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Abstract

The aim of this study is to investigate the Bag-of-Features (BoF)
model and its application to medical image classification. With this
model, images, or parts of them, are represented as an orderless col-
lection of local image descriptors. A visual codebook is learned from
a training set of local image descriptors, usually by performing vec-
tor quantization by clustering. FEach image is then represented by
its distribution of visual words from the codebook. To achieve image
classification, a classifier such as a Support Vector Machine (SVM)
is used with the obtained image representation as the feature vec-
tor. This paper presents a review of the literature on BoF methods
and compares the most important implementation choices that have
been suggested. In addition, the application of the method to medical
image classification is discussed.

1 Introduction

Automatic classification of (medical) images is a very challenging problem.
Over the last decade, the Bag-of-Features (BoF) method has become popu-
lar for both texture and object classification. The approach treats an image
as an orderless collection of local image descriptors. The first step of the
BoF method is feature detection. Points in the image are detected using
interest point detectors, or alternatively by sampling from a regular grid or
randomly. Feature descriptors are computed over small support regions, so-
called 'image patches’, around each detected point. In the third step, vector



quantization is used to define a relatively small number of generic local image
descriptors which form the visual words of the codebook from an initial pool
of descriptors extracted from a training set. Each image is represented by its
distribution of visual word counts. The final step is classification using the
obtained representation as the feature vector and applying a classifier such
as a Support Vector Machine (SVM).

A texture is made up of a repetition of basic primitive elements called textons.
When the BoF method is used for texture classification, the visual words in
the codebook correspond to the textons. It is not surprising that an order-
less approach such as the BoF method is successful for texture classification;
stochastic textures are characterized by the identity of their textons, not by
their spatial arrangement. Interestingly, the BoF method has also proved
effective for object classification and natural scene categorization problems.
Especially when large viewpoint changes, clutter and occlusions are present
in the images, the BoF method offers advantages over methods that com-
pute global descriptors or include spatial relationships between features [1],
8], [15].

The aim of this study is to investigate the BoF method and its application to
medical image classification. Research in this area has been done on a variety
of imaging modalities, including computed tomography (CT) lung scans [2],
histopathological images [9] and endoscopic colorectal images [10]. In medical
images, abnormalities are typically characterized by texture changes. There-
fore, the main focus is on texture classification, object classification being
less common in medical image classification. This paper presents a review of
the literature on the BoF method for texture classification and is structured
as follows. In Section 2, the most important implementation choices that
have been suggested in literature are compared. Application of the method
to medical image classification is discussed in Section 3. Section 4 concludes
with a final discussion and directions for future research.

2 Components of the Representation

In the following, each component of the BoF method is discussed in detail.
For each of the five steps; feature detection (2.1), feature description (2.2),
codebook formation (2.3), image representation (2.4) and classification (2.5),
the main methods found in literature are discussed and comparisons are
made. Figure 1 gives an overview of this section.
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Figure 1: Overview of the BoF method. For each of the five components, the main
methods found in literature are listed in the corresponding box.



2.1 Feature Detection

Feature detection is the selection of image locations around which local im-
age descriptors are computed. Early examples of the BoF method are the
texton approaches in which features for each pixel are computed, resulting in
a dense representation [6]. Another way of obtaining a dense representation
is by sampling from a regular grid [10] or randomly [8]. More recent BoF
approaches use local interest point detectors to extract characteristic struc-
tures in the image, resulting in a sparse set of image patches.

A frequently used interest point detector is the Harris detector, responding
to corners in the image. The Harris detector is a computationally efficient
and robust operator, but it is only rotation-invariant. The scale-invariant
extension is called Harris-Laplace and though it is computationally more
complex, it is a much used tool for detecting a large number of patches [11].
The Harris-affine detector is the affine-invariant extension. It is an iterative
algorithm that initializes with the Harris-Laplace circular patches. It adapts
the original support region in shape and size to compensate for changes in
surface orientation and scale by outputting regions in the shape of an ellipse.
As many perspective transformations can be locally approximated by affine
transformations, affine-invariant detectors could be useful for classification
under viewpoint changes.

Another popular interest point detector is the Laplacian-of-Gaussian (LoG),
a rotation- and scale-invariant detector, responding to blob-like regions in
the image. The LoG can be approximated by the computationally more ef-
ficient Difference-of-Gaussians (DoG) [7]. In a similar manner as the Harris
detector, an affine extension to the LoG can be made. We will call this the
Laplacian-affine detector.

Also, a combination of interest point detectors can be used. Blob detectors,
extracting homogeneous areas, can be viewed as complementary to corner
detectors, extracting regions of high variability in intensity. As a result, they
are often used together to provide more patches and a better coverage of the
image.

Advantages of using interest point detectors are that they provide robust-
ness to non-homogeneity of a texture and can reduce the computational cost
by selecting fewer but more characteristic points [5]. For scale- or affine-
invariant detectors, since the support region is adapted to the changes in
scale or surface orientation, an intrinsically invariant representation of the



image patch is obtained. In literature, there is no clear-cut answer to the
question whether such intrinsic representation-level invariance is beneficial to
classification. Zhang et al. [15] conclude that affine-invariant detectors do not
improve classification even for datasets with significant viewpoint changes.
They note that detectors with a high degree of invariance are less stable and
that the affine normalization process might result in a loss of discrimina-
tive information. If the transformations between images are expected to be
small, the more robust but less invariant detectors are advantageous. Tuyte-
laars and Mikolajczyk [11] argue that for classification, as variability within
the class dominates variability due to viewpoint changes, affine invariance
tends to bring little improvement. However, Lazebnik et al. [5] conclude in
their work that especially for datasets where the lack of invariance cannot be
compensated by storing multiple prototypes of each texture, representation-
level invariance is necessary. Evaluations and comparisons of detectors often
use retrieval performance rather than classification performance. Retrieval
performance is an indicator of how well each texture class can be modelled
by one individual sample. In this case invariance is more important, and
evaluations based on retrieval performance thus tend to favour interest point
detectors over the dense sampling methods. It can be concluded that the
need for invariance depends on the dataset used; only the level of invariance
that cannot be compensated by storing multiple prototypes should be added
to the detector. In the medical applications discussed in [2], [9], [10], indeed
only the dense methods and the DoG sampling, which are respectively non-
invariant and scale-invariant representations, are investigated.

The most influencing factor is the number of patches extracted [8], [11]. A
large number of patches and a good coverage of the image is crucial for clas-
sification purposes. This argument favours the Laplacian detector over the
Harris detector, since the Laplacian detector typically selects a denser set
of regions than the Harris detector [5]. The dense approaches using sam-
pling on a grid or random sampling are also favoured by this argument as
these methods can produce a practically unlimited number of patches. Also,
dense approaches guarantee a good coverage of the image independent of
image content, while interest point detectors can fail for homogeneous, high-
frequency textures [15]. Jurie et al. [4] and Nowak et al. [8] also confirm
that, for the task of classification, using sparse interest point based patches
often results in a significant loss of discriminant information compared to
densely sampled patches.



2.2 Feature Description

Feature description is the translation of information in an image patch into a
feature vector. The traditional method of feature description for texture clas-
sification uses filter banks. Filter banks are usually combined with a dense
sampling approach, in which a filter response is obtained at every pixel lo-
cation. Leung and Malik [6] were the first to propose clustering of the filter
responses to obtain a small set of prototype response vectors which form the
textons or visual words of a codebook. The filter bank of Leung and Malik
(LM) consists of 48 filters and is not rotation-invariant. It is a mix of edge,
bar and spot filters at multiple scales and orientations.

Varma and Zisserman [12] achieved rotation invariance by storing only the
maximum response over the different orientations for a given filter type and
scale. There are different variants of the maximum response (MR) set of
Varma and Zisserman, the most used being the MRS filter bank. They
evaluated the performance of the mentioned filter banks on the CUReT
database, and found that the rotation-invariant, multi-scale MR8 outper-
formed all other filter banks.

Filter banks have become less dominant in the field of texture classifica-
tion. Among the alternatives to filter banks are methods based on raw pixel
intensities [2], [8], [9], [13]. Varma and Zisserman [13] proposed a classifier
that uses the raw pixel values of fixed size square image patches as feature
vectors and called it the Joint classifier. This method considers a N x N im-
age patch around each pixel. The description of the image patch is simply a
vector of length N? containing the intensity values of each pixel in the image
patch. Using raw pixel values with a fixed size patch results in features which
are not invariant to scale and rotation. Rotation invariance can be included
by aligning all image patches to the dominant orientation of the patch and
using a circular patch instead of a square one.

Varma and Zisserman [13] conducted a thorough comparison between fil-
ter bank methods and raw pixel intensity based methods. They conclude
that raw pixel representations outperform filter banks with the same sup-
port. Originally, filter banks were used because they were believed to in-
crease the signal to noise ratio, extract useful features such as edges or bars
at multiple orientations and scales, and achieve dimensionality reduction. A
disadvantage of using filter banks is the large support they require which
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Figure 2: SIFT descriptor computation. First the gradient orientation and magnitude
are computed at each sample point in the image patch. A gradient orientation histogram
is formed for each of the 2 x 2 subregions. The length of each arrow corresponds to
the sum of gradient magnitudes in that orientation bin. The SIFT descriptor is formed
by concatenating the gradient orientation histograms of each subregion. The figure is
reproduced from [7].

results in fewer samples being drawn from each texture, hindering reliable
clustering. Also, the blurring in many filters results in a loss of fine detail
which can be critical to classification performance. While the MRS filter
bank has achieved better results than other filter banks, the Joint classifier
outperforms the MR8 classifier significantly on multiple texture databases
[12], [13]. However, raw pixel intensity based methods lack geometric invari-
ance.

To achieve greater geometric invariance, Lowe [7] introduced the Scale Invari-
ant Feature Transform (SIFT). In Figure 2, a schematic view of the SIFT
descriptor computation is given. SIFT features are computed from scale-
invariant interest points, found with for example the DoG detector. Each
detected image patch is first oriented to the dominant gradient direction.
The oriented patch is subdivided into a number of regions and a gradient
orientation histogram is computed for each subregion. The descriptor vector
for the image patch is formed by concatenating the gradient orientation his-
tograms of each subregion. Usually, 8 orientation bins and 4 x 4 subregions
in a patch are used, resulting in a 128-dimensional feature vector [7], [10].

The Rotation Invariant Feature Transform (RIFT) descriptor is a variant of
the SIFT descriptor that is rotation-invariant without having the need to
rotate the image patch [5]. Instead of rotating the patch in the dominant
gradient direction, a rotation-invariant descriptor is computed directly. The
patch is divided into concentric rings of equal width. A gradient orientation



histogram is built within each ring, with the orientation relative to the di-
rection pointing away from the center to achieve rotation invariance. The
number of rings and number of bins for gradient orientation are parameters
of the descriptor.

The spin-image as proposed by Lazebnik et al. [5] is a similar descriptor,
based on raw intensity information. A spin image is a two-dimensional his-
togram with entries (d, i), d being the distance to the center and i the inten-
sity bin, thus achieving rotation invariance.

In more recent literature, SIF'T descriptors are displayed as the standard
choice [10]. Lazebnik et al. note that dividing the image patch into subre-
gions prevents the loss of spatial information, as can be the case with filter
banks, while the histogramming provides robustness to deformations of the
image, in contrast to raw pixel intensity based methods. SIFT descriptors
outperformed spin-images and RIFT descriptors, as well as descriptors based
on normalized raw pixel intensities in the evaluations in [8], [15].

When computational cost is not a limitation and there is enough data avail-
able, it is advantageous to combine complementary features. Best perfor-
mance can be achieved when combining descriptors based on greylevel val-
ues like spin-images, with descriptors based on gradient information such as
SIFT or RIFT [13], [15].

We turn to a discussion on the level of invariance a descriptor should pos-
sess. Traditionally, research concentrated on obtaining invariance to global
2D transformations such as rotation and scaling [15]. Classification under
lighting and viewpoint changes has more recently become a significant sub-
ject of research [5], [6], [12], [13].

Note that all of the descriptors mentioned above can be made invariant to
global affine transformations in illumination intensity i.e. transformations of
the whole image patch of the form al(z) + b, where I(z) is the image inten-
sity and a, b are constants. This can be done by normalizing the intensity
of the support region to have zero mean and unit standard deviation before
computing the descriptors [12]. For SIFT descriptors invariance to affine illu-
mination transformations is obtained by scaling the norm of each descriptor
to unit length [7].

Raza et al. [9] empirically establish that for histopathology image classifica-
tion, scale- and rotation-invariant features outperform the rotation-invariant
and non-invariant features. However, when a large training set is available
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with multiple models representing each texture, features with a lower level
of invariance tend to perform better than invariant features [5]. Typically,
increasing the invariance of a feature results is a loss of discriminative power.
Therefore, similar to the conclusions on detector invariance in Section 2.1,
only the level of invariance strictly necessary for the particular application,
that cannot be compensated by storing multiple prototypes in the training
set, should be added to the descriptor [5], [15].

For specific applications, some invariance properties might even be unwanted.
For CT image classification, the mean of the intensity values is a physical
property, so invariance to affine illumination transformations is not desir-
able [2]. Similarly, scale-invariant features might not be beneficial to cancer
grading based on nucleus size [9].

2.3 Codebook Formation

In the BoF approach, vector quantization is used to define a relatively small
number of generic local image descriptors which form the visual words of the
codebook from an initial pool of descriptors extracted from a training set.
This is a data-driven approach: the visual words are learned from the train-
ing data. An image is represented by its distribution of the visual words. In
literature on the BoF method, the vector quantization method used is almost
always a clustering algorithm, therefore we will refer to the vector quanti-
zation step as clustering step in what follows. The clustering method, the
codebook size and the choice of training set will be discussed in this section.

A variety of clustering methods are used in literature, the most popular
one being classical k-means clustering. This method aims to minimize the
within-cluster sum of squares:

k
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where x; is a descriptor vector of an image patch in the training set and c;
is the center of cluster C;. The k-means algorithm is usually started with k
random cluster centers, and iteratively adds descriptor vectors to the cluster
for which the cluster center is closest by. Disadvantages of the method are
that it only converges to local optima of Equation (1) and that the number
of clusters formed is a parameter of the method which must be determined
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in advance. A solution to the second problem could be to use agglomera-
tive clustering, in which clusters are merged until the average intra-cluster
distance becomes too big. However, this is computationally expensive, and
becomes infeasible for larger datasets [5]. Pelleg and More [22] propose a
more efficient k-means based clustering algorithm that determines the num-
ber of clusters within a given range, termed z-means. Csurka et al. [1] state
that for accurate classification, a global minimum of the objective function
(1) or the most accurate clustering in feature space is not necessary. They
run k-means several times with different sizes and different sets of initial
cluster centers and then choose the codebook with the lowest classification
error on the test set.

Jurie and Triggs [4] argue that radius-based clustering works better than
the traditional k-means clustering for densely sampled image patches from
heterogeneous textures. Patches with intermediate frequency are the most
informative for classification: the high frequency patches are excessive in all
classes and thus tend to contain little information. Traditional k-means clus-
tering assigns too many small-sized clusters to dense areas in feature space.
This results in a non-uniform and suboptimal coding in which many clusters
code the less-informative high frequency image patches. The radius-based
clustering method of Jurie and Triggs enforces a minimum cell size in feature
space to prevent this. In their codebooks, more visual words are dedicated to
coding the intermediate-frequency patches. In tests on the ETH80, Agarwal-
Roth and Xerox7 datasets, the proposed method outperformed the k-means
based codebook. However, in the medical applications [2], [9], [10], k-means
is still used for its simplicity and established performance on homogeneous
textures.

Although the optimal size of the codebook depends on the particular ap-
plication, in general it is a matter of expressiveness versus generalization
and computational efficiency [6]. At first, increasing the codebook size leads
to significant improvements in performance, since the distribution of local
features can be approximated more accurately by the visual words. How-
ever, increasing the codebook size beyond a certain point does not improve
performance and only increases the computational cost. A decrease in per-
formance beyond a certain codebook size is even reported in [8], [12], which
can be attributed to overfitting of the data. For a specific data set, the point
at which no improvement is further achieved can be established empirically
by forming differently sized codebooks on the training set and choosing the
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codebook with the best performance on the validation set [12].

Jurie and Triggs experiment with building a large codebook and subsequently
using feature selection to prune it down. They select a subset of the visual
words by choosing the words that maximize an informativeness score such as
mutual information or odds ratio, or train a SVM on the complete codebook
and then use only the visual words with the highest weight. They empirically
establish that the latter method performs best. However, the performance
of the complete codebook is still superior to the reduced one, so feature se-
lection should only be used if the computational cost is a limitation for the
particular application.

We now turn to a discussion on the training set to be used for the code-
book formation. Let m be the number of classes. The most straightforward
choice is to form a training set containing images of each of the m classes.
One can either cluster the descriptors from the entire training set, i.e. cluster
the descriptors from all images of all classes at once. Alternatively, the clus-
tering can be done per class. In that case, the codebook is built by forming
n visual words for each of the m classes, resulting in a codebook of size mn.
The codebook can be pruned down by merging cluster centers that lie too
close together and discarding the centers that have too few data assigned to
them. As the class-wise method prevents clustering a large amount of data
at once, it is computationally more efficient than clustering on the entire
training set.

Leung and Malik [6] form a codebook by learning visual words per class, but
only use a subset of all of the texture classes. The idea behind this is that
generic, local features will be described by the visual words learned from the
subset of textures, so that the codebook will be able to describe the rest of
the textures as well. Their codebook is built by forming n visual words for
each of the s < m texture classes in the reduced training set, resulting in
a codebook of size sn. The performance of such a codebook is adequate,
but inferior to the performance of a codebook trained on all texture classes.
Therefore, in later work, Varma and Zisserman [13] use all texture classes for
learning the codebook.

Nowak et al. [8] test whether codebooks should be formed with a specific
application in mind. They conclude that indeed it is best to design a code-
book for a particular task, but note that codebooks trained on random images
also work adequately. Even codebooks containing random SIFT vectors have
considerable discriminative power. This indicates that the BoF method is
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relatively insensitive to the choice of training images and the visual words in
the codebook.

2.4 Image Representation

Usually in the BoF method, an image representation is obtained by mapping
the descriptor vector of each image patch to the nearest visual word in the
codebook with a vector quantizer. An image can then be represented as a
histogram of frequency counts of the visual words. This representation dis-
cards all information on spatial arrangement of the descriptors. For scene
categorization, spatial information preserving methods such as spatial pyra-
mid matching (SPM) can be useful [14]. The SPM method is an extension
to the BoF image representation, in which the image is partitioned into seg-
ments at multiple scales. A BoF histogram is computed for each segment,
and the histograms are concatenated to form the feature vector of the entire
image. We will not discuss spatial information preserving methods further,
since generally in medical images relevant morphology can appear anywhere
and spatial arrangement is not important.

Nowak et al. [8] compare the standard BoF approach, in which an image
is represented by a histogram of visual word counts, to two alternative im-
age representations. They note that using the frequency of visual words
directly as feature vector is not optimal in combination with their linear
SVM classifiers. Using a linear kernel: Kjipeqr(hy, hy) = thhQ, the effects of
a non-uniform distribution of occurrence counts degrade classification per-
formance. Two options to convert the frequency counts to an alternative
image representation are presented. The first option is to form a binary in-
dicator vector, where the index of a visual word is 1 if the count is non-zero,
and 0 otherwise. The second option is to form a binary indicator vector
using a threshold of the count chosen to maximize the mutual information
between the visual word and the class label on the training set. In [4], [§]
tests were done on the Xerox7, Pascal-01 and Agarwal-Roth datasets. It was
concluded that the original histogram representation and the binary indi-
cator vector with mutual information based thresholding worked best; both
methods gave similar performances with linear kernel SVMs. The use of a
non-linear kernel such as the y? kernel, Equation (11), reduces the potential
negative effects of non-uniform distribution of occurrence counts. Therefore,
usually the original BoF histogram image representation is used in combina-
tion with a non-linear distance metric between histograms.

12



Tamaki et al. [10] experiment with class-wise concatenation of visual words
to reduce the computational load of clustering a large amount of visual words
for their endoscopic images. k-Means clustering is performed on each class
separately, and for each class, a codebook is formed. An image representa-
tion is obtained by concatenating all of the histogram representations of the
class-specific codebooks. In experiments on their endoscopic image set, this
method has similar performance as a global codebook, formed by clustering
the data from all classes together. Although the global codebook tends to
perform a little better for most codebook sizes, the class-wise concatenation
is chosen in their application for its reduced computational cost.

An image representation method based on soft histograms has been pro-
posed by van Gemert et al. [3]. The method is termed codeword uncertainty
(CU). Here, descriptors are not assigned one hard label, but spread in mul-
tiple bins with a technique based on kernel density estimation. The CU
method distributes probability mass to all relevant codewords:

CU(w,x;) =~ LMdw: X)) )
M Zj:l K(d(vy, %))

where M is the number of descriptors in the image, k is the number of visual
words in the codebook, x; is a descriptor, w, v; are visual words of the code-
book and d(-,-) is a distance function between visual words. In [3] the Eu-
clidean distance function is used, together with the Gaussian-shaped kernel
of Equation (10). The scale parameter A is determined by cross-validation.
The entry of the codeword w in the image representation is then obtained
by summing over all descriptors x;. Figure 3 gives a graphical illustration
of the difference between the traditional histogram image representation and
the CU representation. The biggest difference can be appreciated at the de-
scriptor depicted with a green square. In the traditional representation, this
descriptor only contributes weight to its nearest visual word in the codebook,
h. In the CU representation it contributes most of its weight to codeword
h, a considerable amount to its second closest visual word i and an insignif-
icant amount to the remaining codewords. Especially for small sized code-
books and a high dimensional feature space, the method provides increased
robustness to the curse of dimensionality. CU outperforms the traditional
histogram representation method in the tests on the Scene-15, Caltech-101
and Caltech-256 datasets.
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Figure 3: (a) Codebook with visual words a, b, ..., j formed by radius-based clustering of
the blue descriptors in the training set. The green square, yellow triangle and blue diamond
are the descriptors in novel images to be encoded. (b) Traditional image representation
(upper) compared to the codeword uncertainty image representation (lower). The figure
is reproduced from [3].

More recently, research has been done on replacing vector quantization by
sparse coding. Using vector quantization, the index of only one of the visual
words in the codebook may be nonzero, leading to coarse reconstruction of
the image. Sparse coding represents every descriptor in the query image as a
linear combination of a few visual words from the codebook [20]. The code-
book can be learned to be optimal for use with sparse coding, as is done by
Yang et al. [14]. We will not consider this, and suppose the usual cluster-
ing based codebook fixed. Given a descriptor x; and fixed codebook V, the
sparse coding optimization problem becomes:

min ||x; — h; V|3 + ~[hy]1, (3)

where h; is the sparse coding representation of descriptor x;. The last term
of the expression relates to the sparsity constraint. The minimization is
done for all descriptors, and the whole image representation is obtained by
averaging over all descriptors:

1 M
h:— hi, 4
M; (4)
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where M is the number of descriptors in the image. Using sparse coding, the
reconstruction error is typically much lower than using vector quantization.
A drawback of sparse coding is the increase in computational cost.

It is interesting to note that an alternative to the histogram image repre-
sentation has been introduced by Rubner et al. [23]. The proposed image
signature S = {(cy,u1), ..., (Cm, )} has become popular in BoF methods.
Here m is the number of clusters, c; is the center of the i-th cluster, and u;
is the weight of the cluster (i.e. the size of the cluster divided by the total
number of descriptors extracted from the image). This allows more flexibil-
ity, since the centers of the clusters can either be codewords from a global
codebook, clusters of descriptors in an individual image, or individual fea-
tures. The second option, clustering within images, is mostly used. This way,
a different codebook is obtained for each image. Especially in high dimen-
sions, the effects of vector quantization and binning are reduced compared
to using histograms with a global codebook [5]. Also, the computational
cost of training decreases significantly as the building of a global codebook is
avoided. The signature image representation is a variable-size representation
rather than fixed-size such as the histogram representation. An agglomer-
ative clustering algorithm can be used to determine the amount of clusters
for each image. This is especially useful when selecting image patches using
an interest point detector. Then the number of patches per image can vary
significantly, and choosing a fixed number of clusters per image can be hard.
Compared to the histogram representation, the image signature can achieve
a better balance between expressiveness and efficiency by varying the number
of clusters per image [23].

2.5 Classification

In this section, we mention briefly two classification models that originate
from text document analysis: Naive Bayes and Probabilistic Latent Semantic
Analysis (PLSA). In more detail we discuss the k-Nearest Neighbour (k-NN)

classifier and SVMs which are more widely used for texture classification.

Both Naive Bayes and PLSA model the conditional probability of a bag
of features given a class. An image is assigned to the class that has maximal
posterior probability given the visual word counts in that image. The Naive
Bayes model assumes conditional independence of the visual words given the
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class. The classifier has the advantage of being simple and fast. Csurka et
al. [1] and Jurie and Triggs [4] experimented with using a Naive Bayes clas-
sifier for object and texture classification, but in their BoF frameworks the
classification performance of SVMs proved superior.

PLSA is a technique based on the idea that each image consists of a mixture
of intermediate or so-called hidden’ topics. In scene classification for exam-
ple, if the two-stage process would find intermediate topics such as a building
and a car, the model would increase the probability of the whole image to
be an urban scene [17]. Since images of textures generally do not contain
multiple intermediate topics, PLSA has less relevance to texture analysis and
medical image classification. In the medical applications considered here [2],
9], [10], neither the Naive Bayes classifier nor PLSA is used.

The k-NN classifier simply stores all training feature vectors. A new im-
age is assigned to the class that has the most votes among the k closest
training images in feature space. The Nearest Neighbour (NN) classifier is
a special case of the k-NN classifier with £ equal to one. In earlier texture
classification applications of Leung and Malik [6] and Varma and Zisserman
[13], the NN classifier is used together with the x? metric for comparing
histograms:

m

1 hlz - h2z
D,2(hy,hy) = = g )
1 2 2 h +h22 (5>

Alternatively, the k-NN classifier can be applied with the signature image
representation using the Earth Mover’s Distance (EMD):

i Jigd(cui, ¢2;)
Zi,j fij 7

where d is a distance measure between cluster centers and f;; the flow value
between cluster centers ci; and cy; that can be determined by solving a linear
programming problem [23]. k-NN classifiers tend to work well if the distance
function is good and there is a lot of data. A disadvantage of the method
is that although the training phase is computationally inexpensive, cost of
classification can be high. Another drawback is that k-NN classifiers use all
attributes instead of learning which are most important. In [15] tests were
done on the standard texture databases UIUCTex, KTH-TIPS, Brodatz and

EMD(Sl, 82) -

(6)
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CUReT and in [2] tests were done on a CT lung images database. In both
studies, SVMs outperformed the k-NN classifiers.

SVMs have gained popularity especially for high-dimensional problems. In
the BoF method they have become the standard choice classifier [1]. The
decision function for a test sample h for a two-class case has the form:

P(h) = sign (Z a;y; K (m;, h) — b) (7)

where m; is a training sample and y; € {—1,1} is the class label of m,.
The weight «; is learned in the training phase and is non-zero for only a
fraction of the training models, namely the support vectors. During train-
ing, the threshold parameter b is learned as well. For the histogram image
representation, different kernel functions K (-,-) can be used, including the
linear, histogram intersection (HI), Radial Basis Function (RBF), x? kernel.
The RBF kernel is also called the Gaussian kernel. For the signature image
representation the EMD kernel is mostly used:

Klinear(hlu h2) = h{h% (8>
k

Kur(hy, hy) = Zmin(hli7 hai), 9)
i=1

Krpr(hi, hy) = exp (_7‘h1> h2|2) ) (10)

Y - (hlz' - hzz‘)Q
K.,2(h{ hy) = ——= - 11
X( 1, 2) eXp( 2; hli‘i‘h% ) ( )

(12)

. fid(ci, coj
Kpmp(Si, S2) = exp (—72 J 7Y (1 2])) .

> i
The SVM framework defines a decision boundary for a two-class problem.
There is no straightforward multi-class extension to SVMs. To solve multi-
class problems, the one-against-one method or the one-against-all method
can be used. For a problem with ¢ classes, one has to train a SVM for each
of the @ pairs of classes in the one-against-one method. The class of a
novel image is determined by letting all the SVMs vote, assigning the image
to the class with the maximum number of votes. For the one-against-all
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approach, one SVM is trained per class. Each SVM is trained on the class
versus the rest. The image is assigned to the class for which the decision func-
tion of its SVM has the highest value. A disadvantage of the latter method
is the unbalancedness in the training data for all of the SVMs. According to
Tamaki et al. [10] and Zhang et al. [15] both methods give similar results.
In most articles, the one-against-one method is adopted without discussion.

SVMs tend to work very well in practice, especially for high dimensional
problems such as the typical BoF classification problem. Disadvantages of
SVMs are the significant computation and memory requirements. During
training time, a matrix of kernel values for each pair of images in the train-
ing set must be computed. Especially for non-linear kernels, the training
phase is computationally expensive and scaling up to large datasets encoun-
tered in real-word applications is a non-trivial problem. In addition, the soft
margin parameter C' has to be established via cross-validation, increasing
computational cost further. For some kernels, such as the RBF kernel, the
scaling parameter 7 has to be established in a similar manner. In [15] this
was solved by setting v equal to the mean value of the distances between all
training images which was found empirically to give good results.

Different kernel types were tested in [15], best classification results were
achieved with the y? kernel and EMD kernel, which had similar performance.
The EMD kernel was chosen to avoid building a global codebook, thereby
saving computational time. The classification performance of several his-
togram based kernels was also compared in [10]. On this endoscopic image
dataset, the x? kernel achieved the best performance. However, a linear ker-
nel was chosen for its reduced computational time.

Yang et al. [14] find that sparse coding in combination with a simple lin-
ear SVM classifier performs better than the computationally expensive non-
linear kernels that are needed in combination with vector quantization to
obtain good performance. The classes can be made more linearly separable
in feature space when using sparse coding. Although the sparse coding step
is more expensive than vector quantization, the combination with a linear
kernel speeds up training and enables scaling to much larger datasets.
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3 Medical Image Classification

Computer Aided Diagnosis (CAD) tools have been investigated since around
1980 [19]. The common attitude towards CAD has moved from being the
ultimate tool for obtaining a fully automated diagnosis to being a second
opinion to a medical expert. The present clinical practice in which digital
images can be stored in central systems and large numbers of images are avail-
able, would be well suited for such applications. CAD systems have become
reality in aiding the detection of abnormalities in routine scans, for example
for breast lesion detection in mammographs. Our focus is on medical image
classification by which we mean another type of CAD system: one that clas-
sifies whole images, or predefined regions. To be able to use a classification
system as a second opinion, it is important that the CAD system provides
interpretable results. The output is preferably a soft classification, i.e. the
posterior probabilities of the image belonging to each of the classes, rather
than a hard class label. PLSA and Naive Bayes classifiers directly provide
such posterior probabilities as output. Both k-NN classifiers and SVMs can
be adapted relatively easily to give a soft classification [18].

In medical studies, groups tend to use their own datasets rather than bench-
mark datasets for both training and testing, making it hard to compare
the absolute classification performances between different CAD systems. It
would be beneficial if large medical datasets become publicly available, as is
the case for standard texture databases. This would create the opportunity
to directly compare different CAD systems. Also, it could provide individual
studies with more data, which is beneficial to both training and testing [21].

We review three recent works that use the BoF approach for classification
of CT lung scans [2], histopathological images [9] and endoscopic colorectal
images [10]. Here, ground truth labels for the training and test images are
obtained by combined assessment of two or more medical experts.

Gangeh et al. [2] experiment with a BoF image representation for the clas-
sification of CT lung images. They focus on improving the assessment of
emphysema in CT images, classifying between normal tissue (NT'), centrilob-
ular emphysema (CLE), paraseptal emphysema (PSE). In their experiments,
168 regions of interest (ROIs) are used, evenly distributed over the classes.
Random sampling is used with non-normalized, raw pixel intensities used as
descriptor. The choice to use non-normalized raw pixel values is motivated

19



by the fact that in CT images, the mean intensity directly indicates a phys-
ical property of the tissue. The codebook is formed by k-means clustering
and their system uses a SVM with RBF kernel. They report a classification
performance of 96% on their test set.

Raza et al. [9] apply the BoF approach to histopathological images and aim
to classify renal cell carcinoma (RCC) into four subtypes: clear cell (CC),
chromophobe (CH), oncocytoma (ON) and papillary (PA). The tissue sam-
ples are taken from renal tumors. The study contained 106 histopathological
images evenly spread over the classes. A DoG interest point detector with
SIFT descriptors gave best performance on the particular dataset. k-Means
clustering was used to form the codebook, a linear SVM yielded a classifica-
tion performance of 88%.

Tamaki et al. [10] aim to develop a CAD system for colorectal tumor clas-
sification. They use images obtained with a Narrow Band Imaging (NBI)
endoscope. A training set of 908 NBI images was collected before April
2010, and a separate test dataset containing another 504 NBI images was
collected after April 2010. This set up is much like it would occur in clinical
practice: training the system on ’old’ images and applying it to new images.
Their prototype system extracts SIFT features at regular grid points and
forms the codebook by class-wise k-means clustering of visual words. They
use a linear kernel SVM classifier. As the computation time for classifica-
tion is only 60 ms, approximately 15 frames per second, the possibility exists
to build a real-time application in which frames of NBI videoendoscopy are
classified by feeding them to the SVM. Their system is adapted to produce a
soft, classification of class probability estimates. A classification performance
of 93% was achieved on the test dataset.

Comparing the three applications built, we conclude that the work by Tamaki
et al. on NBI endoscopic images is most likely to become clinical practice
in the near future. First of all, the soft classification output makes the tool
more useful as a second opinion to a medical expert. Secondly, their method
of producing a training and test dataset is the way one would encounter
in clinical practice, in contrast to the manually balanced datasets used by
Gangeh et al. and Raza et al. Lastly, the parameter tuning of Tamaki et al.
is much more extensive, aiming for the best implementation choice of each
component of the BoF method instead of focusing on just a single or a few
components.
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4 Discussion

For each of the components of the BoF method, being feature detection,
feature description, codebook formation, image representation and classifi-
cation, various methods have been suggested in literature. Currently the
general approach in texture analysis is to use dense sampling together with
SIFT feature descriptors. For codebook formation, typically k-means clus-
tering or radius-based clustering is used. The image is either represented
by a histogram of visual word counts or by the signature representation.
Newer image representations based on soft histograms or sparse coding are
promising, but they have not become standard choice yet. The use of a SVM
as classifier has become common practice. The y? or EMD kernel tends to
give the best classification performances, but linear kernel SVMs are used
frequently for their reduced computational cost. It must be stressed that
the optimal choices, or parameter tunings, can vary significantly for different
datasets. This means that when designing a classification system for a par-
ticular application, dedicated effort should be made to find the best choices
and tune parameters in all of the components of the BoF method.

Research should continue to focus on finding more effective detectors and
descriptors, as well as investigating more advanced methods for combining
multiple detectors and descriptors. The medical applications discussed [2],
9], [10], do not incorporate the newest developments in the BoF approach
such as sparse coding or soft histograms in their applications. Future re-
search should focus on transferring novel developments in texture analysis
to medical applications. Another interesting direction is to investigate the
possibility to extend the BoF approach to 3D data obtained for example with
Magnetic Resonance Imaging (MRI) or CT.
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Samenvatting

Het doel van deze literatuurstudie is het onderzoeken van het 'Bag-of-Features’
(BoF) model en de toepassingen van dit model op classificatie van medische
beelden. Met classificatie van beelden bedoelen we het plaatsen van een beeld
in een categorie aan de hand van wat er in het beeld te zien is. Voorbeelden
van catergorieén zijn 'auto’ of "huis’. We geven een computer-algoritme eerst
een aantal trainingsbeelden, zodat geleerd kan worden wat elk van de cat-
egorieén typeert. Als het algoritme op die manier is getraind, wordt het
gebruikt om nieuwe beelden te classificeren in één van de categorieén. In
medische beeldclassificatie kunnen de categorieén bijvoorbeeld zijn: 'nor-
maal weefsel” en "tumorweefsel’.

Het BoF model is een specifieke manier van beeld representatie die we in deze
literatuurstudie onderzoeken. Het BoF model representeerd een beeld als een
collectie van locale indicatoren. Een locale indicator beschrijft bijvoorbeeld
de grijswaarden, of er wel of niet een rand is, of dat er een sterke overgang
van licht naar donker is op een bepaald gebied in het beeld. Tijdens de
trainingsfase wordt aan de hand van deze verzameling indicatoren een code-
boek geleerd, door de indicatoren die op elkaar lijken allemaal als hetzelfde
codewoord te beschrijven. Zo kan een nieuw beeld worden beschreven als
een verzameling van codewoorden. Een belangrijk aspect van de BoF meth-
ode is dat de beelden worden vergeleken aan de hand van het aantal van
elke codewoord in het beeld. Hierbij wordt de locatie waar het codewoord
voorkomt niet meegenomen in de beeldrepresentatie. Een beeld wordt dus
gerepresenteerd als een distributie (vaak een histogram) van codewoorden
uit het codeboek. Om tot beeldclassificatie te komen, wordt een classificatie
algoritme toegepast met de verkregen representatie als invoer.
Oorspronkelijk werd de BoF methode vooral toegepast voor het classificeren
van beelden van textuur en materialen. Het is gebleken dat ook voor classi-
ficatie van beelden van objecten de methode succesvol is. Toepassingen op
het gebied van medische beeldclassificatie worden sinds kort onderzocht. We
zien dat de nieuwste technieken in de BoF methode nog maar weinig worden
toegepast in medische beeldclassificatie. In dit werk geven we een overzicht
van de recente literatuur over het BoF model en vergelijken we voor de
belangrijkste componenten verschillende opties die in de literatuur zijn gesug-
ereerd. Verder kijken we specifiek naar de toepassingen van de BoF methode
voor medische beeldclassificatie.
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