

(qj − 1) if n ≥ 1 (2.9)

If we fix 1 ≤ d ≤ n, we obtain from Equation 2.2 that Φd divides qk − 1 exactly once
if and only if d | k, that is if k = d, 2d, ..., bnd cd, (b

n
d c + 1)d, .... There are exactly bnd c

such values of k, such that qk − 1 appears in the product in Equation 2.9. Therefore
Φd(q)

bn
d
c is the highest power of Φd dividing Qn. Since the only factors of qk − 1 are

cyclotomic polynomials, the next corollary follows.

Corollary 2.8. Let n ∈ N. Then we have

Qn(q) = (−1)n
n∏
j=1

Φj(q)
bn
j
c

(2.10)

2.2 Expressions

We will now derive some explicit expressions for cyclotomic polynomials. The first
ones are very obvious using Definition 2.5 or Equation 2.7.

Φ1(q) = q − 1 (2.11)

Φ2(q) = q + 1 (2.12)

Φ3(q) = q2 + q + 1 (2.13)

Φ4(q) = q2 + 1 (2.14)

Using Equation 2.7 we can express more cyclotomic polynomials explicitly. First take
n = p a prime. Then we have by this equation and the geometric series

Φn(q) =
qn − 1

q − 1
= 1 + q + ...+ qn−1 =

n−1∑
i=0

qi (2.15)

Also, if n = 2p with p an odd prime, we have

Φn(q) =
qn − 1∏

d|n,d 6=n Φd(q)
=

q2p − 1

Φ1(q)Φp(q)Φ2(q)
=

q2p − 1

(qp − 1)(q + 1)

=
qp + 1

q + 1
=

(−q)p − 1

−q − 1
=

p−1∑
i=0

(−q)i (2.16)

Our next result will turn out to be very useful in the next sections.

Lemma 2.9. Let p be a prime and k ∈ N. Then we have for n = pk

Φn(q) = 1 + qp
k−1

+ q2pk−1
+ ...+ q(p−1)pk−1

=

p−1∑
i=0

qip
k−1

(2.17)
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Proof. Again, by Equation 2.7 and the geometric series, we have

Φpk(q) =
qp
k − 1∏

d|pk,d6=pk Φd(q)
=

qp
k − 1∏

d|pk−1 Φd(q)
=

qp
k − 1

qpk−1 − 1

=
(qp

k−1
)p − 1

qpk−1 − 1
=

p−1∑
i=0

qip
k−1

2.3 Cyclotomic polynomials modulo p

Since p - j! for 1 ≤ j ≤ p− 1 and j!
(
p
j

)
= p(p− 1) · · · (p− j + 1) we have p |

(
p
j

)
by the

fact that p | p(p− 1) · · · (p− j + 1) and p is a prime. Therefore we have(
p

0

)
= 1 ≡ 1 (mod p) (2.18)(

p

j

)
= p

(p− 1) · · · (p− j + 1)

j(j − 1) · · · 1
≡ 0 (mod p) if 1 ≤ j ≤ p− 1 (2.19)(

p

p

)
= 1 ≡ 1 (mod p) (2.20)

By the binomial theorem we have

(q − 1)p =

p∑
j=0

(
p

j

)
(−1)jqp−j ≡ qp + (−1)p (mod p) (2.21)

If we take p = 2, we also see (q − 1)2 ≡ q2 + 1 ≡ q2 − 1 (mod 2). Therefore we have
for all primes p

(q − 1)p−1 =
(q − 1)p

q − 1
≡ qp − 1

q − 1
=

p−1∑
j=0

qj = Φp(q) (mod p) (2.22)

Now take k ∈ N and p a prime, and consider the prime power pk. Repeatedly using
Equation 2.21 we obtain (q − 1)p

k ≡ (qp − 1)p
k−1 ≡ ... ≡ (qp

k − 1) (mod p). Then we
obtain similarly to Equation 2.22

(q − 1)p
k−1(p−1) ≡ (qp

k−1 − 1)p−1 =
(qp

k−1 − 1)p

qpk−1 − 1
(mod p)

≡ (qp
k−1

)p − 1

qpk−1 − 1
=

p−1∑
j=0

qjp
k−1

= Φpk(q) (mod p) (2.23)

From the above discussion these two corollaries follow

Corollary 2.10. Let pk be a prime power. Then we have Φpk(q) ≡ (q − 1)p
k−1(p−1) =

(q − 1)φ(pk) (mod p) where φ(pk) is the totient function of pk.

Corollary 2.11. Let pk be a prime power. Then we have Φpk ∈ (p,Φ1), the ideal
containing all elements of the form f(q)p+ g(q)Φ1(q) with f, g ∈ Z[q].
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2.4 Irreducibility

Another important property of a cyclotomic polynomial is its irreducibility over Z and
even over Q. It means that for each n ∈ N we cannot write Φn(q) = f(q)g(q) for some
f, g ∈ Q[q] with both of the polynomials being non-constant. The proof is not very
simple, except for n = p a prime. In this case we can just use Eisenstein’s criterion.
In this section we will prove this statement for each n ∈ N. For the proof we first
need to recapitulate the concept of a primitive polynomial. A primitive polynomial is
a polynomial with the greatest common divisor of all its coefficients equal to 1. Gauss
stated an important lemma about primitive polynomials.

Lemma 2.12 (Gauss). Let f, g ∈ Z be primitive polynomials, then their product h(q) =
f(q)g(q) is also primitive.

Proof. Suppose to the contrary that h is not primitive, then we can write h(q) = p·h̄(q)
with p > 1 a prime and h̄ a polynomial in Z[q]. Write f(q) =

∑k
i=0 fiq

i and g(q) =∑k
i=0 giq

i with k ≥ deg(f), deg(g). Let fnq
n and gmq

m be the highest degree terms
of f and g respectively with p - fn, gm. These terms have to exist, since f and g are
primitive polynomials. Because the coefficient of the term hn+mq

n+m is divisible by p
and hn+m = fn+mg0 + fn+m−1g1 + ...+ fngm + ...+ f1gn+m−1 + f0gn+m, we see that
p | fngm. This is because all other terms in the expression of hn+m are divisible by p,
as is hn+m itself. Since p is a prime dividing fngm, we know that p divides fn or gm.
This is a contradiction.

Let h ∈ K[q], where K is Z or Q, be non-zero and not be a unit in K[q]. Recall that
the polynomial h is called irreducible in K[q], if any factorisation h(q) = f(q)g(q) with
f, g ∈ K[q] implies that f or g is a unit in K[q]. With this definition we can prove the
following lemma.

Lemma 2.13. Let h be a primitive polynomial in Z[q], then h is irreducible in Z[q] if
and only if it is irreducible in Q[q].

Proof. First suppose deg(h) = 0. Then, since h(q) =
∑deg(h)

i=0 hiq
i is a primitive poly-

nomial and h0 is the only non-zero coefficient of h, we have h(q) = ±1. Since ±1 is a
unit in Z[q] and Q[q], h is reducible in both rings. Thus the lemma is true for h with
deg(h) = 0.
Now suppose deg(h) ≥ 1 and h is irreducible in Q[q]. Since the units of Q[q] are the
constants, the elements of Q, we have that h cannot be factorized in a product of non-
constant polynomials with lower degree in Q[q]. Therefore h cannot be factorized in a
product of non-constant polynomials with lower degree in Z[q]. Since all elements of
Z\{−1, 0, 1} are non-units in Z[q], the only possible factorization of h in Z[q] is given
by: h(q) = cf(q) where c ∈ Z\{−1, 0, 1} and f ∈ Z[q]. But then: |c| > 1 and |c| | h(q),
which is a contradiction with the fact that h is primitive.
Now suppose h is reducible in Q[q]. Then we have f(q) = g(q)h(q) with g, h ∈ Q[q]
non-constant polynomials. Let df , dg be the smallest numbers such that dff(q),
dgg(q) ∈ Z[q] respectively. Define f̄(q) = dff and ḡ(q) = dgg. Then f̄(q) and ḡ(q) are
both primitive polynomials, since if for example f is not, we can find a smaller df such
that dff ∈ Z[q]. By Lemma 2.12 we also have that f̄(q)ḡ(q) = dfdgh(q) is a primitive
polynomial. Since h is also a primitive polynomial, we can only have dfdg = ±1.
Therefore we have a factorization h(q) = ±f̄(q)ḡ(q) with f̄ and ḡ non-constant poly-
nomials in Z[q] and therefore non-units. Thus h is reducible in Z[q].
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Example 2.2. Consider the polynomial bq2 − a with a, b ∈ N0 and gcd(a, b) = 1.
Since this polynomial is primitive, Lemma 2.13 tells us that it is irreducible in Z[q] if
and only if it is irreducible in Q[q]. We cannot factor the polynomial into a non-unit
constant and a polynomial of degree 2, by the fact that bq2− a is primtive. Therefore,
the only possible factorization in Q[q] and Z[q] is into two linear polynomials. Suppose
that this is possible, and we have bq2 − a = (c1q + d1)(c2q + d2). By the fact that
bq2 − a could not be factored in a non-unit constant and a polynomial of degree 2,
we should have that c1 and d1 are coprime as well as c2 and d2. If we take q = −d1

c1
we see that the right hand side of this equation is equal to zero. Therefore we have

b
d21
c21
− a = 0. This results in

d21
c21

= a
b . We know that a and b are coprime. Furthermore

d2
1 and c2

1 are also coprime. We now claim d2
1 = a and c2

1 = b. This is true, since if
d2

1 = ma for some non-unit m ∈ Z, we also have c2
1 = mb, which is a contradiction

with the fact that d2
1 and c2

1 are coprime. Also, if a = nd2
1 for some non-unit n ∈ N,

we also have b = nc2
1, which is again a contradiction. Therefore we obtain d1 = ±

√
a

and c1 = ±
√
b. By taking q = −d2

c2
we obtain similarly d2 = ±

√
a and c2 = ±

√
b. One

possible factorization is bq2 − a = (
√
bq +

√
a)(
√
bq −

√
a). We see that c1, c2, d1 and

d2 are elements of Z if and only if a and b are squares. Therefore we can factor bq2−a
in Z[q] if and only if a and b are squares. If a or b is not a square, the value

√
a or

√
b

is irrational and therefore not an element of Q. So, we can also factor bq2 − a in Q[q]
if and only if a and b are squares. Thus the lemma holds for this polynomial.

We are now ready to prove the next theorem.

Theorem 2.14. For each n ∈ N the nth cyclotomic polynomial Φn is irreducible over
Q.

Proof. Suppose that Φn is reducible over Q. By Lemma 2.13 Φn is also reducible over
Z and we can write Φn(q) = f(q)g(q) with f, g ∈ Z[q] non-units. Since Φn is monic,
we can choose both of these polynomials monic, since the product of their leading
coefficients should equal 1.

Define ζ = e
2πi
n . Clearly this is a root of Φn, and therefore also a root of f or g or

possibly both. We can choose ζ to be a root of f by possibly exchanging the functions
f and g. Now define the mapping Nζ : Z[q] → Z[ζ] by h(q) 7→ h(ζ). We will show
that Nζ is an ring homomorphism. Obviously, the function 1 in Z[q] is mapped to 1.
Furthermore, take k, l ∈ Z[q], then we have

Nζ(k + l) = (k + l)(ζ) = k(ζ) + l(ζ) = Nζ(k) +Nζ(l) (2.24)

Nζ(kl) = (kl)(ζ) = k(ζ)l(ζ) = Nζ(k)Nζ(l) (2.25)

by the fact that we have for all polynomials with q ∈ C that k(q)l(q) = (kl)(q) and
(k+ l)(q) = k(q) + l(q). The kernel of this homomorphism in Z[q] consists precisely of
the polynomials with ζ as a root.
Now take 1 ≤ k ≤ n − 1 coprime with n. Then we know by Lemma 2.3 that ζk

is also a primitive nth root of unity and therefore ζk is also a zero of Φn. We now
define a new mapping Mk : Z[ζ] → Z[ζ] by h(ζ) 7→ h(ζk) for all such k. Since
ord(ζ) = n, we know that every element of Z[ζ] can be represented as a polynomial
in ζ with degree < n, that is h(ζ) = h0 + h1ζ + h2ζ

2... + hn−1ζ
n−1 with hi ∈ Z

for each i, by the fact that ζn = 1. Therefore, if we map ζ to ζk as above, we see
Mk(h) = h0 + h1ζ

k + h2ζ
2k + ...+ hn−1ζ

k(n−1). By the fact that k and n are coprime,
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we have that there is no 0 ≤ i ≤ n − 1 such that ζik = 1. As a matter of fact, we
know that k has a multiplicative inverse in Z/nZ, that is, there is a 1 ≤ j ≤ n−1 with
gcd(j, n) = 1 such that jk ≡ 1 (mod n). Therefore ζjk = ζ. If j < n

2 , we then also see

ζ2jk = ζ2. If j > n
2 we see ζ(2j−n)k = ζ2, and so on. We therefore see that for each

0 ≤ i ≤ n− 1 we have ζik = ζ l for some 0 ≤ l ≤ n− 1. Therefore the mapping Mk is
well defined.
Now we will proceed with the proof of the fact that this mapping is a homomorphism.
Again, the element 1 of Z[ζ] is mapped by Mk to 1. Furthermore, take r(ζ), s(ζ) ∈ Z[ζ],
then we have

Mk(r + s) = (r + s)(ζk) = r(ζk) + s(ζk) = Mk(r) +Mk(s) (2.26)

Mk(rs) = (rs)(ζk) = r(ζk)s(ζk) = Mk(r)Mk(s) (2.27)

again by the fact that we can multiply and add polynomials as usual. Therefore Mk

is also a ring homorphism.
Now take another zero of Φn and name it ω. By the fact that ω is a primitive nth root
of unity, we have by Lemma 2.3 that there is a 1 ≤ k ≤ n − 1 coprime with n such

that ω = ζk, where ζ is still equal to e
2πi
n . Therefore Nω = Mk ◦ Nζ . Since Mk is a

ring homomorphism, it maps 0 to 0. Therefore ker(Nζ) ⊂ ker(Nω).
We can see this in the following diagram

Z[q]
f(q)7→f(ζ) //

f(q) 7→f(ζk)

!!

Z[ζ]

f(ζ)7→f(ζk)

��
Z[ζ]

Since f ∈ ker(Nζ), we also have that ζk is a zero of f for all 1 ≤ k ≤ n − 1 with k
coprime with n. Since these are exactly the roots of Φn and both are monic, we have
Φn = f , which is a contradiction.

A direct result of the last part of this proof is

Corollary 2.15. Let f ∈ Z[q] be a polynomial with ζ, an primitive nth root of unity,
as root. Then f(ζ ′) = 0 for all primitive nth roots of unity ζ ′.

2.5 Minimal polynomials of roots of unity

We can use the results of the previous section to prove that in fact the nth cyclotomic
polynomial is the minimal polynomial of a primitive nth root of unity. Therefore we
also have that all polynomials with a primitive nth root of unity as root, are divisible
by Φn. We will start with a short example.

Example 2.3. Consider the polynomial f(q) = q6 +2q4 +q2. We clearly have f(i) = 0
and f(−i) = 0. Therefore f(q) = (q2 + 1)(q2 + q4) = (q2 + 1)g(q). Since also g(i) = 0
and g(−i) = 0, we have f(q) = (q2 + 1)2q2. Since i and −i are primitive fourth roots
of unity, we see as expected q2 + 1 = Φ4(q) | f(q).
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Now we state a preliminiary result to prove our expectation.

Lemma 2.16. Let f ∈ Q[q] be the minimal polynomial of an element ζ ∈ C. Then,
for every g ∈ Q[q] with zero ζ we have f | g.

Proof. By definition is f the polynomial in Q[q] of smallest degree and leading co-
efficient 1 such that ζ is a zero. We have by the Euclidean division algorithm for
polynomials

g(q) = h(q)f(q) + r(q) with deg(r) < deg(f) or r(q) = 0 (2.28)

where h, r ∈ Q[q] are unique. Since ζ is a root for both f and g we also have (q−ζ) | r.
Since deg(r) < deg(f), ζ is a zero of r and r is an element of Q[q], this is a contradiction
with the fact that f is a minimal polynomial. Therefore r(q) = 0 and f | g, as was to
be proven.

The big question is now if this lemma will also hold if we take f, g, h and r in Z[q].
The answer is ‘yes’ if we could let f be monic in Z[q], that is, the minimal polynomial
of ζ in Q[q] should be also an element of Z[q].

Lemma 2.17. Let ζ ∈ C be such that its minimal polynomial f over Q, is an element
of Z[q]. Then, for every g ∈ Z[q] with zero ζ we have f | g.

Proof. Since f is monic, we can again use the Euclidean division algorithm.

g(q) = h(q)f(q) + r(q) with deg(r) < deg(f) or r(q) = 0 (2.29)

where h, r ∈ Z[q] are unique. This is clearly possible, since if gm is the leading coef-
ficient of g and the degree of f is equal to k < m we can substract gmq

m−kf(q) from
g(q) to get a polynomial of degree m−1 and so on until the degree of g is smaller than
k. If already k > m, then we can obviously choose h(q) = 0 and r(q) = g(q).
Since ζ is a root for both f and g we also have (q − ζ) | r. Since deg(r) < deg(f) and
ζ is a zero of r, this is a contradiction with the fact that f is a minimal polynomial.
Therefore r(q) = 0 and f | g, as was to be proven.

Now we can prove a final lemma.

Lemma 2.18. Let f be a monic irreducible polynomial in Q[q]. Then it is the minimal
polynomial of its roots.

Proof. Let ζ be a root of f , then the minimal polynomial m(q) of ζ over Q clearly
divides f . The polynomial m is not a unit, since it has a root and the degree of m is
greater than or equal to 1. Since f is irreducible in Q[q], we must have f(q) = a ·m(q)
where a is a unit. Both f and m are monic and therefore a = 1, which results in
f(q) = m(q).

Lemmas 2.17 and 2.18 have two important consequences.

Corollary 2.19. Let ζ be a root of unity with order n. Then the nth cyclotomic
polynomial is the minimal polynomial of ζ. For every polynomial f ∈ Z[q] with a root
of unity ζ, we have Φn | f for n = ord(ζ).
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3 Quotients of Z[q]

After our discussion of cyclotomic polynomials, I would like to devote a section to
quotients of the ring Z[q] and ideals generated by polynomials, in particular by (specific
products of) cyclotomic polynomials. First we take a look at Z[q]/(Φn(q)j) for arbitrary
n, j ∈ N and after that at Z[q]/(Qn(q)) where Qn is defined as in Equation 2.9.
First I would like to say something about quotient rings in general, since I made a
lot of mistakes while investigating this topic. The elements of a quotient ring are in
fact equivalence classes. If we, for example take Z/nZ for n ≥ 2, the quotient ring
contains the congruence classes 0, 1, ..., n− 1. These are in fact the remainders of the
division of elements in Z by n. It is maybe tempting to regard Z/nZ as a subset of Z,
but these are two completely different rings. Z consists of numbers and the quotient
ring of congruence classes containing numbers. Each congruence class in Z/nZ can be
uniquely represented by a number between 0 and n− 1, but also by a number between
2n and 3n − 1, since mn + k belongs to the same congruence class as k for m ∈ N0

and 0 ≤ k ≤ n− 1.

3.1 Properties of Z[q]/(Φn(q)j)

Let us first consider the elements of the quotient ring Z[q]/(Φn(q)). As already stated
the degree of Φn is equal to φ(n). Recall that all elements of a quotient ring are
congruence classes. We claim that each element of Z[q]/(Φn(q)) can be uniquely rep-
resented as a polynomial of degree smaller than φ(n), that is, each congruence class
contains precisely one polynomial of degree smaller than φ(n). If this was false, we
could take a congruence class only consisting of polynomials of degree ≥ φ(n) Take
an element f with the smallest degree k in this congruence class and denote this
element by f(q) = fkq

k + fk−1q
k−1 + ... + f0. Since Φn is monic, the polynomial

g(q) = f(q) − fkqk−φ(n)Φn(q) has degree k − 1 and belongs to the same congruence
class as f , which is a contradiction. By the Euclidean division algorithm from Equa-
tion 2.28, we see that two polynomials of degree < φ(n) cannot be equivalent modulo a
polynomial of degree φ(n) and therefore every element of Z[q]/(Φn(q)) is a congruence
class uniquely determined by the polynomial of degree < φ(n) in that congruence class.
This results in the next corollary.

Corollary 3.1. For each n ∈ N, the quotient ring Z[q]/(Φn(q)) consists of all con-
gruence classes in Z[q] modulo Φn(q) and each congruence class contains a unique
polynomial of degree < φ(n). Furthermore two different polynomials of degree < φ(n)
in Z[q] belong to different congruence classes.

Example 3.1. If we take n = 1, the quotient ring is given by Z[q]/(q − 1). By our
discussion above we know that all congruence classes in Z[q]/(q−1) contain one unique
constant in Z. This does not surprise us, since Z[q]/(q−1) ∼= Z by the fact that (q−1)
is the kernel of the homomorphism f : Z(q) → Z given by P (q) 7→ P (1). The same
happens for n = 2, where the quotient ring is Z[q]/(q + 1) ∼= Z.
If we take n = 3 or n = 4 we obtain Z[q]/(q2 + q+ 1) and Z[q]/(q2 + 1) respectively as
quotient rings. In both rings each congruence class contains only one polynomail with
degree ≤ 1, which is therefore a constant or a linear polynomial.

Now we take arbitrary j ∈ N. Obviously the degree of Φn(q)j equals jφ(n). Therefore
we have by the same argument as above
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Corollary 3.2. For all n, j ∈ N, the quotient ring Z[q]/(Φn(q)j) consists of all congru-
ence classes in Z[q] modulo Φn(q)j and each congruence class contains a unique poly-
nomial of degree < jφ(n). Furthermore two different polynomials of degree < jφ(n) in
Z[q] belong to different congruence classes.

This is not quite a surprise. The next theorem is much less obvious.

Theorem 3.3. Let n, j ∈ N. Then for each f ∈ Z[q] there are unique polynomials fi
for 0 ≤ i ≤ j − 1 with deg(fi) ≤ (φ(n)− 1) such that

f(q)− f0(q)−
j−1∑
i=1

fi(q)Φn(q)i ≡ 0 (mod Φn(q)j) (3.1)

Proof. We can use the Euclidean division algorithm for polynomials given by Equations
2.28 and 2.29, since the nth cyclotomic polynomial is monic for each n ∈ N. Take
f ∈ Z[q] and define rj with help of the Euclidean division algorithm where we divide the
polynomial f by the jth power of the nth cyclotomic polynomial, that is, rj(q) ≡ f(q)
(mod Φn(q)j). The remainder rj should have deg(rj) ≤ jφ(n)− 1. Now again use the
Euclidean division algorithm, which results in

rj(q) = fj−1(q)Φn(q)j−1 + rj−1(q) (3.2)

with deg(rj−1) ≤ (j − 1)φ(n) − 1. We therefore also have deg(fj−1) = deg(rj) −
deg(Φj−1

n ) ≤ jφ(n) − 1 − (j − 1)φ(n) = φ(n) − 1. We can do this again repeatedly
obtaining

rk(q) = fk−1(q)Φn(q)k−1 + rk−1(q) (3.3)

with deg(rk−1) ≤ (k−1)φ(n)−1 and again deg(fk−1) ≤ φ(n)−1 for each 1 ≤ k ≤ j−1.
We therefore see that

rj(q) = f0(q) +

j−1∑
i=1

fi(q)Φn(q)i (3.4)

with deg(fi) ≤ (φ(n)−1) for 0 ≤ i ≤ j−1, with the polynomials fi uniquely determined
by the Euclidean division algorithm. Since rj(q) ≡ f(q) (mod Φn(q)j), we have f(q)−
rj(q) ≡ 0 (mod Φn(q)j), as required to prove the theorem.

We will call Equation 3.4 the finite Φn-adic expansion of rj . In general each polynomial
f with integer coefficients has a finite Φn-adic expansion, since there is always a j ∈ N
such that deg(f) < jφ(n). Therefore the polynomial f is the unique polynomial of
degree < jφ(n) in a congruence class belonging to the ring Z[q]/(Φn(q)j). By the
procedure used in the proof of the previous theorem we can obtain its finite Φn-adic
expansion, given by Equation 3.4 with f(q) = rj(q).

Example 3.2. If we again take n = 4 and take a look at the quotient ring Z[q]/(Φ4(q)3)
= Z[q]/((q2 + 1)3). Observe that each element of this ring can be identified with
a unique polynomial with integer coefficients and degree ≤ 5. Let us take such a
polynomial, for example f(q) = 4q4 − 3q3 + 1. Since Φ4(q)2 = q4 + 2q2 + 1, we
have f(q) = 4Φ4(q)2 − 11q3 − 3 and therefore f2(q) = 4. Here we used again the
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Euclidean division algorithm with h(q) = f2(q) and r1(q) = −11q3 − 3. We use r1 to
determine the other coefficients, again by the Euclidean division algorithm. We have
r1(q) = −11qΦ4(q) + 11q − 3. Therefore f1(q) = −11q and f0(q) = 11q − 3. Therefore
the finite Φ4-adic expansion of f is given by

4q4 − 3q3 + 1 = −3 + 11q − 11qΦ4(q) + 4Φ4(q)2 (3.5)

3.2 Properties of Z[q]/(Qn(q))

We now stop our discussion of cyclotomic polynomials and recall the definition of the
polynomials Qn for n ∈ N0 given in Equations 2.8 and 2.9

Q0(q) = 1 (3.6)

Qn(q) =
n∏
j=1

(1− qj) = (−1)n
n∏
j=1

(qj − 1) if n ≥ 1 (3.7)

Observe that for n ≤ m we have Qn | Qm and

Qm(q) = Qn(q)
m∏

j=n+1

(1− qj) (3.8)

The main goal of this thesis is to understand more about the Habiro ring, which
is some kind of limit for n → ∞ of the quotient rings Z[q]/(Qn(q)), described in
the next section. First we would like to see some properties of Z[q]/(Qn(q)). Since

deg(Qn) = deg(1 − q) + deg(1 − q2) + ... + deg(1 − qn) = 1 + 2 + ... + n = n(n+1)
2 ,

we know by the same discussion as in the proof of Corollary 3.1 that the quotient
ring Z[q]/(Qn(q)) consists of congruence classes, which contain exactly one polynomial

of degree < n(n+1)
2 and each polynomial of degree < n(n+1)

2 belongs to an element
(congruence class) of Z[q]/(Qn(q)).
If we take n = 1, we obtain the quotient ring Z[q]/(1−q), which is isomorphic to Z and
Z[q]/(q − 1), by the fact that (1− q) is the kernel of the homomorphism f : Z[q]→ Z
given by P (q) 7→ P (1). This is not quite interesting. If we take n = 2, we obtain the
quotient ring Z[q]/(1 − q − q2 + q3). Apart from the fact that every element of this
ring can be identified with a polynomial of degree less than or equal to 2, we cannot
directly say anything interesting about this ring. We can try to find an isomorphism
from Z[q]/(Q2(q)) to another ‘easier’ ring or a product of rings. The first guess would
be to use the Chinese Remainder Theorem.

Theorem 3.4 (Chinese Remainder Theorem). Let R be a commutative ring and I1,
..., Ik ideals of R which are all pairwisely relative prime, that is Ii + Ij = R for i 6= j.

Then we have R/
∏k
i=1 Ii

∼= R/I1 ×R/I2 × · · · ×R/Ik

If we take n = 2 we have Q2(q) = (1 − q)2(1 + q), so we could try to prove the
relation Z[q]/(Q2(q)) ∼= Z[q]/((1− q)2)×Z. Unfortunately, we cannot use the Chinese
Remainder Theorem in this case. If we take I1 = ((1− q)2) and I2 = (1 + q), we have
to show that these two ideals are relative prime, that is, there are x ∈ I1 and y ∈ I2

such that x + y = 1. These x, y are not so easy to find, in fact it turns out to be
impossible.
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We first assume that there is in fact an isomorphism f from Z[q]/(Q2(q)) to Z[q]/((1−
q)2)×Z. Every element of Z[q]/(Q2(q)) can be identified with a polynomial a+bq+cq2

and every element of Z[q]/((1− q)2)× Z with (α+ βq, γ). Therefore we could express
α, β and γ as functions of the variables a, b and c.
By the fact that f(x+ y) = f(x) + f(y) for all x, y we see that α, β and γ have to be
linear combinations of a, b and c.αβ

γ

 =

a1 a2 a3

b1 b2 b3
c1 c2 c3

ab
c

 = M

ab
c

 (3.9)

In the above equation, all entries of the matrix M have to be elements of Z. If some
entry is not in Z, for example b2, then we could take a = c = 0 and b = 1, which gives
β = b2 6∈ Z. Since f is a an isomorphism we have f(1) = (1, 1) and therefore a1 = 1,
b1 = 0 and c1 = 1. If we want to obtain the other six coefficients, we have to use the
third condition for an isomorphism, which is f(xy) = f(x)f(y) for all x, y. Therefore
we have to determine how to multiply elements in Z[q]/(Q2(q)) and Z[q]/((1−q)2)×Z.

(a+ bq + cq2)(d+ eq + fq2) ≡ (ad− ce− bf − cf) + q(bd+ ae+ ce+ bf)

+ q2(cd+ be+ ce+ af + bf + 2cf) (mod Z[q]/Q2)

(α+ βq, γ)(α′ + β′q, γ′) ≡ ((αα′ − ββ′) + q(αβ′ + βα′ + 2ββ′), γγ′)

(mod Z[q]/(1− q)2 × Z)

We take α′, β′ and γ′ as functions of d, e and f , given byα′β′
γ′

 = M

de
f

 (3.10)

Then we see, by the above equations and the third condition of an isomorphism.

αα′ − ββ′ = a1(ad− ce− bf − cf) + a2(bd+ ae+ ce+ bf)+

a3(cd+ be+ ce+ af + bf + 2cf)

αβ′ + α′β + 2ββ′ = b1(ad− ce− bf − cf) + b2(bd+ ae+ ce+ bf)

+b3(cd+ be+ ce+ af + bf + 2cf)

γγ′ = c1(ad− ce− bf − cf) + c2(bd+ ae+ ce+ bf)

+c3(cd+ be+ ce+ af + bf + 2cf)

We can even obtain 9 easy solvable equations chosing a = d = 1 and all other co-
efficients zero, b = e = 1 and all other coefficients zero or c = f = 1 and all other
coefficients zero. We can solve this with help of a computer and obtain several sets of
coefficients. Most of them contain coefficients which are not elements of Z, so they are
not the right solutions. The solutions that satisfy the conditons are

M =

a1 a2 a3

b1 b2 b3
c1 c2 c3

 =

1 1− τ 1− 2τ
0 τ 2τ
1 ±1 1

 (3.11)
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We have now obtained our matrix M , depending on some τ that we still have to
determine, but is definitely an integer. If we rearrange Equation 3.9 we seeab

c

 = M−1

αβ
γ

 (3.12)

Of course all entries of M−1 also have to be elements of Z. By the fact that MM−1

has to be equal to the identity matrix I3, we have det(M)det(M−1) = det(I3) = 1.
Obviously the determinant of a matrix with solely integer entries has to be an integer.
Therefore we have det(M) = det(M−1) = ±1. We can easily calculate the determinant
of M

det(M) = τ + 2τ(1− τ)− τ(1− 2τ)∓ 2τ = 2τ ∓ 2τ (3.13)

If we take the minus sign in the above equation we see det(M) = 0, which is for sure
a contradiction. If we take the plus sign, we see det(M) = 4τ and therefore τ = ±1

4 ,
which is not an integer and therefore also a contradiction.
Since we cannot find an M which satisfies Equations 3.9 and 3.12 with the entries of
both M and M−1 in Z, there is no isomorphism f between Z[q]/(Q2(q)) and Z[q]/((1−
q)2)× Z.
In the same way we can prove that Z[q]/(Q2(q)) 6∼= Z[q]/(1−q2)×Z and Z[q]/(Q2(q)) 6∼=
(Z[q]/(1 − q))2 × Z. So we cannot find an isomorphism between Z[q]/(Q2(q)) and a
product of some ‘smaller’, known rings. The same thing holds for Z[q]/(Q3(q)), but
the proof is much longer and not interesting to cover in this thesis.

3.3 Finite Habiro expansions in Z[q]/(Qn(q))

Similarly to the finite Φn-adic expansion of all elements of Z[q]/(Φn(q)j) introduced
in Section 3.1, we can a introduce a concept I call the finite Habiro expansion in
Z[q]/(Qn(q)).

Theorem 3.5. Let n ∈ N. Then for each f ∈ Z[q] there are unique polynomials fi for
0 ≤ i ≤ n− 1 with deg(fi) ≤ i such that

f(q)−
j−1∑
i=0

fi(q)Qi(q) ≡ 0 (mod Qn(q)) (3.14)

Proof. We can use again the Euclidean division algorithm for polynomials given by
Equations 2.28 and 2.29, since Qn is monic for n even and −Qn is monic for n odd.
Take f ∈ Z[q] and define rn with help of the Euclidean division algorithm where we
divide the polynomial f by the polynomial Qn, that is, rn(q) ≡ f(q) (mod Qn(q)).

The remainder rn should have deg(rn) ≤ n(n+1)
2 − 1.

Now again use the Euclidean division algorithm, which results in

rn(q) = fn−1(q)Qn−1(q) + rn−1(q) (3.15)

with deg(rn−1) ≤ (n−1)n
2 . We therefore also have deg(fn−1) = deg(rn)− deg(Qn−1) ≤

n(n+1)
2 − 1− (n−1)n

2 = n2+n−n2+n
2 − 1 = n− 1.
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We can do this again repeatedly obtaining

rk(q) = fk−1(q)Qk−1(q) + rk−1(q) (3.16)

with deg(rk−1) ≤ (k−1)(k)
2 − 1 and again deg(fk−1) ≤ k(k+1)

2 − 1 − (k−1)k
2 = k − 1 for

each 1 ≤ k ≤ n− 1.
We therefore see that

rn(q) =

n−1∑
i=0

fi(q)Qi(q) (3.17)

with deg(fi) ≤ i for 0 ≤ i ≤ j−1, with the polynomials fi uniquely determined by the
Euclidean division algorithm. Since rn(q) ≡ f(q) (mod Qn(q)), we have f(q)−rn(q) ≡
0 (mod Qn(q)), as required to prove the theorem.

Following the theorem we could define some kind of independent basis of Z[q]/(Qn(q)),
consisting of all products qjQi with i ≥ 0 and j = 0, 1, 2, ..., i. Furthermore, as already
said, we will call Equation 3.17 the finite Habiro expansion of rn in Z[q]/(Qn(q)),
in comparison with the (infinite) Habiro expansion we will use in the concept of the
Habiro ring. Similarly to the fact that each polynomial with integer coefficients has
a finite Φn-adic expansion, each polynomial f ∈ Z[q] has a finite Habiro expansion.

This is because there is always an n ∈ N such that deg(f) ≤ n(n+1)
2 and therefore is

the unique polynomial of degree < n(n+1)
2 in a congruence class belonging to the ring

Z[q]/(Qn(q)). Then we can take f(q) = rn(q) and obtain its Habiro expansion by the
usual method of the Euclidean division algorithm.

Example 3.3. If we again take n = 4 and have a look at the Habiro expansion of the
polynomial f(q) = 8− 5q + 6q2 − 2q4 − 2q5 + q6 + 2q7 − q8 in Z[q]/(Q4(q)). We have
Q3(q) = 1− q − q2 + q4 + q5 − q6 and therefore

f(q) = (q2 − q − 1)Q3(q) + 3q2 − 5q + 9 (3.18)

Therefore we have f3(q) = q2 − q − 1, and we see deg(f3) = 2, as expected.
Since Q2(q) = q3 − q2 − q + 1, we have deg(Q2) = 3 and therefore f2(q) = 0, by the
fact that the remainder of the division of f by Q3, has degree 2. Since Q1(q) = 1− q,
we obtain

f(q) = (q2 − q − 1)Q3(q) + (−3q + 2)Q1(q) + 7 (3.19)

and therefore f1(q) = −3q+2 and f0 = 7. Equation 3.19 gives us the Habiro expansion
of f in Z[q]/(Q4(q)), with the condition that deg(fi) ≤ i for each i.
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4 Projective limits

4.1 Formal definitions

In the previous section we regarded the ring Z[q]/(Qn(q)) for finite n. In this section
we will examine the so called projective (or inverse) limit of Z[q]/(Qn(q)) for n→∞,
which gives the Habiro ring

Ẑ[q] = lim
∞←n

Z[q]/(Qn(q)) (4.1)

First we need to take a closer look at the concept of the projective limit. It is different
from the (direct) limit used in mathematical analysis. It has, of course, something to
do with projections. We will first pose a formal definition of the projective (or inverse)
system of rings and the projective limit, which do not only hold for rings, but also for
many other mathematical objects, such as groups.

Definition 4.1 (Projective system). Let I be an index set with the property that we can
order the elements, for example N, also called a poset. Let (Xi)i∈I be a family of rings.
Furthermore, assume that we also have a family of homomorphism fij : Xj → Xi for
i ≤ j such that

1. fii = idXi for all i ∈ I
2. fik = fij ◦ fjk for all i ≤ j ≤ k

Then the pair of families ((Xi)i∈I , (fij)i≤j∈I) is called a projective (or inverse) system
of rings and homomorphisms over I and the functions fij are the so called transition
homomorphisms.

Definition 4.2 (Projective limit). Let ((Xi)i∈I , (fij)i≤j∈I) be again a projective sys-
tem of rings and homomorphisms over I. A projective limit of the system is a ring
X together with homomorphisms πi : X → Xi defined for all i ∈ I, the so called pro-
jections. These projections must satisfy πi = fij ◦ πj for i ≤ j. Additionally, for any
other ring Y with homomorphisms ψi : Y → Xi for each i ∈ I with ψi = fij ◦ψj, there
must be a unique homomorphism u : Y → X such that the next diagram commutes for
all i ≤ j [7]

Y

ψj

��

ψi

��

u
��
X

πj
xx

πi
&&

Xj fij
// Xi

We will take I = N, since we will encouter this case in the next sections.
The question may arise whether or not this definition makes sense, since we do not
know if we defined something that exists. Therefore, define X = {ξ : N →

⋃∞
i=1Xi |

ξi ∈ Xi, fij(ξi) = ξj for all i ≤ j ∈ N}. It will turn out that X is a projective limit of
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the projective system, if we take πi(ξ) = ξi for each i. Then for i ≤ j, we obviously
have πi(ξ) = ξi = fij(ξj) = ξj = πj(ξ), which results in πi = fij ◦ πj . The fact
that the projections πi are homomorphims follows from the fact that fij(ξj) = ξi
with fij homomorphims. Let us assume that there is another ring Y together with
homomorphims ψi : Y → Xi satisfying ψi = fij ◦ψj for all i ≤ j ∈ N. Take an element
y ∈ Y and define u(y) : N →

⋃∞
i=1Xi given by ui(y) = ψi(y). Clearly, u(y) satisfies

the conditions in the definition of ξ and therefore u(y) ∈ X. Therefore by our above
definition X is a projective limit of the system depicted in the diagram.
In the next sections we will often see that every ξ ∈ X can be given as some infinite
series, which we call an expansion, and ξi is a partial sum. Therefore (ξi)i∈N forms a
sequence. Furthermore, we see that if two rings X and Y both are a projective limit
of a system, there exist homomorphisms u : X → Y and v : Y → X. Therefore there
exists a isomorphism between X and Y . Since all projective limits of a projective
system are isomorphic, we often speak of ‘the’ projective limit of a system instead of
‘a’ projective limit.
We now start with two examples of projective limits, the ring of p-adic integers and
the Φn-adic completion of the ring of polynomials with integer coefficients. We will
not discuss the ‘other’ ring Y with homomorphisms ψi until Section 4.4.

4.2 Two examples

The ring of p-adic integers

Probably the best known example of the projective limit is the ring of p-adic integers
Zp with p a prime. It contains all finite and infinite p-adic series. It is defined as
lim
∞←n

Z/pnZ and it is called the p-adic completion of Z, since it extends the ‘normal’

system of integers in the sense that the ring of p-adic integers also contains infinite
series in the prime p.
First take a look at Z/pnZ. We know that it consists of all congruence classes modulo
pn. Each contains a unique number between 0 and pn − 1. In fact, we can write all
these unique numbers in a finite p-adic expansion

m = m0 +
n−1∑
i=1

mip
i (4.2)

where mi are called the p-adic digits and attain values between 0 and p− 1.
Define for i ≤ j the mapping fij : Z/pjZ → Z/piZ as m 7→ m (mod pi), which is
obviously a homomorphism. Every congruence class m ∈ Z/pjZ contains some unique
element m̄ between 0 and pj−1. The congruence class of m̄ in Z/pjZ is mapped to the
congruence class of m̄ (mod pi) in Z/piZ. Therefore this mapping is clearly well defined
and surjective, since i ≤ j and every element m̄′ between 0 and pi − 1, also satisfies
0 ≤ m̄′ ≤ pj − 1. The mapping is not injective if i 6= j, by the fact that 1 and pi + 1
are mapped to 1, but belong to a different congruence class modulo pj . Obviously,
fii is the identity mapping on Z/piZ and we also have fik(m) = (fij ◦ fjk)(m) for all
m ∈ Z/pkZ and i ≤ j ≤ k.
Observe that the mapping fij takes a congruence class in Z/pjZ, looks at the finite
p-adic expansion of an element and removes all powers of p greater than or equal to i.
If this is not clear to you, there will be a longer explanation in the next section about
the Habiro ring. The projective limit is depicted in the next diagram.
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Zp
mod pj

ww

mod pi

''
Z/pjZ

mod pi
// Z/piZ

The ring of p-adic integers contains all finite and infinite p-adic series, as already
mentioned in Section 4.1, and the series

∑∞
i=0 p

i converges in this ring. We will not
discuss the exact reason for this, but we will get something similar in the Habiro ring
with infinite Habiro expansions.
Surely, all integers ≥ 0 have a finite p-adic expansion, similar to the Φn-adic expansion
introduced in Section 3.1, for example

78 = 1 + 4 · 7 + 1 · 72 (4.3)

Here we also have a restriction on the coefficients of the p-adic expansion. These so
called p-adic digits attain values between 0 and p − 1. But it turns out that in the
ring of p-adic integers, some fractions also have a infinite p-adic expansion, and are
therefore also p-adic integers.
We have for example if p = 7

1

2
= 4 + 3 · 7 + 3 · 72 + 3 · 73 + ... (4.4)

by the fact that

2(4 + 3 · 7 + 3 · 72 + 3 · 73 + ...) = 1 + 7 · 7 + 6 · 72 + 6 · 73 + ...

= 1 + 0 · 7 + 7 · 72 + 6 · 73 + ...

= 1 + 0 · 7 + 0 · 72 + 0 · 73 + ...

= 1 (4.5)

Furthermore a negative integer can also be given by an infinite p-adic expansion, for
example

−2 = 5 + 6 · 7 + 6 · 72 + 6 · 73 + ... (4.6)

by the fact that

2 + (5 + 6 · 7 + 6 · 72 + 6 · 73 + ...) = 7 + 6 · 7 + 6 · 72 + 6 · 73 = 0 + 7 · 7 + 7 · 72 + 7 · 73 + ...

= 0 + 0 · 7 + 0 · 72 + ... = 0 (4.7)

We will not discuss these (infinite) p-adic expansions in the rest of this thesis, but we
see that these infinite expansions only show up if we take the (projective) limit n to
infinity.
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The Φn-adic completion of Z[q]

Since we have already looked at the quotient rings Z[q]/(Φn(q)j) for arbitrary n, j ∈ N,
it seems natural to investigate if the system has a projective limit for j → ∞. We
will keep in our minds that each congruence class in Z[q]/(Φn(q)j) can be identi-
fied with a unique polynomial of degree < jφ(n). Now, to construct the projec-
tive limit, we use the Φn-adic expansion of these polynomials. Define the mapping
fij : Z[q]/(Φn(q)j) → Z[q]/(Φn(q)i) for j ≥ i by m 7→ m (mod Φn(q)i), which is in
fact truncating the Φn-adic expansion of m at Φn(q)i, as it was with the ring of p-adic
integers. These mappings are clearly homomorphisms satisfying the conditions in Def-
inition 4.1.
Therefore ((Z[q]/(Φn(q)j))j∈N, (fij)i≤j∈N) is a projective system of rings and homo-
morphisms. If we now take the (projective) limit j →∞, we get a ring which we will
denote by Z[q]{n}. Similarly to the ring of p-adic integers, this ring contains all finite
and infinite Φn-adic expansions. Therefore it is also called the Φn-adic completion of
Z[q], similarly to the ring of p-adic integers being caleed the p-adic completion of Z.
The projections πj : Z[q]{n} → Z[q]/(Φn(q)j) are again just truncating the Φn-adic ex-
pansion of an element at Φn(q)j , clearly satisfying the definition of a projective limit.
This is depicted in the next diagram.

Z[q]{n}

mod Φn(q)j

uu

mod Φn(q)i

))
Z[q]/(Φn(q)j)

mod Φn(q)i
// Z[q]/(Φn(q)i)

4.3 Constructing the Habiro ring

Finally we are ready to take a closer look at the Habiro ring. As already mentioned
the Habiro ring is defined as the projective limit of n → ∞ for the quotient rings
Z[q]/(Qn(q)). Define the mapping fij : Z[q]/(Qj(q)) → Z[q]/(Qi(q)) for j ≥ i by
m 7→ m (mod Qi(q)). Let us have a look at the features of this mapping.

Example 4.1. Consider the mapping f23 : Z[q]/(Q3(q))→ Z[q]/(Q2(q)). Let us take
an element in Z[q]/(Q3(q)) and denote its unique polynomial of degree smaller than 6
by m. Denote the Habiro expansion of m in Z[q]/(Q3(q)) by

m(q) = m0 +m1(q)Q1(q) +m2(q)Q2(q) (4.8)

Since deg(m1) ≤ 1 we have deg(m0 +m1Q1) ≤ 2 < deg(Q2). Therefore m0 +m1Q1 6∈
(Q2). We thus see m(q) ≡ m0 + m1(q)Q1(q) (mod Q2(q)), and m0 + m1Q1 is clearly
the unique polynomial of degree < 3 of an element (congruence class) of Z[q]/(Q2(q)).
We now understand what the mapping f23 is about. It takes a congruence class in
Z[q]/(Q3(q)) and considers its unique polynomial of degree smaller than 6. It only
takes the first two terms of the Habiro expansion of this polynomial and maps the
congruence class in Z[q]/(Q3(q)) to the congruence class of the polynomial, given by
these first two terms, in Z[q]/(Q2(q)).
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For example, let us consider the congruence class of the polynomial m(q) = 3 + 2q −
4q2 + q3 + q5 − q6. By the fact that Q3(q) = 1 − q − q2 + q4 + q5 − q6, we see
m(q) ≡ 2 + 3q − 3q2 + q3 − q4 (mod Q3(q)), and therefore 2 + 3q − 3q2 + q3 − q4 is
the unique polynomial of degree smaller than 6 in this congruence class. The Habiro
expansion of this polynomial is given by

2 + 3q − 3q2 + q3 − q4 = 2 + 4qQ1(q)− qQ2(q) (4.9)

The mapping f23 maps the congruence class of m(q) to the congruence class of 2 +
4qQ1(q) in Z[q]/(Q2(q)).

In general we can therefore describe the mapping fij as follows

1. Take a congruence class m ∈ Z[q]/(Qj(q)).

2. Determine the polynomial of smallest degree in this congruence class, which is
unique and has degree < j(j+1)

2 as often mentioned before.

3. Consider the Habiro expansion of this polynomial and take the first i terms.

4. The congruence class of these first i terms in Z[q]/(Qi(q)) will be the image of
m by fij .

We now should have a clear idea of what the mapping fij actually does. By our
definition of this mapping we clearly see that it satisfies fij(1) = 1, fij(x+y) = fij(x)+
fij(y) and fij(xy) = fij(x)fij(y). Therefore the mapping fij is a homomorphism. By
the fact that fii is clearly the identity mapping and fik = fij ◦ fjk for all i ≤ j ≤ k
by our definition of the mappings fab, we have that ((Z[q]/(Qn(q)))n∈N, (fij)i≤j∈N) is
a inverse system of rings and homomorphisms, as defined in Definition 4.1.
We now would like to actually take the inverse limit of n→∞, obtaining the Habiro

ring. But if we look again at Definition 4.2 we see that, apart from the ring X = Ẑ[q],

we should also have projections πn : Ẑ[q] → Z[q]/(Qn(q)) for each n ∈ N. Also by
definition, these projections are given by m 7→ m (mod Qn(q)), strikingly similar to
the homomorphism fij used in the projective limit. By the above reasoning we also
easily see that these projections are homomorphisms, and satisfy πi = fij ◦πj for i ≤ j.
But the question arises what the elements of the Habiro ring look like. Similarly to the
p-adic completion of integers and the Φn-adic completion of Z[q], we suggest that the
elements of Habiro ring are finite or infinite Habiro expansions, that is, every element

m ∈ Ẑ[q] can be uniquely written as

m(q) =
∞∑
n=0

mn(q)Qn(q) (4.10)

with mn ∈ Z[q] and deg(mn) ≤ n for all n ∈ N0. In this way we can describe the
projections πn (n ≥ 1) as follows

1. Take an element m ∈ Ẑ[q], which is in fact some kind of congruence class, but it
can be represented as an infinite Habiro expansion given in Equation 4.10.

2. Consider this Habiro expansion and take the first n terms.

3. The congruence class of the first n terms in Z[q]/(Qn(q)) is the image of f under
the projection πi.
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Therefore we see that the restrictions on the degree of the coefficients in the infinite
Habiro expansion are quite obvious, since the restrictions also hold for all finite Habiro
expansions and the projections map the infinite Habiro expansions to finite expansion.
Let us now prove the next lemma.

Lemma 4.3. Every element m of the Habiro ring can be written as
∑∞

n=0mn(q)Qn(q)
and this expansion is unique.

Proof. Assume to the contrary that there is an element m ∈ Ẑ[q] that cannot be
written as a Habiro expansion. Obviously πn(m) is defined for each n ∈ N. Now define

m̄ ∈ Ẑ[q] as

m̄(q) = lim
n→∞

πn(m) =

∞∑
n=0

mn(q)Qn(q) (4.11)

where m0(q) = π1(m), m1(q) = π2(m)−m0(q)
Q1(q) , etcetera. Clearly m̄ is a Habiro expan-

sion. Since m cannot be written as a Habiro expansion, we certainly have m 6= m̄,
therefore there must be a smallest n ≥ 0 such that πn(m) 6= πn(m̄). This is clearly a
contradiction with the definition of m̄ in Equation 4.11.
Now we will prove that there is only one way to write m as a Habiro expansion.
We already observed this fact while discussing the finite Habiro expansions defined

in Section 3.3. Suppose that there is an element m ∈ Ẑ[q], that can be written as a
Habiro expansion in two different ways m̄ and m̂. Then there has to be a smallest
n ∈ N0 such that m̄n(q) 6= m̂n(q). Then πn(m̄) 6= πn(m̂), which is a contradiction,
since 0 = πn(0) = πn(m̄ − m̂) 6= 0, by the fact that πn is a homomorphism for each
n ∈ N.

If we take a closer look at Equation 4.10 we see that there are in fact many elements

in Ẑ[q], that are not defined in Z[q], since this infinite sum does not converge. But

we can observe that all elements of Ẑ[q] have a clear, well defined value at all roots of
unity. Choose ζ to be a root of unity with order ord(ζ). Then Qord(ζ)(ζ) = (1− ζ)(1−
ζ2) · · · (1− ζord(ζ)) = 0. By Equation 3.8 we see that Qn | Qk for all k ≥ n. Therefore
we have Qk(ζ) = 0 for all k ≥ ord(ζ). This results in

m(ζ) =

ord(ζ)−1∑
n=0

mn(ζ)Qn(ζ)

 (4.12)

Since all coefficients of the Habiro expansion of m are polynomials with integer coef-
ficients, we therefore have mn(ζ), Qn(ζ) ∈ Z[ζ] for all 0 ≤ n < ord(ζ). Thus the next
corollary follows.

Corollary 4.4. Let m be an element of Ẑ[q] and ζ be a root of unity. Then we have
m(ζ) ∈ Z[ζ].

In the Φn-adic completion of Z[q] we see that all elements have a well defined value at
only certain roots of unity, namely the primitive nth roots of unity. Then the values of
the elements just equal the constant term in their Φn-adic expansion. Since we do not
deal with polynomial in the ring of p-adic integers, we do not see something similar in
that projective limit.
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Now let us turn back to the projections πn. If all elements of the Habiro ring can be
represented as a Habiro expansion, such as in Equation 4.10, we certainly see that for
each m ∈ Z[q]/(Qn(q)), the unique polynomial of degree < n(n+1

2 in m is an element

of Ẑ[q]. This is because the Habiro ring also contains all finite Habiro expansions, by
taking all coefficients mi equal to 0 for i ≥ n. Therefore the mappings πn are clearly
surjective, as are the mappings fnj (n ≤ j by the same reasoning.
Both families of mappings are clearly not injective (for n 6= j, by the fact that the

elements m,m+Qn ∈ Z[q]/(Qj(q)), Ẑ[q] are both mapped to m ∈ Z[q]/(Qn(q)) by our
definition of the mapping. By the fact that these mappings are surjective, we also see

that we can easily construct an element m ∈ Ẑ[q]. We can choose m0 as a constant in
Z, m1(q) as a polynomial in Z[q] with deg(m1) ≤ 1 and so on.
We will summarize all these observations in the next theorem.

Theorem 4.5. Let m be an element of the Habiro ring. Then it can be uniquely
written as a Habiro expansion, that is

m =
∞∑
n=0

mn(q)Qn(q) (4.13)

with mn ∈ Z[q] and deg(mn) ≤ n. The value m(ζ) is well defined for ζ a root of unity.
Furthermore all elements of the form

∑∞
n=0mn(q)Qn(q) with mn as above, are in fact

elements of the Habiro ring.

The Habiro ring is often called the cyclotomic completion of Z[q], similarly to the ring
Z[q]{n} being the Φn-adic completion of Z[q]. Similar in the ring Z[q]{n} the elements
are only all defined at the roots of Φn; therefore it has the name Φn-adic completion
of Z[q].

One remarkable property of the Habiro ring is that q has an inverse in Ẑ[q], in contrast
with Z[q], where only ±1 are units. We have indeed

q
∞∑
n=0

qnQn(q) =

∞∑
n=0

qn+1Qn(q) =
∞∑
n=0

(1− (1− qn+1))Qn(q)

=

∞∑
n=0

(Qn(q)−Qn+1(q)) = Q0(q) = 1 (4.14)

and therefore q−1 =
∑∞

n=0 q
nQn(q). Therefore all positive powers of q have an inverse

element in Ẑ[q], that is ±q−k = ±(
∑∞

n=0 q
nQn(q))k for all k ∈ N0 by the fact that the

inverse of ±1 is ±1 respectively. It is thought, but not yet proven, that plus or minus

the powers of q are the only elements in Ẑ[q] with an inverse element.
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4.4 A mapping from Z[q] to Ẑ[q]

So far, in the two examples and the Habiro ring, we did not consider the last condition;
that is, the existence of a homomorphism u : Y → X for a projective limit X and some
specified rings Y , as seen in Definition 4.2.
In the case of the Habiro ring, it turns out that Z[q] satisfies the properties of Y , with
the homomorphisms ψn : Z[q] → Z[q]/(Qn(q)) given by m 7→ m (mod Qn(q)). Really

interesting is the mapping u between Z[q] and Ẑ[q], which has to be a homomorphism
by the definition. It seems quite natural to take the mapping which maps m ∈ Z[q]
to its (finite) Habiro expansion. Since this mapping is in fact some kind of identity
mapping (it maps m to m, written in another way), it is obviously a homomorphism,
thus satisfying Definition 4.2. But the question arises how to construct this mapping.
As in Section 3.3, we could try and use the Euclidean division algorithm to find all the
polynomials mi, starting with the highest i with non-zero term, but this forces us to
calculate Qn for each n ∈ N, which is not required. There is another algorithm to find
the (finite) Habiro expansion of a polynomial m. It uses the following other notation
of the Habiro expansion.

m(q) = m0 +m1(q)Q1(q) +m2(q)Q2(q) +m3(q)Q3(q) + ...

= m0 + (1− q)[m1(q) +m2(q)(1− q2) +m3(q)(1− q2)(1− q3) + ...]

= m0 + (1− q)[m1(q) + (1− q2)[m2(q) + (1− q3)[m3(q) + ...]]] (4.15)

The algorithm is as follows

1. Write m(q) = h1(q)(1 − q) + r0 with deg(r0) < 1, as in the Euclidean division
algorithm.

2. From the above discussion we see r0 = m0.

3. If h1(q) 6= 0, we write h1(q) = h2(q)(1− q2) + r1(q) with deg(r1) < 2.

4. We again see r1(q) = m1(q).

5. Repeat the previous two steps, always increasing all non-zero numbers with 1,
that is, first test if hk(q) 6= 0. Then write hk(q) = hk+1(q)(1− qk+1) + rk(q) with
deg(rk) < k + 1, and state rk(q) = mk(q). Then take k = k + 1 and repeat the
cycle.

We can also use this algorithm to calculate the finite terms of an infinite Habiro
expansion, which clearly cannot be done using the Euclidean division algorithm, where
we had to find the highest i with non-zero term mi. We also do not have to calculate
all Qn explicitly. We use this algorithm in the next example.

Example 4.2. As in Example 3.3 we want to examine the Habiro expansion of the
polynomial m(q) = 8− 5q+ 6q2− 2q4− 2q5 + q6 + 2q7− q8. Using a computer or using
old-school long divison on paper we obtain

m(q) = (q7 − q6 − 2q5 + 2q3 + 2q2 − 4q + 1)(1− q) + 7 (4.16)
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Therefore we obtain m0 = 7 and h1(q) = q7 − q6 − 2q5 + 2q3 + 2q2 − 4q+ 1. We again
use the Euclidean division algorithm, but this time we divide h1(q) by 1− q2, giving

h1(q) = (−q5 + q4 + q3 + q2 − q − 1)(1− q2)− 3q + 2 (4.17)

Therefore we obtain m1(q) = −3q + 2 and h2(q) = −q5 + q4 + q3 + q2 − q − 1. We use
the division algorithm twice more to see

h2(q) = (q2 − q − 1)(1− q3) + 0 = h3(q)(1− q3) (4.18)

h3(q) = 0(1− q4) + q2 − q − 1 (4.19)

This results in m2(q) = 0 and m3(q) = q2 − q − 1, and thus we get the same Habiro
expansion as in Equation 3.19 of Example 3.3.

In our examples of the p-adic integers and the Φn-adic completion of Z[q], we also did
not discuss the specific rings Y . In fact, there is a homomorphism between Z and the
ring of p-adic integers, sending an integer to its finite p-adic expansion.
Similarly, there is a homomorphism between Z[q] and Z[q]{n}, which maps a polynomial

in Z[q] to its Φn-adic expansion. We therefore conclude that the rings Ẑ[q], Z[q]{n}

and Zp are in some ways very similar.
We can now extend the diagrams of the projective limits of these systems. For the
ring of p-adic integers we have

Z

mod pj

~~

mod pi

  

p-adic expansion

��
Zp

mod pjuu mod pi ))
Z/pjZ

mod pi
// Z/piZ

For the Φn-adic completion of Z[q] we have

Z[q]

mod Φn(q)j

||

mod Φn(q)i

""

Φn-adic expansion

��
Z[q]{n}

mod Φn(q)jtt mod Φn(q)i **
Z[q]/(Φn(q)j)

mod Φn(q)i
// Z[q]/(Φn(q)i)
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Finally, for the Habiro ring Ẑ[q] we have

Z[q]

mod Qj(q)

}}

mod Qi(q)

!!

Habiro expansion

��

Ẑ[q]

mod Qj(q)tt mod Qi(q) **
Z[q]/(Qj(q))

mod Qi(q)
// Z[q]/(Qi(q))

4.5 A mapping from Ẑ[q] to Z[q]{n}

Since there is are homomorphisms from Z[q] to both Ẑ[q] and Z[q]{n}, we could try

and find a mapping ρn : Ẑ[q]→ Z[q]{n}, to make the triangle some kind of ‘complete’.
Since an element m of the Habiro ring has a well defined value at all primitive nth
roots of unity, it seems logical to expect this element m to have a Φn-adic expansion.

By Corollary 2.8 we have Qk(q) = (−1)k
∏k
j=1 Φj(q)

b k
j
c

and therefore Φn(q)b
k
n
c is the

highest power of Φn which divides Qk. Therefore we have

m(q) =

n−1∑
i=0

mi(q)Qi(q) + Φn(q)

2n−1∑
i=n

(
mi(q)

Qi(q)

Φn(q)

)

+ Φn(q)2
3n−1∑
i=2n

(
mi(q)

Qi(q)

Φn(q)2

)
+ ... (4.20)

This may seem like a proper Φn-adic expansion for m, but it is certainly not. Since
deg(mn−1(q)Qn−1(q)) ≤ (n−1)+ (n−1)n

2 , it is possible to have deg(mn−1(q)Qn−1(q)) ≥
φ(n) for n ≥ 2. Therefore we can write mn−1(q)Qn−1(q) = a(q)Φn(q) + b(q) with
a, b ∈ Z[q] and a non-zero, by the Euclidean division algorithm. This means that the
first sum in Equation 4.20 can also contain a non-zero term with Φn. We will come
back to this problem in a moment.
Introduce the mapping ρn,j for all n, j ∈ N which takes an element m of the Habiro
ring and maps it to Z[q]/(Φn(q)j), by computing the remainder of m after division
by Φn(q)j . This mapping is again a homomorphism. The question arises how to do
this. We see that all terms mi(q)Qi(q) in the Habiro expansion of m with i ≥ jn are
divisible by Φn(q)j , so only the first jn terms of the Habiro expansion are interesting
for this mapping ρn,j . Therefore we can see ρn,j as mapping m to the first jn terms
of its Habiro expansion (in Z[q]/(Qnj(q)) and then compute the remainder modulo
Φn(q)j . Thus we can see ρn,j as a mapping from Z[q]/(Qnj(q)) to Z[q]/(Φn(q)j). If
we increase j and eventually take the projective limit j →∞ we obtain a mapping ρn
from Ẑ[q] to Z[q]{n}, which is again clearly a homomorphism. All these observations
are summarized in the next diagram.
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Ẑ[q]

ρn

,,

πnj // Z[q]/(Qnj(q))
ρn,j // Z[q]/(Φn(q)j)

∞←j
��

Z[q]{n}

We see that, if the Φn-adic expansion of m exists, ρn,j ◦πnj maps m to the first j terms
of this Φn-adic expansion. We will now prove the next theorem.

Theorem 4.6. Let n ∈ N. Then there exists an injective homomorphism ρn : Ẑ[q]→
Z[q]{n} which maps each element m ∈ Ẑ[q] to its unique Φn-adic expansion, that is
m(q) 7→

∑∞
j=0 aj(q)Φn(q)j = m(q) with aj ∈ Z[q] and deg(aj) < φ(n).

Proof. By the fact that the ρn should be an injective homomorphism, the kernel of ρn
should only contain 0. Assume to the contrary that there is an element m ∈ Ẑ[q] which
is mapped to 0 ∈ Z[q]{n}. Then, using the diagram, we obviously have ρn,j◦πnj(m) = 0
for all j ∈ N. Now take a look back at our ‘false’ Φn-adic expansion in Equation 4.20.
If we take j = 1 we see Φn | m and therefore Φn(q) |

∑n−1
i=0 mi(q)Qi(q). Using this we

can rewrite

m(q) = Φn(q)

(∑n−1
i=0 mi(q)Qi(q)

Φn(q)
+

∑2n−1
i=n mi(q)Qi(q)

Φn(q)

)

+ Φn(q)2
3n−1∑
i=2n

(
mi(q)

Qi(q)

Φn(q)2

)
+ ... (4.21)

Now increase j to 2, to obtain Φ2
n | m from the fact that ρn,2 ◦ π2n(m) = 0. Therefore

we have again Φn(q)2 |
(

Φn(q)
(∑n−1

i=0 mi(q)Qi(q)
Φn(q) +

∑2n−1
i=n mi(q)Qi(q)

Φn(q)

))
, which results in

m(q) = Φn(q)2

(∑2n−1
i=0 mi(q)Qi(q)

Φn(q)2
+

∑3n−1
i=2n mi(q)Qi(q)

Φn(q)2

)
+ ... (4.22)

We can continue this process to see that m is divisible by Φn(q)j for arbitrary high
j ∈ N. Therefore m must be equal to 0.

Since this homomorphism is injective we see that each element of Ẑ[q] is mapped to a
unique element in Z[q]{n}, which clearly has a Φn-adic expansion. The finite terms of
the Φn-adic expansion of m are given by ρn,j ◦ πnj(m) for each j ∈ N.

Example 4.3. For example, let us consider the infinite sum m(q) =
∑∞

n=0Qn(q),
which is clearly an element of the Habiro ring. Since the cyclotomic polynomial Φn(q)
divides Qk(q) exactly b knc times, the Φn-adic expansion of m is given by

m(q) = (1 +Q1(q) + ...+Qn−1(q)) + Φn(q)
Qn(q) +Qn+1(q) + ...+Q2n−1(q)

Φn(q)

+ Φn(q)2Q2n(q) +Q2n+1(q) + ...+Q3n−1(q)

Φn(q)2
+ ...
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5 Unique identification with values at the roots of unity

In the previous section we already mentioned that all elements of the Habiro ring have
well defined values in C at all roots of unity. We will denote the set of all roots of
unity by ZQ̄. As mentioned in the introduction, it even turns out that the elements
are uniquely determined by their values at a certain subset of the roots of unity. This
whole section will be devoted to prove this statement.

Example 5.1. In R[q] and Z[q], we know that a polynomial f of degree n is uniquely
determined by its values f(x) at n + 1 different points x. For example, if we have
f(0) = 1, f(1) = 2 and f(2) = 5 for a polynomial of degree 2, f(q) = q2 + 1.
This maybe seems quite irrelevant, since it is familiar to use that polynomials are
uniquely detemermined by its (function) values. But this is not the case in each ring.
If we take for example the polynomial qp − q over the finite field with p elements Fp.
Since xp = x for all elements in this finite field, we have qp − q = 0 on Fp, but it
is not identically to the 0-polynomial. Therefore we see that values do not uniquely
determine the coefficients in some cases.

We will make our previous statement more formal.

Theorem 5.1. Let Z be a subset of the set all roots of unity ZQ̄ containing infinitely
many elements of prime power order, that is, of order pkii for some prime pi and

ki ∈ N. Denote PZ =
∏
ζ∈Z Z[ζ]. Then the mapping εZ : Ẑ[q]→ PZ given by m(q) 7→

(m(ζ))ζ∈Z is an injective homomorphism.

We will first prove that this mapping is a homomorphism. The value of the function
1 is 1 at all roots of unity. Since all elements of the Habiro ring have well defined

values at all roots of unity ζ, we have m(ζ) =
∑ord(ζ)−1

i=0 mi(ζ)Qi(ζ) for all elements
m. Thus we see easily m(ζ) + n(ζ) = (m+ n)(ζ) and m(ζ)n(ζ) = (mn)(ζ). Therefore
all conditions for a ring homomorphism are satisfied.
Proving the fact that this mapping is injective is a lot harder. We therefore decompose
the mapping εZ into two separate mappings as displayed in the diagram.

Ẑ[q]

ρn

��

σNZ // PNZ
γZ // PZ

Z[q]{n}

The mappings are in fact given by

• σT : Ẑ[q] → PT for all T ⊂ N where PT =
∏
t∈T Z[q]/(Φt(q)) given by m(q) 7→

(m(q) (mod Φt(q)))t∈T .

• γZ : PNZ → PZ for all Z ⊂ ZQ̄ and NZ = {ord(ζ)|ζ ∈ Z}. The mapping is
defined as γ((mn(q))n∈NZ ) = (mn(ζ))ζ∈Z .
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5.1 Injectivity of σT

We first pose the theorem to be proven in this section. We do not take T ⊂ N to be
NZ in this case, but prove a more general statement.

Theorem 5.2. For any T ⊂ N containing infinitely many prime powers, the mapping

σT : Ẑ[q]→ PT given by m(q) 7→ (m(q) (mod Φt(q)))t∈T is injective.

Proof. Suppose to the contrary that this mapping is not injective. Then we know that
the kernel does not consist only of the zero element of the Habiro ring. In other words,

there is an non-zero element m ∈ Ẑ[q] such that σT (m) = 0.

We now recall the mapping ρn : Ẑ[q] → Z[q]{n} from Section 4.5 given by m(q) 7→∑∞
j=0 aj(q)Φn(q)j with aj ∈ Z[q] and deg(aj) < φ(n). This mapping is just a Φn-adic

expansion of m. By Theorem 4.6 we know that this mapping is injective and therefore
ρn(m) 6= 0 and we can write ρn(m) =

∑∞
j=0 aj(q)Φn(q)j , where al(q) 6= 0 for at least

one l ∈ N0.
Since σT (m) = 0 we have by definition of σT that m(q) ≡ 0 (mod Φt(q)) for all
t ∈ T and therefore Φt | m. If we denote the (infinitely many) prime powers in T by
r1, r2, ..., where ri < ri+1 for all i, we claim to have Φr1Φr2 · · ·Φrk | m for every k ≥ 1.
Since we have already proven the case k = 1 above, we suppose k ≥ 2. Assume that
Φr1Φr2 · · ·Φrk−1

| m. Then we can write

m(q) = Φr1(q)Φr2(q) · · ·Φrk−1
(q)d(q) (5.1)

= Φr1(q)Φr2(q) · · ·Φrk−1
(q)(b(q) + Φrk(q)c(q)) (5.2)

with b, c, d ∈ Ẑ[q].
We obtain the last equation by taking b(q) ≡ d(q) (mod Φrk(q)). Following the last
equation and the fact that Φrk | m, we see: Φrk | Φr1Φr2 · · ·Φrk−1

b. We also have
Φrk(ζrk) = 0 for ζrk a primitive rkth root of unity. Thus we obtain the equation:

Φr1(ζrk)Φr2(ζrk) · · ·Φrk−1
(ζrk)b(ζrk) = 0 (5.3)

Using the fact that ri < rk for all i < k, we have that ζrk is not a ri-th root of
unity and therefore Φri(ζrk) 6= 0 for i = 1, 2, ..., k − 1. Thus we obtain by Equation
5.3 that b(ζrk) = 0. Since ζrk is a zero of b, we know that the minimal polynomial
of ζrk must be a divisor of b. Since the minimal polynomial of a root of unity is its
cyclotomic polynomial Φrk , we have Φrk | b and therefore we obtain from Equation 5.2
Φr1Φr2 · · ·Φrk | m, as requested.
We already observed that ρn(m) is just the Φn-adic expansion of m, that is, we are
writing m in a base consisting of powers of Φn instead of product of powers of q and
the polynomial Qj . Therefore, ρn(m) is still divisible by the same polynomials, and
therefore also by Φr1Φr2 · · ·Φrk .
Furthermore we have Φ1(q)l | m by definition of l in the beginning of this proof. We
observe that 1 is the only zero of Φ1(q)l and is not a zero of Φr1Φr2 · · ·Φrk by the fact
that 1 is a first root of unity and Φr1Φr2 · · ·Φrk has precisely the r1st, r2nd, ..., rkth
roots of unity as its zeroes with r1, r2, ..., rk prime powers, which are therefore greater
than or equal to 2. Since Φ1(q)l = (q − 1)l is monic and Φr1Φr2 · · ·Φrk is a product of
monic polynomials, we have gcd(Φ1(q)l,Φr1Φr2 · · ·Φrk) = 1. Since both divide ρn(m),

we must also have Φr1Φr2 · · ·Φrk |
m(q)

Φ1(q)l
.
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For simplicity we will define m̄(q) = m(q)
Φ1(q)l

. By Corollary 2.11 we obtained Φri ∈
(pi,Φ1) for each i. Therefore we can write Φri(q) = vi(q)pi +wi(q)Φ1 for some vi, wi ∈
Z[q]. Thus we have for each k ≥ 1 the following equation

Φr1(q) · · ·Φrk(q) = v1(q) · · · vk(q)p1 · · · pk + Φ1s(q) (5.4)

Here s is a unique polynomial in Z[q]. We now see Φr1Φr2 · · ·Φrk ∈ (p1p2 · · · pk,Φ1)
and by the fact that Φr1Φr2 · · ·Φrk | m̄, we have m̄ ∈ (p1p2 · · · pk,Φ1).
Now take a look back at the Φn-adic expansion of m and take n = 1, which gives
Φ1(q) = q − 1. Then we see m̄(q) = ρ1(m)

Φ1(q)l
=
∑∞

j=0 aj+lΦ1(q)j . Since aj+lΦ1(q)j ∈
(Φ1(q)) ⊂ (p1p2 · · · pk,Φ1) for all j ≥ 1 and m̄ ∈ (p1p2 · · · pk,Φ1) we also have al =
m̄(q)−

∑∞
j=1 aj+lΦ1(q)j ∈ (p1p2 · · · pk,Φ1).

By the fact that al is a number, we cannot have Φ1 | al unless al = 0 and we must
have p1p2 · · · pk | al. Now we claim that al = 0. Suppose to the contrary that al 6= 0.
Then there is a t ∈ N0 such that 2t ≤ |al| < 2t+1. From the above result we have
p1p2 · · · pt+1 | al. But, since 2 is the smallest prime, we obtain p1p2 · · · pt+1 ≥ 2t+1 >
|al|. Therefore, it is impossible to have p1p2 · · · pt+1 | al unless al = 0.
This is a contradiction and thus we have proven the theorem.

5.2 Injectivity of γZ

In Theorem 5.1 was stated that Z should be a subset of the set all roots of unity
containing infinitely many elements of prime power order. A bit further we defined
NZ = {ord(ζ) | ζ ∈ Z}. Consequently we see that NZ ⊂ N is containing infinitely
many prime powers, and thus NZ is satisfying the conditions of T in Theorem 5.2.
Now will we prove the injectivity of γZ

Theorem 5.3. Let Z be a subset of the set all roots of unity ZQ̄ containing infinitely
many elements of prime power order and NZ be defined as above, then the mapping:
γZ : PNZ → PZ defined as γ((mn(q))n∈NZ ) = (mn(ζ))ζ∈Z is injective.

Proof. An element of PNZ contains an element of Z[q]/(Φn(q)) for each unique number
n, which is an order of a root of unity ζ ∈ Z. The mapping γZ evaluates the element of
Z[q]/(Φn(q)) in all ζ ∈ Z with order n, and does this for all n ∈ NZ . Therefore we ob-
serve that γZ is the direct product of the mapping Z[q]/(Φn(q))→

∏
ζ∈Z,ord(ζ)=n Z[ζ],

given by m(q) 7→ (m(ζ))ζ∈Z,ord(ζ)=n. We claim that this mapping is a injective ho-
momorphism. The homomorphism property can be obtained very quickly, since 1 is
mapped to 1 (the order of 1 as root of unity is 1), and the product and addition struc-
ture is preserved. If there is one ζ of order n such that m(ζ) = 0, then by definition ζ
is a zero of f and thus the minimal polynomial of ζ, the cyclotomic polynomial Φn(q),
divides f . Since m(q) ∈ Z[q]/(Φn(q)), we have m(q) = 0. Therefore, if (f(ζ)) = 0
for any ζ we have m(q) = 0. Thus the kernel consist of only the 0-function, and the
homomorphism is injective.
Since γZ is the direct product of these injective homomorphisms, it is also injective
and the theorem is proven.
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We now conclude with the proof of Theorem 5.1

Proof. We already stated that the mapping εZ is a homomorphism. Furthermore we
see that: εZ = γZ ◦σNZ and both are injective mappings for Z satisfying the conditions
of the theorem. Thus is εZ an injective homomorphism.

The consequences of this theorem might not be clear directly. But, by the fact that
functions are determined by their function values, it means that we can regard the
elements of the Habiro ring as functions. We see, in contrary to the polynomial qp− q
over Fp, that a element of the Habiro ring is equal to 0 if it is 0 at a certain set of
points. This is one of the most important properties of the Habiro ring, and therefore
Habiro used it in his description of the ring, quoted in the introduction. To actually do
(function) analysis on these elements, we need to introduce differentiation on elements
of the Habiro ring, but we will not further discuss that.
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