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Abstract

In this thesis, I discuss Hermite’s continued fraction algorithm. First, I talk
about the ordinary continued fraction algorithm and some of its properties.
After that, I treat Hermite’s algorithm, visualize it and deduce some of its
properties. Then, I compare the two algorithms, by both comparing the
properties and actually calculating approximations using both algorithms
in Mathematica. It turns out that for most numbers, Hermite’s algorithm
gives a more precise approximation than the ordinary continued fraction
algorithm. However, the ordinary algorithm is easier to execute by hand
and is more intuitive.
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Chapter 1

Introduction

A systematic way of approximating a real number α is by using continued
fractions. A continued fraction is an expression of the form

α = a0 +
1

a1 + 1
a2+

1

...

, (1.1)

where ai are integers. The algorithm for computing this continued fraction
for α ∈ R is as follows.

x0 = α

a0 = [x0], x1 = 1/{x0}
a1 = [x1], x2 = 1/{x1}

...

an = [xn], xn+1 = 1/{xn}
...

Another way of writing 1.1 is as

α = [a0, a1, a2, . . . ].

Examples of continued fraction expansions are:

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, . . . ]

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ]
√

2 = [1, 2, 2, 2, 2, 2, . . . ].
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Theorem 1.0.1 Let a0, a1, . . . ∈ R. Suppose

p−2 = 0 p−1 = 1 p0 = a0 pn = anpn−1 + pn−2 (n ≥ 0)

q−2 = 1 q−1 = 0 q0 = 1 qn = anqn−1 + qn−2 (n ≥ 0)

Then, for every n ≥ 0 and x ∈ R+,

[a0, a1, . . . , an−1, x] =
xpn−1 + pn−2
xqn−1 + qn−2

.

Proof. We will prove this by induction on n. For n = 0, we have

[x] =
xp−1 + p−2
xq−1 + q−2

= x,

so the statement holds. Now, assume it holds for n ≥ 0. Note that we can
write

[a0, a1, . . . , an, x] = [a0, a1, . . . , an +
1

x
].

We now have n terms, for which the theorem holds, so we have

[a0, a1, . . . , an, x] =
(an + 1/x)pn−1 + pn−2
(an + 1/x)qn−1 + qn−2

=
(anx+ 1)pn−1 + pn−2x

(anx+ 1)qn−1 + qn−2x

=
x(anpn−1 + pn−2) + pn−1
x(anqn−1 + qn−2) + qn−1

=
xpn + pn−1
xqn + qn−1

,

so the statement holds for n+ 1, which completes the proof.

When we take x = an, it follows that

[a0, a1, . . . , an−1, an] =
anpn−1 + pn−2
anqn−1 + qn−2

=
pn
qn
.

We call pn
qn

the convergents of the continued fraction.

Theorem 1.0.2 Let the notation be as above. Then, for all n ≥ 0

pn−1qn − pnqn−1 = (−1)n.
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Proof. We will prove this by induction on n. For n = 0, we have p−1q0 −
p0q−1 = 1 = (−1)0. Assume it holds for n ≥ 0. Then,

pnqn+1 − pn+1qn = pn(an+1qn + qn−1)− qn(an+1pn + pn−1)

= pnqn−1 − pn−1qn = −(−1)n = (−1)n+1.

Theorem 1.0.3 For an irrational number α, the convergents p/q satisfy the
following inequality ∣∣∣∣pq − α

∣∣∣∣ < 1

q2
. (1.2)

Proof. Denote α = [a0, a1, . . . , an, xn+1] = xn+1pn+pn−1

xn+1qn+qn−1
, with xn+1 ≥ 1.

Then, ∣∣∣∣pnqn − α
∣∣∣∣ =

∣∣∣∣pnqn − xn+1pn + pn−1
xn+1qn + qn−1

∣∣∣∣
=

∣∣∣∣pn(xn + 1qn + qn−1)− (xn+1pn + pn−1)qn
qn(xn+1qn + qn−1)

∣∣∣∣
=

∣∣∣∣ pnqn−1 − pn−1qnqn(xn+1qn + qn−1)

∣∣∣∣ =
1

qn(xn+1qn + qn−1

<
1

xn+1q2n
≤ 1

q2n
.

This means that by computing the convergents, we get very good rational
approximations for irrational numbers with respect to the denominators.

Charles Hermite (1822-1901) came up with a different way of approximat-
ing irrational numbers [3, p. 167]. For approximating a positive irrational
number α, he uses a binary positive definite quadratic form. He then finds
integers p and q which satisfy the inequality∣∣∣∣pq − α

∣∣∣∣ ≤ 1√
3q2

,

which means that p/q is an even better approximation of a rational number
α than the one given by the regular continued fraction algorithm. In this
thesis, we will discuss Hermite’s continued fraction algorithm.
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Chapter 2

The Hermite Approximation

The Hermite Approximation is based on quadratic forms. First, we need
the notion of these quadratic forms and discuss some properties necessary
for the Hermite Approximation.

2.1 Quadratic forms

Definition 2.1.1 A quadratic form is a polynomial whose nonzero terms all
have degree two.

In n variables, we can write a form as

Q(x1, . . . , x2) =

n∑
i,j=1

qijxixj , where qij = qji ∈ R.

Definition 2.1.2 A binary quadratic form is a quadratic form in two vari-
ables.

In general, we can write a binary quadratic form as

Q(x, y) = ax2 + 2bxy + cy2,

with a, b, c ∈ R. Sometimes, we will write this form as Q = (a, 2b, c). When
a, b, c ∈ Z, we will call the form integral. In this thesis, we will only discuss
positive definite forms.

Definition 2.1.3 A positive definite binary quadratic form is a binary quadratic
form which is greater than zero for any (x, y) 6= (0, 0).
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We define the discriminant of Q to be D = ac− b2. Note that the discrimi-
nant of a positive definite binary quadratic form is positive. From now on,
we will just call a positive definite binary quadratic form a form. We will
be interested in reduced forms, which are defined as follows.

Definition 2.1.4 A form Q(x, y) = ax2 + 2bxy + cy2 is called reduced if

|2b| ≤ a ≤ c.

Gauss introduced a way of reducing a form, i.e. finding a substitution which
turns a non-reduced form into a reduced one.

Definition 2.1.5 (Gauss’ reduction) Let Q(x, y) = ax2 + 2bxy + cy2. Let
k = ba+2b

2a c.
(1) If a < |2b|, replace x by x− ky. Go to (2).
(2) If a > c, replace x by −y and y by x. Go to (3).
(3) If the form is reduced, stop, else go to (1).

By combining the substitutions for x and y, we can reduce the formQ(x, y) =
ax2+2bxy+y2 to the form Q′(X,Y ) = aX2+2bXY +Y 2, by a substitution

x = m1X +m2Y,

y = n1X + n2Y.

Lemma 2.1.6 Using the notation above, m1n2 − n1m2 = 1.

Proof. Note that for the intermediate substitutions (x, y) = (X − kY, Y )
and (x, y) = (−Y,X) this holds. Then it has to hold for any concatenation
of these substitutions as well.

Lemma 2.1.7 A form and its reduced form have the same discriminant.

Proof. It suffices to show that both transformations keep the discriminant
intact. First, note that

Q(x−ky, y) = a(x−ky)2+2b(x−ky)y+cy2 = ax2+2(b−ak)xy+(ak2−2bk+c)y2.

The discriminant is

D = a2k2 − 2abk + ac− b2 + 2abk − a2k2 = ac− b2.

Secondly, note that

Q(−y, x) = cx2 − 2bxy + ay2,

so D = ac − b2. We conclude that a form and its reduced form have the
same discriminant.
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Reduced forms have the following property which will be used by Hermite
in his approximation.

Theorem 2.1.8 Let Q(x, y) = ax2 + 2bxy + cy2, x, y ∈ R be a reduced
form. The minimum of Q for integers x and y, not both negative, is a and
is assumed for (x, y) = (1, 0).

Proof. Clearly,

Q(x, y) = ax2 + 2bxy+ cy2 ≥ amin(x2, y2)−|2b|min(x2, y2) + cmin(x2, y2),

so
Q(x, y) ≥ (a− |2b|+ c) min(x2, y2).

If x or y is 0, then clearly Q(x, y) ≥ a. If xy 6= 0, then since |2b| ≤ a ≤ c,
Q(x, y) ≥ a − |2b| + c ≥ a, so the minimum of Q is assumed at a. Since
Q(1, 0) = a, the minimum is attained for (x, y) = (1, 0).

For a reduced form, the conditions |2b| ≤ a and |2b| ≤ c give 4b2 ≤ ac. Since
D = ac− b2, this gives 3ac ≤ 4ac− 4b2 = 4D, so ac ≤ 4

3D. Since a ≤ c, we
must have

a ≤
√

4

3
D. (2.1)

This will be useful for the Hermite Approximation.

2.2 Hermite’s Idea

Hermite looked at the following form:

Q(x, y) = (x− αy)2 + ty2, (2.2)

where α and t > 0 are real numbers. By using the reduction algorithm, we
can find a reduced form

Q′(X,Y ) = aX2 + 2bXY + 2Y 2

together with a substitution

x = pX + p′Y

y = qX + q′Y,
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which transforms Q to Q′. Since by Theorem 2.1.8 the minimum of Q′ is
attained for (X,Y ) = (1, 0), for Q it has to be attained for (x, y) = (p, q).
Note that we can write

Q(x, y) = x2 − 2αxy + (α2 + t)y2, (2.3)

so D = α2 + t−α2 = t. From Lemma 2.1.7, it follows that the discriminant
for Q′(x, y) is D as well. Hermite noticed that the minimum of Q′ is a,
which is attained for (X,Y ) = (1, 0). Since

Q′(X,Y ) = Q(pX + p′Y, qX + q′Y ),

it follows that the minimum a is equal to a = Q′(1, 0) = Q(p, q) = (p −
αq)2 + tq2. Combining this result with (2.1) and D = t, we get

(p− αq)2 + tq2 ≤ 2

√
t

3
. (2.4)

Since for every two real numbers β and γ we have β2−2βγ+γ2 = (β−γ)2 ≥
0, we have β2 + γ2 ≥ 2βγ. Applying this to (2.4), we get

2q|p− aq|
√
t ≤ 2

√
t√
3
.

We can assume q 6= 0. Then we get∣∣∣∣pq − α
∣∣∣∣ ≤ 1√

3q2
. (2.5)

This means that for a real number α, for each t > 0 we can find integers p
and q such that inequality (2.5) holds. So if α is irrational, the fraction p

q
gives an even better rational approximation of α, with respect to q than by
using continued fractions.
The trick now is that for approximating a positive irrational number α, we
look at the form (2.2) and let t descend from ∞ to 0. Every time the form
gets irreduced, we reduce the form and we obtain a p and q. This way, we
get a sequence of fractions which approximate α. Hermite has shown that
these fractions possess multiple properties. Before we discuss them, we’ll
first show a visualisation of the algorithm.
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Chapter 3

Visualisation

3.1 The upper half-plane

For the visualisation, we will have a look at the upper half-plane (see figure
3.1). This upper half plane, denoted with H, consists of the complex numbers
whose imaginary parts are positive:

H = {x+ iy | y > 0 and x, y ∈ R}.

The upper half-plane can be divided in domains, which are the triangles in
the figure, whose sides are line or circle segments. The vertex at infinity
or on the horizontal axis will be denoted by tip, the other two will just be
called vertices. The triangles have a base, which is the side on the opposite
of the tip, and two sides. Two domains are important: the fundamental
domain, denoted with D0 and the domain D1. The fundamental domain
has the vertices A = −1

2 + i
√

3/2, B = 1
2 + i

√
3/2 and the tip at ∞. D1

also has vertices A and B, and the tip at O. Note that D0 is bounded by
the lines x = ±1

2 and the unit circle.
Every domain can be transformated into another domain, by using a trans-
formation

τ ′ =
aτ + b

cτ + d
,

which transforms a point τ to τ ′. Here, a, b, c and d are integers such that
ad−bc = 1. From just the fundamental domain, we can obtain every domain
using these transformations. The transformations can be represented by
matrices (

a b
c d

)
,
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with determinant 1. These matrices can be formed by repeated multiplica-
tion of the following two matrices:

T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
.

Note that

T−k =

(
1 −k
0 1

)
,

so T−k and S correspond to the first two steps of Gauss’ reduction algorithm
as defined in Definition 2.1.5.

Figure 3.1: The upper half-plane

3.2 Hermite’s approximation

There is a one-to-one correspondence from the positive definite binary quadratic
forms to H, given by

ax2 + 2bxy + cy2 ←→ −b+ i
√
ac− b2
a

. (3.1)

Since for positive definite forms D = ac− b2 > 0, this always gives points in
the upper half plane.
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Lemma 3.2.1 A form is reduced if and only if its corresponding point lies
in the fundamental domain D0.

Proof. First, note that a > 0, since the imaginary part of the left hand side
of (3.1) has to be positive. Now, note that the real part of the left hand side

of (3.1) is −ba . Since we have −ba ≤ ±
1
2 , we have |b|a ≤

1
2 , since a > 0. This

gives |2b| ≤ a.
Furthermore, since D0 is bounded by the unit circle, we have√

c

a
=

√
b2

a2
+
ac− b2
a2

≥ 1,

which gives c ≥ a. We now have |2b| ≤ a ≤ c, so the form is reduced.
Since all steps are equivalences, we also have that reduced forms correspond
to points in D0, so we have proven the lemma.

Now, let’s have a look at

Q(x, y) = (x− αy)2 + ty2, (3.2)

with α and t > 0 again real numbers. Then, since in this case a = 1, b = −α
and D = t, see (2.3), we get the one-to-one correspondence

(x− αy)2 + ty2 ←→ α+ i
√
t.

Note that for x
y = α ± i

√
t, the form (3.2) is zero. We will call the point

z = α+i
√
t in the upper half-plane the representative point of Q. From now

on, we will assume α ∈ (−1
2 ,

1
2). z is situated on the line x = α as shown in

figure 3.1 and it travels from ∞ to 0.
On its way down, the point travels through multiple successive domains,
which become smaller while approaching the horizontal axis. Let D be one
of the domains which z traverses. The transformation

τ ′ =
aτ + b

cτ + d
,

with ad− bc = 1, used to obtain D from D0 transforms a z′ in D0 to our z
in D. That means that there exists a z′ in D0, such that

z =
az′ + b

cz′ + d
. (3.3)

By using the corresponding substitution (x, y) = (aX + bY, cX + dY ) on Q,
we get an equivalent form of Q. Since z is the representative point of Q, the
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point z′ in D0 represents Q(aX + bY, cX + dY ). By Lemma 3.2.1, this last
form is reduced, since it corresponds to a point in D0. This means that for
X = 1, Y = 0, we have (x, y) = (a, c), which is the minimum of Q. On the
other side, in (3.3), we can see that z = a

c corresponds to z′ =∞, the tip of
D0. This means that z must be the tip of D.
We can now give the following interpretation of Hermite’s algorithm:

Interpretation: To find approximations of an irrational number α, we
let a point in the upper half-plane travel along the line x = α, down from ∞
to the horizontal axis. We take the x-coordinates of the tips of the domains
which the point traverses successively.

For α as in Figure 3.1, we get the points ∞, 0, 1
2 , and so on.
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Chapter 4

Properties

4.1 Basic properties

Hermite himself has shown multiple properties of his approximation method.
Some others were shown by Humbert in his article in le Journal de Mathématiques
Pures et Appliquées. We start with the following lemma.

Lemma 4.1.1 If α is irrational, the line x = α will not go through a vertex
of any domain.

Proof. Assume, to the contrary that α goes through the vertex of a domain.
Then by a modular substitution like (3.3) with a, b, c and d integers, we can
transform it to the vertex B of D0. However, B has has x-coordinate 1

2 ,
which is impossible since α is irrational. Now, it follows that α doesn’t go
through a vertex of any domain.

We conclude that the mobile point z passes a domain through either a base
or a side. Note that when two domains are adjacent by a side, they have
the same tip (see Figure (3.1)).

Theorem 4.1.2 Let p
q and p′

q′ be two successive Hermite fractions. Then,

pq′ − p′q = ±1.

Proof. Let D be the last domain with tip p
q which x = α traverses from

∞ to 0. It leaves D through a base, since otherwise it will enter another
domain with the same tip. Let the domain which it enters be D′, with tip
p′

q′ . From the same argument, it follows that x = α will enter D′ through the

base. There is a transformation like (3.3) which transforms D to D0 and D′
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to the domain adjacent to D0 by the base, which is D1. We let

z 7→ az + b

cz + d

be this map. Then, the tip of D0, which is∞ to corresponds to p
q , the tip of

D. Moreover, the tip of D1, which is 0, corresponds to the tip of D′, which
is p′

q′ . In other words, we want

a

c
=
p

q
, and

b

d
=
p′

q′
.

Since ad− bc = 1, we know that a and c are coprime, as are b and d. Since
both p and q, and p′ and q′ are coprime as well, this gives

a = δ1p, b = δ2p
′

c = δ1q, d = δ2q
′,

with δ1, δ2 ∈ {−1,+1}. Now, it follows that since ad − bc = 1, δ1δ2pq
′ −

δ1δ2p
′q = 1, so

pq′ − p′q = ±1,

which proves the theorem.

Remark: In fact, this is a statement which holds for two convergents of the
ordinary continued fraction algorithm as well (see Theorem 1.0.2).

We now want to know how we can find a fraction when two consequtive
fractions are given.

4.2 Finding the next fraction

We will use the notation of the previous section. First, note that all vertices
of the modular domains with tip at ∞ lie on the line AB, which has the

equation y =
√
3
2 . We are interested in the vertices of the domains with the

tip at p′

q′ (we will later see why). In Figure 4.1, we can see that they will
all lie on a circle. To find the equation of this circle, first note that we need
a transformation which transforms ∞ to p′

q′ . Then, we want to know what

this transformation does to y =
√
3
2 . Choose p, q ∈ Z such that p′q− pq′ = 1.

Now,

z =
p′z′ + p

q′z′ + q
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is a mapping which transforms z′ = ∞ to z = p
q . Now, we want to know

what this mapping does to the line AB. First, we rewrite this as

z − p′

q′
=
p′z′ + p

q′z′ + q
− p′

q′
=
p′q′z′ + pq′ − p′q′z′ − p′q

q′(q′z′ + q)
=

−1

q′(q′z′ + q)
.

This gives
1

z − p′

q′

= −q′(q′z′ + q).

We know that the imaginary part of the right-hand side is −q′2
√
3
2 , since

z′ is on the line AB with equation y =
√
3
2 . For the imaginary part of the

left-hand side, rewrite z = u+ iv. Then,

1

u− p′

q′ + iv
=

u− p′

q′ − iv

(u− p′

q′ )
2 + v2

.

Comparing the imaginary parts, now gives

v

(u− p′

q′ )
2 + v2

= q′2
√

3

2
,

so we know that

C : q′2(u2 + v2)− 2
p′

q′
u− 2√

3
v + p′2 = 0. (4.1)

Note that this circle touches the horizontal u-axis at v = p′

q′ . Denote by m

and m′ the two points where x = α intersects C (see Figure 4.1).

Now, let p
q and p′

q′ be two consecutive Hermite fractions. We want to find

the next one, say p′′

q′′ . We know that p′q− pq′ = δ, with δ = ±1. Take a look
at the substitution

z =
p′z′ + pδ

q′z′ + qδ
. (4.2)

Since p′qδ − pq′δ = 1, this substitution is modular. It changes the points
z = p′

q′ to z′ = ∞ and z = p
q to z′ = 0. Let D be the last domain with tip

p
q and D′ be the first domain with tip p′

q′ which x = α traverses. Then, D

and D′ are necessarily adjacent by the base. Since D0 and D1 are the only
couple of domains with tips at ∞ and 0 which are adjacent by their bases,
this means that transformation (4.2) transforms D to D0 and D′ to D1.
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Figure 4.1: The circle C

By this transformation, the circle C becomes the line AB, and m′ and m

become points M ′ and M on the line y =
√
3
2 . The base ab which D and

D′ share becomes the arc AB, and the arc am′b becomes the line segment
AB. It now follows that M lies on this line segment, so it lies in domain D1.
We also know that m lies in a domain D′′ which has a tip which is different
from the tip of D′, since m is the intersection of x = α with C. We want to
know the tip, since this will become our next fraction p′′

q′′ . It suffices to find
the tip of the domain in which M lies, since by transformation (4.2) we can

then find the tip of D′′, which is p′′

q′′ .

Note that, since M lies on y =
√
3
2 , the tip of the domain in which M lies

is an integer, call this s. We now know that the x−coordinate of M lies in
between s− 1

2 and s+ 1
2 . If we can compute this x−coordinate, we will know

s so we can compute p′′

q′′ .

From (4.1), we can compute the intersections with x = α. To do so, substi-
tute α for u and solve for v. This gives

q′2(α2 + v2)− 2p′q′α− 2√
3
v + p′2 = 0,
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so

v =
1

q′2

(
1√
3
±
√

1

3
− q′2(p′ − q′α)2

)
.

This means that

m = α+
i

q′2

(
1√
3
−
√

1

3
− q′2(p′ − q′α)2

)
and m′ = α+

i

q′2

(
1√
3

+

√
1

3
− q′2(p′ − q′α)2

)
.

Remark: Since the square root in m has to be real, we must have

q′2(p′ − q′α)2 ≤ 1

3
,

so ∣∣∣∣p′q′ − α
∣∣∣∣ ≤ 1√

3q′2
.

This is the same as (2.5), but now obtained geometrically.

Note that we can rewrite (4.1) to

C : (u− p′

q′
)2 + (v − 1

q′2
√

3
)2 =

1

3q′4
.

We can now see that the radius of this circle is 1√
3q′2

. If the line x = α goes

through a domain with tip p′

q′ , the line must intersect the circle C. This

means that the distance between α and p′

q′ has to be smaller than the radius
of this circle. This is yet another way of interpreting this inequality.

If we fill in the value of m for z in (4.2), we can compute z′, whose real
part will be the x−coordinate of M . Now, write

q′(p′ − q′α) = εν,

with ε = ±1, such that ν is always positive. Then, after some calculation,
we can find the x−coordinate of M , which is

−qδ
q′

+
ε

2ν
(1 +

√
1− 3ν2).

Now, since this lies in between s− 1
2 and s+ 1

2 , we must have

s =

⌊
−qδ
q′

+
ε

2ν
(1 +

√
1− 3ν2) +

1

2

⌋
.
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The same calculation gives that the x−coordinate of M ′ is

−qδ
q′

+
ε

2ν
(1−

√
1− 3ν2).

This means that
p′′

q′′
=
p′s+ pδ

q′s+ qδ
.

This gives us the following theorem.

Theorem 4.2.1 Let p
q and p′

q′ be two successive Hermite fractions. Denote

δ = p′q − pq′ = ±1, q′(p′ − q′α) = εν, with ε = ±1 such that ν is positive,
and

s =

⌊
−qδ
q′

+
ε

2ν
(1 +

√
1− 3ν2) +

1

2

⌋
.

Then, the next fraction is given by

p′′

q′′
=
p′s+ pδ

q′s+ qδ
.

Remark: Since we know the first two fractions are 1
0 and 0

1 , we have now
found another way of obtaining the Hermite fractions.

We will now have a look at the denominators of the Hermite fractions and
conclude that they increase, meaning that we get better approximations the
longer we continue with the algorithm.

4.3 Denominators

The transformation (4.2) transforms m′m to a circular arc which contains

the points M and M ′. The circular arc M ′M lies above the line y =
√
3
2 ,

so since m′m crosses domains with tip p
q , we must have that M ′M crosses

domains with tip ∞. The number of these domains is |s|+ 1, which is clear
from Figure 3.1. This means that the number of domains with tip p

q which
x = α crosses is also |s| + 1. Since the x = α enters its first domain with
tip p

q through the base and must leave the last one through the base, there
must be at least two domains, so |s|+ 1 ≥ 2, so |s| ≥ 1.
Since the x−coordinate of M lies in between s − 1

2 and s + 1
2 , and the

x−coordinate ofM ′ in between−1
2 and 1

2 , the difference of the x−coordinates
of M and M ′ has the sign of s. We know that this difference is also equal
to

ε

ν
(1 +

√
1 + 3ν2),
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so since ν > 0, we have that s and ε have the same sign. In other words,
εs = |s|. We can now also write (using the notation of Theorem 4.2.1)

p′′

q′′
=
p′εs+ pδε

q′εs+ qδε
=
p′|s|+ pδε

q′|s|+ qδε
. (4.3)

Theorem 4.1.2 gives us that p′|s|qδε− q′|s|pδε = 1, so

(p′|s|+ pδε)qδε− (q′|s|+ qδε)pδε = 1,

so p′|s| + pδε and q′|s| + qδε are relatively prime. Assume p′′ and q′′ are
relatively prime as well (we can always reduce the fraction such that this
holds). We know that p′′ and q′′ correspond to the numerator and the
denominator of (4.3) respectivily, except for maybe a sign change.
Let’s have a look at the denominator. If δε = 1, it is clear that q′|s|+qδε > 0,
since q′, |s| and q are positive.
Let now δε = −1. Then, using the notation from Theorem 4.2.1, we find
that p′q − pq′ = δ = −ε and q′(p′ − q′α) = εν, so p′q − pq′ and p′ − q′α have

opposite sign. If p′ − q′α > 0, this means that p′

q′ − α > 0, so p′

q′ > α. Then,

p′q− pq′ is negative, so p′

q′ −
p
q < 0, so p′

q′ <
p
q , so p

q >
p′

q′ > α. If p′− q′α < 0,

it follows that p
q <

p′

q′ < α. We conclude that the tips p
q and p′

q′ are on the
same side of the line x = α.
By substitution (4.2), the line segment x = α becomes a half-circle. In
Figure (4.2), two possible half-circles are drawn in green. This half-circle
(we call it c) necessarily intersects the shared base of D0 and D1 (the arc
AB). Moreover, c keeps 0 and ∞ on the same side (since the tips p

q and
p′

q′ are on the same side of α), or in other words, lies either completely on
the right of 0 or completely on the left. Either way, it travels at least three
domains (see the figure), so we have |s|+ 1 ≥ 3, so |s| ≥ 2.
We can now write down the following theorem.

Theorem 4.3.1 For two successive Hermite fractions p′

q′ and p′′

q′′ , we have

q′′ > q′.

Proof. Let
p′′

q′′
=
p′|s|+ pδε

q′|s|+ qδε
,

and the notation be as above.
If δε = 1, we have q′|s| + qδε > 0, so since |s| > 1, we have q′′ > q′, so the
theorem holds.
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Figure 4.2: The upper half-plane with two possible half-circles

If δε = −1, we have q′|s| + qδε = q′|s| − q ≥ 2q′ − q. The first two Hermite
fractions are 1

0 and a
1 , with a ∈ N0. For these fractions, the theorem holds.

Let pn−1

qn−1
, pnqn and pn+1

qn+1
be three successive Hermite fractions. Assume it holds

for all fractions up to pn
qn

. Then, we have qn+1 ≥ qn|s|−qn−1 = 2qn−qn−1 >
2qn − qn = qn, so by induction the theorem holds.
We have now proven the theorem.

Remark: From the proof above, we see that the denominator q′|s|+ qδε is
always positive. This means we must have

p′′ = p′|s|+ pδε and q′′ = q′|s|+ qδε.

4.4 Recognizing Hermite fractions

Since we now know how to find the Hermite fractions, another question rises.
How do we know if a certain fraction is a Hermite fraction (i.e. is obtained
by Hermite’s algorithm)?
Let p

q be a fraction. We want to know if it is a Hermite fraction for α. For
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this to be true, x = α has to traverse a domain with tip p
q . Let q(p−qα) = εν,

with ε = ±1 such that ν is positive.
Let q′ be the integer such that 0 < q′ < q and

pq′ = ε (mod q),

and p′ be the integer such that

pq′ = ε+ qp′.

Note that all integers p, q, p′ and q′ are positive.
Now, have a look at the substitution

z =
pz′ + εp′

qz′ + εq′
.

Since pq′ = ε+ qp′, we have εpq′ − εp′q = 1, so this substitution is modular,
and δ = ε. In this substitution, z = p

q corresponds to z′ = ∞ and z = p′

q′

corresponds to z′ = 0. It changes x = α to a half-circle c, which intersects the

line y =
√
3
2 in two points M and M ′ (see Section 4.1). The x−coordinates

of M and M ′ are respectivily

−q
′ε

q
+

ε

2ν
(1 +

√
1− 3ν2) and − q′ε

q
+

ε

2ν
(1−

√
1− 3ν2).

If c intersects a domain with tip at ∞, this means that x = α intersects a
domain with tip p

q , so that means that p
q is a Hermite fraction for α. Note

that this means that M and M ′ are in different domains (with tips which are
integers), since if they are in the same domain, c will not cross any domain
with tip at ∞ (see Figure 3.1). This means that if we add or substract 1

2
from both x−coordinates, there has to be at least one integer between them.
Since

−q
′ε

q
+

ε

2ν
(1 +

√
1− 3ν2) + ε

1

2
= −q

′ε

q
+

ε

2ν
(1 + ν +

√
1− 3ν2),

we have that there has to be at least one integer between the numbers (we
can leave out the ε)

−q
′

q
+

1

2ν
(1 + ν +

√
1− 3ν2) (4.4)

−q
′

q
+

1

2ν
(1 + ν −

√
1− 3ν2). (4.5)
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If this holds, p
q is a Hermite fraction for α, and vice versa.

We will now look at the restrictions of ν.
Since

√
1− 3ν2 has to be real (and we knew ν > 0), we have 0 < ν ≤ 1√

3
.

If the difference between (4.4) and (4.5) is at least 1, it is clear that they

contain an integer. Note that the difference is
√
1−3ν2
ν . This is at least 1 if

1 − 3ν2 ≥ ν2, so ν ≤ 1
2 . We now know that for 0 ≤ ν ≤ 1

2 , p
q is a Hermite

fraction. Now, let’s have a look at

1

2
≤ ν ≤ 1√

3
.

Note that −1 < − q′

q < 0, since q > q′. Note that

1

2ν
(1 + ν +

√
1− 3ν2)

is biggest for ν = 1
2 , then it is equal to 2. On the other hand,

1

2ν
(1 + ν −

√
1− 3ν2)

is smallest for ν = 1
2 , where it is equal to 1. This gives that for 1

2 ≤ ν ≤
1√
3
,

(4.5) is greater than 0 and (4.4) is smaller than 2. The only integer they
can contain is 1. They contain 1 if and only if

0 < −q
′

q
+

1

2ν
(1 + ν −

√
1− 3ν2) < 1 < −q

′

q
+

1

2ν
(1 + ν +

√
1− 3ν2) < 2,

so √
1− 3ν2 > −(2ν

q′

q
+ ν − 1) and

√
1− 3ν2 > 2ν

q′

q
+ ν − 1.

This gives √
1− 3ν2 >

∣∣∣∣2ν q′q + ν − 1

∣∣∣∣ ,
so

1− 3ν2 >

(
2ν
q′

q
+ ν − 1

)2

.

We now obtain

ν <
q(q + 2q′)

2(q2 + qq′ + q′2)
. (4.6)
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This means that for 1
2 < ν ≤ 1√

3
, this is the necessary and sufficient condition

for p
q to be a Hermite fraction.

We know that q > q′, so

q(q + 2q′)

2(q2 + qq′ + q′2)
>

q(q + 2q′)

2(q2 + qq′ + qq′)
=

1

2
.

This means that condition (4.6) always holds for 0 ≤ ν ≤ 1
2 as well. This

means it holds for all 0 ≤ ν ≤ 1√
3
. Moreover, if (4.6) is greater than 1√

3
, we

have √
3q2 + 2

√
3qq′ − 2q2 + 2qq′ + 2q′2 > 0,

so, multiplying with −2 gives

2(2−
√

3)q2 + 4(q −
√

3)qq′ + 4q′2 < 0,

so (
(
√

3− 1)q − 2q′
)2

< 0,

but this is impossible. We conclude that the right-hand side of (4.6) is
always less or equal to 1√

3
, so (4.6) is the only condition for p

q to be a

Hermite fraction. We now have the following theorem.

Theorem 4.4.1 Let p
q be a fraction and α > 0 a number. Let ν = εq(p−qα),

with ε = ±1 such that ν is positive. Let q′ be the smallest positive number
such that pq′ ≡ ε (mod q). Then, p

q is a Hermite approximation of α if and
only if

ν <
q(q + 2q′)

2(q2 + qq′ + q′2)
.

Remark:We know that 0 ≤ ν ≤ 1√
3
. Let’s look at the extreme values of

ν. If ν = 0, we have q(p − qα) = 0, so α = p
q . If ν = 1√

3
, this means the

right-hand side of (4.6) is greater than 1√
3
, which is impossible like we have

shown above. We conclude that 0 ≤ ν < 1√
3

and ν = 0 if and only if α = p
q .
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Chapter 5

Comparison

We will now compare the results from this thesis about Hermite fractions
with the known results for convergents of ’regular’ continued fractions.

5.1 Hermite fractions and Convergents

Legendre (1752 - 1833) has shown the following theorem for regular contin-
ued fractions [6, p. 29].

Theorem 5.1.1 (Legendre) Let p
q be a fraction and α > 0 a number. Let

ν = εq(p − qα), with ε = ±1 such that ν is positive. Let q′ be the smallest
positive number such that pq′ ≡ ε (mod q). Then, p

q is a convergent of the
continued fraction of α if and only if

ν <
q

q + q′
.

We know that 0 < q′ < q, so 0 < qq′ < q2, which gives

q(q + 2q′)

2(q2 + qq′ + q′2)
<

q(q + 2q′)

q2 + 3qq′ + 2q′2
=

q(q + 2q′)

(q + 2q′)(q + q′)
=

q

q + q′
.

It now follows that if ν is smaller than the left-hand side, it certainly is
smaller than the right-hand side, so we conclude that (by Theorem 4.4.1)

Corollary 5.1.2 Every Hermite fraction for an irrational number α is a
convergent of the regular continued fraction of α.

The converse, however, is not true.

For 0 ≤ ν ≤ 1
2 , we have already seen that p/q is certainly a Hermite fraction.

Since ν = |q(p− qα)|, we have the following theorem.
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Theorem 5.1.3 Suppose α ∈ R and p, q ∈ Z, q > 0 such that∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
.

Then p/q is a Hermite fraction.

Note that for continued fractions, we have the same theorem by Legendre:

Theorem 5.1.4 (Legendre) Suppose α ∈ R and p, q ∈ Z, q > 0 such that∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
.

Then p/q is a convergent of the continued fraction of α.

For all convergents pn/qn of the continued fraction of α ∈ R, we have [2,
p. 84] ∣∣∣∣α− pn

qn

∣∣∣∣ < 1

an+1q2n
.

If an+1 ≥ 2, we know that the convergent pn/qn satisfies Theorem 5.1.3.
Since an+1 is an integer, we can now conclude the following.

Corollary 5.1.5 Let pn/qn be a convergent of the continued fraction of
α ∈ R. If an+1 as defined in Chapter 1 is greater than 1, we know that
pn/qn is a Hermite fraction of α.

We know that all Hermite fractions of α ∈ R are convergents of α, and,
conversely, that we obtain the sequence of Hermite fractions by taking the
sequence of convergents and removing some of the convergents. It turns out
that we never remove two consecutive convergents.

Theorem 5.1.6 The difference of the sequence of Hermite fractions and
the sequence of ordinary convergents never contains two consecutive conver-
gents.

Proof. Let
pn−2
qn−2

,
pn−1
qn−1

,
pn
qn
,

pn+1

qn+1

be four consequtive convergents. Assume we have to remove both pn−1/qn−1
and pn/qn. Now pn−2

qn−2
and pn+1

qn+1
become two successive Hermite fractions, so

we have (Theorem 4.1.2)

pn−2qn+1 − pn+1qn−2 = ±1. (5.1)
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Since we have to remove both pn−1/qn−1 and pn/qn, we know that an =
an+1 = 1, so we have (Theorem 1.0.1)

pn = pn−1 + pn−2, pn+1 = pn + pn−1 = 2pn−1 + pn−2;

qn = qn−1 + qn−2, qn+1 = qn + qn−1 = 2qn−1 + qn−2.

This gives

pn−2qn+1−pn+1qn−2 = pn−1(2qn−1+qn−2)−qn−2(2pn−1+pn−2) = 2(qn−1pn−2−qn−2pn−1) = ±2,

where the last equation follows from the fact that pn−2/qn−2 and pn−q/qn−1
are two successive convergents (see Remark under Theorem 4.1.2). However,
this contradicts (5.1), so we never remove multiple consecutive convergents.

5.2 Implementation

I have implemented the algorithm in Mathematica. I used Theorem 4.2.1
to compute Hermite fractions. Algorithm 1 contains the pseudocode of the
algorithm I used.

input : Irrational number α, natural number n
output: Series of n fractions which approximate α

p0 = 1, q0 = 0, p1 = Floor(a+ 1
2), q1 = 1;

Print(p1/q1);
for i = 2 to n do

δ = pi−1qi−2 − pi−2qi−1;
ν = Abs(qi−1(pi−1 − qi−1α));
ε = (qi−1(pi−1 − qi−1α))/ν;

s = Floor
(
−(qi−2δ/qi−1 + ε/2ν × (1 +

√
1− 3ν2) + 1

2

)
;

pi = pi−1s+ pi−2δ;
qi = qi−1s+ qi−2δ;
Print(pi/qi);

end
Algorithm 1: Hermite’s Algorithm

I also implemented the calculation of convergents of the ordinary continued
fraction algorithm, by using Algorithm 2. This way, I was able to compare
the two results. I chose to put the fractions in a table and calculate the errors
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(the difference between the fraction and α) of both the ordinary continued
fraction algorithm and Hermite’s algorithm. A couple of those tables are
added below.

input : Irrational number α, natural number n
output: n convergents which approximate α

x0 = a;
for t = 0 to n do

at = Floor(xt);
xt+1 = 1/(xt − at);
bk = ak;
for i = t to 0 do

bk−1 = ak−1 + 1/bk;
Print(b0);

end

end
Algorithm 2: Ordinary continued fraction algorithm

Note that, for π and e, the series of Hermite fractions are the series of conver-
gents but with some convergents left out. This way, in general, it takes less
steps to compute the same approximation when using Hermite’s algorithm
instead of the ordinary continued fraction algorithm. For example if we ap-
proximate π, it takes 7 steps in Hermite’s algorithm to get the 12-decimal
precision which takes 10 steps in the ordinary continued fraction algorithm.

I also looked at the so-called badly approximable numbers. We call an irra-
tional number α badly approximable if∣∣∣∣pq − α

∣∣∣∣ > 1

3q2

for all p
q ∈ Q. These numbers are further discussed in [7]. The results

of two of those numbers are displayed in the tables in Figure 5.2. Note
that for these numbers, the Hermite Fractions are exactly the same as the
convergents. This holds for all those numbers discussed in [7].
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(a) π

(b) e

Figure 5.1: Approximations of two irrational numbers
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(a)
√

2− 1

(b) 1
10 (
√

221− 11)

Figure 5.2: Approximations of two badly approximable numbers
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